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THESIS ABSTRACT 
 

Haoran Wang 

Master of Science 

Department of Computer and Information Science 

June 2021 

Title: Evaluating a Joint Neural Model with Global Features for Document-Level 
End-to-End Information Extraction 

 

Information Extraction (IE) is one of the most important fields in Natural 

Language Processing (NLP). The goal for IE tasks is to extract structured 

knowledge from unstructured text. While most datasets focus on sentence-level 

IE and paragraph-level IE, a document-level IE dataset is needed for research 

on processing long documents. Fortunately, researchers at Allen Institute for AI 

published a comprehensive and challenging document-level IE dataset (SCIREX) 

for the IE research community to study. Performing end-to-end IE tasks on 

SCIREX requires global understanding of the full document as relations can span 

across beyond sentences or even sections. This thesis applies a joint neural model 

with global features (ONEIE) to perform two end-to-end IE tasks on SCIREX, 

named entity extraction (NER) and relation extraction (RE). The performance of 

ONEIE is compared to SCIREX baseline model and DYGIE++, the state-of-the- 

art end-to-end IE model. 
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CHAPTER I 

INTRODUCTION 

In today’s digital age, there is an enormous amount of information that 

need to be processed daily in the form of news, emails, documents, social media, 

etc. Most of this information is unstructured, making it hard to reason about and 

interpret it. Therefore, there is a need for research that can deliver an efficient and 

sophisticated tool to automatically handle information given text inputs. Natural  

Language Processing (NLP) refers the study of extracting structured information 

from unstructured text as Information Extraction (IE). 

Although existing joint neural models have achieved good results compared 

to the pipelined models, most of these models use local task-specific classifiers 

to predict individual IE tasks regardless of their interactions. This results in the 

failure of capturing cross-subtask and cross-instance inter-dependencies among local 

predictors. This thesis evaluates the performance of using a joint neural model with 

global features (ONEIE) Lin et al. (2020) for end-to-end information extraction 

tasks on a challenging document-level dataset (SCIREX)  Jain  et  al.  (2020).  In 

order to understand the importance of ONEIE and SCIREX in IE field, a brief 

introduction of the recent trends for IE models and datasets is necessary. 

Recent Trends for IE Models 

With the recent advancements in deep learning, IE has moved from machine 

learning based systems to deep learning based neural models. However, these 

approaches typically perform IE in a pipelined fashion, which leads to error 

propagation and does not allow interactions among the components in the pipeline. 

Some earlier approaches involved using joint inference and joint modeling 

methods to improve local prediction. Roth and Yih Roth and Yih (2004) developed 
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a linear programming formulation to simultaneously learn named entities and 

relations. They modeled inference as an optimization problem, and converted it to 

a linear program. This allowed the authors to solve very large linear programming 

problems in a short amount of time. Other works that jointly perform IE 

tasks, including Markov Logic NetworksRiedel, Chun, Takagi and Tsujii (2009), 

Structured PerceptronLi, Ji and Huang (2013), and Graphical ModelsYang and 

Mitchell (2016). 

More recently, due to the success of deep learning, Luan et al Luan et 

al. (2019) created a global inference model by designing neural networks with 

embedding features to jointly model multiple sub tasks. This general model 

called Dynamic Graph IE (DYGIE), uses dynamically constructed span graphs 

to represent relations and coreferences. It achieved state-of-the-art performance 

on multiple datasets. However, like previous approaches, it still uses separate local 

task-specific classifiers in the final layer. This results in the failure of capturing 

inter-dependencies among tasks and instances. 

To address the issue mentioned above, Lin et al. Lin et al. (2020) developed 

a new joint neural model called ONEIE. Instead of predicting separate knowledge 

elements using local classifiers, ONEIE extracts a globally optimal information 

network for the input. During the decoding process, ONEIE not only considers 

individual label scores for each knowledge element, but also evaluates cross- 

subtask and cross-instance interactions in the network. This model achieved 

performance better than or comparable to the previous state-of-the-art approach 

on ACE05Sanh, Wolf and Ruder (2018), a benchmark dataset for IE. 



