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DISSERTATION ABSTRACT

Chandler Reed Lester

Doctor of Philosophy

Department of Economics

June 2021

Title: Adaptive Learning in Continuous-Time: Techniques and Theory

How we model individual’s expectations and predictions in economic models plays

an essential role in economic outcomes. We can assume that individuals are well 

informed and developed nuanced views on the economy, meaning they understand and 

have detailed knowledge of economic parameters and economic models, or we can 

suppose individuals are observant and develop perceptions of the economy and make 

decisions based on available data. 

One method of including this level of realistic behavior in economic models is 

adaptive learning. In adaptive learning models, agents use simple forecasting rules to 

make predictions about future values of economic variables or the state of the economy. 

The work presented in this dissertation builds a framework for examining these dynamics

in a high-frequency setting. It is important to extend these behavioral modeling 

techniques to this setting because increasing data are available at higher frequencies. This

work combines existing continuous-time modeling techniques with emerging research 

from economics to develop modelings in which an agent can respond to high-frequency 

information.

This dissertation demonstrates that complex high-frequency learning is possible 

and has potential benefits and improvements over discrete-time counterparts. The 
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dominant theme of this work is defining and mathematically developing a framework for 

examining bounded rationality in continuous-time models. In chapter two, basic 

exogenous adaptive rules are explored in a simple Ramsey Model setting. Chapter three 

introduces shadow-price learning and more complicated endogenous learning rules, 

including a derivation of continuous-time recursive least squares and the definition of a 

continuous-time mapping between an agent’s perceptions and actuality. Chapter four 

builds on the dynamics defined in chapter three by applying them to a linearized Real 

Business cycle model. We find that the continuous-time learning dynamics offer some 

improvements to the volatility of predictions. 
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CHAPTER I

INTRODUCTION

The 2008 financial crisis and ensuing Great Recession permanently altered the

global economy and how most people think about their finances. Why did financial

markets crash? How did the lending behavior of a few banks lead to a global slow-

down? And, perhaps most importantly, what can we learn to help us prevent future

similar catastrophes?

We seek to answer these questions through developing more sophisticated models

of the economy that capture the financial system’s influence over individual decision

making; just as previous economic tools were developed in response to crises of de-

mand or production, we now require new tools to anticipate crises caused by financial

frictions and failing capital markets. Our research combines work in macroeconomic

theory, finance, and behavioral modeling to deliver these tools.

I.1 Continuous-Time Macroeconomics

A decade ago, most economists were not prepared for the housing market to

crash. Since, unlike previous economic crises that were caused by issues with demand

or production, the 2008 crisis occurred because of financial frictions and failing assets.

Often economists do not consider financial assets or regulations; instead, specialists in

finance study these. This oversight meant that economists scrambled to understand

the origins of recession and how to fix it. One solution that immediately stood out

was combining macroeconomic models with financial models and data. Merging these

two fields proved difficult since economic and financial data are collected at different

frequencies. Financial data, especially stock market data, are collected almost down
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to the second. Macroeconomic data are often difficult to measure; for example, Gross

Domestic Product (GDP) is estimated quarterly and would be costly to measure at

a higher frequency.

Figure I.1
A year worth of economic data versus a year of financial data

Data frequency measurements impact the models used in finance and economics.

Economists rely on discrete-time models with distinct time periods. In finance,

continuous-time models are most common. Time measurements impact many model-

ing aspects. They alter the way variables change over time, as well as how individuals

make decisions and respond to change.

To incorporate financial choices into macroeconomic models, economists need to

re-evaluate how we model decision making by altering traditional economic models

and standard modeling techniques for continuous-time. The continuous-time macroe-
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conomics literature is rapidly growing and includes many influential papers such as

Kaplan et al. (2018),Ahn et al. (2018), and Brunnermeier and Sannikov (2014). Other

key papers in the literature include Achdou et al. (2014), which highlights that the

continuous-time setting yields more detailed distribution information than discrete-

time this contribution is vital since many individuals are interested in information

about the distribution of economic variables, such as wealth.

I.2 Behavioral Modeling

We focus on adjusting a behavioral modeling technique called adaptive learning

to continuous-time. Adaptive learning—often called learning—is a technique wherein

decision-makers estimate model parameters as if they do not know them, but have

access to related data. In a simple example, a sock company might want to gather

information to price and sell socks optimally. The firm may want to set prices based

on expectations of future prices. Since they do not know future prices, they employ

an analyst. The analyst runs a simple linear regression using available price data and

gives the firm an estimate of what prices might be in the future. Now the company

can set a price for their socks. They can also ask the analyst to re-estimate prices

later and update the price.

