
 

 

 

 

 

ESSAYS ON AGENT HETEROGENEITY AND ADAPTIVE LEARNING 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

 

JUNGANG LI 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

 

Presented to the Department of Economics 

and the Division of Graduate Studies of the University of Oregon 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy  

 

June 2021 



 

ii 

 

DISSERTATION APPROVAL PAGE 

 

Student: Jungang Li 

 

Title: Essays on Agent Heterogeneity and Adaptive Learning 

 

This dissertation has been accepted and approved in partial fulfillment of the 

requirements for the Doctor of Philosophy degree in the Department of Economics 

by: 

 

Bruce McGough Co-Chairperson 

George Evans Co-Chairperson 

David Evans Core Member 

Robert Ready Institutional Representative 

 

and 

 

Andy Karduna Interim Vice Provost for Graduate Studies 

 

Original approval signatures are on file with the University of Oregon Division of 

Graduate Studies. 

 

Degree awarded June 2021 



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Jungang Li  

  



 

iv 

 

DISSERTATION ABSTRACT 

 

Jungang Li 

 

Doctor of Philosophy 

 

Department of Economics 

 

June 2021 

 

Title: Essays on Agent Heterogeneity and Adaptive Learning 

 

Agent heterogeneity has been a widely discussed topic in the recent decade. 

However, most of the models that emerged from the literature draw their conclusions 

from a rational expectations equilibrium. These models impose strong assumptions on 

what agents know and how much they understand the models operate from one period 

to the next. Adaptive learning offers a straightforward response to this criticism by 

assuming agents are econometric learners. My dissertation aims to investigate the 

implications of combining these two features – agent heterogeneity and adaptive 

learning – together to see how models behave differently from the traditional models. 

My research relaxes these rational expectation assumptions in several widely-studied 

macroeconomic models.  

In the first chapter of the dissertation, I traduce a novel concept of local 

rationality in a real business cycle model and with heterogeneous agents. The 

heterogeneity is introduced through ex-ante identical idiosyncratic income shocks.  To 

understand how heterogeneity plays a role in the result, I implement a series of 

experiments that include different versions of the model with representative agents 

and heterogeneous agents. Both rational expectation results and locally rational 

expectation results are obtained. Both chapters find novel results that aggregate 

variables behave differently under adaptive learning primarily due to wealth-rich 

agents’ learning behaviors. The simulations show that the rational expectations 
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equilibrium can be approximated with adaptive learning in these otherwise hard-to-

solve models.  

The last chapter focuses on a different type of heterogeneity with adaptive 

learning agents – expectational heterogeneity. The agents observe different signals to 

forecast relevant variables about the future. I show analytically that multiple sunspots 

can be used by agents in the model simultaneously, and these equilibria near an 

indeterminate steady state can still be E-stable. The analysis in the model holds for 

both the linear and the nonlinear versions of the model.  

Overall, my dissertation makes contributions in the intersection fields of agent-

heterogeneity and adaptive learning. The interaction could either be used as a 

computational method to approximate the rational expectations equilibrium (REE) or 

introduces extra friction in the model to have different aggregate responses given 

aggregate shocks.  
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CHAPTER I

INTRODUCTION

Economic agents making forward-looking decisions is one of the major differences

between economics and natural sciences. In most modern economic theory, the

outcomes partially depend on what people expect to happen. The current standard

technique for modeling expectations is to assume rational expectations (RE).

Intuitively, Rational expectations define an equilibrium where reality and belief align

with each other. Formally, RE is defined as the conditional expectation of the

relevant model-specific variables. While RE provides an intuitive solution to most

macroeconomic models, the approach presumes that decision-makers have extensive

knowledge about the economy, including the models’ structure and the variables that

go into agents’ decision rules. These RE assumptions become even more stringent

when the relevant variables take the form of a distribution.

My research aims to relax these rational expectation assumptions in several

widely-studied macroeconomic models. I show that an alternative expectation

assumption, a.k.a adaptive learning, provides a deeper understanding of the rational

expectation assumptions imposed in several macroeconomic dynamic models. It

shows that adaptive learning can explain a range of empirical observations. All

chapters of my dissertation share the common ground in that I introduce some

bounded rationality to account for empirical evidence that full rationality fails.

My research is motivated by the fact that two individuals in the economy hardly

hold identical beliefs on the future outlook. Also, expectations are formed

with a certain level of irrationality because people do not have the necessary

information or understanding of how the economy operates. However, the most
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recent macroeconomics development leaves out the discussions of expectations due

to increasing model complexity, albeit the relevant role expectations play in the

actual economy. In terms of applications, each chapter of the dissertation focus

on the following topics: the effects of monetary policies and economy-wide shocks

on consumption and income inequality in the United States, moment matching in

RBC models, stability of sunspot equilibrium with multiple sunspots, and zero-lower

bound on the interest rate and liquidity trap.

In the first chapter, a new behavioral concept, local rationality, is developed

within a simple heterogeneous-agent model with incomplete markets. To make savings

decisions, agents must forecast the shadow price of asset holdings. In the absence

of aggregate uncertainty, locally-rational agents predict shadow prices rationally

and make optimal state-contingent decisions. These agents then use estimated

econometric models to extend their rational shadow-price forecasts to accommodate

aggregate uncertainty. This chapter finds novel results that aggregate variables

behave differently under bounded rationality, primarily due to wealth-rich agents

learning behaviors. I introduce the local rationality concept in a real business cycle

model (RBC) to account for the second-moment fluctuations observed in the data.

The second chapter introduces local rationality to a New Keynesian economy

with incomplete markets and sticky nominal prices. Households are heterogeneous

and face idiosyncratic wage risks. Both aggregate productivity shocks and monetary

policy shocks are incorporated into the model. Both households and intermediate

goods producers are assumed to be locally rational because they make optimal state-

contingent decisions in the absence of aggregate uncertainties. Agents use estimated

econometric models to forecast their shadow prices to accommodate aggregate

uncertainties. In a calibrated model that attempts to capture features of US income

inequality, I implement multiple monetary and fiscal experiments. I show that the

aggregate responses to policies differ from their counterparts in a similar model with
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entirely rational agents. I found that the interaction of agent heterogeneity and

adaptive learning can make aggregate shocks induce distributional effects. The effects

are driven mainly by the top-rich agents in the economy.

In the last chapter, I investigate the implication of introducing multiple finite-

state Markov extrinsic sunspot processes in a general univariate forward-looking

model. In this model, each agent either does not observe any sunspots or observes only

one of the sunspots. I show adaptively stable restricted perception Markov stationary

sunspot equilibria (RP-SSEs) can exist near an indeterminate steady state for both

the linear and nonlinear cases. I present the analytical conditions for the existence

and E-stability. I also show that the model would prefer a sunspot equilibrium to a

steady state equilibrium under model selection dynamics.

3



CHAPTER II

INTERACTIONS OF ADAPTIVE

LEARNING AND HETEROGENEITY

IN A REAL BUSINESS CYCLE MODEL

II.1 Introduction

Contemporary micro-founded macroeconomics models are identified partially by

the notion of rationality. A central aspect is that expectations can influence the

time path of the economy. Rationality is widely used in economic theories to ensure

internal consistency within the model. The equilibrium notion based on rationality

is a two-sided relationship where agents form expectations that lead to dynamics

that match their expectations. Rationality comes in two essential parts: i) knowing

the probability distribution of the endogenous and exogenous variables and can

form optimal forecasts, and ii) given these forecasts, agents make optimal choices

to maximize their objectives. The criticism is that the sophistication required of

agents by rationality is substantial.

Literature on bounded rationality and adaptive learning has developed to

respond to the criticism of rational agents’ knowledge of the model structure. Instead

of knowing the data generating process, agents act like econometricians and estimate

forecasting models to form expectations. In turn, the boundedly rational expectations

feedback into the dynamic system and generate new data for the agents to update their

models. However, there hasn’t been much exploration on the criticism that comes
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with agents making the optimal decision by solving infinite-horizon programming

problems. The pioneering work of Evans and McGough (2020) first introduced

shadow-price learning as a behavior primitive as a response to the criticism on the

optimal decisions. Informally, agents are assumed to act as if they solve a two-

period optimization problem in each period and forecast ”shadow prices” to trade-off

between choices today and the impact tomorrow. Shadow price learning turns a

complex dynamic control optimization problem into a forecasting problem closely

linked to bounded rationality and adaptive learning.

The agents’ sophistication level becomes even higher when the model deviates

from the representative-agent setting to a heterogeneous-agent one. In a

representative-agent model, all agents would act identically and hence know

everyone makes the same decisions in each period. However, in a model with

heterogeneous agents, rational expectations assume agents know the state variables’

whole distribution and how it translates to prices. As a more realistic modeling

strategy than the traditional presentative-agent models, heterogeneous-agent models

have attracted a lot of attention in the literature. For example, Philip Bergmann

(2020) finds that energy price shocks decrease inequalities for both income and wealth

in a real business cycle (RBC) model with heterogeneous agents. New results have

been found through the lens of the HANK model. Kaplan et al. (2018) find that

the indirect effects of an unexpected decrease in interest rates operating through a

general equilibrium increase in labor demand outweigh the direct effects of inter-

temporal substitution. McKay et al. (2016) find the power of forward guidance

smaller in a HANK model than in the standard model. Bhandari et al. find that

the Ramsey planner’s optimal policy responses differ from the representative agent

economy in magnitudes and directions. However, findings are drawn from a rational

expectation equilibrium and impose strong assumptions on agents’ knowledge about

the economy’s structure and the law of motions of some large-dimension states.
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This chapter intends to relax this strong assumption on the agent’s ability to

solve the dynamic optimization problem by introducing local rationality in a dynamic

model. Local rationality assumes that agents can make fully optimal decisions under

idiosyncratic shocks in the absence of aggregate uncertainty. However, agents do not

know the equilibrium mapping from the economy’s aggregate states to the distribution

of state variables and market-clearing prices. The rationality is local in the sense that,

to account for the aggregate shocks, agents use an econometric model as guidance

for deviating from the fully optimal decisions in the absence of aggregate uncertainty.

The aggregate states and individual household’s beliefs determine the direction and

magnitude of the deviations. In this environment, agents form beliefs based on

idiosyncratic shocks paths and react differently to aggregate shocks.

Under local rationality, the economy is self-referential: the shifts in individual

beliefs determine the new distribution of beliefs, combined with labor productivity

and asset holdings distributions, affect current market-clearing conditions. The

market-clearing conditions, in turn, reinforce the individual beliefs. A prominent

unique feature of our environment is that the interaction of learning and idiosyncratic

shock dynamics plays a significant role in expectation formation. Mainly, learning

introduces a parameter that governs the speed of agents’ updating of their econometric

models. When the speed is low, households spend a relatively long time updating

the forecast rule. During the same periods, the agents might have experienced a

wide range of idiosyncratic shocks. Some agents end up with a high position in asset

holdings from the interaction, but their beliefs are also impacted by their personal

experience when they held less wealth. These asset-wealthy agents react to aggregate

shocks as if they were poorer than they are. The opposite cases could also arise.

Namely, asset-poor agents might respond to aggregate shocks as if they were richer

than they are.
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Under the shadow price learning with heterogeneous agents in the RBC model,

we found novel interactions between the learning mechanism and the distribution

of individual variables. When the learning rule is simple and only uses aggregate

capital and aggregate shocks as the regressors, the constant learning gain plays an

important role in determining the aggregate variable behaviors. Specifically, asset-

rich agents use data from the periods when they hold low levels of assets and are

more sensitive to aggregate shocks. Their behaviors are close to what it is like when

they are asset-poor. When we allow the agents to have a more complicated learning

rule that includes the individual variables, the agents can learn the “correct” beliefs

that match their asset holdings and idiosyncratic shocks. As a result, the impulse

response functions under the simple learning for the aggregate variables are different

from the rational expectations. The difference disappears when the learning rule is

extended to include the individual variables. We also show that heterogeneity in

agents asset holding is necessary for the adaptive learning introduces the difference

in the impulse response functions. As a counterexample, the representative-agent

version of the model doesn’t exhibit the same properties as the heterogeneous-agent

model with local rationality.

II.2 Literature Review

There has been a wide range of papers that intends to explore the possibility

of explaining business cycle fluctuations with shifts in expectations. Early work by

Benhabib and Farmer (1994, 1996, 2000) and Farmer and Guo (1994, 1995) introduced

the possibility of multiple equilibrium and sunspots into the study of standard

equilibrium business cycles under rational expectations. Eusepi and Preston (2011)

further extended the framework to include learning dynamics that create changes in

expectations and generate business cycles that better match the data’s comovements.
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Another reason to deviate from rational expectations is that the equilibrium solutions

often impose relatively strong assumptions on agents’ knowledge about the economy’s

structure in a model.

This paper belongs to two broad literature work. One intends to reconcile

the predictions of real business cycle theory with observed data. The other is

to investigate the effects of movements in income-and-wealth distribution. The

former includes Hansen (1985), Rogerson (1988), Christiano and Eichenbaum (1992),

Benhabib and Farmer (1994), Andolfatto (1996), Schmitt-Grohe (2000), and Eusepi

and Preston (2011). These papers introduce a range of frictions that range from the

indeterminacy of rational expectations equilibrium to long forecasting horizons for

future prices. The latter literature includes Krusell and Smith (1998), Castaneda et

al. (2003)

II.3 Environment

The following section considers a standard heterogeneous environment in

Aiyagari’s (1993) style, including endogenous labor choice and aggregate shocks

similar to Krusell and Smith (1998). We assume a unit mass of workers who make

choices to maximize their present discounted value of lifetime utility evaluated over

stochastic streams of consumption and leisure.

Êj
0

∞∑
t=0

βtU(cjt , l
j
t ), (II.1)

subject to the flow budget constraint and borrowing constraint

cjt + ajt+1 = (1 + rt)a
j
t + wtε

j
t(1− l

j
t ), (II.2)
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where cj, lj, aj, and εj denote household j’s consumption, labor choice, asset holding

in the form of capital claims, and individual labor productivity. Êj denotes the

subjective expectation held by household j that might or might not be rational. As is

the standard assumption, different households have different efficiency units of labor

per hour worked. In return to supplying labor, households receive a wage that can

be separated into two components: an aggregate component wt, which is the same

across all workers, and an idiosyncratic component εjt which will be independent and

identically distributed across all workers.

We assume that εjt is a finite-state Markov process with the same transition

matrix for all households Π(εjt , ε
j
t−1). Furthermore, we will assume agents cannot

directly ensure against this idiosyncratic risk but can buy and sell claims to capital

up to an exogenously given borrowing constraint a. The worker’s problem is then to,

taking the stochastic process of rt and wt as given, choose streams of consumption and

labor to maximize (II.1), subject to the borrowing limit ajt+1 ≥ a and time allocation

0 ≤ ljt ≤ 1. Household optimality then yields standard first-order conditions

Uc(c
j
t , l

j
t ) ≥ βÊj

t

[
λjt+1

]
, (II.3)

Ul(c
j
t , l

j
t ) = wtεtUc(c

j
t , l

j
t ), (II.4)

λjt = (1 + rt)Uc(c
j
t , l

j
t ) (II.5)

where equation (II.3) and (II.4) are euler equation and labor-leisure choice. Equation

(II.5) defines shadow price, λit. The shadow price is the marginal utility of saving from

the last period. The shadow price has a very clear economic meaning that the agents

are aware of instead of just a mathematical number. The euler equation can hold

with inequality only if ajt+1 = 0. Standard methods can show that, given a stochastic

process for rt and wt, an allocation {cjt , l
j
t} solves the household’s problem if and only

if it satisfies (II.2),(II.3), and (II.4). The production technology is standard.
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There is a representative firm which produces output under perfect competition.

The firm rents capital at rental rate rt and hires effective labor from the household

at wage wt, thus the firm solves

max
Kt,Nt

θtf(Kt, Nt)− wtNt − (rt + δ)Kt, (II.6)

where θt is a stochastic variable that affects total factor productivity. The firm chooses

capital and labor inputs, Kt and Nt, to maximize profits, taking factor prices wt and

rt as given. Capital wear-off rate is δ. The optimal condition on behalf of the firm

then yields the first-order conditions

wt = θtfN(Kt, Nt) (II.7)

rt = θtfK(Kt, Nt)− δ, (II.8)

which equate factor prices with their real marginal productions. rt is the rental

rate of capital, and wt is the real wage. The environment introduced here includes

the standard representative-agent growth model or Aiyagari (1994) model, when

idiosyncratic randomness or aggregate randomness is shut down.

II.4 Rational Expectations Equilibrium (REE)

In the absence of aggregate uncertainty, agents are assumed to make fully optimal

decisions under idiosyncratic shocks. To account for aggregate shocks, they use an

econometric model as guidance for deviating from the fully optimal decisions. We

leave out the time subscripts for notional convenience and use an apostrophe to

indicate the next period. Naturally, the definition of local rationality consists of

10



two parts: agents’ behavior without aggregate uncertainty and adaptive learning

behaviors under aggregate uncertainty.

II.5 Stationary Recursive Equilibrium

Before introducing our bounded rationality assumptions, we first define the

stationary rational expectations equilibrium absent aggregate shocks by setting θt = 1

for all t. This definition will be used as a benchmark for later comparisons.

Definition 1

A Stationary Recursive Equilibrium consists of a distribution measure µ̄

over (a, ε), policy rules c̄(a, ε), l̄(a, ε),λ̄(a, ε) and ā(a, ε), prices w̄ and r̄,

and aggregate capital and labor supply K̄ and N̄ such that

1. The policy rules c̄(a, ε), l̄(a, ε),λ̄(a, ε) and ā(a, ε) solve recursive

versions of (II.2)-(II.5) for all (a, ε)

c̄(a, ε) + ā(a, ε) = (1 + r̄)a+ w̄εl̄(a, ε)

Ul(c̄(a, ε), l̄(a, ε)) = w̄εUc(c̄(a, ε), l̄(a, ε))

λ̄(a, ε) = (1 + r̄)Uc(c̄(a, ε), l̄(a, ε))

Uc(c̄(a, ε), l̄(a, ε)) ≥ βE
[
λ̄(ā(a, ε), ε′)

]
where E is taken over ε′

2. Firm optimally conditions hold w̄ = fN(K̄, N̄) and r̄ = fK(K̄, N̄)−δ.

3. The labor market clears N̄ =
∫
ε(1− l̄(a, ε))dµ̄(a, ε)

4. The asset market clears K̄ =
∫
adµ̄(a, ε)

11



5. µ̄ is stationary under the policy rules and Π: for any Borel set B

µ̄(B, ε′) =
∑
ε

Π(ε′, ε)µ̄ ({a : ā(a, ε) ∈ B}, ε) .

II.5.1 Stochastic Recursive Equilibrium - REE

Now consider the rational expectations equilibrium with the aggregate shocks.

The stochastic recursive equilibrium adds aggregate shocks θt to the stationary

version. Agents’ decisions on asset holding, consumption, and labor supply also

depend on prices wt and rt. The prices, in turn, are implied by the market clearing

conditions.

Definition 2

A Stochastic Recursive Equilibrium consists of prices prices wt and rt,

a distribution measure µt as a function of prices over asset holding

and idiosyncratic labor productivity (at, εt), policy rules ct(at, εt;wt, rt),

lt(at, εt;wt, rt), and at+1(at, εt;wt, rt), , and aggregate capital and labor

supply Kt(wt, rt) and Nt(wt, rt) such that

1. The policy rules ct(a, ε), lt(a, ε), and at(a, ε) solve recursive versions

of (II.2)-(II.5) for all (at, εt)

2. Firm optimally conditions hold wt = fN(Kt, Nt) and rt =

fK(Kt, Nt)− δ.

3. The labor market clearsNt(wt, rt) =
∫
εt(1−lt(at, εt;wt, rt))dµ̄(at, εt;wt, rt)

4. The asset market clears Kt(wt, rt) =
∫
atdµt(at, εt;wt, rt)

5. The distribution µt(wt, rt) evolves under the policy rules and the

transition probability Π.

12



To compare the results to the bounded rational equilibrium, we define the induced

shadow price from the λt(at, εt;wt, rt) = (1 + rt)Uc(ct(at, εt;wt, rt), lt((at, εt;wt, rt))).

Let I denote a mapping that gives the current information set of the agents, i.e.,

x = I(Ω). We keep this arbitrary for now, but we will allow for specific functions

in future sections1. Let ΛRE be the indeuced ergodic distribution of λt and Xt−1

from the REE. We define ΨRE = E(ΛRE)(xx′)−1E(ΛRE)[x log(λ/λ̄)] where λ̄ is the

stationary steady state from the stationary recursive equilibrium.

II.6 Local Rationality

The difficulty faced in solving a Stochastic Recursive Equilibrium lies in the fact

that policy rules and the law of motion depend on µ, a high dimensional object. The

literature has used multiple approaches to approximate these equilibria. There are

two different approaches. The first type uses projection methods based on Krusell and

Smith (1998) to summarize the distribution with a finite set of moments. The exact

procedure can vary but generally faces the problem that each additional moment

adds an extra dimension to the state space. Thus, the curse of dimensionality quickly

appears. The second approach, first introduced by Reiter (2009), instead linearizes

policy rules around the Stationary Recursive Equilibrium. Our bounded rationality

equilibrium will borrow from both of these works of literature and representative

agent learning literature.

The behavior of rational agents has two interesting limits. The first natural limit

is when the size of the aggregate shocks approaches zero. It’s clear that in the absence

of aggregate shocks, Stationary Recursive Equilibrium is a special case of a Locally

1For example, I could give log deviations of aggregate capital and θ from their stationary recursive
equilibrium values K̄ and θ.
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Rational Recursive Equilibrium. Without the aggregate shocks, the model reduces to

a Bewley/Aiyagari model.

With small aggregate shocks, a locally rational equilibrium’s behavior inherits

properties from the stationary recursive equilibrium, such as the wealth distribution

and level of precautionary savings. This structure allows us to isolate how agents learn

in the presence of aggregate shocks. In the other direction, we can take the limit of

when the size of idiosyncratic shocks εi,t approaches zero and the initial distribution

µ being a point mass with all agents having the same initial wealth and beliefs. In

this limit, the distribution of agents will remain a point mass throughout time, and

we recover behavior similar to the Euler equation learning of Evans and McGough

(2020).

II.6.1 Locally Rational Agents

One hallmark of the rational expectations equilibrium is that agents know the

current distribution of agents and its law of motion and its effect on prices. All of this

is incorporated into the agents’ decision-making process through the expectation term.

This section embraces the bounded rationality assumption and instead assumes agents

don’t have access to the entire state variable’s distribution. They form expectations

by learning from their experience. A novel aspect of our approach is that we assume

agents know how to behave optimally in the absence of aggregate risk and only learn

how aggregate shocks should affect their decisions.