3  

 
 

Recent Trends for IE Datasets 

Conventional datasets for IE focus on within-sentence relations. However, 

researchers recently started working on datasets for short paragraphs, such as 

abstracts of scientific articles. SCIERC Luan, He, Ostendorf and Hajishirzi (2018) 

is a dataset of 500 richly annotated scientific abstracts including annotations for 

scientific entities, relations, and coreference clusters. These abstracts are taken from 

12 AI conference/workshop proceedings. Although this dataset has brought new 

challenges for IE on paragraph-level, there is still lack of comprehensive IE datasets 

annotated at the document level for researchers to study. 

A newly released dataset SCIREX Jain et al. (2020) has solved this problem 

and brought new challenges for document-level IE research. To overcome the 

annotation challenges, which requires annotators to have proper domain knowledge 

and identifying relations that span across the whole document, the researchers 

performed both automatic and manual annotations. The end result is a dataset 

of 438 fully annotated documents that contains annotations for entities, salient 

entities, N-ary relations and coreferences. Since this is the first document-level 

dataset for IE, it poses multiple challenges, including aggregating coreference 

information from across documents in an end-to-end manner, identifying salient 

entities and perform N-ary relation extraction of those entities. 

With this thesis, we aim to solve the specific challenges that SCIREX 

proposes by training ONEIE model on SCIREX and study the performance benefits 

of using an end-to-end neural model with global features. We focus on two IE 

tasks, entity extraction and relation extraction. We measure the performance 

by the model’s F-1 score on the test set. The primary goal of this thesis is to 

understand ONEIE’s performance on document-level IE tasks.  We do this by 
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comparing ONEIE’s performance with DYGIE++’s performance on SCIREX, a 

benchmark model for end-to-end information extraction tasks. 
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CHAPTER II 

BACKGROUND 

Information Extraction Tasks 

Figure 1 shows a general IE pipeline, which involves various tasks such as 

Named Entity Recognition (NER), Relation Extraction(RE), Named Entity Linking 

(NEL), Coreference Resolution (CR), etc. Some low-level IE tasks such as NER are 

the fundamental building blocks of complex NLP tasks such as Knowledge Graph 

Construction, Question-Answering, and so on. In this thesis, we focus on two IE 

tasks: named entity extraction and relation extraction. 

 

 
Figure 1. Overview of general Information Extraction (IE) pipeline that includes 
pre-processing, Named Entity Recognition, Relation Extraction, Coreference 
Resolution, and Named Entity Linking 

 
 

– Named Entity Recognition (NER): The goal of this task is to recognize 

Named Entities that occur in the text. These Named Entities include Person 

(PER), Location (LOC), and Geo-Political Entities (GPE), etc. For instance, 

in the statement ”Guiliani, 58, proposed to Nathan, a former nurse, during 

a business trip to Paris”, NER extracts Guiliani and Nathan which refers to 

person and Paris to location. 
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– Relation Extraction (RE): This task detects and classifies pre-defined 

relationships between entities identified in the text. It transforms 

unstructured text into structured form which can be used in search engine, 

question answering, etc. For instance, given the statement ”In interviews 

last year, Guiliani said Nathan gave him ’tremendous emotion support’ 

through his treatment for prostate cancer as he led New York City during 

the Sept.11,2001 terror attacks.” Pre-defined relations can be in the form of 

Leader-Of that holds between a PER and LOC. In this case, RE extracts the 

relation that Guiliani is the leader of New York City. 

 

Dynamic Graph IE (DYGIE) 

Dynamic Graph IE (DYGIE) Luan et al. (2019) uses dynamically 

constructed graphs to perform multiple IE tasks that capture contextualized 

entities, relations and coreferences. DYGIE achieved this by constructing dynamic 

graphs with refined span representations, as illustrated in Figure 2. The nodes 

in the dynamic graph are dynamically selected from a beam of highly-confident 

mentions, and the edges are weighted according to the confidence scores of relation 

types or coreferences. Unlike previous joint approaches that only rely on the first 

layer LSTM (Long Short-Term Memory)Hochreiter and Schmidhuber (1997) to 

share span representations between various tasks, the dynamic graph in DYGIE 

allows coreferences and relation type confidence to repeatedly refine the span 

representations by selecting the most confident entity spans. 