Before the adaptive learning literature emerged, economic models used ratio-

nal expectations, which assumes that decision-makers understand theoretical models

correctly—the decision-makers know the value of all parameters in the model. While

rational expectations is a convenient modeling assumption, it is unlikely that individ-

uals in the real world have this level of knowledge (Bray, 1982). Additionally, some

rational expectation models do not align with outcomes that appear in the real world.

Some economic situations have multiple outcomes; rational expectations models

would likely discover a single result. However, individuals in learning models usually
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learn both outcomes. By analyzing the stability conditions in the learning dynamics,

economists can discover if both outcomes are stable or if one is more likely than the

other (Evans and Honkapohja, 2001). Furthermore, learning can allow policymakers

to better understand the role of expectations in regard to economic outcomes and

how individuals adjust to new policies (Mitra et al., 2019). Often in economics,

theoretical models focus too heavily on math and impracticable assumptions about

human decision making. Re-examining a model using learning techniques adds more

plausibility because these methods add realistic behavior.

I.3 Dissertation Outline

The second chapter of this dissertation takes a close look at a typical class of

solution methods frequently used in continuous-time macroeconomics—viscosity so-

lutions. In this chapter, a stylized learning rule is applied to information gathered

by an agent who solves for their steady-state equilibrium with misspecified param-

eters. There two types of stylized learning rules presented in this chapter the first

assumes that agents observe the true value of key parameters and gradually update

their estimates over time and second is a real-time learning rule in which agents take

in data with noise and use this information to update their parameter estimates. In

this chapter, the agents are still learning in a discrete-time setting despite existing in

a continuous-time economy. This means that agents learn using a slightly re-weighted

version of continuous-time adaptive learning rules.

Building on this, the third chapter formally derives both a continuous-time re-

cursive least squares algorithm and a continuous-time optimal linear regulator prob-

lem. This is done so that learning can be examined with additional feedback in the

continuous-time setting. Using this new solution method and new learning algorithm,

we are able to define bounded rationality in this setting. Furthermore, we are able
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to numerically demonstrate the convergence and stability of shadow-price learning

algorithms in this setting.

Lastly, the fourth chapter looks to extend continuous-time learning to additional

models. We first examine linearization in this setting using a simple real business

cycle model. In this work, we find that when our learning techniques are applied

to the real business cycle framework not only does our model converge to rational

expectations equilibrium but we are also able to better match second moments from

the data. There are many ways to extend the work in this dissertation, including

linearizing additional models or extending techniques beyond the linear-quadratic

setting. The end of this dissertation outlines these possibilities.
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CHAPTER II

ADAPTIVE LEARNING IN A

CONTINUOUS-TIME SETTING:

REPRESENTATIVE AGENT

EXERCISES

II.1 Introduction

Macroeconomic modeling in stochastic continuous-time has become increasingly

popular, as solution methods for optimization problems in this setting have been

introduced to economics literature. Solutions to optimization problems in this setting

take the same form as fluid dynamic problems common in applied mathematics, and

it has taken some time for the mathematical solution techniques to become more

prevalent in economics. The appeal for economic modeling in this framework comes

from several key features of this setting, not just the availability of simple solution

methods. Systems in continuous time can be summarized using sparse matrices that

are simple to evaluate and use in calculations, leading to fast algorithms that use

minimal computational time. This is an attractive feature that allows for complex

problems with multiple layers of heterogeneity that can be easily solved. Solutions in

this system also yield more detailed and easily computed probability density functions

than discrete-time solution methods.

These distributional advantages come from close-ties between the stochastic pro-

cesses used to summarize the evolution of key variables in these models and their
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probability density functions. Stochastic processes are defined according to the dis-

tribution of the random variables they represent, and optimization problems that

depend on these processes inherit some of this distributional dependency (this will be

described in more detail in section 2 of this paper). For instance, Gaussian processes,

such as the integral of Brownian motion, have a joint normal distribution for all of the

variables they define. Poisson point processes are similarly defined using a Poisson

distribution. Using these processes that are defined by continuous probability density

functions allows researchers to carefully inspect the evolution of the distribution of

variables, such as wealth, with little computational burden.

Evaluating these distributions in discrete time is more difficult since probability

density functions in this setting are often point masses that truncate the tail-ends of

the distribution. Going forward, discrete methods are going to become less favorable

as policy becomes more distribution-oriented. Already, the distribution of wealth

and assets is becoming a popular topic when it comes to policy goals. Using the

traditional discrete methods, central banks and other policymakers will be unable to

properly evaluate the effects of their potential actions on distributions of wealth or

assets. Since continuous-time modeling has distributional and computational advan-

tages, this modeling framework will become more attractive, and modifying modeling

techniques for continuous-time models will be necessary. In this paper, we will take

the first steps in examining adaptive learning methods in a stochastic continuous-time

framework.