In doing so, we adjust the decision problem of the agent as follows. Agents’

information set is x, and a vector summarizing their beliefs, ψ. They use their

information and beliefs ψ from expectations over the future marginal value of savings,

which we denote by Eψ[λ′]. Given current prices, r and w, we posit that the agent’s
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decisions rules then solve the following equation system.

c(a, ε;x, ψ, r, w) + a′(a, ε;x, ψ, r, w) = (1 + r)a+ wεl(a, ε;x, ψ, r, w) (II.9)

Ul(c(a, ε;x, ψ, r, w), l(a, ε;x, ψ, r, w) = wεUc(c(a, ε;x, ψ, r, w), l(a, ε;x, ψ, r, w)) (II.10)

λ(a, ε;x, ψ, r, w) = (1 + r)Uc(c(a, ε;x, ψ, r, w), l(a, ε;x, ψ, r, w)) (II.11)

Uc(c(a, ε;x, ψ, r, w), l(a, ε;x, ψ, r, w)) ≥ βEψ
[
λ′|a′(a, ε;x, ψ, r, w), ε, x

]
(II.12)

with equality only if a(a, ε;x, ψ, r, w) = a. Note that equations (II.9)-(II.12)

are behavorial primitives : they are imposed assumptions on the behavior the the

households. In order to determine an agent’s choices, we need to specify how the

expectation Eψ [λ′|a, ε, x] is formed. Our local rationality assumption is that agents

form expectations relative to how they would rationally behave in the the stationary

recursive equilibrium. Specifically we assume Eψ [λ′|a(a, ε;x, ψ, r, w), ε′, x] =

λ̄(a′(a, ε;x, ψ, r, w), ε′) exp(ψ′x). Taking expectations over ε′ we then recover

Eψ
[
λ′|a(a, ε;x, ψ, r, w), ε, x

]
=

(∑
ε′

Π(ε, ε′)λ̄(a′(a, ε;x, ψ, r, w), ε′)

)
exp(ψ′x). (II.13)

Consistent with the forecasting rule, we assume that households update ψ by

regressing log deviations of λ(a, ε;x, ψ, r, w) from λ̄(a, ε) on the previous periods

information set x . Beliefs are then updated each period via a recursive constant

gain learning rule as follows. We let R represent the previous period’s estimate for

the covariance matrix of x. The covariance matrix of x is updated via

R(x ,R ) = R + γ(x ′x −R ). (II.14)

While beliefs ψ are updated according to

ψ′(a, ε;x, x , ψ, r, w) = ψ + γR(x ,R )−1x

(
log

(
λ(a, ε;x, ψ, r, w)

λ̄(a, ε)

)
− ψ′x

)
. (II.15)
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The current state of the economy is Ω = (µ, θ, x , R ) where µ is the joint distribution

over (a, ε, ψ). We are now able to define locally rational recursive dynamics.

Definition 3

A locally rational recursive dynamics consists of policy rules c(a, ε;x, ψ, r, w),

l(a, ε;x, ψ, r, w), a′(a, ε;x, ψ, r, w),and λ(a, ε;x, ψ, r, w); evolution of beliefs

R(x ,R ) and ψ′(a, ε;x, x , ψ, r, w); pricing functions r(Ω) and w(Ω);

aggregate firm choices N(Ω) and K(Ω); a function specifying the

information set x = I(Ω); and a law of motion for the aggregate

distribution H(Ω) such that

1. Given prices r and w, c(a, ε;x, ψ, r, w), n(a, ε;x, ψ, r, w), a′(a, ε;x, ψ, r, w),

and λ(a, ε;x, ψ, r, w) solve (II.9)-(II.13)

2. Firms behave optimally: w(Ω) = θ(Ω)fN(K(Ω), N(Ω)) and r(Ω) =

θ(Ω)fK(K(Ω), N(Ω))− δ.

3. The labor market clearsN(Ω) =
∫
ε(1−l(a, ε;x, ψ, r(Ω), w(Ω)))dµ(a, ε, ψ)

4. The asset market clears K(µ, θ) =
∫
adµ(a, ε, ψ)

5. Beliefs evolve according to constant gain learning: R(x ,R ) and

ψ′(a, ε;x, x , ψ, r, w) satisfy (II.14) and (II.15)

6. The law of motion H is consistent with a′(a, ε;x, ψ, r(Ω), w(Ω)),

Π,ψ′(a, ε;x, x , ψ, r(Ω), w(Ω)), I(Ω), and R(x ,R ).

II.6.2 Restricted Perception Equilibrium - LREE

We are ready to define the locally rational expectations equilibrium as a restricted

perceptions equilibrium based on the definition of locally rational recursive dynamics.

The folk theorem of the learning literature states that the long-run beliefs will
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converge to a restricted perceptions equilibrium (RPE) if the equilibrium is E-

stable. Intuitively, RPE is characterized by self-confirming beliefs. Hold beliefs

fixed at ψt = ψ̄ for all t and all agents. Feed these fixed beliefs ψt into the locally

rational recursive dynamics without the belief evolving part in the fifth bullet point.

Let Λ(ψ̄) be the induced ergodic distribution of the shadow price and information

set (λt+1 and Xt) from the dynamics. We can construct the linear projection

of log(λ/λ̄) on X under measure Λ(ψ̄). Effectively, the locally rational recursive

dynamics defines a T-map for the agents beliefs with the form ψ̄′ = T (ψ̄). Here

T (ψ̄) = EΛ(ψ̄)[XX
′]−1EΛ(ψ̄)[X log(λ/λ̄)] and defines the the coefficients of the learning

model from the ergodic distribution of the dynamics. We have the following definition

Definition 4

A locally rational expectations equilibrium is a locally rational recursive

dynamics with the ergodic distributions of the beliefs ψ∗ such that ψ∗ =

EΛ(ψ∗)[XX
′]−1EΛ(ψ∗)[X log(λ/λ̄)].

This framework approximately nests the rational expectations equilibrium. Let ΛRE

be the induced ergodic distribution of λt and Xt−1 from the rational expectations

equilibrium.

II.7 Calibration and Simulation

The utility function is given by the following form U(c, l) = c1−σ

1−σ − χ
(1−l)1−γ

1−γ and

the production function takes the standard Cobb-Douglas form. f(K,N) = KαN1−α.

The calibration of the model is done through moment matching in the stationary

stochastic equilibrium (SSE) without the aggregate shocks. There are three sets

of parameters that need to be set: (i) parameters related to household preferences,

productions, and aggregate shocks; (ii) initial conditions; and (iii) stochastic processes
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for idiosyncratic shocks. The details of calibrations are summarized in Table (1). I

explain the parameters in the following three subsections.

Variable Moment RA HA
σ CES parameter 2.0000 2.0000
γ Frisch elasticity 2.0000 2.0000
β Capital-Output Ratio 0.9612 0.9277
χ Leisure Ratio = 0.33 55.206 54.738
a Borrowing constraint 0.0000 0.0000
α 65% output → labor 0.3500 0.3500
ρθ Krueger et al. (2009) 0.8150 0.8150
σθ Krueger et al. (2009) 0.0140 0.0140
ρzp Permanent ρ - 0.9923
σzp Permanent idio. - 0.1960
σzt I.I.D idio. - 0.2300

TABLE 1 Benchmark Yearly Calibrations

II.7.1 Preferences, Productions and Aggregate Shocks

The settings of parameters match standard representative agent calibrations such

as Schmitt-Grohe and Uribe (2004) and Siu (2004). I set the CES parameters for

household consumption and labor at σ = 2, γ = 2, and the discount factor β is set so

that the aggregate capital to GDP ratio is 10.26 for the yearly calibration. The firms

operate a decreasing return to scale technology so that the labor income accounts for

65% of the total output. We calibrate χ to target 1 − l̄ to be 0.333 in the steady

state, which implies spending approximately 33.3% of their time allocation working.

We assume that the information available to the agents is given by.

I(Ω) =

(
1, log

(∫
adµ(a, ε, ψ)

)
− log

(
K̄
)
, log(θ)

)
, (II.16)
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Agents respond to the log deviation of capital and productivity from their steady-state

values. Finally, agents cannot borrow which means a = 0.

II.7.2 Initial Conditions and Learning

For the representative agent model, the initial conditions for each variable are

at the steady-state level. For the heterogeneous agent model, the initial conditions

are drawn from the stationary distribution of the stationary recursive equilibrium. In

addition to the standard calibrations, our simulations also require specifying initial

conditions, including the joint distribution (µ) of assets, productivity, and beliefs.

Also, the covariance matrix R needs initialization. The joint distribution of assets

and productivity are taken to be the joint distribution of assets and productivity

from the stationary recursive equilibrium,µ̄. The initial covariance matrix R0, which

is shared across all agents, is derived from data generated by the rational expectations

equilibrium.

II.7.3 Stochastic Processes

I calibrate the aggregate productivity process following Krueger, who estimated

a process for disposable earnings after taxes and transfers. They estimated an

annual persistence of innovations to be ρθ = 0.815 with a standard deviation of

σθ = 0.014. We assume the idiosyncratic log productivity process is the sum of an

AR(1) and i.i.d. component. The calibration follows the practices in Krueger (2005),

who estimated a process for disposable earnings after taxes and transfers. They

estimated an annual persistence of innovations to be 0.992 with a standard deviation

of 0.098. The standard deviation of the transitory component they estimated to be

0.23. The combination of the permanent shocks and transitory shocks can help the

model account for the wealth and income inequality of the model. The idiosyncratic
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productivity process is approximated using the Rouwenhorst method with 7 grid

points for the permanent component and 3 grid points for the transitory component.

II.7.4 Numeric Method

To compute the stationary recursive equilibrium, we approximate the agents’

income process using a finite-state Markov chain. We discretize the AR(1) component

of productivity with seven grid points using Rouwenhorst’s method in Kopecky and

Suen (2010) and the transitory component with three grid points Gauss-Hermite

quadrature. The agent’s decision rules are approximated along the asset dimension

with 100 grid points, non-linearly spaced. We solve for the agents’ optimal decision

rules conditional on prices via the endogenous grid method of Caroll. The stationary

distribution is solved by approximating the distribution with a histogram of 10, 00

data points. We construct a transition matrix with the approximated policy rules and

then solve the transition matrix’s stationary distribution. Finally, β and χ are chosen

to target the capital-to-output ratio and aggregate labor supply through a non-linear

solver. To approximate the Recursive Competitive Equilibrium, we follow Boppart

et al. (2018) to linearize policy rules around the Stationary Recursive Equilibrium

by constructing impulse response functions. Details, as well as our tests verifying

the linearity assumption, are provided in Appendix A. We apply algorithm 1 to

simulate the locally rational equilibrium conditional on initial beliefs. The simulation

requires solving the temporary equilibrium each period conditional on the distribution

of beliefs and aggregate states. We apply a variant of the endogenous grid method to

approximate each agents’ policies conditional on prices quickly.
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II.7.5 Calibrated Distributions and Policy Rules

Figure (1) shows the asset distribution and the policies rules for the asset holding,

consumption, and labor supply from the stationary stochastic equilibrium. In general,

most agents hold an asset level less than 5, and there is a mass probability for agents

to be on the borrowing constraint. The different colors in figure (1b)-(1d) stand

for varying levels of idiosyncratic income shocks. In general, when the idiosyncratic

income shock is higher for an agent, they tend to consume more and also have a

higher asset holding for the future period. From the policies functions, we can see

that the asset holding policy function varies very little across different income shock

levels, whereas the income shocks have a relatively large impact on the consumption

levels for the agents. The labor supply function is a little different from the other

two policy functions in the sense that agents behave differently with a high or a low

asset holding. Given a low productivity shock, an agent would work more when they

are asset-poor and work less when they are asset-rich. This behavior change is shown

through the crossovers of the line plot in figure(1d).

II.7.6 Simulation Algorithm

A fairly simple algorithm can be constructed to simulate the dynamics with

locally rational agents., shown as follows. Given the parameters set by the calibration

set by the previous section, we can first solve for the stationary distribution for

the shadow price λ̄(a, ε), the algorithm basically finds the fixed point of prices

and distributions that satisfies the inter-temporal conditions. There are several

features of this algorithm to consider. The simulation without aggregate risk only

requires solving a single Bellman equation to determine the shadow price λ̄(a, ε).

This compares favorably to Giusto (2014), which requires repeatedly solving the
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(c) Consumption Policy
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FIGURE 1. Stationary Stochastic Equilibrium

Note: The first graph shows that the wealth distribution from the stationary
equilibrium is heavily skewed. Most of the wealth is held by a small number of
rich agents. The rest of the three figures show the policy functions for an agent in the
stationary equilibrium. These policy functions are the optimal choices in the absence
of aggregate risks.

Bellman equation after each period, and value functions, which take aggregate and

idiosyncratic states as function inputs. The most computationally intensive part of

this process is step 4 which requires solving a non-linear equation in r , w, and

{a′i, li, ci, λi}. Intuitively, this can be achieved by determining the choices for each

agent that solve (II.9)-(II.12) for a given (r, w). The process speeds up by noting

that differences in individual agents’ decisions depend only on ηi exp(ψ′ix); thus, it is

possible to pre-compute those decisions, further speeding up the algorithms.
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Intialize: For current parameterization solve for steady state λ̄(a, ε). Let Ω
be the current aggregate state, assume the µ ∈ Ωt is populated by a finite
number M of agents indexed by i for t ∈ 1 to T do

Compute x = I(Ωt) Find for r, w and {a′i, li, ci, λi} such the policies
a′i, li, ci, λi solve equations (II.9)-(II.12) for each ai, ψi, εi ∈ µ(Ωt) and
the market clearing conditions

N =
1

M

M∑
i=1

εi(1− li)

K =
1

M

M∑
i=1

ai

r = θ(Ωt)fK(N,K)− δ
w = θ(Ωt)fN(N,K)

hold Update beliefs ψ′i and R according to (II.14) and (II.15) Draw new
aggregate shock θ′ Draw new productivity ε′i for each agent i and
construct µ′ from {a′i, ε′i, ψ′i} Update Ωt+1 = (µ′, θ′, x, R)

end
Algorithm 1: Simulation of Economy Locally Rational Agents

II.8 Model Results

This section presents the computational results from the models and equilibrium

concepts. We first show that the restricted perception equilibrium exists by simulation

and then draw the connection between the RPE beliefs and REE beliefs. We also

compare the impulse response functions (IRF) from RPE and REE and show that

learning gain can play a role in how the aggregate variables respond to the shocks.

We provide detailed explanations for the IRFs and argue that the results are coming

from the interactions of learning mechanisms and the heterogeneity across the agents.
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II.8.1 Existence of RPE

By simulations, we show that the locally rational expectations equilibrium exists.

We use the calibration from the previous section and set the constant learning gain

to be 0.005, which is a relatively small gain. For the benchmark model, we let the

information mapping function to be

xt = I(Ωt) = (1, log(Kt/K̄), log(θt))

where K̄ is the steady state of aggregate capital from the stationary recursive

equilibrium. For the benchmark model, the learning gain is 0.01. To compute the

locally rational expectations equilibrium, we follow the definition and execute the

following two steps. First, we simulate the locally rational expectations dynamics

with initial beliefs (0, 0, 0) for ψi0 for all agents. The simulation runs for 100, 000

agents for 30, 000 periods of time. We take the average belief over all agents from the

last 50, 000 periods as the potential candidate for the restricted perception equilibrium

(RPE) beliefs. To check that this average belief is indeed from the RPE, we fix the

beliefs at this average level and simulate the locally rational expectations dynamics

again for 10, 000 periods2 with 100, 000 agents. The induced belief distribution is

given in Figure (2). The vertical red lines in Figure (2) represent the average beliefs

(loading on the constant term, aggregate capital, and aggregate shock) computed

from the last 5, 000 of the initial 30, 000 periods of simulation. The histogram shows

the ergodic distribution of the induced beliefs from the simulation holding the beliefs

2We have simulated the model for more than 1 million periods with various different calibrations,
the per-period temporary equilibrium can always be solved. Eventually, the temporary equilibrium
can be represented by the function that is a mapping from aggregate labor supply to itself. This
mapping always crosses the 45 degree line and hence has a solution.
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FIGURE 2. Induced Belief Distribution

Note: The blue histograms are the induced belief distributions for the three estimates
of the learning rule. They correspond to the belief loading on the constant, aggregate
capital, and aggregate income shock. The red vertical line shows where the initial
beliefs are located.

fixed at the red line level. The simulation shows that the RPE beliefs fall into the

distribution of the ergodic beliefs distribution and hence are self-referential.

II.8.2 Learnability of REE

There are two well-documented features of this economy that allow this forecast

to be simplified further. First, the economy is well approximated linear policy

rules around the stationary recursive equilibrium. Second, approximate aggregation

holds in general. We first define the estimates for the forecasting rule under

rational expectations where agents have full knowledge of how their expected

future marginal value of savings E [λ(a′, ε′, H(µ, θ), θ′)|a′, ε′, µ, θ] Given a rational

expectations equilibrium, it is then possible to construct functions ψRE(a, ε) such that
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ψRE(a, e) = cov(x, x|a, ε)−1cov(x, log(λ/λ̄)|a, ε). The REE beliefs are the aggregate

beliefs over the distribution of agent’s asset holding and individual income shocks.

The computational results for REE beliefs are represented by the blue dashed line

in Figure (3) We show that not only do the RPE beliefs exist but also that they

FIGURE 3. RPE and REE Beliefs

Note: The three graphs correspond to the time paths of the belief loading on the
constant, aggregate capital, and aggregate income shock. They show that the average
RPE beliefs converge to the rational expectations equilibrium beliefs for each belief
loading.

are similar to the rational expectations equilibrium beliefs. Figure (3) shows the

learning dynamics from the LREE compared to the REE counterpart. The three
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subplots in the figure represent each estimate for the coefficient in the learning rule.

In this case, the belief components are for the constant term, aggregate capital

deviation, and aggregate income shock deviation. These results computationally show

that the aggregate rational expectations equilibrium beliefs in a heterogeneous-agent

environment could be learned by the agents if they are locally rational. However, the

convergence of aggregate beliefs to the REE levels does not imply the models behave

identically under the RPE and REE. Details are presented in the next section.

II.8.3 Impulse Response Functions

To compute the impulse response functions (IRFs) from the locally rational

expectations equilibrium, we draw distributions of the asset holdings, individual

shocks, and beliefs from the ergodic distribution of the restricted perception

equilibrium. Give the model a negative aggregate income shock and compute the

impulse responses of the aggregate variables. We repeat the process 500 times and

use the median time paths of the aggregate variables as the IRFs. We also compute

the top 2.5 percentile and bottom 2.5 percentile as a proxy of the 95 percentile of

the IRFs. Figure (4) displays the corresponding impulse responses of changes in

the aggregate asset and aggregate consumption implied by one standard deviation of

exogenous innovation of aggregate income shock εθ.

Figure (4) shows when the learning gain is 0.001, which is set to be relatively

low, there is a clear difference between the impulse responses in the LREE and

REE. Specifically, aggregate capital stock falls less than their rational expectations

counterparts, with aggregate capital falling 25% less in response to a one-standard-

deviation fall in productivity. Meanwhile, consumption falls by more than the rational

expectations counterpart. However, this discrepancy disappears when the learning

gain is relatively high. The average path of all three variables lies almost exactly in
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(a) Aggregate Capital (b) Aggregate Consumption

(c) Interest Rate (d) Aggregate Output

FIGURE 4. Impulse Response Functions with Learning Gain of 0.001

Note:This figure is simulated with a heterogeneous-agent model. The impulse
response functions from the LREE (black dashed lines) with low learning gain
compared to REE (red dashed lines). The LREE cuts consumption more than the
REE counterpart under a negative productivity shock. The three black dash-lines are
97.5%, 50%, and 0.5% responses from the ergodic distributions of the LREE.

line with the rational expectations impulse response functions. Figure (5) shows the

IRFs from LREE with a learning gain of 0.1.

Higher gain implies that agents place greater weight on more recent experiences

when forecasting future values, which means a higher variance of beliefs in the

ergodic distribution. The intuition for the difference is that under lower gain, agents

essentially use the long periods of time3 to estimate the forecasting model. Meanwhile,

a large proportion of the asset is held by rich agents in the economy because the wealth

3If γgain be the learning gain, agents use 1
γgain

to estimate the forecasting rule.
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(a) Aggregate Capital (b) Aggregate Consumption

(c) Interest Rate (d) Aggregate Output

FIGURE 5. Impulse Response Functions with Learning Gain of 0.1

Note:This figure is simulated with a heterogeneous-agent model. The impulse
response functions from the LREE (black dashed lines) with high learning gain
compared to REE (red dashed lines). The aggregate responses are comparable.
The three black dash-lines are 97.5%, 50%, and 0.5% responses from the ergodic
distributions of the LREE.

distribution is heavily skewed according to Figure (7a). As a result, these rich agents

who are currently holding a high level of assets also used their historical data from

when they were poor. In some way, these agents behave more like the asset-poor

type than the asset-rich type in the rational expectations equilibrium. Whereas with

a high learning gain, the agents can quickly adjust to the beliefs commensurate to

their asset-holding level.

To understand why the IRFs from the LREE are different in the specific direction

compared to the REE, we need to dive into how agents’ asset holding affects their
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beliefs. Specifically, in a low gain setting, the agents who are currently poor but

who also still have beliefs consistent with being rich behave in a manner that is

consistent with some notion of decreased risk aversion. We first need to understand

the implication of having low and high beliefs in the environment we have set up. We

show in Figure (6) how beliefs are associated with asset holding levels in a rational

expectations equilibrium. The blue line represents how the belief loading on capital

in the learning rule in the REE model for the agents who have the lowest idiosyncratic

(s = 1) shock, whereas the golden line to the right stands for the case when the agents

have the highest idiosyncratic shock (s = 21).

FIGURE 6. Belief Loading on Aggregate Capital in REE

Note: Each “s” stands for an individual productivity shock level. The figure shows
the loading on aggregate capital from a rational expectations equilibrium. It shows
that the REE beliefs should be a function of both idiosyncratic shocks and individual
asset holding. The functional form might be highly nonlinear as s = 21 shows.

We see that, in general, there is a positive association of loading on the aggregate

capital in the learning rule to the asset level. The loading on the aggregate capital

shows how the agents believe a negative aggregate shock affects their future marginal
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utility from consumption. When the loading on capital becomes higher, the agent

thinks a negative aggregate shock will have a smaller impact on their future, and

hence they would cut their consumption less today. The extreme case is that when

the agents are very wealthy, and the loading on capital becomes positive, they would

increase their consumption today under a negative aggregate income shock. There

will be more labor supply under a negative aggregate shock, and hence the marginal

return for capital increases according to the Cobb-Douglas production function. In

this situation, for an asset-rich agent, the increase in the capital returns cancels out.

It even outweighs the negative impact of a lower labor income from the negative

aggregate shock. As a result, the very wealthy agents with a positive loading on the

capital increase consumption when there is a negative productivity shock.