DYGIE model has five layers, a token representation layer, a span 

representation layer, a coreference propagation layer, a relation representation layer, 

and a final prediction layer. The token representation layer uses a bidirectional 

LSTM to obtain word embeddings by stacking the forward and backward LSTM 
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Figure 2. Overview of DYGIE model. Span representations are refined by using 
broader context from the propagation of neighboring relation types and co-referred 
entities in the graph. This figure is copied from the original paper Luan et al. 
(2019) 

 
hidden states. After the token representation layer, the vectors are sent into a span 

representation layer to enumerate all text spans in each sentence and compute a 

locally-contextualized vector space representation of each span. In the coreference 

propagation layer and relation propagation layer, DYGIE employs a dynamic span 

graph to embed global information into its span representation identifying the text 

spans that are most likely to represent entities. Those spans are treated as nodes 

in the graph. Then, a confidence-weighted arc is constructed for each node based 

on its predicted coreference and relation links with other nodes in the graph. Then, 

DYGIE refines the span representations by propagating the coreference and relation 

type confidences through the graph. In the final prediction layer, these refined span 

representations are used to predict entity types, relation types, and coreference 

links in a multi-task fashion. 

The key contribution of DYGIE is its dynamic graph approach, it 

incorporates the interactions across tasks that allows the model to learn 
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information from broader context. It achieved significant improvement across 

different IE tasks including entity, relation extraction over the previous state-of- 

the-art model on ACE05Sanh et al. (2018) dataset. 

DYGIE++ 

DYGIE++Wadden, Wennberg, Luan and  Hajishirzi  (2019)  is  an 

improved version of the original DYGIE modelLuan et al. (2019). DYGIE++ 

uses BERTDevlin, Chang, Lee and Toutanova (2018) as contextualized word 

embeddings rather than Bi-LSTM to capture relationships among entities in the 

same or adjacent sentences, while dynamic span graph updates model long-range 

cross-sentence relationships. This allows DYGIE++ to capture both local (within- 

sentence) and global (cross-sentence) context. 

DYGIE++ uses a ”sliding window” approach for BERT encoding, each 

sentence is fed to BERT together with a size-L neighborhood of surrounding 

sentences. Wadden et alWadden et al. (2019) found that by increasing the input 

window size, BERT encodings are able to capture important within and adjacent- 

sentence context, which improves the performance on all tasks. They also found 

contextual encoding through message passing updates enables the model to 

incorporate cross-sentence dependencies, which improves performance on IE tasks 

in specialized domains. 

DYGIE++ achieved state-of-the-art results for named entity recognition, 

relation extraction and event extraction tasks on four different benchmark 

datasets: ACE05 (coreference annotations from OntoNotesPradhan, Moschitti, 

Xue, Uryupina and Zhang (2012)), SciERCLuan et al. (2018), GENIAOhta, Kim, 

Pyysalo, Wang and Tsujii (2009), and WLPCKulkarni, Xu, Ritter and Machiraju 

(2018). 
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SCIREX Model 

Jain et al Jain et al. (2020) developed a neural model that performs 

document-level IE tasks jointly in an end-to-end fashion. As shown in Figure 3, this 

model has an embedding layer, an identification layer, and a classification layer. 

 

 

Figure 3. SCIREX model overview. It uses BERT+BiLSTM for embeddings, 
a CRF layer to identify mentions, and a final classification layer for relation 
extraction. This figure is copied from the original paper Jain et al. (2020) 

 
The embedding layer uses a pre-trained SciBERTBeltagy, Cohan and Lo 

(2019) to get contextualized word embeddings for each section. Then section-level 

word embeddings are concatenated and a Bi-LSTMSchuster and Paliwal (1997) 

is added on top of them. This allows the model to take into account cross-section 

dependencies. 

A conditional random field (CRF)Sutton and McCallum (2010) sequence 

tagger is trained to identify mentions and classify their types. After the mentions 

have been identified, they are clustered into binary and 4-tuple clusters based on if 

they are expressed or not in the document. Each relation is encoded into a single 
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vector by constructing a section embedding and aggregating them to generate a 

document level embedding. Then, the document level embedding is passed through 

a FFN for relation classification. 
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CHAPTER III 

MODEL 

ONEIELin et al. (2020) is a joint neural framework that extracts globally 

optimal IE results as a graph in four stages as shown in Figure 3. First, during the 

encoding stage, it encodes the input sentence using a pre-trained BERT encoder 

Devlin et al. (2018). Second, during the identification stage, it identifies entity 

mentions and event triggers  in  the sentence.  Then, during  the classification stage, 

it computes the type label scores for all nodes and pairwise edges among them. 