Many macroeconomic models in both continuous and discrete-time depend on

agents’ expectations. Thus far, continuous-time modeling has depended solely on

rational expectations. Using rational expectations limits the model by creating strong

assumptions about the agents’ information set; rational expectations imply that the

agent knows the correct underlying model and that they will respond optimally to the

actions of others. These assumptions are unlikely to hold in the real world, as agents
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may not correctly specify a forecast for the model, and they may not understand the

actions of others. Therefore, using a different form of expectations that allows for

agents’ to make mistakes may be closer to reality. This motivates the use of adaptive

learning, a technique that allows for agents to misspecify models and to update their

misspecification once they gain more information.

Currently, adaptive learning has been widely implemented in discrete-time mod-

eling; however, it has not been used in continuous-time models. There are two main

reasons for this; most economists still use discrete-time models, and learning is more

challenging to intuit in continuous-time. As continuous-time modeling becomes more

popular, we will want to able to utilize a powerful tool, like adaptive learning, in this

setting. The main goals of this paper are to make continuous-time modeling seem

more intuitive and less niche to economists and to implement basic adaptive learning

techniques in continuous time intuitively.

Sections 2-4 of this paper map out continuous techniques and literature to make

these methods more tractable to economists that focus on discrete modeling. Section

2 gives some mathematical background so that the terminology and motivations of

continuous-time literature make sense to the reader. The next section provides a lit-

erature review that spans a large portion of the economics continuous-time literature

and offers more background on adaptive learning. Despite not being widely popular,

continuous-time literature spans several decades, has many significant contributions,

and includes a large number of papers by notable economists. The fourth section of

this paper explores the mathematical relationship between a variety of discrete and

continuous-time models. This section should provide a clear link between these mod-

els and make continuous-time modeling more intuitive to those who use discrete-time

models.

Section 5 begins the task of implementing adaptive learning techniques in continuous-

time. A key part of this section is the methodology for finding steady-state solutions in
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continuous-time. Although the solution methods for stochastic continuous time mod-

els currently used in economics have only recently been introduced to the literature,

interest in this class of models has existed in the field for a long time. Exploration of

the Ramsey model in stochastic continuous-time has been previously studied, notably

by Merton (1975), Mirrlees (1966), and Mirman (1973). There are several different

methods for implementing a stochastic process in this modeling framework. Some

such as Merton (1975) have introduced a stochastic process for capital accumulation.

Others, such as Achdou et al. (2014), have used stochastic processes to model produc-

tivity. In this paper, we will look at modeling the changes in technological progress

and capital as stochastic processes.

This implementation is more intuitive for several different reasons. First, capi-

tal accumulation, in part, depends on technological progress; thus, if technological

progress can change according to this type of process, capital accumulation with

inherently depends on this process as well. Additionally, technological progress is

a variable that, in the real world, often seems to change and improve continually.

Therefore, it is reasonable to assume that variables like capital stock evolve continu-

ously as they depend on variables we may model continuously, such as technological

progress. We can observe technological progress growing over time, so agents are

likely to forecast a positive mean and an upward trend. In practice, though, we often

are unsure of what sectors or improvements will happen over time, and technological

progress is almost constantly evolving. Technological progress is something that most

believe is continually improving because of open-source software and near-constant

technological improvements in modern productivity.

Before further discussing the work in this paper, it worth reiterating the benefits

that come from continuous solution methods. Continuous-time models have unique

solutions that can be found using a portable and straightforward algorithm, and these

models only need a few weak boundary conditions to obtain unique solutions. Ad-

9



ditionally, these solution methods are computationally faster than discrete methods.

This means solving complex economic models with heterogeneity can be done with

fewer boundary conditions and in less time. A simple description of an algorithm to

solve for a steady-state solution in this setting is as follows. First, we discretize the

state spaces in our model. This allows us to maintain the continuous-time setting

while giving us discrete state spaces to use in a finite difference algorithm. We then

implement a finite difference scheme until we get a stable, steady-state estimate of

our value function. Despite the discretization, this solution method is different and

faster than most discrete methods. Because in this setting, we can summarize the

evolution of our system in large sparse matrices.

We can then take advantage of this discretization to implement traditional dis-

crete learning algorithms in continuous-time. The main difference will be the agent’s

observation over a given time period. When altering adapting learning algorithms

for continuous-time, it is tempting to use discrete-methods, since the solution meth-

ods for continuous-time problems are discretized. However, this discretization is only

over state-spaces so, we must be careful to maintain continuity in our time-dimension.

This will be important in section 5 when we examine adaptive learning methods in

stochastic continuous-time models.