If the learning gain is low, the asset-rich agents use a long period of historical

data to estimate the beliefs for the learning rule. As a result, their beliefs on

aggregate capital are underestimated. Consequently, the association of belief loading

on aggregate capital to the asset level will become less strong in a low gain setting.

Figure (7) shows the scatter plot of a large number of agents drawn from the ergodic

distribution with locally rational expectations. We can see that the association

between asset and belief is much weaker under the low gain setting than under the

high-gain setting. An important takeaway here is that the simple learning rule that

only uses aggregate capital and aggregate shock as the regressors omit two variables

important to forecasting the shadow price: idiosyncratic shocks and individual asset

holding. We will extend the learning rule to include these two variables in later

sections to show the corresponding results.

Now we can analyze impulse response functions in Figure (4) and Figure (5)

are different from each other. Specifically, with a low learning gain as in Figure (4),

rich agents use extended historical data to forecast their future shadow price and

remember what it was like to have a low level of asset holding from the past. As a
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result, these agents underestimate the belief loading on the aggregate capital. Facing

an aggregate shock, these rich agents tend to cut their consumption more than what

the REE would justify. As a result, we see that consumption has a more considerable

fall in Figure (4b) than the impulse responses under REE. Simultaneously, these rich

agents with underestimated beliefs also tend to save more than the REE would justify,

which is shown in Figure (4a).

(a) Learning Gain = 0.1 (b) Learning Gain = 0.001

FIGURE 7. Belief Estimates on Aggregate Capital

Note: The scatter plots of asset holding and belief loading on aggregate capital. The
left panel is simulated with a high learning gain, whereas the right panel is simulated
with a small learning gain. The high learning gain presents a positive association of
asset holding and belief loading.

This observation shows that locally rational agents have a certain level of habit

persistence behaviors. However, this habit persistence only exists in a heterogeneous-

agent model. Recall that the idiosyncratic income shocks introduce heterogeneity to
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the population. Consequently, the asset holdings can present a distribution over a

wide range. Intuitively, the agents who currently enjoy high-income levels might have

gone through a low-income phase and vise versa. Whereas in the representative-agent

model, all agents always have the same levels of income. The variation in income only

comes from the aggregate shocks, which only cause the wealth to fluctuate slightly

away from the steady-state level. As a result, the representative agents can learn the

corresponding beliefs of the rational expectations equilibrium over time because they

are never too far away from the steady-state wealth level. To illustrate the insight,

we simulate the impulse response functions from the LREE with the same level of

low learning gain. It shows that the LREE impulse responses match the REE ones.

FIGURE 8. IRFs from Representative Agent

Note:This figure is simulated with a representative-agent model. The impulse
response functions from the LREE (black dashed lines) with low learning gain
compared to REE (red dashed lines). The three black dash-lines are 97.5%, 50%,
and 0.5% responses from the ergodic distributions of the LREE.
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II.8.4 Extended Forecasting Function

We can also endow agents with a more complicated forecasting rule. To do this,

we amend the information function to be

I(a, ε,Ω) =

(
1, log

(∫
adµ(a, ε, ψ)/K̄

)
, log(θ), log

(∫
adµ(a, ε, ψ)/K̄

)
(a− ā),

log(θ)(a− ā), log

(∫
adµ(a, ε, ψ)/K̄

)
ε, log(θ)ε

)
.

Now when learning and forecasting their future marginal utility of saving,

agents take into account how their individual states (asset holding and idiosyncratic

shocks) interact with aggregate variables. Specifically, this extended learning rule

can approximate the relationship between the belief loadings and individual state

variables represented in Figure (6).

This extended forecasting rule captures the monotonic dependence of the beliefs

of the agents on individual states. Comparing impulse responses in Figure (9) to

Figure (4), we see that including just a set of interaction terms generates impulse

response that almost precisely line up with those of the rational expectations

equilibrium. This simulation from the extended learning rule justifies using REE

in a heterogeneous-agent environment. The agents do not necessarily need to know

the whole distribution of the state variable and the economy’s structure to make

optimal decisions. Figure (9) shows that when individual variables are introduced in

the learning rule, the agents can effectively learn the positive associations between

the belief estimates and the asset. Agents can still learn the correct beliefs quickly

even when the constant learning gain is as low as 0.001.

An interesting observation is that the borrowing constraint plays a very small

role in the LREE results here. It is true that when the borrowing constraint is
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FIGURE 9. IRFs from Expanded Learning Rule with Gain of 0.001

Note:This figure is simulated with a heterogeneous-agent model. The learning rule
includes both aggregate variable and individual variables. The impulse response
functions from the LREE (black dashed lines) with low learning gain compared
to REE (red dashed lines). The three black dash-lines are 97.5%, 50%, and 0.5%
responses from the ergodic distributions of the LREE.

relaxed, there will be fewer agents who are on the constraint. However, the main

result is driven by the rich agents who underestimate their belief loadings due to

a low learning gain. This is very different from most heterogeneous-agent papers

that find that the model behaves differently due to the borrowing constraint. In the

LREE setting, the deviation to the REE is derived from the interaction of learning

and heterogeneity.
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II.8.5 Conclusion

This chapter extends the analysis of adaptive learning and shadow-price learning

to a heterogeneous-agent environment. A novel concept of local rationality is

introduced. Local rationality assumes that agents can make fully optimal decisions

under idiosyncratic shocks in the absence of aggregate uncertainty. However, agents

do not know the equilibrium mapping from the economy’s aggregate states to the

distribution of state variables and market-clearing prices. We found novel interactions

between the learning mechanism and the distribution of individual variables under

adaptive learning in the heterogeneous-agent model. Suppose the agents use a

simple learning rule that contains only the aggregate variables. In that case, the

locally rational agents can behave differently from the rational agents because they

can’t adjust quickly to the beliefs that correspond to their asset level. The two

exceptions are when the learning gain is high and the learning rule is extended to

include the individual variables. This chapter contributes to two works of literature.

First, the LREE environment can be used as an efficient computational method

for approximating the impulse response functions under rational expectations. To

achieve this approximation, the modeler needs to include idiosyncratic variables in

the learning rule. This finding also justifies using rational expectations in the recent

development of heterogeneous-agent models where most results are drawn from the

REE assumption. Although the assumption is based on the agents’ understanding

of the vastly complicated model and its dynamics, they can learn it with relatively

simple information such as aggregate shocks and individual shocks. In addition to

the computational contribution, future modelers could also investigate the behavioral

aspect of shadow-price learning. Future work could be done in re-examining how the

heterogeneous agent New Keynesian (HANK) model would still hold the results when

the model deviates from REE to LREE.
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CHAPTER III

LOCALLY RATIONAL

HETEROGENEOUS AGENT NEW

KEYNESIAN MODEL

III.1 Introduction

This chapter is a natural extension of the previous one. Here, I introduce local

rationality to a New Keynesian (LRHANK) economy with incomplete markets and

sticky nominal prices. Households are heterogeneous and face idiosyncratic wage risks.

Both aggregate productivity shocks and monetary policy shocks are incorporated into

the model. Both households and intermediate-good producers are assumed to be

locally rational because they make optimal state-contingent decisions in the absence

of aggregate uncertainties. Agents use estimated econometric models to forecast

their shadow prices to accommodate aggregate uncertainties. For simplicity, the

model is set to have a zero-inflation trend. In a calibrated model that captures

income inequality, I implement a monetary experiment to see how monetary policy

plays a role in household wealth inequality. I show that the aggregate responses to

policies differ from their counterparts in a similar model with entirely rational agents,

which further confirms that adaptive learning introduces behavior implications in

heterogeneous-agent models.

I explore the implication of local rationality introduced in the previous chapter

to a Heterogeneous Agent New Keynesian (HANK) model. As a more realistic model
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than the representative-agent counterpart, the HANK model can be used to match

the distributions of wealth and marginal propensities to consume. New results have

been found through the lens of the HANK model. Kaplan et al. (2018) find that the

indirect effects of an unexpected decrease in interest rates operating through a general

equilibrium increase in labor demand outweigh the direct effects of inter-temporal

substitution. McKay et al. (2016) find the power of forward guidance smaller in a

HANK model than in the standard model. Bhandari et al. find that the Ramsey

planner’s optimal policy responses differ from the representative agent economy in

magnitudes and directions. However, all of the results are drawn from a rational

expectation equilibrium. REE imposes strong assumptions on agents’ knowledge

about the economic structure and the law of motions of some large-dimension states.

In this paper, agents are instead assumed to be locally rational and make optimal

state-contingent decisions in the absence of aggregate monetary policy uncertainty.

To accommodate aggregate uncertainties, these agents use estimated econometric

models to extend their rational shadow-price forecasts. The local rationality concept

is identical to the previous chapter. The only difference here is the environment that

includes price-stickiness.

In a calibrated model, I show that the aggregate responses to policies in a

restricted perception equilibrium differ from their counterparts in a similar model with

rational agents. Specifically, I show that wealth inequality’s response to a monetary

shock or a productivity shock differs in an LRHANK model than a HANK model.

In a HANK model with rational expectations, the wealth distribution does not react

much to aggregate shocks. In contrast, we get a lot of movements in the wealth

inequality from the LRHANK model. I further show that the movement in the wealth

distribution under LRHANK is mainly coming from the top wealthy agents.

38



III.2 Literature Review

Although the traditional monetary policy tools are not well-suited to achieve

distributional goals, it is still important for policymakers to understand and monitor

the effects on different groups within society. In general, monetary policy affects

inequality, and rising inequality affects the effectiveness of the policies. There is a wide

range of papers that connect monetary policy to inequality. The related literature

is trying to understand the connection from the empirical perspective. Cobian et

al. (2017) studied the effects of monetary policy shocks on consumption and income

inequality in the United States using data from the Consumer Expenditure Survey.

They found that monetary policy shocks account for a non-trivial component of the

historical variations in inequality. Specifically, a contractionary monetary policy shock

systematically increases inequality. Other research by Ostry et al. (2019) over recent

decades supports these findings. Their study finds that an unanticipated 100 basis-

point decline in the interest rate lowers the Gini measure of inequality by 1.25 percent

in the short term and by 2.25 in the medium term. These results are in line with the

general finding that contractionary monetary policy makes wealth inequality worse.

Amaral (2017) discussed a wide range of channels that monetary policy might have

a distributional effect but commented that the link between monetary policy and

inequality is still inconclusive. A small body of works exists to establish the connection

between monetary policy and income/wealth inequality by reviewing the theoretical

channels. Dolado et al. (2018) focus exclusively on the earnings heterogeneity channel

through the asymmetric nature of searching-and-matching frictions.

However, all of the theoretical models are drawn from the assumption of rational

expectations equilibrium. This paper serves as the first one to understand how

adaptive learning can introduce the distributional effects from the aggregate shocks.

I found that a contractionary monetary policy can exacerbate wealth inequality when
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the agents are locally rational with a simple learning rule that only includes aggregate

variables and a relatively low learning gain. This distributional effect disappears

when the agents are entirely rational, which matches the results from Amaral (2017).

The productivity shock also produces movement in the wealth distribution, but the

direction is more mixed than a monetary shock. I further present the computational

results that the top-wealthy agents primarily drive the distributional effects from the

monetary and productivity shocks. In this learning environment, these top-wealthy

agents behave more like an asset-poor type in their rational expectations counterpart.

III.3 Baseline HANK Model

I consider a benchmark new Keynesian economy with heterogeneous agents,

incomplete markets, and nominal rigidities. There are four sectors: households, final-

good producers, intermediate-good producers, and the government. Price stickiness

is introduced in the style of Rotemberg (1982). The model is purposefully set to be a

simple one to give insight into what local rationality brings in a HANK environment.

Both aggregate productivity shocks and aggregate monetary shocks are considered.

III.3.1 Households

A unit mass of households makes choices to maximize their present discounted

value of lifetime utility evaluated over stochastic streams of the final consumption

good {ct(ω)}t and labor {nt(ω)}t. Individual ω’s preferences are ordered by

Eω
0

∞∑
t=0

βt
(
ct(ω)1−σ − 1

1− σ
− nt(ω)1+χ

1 + χ

)
(III.1)

where σ, χ, γ > 0. Household ω supplies zt(ω)nt(ω) units of labor at time t in

the labor market in return of common wage wt per unit of labor. Here zt(ω) is an
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idiosyncratic productivity shock that affects household ω. Households trade one-

period riskless bonds bt at time t up to a borrowing constraint b with each other and

with the government. The real price of one unit of the riskless bond is normalized to

1. The bond purchased at time t has a nominal rate return of 1 + it at time t+ 1. Let

Πt be the inflation rate at time t and dt(ω) be the dividend received by household ω

from the intermediate-good producers measured in units of the final good. Finally,

the government takes a lump-sum tax Tt from the household in each period. The

household’s problem is to, taking idiosyncratic productivity shock zt(ω), lump-sum

tax Tt, dividend dt(ω), inflation rate Πt,wage wt, the nominal interest rate it and

initial bond holding b−1, as given, choose streams of the final good {ct(ω)}, labor

supply {nt(ω)}, and bond holdings {bt(ω)} to maximize (III.1) subject to a period

budget constraint and a borrowing constraint

ct(ω) + bt(ω) = zt(ω)nt(ω)wt +

(
1 + it−1

1 + Πt

)
bt−1(ω) + dt(ω)− Tt (III.2)

bt(ω) > b (III.3)

Household ω’s utility maximization problem yields the following first-order

conditions

c−σt (ω) = β(1 + it)E
ω
t λt+1(ω) (III.4)

λt(ω) =
c−σt (ω)

1 + Πt

(III.5)

nχt (ω) = c−σt (ω)zt(ω)wt (III.6)

where Eq.(III.4)-(III.5) are the intertemporal Euler equation and Eq.(III.6) is the

standard intra-temporal labor leisure trade-off equation. It will show that it is

convenient to write the Euler equation into (III.4)-(III.5) for the introduction of local
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rationality. Furthermore, aggregate consumption Ct is defined as the integration of

each agent’s consumption.

Ct =

∫ 1

0

ct(ω)dω (III.7)

III.3.2 Final Good Producers

A final good Yt is produced by competitive firms that use a continuum of

intermediate goods {yt(ω)}ω∈(0,1) in a production function

Yt =

(∫ 1

0

yt(ω)
ν−1
ν dω

) ν
ν−1

(III.8)

with ν > 1 denoting the elasticity of substitution of different intermediate goods

used in the production function. The final-good producer solves the following profit

maximization problem, taking the final-good prices Pt and intermediate-good prices

{pt(ω)}ω as given

max
{yt(ω)}ω∈[0,1]

Pt

(∫ 1

0

yt(ω)
ν−1
ν dω

) ν
ν−1

−
∫ 1

0

pt(ω)yt(ω)dω (III.9)

The profit maximization problem in (III.9) yields a demand function for intermediate

goods

yt(ω) =

(
pt(ω)

Pt

)−ν
Yt (III.10)
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The shadow price of producing one extra unit of final good implies the nominal

price Pt which is written as follows

Pt =

(∫ 1

0

pt(ω)1−ν
) 1

1−ν

(III.11)

III.3.3 Intermediate Good Producers

There is a unit mass of intermediate-good producers. Intermediate goods are

produced by these firms and sold in monopolistically competitive markets. Firm ω

uses the following technology to produce intermediate good yt(ω) at time t

yt(ω) = θt`
α
t (ω) (III.12)

where θt is an economy-wise aggregate productivity shock that hits every intermediate

firm, and `t(ω) is the amount of effective labor hired by firm ω. The logarithm of θt

follows an AR(1) process as follows

log(θt) = ρθ log(θt−1) + ξθt (III.13)

ξθt ∼ Normal(0, σ2
θ) (III.14)

Cost minimization implies that the intermediate good producer ω’s marginal cost

for producing one extra unit is as follows.

Mt(pt(ω)) =
wt
αθt

(
pt(ω)Yt
θtPt

) 1−α
α

(III.15)

These monopolistic firms face downward-sloping demand curves specified by

Eq.(III.10) and choose prices pt(ω) while bearing quadratic Rotemberg (1982) price

adjustment costs measured in units of the final consumption good written as follows.
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C(pt(ω), pt−1(ω)) = −φ
2

(
pt(ω)

pt−1(ω)
− 1

)2

(III.16)

Firm ω chooses prices {pt(ω)} to maximize profit, taking aggregate consumption

{Ct}, aggregate final goods production {Yt}, aggregate price {Pt}, wage {wt},

aggregate productivity shock {θt} as given. Each firm is assumed to value

profit streams with a stochastic discount factor driven by aggregate consumption.

Intermediate firm ω’s profit maximization problem is given as follows. The derivation

is shown in Appendix I.2.

max
{pt(ω)}t=∞t=0

E0

∑
t

βt
C−σt
C−σ0

{(
pt(ω)

Pt

)−ν
Yt

[
pt(ω)

Pt
−Mt(pt(ω))

]
+ C(pt(ω), pt−1(ω))

}
(III.17)

Assume all of the intermediate firms fully believe that the economy is in a symmetric

equilibrium. The first-order condition for intermediate firms’ price-setting problem

can be written as follows. The derivation is provided in Appendix I.1.

C−σt

(
(ν − 1)Yt +

(
1− α− αν

α2

)(
Yt
θt

) 1
α

wt + φΠt(1 + Πt)

)
= φβEtΛt+1 (III.18)

Λt = C−σt Πt(1 + Πt) (III.19)

where Λt is the shadow price for the intermediate-good producers. This shadow price

is not just a numeric number but has an economic meaning. Specifically, the shadow

price is the marginal revenue for the firm if they increase the price by one unit in the

next period. The optimality condition states that the firm will choose a price such that

the marginal cost is equal to the marginal revenue. For simplicity, we assume the firms
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know the aggregate consumption when they make choices about the current price.

Eq.(III.18)-(III.19) state that if the intermediate producers expect higher inflation

from t to t+ 1, they will choose higher Pt to smooth the price adjustment cost. This

smoothing behavior comes from the adjustment cost being a quadratic function in

the price change. Finally, the dividends from the intermediate firm are uniformly

distributed across the households so that.

dt(ω) = Dt = Yt − wtLt −
φ

2
Π2
t (III.20)

There are important implications for different dividends schedules. For the benchmark

model, I only consider the simple uniform dividend schedule for now.

III.3.4 Government

According to a Taylor rule, the monetary authority sets the nominal interest rate

on bonds it up to an aggregate policy shock.

it = i+ φΠΠt + εt (III.21)

where i is the nominal interest rate target, and φ is the feedback parameter for

inflation. Note that in this benchmark model, the inflation target is 0. εt is the

aggregate policy shock that follows a stochastic process and follows an AR(1) process

as follows

εt = ρεεt−1 + ξεt (III.22)

ξεt ∼ Normal(0, σ2
ε) (III.23)

45



The government borrows by selling bonds Bt to the households, and the outstanding

debt is financed through a lump-sum tax. The government budget constraint is

written as

1 + it−1

1 + Πt

Bt−1 = Bt + Tt (III.24)

Assume that the total bond supply or government debt Bt is constant and equals B̄

in each period, and the government chooses Tt to balance the budget constraint.

III.3.5 Market Clearing Conditions

In a symmetric equilibrium, pt(ω) = Pt, yt(ω) = Yt for all ω ∈ [0, 1]. Also the

labor demand from each intermediate firm is the same and equals to the aggregate

labor demand, denoted as Lt, i.e. `t(ω) = Lt for all ω ∈ [0, 1]. Market clearing

conditions are

Lt =

∫ 1

0

zt(ω)nt(ω)dω (III.25)

Ct = Yt −
φ

2
Π2
t (III.26)

Bt =

∫ 1

0

bt(ω)dω (III.27)

where Eq.(III.25), Eq.(III.26), and Eq.(III.27) are the market clearing conditions for

labor market, final good market and bond market respectively.
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III.4 Equilibria

III.4.1 Representative Agent

This subsection introduces the equilibria of the model with representative agents.

I define the rational expectations equilibrium and the bounded rational equilibrium

here.

Definition 5

Given an initial condition, a constant sequence of {Bt} satisfying Bt = B̄,

and sequences of aggregate shocks, a rational expectations equilibrium

is a stochastic sequence of prices and inflation {it, wt,Πt}, household

allocations {bt, nt, ct, λt}, aggregates {Yt, Lt,Λt, Dt, Tt} such that

1. Given prices and inflation {it−1, it, wt,Πt}, transfers {Dt, Tt},

household allocations {bt, nt, ct, λt} solve the household’s problem

ct + bt = ntwt +

(
1 + it−1

1 + Πt

)
bt−1 +Dt − Tt

c−σt = β(1 + it)Etλt+1

λt =
c−σt

1 + Πt

nχt = c−σt wt
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2. Given prices {it, wt} and the consumption {ct}, the intermediate

firms choose {Πt, Yt, Lt, Dt} maximize their profit

c−σt

(
(ν − 1)Yt +

(
1− α− αν

α2

)(
Yt
θt

) 1
α

wt + φΠt(1 + Πt)

)
= φβEtΛt+1

Λt = c−σt Πt(1 + Πt)

Dt = Yt − wtLt −
φ

2
Π2
t

Yt = θtL
α
t

3. Given prices and inflation {it−1,Πt}, government chooses {it, Tt}

1 + it−1

1 + Πt

Bt−1 = Bt + Tt

it = i+ φΠΠt

4. All markets clear

Lt = nt

ct = Yt −
φ

2
Π2
t

bt = B̄

The adaptive learning approach typically assumes agents have a correctly

specified forecasting model with unknown parameters. Before defining the locally

rational expectations equilibrium (LREE) for the representative agent model, it is

useful to get the forecasting model for both the households and the intermediate firms.

Note that expectations enter the temporary equilibrium through both Eq.(III.4) and

Eq.(III.18). The state variables are it−1, θt and εt. Consider an approximation of the
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rational expectations equilibrium around the steady state by log-linearization. Note

that the rational expectations equilibrium implies that the linearized solutions for

λt+1 are as follows.

log

(
λt+1

λ̄

)
= ψ̄λ0 + ψ̄λ1 · it + ψ̄λ2 · log(θt+1) + ψ̄λ3 · εt+1 (III.28)

The law of motion for the state variables are as follows.

it = ψ̄i0 + ψ̄i1 · it−1 + ψ̄i2 · log(θt) + ψ̄i3 · εt (III.29)

log(θt+1) = ρθ log(θt) + ξθt+1 (III.30)

εt+1 = ρεεt + ξεt+1 (III.31)

These four equations above imply.

log

(
λt+1

λ̄

)
= ψ̄0 + ψ̄1it−1 + ψ̄2 log(θt) + ψ̄3εt + ψ̄ξ1ξ

θ
t+1 + ψ̄ξ2ξ

ε
t+1 (III.32)

Define the belief vector and information set as follows.