Finally, during the decoding stage, it discovers possible information networks using 

beam search and returns the one with the highest global score. 
 

Figure 4. ONEIE model performs end-to-end IE in four stages: encoding, 
identification, classification, and decoding. This figure is copied from the original 
paper Lin et al. (2020) 

 
BERT Devlin et al. (2018) is a transformer based model that uses an 

attention mechanism Vaswani et al. (2017) to learn contextual relations between 

words in a sentence. BERT embeddings perform significantly better than non- 

contextualized embeddings like word2vecMikolov, Sutskever, Chen, Corrado and 

Dean (2013) or GloVe Pennington, Socher and Manning (2014). By using a pre- 

trained BERT encoder, ONEIE can capture the context for input sentences. 

While previous methods typically use the last layer of BERT, Lin et al Lin et al. 
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(2020) found that using the output of the third to last layer of BERT substantially 

improved the performance of ONEIE on most tasks. 

After the encoding stage, the vectors are sent into a feed-forward neural 

network to compute a score vector for each word. Each value in the vector 

represents the score for a tag in the BIO target tag set. Then, a conditional 

random field (CRF) is used to capture the dependencies between predicted tags. 

Finally, a tag path is calculated and trained by maximizing the log-likelihood of 

the gold-standard tag path during the training. ONEIE uses separate taggers to 

extract entity mentions and event triggers, so that it can make a joint decision for 

all knowledge elements at the decoding stage to prevent error propagation. 

During the classification stage, each identified node is represented by 

averaging its word representations. Then, separate task-specific feed-forward neural 

networks are used to calculate label scores for each node. To obtain the label 

vectors for the edges, ONEIE concatenates the span representations of the nodes 

to obtain a vector, and calculates its label score. Finally, the model is trained by 

minimizing the cross-entropy loss between label vectors and the true label vectors. 

If global features are not considered, a locally best graph can be generated by 

simply predicting the label with the highest score for each knowledge element. 

However, one limitation of the local classifiers is that they cannot capture 

the inter-dependencies between knowledge elements in an information network. 

This could result in local classifiers predicting contradictory results or failing 

to predict difficult edges that require information from other elements. These 

inter-dependencies (cross-subtask interactions and cross-instance interactions) 

require global features to provide context. ONEIE takes in a template of user- 

defined global features and learns the weight for each feature during training. 
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Then, a global score is calculated by summing up the local feature score and global 

feature score. ONEIE makes the assumption that the gold-standard graph for each 

sentence should achieve the highest global score. Therefore, it minimizes the loss 

between the graph predicted by local classifiers and the gold-standard graph during 

training. 

 

Figure 5. Examples of inter-dependencies between elements. This figure is copied 
from the original paper Lin et al. (2020) 

 
In the final decoding stage, ONEIE makes a joint decision for all nodes 

and their pairwise edges to obtain the globally optimal graph. This is achieved 

by calculating the global score for each candidate graph and selecting the best one 

using a beam search based decoder. 
 

 

Figure 6. ONEIE decoding algorithm. At each step, each candidate graph is 
expanded by adding a new node and possible edges between it and existing nodes. 
Then all expanded graphs are ranked and the top one is kept. This figure is copied 
from the original paper Lin et al. (2020) 
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CHAPTER IV 

DATA 

SCIREX Jain et al. (2020) is currently the largest document-level IE 

dataset. Before SCIREX, there was a lack  of comprehensive IE datasets  annotated 

at the document level. Recent work by Hou et al Hou, Jochim, Gleize, Bonin 

and Ganguly (2019) and Jie et al Jie and Lu (2019) built datasets for document- 

level relation extraction by using distant supervision annotations. Both datasets 

formulate the relation extraction task as a binary classification to check whether a 

triplet of ground-truth entities is expressed in the document. SCIREX, on the other 

hand, focuses on relation extraction in addition to a comprehensive list of IE tasks. 