In this paper we work to accomplish this through two different methods, one

method uses supposes that an agent uses a misspecified process to solve for their

steady state and then at discrete time periods gain more information and resolves

the continuous model. The other method supposes that an agent uses ordinary least

squares to create a forecast of model parameters and then at updates this forecast, us-

ing recursive least squares, over intervals of time. The first method demonstrates that

continuous-models respond in a predictable manner when presented with misspecifi-

cation and an exogenous updating rule, and the second provides an intuitive way for

adapting learning techniques to continuous models. As we proceed with learning in
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continuous-time, it will be essential to picture our time periods as disjoint intervals

of time. Thus, in our forecasting model, each forecasting period contains several ob-

servations from our continuous stochastic process. In future work, this could be a key

feature of continuous-time learning.

In sections below, we develop two key results that serve as a primer to learn-

ing in continuous-time. First, continuous-time models and discrete-time models are

somewhat comparable mathematically. This can be seen in section 4, which derives

discrete models with an unknown time step (∆t) and then limits these models to their

continuous-time counterparts. Our second result is that basic models in this setting

respond in an expected fashion to new information, through an exogenous and more

discrete updating rule and a more continuous forecasting method. Together these

results reveal that further studies on adaptive learning in continuous-time may be

promising.

The rest of the paper precedes as follows. The next section gives a basic mathemat-

ical background for modeling in this framework. Section three discusses the literature

relevant to stochastic continuous-time modeling and adaptive learning techniques in

economics. Section four derives the representative agent model in discrete and con-

tinuous time Section five describes the exogenous learning rule model and provides

the numerical results of this exercise, and section 6 concludes.

II.2 Mathematical Background

Continuous-time optimization problems in economics have a simple general form,

and the continuous-time analog of the Bellman equation, the Hamilton-Jacobi-Bellman,

can be intuitively derived from the discrete model (Dixit, 1992). Suppose we have

a simple Ramsey model where agents maximize their expected utility per unit time

11



over time t

E0

∞∑
t=0

b 1
∆t
c∑

n=0

e−ρ(t+n∆t)u(ct+n∆t)∆t, (II.1)

where capital evolves according to the following stochastic differential equation

∆kt+∆t = a(kt, ct)∆t+ b(kt, ct)∆Wt, (II.2)

where ∆Wt is the increment of the Wiener process and the maximum value of n,

b 1
∆t
c, limits value of n to integer values. This floor function will be equal to one when

∆t = 1. Note that as ∆t → 1 equation (II.1) limits to the typical discrete utility

maximization problem with a constant discount factor. The Wiener process can be

written as ε
√

∆t, where ε ∼ N(0, 1). Thus, we can calculate the expectation and

variance of ∆Wt

E[∆Wt] = 0 and E[(∆Wt)
2] = ∆t.

The Bellman equation for this system can then be written as follows,

V (k, t) = max
c

u(c)∆t+ e−ρ∆tE[V (k + ∆k, t+ ∆t)] (II.3)

in this setting the value function can be thought of as: the value of capital today

is equal to the gain from the utility of consumption over one interval of time (∆t)

plus expected discounted value the agent receives at t + ∆t. The utility function in

(II.3) is multiplied by the length of our time period as we care about the benefits that

will accrue in that first period relative to its size (Dorfman, 1969). Since our value

function is defined recursively, this expectation captures all future value of capital

over time. To get the desired continuous-time value function, we can transform this

discrete version (Dixit, 1992). First, using the power series expansion of e−ρ∆t we
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rewrite this problem. 1

ρ∆tV (k, t) = max
c

u(c)∆t+ (1− ρ∆t)E[V (k + ∆k, t+ ∆t)− V (k, t)] (II.4)

Next we have to use stochastic calculus to find the value of this expectation. In

stochastic calculus, we need to apply Itô’s lemma to properly take the derivative of a

function that depends on a stochastic process. This is necessary because these pro-

cesses are continuous everywhere, but due to their volatile nature, they are nowhere

differentiable.

Suppose, for a moment, that we are in a continuous setting with the following

diffusion process,

dXt = µdt+ σdWt

in this setting µ is a drift term, σ is a variance term, and dWt is the increment of a

Wiener process. If we have a function f(Xt, t) that depends on Xt and time t, we

cannot take its derivative using traditional methods since Xt is nowhere differentiable.

Instead, we must use Itô’s lemma; this will yield

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
· dXt +

1

2

∂2f

∂x2
· (dXt)

2 +O(dt
3
2 ).

Note, the application of Itô’s lemma is essentially just a Taylor expansion of the

series using particular assumptions about the stochastic nature of the system. A key

assumption of stochastic calculus is at work in the equation above, we assume that all

terms with dtn where n ≥ 3
2

are approximately zero. This will lead to the cancellation

of several terms in the expansion of dX2
t and all of terms in O(dt

3
2 ). After expanding

1The power series expansion of e−ρ∆t = 1 − ρ∆t + ρ∆t2 + O(∆t3). One of the common assump-
tions of stochastic calculus is that terms with including ∆t to the power of 3/2 or higher will be
approximately zero in the limit. Thus, we will approximate e−ρ∆t as 1− ρ∆t.
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terms and rearranging the equation, we will be left with,

df(Xt, t) =

(
∂f

∂t
+
∂f

∂x
· µ+

1

2

∂2f

∂x2
· σ2

)
dt+

∂f

∂x
· σdWt.