ψ = [ψ0 ψ1 ψ2 ψ3]′ (III.33)

xt = [1 it−1 log(θt) εt]
′ (III.34)

The (linearized) rational expectation for household’s shadow price λt+1 at time

t is.

Et(λt+1) = λ̄ exp(ψ̄′ · xt) (III.35)
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Similarly, the (linearized) rational expectations for intermediate firms’ shadow

price Λt+1 is.

Et(Λt+1) = Λ̄ + Ψ̄′ · xt (III.36)

where Ψ̄′ is the coefficients of the forecasting model for the intermediate-good

producers. Now, I define the locally rational equilibrium with the forecasting rules

from the linearized rational expectations equilibrium.

Definition 6

Given an initial condition, a constant sequence of {Bt} satisfying

Bt = B̄, and sequences of aggregate shocks, a locally rational

expectations equilibrium is a stochastic sequence of prices and inflation

{it, wt,Πt}, transfers {dt, Tt}, household allocations {bt, nt, ct, λt},

aggregates {Yt, Lt, Ct,Λt, Dt, Tt}, and agent beliefs {ψt,Ψt} such that

1. Given prices and inflation {it−1, it, wt,Πt}, household belief {ψt}, and

household allocations {bt, nt, ct, λt} solve the household’s problem.

ct + bt = ntwt +

(
1 + it−1

1 + Πt

)
bt−1 +Dt − Tt

c−σt = β(1 + it)E
ψ
t λt+1

λt =
c−σt

1 + Πt

nχt = c−σt wt

Eψ
t λt+1 = λ̄ exp(ψ′t−1xt)
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2. Given prices {wt} and the consumption {ct}, the intermediate firms

choose {Πt, Yt, Lt, Dt} maximize their profit.

c−σt

(
(ν − 1)Yt +

(
1− α− αν

α2

)(
Yt
θt

) 1
α

wt + φΠt(1 + Πt)

)
= φβEΨ

t Λt+1

Λt = c−σt Πt(1 + Πt)

Dt = Yt − wtLt −
φ

2
Π2
t

Yt = θtL
α
t

EΨ
t Λt+1 = Λ̄ + Ψ′t−1xt

3. Given prices and inflation {it−1,Πt}, government chooses {it, Tt} such

that.

1 + it−1

1 + Πt

Bt−1 = Bt + Tt

it = i+ φΠΠt + εt

4. All markets clear as follows.

Lt = nt

ct = Yt −
φ

2
Π2
t

bt = B̄
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5. Agents belief update through the recursive least square algorithm as

follows.

Rt = Rt−1 + γt(xtx
′
t −Rt−1)

ψt = ψt−1 + γtR
−1
t xt(λt − ψ′t−1xt)

Ψt = Ψt−1 + γtR
−1
t xt(Λt −Ψ′t−1xt)

Note that the household beliefs and the intermediate firms’ beliefs enter the state

space, and thus the state variables for this dynamic now are it−1, θt, εt, ψt−1, Ψt−1

and the temporary equilibrium is defined as.

T E(it−1, θt, εt, ψt−1,Ψt−1)→ (it, wt,Πt, bt, nt, ct, λt, Yt, Lt, Ct,Λt, Dt, Tt, ψt,Ψt)

(III.37)

III.4.2 Heterogeneous Agent

This subsection introduces three different definitions of equilibria with

heterogeneous agents: stationary recursive equilibrium, stochastic recursive

equilibrium, and locally rational stochastic recursive equilibrium. Suppressing all

of the aggregate shocks in the model by setting θt = 1 and εt = 0 for all t, I define a

stationary recursive equilibrium.

Definition 7

Given an initial condition, a constant sequence of {Bt} satisfying Bt = B̄,

and suppressing aggregate productivity and monetary shocks, a stationary

recursive equilibrium consists of a measure µ̄ over the state s = (b, z);

policy rules for the households c̄(b, z) where b is the last period’s bond
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holding, n̄(b, z), b̄(b, z), and λ̄(b, z); prices w̄ and ī; aggregate production,

consumption, labor demand, and inflation: Ȳ , C̄, L̄, and Π̄; intermediate

firms shadow price and dividend Λ̄ and D̄ such that.

1. The household policy rules c̄(b, z), n̄(b, z), and b̄(b, z) solve recursive

versions of Eq.(III.2)-(III.6) for all (b, z)

c̄(b, z) + b̄(b, z) = zn̄(b, z)w̄ +

(
1 + ī

1 + Π̄

)
b+ D̄

c̄(b, z)−σ ≥ β(1 + ī)E
(
λ̄(b̄(b, z), z′)

)
λ̄(b, z) =

c̄(b, z)−σ

1 + Π̄

n̄(b, z)χ = c̄(b, z)−σzw̄

where E is taken over z′ against the stochastic process for {zt}.

2. The intermediate-good producer maximizes their profit function and

generate dividend.

C̄−σ
(

(ν − 1)Ȳ +

(
1− α− αν

α2

)
Ȳ

1
α w̄ + φΠ̄(1 + Π̄)

)
= φβΛ̄

Λ̄ = C̄−σΠ̄(1 + Π̄)

D̄ = Ȳ − w̄L̄− φ

2
Π̄2

Ȳ = L̄α
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3. All markets clear

∫
zn̄(b, z)dµ̄(b, z) = L̄∫
c̄(b, z)dµ̄(b, z) = Ȳ − φ

2
Π̄2∫

b̄(b, z)dµ̄(b, z) = B̄

4. µ̄ is stationary under the households policy rules and the transition

matrix for z: for any Borel set B

µ̄(B, z′) = E(µ̄({b : b̄(b, z) ∈ B}, z))

The equilibrium with aggregate shocks then extends in the standard manner by

allowing policy rules, prices, and aggregates to additionally depend on the current

distribution of agents µ and aggregate shocks θ and ε. The definition is given as

follows.

Definition 8

Let household ω’s individual states be (b , z). Given an initial condition,

a constant sequence of {Bt} satisfying Bt = B̄, a stochastic recursive

equilibrium consists of policy rules for the households c(ω;µ, θ, ε),

n(ω;µ, θ, ε), b(ω;µ, θ, ε), and λ(ω;µ, θ, ε); prices w(µ, θ, ε) and i(µ, θ, ε);

aggregate production, consumption, labor demand, and inflation:

Y (µ, θ, ε), C(µ, θ, ε), L(µ, θ, ε), and Π(µ, θ, ε); intermediate firms shadow

price and dividend Λ(µ, θ, ε) and D(µ, θ, ε), and a law of motion H(µ, θ, ε)

for µ such that
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1. The policy rules c(ω;µ, θ, ε), n(ω;µ, θ, ε), b(ω;µ, θ, ε), and λ(ω;µ, θ, ε)

solve recursive version of Eq.(III.2)-(III.6) for all ω, µ, and θ taking

pricing functions r(µ, θ, ε), w(µ, θ, ε) and the law of motion H(µ, θ, ε)

as given

c(ω;µ, θ, ε) + b(ω;µ, θ, ε) =

z(ω)n(ω;µ, θ, ε)w(µ, θ, ε) +

(
1 + i(µ, θ, ε)

1 + Π(µ, θ, ε)

)
b (ω) +D(µ, θ, ε)

c(ω;µ, θ, ε)−σ ≥ β(1 + i(µ, θ, ε))E (λ(ω′;µ′, θ′, ε′)|ω;µ, θ, ε)

λ(ω;µ, θ, ε) =
c(ω;µ, θ, ε)−σ

1 + Π(µ, θ, ε)

nχ(ω;µ, θ, ε) = c(ω;µ, θ, ε)−σz(ω)w(µ, θ, ε)

2. The intermediate-good producer maximizes their profit function and

generates dividends.

C(µ, θ, ε)−σ
(

(ν − 1)Y (µ, θ, ε) +

(
1− α− αν

α2

)
Y (µ, θ, ε)

1
αw(µ, θ, ε) + φΠ(µ, θ, ε)(1 + Π(µ, θ, ε))

)
= φβEΛ(µ′, θ′, ε′|µ, θ, ε)

Λ(µ, θ, ε) = C(µ, θ, ε)−σΠ(µ, θ, ε)(1 + Π(µ, θ, ε))

D(µ, θ, ε) = Y (µ, θ, ε)− φ

2
Π2(µ, θ, ε)

Y (µ, θ, ε) = θL(µ, θ, ε)α

3. Given prices and inflation {i ,Π(µ, θ, ε)}, government chooses

{i(µ, θ, ε), T (µ, θ, ε)}

T (µ, θ, ε) =
i − Π(µ, θ, ε)

1 + Π(µ, θ, ε)
B̄

i(µ, θ, ε) = i+ φΠΠ(µ, θ, ε) + ε
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4. All markets clear, and aggregation works as follows.

∫
z(ω)n(ω;µ, θ, ε)dω = L(µ, θ, ε)∫
c(ω;µ, θ, ε)dω = Y (µ, θ, ε)− φ

2
Π2(µ, θ, ε)∫

b(ω;µ, θ, ε)dω = B̄∫
c(ω;µ, θ, ε)dω = C(µ, θ, ε)

5. The law of motion for measure µ matches the properties of the

stochastic processes and the profile of individual household policy

rules.

The difficulty faced in solving a stochastic recursive equilibrium lies in the fact

that policy rules and the law of motion depend on µ, a high dimensional object.

The solution also imposes strong assumptions on households’ knowledge about the

economy’s structure and how it evolves. As a comparison for the locally rational

solution, which is defined as follows, I use the approach introduced by Reiter (2009)

to approximate the rational expectations solution for the heterogeneous agents model.

Definition 9

Let household ω’s individual states be (b , z, ψ) where ψ is the estimates

of the coefficients in the forecasting rules used by agents. Given an

initial condition, a constant sequence of {Bt} satisfying Bt = B̄, and

sequences of aggregate shocks, a locally rational stochastic recursive

dynamics consists of policy rules for the households c(ω; θ, ε), n(ω; θ, ε),

b(ω; θ, ε), and λ(ω; θ, ε); prices w(θ, ε) and i(θ, ε); aggregate production,

consumption, labor demand, and inflation: Y (θ, ε), C(θ, ε), L(θ, ε), and
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Π(θ, ε); intermediate firms shadow price and dividend Λ(θ, ε) and D(θ, ε)

and beliefs Ψ(θ, ε) such that

1. The policy rules c(ω; θ, ε), n(ω; θ, ε), b(ω; θ, ε), and λ(ω; θ, ε) solve

recursive version of Eq.(III.2)-(III.6) for all ω, θ, and ε taking pricing

functions r(θ, ε), w(θ, ε) as given

c(ω; θ, ε) + b(ω; θ, ε) = z(ω)n(ω; θ, ε)w(θ, ε) +

(
1 + i(θ, ε)

1 + Π(θ, ε)

)
b (ω) +D(θ, ε)

c(ω; θ, ε)−σ ≥ β(1 + i(θ, ε))E (ω′; θ′, ε′|ω, θ, ε)

λ(ω; θ, ε) =
c(ω; θ, ε)−σ

1 + Π(θ, ε)

nχ(ω; θ, ε) = c(ω; θ, ε)−σz(ω)w(θ, ε)

2. The intermediate-good producer maximizes their profit function and

generates dividends.

C(θ, ε)−σ
(

(ν − 1)Y (θ, ε) +

(
1− α− αν

α2

)
Y (θ, ε)

1
αw(θ, ε) + φΠ(θ, ε)(1 + Π(θ, ε))

)
= φβEΛ(θ′, ε′|θ, ε)

Λ(θ, ε) = C(θ, ε)−σΠ(θ, ε)(1 + Π(θ, ε))

D(θ, ε) = Y (θ, ε)− φ

2
Π2(θ, ε)

Y (θ, ε) = θL(θ, ε)α

57



3. All markets clear

∫
z(ω)n(ω; θ, ε)dω = L(θ, ε)∫
c(ω; θ, ε)dω = Y (θ, ε)− φ

2
Π2(θ, ε)∫

b(ω; θ, ε)dω = B̄∫
c(ω, θ, ε)dω = C(θ, ε)

4. Given prices and inflation {i ,Π(θ, ε)}, government chooses

{i(θ, ε), T (θ, ε)}

T (θ, ε) =
i − Π(θ, ε)

1 + Π(θ, ε)
B̄

i(θ, ε) = i+ φΠΠ(θ, ε) + ε

5. All households and intermediate-good producers update their

estimates of coefficients in their forecasting model according to a

recursive least square learning rule with exogenous sequences of

gains.

R = R + γ(xx′ −R )

ψ(ω) = ψ (ω) + γR−1x(λ− x′ψ (ω))

Ψ = Ψ + γR−1x(Λ− x′Ψ )

We are ready to define the locally rational expectations equilibrium as a restricted

perceptions equilibrium based on the definition of locally rational recursive dynamics.

The folk theorem of the learning literature states that the long-run beliefs will
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converge to a restricted perceptions equilibrium (RPE) if the equilibrium is E- stable.

Intuitively, RPE is characterized by self-confirming beliefs. Hold beliefs fixed at

ψt = ψ̄ for all t and all agents and Ψt = Ψ̄ for the representative firm. Feed these

fixed beliefs ψt and Ψt into the locally rational recursive dynamics without the belief

evolving part. Let Λh(ψ̄) and Λf (Ψ̄) be the induced ergodic distribution of beliefs

for households and the intermediate firm,. Let the shadow prices be λt+1 and Λt+1

for the households and the intermediate firm. The information set is Xt from the

dynamics. We can construct the linear projection of log(λ/λ̄) on X under measure

Λ(ψ̄) and . Effectively, the locally rational recursive dynamics defines a T-map for

the agents beliefs with the form ψ̄′ = Th(ψ̄) and Ψ̄′ = Tf (Ψ̄). Here

Th(ψ̄) = EΛh(ψ̄)[XX
′]−1EΛh(ψ̄)[X log(λ/λ̄)]

Tf (Ψ̄) = EΛf (Ψ̄)[XX
′]−1EΛf (Ψ̄)[X log(Λ/Λ̄)]

Definition 10

A locally rational expectations equilibrium is a locally rational recursive

dynamics with the ergodic distributions of the beliefs ψ∗ such that

ψ∗ = EΛh(ψ∗)[XX
′]−1EΛh(ψ∗)[X log(λ/λ̄)]

Ψ∗ = EΛa(Ψ∗)[XX
′]−1EΛa(Ψ∗)[X log(Λ/Λ̄)]

This framework approximately nests the rational expectations equilibrium, and the

LREE is a type of restricted perception equilibrium because the agents use a simplified

learning rule, and the coefficients are self-referential from the agents’ perspective.
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III.5 Calibration and Computation

I choose three sets of parameters: (i) parameters related to household preferences,

productions, and aggregate shocks; (ii) initial conditions; and (iii) stochastic processes

for idiosyncratic shocks. The computation method follows the algorithm used in

Evans, Li, and McGough (2019). I consider small supports for the aggregate shocks

for the baseline model so that the nominal interest rate does not or rarely go below zero

in simulations. The implication of introducing a zero lower bound will be explored

in the extension of the paper in the future. For simplicity, I set the inflation trend

to be zero. Note that a non-zero inflation trend can have significant implications for

the model behavior.

III.5.1 Preferences, Productions and Aggregate Shocks

The parameters match standard representative agent calibrations such as

Schmitt-Grohe and Uribe (2004) and Siu (2004). I set the CES parameters for

household on consumption and labor at σ = 2, χ = 2, and the discount factor β

is set so that the targeted nominal interest rate is at ī = 0.02. The firms operate

a decreasing return to scale technology so that the labor income accounts for 65%

of the total output. To a first-order approximation, the steady-state markups of

the intermediate firms are set to be 20%, which implies the elasticity of substitution

among the intermediate goods is at ν = 6. The parameter for the adjustment cost

is set at φ = 20 to match the slope of the Philips curve, as estimated by Sbordone

(2002). The bond supply from the government is set so that the ratio of national debt

to GDP is 75%. Targeted inflation is 0%. The inflation feedback parameter is set to

be φΠ = 2.0, which means the central bank aggressively targets the inflation rate. For

example, Coibion (2012) shows that the non-zero inflation trend subject to zero-bound

interest rates has major implications on optimal monetary policy design. Ascari and
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Sbordone (2014) found that a new Keynesian model with a non-zero inflation trend

is associated with a less stable and more volatile economy and tends to destabilize

inflation expectations. For illustration that learning can introduce movements to the

aggregate variable when combined with agent-heterogeneity, we use a simple non-zero

inflation trend for the calibration.

III.5.2 Initial Conditions and Learning

For the representative agent model, the initial conditions for each variable are

at the steady-state level. The initial conditions are drawn from the stationary

distribution of the stationary recursive equilibrium for the heterogeneous agent model.

For the bounded rational computations, the initial beliefs are set to be (0,−1,−1,−1)

for both ψ0 and Ψ0. The exogenous gain process is set to be constant at level γt = 0.01.

III.5.3 Stochastic Processes

I calibrate the income process following Krueger, who estimated a process for

disposable earnings after taxes and transfers. They estimated an annual persistence

of innovations to be ρθ = 0.815 with a standard deviation of σθ = 0.014. I assume the

idiosyncratic log productivity process is the sum of an AR(1) and i.i.d. component.

The monetary policy shocks persistence is that ρε = 0.0625, a set value associated

with a moderately persistent monetary shock, and the standard deviation for the

shock is σε = 0.0025, which corresponds to 25 basis points.The details of calibrations

are summarized in Table (1). Figure (1) shows the wealth distribution generated by

the calibrated model. It shows that the stationary distribution for the bond holding

across the agents is very skewed, and
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Variable Moment RA HA
σ CES parameter 2.0000 2.0000
χ Frisch elasticity 2.0000 2.0000
β ī = 0.02 0.9800 0.9320
b Borrowing constraint 0.0000 0.0000
ν 20% markup 6.0000 6.0000
α 66% output → labor 0.7470 0.7470
φ PC (Sbordone 2002) 20.000 20.000
φΠ Taylor feedback 2.0000 2.0000
B̄ B2Y ratio = 75% 0.6900 0.8190
ρθ Krueger et al. (2009) 0.8150 0.8150
σθ Krueger et al. (2009) 0.0140 0.0140
ρε Gali (2015) 0.0625 0.0625
σε Gali (2015) 0.0025 0.0025
ρπ Idio. - 0.9700
σzp Permanent idio. - 0.1960
σzt I.I.D idio. - 0.2300

TABLE 1 Calibrations

III.6 Simulation Results

This section presents the results from the multiple simulations I have

implemented on the model with various settings. In general, there are four sets

of results coming from representative-agent rational expectations equilibrium (RA-

REE), representative-agent locally rational expectations (RA-LREE), heterogeneous-

agent rational expectations equilibrium (HA-REE), and heterogeneous-agent locally

rational expectations equilibrium (HA-LREE).

III.6.1 Representative Agent

Figure (2) is simulated with a representative agent in a locally rational

expectations equilibrium and shows the convergence of beliefs of both households
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FIGURE 1. Stationary Distribution for Bonds Holdings

Note: This histogram contains the stationary distribution for bonds holdings across
the households. The red vertical line represents the average bond holding. This
histogram shows that the distribution is right-skewered with a mass point on the
borrowing constraint.

and intermediate firms. The red dashed lines represent the coefficients obtained from

running a regression of shadow prices on the information set using the simulated

linearized rational expectations equilibrium. It is worth noting that both households

and intermediate firms learn that the interest rate has an ambiguous coefficient in the

learning rule for the future shadow prices. For a representative-agent environment,

the learning rule that includes only the aggregate variables are correctly specified,

and hence the coefficient estimates converge to the rational expectations equilibrium

level.
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FIGURE 2. Beliefs for Households and Intermediate Firms

Note: This figure contains the belief evolution of a representative household. The red
dashed line is the belief counterpart in a linearized rational expectations equilibrium.
The constant learning gain is 0.01.

Consider the impulse responses to a positive innovation in aggregate productivity

of ξθ in a representative-agent economy. Black lines in Figure (3) show how the

economy responds to a 1.4 percentage under rational expectations equilibrium. The

positive productivity shock boosts wage, labor, consumption, output and decreases

nominal interest rate, real interest rate, and inflation. The size of the response has

been converted to the percentage deviation from the steady-state. The interest rates

and inflation rate are two exceptions. The unit measure for the two interest rates

and inflation is one percentage point. Lump-sum tax transfer responds with an initial
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increase that is followed by a decrease. The initial increase in tax transfer is due to

the decline in inflation when the shock arrives. As a result, the outstanding debt puts

more pressure on the government as the interest payment has a higher real value—the

follow-up decrease in tax results from a drop in the real interest rate.
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FIGURE 3. IRFs - Representative Agent LREE (Productivity Shock)

Note: This figure contains the impulse response functions from a positive
productivity shock in a locally rational expectations equilibrium with a representative
agent. The blue dashed lines are the IRF’s from LREE with a 95% interval. The
black lines are the IRF’s from REE. Note that the median of IRF’s from LREE aligns
almost exactly with the IRF’s from REE. The constant learning gain is 0.01.

I also consider the impulse responses to a positive innovation in the monetary

policy rule ξε in a representative-agent economy. Black lines in Figure (4) show how

the economy responds to a 0.25 percentage-point shock under rational expectations
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equilibrium. The positive monetary shock decreases wage, labor, consumption,

output, and inflation and increases nominal interest rates and real interest rates. Note

that the persistence for monetary shocks is low, and thus the effects of innovation in

monetary shock disappear after 5 periods (years). For all variables other than tax

transfer, most of the response happens in the same period when the shock arrives,

and the second period’s impact is damped down very quickly. For tax transfer, the

shock has a significant impact in both the first and second periods, but the reasons are

different. The government takes a higher tax in the first period because of deflation

caused by positive monetary shock. In the second period, the tax increases further

due to higher real interest in the previous period.