Data Creation 

Building a large-scale document-level IE dataset is challenging as it requires 

a global understanding of the document-level relations that span beyond sentences 

or even paragraphs. To address this issue, Jain et al Jain et al. (2020) developed 

a method to build SCIREX dataset with little annotation effort. This method 

combines distant supervision from an existing knowledge base (KB) and noisy 

automatic labeling to provide a simpler annotation task. The supervision is distant 

because PwC (Paper with Code) does not provide where exactly the result tuple is 

mentioned in the article. 

For pre-processing, Jain et alJain et al. (2020) use Papers with Code (PwC) 

dataset 1 as the knowledge base. PwC is a corpus of 1,170 articles published in 

machine learning (ML) conferences with result tuple annotations for Dataset, 

Metric, Method, Task and Score, as shown in Table 1. Then, they extract clean 

document text with no figures/tables/equations from the PDF files of the papers in 

1https://github.com/paperswithcode/paperswithcode-data 
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PwC dataset. For the annotation process, they simplify the human annotation task 

by automatically labeling the data with noisy labels, then an expert annotator only 

needs to fix the labeling mistakes. 
 

Named Entity  Example 
Method BiDAF(ensemble) 
Metric  F1 score 

Task question answering 
Material  SQuAD 

 

 

Table 1. Named Entity Types and Relations in SCIREX 
 

 

 

Figure 7. Example showing annotations for named entities (Dataset, Metric, Task, 
Method), coreferences are indicated by arrows. This figure is from the original 
paper. Jain et al. (2020) 

 
Jain et alJain et al. (2020) achieve automatic labeling by training a standard 

BERT+CRF sequence labeling model on the SCIERC dataset Luan et al. (2018). 

This trained model provides automatic but noisy predictions for mention span 

identification. To determine which predictions are noisy, they compute the Jaccard 

similarity between each mention predicted by the model and each of the PwC 
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entities. Each mention is linked to the entity if the threshold exceeds a certain E. 

To determine E, two expert annotators manually went through 10 documents to 

mark identified mentions with entity names, and chose the E that maximize the 

probability. After identifying the noisily labeled data, annotators perform necessary 

corrections to generate high-quality annotations. Table 3 shows the confusion 

matrix for automatic labeling. 

Dataset Breakdown 

The result is a dataset of 438 fully annotated documents. Table 2 provides 

the dataset statistics. Jain et al found that the majority  of  the  relations  in 

SCIREX, especially 4-ary relations span multiple sentences or even multiple 

sections in the document: 57% of binary and 99% of 4-ary relations occur across 

sentences; 20% binary and 55% 4-ary relations occur across sections. These cross- 

sentence and cross-section relations highlight the need for document level IE 

models. 

Statistics (avg per doc) SCIREX 

Words 5,737 
Sections 22 
Mentions 360 

Binary Relations 16 
4-ary Relations 5 

 
Table 2. Statistics of SCIREX. Add dataset statistics are per-document averages. 
The statistics are provided by the original paper Jain et al. (2020) 

 

SCIERX has four named entity types: Method, Task, Metric and Dataset 

(named as Material in the json files). SCIREX has two relation types: N-ary 

Relations and Method Subrelations. The N-ary relation includes binary, 3-ary, 

and 4-ary relations between a collection of entities of named type (Method, Task, 

Metric and Dataset). The 4-ary relation cannot be split into multiple binary 
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 Dataset Metric Task Method Deleted 
Dataset 3.55 0.01 0.07 0.16 0.03 
Metric 0.02 7.95 0.00 0.03 0.00 
Task 0.32 0.07 17.92 0.44 0.01 

Method 0.65 0.21 0.24 53.27 0.02 
Added 2.40 1.30 2.82 8.50 - 

 

Table 3. Confusion Matrix for the mention-level corrections (change type, add 
span, or delete span). Values are average percentages per document, not per type. 
The statistics are provided by the original paper Jain et al. (2020) 

 
relations because a dataset might have multiple tasks. Each task may have its 

own metric, so the metric cannot be decided solely based on the dataset or the 

task. The Method Subrelations annotate methods that may be subdivided into 

simpler submethods. For example, ”DLDL+VGG-Face” is broken into two methods 

”DLDL”, ”VGG-Face”. 
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CHAPTER V 

EXPERIMENTS 

Experiment Overview 

ONEIE takes specific input format, as shown in Table 4. We preprocessed 

SCIERX’s input to match ONEIE’s input format. 
 