Now, if we take the expectation of this the last term will drop out since E[dWt] = 0.

Thus, we will have

E[df(Xt, t)] =

(
∂f

∂t
+
∂f

∂x
· µ+

1

2

∂2f

∂x2
· σ2

)
dt.

Following a similar set of steps, we can look at the difference in our value function

over time. Approximating dV as V (k + ∆k, t+ ∆t)− V (k, t) we can write this as

V (k + ∆k, t+ ∆t)− V (k, t) = Vt(k, t)∆t+ Vk(k, t)(∆k) +
1

2
Vkk(k, t)(∆k)2,

here we have already dropped out most terms with tn where n ≥ 3
2
. Carrying through

the expectation will the give us the original term from our Bellman equation on the

left hand side.

E[V (k+∆k, t+∆t)−V (k, t)] = Vt(k, t)∆t+Vk(k, t)a(k, c)∆t+
1

2
Vkk(k, t)b(k, c)

2∆t,

the a(k, c) and b(k, c) terms come from the original equation for our capital accumu-

lation process given by equation (II.2). Plugging our expectation term into our value

function in (II.4) we get,

ρ∆tV (k, t) = max
c

u(c)∆t+(1−ρ∆t)
(
Vt(k, t)+Vk(k, t)a(k, c)+

1

2
Vkk(k, t)b(k, c)

2
)
∆t.

Then if we divide by ∆t and take the limit as ∆t→ 0 we get the standard HJB

ρV (k, t) = max
c

u(c) + Vt(k, t) + Vk(k, t)a(k, c) +
1

2
Vkk(k, t)b(k, c)

2.
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This HJB equation represents a solution to the given continuous-time maximization

problem,

max
ct

∫ ∞
t=0

e−ρtu(ct)dt.

Often, when we are concerned with infinite-horizon problems the Vt(k, t) term will

be left out of the HJB. This term is assumed to be zero in infinite horizon problems

because as our time dimension becomes infinitely large changes in our value function

over (the already infinitely small) increments of time become negligible.

Additionally, in this setting, we might care about the distribution of our state

variable k, g(k, t). This distribution is particularly of interest in a setting with het-

erogeneous agents because heterogeneity and idiosyncratic shocks will impact the

evolution of this distribution over time. We can find this distribution using the

Kolmogorov Forward Equation (KF), sometimes called the Fokker-Planck Equation.

Given an initial distribution g0(k) the distribution g(k, t) satisfies,

∂g(k, t)

∂t
= − ∂

∂k
[a(k, c)g(k, t)] +

1

2

∂2

∂k2
[b(k, c)2g(k, t)].

If a stationary distribution for g(k) exists, it satisfies the ordinary differential equation

(ODE)

0 = − ∂

∂k
[a(k, c)g(k)] +

1

2

∂2

∂k2
[b(k, c)2g(k)].

In a model with multiple agents, the KF equation is one of the key equations that

describe the system. In an Aiyagari model, for instance, the KF will determine prices

and market clearing, since market clearing is dependent on the distribution of the

agents and their preferences. The KF equation is an essential feature in stochastic

continuous-time literature; however, it is not used in the representative agent setting

present in the rest of this paper. For more information on the derivation and key

concepts of the KF equation, see the appendix.

Another way to view the KF equation is as a continuous-time analog to the multi-
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plication of transition matrices (in a Markovian setting). The time-dependent version

of this equation describes the evolution of the probability density function of the key

variables under the influence of deterministic and random forces found in diffusion

processes. The continuous probability distributions that come from our KF equation

are one of the most attractive features of continuous-time modeling. Since often with

modern policies, we care most about the distribution of goods, wealth, or assets.

Now that we have explored both the HJB and KF equations, it is important to

note that the HJB equation is closely related to the maximized Hamiltonian, this is

easily shown. First, if we have the system defined in this section with b(k, c) = 0 our

Hamiltonian is

H(kt, ct, λt) = u(ct) + λta(kt, ct),

while our HJB equation is

ρV (k) = max
c

u(c) + V ′(k)a(kt, ct).

Connecting the two we see λt = V ′(k), i.e. the shadow price of k is equivalent to the

marginal value of k. Thus we can rewrite the HJB as

ρV (k) = max
c

H(k, c, V ′(k))

where,

H(k, V ′(k)) = u(c) + V ′(k)a(k, c).