Now I compare the impulse response functions simulated from LREE to the

ones from REE with the representative agent. To simulate a set of IRF’s with

LREE, I draw the state variables from the ergodic distribution after the estimates

for the coefficients of the forecasting rules are settled. I repeat 500 times and plot

the responses at 0.25 percentile, median, and 99.75 percentile, represented by the

blue dashed lines. As shown in Figure (3) and Figure (4), the IRF’s simulated from

LREE align with the IRF’s simulated from REE. Farhi and Werning (2017) show that

only when the model includes both agent heterogeneity with incomplete markets and

bounded rationality is a departure from the fully rational benchmark model. Each

of these two frictions, in isolation, would not affect the dynamics of the model. My

result from this stage serves as a confirmation of their finding. It also shows that

my definition of temporary equilibrium definition is correctly specified. Figure (2)

is simulated with 10, 000 agents in a locally rational expectations equilibrium and

shows the convergence of beliefs of both households and intermediate firms. This

result matches the result from the previous chapter. The intuition here is that the

agents are learning with the correctly specified forecasting rule, and hence the beliefs

converge to the actual rational expectations equilibrium beliefs over time. I will
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show later that when heterogeneity is introduced in the model, the LREE and REE

behave differently with a learning rule that only includes the aggregate shocks under

a moderate constant learning gain. In a representative-agent model, agents’ asset

holding doesn’t deviate too far from the steady-state level, and hence the forecasting

rule doesn’t need to include the individual variable.
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FIGURE 4. IRFs - Representative Agent LREE (Monetary Shock)

Note: This figure contains the impulse response functions from a positive monetary
shock in a locally rational expectations equilibrium with a representative agent. The
blue dashed lines are the IRF’s from LREE with a 95% interval. The black lines are
the IRF’s from REE. The constant learning gain is 0.01.
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III.6.2 Heterogeneous Agent

Now I simulate the impulse response functions from LREE with heterogeneous

agents. The method used for simulation is based on the previous chapter. I draw

from the ergonomic distribution of the state variables, including the profile of bonds

holding, the profile of beliefs, lagged interest rate, and the variance-covariance matrix

for the learning rule. I repeat 500 times and plot the responses at 0.25 percentile,

median, and 99.75 percentile, represented by the three blue dashed lines, respectively.

Note that the constant learning gain is 0.01, which is moderate. As a result, the rich

agents use long historical data from the periods when they were poor and hence

behave more like a poor-type agent in the rational expectations counterpart.

Figure (5) shows how endogenous variables respond to a one-standard deviation

of negative productivity shock. It indicates that HA-REE predicts a stronger response

of nominal interest rate, inflation, and real interest rate to a one-standard-deviation

increase in productivity shock. HA-REE also predicts a weaker response of wage and

hours compared to the HA-LREE. Figure (6) also shows that the responses predicted

by HA-REE are similar to those predicted by HA-LREE with a one-standard-

deviation of monetary shock. These results further confirm the conclusions from

the last chapter. In a heterogeneous-agents setting, an adaptive learning rule that

leaves out the individual variables induces deviations in impulse response functions

from the REE.

III.7 Distributional Effects

I include the impulse response functions for the Gini index as a measurement for

the second-order moment of the wealth distribution. The Gini index is a single number

used for measuring the degree of inequality in a distribution. A higher concentration
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FIGURE 5. IRFs - Heterogeneous Agent LREE (Productivity Shock)

Note: This figure contains the impulse response functions from a positive
productivity shock in a locally rational expectations equilibrium with a large number
of (100, 000) heterogeneous agents. The blue dashed lines are the IRF’s from LREE
with a 95% interval. The constant learning gain is 0.01.

in wealth would translate to a higher Gini index. Although the magnitude of the

Gini index does not match the US income data,1 the directions in which the wealth

1A more detailed heterogeneous agent model can be used to match the wealth distribution better.
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FIGURE 6. IRFs - Heterogeneous Agent LREE (Monetary Shock)

Note: This figure contains the impulse response functions from a positive monetary
shock in a locally rational expectations equilibrium with a large number of
heterogeneous agents. The blue dashed lines are the IRF’s from LREE with a 95%
interval. The constant learning gain is 0.01.

inequality goes are still indicative. When the HANK economy receives an unexpected

one-standard-deviation positive productivity shock, the Gini index goes up when

the shock arrives. An immediate decrease follows this initial increase in the first
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period, and the index goes back to the stationary distribution as the magnitude of

the productivity shock damps down.

The wealthy agents mostly rely on the real interests from the bonds they hold

from the last period, and the agents with less bond holding rely primarily on labor

income. The initial increase in “inequality” arises from the unexpected deflation

caused by productivity shock. Although the poor agents receive a higher labor income

in the first period, the effect on inequality is compensated by the rich agents receiving

a higher real interest caused by a lower inflation rate. The following-up decrease in the

Gini index results from a higher wage rate and a lower real interest rate. I implement

a similar experiment with a 25-basis-point positive monetary shock. In this case, the

immediate response of the Gini index is ambiguous. After the first period, there is

an increase in the Gini index. This initial inertia in the Gini index occurs because

there is a decrease in the inflation rate and a wage increase. The following increase is

due to both a higher real interest rate and a lower wage rate. I make two comments.

First, the Gini index’s movement indicates that inequality is exacerbated during a

recession, which happens when the economy receives a negative productivity shock

or a positive monetary shock. Second, the monetary shock has a long-lasting effect

on wealth inequality, documented by Coibian (2017) et al. This paper provides the

first theoretical result that matches what has been observed in the data.

To understand what is driving the result behind the movements in the Gini

index, we need to dive into how different groups of agents from different asset brackets

react to aggregate shocks. I separate the agents from the ergodic distribution from

the LREE dynamics into ten different groups based on their asset holding. The

movement in the bond holding is derived precisely the same way from the ergodic

distribution as in the previous impulse response functions. The blue line represents

the impulse responses of the wealthiest ten percent agents, whereas the other nine

dashed lines represent the bottom 90% agents. Comparing the shapes of the blue lines
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to the bottom right panel of Figure (5) and Figure (6), one can see that most of the

movement in the Gini coefficient can be explained by the wealthiest group of agents in

the economy. This dynamic driven by the very upper end of the wealth distribution

matches the empirical data. For example, the Congressional Budget Office (2011)

found that the top wealthy households played a considerable role in income inequality

dynamics since 1980. Specifically, the rapid growth of average market wealth for the

top 1 percent of the population contributed to the increase in household income

dispersion between 1979 and 2007. From the previous chapter, we can conclude that

the behavior deviation for the rich agents in this learning environment comes from

the low constant learning gain with a misspecified learning rule that does not include

individual variables. These top rich agents behave more like poor-type agents, and

their behaviors drive the movement in the wealth distribution.

III.8 Conclusion

This chapter extends the local rationality concept from the previous chapter

to a heterogeneous-agent New Keynesian model. The HANK-type models impose

strong assumptions on what the agents understand about the model under a rational

expectations equilibrium. I show that the rational expectations equilibrium can be

learned through adaptive learning by locally rational agents.

The simulation results in this more complex environment are comparable to the

real business cycle model. I primarily focus on the learning rule that only includes

the aggregate variables and see how the economy behaves compared to the rational

expectations. After a series of experiments, I show that the impulse responses are

different in the locally rational expectations equilibrium compared to the rational

expectations when the model presents heterogeneity. Specifically, I investigate how

the wealth inequality responds to aggregate shocks and find that the HANK model

72



(a) Impulse Response Functions - Productivity Shock

(b) Impulse Response Functions - Monetary Shock

FIGURE 7. IRFs from Top-Ten Percent Richest Agent

Note: This top panel shows the impulse response function for the bond holding
from the top-ten percent richest agent in the economy in response to a one-standard-
deviation negative productivity shock. The bottom panel shows the impulse response
function for the bond holding from the top-ten percent richest agent in the economy
in response to a one-standard-deviation monetary shock. The dashed lines in both
panels represent the other nine groups’ impulse responses.
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can only produce movement in the inequality when the agents are adaptive learners

for their future shadow price. I further show that the distributional effects are driven

mainly by the top-tier wealthy agents in the locally rational model. These agents

behave more like poor-type agents because they include a long history of personal

data, including the periods when they held less bond. As a result, these agents are

not responding to the aggregate shocks the way they are supposed to with rational

expectations equilibrium.

The theoretical findings match the empirical evidence that monetary shocks

can have distributional effects on income and wealth. The HANK model in

rational expectations equilibrium doesn’t produce the same kind of movement in

the distributions. In contrast, local rationality adds an extra layer of friction to the

model and can have the distributional movement that matches data. Specifically,

Coibian et al. (2007) find that a contractionary monetary distribution can make

the distribution more unequal. This chapter supports the empirical evidence from a

theoretical perspective based on adaptive learning. The future goal of this research

agenda can study the implication of local rationality in a more realistic new Keynesian

model that includes a non-zero inflation trend. The adaptive learning environment

provides a natural benchmark to show that whether the model converges to rational

expectations.
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CHAPTER IV

E-STABLE SUNSPOT EQUILIBRIA

WITH HETEROGENEOUS AGENTS

IV.1 Introduction

This paper investigates the implication of introducing multiple finite-state

Markov extrinsic sunspot processes in a general univariate forward-looking model. In

this model, each agent only observes a subset of the sunspots. There are adaptively

stable Markov stationary sunspot equilibria (SSEs) near an indeterminate steady-

state for both the linear and nonlinear cases. In the linear case, each sunspot

process is associated with a knife-edged serial correlation condition, known as the

resonant frequency condition. In the nonlinear case, the serial-correlation condition

associated with each sunspot process is no longer knife-edged. In both cases, each

serial correlation condition depends on the proportion of agents who observe that

sunspot. As long as one sunspot process satisfies its serial correlation condition,

adaptively stable SSEs exist. I illustrate the results using a standard version of

the Samuelson overlapping generations model of money where agent-level beliefs are

treated carefully. One of the criticisms for sunspot equilibrium literature is that no

real-world sunspot has been identified.

In macroeconomic models of dynamic economies with forward-looking agents,

steady states can be indeterminate. Indeterminacy occurs when an infinite number

of rational expectations equilibria (REE) are associated with such a steady state. The

concept of indeterminacy is closely related to the idea of a sunspot equilibrium. The
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idea is that, in the presence of indeterminacy, a rational expectations equilibrium path

can exhibit fluctuations that depend on external shocks called sunspots. The sunspots

are extrinsic in the sense that they are not based on model fundamentals. This

dependency is self-fulfilling and arises when agents condition their expectations on

sunspots, and the sunspots influence the economy only through agents’ expectations.

In a proper sunspot equilibrium, the allocation of resources depends on sunspots in a

non-trivial manner. Fluctuations are speculative and driven solely by expectations.

Sunspots in these solutions often follow a stationary stochastic process, and

these self-fulfilling rational expectations solutions are commonly called stationary

sunspot equilibria (SSE.) Contrary to the conventional wisdom that only intrinsic

uncertainty should influence economic activity, the sunspots model explains volatility

without going beyond the rational expectations framework. Several authors first

documented the existence of rational expectations solutions driven by extrinsic

stochastic processes. Shell (1977) provided the first sunspots model in an overlapping-

generations exchange economy with fiat money. Azariadis (1981) was the first

published paper to show that sunspots may be responsible for business cycles. Cass

and Shell (1983) explored the conditions under which sunspots solutions arise and

offered welfare analysis using an overlapping-generations economy. Azariadis and

Guesnerie (1984) establish that the existence of two-period cycles is a sufficient

condition for the existence of a two-state stationary sunspot equilibrium. Their

conclusions were obtained in a particular class of overlapping generations economies.

Guesnerie (1986) provided sufficient conditions for the existence of sunspot equilibria

near deterministic cycles in a broader class of models with multiple commodities.

All of the early existence results for sunspot equilibria were initially obtained in

simple stylized models, and the conclusions were not generalizable. The first generic

result that provides criterion on indeterminacy was provided by Blanchard and Kahn

(1980). They present a practical technique for determining whether a multivariate
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linear model has a unique equilibrium. The method is based on matrix eigenvalue

decomposition and compares the number of explosive eigenvalues in the coefficient

matrix to the number of variables that are not predetermined. An explosive eigenvalue

is associated with a restriction since the expectation of future non-predetermined

variables does not grow to infinity. All the restrictions collectively describe the law

of motion for the non-predetermined variables in a way that is aligned with the

rational expectations hypothesis. Depending on the number of restrictions implied

by explosive eigenvalues and the number of non-predetermined variables, there might

be no equilibrium, one unique equilibrium, or multiple equilibria. The method of

Blanchard and Kahn is demonstrated to determine the existence and uniqueness of

REE solutions. Still, the same technique can also be applied to establish the existence

of sunspot equilibria in a linear model. Sunspot equilibria can be constructed in an

easily analyzed vector autoregressive form, and the support of the sunspots can be

either continuous or discrete. Sims (2000) uses generalized Schur decomposition to

improve Blanchard and Kahn’s technique to accommodate a broader collection of

models researchers might encounter in practice. Woodford (1986) extends the results

of Blanchard and Kahn to a general nonlinear model. He applies an implicit function

theorem through a local analysis and shows that a nonlinear model’s local equilibrium

uniqueness is implied by uniqueness in the linearized model.

The existence of SSE alone does not justify its importance. A natural question

to ask is whether agents will learn to believe in sunspots in the first place. Separate

literature on equilibrium selection tries to answer this question. Woodford (1990)

shows that, under some plausible assumptions, agents that follow adaptive learning

rules may learn to coordinate their expectations and actions on sunspots. The

stability result is obtained in a stylized model based on global analysis using the

structure of the invariant set under learning and the index number theorem of

Poincare-Hopf. However, the approach of Woodford cannot be used to locate stable
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sunspots. Evans and Honkapohja provide stability conditions for SSEs in several

papers. Evans and Honkapohja’s method works in a generic model class and can

provide information about the stable sunspots’ location. In particular, Evans and

Honkapohja (1994) show that, in a general class of nonlinear models, E-stability

gives the necessary and sufficient conditions for the local stability of finite-state SSEs

near a deterministic cycle under adaptive learning. The stability of SSEs in a small

neighborhood of cyclic equilibria is implied by the stability of the equilibria associated

with the deterministic cycles. The proof uses the property that the determinate of

a matrix is a continuous function in its eigenvalues. Evans and Honkapohja (2003a)

consider a forward-looking linear model and provide conditions under which SSEs

near a deterministic steady state are stable under learning. They also show that

agents’ representation in the learning process matters for the stability results, and

the autoregressive solutions are never stable under learning. A resonant frequency

condition must be satisfied for the SSE solution to be stable.

The stability results of SSEs near a deterministic steady state in a linear

model extend to the nonlinear version of the model. In a companion paper of

Evans and Honkapohja (2003b), they show that stability results carry over to the

corresponding nonlinear model in a steady-state neighborhood. The proof relies

on a local bifurcation, which arises when the differential equation governing the

stability has one eigenvalue set to be zero. Evans and McGough (2005a) find that

an SSE may be stable if the associated sunspot process’s serial correlation exhibits

the resonant frequency. In a separate paper, Evans and McGough (2011) also show

that finite-state Markov sunspots’ stability implies all sunspots are stable under

learning with common factor representations. Evans and McGough (2018) study

the existence and stability of near-rational sunspot equilibria (NRSE) in forward-

looking nonlinear models where agents use the optimal linear forecasting model

among similarly specified linear models sunspot process has continuous support.

78



They provide generic existence results for continuous-support sunspot equilibria in

nonlinear models, and the solutions are constructive with simple recursive forms.

Sunspot equilibria remained a purely theoretical topic until several authors

explored the possibility of fitting sunspot-driven business cycles into applied dynamic

stochastic general equilibrium models. Benhabib and Farmer (1994) provide a simple

condition for indeterminacy in a one-sector growth model. The condition requires

increasing returns to scale for aggregate technology should be large enough to imply

the aggregate labor demand curve is upward-sloping and steeper than the labor supply

curve. Caballero and Lyons (1994) and Baxter and King (1991) estimate externalities

to be large and in the plausible range of indeterminacy. Farmer and Guo (1994)

develop a calibrated, nonconvex real business cycle model that well-matched the data.

The model uses only sunspot processes as an exogenous stochastic driver to explain

business cycle co-movements. The model matches the data better than the standard

real business cycle (RBC) models with fundamental shocks.

Farmer and Guo demonstrate that the models with indeterminate equilibria

can explain the macroeconomic data at business cycle frequencies that traditional

RBC models cannot. Gali and Jordi (1994) developed an alternative way of

introducing nonconvexity into RBC models. Instead of relying on the presence

of large increasing returns, their model incorporates monopolistic competition and

endogenous markups to allow for sunspot equilibria and sunspot-driven fluctuations.

However, more estimates obtained later in the literature called into question these

results by showing that the early estimates of externalities were overstated. See

Basu and Fernald (1994) and Norrbin (1993) for the new estimates. Following

that, researchers established different nonconvexities to generate indeterminacy

with empirically plausible calibrations. For example, Benhabib and Farmer (1996)

introduce mild increasing returns to scale by building sector-specific externalities

into a two-sector model. Specifically, their model includes externalities in both the
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consumption goods sector and the investment goods sector. Their model does not

need large external effects that give rise to an upward-sloping labor demand curve.

Their two-sector model allows for indeterminacy within the regions of reasonable

estimates at the industry level. However, several empirical researchers found that

the returns to scale are roughly constant by refining the earlier findings of Hall

(1990) on disaggregated US data. In response to this new finding, Benhabib, Meng,

and Nishmura (2000) develop an RBC model with multiple sectors that generate

indeterminacy without increasing returns-to-scale. Some authors also explored the

possibility of introducing nonconvexity by assuming alternative utility functions. For

example, Bennett and Farmer (2000) show that a one-sector growth model with

preferences that are non-separable in consumption and leisure allows for indeterminate

equilibria when demand and supply curves have the standard slopes. Hintermaier

(2002) proves in a general setup that utility functions compatible with indeterminacy

are not concave if the elasticity of scale is lower than the inverse of the labor share

in production.

A separate but related literature has risen to investigate whether any of the

indeterminate equilibria in these nonconvex RBC models are stable under learning.

Evans and Honkapohja (2001) find that the sunspot equilibria studied by Farmer

and Guo (1994) were not stable. Evans and McGough (2005b) study the sunspot

solutions’ stability properties under both the general form representation and the

common factor representation in two alternative information assumptions. They

find that there are large parameter regions in which sunspot solutions are stable

for the reduced form. However, when the reduced form parameters are restricted

to match the calibrated structural models, stable sunspot equilibria only exist for

a tiny part of the standard indeterminacy region. The stability result is also

subject to the timing assumption. Evans and McGough call this observation the

stability puzzle in nonconvex economies. Evans and McGough (2005b) obtained
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the stability and instability regions numerically. Duffy and Xiao (2006) consider a

host of sunspot-driven RBC type models and provide analytic conditions for sunspot

equilibria to be stable under learning. They prove analytically that structural model

parameter restrictions imply instability of the indeterminate solutions. McGough,

Meng, and Xue (2013) study a one-sector RBC model with externalities. They find

that the Benhabib-Farmer condition that the labor-demand curve is upward-sloping

and steeper than the labor-supply curve is necessary for joint indeterminacy and

E-stability.

In addition to RBC-type models, the idea of indeterminacy and sunspot-driven

fluctuations also applies to other dynamic stochastic general equilibrium models. For

example, extensive literature has arisen to warn of sunspot equilibria’s consequences

from a poorly designed monetary policy. The prospect of the agents coordinating on

some external shocks causes inefficient fluctuations. Monetary policies should ensure

sunspot-driven volatility does not arise. Many authors found that indeterminacy

occurs if the monetary authority follows an interest rate rule that does not respond

aggressively to inflation changes. King (2000) provides a detailed description of

micro-founded New IS-LM models that incorporate expectation terms in both IS

and Phillips Curve. The paper suggests the feedback parameter on inflation be

large in the interest rule, which is in line with Taylor’s Rule. Clarida, Gali, and

Certler (2000) estimate the monetary policy rules before and after Paul Volcker was

appointed chairman of the Board of Federal Reserve System. They find that the

interest rule was accommodative in the pre-Volcker year and aggressive in the post-

Volcker year. This paper applies the pre-Volcker rule to a calibrated New Keynesian

(NK) model and finds the accommodative rule leaves open the possibility of sunspot-

driven fluctuations. They argue that substantial volatility in inflation and output

observed in the late sixties and seventies can be partially explained by the self-fulfilling

changes in expectations. They also show that the NK model calibrated according to
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the post-Volcker rule is instead determined, matching the smaller variance of inflation

and output observed in the eighties. Lubik and Schorfheide (2004) point out that

determinacy is a property that cannot be established using single-equation methods.

Instead, they estimate a fully specified rational expectations model using a Bayesian

approach. They specify a prior probability distribution over parameters with equal

weights on determinate and indeterminate regions. Using US data on the output gap,

the interest rate, and the inflation rate, Lubik and Schorfheide compute these regions’

posterior odds ratios. Their findings strongly confirm that the pre-Volcker rule was

destabilizing.

The indeterminacy in these monetary models raises whether sunspot equilibria

in the New Keynesian models are stable under learning. Honkapohja and Mitra

(2004) were the first to consider a purely forward-looking AS equation with various

interest rules, including those dependent on current, lagged, and expected inflation

and output gap. They find that sunspot-driven equilibria they consider may be stable

only if the interest rate rule depends on expected inflation and expected output gap.

However, their initial conclusion only included the general form representation, which

is a linear function of lagged endogenous variables and a sunspot variable taking the

form of a martingale difference sequence. Evans and Honkapohja (2003a) find that

previously-thought unstable sunspot equilibria can also be stable when represented as

the common factor representation and argue that stability analysis must incorporate

both general form and common factor representations. Another related literature

concerns if agents can coordinate with different monetary policy designs, so the steady

states are determinate. Bullard and Mitra (2002) study the stability property of a

broad class of variants of the Taylor interest rate rule and find learnability of a unique

rational expectations equilibrium is not guaranteed. They argue monetary policy

should take into account the learnability constraints. Evans and Honkapohja (2003a)
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analyze learnability in a similar model and consider different ways of implementing

optimal monetary policy under discretion.

So far, all of the existence and stability results derive within a representative

agent framework. No heterogeneity exists across the agents - every agent shares the

same information sets and beliefs and makes the same decisions. There are advantages

to working with a representative agent. It is easy to work with one decision-maker

instead of simultaneously analyzing many different decisions. However, rational

expectations equilibria, including sunspot equilibria, can be mostly thought of as

an outcome of a coordination game participated by a large number of rational agents.

In an REE, each agent’s decision is optimal, given what other agents’ decisions are. In

models of indeterminacy and sunspot equilibria, using a representative agent imposes

two implicit assumptions on the economy: 1. Every agent is open to the idea that

the sunspot variable may matter for the economy’s outcomes. In the specification,

every agent uses the same learning rule that depends on the sunspot variable. 2.