Name Description 

doc id document id 
sent id sentence id 

entity mentions list of entities and their mentions 
relation mentions list of relations and their mentions 

tokens list of tokens (words) 
token lens list of token lens for each token 
sentence untokenized text input 

 

Table 4. ONEIE input format and its description. 

 
We use bert-large-cased as the BERT model, and AdamW Loshchilov and 

Hutter (2017) as the optimizer. Both learning rate and weight decay for BERT 

are set to 1e-5. For local classifiers, we use two-layer FFNs with a dropout rate 

of 0.4. We use 150 hidden units for entity and relation extraction. For global 

features, we set βv and βe to 2 and set θ to 10. The standard Precision, Recall and 

F-1 score are used to evaluate the performance across all tasks. After tuning the 

hyperparameters, we found that ONEIE performs better with small batch size and 

trained for a large number of epochs. Table 5 shows the configuration of our best 

performed ONEIE model. 

Baselines 

We use the following models as our baselines on SCIREX dataset. 
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Hyperparameter Value 

batch size 10 
evaluation batch size 10 

max epoch 60 
learning rate 1e-3 
weight decay 1e-3 

 

Table 5. Hyperparameters for our best performing ONEIE model 

 
– DYGIE++ Wadden et al.  (2019) The state-of-the-art end-to-end 

IE model that utilizes multi-sentence BERT encodings and span graph 

propagation to predict entity types, relation types in a multi-task fashion. 

 

– SCIREX Model Jain et al. (2020) An end-to-end neural model that uses 

a two-level BERT+BiLSTM method for token representation, a CRF layer to 

identify mentions, and a final classification layer to predict relations. 

 

For DYGIE++, being a span enumeration type model, it only works on 

paragraph level and extracts relations between mentions in the same sentence. 

Therefore, it cannot be trained directly on SCIREX dataset. Jain et alJain et al. 

(2020) subdivided SCIREX documents into sections and formulate each section as 

a single training example. They map each binary mention-level relation returned to 

entity-level by mapping the span to its gold cluster label if it appears in one. We 

use this special training dataset for DYGIE++. 

Global Features 

Table 6 shows the global feature template categories of ONEIE. These 

templates can capture cross-subtask and cross-instance interactions. The model fills 

in all possible types to generate features while learning the weight of each feature 

during training. 



20  

 

Given a graph G, we represent its global feature vector as fG = 

f1(G), ..., fM (G), where M is the number of global features and fi(.) is a function 

that evaluates a certain feature and returns a scalar. For example, fi(G) returns 

a scalar from 0 to 1 to represent the number of occurrence of a certain entity type 

and relation type combination. 

Next, ONEIE learns a weight vector u and calculates the global feature score 

of G as the dot product of fG and u. The global score of G is calculated as the sum 

of its local score and global feature score, s(G) = sl(G) + ufG. During training, we 

minimize the following loss function, LG  =  s(Ĝ) − s(G), where hatG is the graph 

predicted by local classifiers and G is the gold standard graph. Finally, we optimize 

the following joint objective function during training L = LI +
 

t∈T L
t + LG. 

Category Description 

6 The number of occurrences of < entity typei >, < entity typej >, 
and < relation typej > combination. 

7 The number of occurrences of < entity typei > and < 
relation typej > combination. 

9 The number of entities that have a < relation typei > relation with 
multiple entities. 

10 The number of entities involving in < relation typei > and 
< relation typej > relations simultaneously. 

Table 6. Global feature categories of ONEIELin et al. (2020) that can be used on 
SCIREXJain et al. (2020) 

 
We performed experiments to test ONEIE’s performance on SCIREX both 

with and without global features. 

Performance 

Table 7 and Table 8 list the performance of our ONEIE model, both with 

and without global features. The performance is measured by precision, recall, and 

F-1 score. 
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Task Precision Recall F1 

NER 70.3 71.5 70.9 
Relation 48.6 76.4 59.4 

 

Table 7. Performance of ONEIE without global features 
 

Model Precision Recall F1 

NER 70.8 71.9 71.3 
Relation 47.8 79.3 59.6 

 

Table 8. Performance of ONEIE with global features 

 
Table 9 lists the performance comparison between ONEIE with global 

features and the baselines. The performance is measured by F-1 score. 
 