The HJB and KF equations, though compact and simple in appearance, can be

used to solve complex economic and financial problems. Closed-form solutions to

these problems are often impossible to calculate by hand, but with new computational

developments finding solutions to these systems has become more plausible, and these

solution methods show some advantages to long-popular discrete models.
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Not only is continuous-time modeling is more intuitive, but it also provides more

information about the distribution of parameters with convenience. This comes from

the KF equation that summarizes the distribution of parameters, using the distribu-

tion from this equation, researchers can analyze the distribution of a variable over

time or after a shock. The distribution that solves the KF equation can also be used

for estimating model parameters and can provide a likelihood estimator for the model.

Additionally, the algorithms for solving continuous-time systems are fast due to the

sparsity of the matrices that determine the evolution of the system.

These modern advances have made continuous-time modeling more attractive to

economists since solutions to these systems can now be found without a large number

of assumptions. Though these continuous-time problems did not have simple solution

methods until more recently, many researchers have explored modeling in a stochastic

continuous-time setting.

II.3 Literature

This paper works to develop learning techniques in stochastic continuous time.

Therefore we blend two distinct kinds of literature, stochastic continuous-time mod-

eling and adaptive learning. In this section, we will first review the stochastic

continuous-time literature. Research on these models in economics has been sparse

but spread widely throughout time. For a deeper understanding of this setting and

on why it is becoming more relevant today, a historical overview of these modeling

techniques is necessary. Learning literature, on the other hand, has been consistently

studied for a long time. There is a wealth of knowledge on this topic, and we only

examine a small part of this literature that is relevant to our work.
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II.3.1 Stochastic Continuous-Time Literature

The stochastic continuous-time setting has become increasingly popular in macroe-

conomic modeling. Interest in this framework first arose in the early 1970s with fi-

nancial economic models. These early works include Merton (1969), Merton (1971),

and Black and Scholes (1973). In financial economics casting models in continuous

time is particularly intuitive as many financial variables evolve, such as stock prices,

can be observed on very small intervals; making their prices virtually a continuous

variable instead of a discrete one.

Some early works in continuous time financial models include Black and Scholes

(1973), Eaton (1981), Merton (1971), Merton (1969), and Mirrlees (1971). These

papers set up continuous-time models and solve them as rigorously as possible without

the aid of modern computational techniques, often by using comparative statics. This

is done because the system of partial differentials that describes equilibrium in this

class of models is often unsolvable unless specific forms for the value function are

assumed. Due to these identification issues, most of the papers mentioned focus on

solving for the distributional steady-state.

Black and Scholes (1973) develops a method for determining fair prices for Eu-

ropean call options. Unlike many economic models, Black and Scholes (1973) can

assume several boundary conditions and functional forms that aid in solving their

key partial differential equations. These boundary conditions and functional forms

are such that the HJB can be written in the same form as a standard heat equation.

Once the HJB problem is in this format, it is easy to solve for the equilibrium using

Fourier transformations. Most optimization problems in this setting cannot be solved

for explicitly like the Black-Scholes problem. Part of the reason why this is possible to

solve the Black-Scholes model is that it is explicitly defined for European call options

that can only be called at the end of their lifespan.
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Eaton (1981) explores the effects of fiscal policies on the composition of portfolios

and the accumulation of capital. This model defines the net output, government

expenditure, and tax revenue as stochastic processes. All of these processes depend

on aggregate capital stock, which allows the government in this model to tax the

random component of capital income at a different rate than the deterministic part

and defines government expenditure to depend differently on the deterministic and

random parts of capital. After setting up this model, the author uses comparative

statics and some simplifying assumptions to conclude that fiscal policy changes impact

the average yield and riskiness of capital relative to government debt.

Robert Merton has several papers from this period that develop models in stochas-

tic continuous-time. Merton (1969) develops a model for optimal portfolio selection

where returns on assets generate the agents’ income. Merton (1971) further examines

this problem and uses explicit forms for the utility function to derive optimal con-

sumption and portfolio rules. This paper also uses comparative statics to examine

the response of these rules to certain parameter changes, a popular technique during

this time. Merton (1975) examines standard economic growth models in this setting.

The model discusses in Merton (1975) is a one-sector neoclassical growth model where

the size of the labor force evolves according to a stochastic process. The paper then

takes the neoclassical growth model and expands it into a stochastic Ramsey prob-

lem. Merton (1975) is one of the first publications that use more traditional economic

modeling in this stochastic continuous-time setting. Another paper that implements

traditional economic models is Brock and Mirman (1972).

Brock and Mirman (1972) differs from these other papers because, in this model,

a solvable steady state exists. This growth model is unique due to the linearity of the

consumption function. This allows for the steady-state of the stochastic model to be

equal to the steady-state of the non-stochastic model. Due to the tractability of this

model, the Brock-Mirman model is one of the most common stochastic continuous
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models used before the introduction of more advanced computational methods.