There is only one sunspot process that all agents observe, and agents coordinate their

actions on this one sunspot variable. In practice, there are two ways to deviate from

the representative-agent framework. 3. Only a proportion of the agents believe in

the sunspot, and the rest do not believe the economy fluctuates according to the

sunspot. There are multiple sunspot processes and agents “disagree” on which of the

sunspots matters. 4. Intuitively, either deviation would make a sunspot equilibrium

less likely to exist, or if it does exist, more difficult to be stable. Departure from the

representative-agent framework can serve as a “robust test” for sunspot equilibria’

existence and stability. This paper proves that adaptively stable sunspot-driven

equilibria can still exist under either deviation. I provide the necessary and sufficient

conditions for sunspot equilibria’ existence and stability near an indeterminate steady

state in a general univariate forward-looking model. I show that the results obtained

in Evans and Honkapohja (2003b) extend naturally to models with heterogeneous
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beliefs. I introduce multiple extrinsic finite-state Markov sunspot processes in a

general univariate model. Expectational heterogeneity rises naturally, as each agent

either does not observe any sunspots or observes only one of the sunspots. I prove

the existence of restricted perception stationary sunspot equilibria (SSE) near an

indeterminate steady state. Several insights are provided regarding the stability

result. In a linear model, each sunspot process is associated with a knife-edged

restriction on its serial correlation. In a nonlinear model, the condition is no longer

knife-edged. The existence of E-stable SSE only requires one of the potentially

many sunspot processes to satisfy its restriction. Suppose a smaller proportion of

agents observe a sunspot process. In that case, it needs more substantial negative

feedback from expectations at the steady-state to meet the RFC associated with that

sunspot process. A standard version of the Samuelson overlapping generations model

of money is used to illustrate the results. This paper also contributes to recent studies

on the topic of bounded rationality with heterogeneous agents. Branch and Evans

(2005) introduce intrinsic heterogeneity in expectation formation. In their model,

agents choose from a list of misspecified econometric models. Honkapohja and Mitra

(2006) show how different forms of heterogeneity in structure, forecasting models,

and adaptive learning rules affect the conditions for convergence of adaptive learning

towards REE.

This chapter shows that E-stable sunspot equilibria do not have to depend on

only one sunspot. Agents can observe multiple stochastic signals, and the model

can still present self-fulfilling fluctuations. This finding from the heterogeneous-agent

environment helps induce the existence and stability of sunspot equilibria. However,

the analytical result also shows that the region for E-stable sunspot equilibria to exist

shrinks when we introduce more sunspots in the model. Generally, the model needs

to have stronger negative feedback at the steady state when there are more random

processes used by the agents as sunspots. In this sense, the finding of the chapter
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impedes the existence of stable sunspot equilibria. The dynamic selection result of

the paper shows that agents, in general, would prefer the learning rule that includes

sunspot variables because this type of learning rule nest the steady state learning rule.

At worst, the learning rule with sunspots can do as well as the steady-state learning

rule in terms of forecasting accuracy. This chapter balances all aspects and concludes

that the heterogeneous-agent environment would help induce sunspot equilibria.

IV.2 Model

Consider the univariate nonstochastic model with a unit continuum of agents:

yt =

∫
Ω

H(Eω
t [G(yt+1)|Iωt ])dω. (IV.1)

Here y is a univariate endogenous variable, and its law of motion is defined by the

difference equation that involves a continuous of expectational terms index by ω

∈ Ω, where Ω is the set of all agents. Iωt is the information set that is available

to agent ω at time t. Eω
t G(yt+1) denotes the conditional expectation of G(yt+1)

held by agent ω at time t given Iωt . Note that Eω
t G(yt+1) is the true mathematical

conditional expectation of G(yt+1). Functions H : R → R and G : R → R are

both of differentiability class C3. Define function F = H ◦ G : R → R. Assume

throughout that there exist a locally unique steady state ŷ such that ŷ = F (ŷ).

Consider sunspot processes with two states indexed by 1 and 2. Let there be N

independent random variable {st,k}Nk=1, each associated with an exogenous two-state

Markov processes with transition probability matrices {Πk}Nk=1, and st,k = {skτ}τ=t
τ=0 is

the kth sunspot state up to time t. Denote Πk = (πki,j) for all k. Every agent observes

either one of processes or none of them. The individual information set Iωt depends

on the agent’s observability of the Markov processes. That is to say, either Iωt = st,k
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or Iωt = ∅. Consider a stochastic process for yt that depends on the N exogenous

two-state Markov processes {skt }Nk=1. Denote st = (s1
t , s

2
t , . . . , s

N
t ) as the profile of

sunspots at time t, and S = {1, 2}N as the set of all possible values the profile vector

can take, i.e. st ∈ S. A rational expectations equilibrium is defined as follows.

Definition 11

{yt} is an REE if there exists a set {ȳs}s∈S ∈ R2N such that yt = ȳs

if st = s and that {yt} satisfies Eq.(IV.1) with Eω
t is the mathematical

expectation conditional on information set Iωt .

An immediate REE that follows the definition is yt = ŷ where ŷ is the model’s

locally unique steady state. This solution is referred to as the fundamental solution.

If ȳs1 6= ȳs2 for some s1, s2 ∈ S, the REE is a stationary sunspot equilibrium (SSE).

An interesting observation is that the cyclic order of an SSE can potentially be as

large as 2N , a number that grows exponentially in N .

IV.2.1 Adaptive Learning

To analyze the stability under adaptive learning, I replace the true mathematical

expectation term Eω
t in Eq.(IV.1) with Êω

t , which is the subjective expectation held

by agent ω at time t conditional on information Iωt . I categorize agents into two

general types. One type believes that they are always in a steady state, and I call

these agents the steady-state (SS) believers. The other type only observes one sunspot

process and believes that they are in a two-state SSE with yt taking values according

to the observed sunspot. I call these agents the SSE-k believers where k indicates the

sunspot process index they observe. SS believers use the average past value taken by

yt as the estimate for the steady-state. SSE-k believers use the average past value

taken by yt in each state of sunspot st,k as the estimates for the values associated

with each state. Formally, let φ0
t be the estimate of an SS believer and φkt = (φk1t, φ

k
2t)
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be the estimates of an SSE-k believer. SS believers and SSE-k believers use learning

rules based on the following recursive equations:

φ0
t = φ0

t−1 + t−1(yt−1 − φ0
t−1),

φkjt =

 φkj,t−1 + (#T kj,t)
−1(yt−1 − φkj,t−1) if skt = j

φkj,t−1 if skt 6= j

for j = 1, 2. Here T kj,t = {τ ∈ {0, 1, · · · , t − 1}|skτ = j}, and the operator # counts

the number of elements in a set. At time t, an SS believer forms her expectation:

Êω
t G(yt+1) = G(φ0

t ).

An SSE-k believer form her expectations:

Êω
t G(yt+1) =

 πk11G(φk1t) + (1− πk11)G(φk2t) if skt = 1

(1− πk22)F (φk1t) + πk22G(φk2t) if skt = 2

Note these expectations are point expectations, and this works because the model

is non-stochastic. The learning algorithm is closed by specifying that yt is updated

through the temporary equilibrium implied by Eq.(IV.1). The rest of the paper

analyzes the existence of SSE solutions and their local stability under adaptive

learning by deriving E-stability results. It has been established that E-stability

governs stability under adaptive learning. See Evans and Honkapohja (2001), Chapter

12.
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IV.3 General Existence and E-stability of SSE

This section presents the existence and stability results for the general model

Eq.(1), featuring heterogeneous beliefs. I first present the existence and stability

results for a general case with N sunspots and then give the simpler cases. I will

comment where my results extend to the more general case with a mix of more

sunspot observers. To set up the general results, I assume N + 1 groups of agents

denoted from Ω0 to ΩN that partition the total population Ω. Denote γ0, γ1 · · · γN as

the proportions for each group and
∑
γi = 1. The information set for each group is

as follows:

Iωt =

 ∅ if ω ∈ Ω0

st,k if ω ∈ Ωk

Without loss of generality, I assume γ1 < γ2 < · · · < γN . Agents in Ω0 estimate

the steady state to be α0 where agents in Ωk for k > 0 estimate yt = αki when

the kth sunspot is at state i. Let wki = αki − ŷ where ŷ is the unique steady

state for the model. Also let β = F ′(ŷ) where F = H ◦ G. Define two index sets:

I1 = {i ∈ {1, · · · , N}||β| > γ−1
i }, and I2 = {i ∈ {1, · · · , N}|β < −γ−1

i }.

Theorem 1

Stochastic sunspot equilibrium (SSE) exists if and only if I1 6= ∅; E-stable

SSE exists if and only if I2 6= ∅.

I make a few comments about the existence and stability results. First, stable

sunspots can exist when agents coordinate on different sunspots. Second, the

existence region decreases when the largest population of sunspot observers reduces.

Third, in the limit when there is only one type of SSE believers, i.e., γN = 1, the
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results match the previous literature1. The location SSE solutions depend on whether

the model’s linearity and the sunspot processes themselves. To make the results more

concise, I define two mappings, Rl and Rn, from a population index to a restriction

that partially locates the sunspot solution.

Rl(k)→

 πk11wk1 + πk22wk2 = 0 if πk11 + πk22 − 1 = (γkβ)−1

wk1 = 0, wk2 = 0 if πk11 + πk22 − 1 6= (γkβ)−1

Rn(k)→

 wk1 = w̄k1, wk2 = w̄k2 if πk11 + πk22 − 1 < (γkβ)−1

wk1 = 0, wk2 = 0 if πk11 + πk22 − 1 ≥ (γkβ)−1

where w̄k1 and w̄k2 are two non-zero real numbers.

IV.3.1 Linear Model

If both H(y) and G(y) are linear functions in y, then we call it a linear model.

Note that F (y) = H(G(y)) is also a linear function. I present the following theorem

for the location of the E-stable SSE.

Theorem 2

Given I2 6= ∅, there exist a continuum of E-stable SSE solutions

{(w0, w11, w12, · · · , wN1, wN2) ∈ R2N+1|w0 = 0,Rl(1), · · · ,Rl(N)}

at least for some k ∈ {1, · · · , N}, the transition probability of the sunspot

process satisfies the resonant frequency condition πk1 +πk2−1 = (γkβ)−1.

1Literature has found that in a similar model with only one type of sunspot observers, SSE exists
if and only if |β| < 1, and E-stable SSE exists if and only if β < −1.
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IV.3.2 Nonlinear Model

If either H(y) or G(y) are nonlinear functions in y, then we call the model is

a nonlinear model. Recall that we assume F = H ◦ G : R → R is three times

continuously differentiable in a neighborhood of ŷ. Further F ′(ŷ) 6= 0 and F ′′(ŷ) 6= 0.

I present the following theorem.

Theorem 3

Given I2 6= ∅, there exist a single= E-stable SSE solution

{(w0, w11, w12, · · · , wN1, wN2) ∈ R2N+1|w0 = 0,Rn(1), · · · ,Rl(N)}

at least for some k ∈ {1, · · · , N}, the transition probability of the sunspot

process satisfies the serial correlation condition πk1 + πk2 − 1 < (γkβ)−1.

IV.4 Proof of the Existence and E-stability Results

The proofs of the theorems in the previous sections are illustrated in two simple

cases of the model. The results are presented in two simple cases of the model. There

is only one sunspot process in the first case, and each agent is either an SS believer or

an SSE believer. There are two sunspot processes in the second case, and each agent

is either an SSE-1 believer or an SSE-2 believer. I comment where the steps in the

proof extend to the general case.

IV.4.1 SSE Believers v.s. SS Believers

Consider the case where there is only one sunspot process {st} with transition

matrix (πij). There is a mix of SS believers and SSE believers. The temporary
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equilibrium depends on “the weighted average belief”. Eq.(IV.1) becomes

yt =
i=1∑
i=0

γiH(Ei
t [G(yt+1)|I it ]), (IV.2)

where γ0 is the proportion of SS believers and γ1 is the proportion of SSE believers.

γ0 +γ1 = 1. Assume that SSE believers have perceived law of motion (PLM) yt = α1i

where i = st, and that SS believers have restricted PLM yt = α0. The mapping

from the set of PLMs to the projected actual law of motion (ALM) is given by the

following equation system. See Appendix I.3. for the derivation the projected ALM.

Recall F (·) = H(G(·)).

T


α11

α12

α0

 =


γ1H(π11G(α11) + π12G(α12)) + γ0F (α0)

γ1H(π21G(α11) + π22G(α12)) + γ0F (α0)

γ1(p̄1H(π11G(α11) + π12G(α12)) + p̄2H(π21G(α11) + π22G(α12)) + γ0F (α0)


where p̄1 = π21/(π21 + π12) and p̄2 = π12/(π21 + π12), and (p̄1, p̄2) is the unique

stationary distribution of the sunspot process st for state 1 and state 2. Let

α = (α11, α12, α0)′. The differential equation defining E-stability is dα
dτ

= T (α) − α.

For SSEs near a steady state, some useful results are implied by analysis of the

linearization of the differential equation at the steady state.. Appendix I.4 shows

that the linearized system at the steady state can be written as ẇ = Aw + Ψ, where

ẇ =


ẇ11

ẇ12

ẇ0

 , w =


w11

w12

w0

 , Ψ =


Ψ11(w11, w12, w0)

Ψ12(w11, w12, w0)

Ψ0(w11, w12, w0)


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and the coefficient matrix of the linear part is A = βΠ̃− I with

Π̃ =


γ1π11 γ1π12 γ0

γ1π21 γ1π22 γ0

γ1p̄1 γ1p̄2 γ0

 (IV.3)

Here ẇi = dwi/dτ , and Ψi(w11, w12, w0) denote the nonlinear parts. Note that Π̃ in

fact is a transition probability matrix. The eigenvalues of Π̃ are 0 , 1, and γ1(π11 +

π22 − 1). Thus, the eigenvalues of the linear map A are λ1 = −1, λ2 = β − 1,

λ3 = γ1β(π11 + π22 − 1)− 1.

Linear case

If the model is linear, Ψi(w11, w12, w0) contains only zeros. We only need to focus on

the matrix A. If |β| > (γ1)−1, then (γ1β)−1 ∈ (−1, 1), then there exist (πij) such that

π11 + π22 = (γ1β)−1 + 1 ∈ (0, 2) which implies λ3 = 0, and A is not full rank. The

model has a SSE solution only if matrix A is not full rank, and there exist a continuum

of SSE solutions which are characterized by Aw̄ = 0. Moreover, if β < −(γ1)−1 then

both λ1 = 0 and λ2 = β − 1 are negative. If the Markov sunspot process satisfies

restriction π11 + π22− 1 = (γ1β)−1, then λ3 = γ1β(π11 + π22− 1)− 1 = 0. There exist

a continuum of SSE solutions which are characterized by Aw̄ = 0, which implies

(γ1βπ11 − 1)w̄11 + γ1β(1− π11)w̄12 + γ0βw̄2 = 0

γ1β(1− π22)w̄11 + (γ1βπ22 − 1)w̄12 + γ0βw̄2 = 0

These two equations can simply to (1 − π22)w̄11 + (1 − π11)w̄12 = 0 and w̄2 = 0,

which locates the continuum which represents the SSE solutions are E-stable under

learning. Hence the special case of Theorem.(1) where γ2 = · · · = γN = 0 holds true

for the linear case.
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I make a few comments about the existence result for the linear model. First, note

the condition for existence can also be written as |γ1β| > 1, and recall the existence

condition in the standard representative-agent model is |β| > 1. The proportion

parameter γ1 directly modifies the slope of the linear model in a multiplicative way.

Intuitively, a γ1 proportion of the agent population forms expectations of the future

states, and their expectations affect today with a magnitude order of β. These SSE

believers generate feedback at level γ1β. Second, the resonant frequency condition is

modified by the proportion parameter γ1 compared to its counterpart in a standard

representative-agent model. Third, the continuum set does not depend on γ1, the

proportion of agents who believe in sunspots. In the SSEs, the restrictions on w11

and w12 are identical to the restriction found in Evans and Honkapohja (2003a), and

the only difference is that the steady-state believers think yt is always at the steady-

state of the model ŷ. Finally, the existence region shrinks as γ1 becomes smaller, which

aligns with the intuition that if fewer agents coordinate on the sunspot, SSEs are less

likely to exist. The stability result extends naturally from Evans and Honkapohja

(2003a). In the limit when there are only SSE believers, i.e., γ1 = 1, theorem 2

matches the stability results found in previous literature. Note that if there is a mix

of SSE believers and SS believers, the slope of the linear function β has to be more

negative than the counterpart with representative agents for there to exist E-stable

SSEs. A substantial negative slope β is required for the model to have stable SSE if

the proportion of SSE believers, γ1, is small.

Nonlinear case

The analysis for the nonlinear case is more complicated than the linear model. The

proof relies on a local bifurcation analysis of the differential equation. The bifurcation

arises when the linear part of the system has a zero eigenvalue, i.e. λ3 = 0 or

π11 + π22 − 1 = (γ1β)−1. Note that I am able to set eigenvalue λ3 to be zero with

the condition β < −(γ1)−1. Appendix I.5 proves that if β < −(γ1)−1, E-stable SSEs
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exist near the steady state. Treating π22 as a fixed number, I vary π11 to achieve

bifurcation. Let π̄11 = 1 + (γβ)−1 − π22 and v = π11 − π̄11. The bifurcation occurs at

v = 0. It follows that E-stable SSEs exist for v < 0. Note that v < 0 implies λ3 > 0.

If v > 0, the SSEs are not E-stable, and learning instead converges to the fundamental

solution. Note that the sharp-edged resonant frequency condition is no longer needed.

Specifically, if the transition matrix (πij) is such that π11 + π22 − 1 < (γ1β)−1 there

exist an SSE near the steady-state. In particular, this result emphasizes the artificial

nature of resonance frequency.

IV.4.2 SSE-1 Believers v.s. SSE-2 Believers

In this section, I consider the special case of the model where γ0 = 0 and N = 2.

I comment when appropriate how the stability result extends to the more general case

where there are more processes and SSE believers. Two types of agents are called

SSE-1 believers and SSE-2 believers. The temporary equilibrium depends on “the

weighted average beliefs” of the two types of agents and writes as follows:

yt =
2∑
i=1

γiH(Êi
tG(yt+1)), (IV.4)

The following equation system gives the mapping from the set of PLMs to the
projected actual law of motion (ALM). Appendix I.6 derives the following T-map
from the PLMs to the projected ALM

T


α11

α12

α21

α22

 =


γ1H(π1

11G(α11) + π1
12G(α12)) + p̄2

1γ2H(π2
11G(α21) + π2

12G(α22)) + p̄2
2γ2H(π2

21G(α21) + π2
22G(α22))

γ1H(π1
21G(α11) + π1

22G(α12)) + p̄2
1γ2H(π2

11G(α21) + π2
12G(α22)) + p̄2

2γ2H(π2
21G(α21) + π2

22G(α22))

p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
11G(α21) + π2

12G(α22))

p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
21G(α21) + π2

22G(α22))



Here p̄j1 = πj21/(π
j
21 + πj12) and p̄j2 = πj12/(π

j
21 + πj12) , and (p̄j1, p̄j2) are the

stationary distributions of sunspot processes sjt for state 1 and state 2. Let α =
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(α11, α12, α12, α22)′. The differential equation defining E-stability is dα
dτ

= T (α) − α.

The model can be transformed to deviation from steady state form with wi = αi − ŷ

for i ∈ {11, 12, 21, 22}. Appendix I.7 shows that the linearized system at the steady

state can be written as the deviation form ẇ = Aw + Ψ, where

ẇ =


ẇ11

ẇ12

ẇ21

ẇ22

 , w =


w11

w12

w21

w22

 , Ψ =


Ψ11(w11, w12, w21, w22)

Ψ12(w11, w12, w21, w22)

Ψ21(w11, w12, w21, w22)

Ψ22(w11, w12, w21, w22)


and the coefficient matrix of the linear part is A = βΠ̃− I with

Π̃ =


γ1π

1
11 γ1π

1
12 γ2p̄

2
1 γ2p̄

2
2

γ1π
1
21 γ1π

1
22 γ2p̄

2
1 γ2p̄

2
2

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
11 γ2π

2
12

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
21 γ2π

2
22

 (IV.5)

Here ẇi = dwi/dτ , and Ψi(w11, w12, w21, w22) denote the nonlinear parts. Note that Π̃

in fact qualifies as a transition probability matrix, and I will explore the implication

of this observation in details later. The eigenvalues of Π̃ are 0 , 1, γ1(π1
11 + π1

22 − 1)

and γ2(π2
11 + π2

22 − 1). Thus, the eigenvalues of the linear map A are λ1 = γ1β(π1
11 +

π1
22 − 1)− 1, λ2 = γ2β(π2

11 + π2
22 − 1)− 1, λ3 = −1, and λ4 = β − 1.

Linear Case

When the model is linear, then ∀i ∈ I1, we have (γiβ)−1. There exist Πi such that

πi11 +πi22 = (γiβ)−1 +1 ∈ (0, 2) which implies λi = 0 and A is not full rank. The model

has a SSE solution only if matrix A is not full rank, and there exist a continuum of

SSE solutions which are characterized by Aw̄ = 0. Moreover, if β < −(γ1)−1 then

both λ3 = 0 and λ4 = β − 1 are negative. If the Markov sunspot process satisfies
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restriction πi11 + πi22 − 1 = (γiβ)−1, then λi = γiβ(πi11 + πi22 − 1) − 1 = 0. There

exist a continuum of SSE solutions which are characterized by Aw̄ = 0, which implies

(1− πi22)w̄11 + (1− πi11)w̄12 = 0 for i ∈ I2 and w̄j = 0 for j /∈ I2

Nonlinear Case

For the nonlinear case, Appendix I.9 shows some extra technical difficulties in proving

the theorem. Specifically, one needs to set both eigenvalues λ3 and λ4 to be zero

simultaneously for the bifurcation to arise. The proof of stability leads to a system of

two differential equations interdependent in order 3 or higher in the center manifold. I

prove that the system’s stability result only depends on the linear and quadratic parts

of the function, and thus we can analyze the two differential equations separately.

The proof for the special case where γ0 = 0 and γi = 0 ∀i > 0. Note that the

coefficient matrix of the differential equations associated to E-stability would have N

eigenvalues γiβ(π2
11 +π2

22−1)−1 where i ∈ {1, 2, · · · , N}. It follows that there would

be N serial correlation conditions, and if one of the conditions is satisfied, there exists

a continuum of SSE solutions. The resonant frequency condition associated with a

specific sunspot process depends on the proportion of the agents who observe that

sunspot variable. For the nonlinear model’s proof of stability, the bifurcation would

happen at N points instead of 2 points. The proof of stability would also lead to a

system of N differential equations that are still interdependent in order 3 or higher

in the center manifold.

IV.5 An Example: OLG Model

This section provides a standard version of the Samuelson overlapping

generations (OLG) model of money that treats heterogeneous beliefs with care. The

purpose of this section is to demonstrate the general existence and E-stability results

with simulations in a micro-founded model. Assume there is a continuum of agents
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who live two periods of time. Each agent supplies labor in their first period of life

and consumes in the second period. The only asset in the economy is money, and the

money aggregate supply M = 1, which is fixed over time. The utility maximization

problem of agent ω is

max
nt(ω)

Eω,t U(ct+1(ω))− V (nt(ω))

subject to

pt+1ct+1(ω) = ptQt(ω)

Qt(ω) = nt(ω)

Each agent is small, and the market is competitive, and thus each agent takes the

price pt as given. The expectation operator is sub-scripted with ω which means that

the expectation is held specifically by agent ω. Assume functional forms V (n) = n1+ε

1+ε

and U(c) = c1−σ−1
1−σ . Define the following a new variable yt = p

− ε+1
ε+σ

t . The temporary

equilibrium (TE) can be computed as follows. Appendix I.10 shows the derivation of

the TE. yt =
∫
ω
H(Eω

t G(yt+1))dω where H(y) = y
1

ε+σ and G(y) = y
(ε+σ)(1−σ)

ε+1 . Define

the compounded function F (y) = H(G(y)) = yβ, where β = (1 − σ)/(ε + 1). Note

that now the model is in the same form as Eq.(IV.1). I also consider the linearized

version of the model, where the linearization happens at the steady state ŷ = 1. The

linearized versions of functions H and G and the implied compounded function are

written as H̃(y) = 1+ 1
ε+σ

(y−1), G̃(y) = 1+ (ε+σ)(1−σ)
ε+1

(y−1), and F̃ (y) = 1+β(y−1).