Task DYGIE++ SCIREX Mdoel ONEIE 

NER 67.8 71.2 71.3 

Relation 61.9 61.1 59.6 
 
Table 9. Evaluating the F-1 score for NER and Relation Extraction for baselines 
and ONEIE with global features 

 
As shown in Table 9, ONEIE with global features outperform SCIREX 

model for NER task, and is close to the performance of DYGIE++ for relation 

extraction task. 

Analysis 

Our experiments showed that global feature improves the performance of 

ONEIE on both named entity recognition task and relation extraction task. Both 

tasks benefit from the document-level context provided by the global features. 

While ONEIE with global features outperforms the baselines for NER, 

it does not outperform the baselines for relation extraction. We suspect that 

this is due to the potential error accumulation from identification stage to 

classification stage in ONEIE. The classification feed-forward neural network 
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uses the tag path from identification stage to calculate the score vector for the 

edges between nodes in the classification stage, which could lead to potential error 

accumulation. SCIREX baseline model also suffers from this problem. Jain et al 

Jain et al. (2020) found that there is quite a drop in the end-to-end performance 

compared to the component-wise performance. It  is  particularly  clear  with 

relation extraction, even though the relation extraction component performance is 

reasonably good in isolation, its end-to-end performance is quite low because of the 

accumulation of errors in previous steps. Since DYGIE++ uses a dynamic graph to 

construct information network and then predict the best graph, there is less error 

accumulation through the layers. Therefore, it achieved the best performance on 

relation extraction across all three models. 
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CHAPTER VI 

FUTURE WORK 

Future work for this thesis involves solving end-to-end document-level IE 

using a more recent joint IE model. FourIEM. V. Nguyen, Lai and Nguyen (2021) 

solves four different IE tasks (entity mention extraction, relation extraction, event 

trigger detection, and argument extraction) simultaneously in a single model. 

Hence, it is called FourIE. Compared to prior joint IE models, FourIE features 

two novel contributions to capture inter-dependencies among tasks. First, at 

the representation level, it uses an interaction graph to enrich the prediction 

representation for instances of the four IE tasks. Second, at the label level, it uses a 

dependency graph for the information types in the four IE tasks that captures the 

connections between the types expressed in an input sentence. FourIE also uses a 

novel regularization mechanism to enforce the consistency between the golden and 

predicted type dependency graphs to improve representation learning. 

FourIE has three major components: (i) Span Detection, (ii) Instance 

Interaction, and (iii) Type  Dependency-based  Regularization.  Span  Detection 

aims to identify spans of entity mentions and event triggers in input sentences 

that would be used to form the nodes in the interaction graph between different 

instances of the four IE tasks. The span detection problems are formulated as 

sequence labeling tasks where each word is associated with two BIO tags to 

capture the span information for entity mentions and event triggers. After the tag 

sequences are labeled from Span Detection component, two separate span sets are 

obtained for the entity mentions and event triggers in the sentence. Then, Instance 

Interaction component leverages the span representation vectors to form instance 

representations and enrich them with instance interactions to perform necessary 
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predictions in IE. Finally, the Type Dependency-based Regularization component 

obtains the type dependencies across the tasks and use them to supervise the model 

in the training process to improve the representation vectors for IE. 

We believe since ONEIE only computes predictive representation vectors for 

instances of the tasks independently, it fails to explicitly present the connections 

between related instances of different tasks and encode them into the representation 

learning process. FourIE, on the other hand, creates a graph structure to explicitly 

capture the interactions between related instances of the IE tasks in a sentence. 

Then, FourIE uses a graph constitutional network (GCN)T. Nguyen and Grishman 

(2018) to enrich the representation vector for an instance with those from the 

neighboring instances for IE. Therefore, FourIE could potentially achieve better 

performance on SCIREX. 
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CHAPTER VII 

CONCLUSION 

We evaluated how a joint neural model with global features performs on a 

document-level IE dataset. SCIREX, being a document-level IE dataset, requires 

an understanding of the full document to extract entities and relations. Therefore, 

we need a joint neural model, ONEIE to perform IE tasks that require cross- 

instance and cross-subtask inter-dependencies. ONEIE incorporates global features 

to capture the inter-dependency between knowledge elements. Experiments show 

that ONEIE with global features outperforms the SCIREX model for NER, and is 

close to the performance of DYGIE++ for relation extraction. 
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