Dixit (1989) models firm entry and exit decisions where output price follows a

geometric Brownian motion, this model is solved by simplifying the system of PDEs

into a simpler system of ordinary differentials. This produces a solution that consists

of trigger prices for firm entry and exit. Prices in between the entry trigger and the

exit trigger price produce “hysteresis,” which appears in the model even with small

sunk costs.

During the late 1990s and early 2000s a number of books were published on contin-

uous time models in financial economics; these include Merton (1992), Dixit (1992),

Dixit and Pindyck (1994), and Stokey (2009). The publication of these works for-

malized the use of continuous-time models, particularly in finance. Merton (1992)

contains several of Merton’s papers mentioned earlier in this literature review and

is directed at finance graduate students. Dixit and Pindyck (1994) is also targeted

at finance graduate students and contains some of the most intuitive derivations of

the HJB equation out of all economics and finance literature. Dixit (1992) includes

intuitive mathematical introductions and focuses on how to implement boundary

conditions in the stochastic continuous-time setting. Stokey (2009), differs from the

other books on stochastic continuous-time modeling. This book focuses more on the

mathematical background and measure theory that is necessary for a deeper under-

standing of this material. The main contribution of this work is the understanding

that continuous-time modeling better captures the dynamics of inaction and bound-

aries that are rarely binding. This setting’s ability to capture inaction and boundary

conditions is the reason why stochastic continuous-time modeling has become so pop-

ular in financial economics.

With the availability of better computational methods, more econometric papers

have been written on stochastic continuous-time models. Hansen and Scheinkman

(1995) derive moment conditions for estimating and testing continuous-time Markov
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models using discrete-time data. Aı̈t-Sahalia has several economics and finance pa-

pers published throughout the 1990s and early 2000s on econometric tests for diffusion

processes. Aı̈t-Sahalia (2002) constructs a maximum-likelihood approach to estimat-

ing parameters in discretely sampled diffusion models. Aı̈t-Sahalia (2004) furthers

the methods from Aı̈t-Sahalia (2002) and constructs an approach to estimating pa-

rameters in these models when the sampling intervals are not uniform. Posch (2009)

solves continuous time dynamic stochastic general equilibrium models with jumps and

shows how the continuous-time setting can make it simpler to estimate the likelihood

function. This paper solves the model by introducing several simplifying assumptions

and confirming the results with Monte Carlo estimates.

Most stochastic continuous-time modeling in the early 2000s used assumptions

about the form of the value function or by imposing multiple boundary conditions.

Financial economists such as Sannikov extended stochastic continuous-time modeling

to a microeconomic setting. In Sannikov (2008) and DeMarzo and Sannikov (2006) a

principal-agent setting is developed in continuous-time. Solutions to these principal

agents are found by implementing several boundary constraints, which at the time

of their publication was an innovative technique. This technique opened up the door

for more publications in the stochastic continuous-time setting.

Hansen et al. (2006) takes a more theoretical approach to stochastic continuous-

time modeling and explores model misspecification in this setting. Duffie and Epstein

(1992) develops a stochastic differential formulation of recursive utility. Gabaix (2009)

has a section on continuous-time approaches to power laws. In this paper, the size

of an economic unit (cities or firms) is modeled as a stochastic process that can hit

reflective boundaries at some points. Using this process, one can use the KF equation

to describe the evolution of this distribution using power laws a unique solution to

this system can be found.

Before 2015 economists were not widely implementing computational methods to
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find solutions to this class of optimization problems. However, Forsyth and Labahn

(2007), a computational finance paper, studies numerical methods for solving HJB

equations in finance. This paper finds that discretizing the HJB and solving it nu-

merically will converge to the viscosity solution. The viscosity solution is the same

solution that economists began focusing on around 2015. Viscosity solutions are con-

tinuous and differentiable solutions to the HJB that are in most cases unique. Forsyth

and Labahn (2007) also analyzes Newton-type iterations schemes and finds that these

also solve the HJB equation, another result economists realized later.

With the rise of heterogeneity in macroeconomics, economic models have devel-

oped new more complexity. Discrete-time models can capture rich heterogeneity;

however, these methods are time-consuming and cannot provide the same level in-

formation about the distribution of key variables as continuous-time models. Many

recent papers focus on developing and implementing these algorithms to solve these

new richer models.

Achdou et al. (2014) uses tools from applied mathematics to solve the HJB equa-

tion. The algorithm outlined in the paper uses finite difference methods to solve for

an approximate solution to the HJB. This approximate solution, called the viscosity

solution, assumes that the value function is differentiable on its entire domain. Vis-

cosity solutions are unique, given that several weak conditions hold. In Achdou et al.

(2014), this method allows the authors to find both steady-state and time-dependent

solutions for their models. Other papers such as Kaplan et al. (2018), Achdou et al.