IV.5.1 Simulations

I present five sets of configurations of the OLG model summarized in table (1).

The first four simulations confirm the analytic results found in this paper for both

linear and nonlinear cases. The last set of simulations shows a general example
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of 9 sunspot processes with SS believers and 9 groups of SSE believers. All of

the simulations are implemented with a small constant gain of 0.05 instead of the

decreasing gain of 1
t

as stated in the model.

Configuration

Simulation N γ0 Linearity

I 1 > 0 Linear

II 1 > 0 Nonlinear

III 2 = 0 Linear

IV 2 = 0 Nonlinear

V 9 > 0 Nonlinear

TABLE 1 Five Sets of Simulations

Simulation I

This set of simulations are shown in Figure (1). I make the following parameter choices

for the first set of simulations. ε = 1 and σ = 11 so that β = (1− σ)/(ε + 1) = −5.

Also γ1 = 0.25. The transition probability matrix for the sunspot process is set with

the following values π11 = 0.15+v and π22 = 0.05. I consider three different values for

v. v− = −0.1, v0 = 0, and v+ = 0.1. The values for ν are set so that when ν = ν0, the

knife-edged resonant frequency condition γ1β(π11 +π22−1)−1 = 0 is satisfied. Initial

values for belief coefficients α = (α11, α12, α0) are set to be (1.001, 0.999, 1.001) which

is different from but in the neighborhood of the steady-state solution (1.0, 1.0, 1.0). In

the left columns, the blue lines represent the evolution of SSE believers estimates α11,

α12, and the red line represents the evolution of SS believers estimate α0. The first

row shows the case where v < 0, and there is an explosive root, which means there

are no E-stable solutions. The second row corresponds to the case where the knife-

edged resonant frequency condition is met, and the system converges to a point in the

continuum specified by (1−π22)(α11−1) = −(1−π11)(α12−1) and α0 = 1. The third
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FIGURE 1. Linear Model with SS Believers and SSE Believers

Note: The first column shows the evolution for the belief components α = (α11,
α12, α0), which are located from top to bottom in each graph on the left hand side.
Three rows of simulations correspond to cases where v is v−, v0, and v+ respectively.

row shows the case where v > 0, and the only E-stable solution is the fundamental

solution (1, 1, 1). The simulation matches the prediction by the existence and E-

stability results.

Simulation II

This set of simulations from the nonlinear model is shown in Figure (2). Parameter

choices are the same as simulation I. Two rows correspond to the case ν−, and ν+,

respectively. With ν−, there exists an E-stable SSE, which matches the simulation

99



in the first row. Note that when the model is nonlinear, the restriction on the

sunspot process’s correlation is no longer knife-edged. With ν+, the only E-stable

solution is steady state, shown in the second row. Initial values for belief coefficients

α = (α11, α12, α0) are set to be (1.01, 0.99, 1.01) which is different from but in the

neighborhood of the steady state. In the left columns, the blue lines represent the

evolution of α11, α12, and the red line represents the evolution of α0.
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FIGURE 2. Nonlinear Model with SS believers and SSE believers

Note: The first column shows the evolution for the belief components α11, α12,
α0, which are from top to bottom in each graph on the left-hand side. Two rows of
simulations correspond to cases where v is v−, and v+ respectively.
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Simulation III

This set of simulations are shown in Figure (3) with two types of SSE believers: SSE-1

and SSE-2. The model is linearized around the steady state. I make the following

parameter choices: ε = 1 and σ = 21 so that β = −10. Also the proportion of SSE-1

and SSE-2 agents are γ1 = 0.2, γ2 = 0.8. The transition probability matrix for the

first sunspot process is π1
11 = 0.25 + v1, π1

22 = 0.25 and for the other sunspot process

is π2
11 = 0.5+v2 and π2

22 = 0.375. Consider v+
j = 0.1 and v0

j = 0 for j = 1, 2. Consider

four combinations (v0
1, v

0
2), (v0

1, v
+
2 ), (v+

1 , v
0
2) and (v+

1 v
+
2 ), which are shown in Figure

(3) from top to bottom. Initial values for belief coefficients α = (α11, α12, α21, α22)

are set to be (1.005, 0.995, 1.01, 0.99). The blue lines and red lines represent the

belief components of SSE-1 and SSE-2 believers respectively. I ignore the cases that

involve vj < 0 because in these cases the dynamic is explosive according to E-stability

principle, a result that has been found in the previous literature. The stable SSE are

shown in the first three rows where at least one of ν’s is zero. When v1 > 0 and

v2 > 0, then the only E-stable solution is the fundamental solution.

Simulation IV

This set of simulations from the nonlinear model are shown in Figure (4). Parameter

choices are the same as simulation III. Consider four cases: (v−1 , v
−
2 ), (v−1 , v

+
2 ), (v+

1 , v
−
2 )

and (v+
1 v+

2 ), which are shown in Figure (4) from top to bottom. Note that when v1

and v2 are both negative, there exists an E-stable SSE of order 4. When only one of

the v′s is negative, and the other one is positive, there exists an E-stable of SSE of

order 2. When neither v′s are negative, the only E-stable solution is the fundamental

solution.

Simulation V

This simulation is shown in Figure (5) from a general case with SS believers and

9 groups of SSE believers in a nonlinear model. I make the following parameter

choices: ε = 1 and σ = 41 so that β = −20. Each group of agents (including
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FIGURE 3. Linear Model with SSE1 and SSE2 Believers

the group of SS believers) accounts for 10% of the population, i.e. γj = 0.1 for all

j ∈ {0, 1, · · · , 10}. The probability transition matrix for the sunspot processes Πj are

set as πj11 = 0.225 + 0.025 ∗ j + νj and πj22 = 0.525− 0.025 ∗ j. Note that the general

theorems predict that SSE-j agents learn that the economy evolve according to the

observed sunspot if νj < 0, and learn that the economy is at the steady state if νj > 0.

To confirm this prediction, I divide the 9 groups of SSE believers into two categories.

In the simulation, the first five groups of SSE believers have vj < −0.1 (blue lines),

and the last four groups of SSE believers have vj = 0.1 (red lines). The black line in

the middle represents the SS believer in the middle. I use a small constant gain equal

to 0.00015 for the learning dynamic.
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FIGURE 4. Nonlinear Model with SSE1 and SSE2 Believers

Note: Four rows correspond to four combinations (v0
1, v

0
2), (v0

1, v
+
2 ), (v+

1 , v
0
2)

and (v+
1 v+

2 ) respectively. The left column shows the evolution of beliefs α =
(α11, α12, α21, α22) which are shown from top to bottom in each graph on the left
hand side.

IV.6 Selection Dynamics

This section explores whether the agents favor the sunspot equilibrium by

introducing model selection dynamics based on Branch and Evans (2006.) In the

previous environment, agents are divided into different groups based on the forecast

models they use. I also have exogenously set the proportion of each group. In a more

realistic setting, agents may choose between a list of models and base their selection on

their relative forecast performances. The advantage of adding the selection mechanism
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FIGURE 5. Nonlinear Model with SS Believers and 9 Types of SSE Believers

Note: The top graph shows the evolution of the agents’ beliefs. The blue lines
correspond to the groups of SSE believers with vj < 0, and the orange lines correspond
to the groups of SSE believers with vj > 0

is that the model can now endogenously sort agents into different groups. In the model

with SSE believers and SE believers, this experiment investigates whether agents will

choose the SSE rule, SE rule, or both. This is the special case where N = 1. The

selection mechanism pitch the sunspot equilibrium believers against the steady-state

believers to compete based on forecasting accuracy.

The selection dynamics are added to the same standard version of the Samuelson

overlapping generations (OLG) model of money that treats heterogeneous. Agents

form real-time estimates formed via recursive least squares (RLS) and choose the

forecasting rule based on unconditional mean squared errors for variable y. There

is dual learning as agents recursively update their forecasting model parameters and

evolve their predictor choice according to a dynamic predictor selection mechanism.

Predictor proportions are updated according to the discrete choice probabilities. The
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fitness based on mean square errors of the two predictors j ∈ {0, 1} are estimated by

Φ̂j,t = Φ̂j,t−1 + δt(−(yt − Êj,t−1yt)
2 − Φ̂j,t−1)

where 0 < δt < 1. The mean squared errors map into predictor proportions according

to the law of motion

γj,t =
exp

[
ξΦ̂j,t

]
∑N

k=0 exp
[
ξΦ̂k,t

]
The intensity parameter ξ governs how sensitive the agents are to the relative

sizes of the accuracy measures. If ξ = 0, then γj,t = 1
2

which means the proportion

for each group is the same. If ξ → ∞, then γj,t is 1 or 0 depends on whether Φj,t is

the largest or not.

I am interested in whether γj,t converges to some level. Figure (6) illustrates

numerically that sunspot equilibrium can be stable when the predictor proportion is

determined endogenously under real-time learning. I make the following parameter

choices for the first set of simulations. ε = 1 and σ = 11 so that β = (1−σ)/(ε+1) =

−5. The transition probability matrix for the sunspot process is set with the following

values π11 = 0.15 and π22 = 0.05. I initialize the proportion of SS believers γ0,0 = 0.

The initial values for (α11, α12, α2) = (1.2, 0.8, 1). This setup means that not only

all agents start with using the steady-state forecasting rule, but also they start with

the correct estimate. The proportion parameter is held constant until the 1000th

period to gather a history of data so that accuracy measures can be computed for

each forecasting model.

Figure (6) shows the simulation with a large intensity parameter ξ = 400. Also

δ = 0.001. The simulation converges to a state where all agents use the forecasting

rule based on the sunspot, and the sunspot forecasting rule is consistently better
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than the steady-state rule. The intuition for this is that the threshold for the sunspot

equilibrium to be stable is γ̃1 = 0.25. When the proportion starts to change at 1000,

γ1,1000 jumped from 0 to around 0.4, which surpasses the threshold γ̃1 for the sunspot

equilibrium to be stable. A large proportion of agents start using the SSE rule at

time 1000 because when all agents are forced to use the SS forecasting rule, both of

the estimates for α11 and α12 will stay at 1.

FIGURE 6. Selection Dynamic I
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A key observation here is that the SSE forecast model nests the SS model. The

intuition is also straightforward - the nesting model can perform as well as the nested

model even when the economy is around the steady state. With a finite intensity

parameter, half of the agents will eventually use the SSE model. As long as 1/2

passes the threshold implied by the model calibration, the SSE model will start to

become a stable equilibrium under learning. Eventually, all agents will use the SSE

model. Recall the calibration used in the simulation implies the threshold is 0.25.

What happens if the calibration is changed so that the threshold is larger than

0.5? I run the following simulation to demonstrate this scenario. The simulation in

Figure (7) is based on a similar calibration except that now I change σ from 11 to

13
3

. Now the new proportion threshold γ̃1 for the SSE to be stable is 0.75. Since the

threshold for the SSE solution to be stable is higher now, the SSE believers eventually

learn the steady state α11 = α12 = 0.

IV.7 Conclusion

Self-fulling outcomes of pessimism or optimism have significant macroeconomic

implications. The studies of sunspot equilibria try to formalize this important

phenomenon. One criticism of SSE literature is that self-fulling solutions are a highly

coordinated outcome that is unlikely to rise in the real world. The literature on

the existence and stability of sunspot equilibria has always assumed a representative

agent. It fails to provide a robustness check that sunspot equilibria can exist when

agents coordinate on different extrinsic information sets. This paper presents a direct

response to this criticism. I show that the economy can evolve according to different

sunspots, even if only a proportion of the agents participate in the coordination.

They do not need to all coordinate on the same sunspot process. Besides, I provide

the necessary and sufficient conditions under which SSE exists and is stable under
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FIGURE 7. Selection Dynamic II

learning. This paper also confirms that agents choose the SSE rule over the SS rule

with a suitable initial setup with model selection dynamics.

On the other hand, I find that the parameter space for SSE to exist is smaller in

a model with belief heterogeneity than a representative-agent model. The stability

region for these SSEs also shrinks accordingly. These findings have important

implications. For the RBC-type models studied by Farmer and Guo (1994) that

explain business cycle co-movements with SSE, this paper suggests that the existence
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region could be smaller than what has been found. The stability could be harder

to come by. An open question is whether SSEs would still arise in calibrated non-

convex RBC models such as the two-sector model in Benhabib and Farmer (1996) and

the model with non-separable utilities in Bennett and Farmer (1999). For the New

Keynesian literature that warns of the dangers of sunspot equilibria from a poorly-

designed monetary policy, this paper suggests that the “safe region” where SSEs do

not arise can be larger than what has been previously thought. The literature so far

suggests the interest rule be such that the model has a slope of more than −1, so

SSEs are not stable under learning. This paper finds that the threshold might be

much lower than −1 if we are willing to assume that some agents do not observe any

sunspots in the first place or that agents observe different sunspots.

This paper is the first to study indeterminacy when agents are heterogeneous

in beliefs. The recent development in macroeconomics modeling has witnessed a

shift from a representative agent framework to one that carefully treats agent-level

heterogeneity, especially income/wealth heterogeneity in models featuring incomplete

markets. See Mckay et al. (2016), Kaplan et al. (2018), and Bhandari et al. (2019.)

One recommendation for future research is to study indeterminacy under interactions

between income heterogeneity and belief heterogeneity.
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APPENDIX

I.1 Derivation of the FOC of a Household

The inter-temporal condition for the profit maximization problem specified in
Eq.(III.17) can be written as

Yt

Pt

(
pt(ω)

Pt

)−ν [
(1− ν) + νMt(pt(ω))

Pt

pt(ω)
− PtM′t(pt(ω))

]
+ C1(pt(ω), pt−1(ω)) = βEt

[
C−σt+1

C−σt
C2(pt+1(ω), pt(ω))

]
(I.1)

Note that

Mt(pt(ω)) =
wt
αθt

(
pt(ω)Yt
θtPt

) 1−α
α

M′
t(pt(ω)) =

α− 1

α2

Ptwt
p2
t (ω)Yt

(
pt(ω)Yt
Ptθt

) 1
α

C1(pt(ω), pt−1(ω)) = −φpt(ω)− pt−1(ω)

p2
t−1(ω)

C2(pt+1(ω), pt(ω)) = φpt+1(ω)pt(ω)
pt+1(ω)− pt(ω)

p3
t (ω)

Substituting these equations into Eq.(I.1) and assuming the equilibrium is symmetric

pt(ω) = Pt

for all t and ω, one obtains the optimality condition for the intermediate firm as

follows

C−σt

(
(ν − 1)Yt +

(
1− α− αν

α2

)(
Yt
θt

) 1
α

wt

)
+ φΛt = φβEtΛt+1
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where Λt is the shadow price for the intermediate-good producers

Λt = C−σt Πt(1 + Πt)

I.2 Derivation of the FOC of an Intermediate Firm

The inter-temporal condition for the profit maximization problem specified in
Eq.(III.17) can be written as

Yt

Pt

(
pt(ω)

Pt

)−ν [
(1− ν) + νMt(pt(ω))

Pt

pt(ω)
− PtM′t(pt(ω))

]
+ C1(pt(ω), pt−1(ω)) = βEt

[
C−σt+1

C−σt
C2(pt+1(ω), pt(ω))

]

Note that

Mt(pt(ω)) =
wt
αθt

(
pt(ω)Yt
θtPt

) 1−α
α

M′
t(pt(ω)) =

α− 1

α2

Ptwt
p2
t (ω)Yt

(
pt(ω)Yt
Ptθt

) 1
α

C1(pt(ω), pt−1(ω)) = −φpt(ω)− pt−1(ω)

p2
t−1(ω)

C2(pt+1(ω), pt(ω)) = φpt+1(ω)pt(ω)
pt+1(ω)− pt(ω)

p3
t (ω)

Substituting these equations into Eq.(I.1) and assuming the equilibrium is symmetric

pt(ω) = Pt

for all t and ω, one obtains the optimality condition for the intermediate firm as

follows

C−σt

(
(ν − 1)Yt +

(
1− α− αν

α2

)(
Yt
θt

) 1
α

wt

)
+ φΛt = φβEtΛt+1
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where Λt is the shadow price for the intermediate-good producers

Λt = C−σt Πt(1 + Πt)

I.3 SS v.s. SSE: Derivation of the Projected ALM

SS believers and SSE believers form expectations based on their PLMs as follows.

Ê1
tG(yt+1) =

 π11G(α11) + π12G(α12) if st = 1

π21G(α11) + π22G(α12) if st = 2

Ê2
tG(yt+1) = G(α0)

Combining the expectations and Eq.(1), one obtains the ALM. Recall F (·) = H(G(·))

yt =

 γ1H(π11G(α11) + π12G(α12)) + γ0F (α0) if st = 1

γ1H(π21G(α11) + π22G(α12)) + γ0F (α0) if st = 2

The SS believers do not observe the sunspot process and therefore regard the deviation

from the steady state as white noise. Solving Πp̄ = p̄. for p̄ = (p̄1, p̄2)′, the

stationary distribution of the sunspot process, one obtains p̄1 = π21/(π21 + π12) and

p̄2 = π12/(π21 + π12) From the SS believers’ perspective, they see yt evolves around

the steady state as follows.

T2(α0) =p̄1(γ1H(π11G(α11) + π12G(α12)) + γ0F (α0)) +

p̄2(γ1H(π21G(α11) + π22G(α12)) + γ0F (α0))
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For the SSE believers, the ALM matches their PLM, and therefore no projection is

needed. One derives the projected ALM as

T


α11

α12

α0

 =


γ1H(π11G(α11) + π12G(α12)) + γ0F (α0)

γ1H(π21G(α11) + π22G(α12)) + γ0F (α0)

γ1(p̄1H(π11G(α11) + π12G(α12)) + p̄2H(π21G(α11) + π22G(α12)) + γ0F (α0)



I.4 SS v.s. SSE: Linearization of Differential Equation at the

Steady State

Let wi = αi − ŷ and ẇi = dwi/dτ , and Ψi(w11, w12, w0) are the nonlinear part.

Note F ′(ŷ) = H ′(G(ŷ))G′(ŷ).


ẇ11

ẇ12

ẇ0

 =


γ1π11F

′(ŷ)w11 + γ1π12F
′(ŷ)w12 + γ0F

′(ŷ)w0 − w11

γ1π21F
′(ŷ)w11 + γ1π22F

′(ŷ)w12 + γ0F
′(ŷ)w0 − w12

γ1p̄1F
′(ŷ)w11 + γ1p̄2F

′(ŷ)w12 + γ0F
′(ŷ)w0 − w0

+


Ψ11(w11, w12, w0)

Ψ12(w11, w12, w0)

Ψ2(w11, w12, w0)


The linear part can be written as


γ1π11F

′(ŷ)w11 + γ1π12F
′(ŷ)w12 + γ0F

′(ŷ)w0 − w11

γ1π21F
′(ŷ)w11 + γ1π22F

′(ŷ)w12 + γ0F
′(ŷ)w0 − w12

γ1p̄1F
′(ŷ)w11 + γ1p̄2F

′(ŷ)w12 + γ0F
′(ŷ)w0 − w0

 =

F ′(ŷ)


γ1π11 γ1π12 γ0

γ1π21 γ1π22 γ0

γ1p̄1 γ1p̄2 γ0

− I



w11

w12

w0


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The linearized system at the steady state takes the following form
ẇ11

ẇ12

ẇ0

 = (F ′(ŷ)Π̃− I)


w11

w12

w0

+


Ψ11(w11, w12, w0)

Ψ12(w11, w12, w0)

Ψ2(w11, w12, w0)


where

Π̃ =


γ1π11 γ1π12 γ0

γ1π21 γ1π22 γ0

γ1p̄1 γ1p̄2 γ0



I.5 Proof for SS v.s. SSE in Nonlinear Model

Define the following variables for bifurcation.

π̄11 = 1 + (γ1β)−1 − π22

v = π11 − π̄11

The dynamic system is now written as

ẇ11 = γ1(π̄11 + v)F (ŷ + w11) + γ1(1− π̄11 − v)F (ŷ + w12) + γ0F (ŷ + w0)− w11 − ŷ

ẇ12 = γ1(1− π22)F (ŷ + w11) + γ1π22F (ŷ + w12) + γ0F (ŷ + w0)− w12 − ŷ

ẇ0 =
γ1(1− π22)

1− (γ1β)−1 + v
F (ŷ + w11) +

γ1(1− π̄11 − v)

1− (γ1β)−1 + v
F (ŷ + w12) + γ0F (ŷ + w0)− w0 − ŷ

At w11 = w22 = w0 = v = 0, the coefficient matrix of the linear part is A = βΠ̃− I,

whose eigenvalues are −1, F ′ − 1 and 0 where F ′ = β. The diagonalization of A is
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given by

A = Q


−1 0 0

0 F ′ − 1 0

0 0 0

Q−1, where Q =


b 1 a

b 1 1

1 1 0


with a = 1−π22(γ1F ′)

(1−π22)(γ1F ′)
, and b = 1 − γ−1

1 . Let qij denote the elements of Q−1. Define

new variables xi as follows 
x11

x12

x0

 = Q−1


w11

w12

w0


This transformation implies w11 = bx11 + x12 + ax0, w12 = bx11 + x12 + x0, and

w0 = x11 + x12. One obtains ẋi = Gi(x11, x12, x0, v) for i ∈ {11, 12, 2} where

Gi(x11, x12, x0, v)

=qi1 [γ1(π̄11 + v)F (ŷ + w11) + γ1(1− π̄11 − v)F (ŷ + w12) + γ0F (ŷ + w0)− w11 − ŷ]

+qi2 [γ1(1− π22)F (ŷ + w11) + γ1π22F (ŷ + w12) + γ0F (ŷ + w0)− w12 − ŷ]

+qi3
[

γ1(1− π22)

1− (γ1β)−1 + v
F (ŷ + w11) +

γ1(1− π̄11 − v)

1− (γ1β)−1 + v
F (ŷ + w12) + γ0F (ŷ + w0)− w0 − ŷ

]
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Apply the transformation for wi, we have

Gi(x11, x12, x0, v)

=qi1[γ1(π̄11 + v)F (ŷ + bx11 + x12 + ax0) + γ1(1− π̄11 − v)F (ŷ + bx11 + x12 + x0)+

γ0F (ŷ + x11 + x12)− (bx11 + x12 + ax0)− ŷ]

+qi2[γ1(1− π22)F (ŷ + bx11 + x12 + ax0) + γ1π22F (ŷ + bx11 + x12 + x0)+

γ0F (ŷ + x11 + x12)− (bx11 + x12 + x0)− ŷ]

+qi3
[

γ1(1− π22)

1− (γ1β)−1 + v
F (ŷ + bx11 + x12 + ax0) +

γ1(1− π̄11 − v)

1− (γ1β)−1 + v
F (ŷ + bx11 + x12 + x0)+

γ0F (ŷ + x11 + x12)− (x11 + x12)− ŷ]

Augmenting this system with v̇ = 0 leads to a four-dimensional system for which the

equations for ẋ0 and v̇ have zero linear parts and the equation for ẋ11 and ẋ12 have

linear parts −x11 and (F ′ − 1)x12 which are obviously stable. We now use the center

manifold theory. In particular, the system has an invariant center manifold which can

be represented by a three times continuously differentiable function x11 = h11(x2, v)

and x12 = h12(x2, v) with hi(0, 0) = 0 and Dhi(0, 0) = 0 for i ∈ {11, 12}. Local

stability of the system is governed by local stability of the “projected system”,

ẋ0 = G2(h11(x2, v), h12(x2, v), x0, v)

v̇ = 0
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The second-order expansions are

F (ŷ + bx11 + x12 + ax0)=̇F (ŷ) + F ′bx11 + F ′x12 + F ′ax0+

1

2
F ′′(b2x2

11 + x2
12 + a2x2

0 + 2bx11x12 + 2abx11x0 + 2ax12x0)

F (ŷ + bx11 + x12 + x0)=̇F (ŷ) + F ′bx11 + F ′x12 + F ′x0+

1

2
F ′′(b2x2

11 + x2
12 + x2

0 + 2bx11x12 + 2bx11x0 + 2x12x0)

F (ŷ + x11 + x12)=̇F (ŷ) + F ′x11 + F ′x12 +
1

2
F ′′(x2

11 + x2
12 + 2x11x12)

h11(x2, v) = c11x
2
2 + d11x2v + f11v

2 +O11(||(x0, v)||3)

h12(x2, v) = c12x
2
2 + d12x2v + f12v

2 +O12(||(x0, v)||3)

where F ′′ = F ′′(ŷ) and =̇ denotes equality up to O(||(x11, x12, x0)||3). Also, note that

q31 = (a− 1)−1, q32 = (1− a)−1, and q33 = 0. It follows that on the center manifold

the differential equation for x2 can be written as

ẋ2 = γ1F
′vx2 +

1

2

F ′′

F ′
(1 + a)x2

2 +O(||(x2, v)||3) (I.1)

For the purpose of the theorem we are at liberty to choose π22 so that a 6= −1 which

we now assume. The bifurcation occurs at v = 0. It follows that E-stable SSEs

exist for v < 0. If v > 0 the SSEs are not E-stable and learning instead converges

to the fundamental solution. It is evident that the system exhibits a transcritical

bifurcation at v = 0. The 2SSEs are defined by the equations x̄11 = 0, x̄12 = 0, and

x̄0 = − 2γ1(F ′)2

F ′′(1+a)
v. In terms of the original variables, w̄11 = ax̄0, w̄12 = x̄0, and w̄0 = 0.
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I.6 SSE1 v.s. SSE2: derivation of the T-map

SSE1 believers and SSE2 believers form expectations based on their PLMs as

follows.

Êj
tG(yt+1) =

 πj11G(αj1) + πj12G(αj2) if sjt = 1

πj21G(αj1) + πj22G(αj2) if sjt = 2

for j ∈ {1, 2}. Combining the expectations and Eq.(1), one obtains the ALM. Recall

F (·) = H(G(·))

yt =



γ1H(π1
11G(α11) + π1

12G(α12)) + γ2H(π2
11G(α21) + π2

12G(α22)) if (s1
t , s

2
t ) = (1, 1)

γ1H(π1
11G(α11) + π1

12G(α12)) + γ2H(π2
21G(α21) + π2

22G(α22)) if (s1
t , s

2
t ) = (1, 2)

γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
11G(α21) + π2

12G(α22)) if (s1
t , s

2
t ) = (2, 1)

γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
21G(α21) + π2

22G(α22)) if (s1
t , s

2
t ) = (2, 2)

SSE1 believers and SSE2 believers do not observe each other’s sunspot process. The
stationary distributions of sunspot processes Πj are (p̄j1, p̄

j
2) where p̄j1 = πj21/(π

j
21+πj12)

and p̄j2 = πj12/(π
j
21 + πj12). From the SSE1 believers’ perspective, they see yt evolves

according to s1
t as follows.

yt =

 γ1H(π1
11G(α11) + π1

12G(α12)) + p̄2
1γ2H(π2

11G(α21) + π2
12G(α22)) + p̄2

2γ2H(π2
21G(α21) + π2

22G(α22)) if s1t = 1

γ1H(π1
21G(α11) + π1

22G(α12)) + p̄2
1γ2H(π2

11G(α21) + π2
12G(α22)) + p̄2

2γ2H(π2
21G(α21) + π2

22G(α22)) if s1t = 1

From the SSE2 believers’ perspective, they see yt evolves according to s2
t as follows.

yt =

 p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
11G(α21) + π2

12G(α22)) if s2t = 1

p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
21G(α21) + π2

22G(α22)) if s2t = 2
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The T-map from the PLMs to the projected ALM is written as

T


α11

α12

α21

α22

 =


γ1H(π1

11G(α11) + π1
12G(α12)) + p̄2

1γ2H(π2
11G(α21) + π2

12G(α22)) + p̄2
2γ2H(π2

21G(α21) + π2
22G(α22))

γ1H(π1
21G(α11) + π1

22G(α12)) + p̄2
1γ2H(π2

11G(α21) + π2
12G(α22)) + p̄2

2γ2H(π2
21G(α21) + π2

22G(α22))

p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
11G(α21) + π2

12G(α22))

p̄1
1γ1H(π1

11G(α11) + π1
12G(α12)) + p̄1

2γ1H(π1
21G(α11) + π1

22G(α12)) + γ2H(π2
21G(α21) + π2

22G(α22))



I.7 SSE1 v.s. SSE2: linearization at the steady state

Let wi = αi − ŷ and ẇi = dwi/dτ , and Ψi(w11, w12, w21, w22) are the nonlinear
part. Note F ′(ŷ) = H ′(G(ŷ))G′(ŷ).


ẇ11

ẇ12

ẇ21

ẇ22

 =


γ1π

1
11F

′(ŷ)w11 + γ1π
1
12F

′(ŷ)w12 + γ2(p̄21π
2
11 + p̄22π

2
21)F ′(ŷ)w21 + γ2(p̄21π

2
12 + p̄22π

2
22)F ′(ŷ)w22 − w11

γ1π
1
21F

′(ŷ)w11 + γ1π
1
22F

′(ŷ)w12 + γ2(p̄21π
2
11 + p̄22π

2
21)F ′(ŷ)w21 + γ2(p̄21π

2
12 + p̄22π

2
22)F ′(ŷ)w22 − w12

γ1(p̄11π
1
11 + p̄12π

1
21)F ′(ŷ)w11 + γ1(p̄11π

1
12 + p̄12π

1
22)F ′(ŷ)w12 + γ2π

2
11F

′(ŷ)w21 + γ2π
2
12F

′(ŷ)w22 − w21

γ1(p̄11π
1
11 + p̄12π

1
21)F ′(ŷ)w11 + γ1(p̄11π

1
12 + p̄12π

1
22)F ′(ŷ)w12 + γ2π

2
21F

′(ŷ)w21 + γ2π
2
22F

′(ŷ)w22 − w22

 + Ψ

where the nonlinear part is

Ψ =


Ψ11(w11, w12, w21, w22)

Ψ12(w11, w12, w21, w22)

Ψ21(w11, w12, w21, w22)

Ψ22(w11, w12, w21, w22)


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and the linear part can be written as

F
′(ŷ)


γ1π

1
11 γ1π

1
12 γ2p̄

2
1 γ2p̄

2
2

γ1π
1
21 γ1π

1
22 γ2p̄

2
1 γ2p̄

2
2

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
11 γ2π

2
12

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
21 γ2π

2
22

− I



w11

w12

w21

w22


The linearized system at the steady state takes the following form

ẇ11

ẇ12

ẇ21

ẇ22

 = (F ′(ŷ)Π̃− I)


w11

w12

w21

w22

+ Ψ

where

Π̃ =


γ1π

1
11 γ1π

1
12 γ2p̄

2
1 γ2p̄

2
2

γ1π
1
21 γ1π

1
22 γ2p̄

2
1 γ2p̄

2
2

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
11 γ2π

2
12

γ1p̄
1
1 γ1p̄

1
2 γ2π

2
21 γ2π

2
22



I.8 Proof of Linear Model.

Throughout this proof, I assume 0 < γ1 < γ2 < 1 without losing generality,

and therefore −γ−1
1 < −γ−1

2 < −1. If |β| > (max(γ1, γ2))−1 = γ−1
2 , then (γ2β)−1 ∈

(−1, 1). There exist (π2
ij) such that π2

11 + π2
22 = (γ2β)−1 + 1 ∈ (0, 2) which implies

eigenvalue λ4 = 0. Note that A is not a full-rank matrix, and therefore the model has

a SSE solution, and there exist a continuum of SSE solutions which are characterized

by Aw̄ = 0. If β < −(max(γ1, γ2))−1 = −γ−1
2 then both λ1 = 0 and λ2 = β − 1 are

negative. Consider the following two cases
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1. −γ−1
1 < β < −γ−1

2 . Note that λ3 = γ1β(π1
11 + π1

22 − 1) − 1 < 0. If the

Markov sunspot process satisfies restriction π2
11 + π2

22 − 1 = (γ2β)−1, then λ4 =

γβ(π11 + π22 − 1) − 1 = 0. There exist a continuum of E-stable SSE solutions

which are characterized by Aw̄ = 0 which locate the continuum with restrictions

w̄11 = w̄12 = 0 and (1− π2
22)w̄21 + (1− π2

21)w̄12 = 0.

2. β < −γ−1
1 < −γ−1

2 . If only one of the resonant frequency conditions πj11 +πj22−

1 = (γjβ)−1 and the other sunspot process has serial correlation π−j11 +π−j22 −1 >

(γ−jβ)−1, then lambdaj+2 = 0 and λ−j+2 < 0. There exist a continuum of

E-stable SSE solutions which are characterized by Aw̄ = 0 which locate the

continuum with restrictions (1− πj22)w̄j1 + (1− πjj1)w̄j2 = 0 and w̄−j1 = w̄−j2 =

0.If both resonant frequency conditions are satisfied then λ3 = λ4 = 0. There

exist a continuum of E-stable SSE solutions which are characterized by Aw̄ = 0

which locate the continuum with restrictions (1 − π1
22)w̄11 + (1 − π1

21)w̄12 = 0

and (1− π2
22)w̄21 + (1− π2

21)w̄12 = 0.

I.9 Proof of Nonlinear Model.

Throughout this proof, I assume 0 < γ1 < γ2 < 1 without losing generality,

and therefore −γ−1
1 < −γ−1

2 < −1. If F ′ < −(max(γ1, γ2))−1 = −γ−1
2 then both

λ1 = 0 and λ2 = F ′ − 1 are negative. Let F ′ = F ′(ŷ). First, consider the case where

−γ−1
1 < F ′ < −γ−1

2 . Note that λ3 = γ1F
′(π1

11 +π1
22− 1)− 1 < 0. Define the following

variables for bifurcation.

π̄2
11 = 1 + (γ2F

′(ŷ))−1 − π2
22

v2 = π2
11 − π̄2

11
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The following analysis is similar to the proof shown in Appendix ??. Note that the

differential equations for the transformed variables x11, x12, and x21 would have stable

linear parts −x11, (F ′−1)x12 and (γ1F
′(π1

11 + π̄1
22−1)−1)x21. The bifurcation occurs

at v2 = 0. It follows that E-stable SSEs exist for v2 < 0. If v2 > 0 the SSEs are

not E-stable and learning instead converges to the fundamental solution. v2 < 0

corresponds to π2
11 + π2

11 − 1 < (γ2F
′(ŷ))−1.

Now assume F ′ < −γ−1
1 < −γ−1

2 . If only one of the sunspot processes satisfies

πj11 + πj22 − 1 < (γjβ)−1 and the other sunspot process has serial correlation π−j11 +

π−j22 − 1 > (γ−jβ)−1, one can define the following variables for bifurcation.

π̄j11 = 1 + (γjF
′(ŷ))−1 − πj22

vj = πj11 − π̄
j
11

This case is also similar to the analysis shown in Appendix A.4. The bifurcation

occurs at vj = 0. It follows that E-stable SSEs exist for vj < 0. If both sunspot

processes satisfies πj11 + πj22 − 1 < (γjβ)−1, one can define the following variables for

bifurcation.

π̄1
11 = 1 + (γ1F

′(ŷ))−1 − π1
22 and v1 = π1

11 − π̄1
11

π̄2
11 = 1 + (γ2F

′(ŷ))−1 − π2
22 and v2 = π2

11 − π̄2
11
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The differential equation system is now written as

ẇ11 = γ1(π̄1
11 + v1)F (ŷ + w11) + γ1(1− π̄1

11 − v1)F (ŷ + w12)+

γ2(1− π2
22)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + w21) +

γ2(1− π̄2
11 − v2)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + w22)− w11 − ŷ

ẇ12 = γ1(1− π1
22)F (ŷ + w11) + γ1π

1
22F (ŷ + w12)+

γ2(1− π2
22)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + w21) +

γ2(1− π̄2
11 − v2)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + w22)− w12 − ŷ

ẇ21 =
γ1(1− π1

22)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + w11) +

γ1(1− π̄1
11 − v1)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + w12)+

γ2(π̄2
11 + v2)F (ŷ + w21) + γ2(1− π̄2

11 − v2)F (ŷ + w22)− w22 − ŷ

ẇ22 =
γ1(1− π1

22)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + w11) +

γ1(1− π̄1
11 − v1)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + w12)+

γ2(1− π2
22)F (ŷ + w21) + γ2π

2
22F (ŷ + w22)− w22 − ŷ

At w11 = w12 = w21 = w22 = v1 = v2 = 0, the coefficient matrix of the linear part is

A = F ′(ŷ)Π̃− I, whose eigenvalues are −1, F ′ − 1, 0, and 0 where F ′ = F ′(ŷ). The

diagonalization of A is given by

A = Q


−1 0 0 0

0 F ′ − 1 0 0

0 0 0 0

0 0 0 0

Q−1, where Q =


b 1 a1 0

b 1 1 0

1 1 0 a2

1 1 0 1


with aj =

1−πj22(γjF
′)

(1−πj22)(γjF ′)
and b = −γ2/γ1. Let qij denote the elements of Q−1. Define

new variables xi as (x11, x12, x21, x22)′ = Q−1(w11, w12, w21, w22)′. This transformation
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implies

w11 = bx11 + x12 + a1x21

w12 = bx11 + x12 + x21

w21 = x11 + x12 + a2x22

w22 = x11 + x12 + x22

One obtains ẋi = Gi(x11, x12, x21, x22, v1, v2) as follows for i ∈ {11, 12, 21, 22}

Gi(x11, x12, x21, x22, v1, v2) = qi1ẇ11 + qi2ẇ12 + qi3ẇ21 + qi4ẇ22
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Apply the transformation for wi, we have

Gi(x11, x12, x21, x22, v1, v2) =

qi1[γ1(π̄1
11 + v1)F (ŷ + bx11 + x12 + a1x21) + γ1(1− π̄11 − v1)F (ŷ + bx11 + x12 + x21)+

γ2(1− π2
22)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + x11 + x12 + a2x22)+

γ2(1− π̄2
11 − v2)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + x11 + x12 + a2x22)

− (bx11 + x12 + a1x21)− ŷ]

+qi2[γ1(1− π1
22)F (ŷ + bx11 + x12 + a1x21) + γ1π

1
22F (ŷ + bx11 + x12 + x21)+

γ2(1− π2
22)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + x11 + x12 + a2x22)+

γ2(1− π̄2
11 − v2)

1− (γ2F ′(ŷ))−1 + v2
F (ŷ + x11 + x12 + a2x22)

− (bx11 + x12 + x21)− ŷ]

+qi3[
γ1(1− π1

22)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + bx11 + x12 + a1x21)+

γ1(1− π̄1
11 − v1)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + bx11 + x12 + x21)+

γ2(π̄2
11 + v2)F (ŷ + x11 + x12 + a2x22) + γ2(1− π̄2

11 − v2)F (ŷ + x11 + x12 + x22)

− (x11 + x12 + a2x22)− ŷ]

+qi4[
γ1(1− π1

22)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + bx11 + x12 + a1x21)+

γ1(1− π̄1
11 − v1)

1− (γ1F ′(ŷ))−1 + v1
F (ŷ + bx11 + x12 + x21)+

γ2(1− π2
22)F (ŷ + x11 + x12 + a2x22) + γ2π

2
22F (ŷ + x11 + x12 + x22)

− (x11 + x12 + x22)− ŷ]

Augmenting this system with v̇1 = 0 and v̇2 = 0 leads to a six-dimensional system

for which the equations for ẋ21, ẋ22, v̇1, v̇2 have zero linear parts and the equation

for ẋ11 and ẋ12 have linear parts −x11 and (F ′ − 1)x12 which are obviously stable.

We now use the center manifold theory. In particular, the system has an invariant

center manifold which can be represented by a three times continuously differentiable
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function x11 = h11(x21, x22, v1, v2) and x12 = h12(x21, x22, v1, v2) with hi(0, 0, 0, 0) = 0

and Dhi(0, 0, 0, 0) = 0 for i ∈ {11, 12}. Local stability of the system is governed by

local stability of the “projected system”,

ẋ21 = G21(h11(x21, x22, v1, v2), h12(x21, x22, v1, v2), x21, x22, v)

ẋ22 = G22(h11(x21, x22, v1, v2), h12(x21, x22, v1, v2), x21, x22, v)

v̇1 = 0 and v̇2 = 0

The second-order expansions are

F (ŷ + bx11 + x12 + a1x21)=̇F (ŷ) + F ′bx11 + F ′x12 + F ′a1x21+

1

2
F ′′(b2x211 + x212 + a21x

2
21 + 2bx11x12 + 2a1bx11x21 + 2a1x12x21)

F (ŷ + bx11 + x12 + x21)=̇F (ŷ) + F ′bx11 + F ′x12 + F ′x21+

1

2
F ′′(b2x211 + x212 + x221 + 2bx11x12 + 2bx11x21 + 2x12x21)

F (ŷ + x11 + x12 + a2x22)=̇F (ŷ) + F ′x11 + F ′x12 + F ′a2x22+

1

2
F ′′(x211 + x212 + a22x

2
22 + 2x11x12 + 2a2bx11x22 + 2a2x12x22)

F (ŷ + x11 + x12 + x22)=̇F (ŷ) + F ′x11 + F ′x12 + F ′x22+

1

2
F ′′(x211 + x212 + x222 + 2x11x12 + 2x11x22 + 2x12x22)

h11(x21, x22, v1, v2) = c11x
2
21 + d11x

2
22 + f111v

2
1 + f211v

2
2+

g111x21v1 +m1
11x22v1 + g211x21v2 +m2

11x22v2 + r11x21x22 + s11v1v2+

O11(||(x21, x22, v1, v2)||3)

h12(x21, x22, v1, v2) = c12x
2
21 + d12x

2
22 + f112v

2
1 + f212v

2
2+

g112x21v1 +m1
12x22v1 + g212x21v2 +m2

12x22v2 + r12x21x22 + s12v1v2+

O12(||(x21, x22, v1, v2)||3)

where F ′′ = F ′′(ŷ) and =̇ denotes equality up to O(||(x11, x12, x21, x22)||3). Also,

note that q31 = (a1 − 1)−1, q32 = (1 − a1)−1, q33 = 0, q34 = 0, and q41 = 0, q42 = 0,
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q43 = (a2−1)−1, q44 = (1−a2)−1. It follows that on the center manifold the differential

equation for x21 and x22 are as follows

ẋ21 = γ1F
′v1x21 +

1

2

F ′′

F ′
(1 + a1)x2

21 +O(||(x21, x22, v1, v2)||3)

ẋ22 = γ2F
′v2x22 +

1

2

F ′′

F ′
(1 + a2)x2

22 +O(||(x21, x22, v1, v2)||3)

For the purpose of the theorem we are at liberty to choose π1
22 and π2

22 so that a1 6= −1

and a2 6= −1 which we now assume. Notice that the differential equations for ẋ21 and

ẋ22 are in fact decoupled in the linear and quadratic part and only higher-order parts

are coupled. It is evident that the two systems exhibit a transcritical bifurcation at

v1 = 0 and v2 = 0 respectively. It follows that E-stable SSEs exist for v1 < 0 and

v2 < 0. The 2SSEs are defined by the equations x̄11 = 0, x̄12 = 0, x̄21 = − 2γ1(F ′)2

F ′′(1+a1)
v1,

and x̄22 = − 2γ2(F ′)2

F ′′(1+a2)
v2. In terms of the original variables we have w̄11 = a1x̄21,

w̄12 = x̄21, w̄21 = a2x̄22, and w̄22 = x̄22.

I.10 Derivation of the Temporary Equilibrium

The temporary equilibrium is pinned down by the following three equations

(nt(ω))−σ p1−σ
t Eω

t (pσ−1
t+1 ) = (nt(ω))ε (I.2)

pt

∫
ω

nt(ω)dω = 1 (I.3)

where Eq.(I.2) is the first order condition for the agent of index ω, and Eq.(I.3) is the

money market clearing condition. Solving Eq.(I.2) for nt(ω), one obtains

nt(ω) = p
1−σ
ε+σ

t (Eω
t (pσ−1

t+1 ))
1

ε+σ (I.4)
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Substitute Eq.(I.4) into Eq.(I.3), one obtains

(pt)
− ε+1
ε+σ =

∫
ω

(Eω,t(p
σ−1
t+1 ))

1
ε+σ dω (I.5)

Define a new variable yt = p
− ε+1
ε+σ

t . Eq.(I.5) can be written in terms of yt as follows

yt =

∫
ω

H(Eω
t G(yt+1))dω

nt(ω) = y
σ−1
ε+1

t H(Eω
t G(yt+1))

where H(y) = y
1

ε+σ and G(y) = y
(ε+σ)(1−σ)

ε+1 .
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