(2020), and Parra-Alvarez et al. (king) implement the same techniques. This pa-

per uses the steady-state solution methods presented in Achdou et al. (2014) in the

exogenous learning rule model.

A key issue with the solution methods presented in Achdou et al. (2014) is that

the time-dependent solutions cannot be used in conjunction with random aggregate

shocks. Ahn et al. (2018) uses the foundation developed in Achdou et al. (2020) to

22



create a more complicated algorithm for analyzing models with heterogeneous agents

that are subject to shocks. This algorithm calculates the steady-state versions of

the HJB and KF equations and then linearizes the system around that steady-state

without aggregate shocks. Linearization around this steady-state involves using a

first-order Taylor expansion since this system has a large number of variables the

derivatives needed for this Taylor expansion cannot be taken by hand and must be

calculated using automatic differentiation.

After the system is linearized, it can be easily solved, and the Schur decomposition

of the coefficient matrix can be used to check for stable roots. Using this algorithm,

one can look at impulse response functions and the effects of shocks on a continuous

model. The algorithm in this paper is an important innovation as previous solution

methods prevented researchers from analyzing random macroeconomic shocks. Being

unable to analyze these types of shocks was a drawback of stochastic continuous-time

modeling in macroeconomics. Now that a simple portable algorithm for analyzing

these types of models exists, the stochastic continuous-time setting is likely to become

increasingly popular among researchers in theoretical macroeconomics.

The representative agent model outlined in this paper will use the same approach

as Ahn et al. (2018) to solve the model and to implement learning in this framework.

II.3.2 Learning Literature

The motivation of this paper is to develop adaptive learning techniques in the

stochastic continuous-time setting. Adaptive learning is a statistical approach that

overcomes the strict model assumptions implied by traditional rational expectations.

In learning models, agents use statistical techniques to estimate model parameters and

update their expectations of parameters and other values over time. Most learning

papers involve direct feedback from the agents’ estimates through a special mapping

called a T-map. This paper relies on exogenous learning rules that appear similar to
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simple econometric learning as described in Evans and Honkapohja (2001); however,

the algorithms in section five do not have this feedback rule. Instead, the learning in

this paper comes from simple information drops, and all new information is used to

update parameter estimates directly.

This method of learning is more similar to the early works in this literature.

For instance, Bray (1982) looks at a more simple version of updating estimates via

OLS. Some of the models explored in this paper do not look directly at feedback

rules and instead focus on seeing if agents can get rational expectations estimates

of parameters when presented with additional information. The agents do this by

implementing OLS each period with updated information. This paper found that

under some assumptions, the OLS learning converged to the rational expectations

equilibrium’s values. Also, learning in this paper focuses on learning parameters in

a steady-state setting. Similar environments have explored previously work, notable

steady learning, as mentioned in Evans and Honkapohja (2009).

There does exist some literature similar to stochastic continuous-time adaptive

learning in asset pricing literature. Veronesi (2019) examines a Bayesian learning rule

in an asset pricing model with heterogeneous risk preferences. Some other papers,

such as Bhamra and Uppal (2014), also discuss implementing a similar learning rule.

The work in these papers is distinctly different than what we will proceed with, since

the focus of these works is finding parameters based on distributions.

In this paper, one of the main focuses in our learning section is adapting misspec-

ification. There has been some work on this within asset pricing literature, notably

Hansen and Sargent (2019b) and Hansen and Sargent (2019a). These papers look

at misspecification within models and also look at an agent’s choice between sev-

eral well-defined models. All of these asset pricing models are cast in stochastic

continuous-time. This is done to exploit the convenient properties of Brownian mo-

tion and continuous likelihood functions.
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II.4 A Representative Agent Model

In this section, we develop discrete and continuous models in deterministic and

stochastic settings to better understand the connections between discrete and contin-

uous models. This is done with a few simple Ramsey models. We first develop the

discrete and continuous models separately before comparing them carefully. A critical

feature of the discrete methods is the inclusion of time increments ∆t, which allows

us to compare our discrete and continuous models. The use of ∆t in the following

sections is based on previous work by Dorfman (1969). Doing this allows us to un-

derstand the similarities of discrete and continuous-time systems better, and creates

a discrete setting to develop a benchmark for how learning should impact a system

with infinitely small time intervals. This section of the paper proceeds by developing

deterministic and stochastic versions of the model in discrete and continuous-time.

Next, we will compare these models and show how they are related as increments

of time get infinitely small. In both of the cases outlined below, the discrete model

limits to the continuous version.

II.4.1 A Deterministic Model

Before worrying about systems with stochasticity, we first outline a simple Ramsey

model in a deterministic setting. First, we will describe the discrete case and the

continuous case separately. Then, we will compare the two models.

The Discrete-Time Deterministic Model

Discrete-time models in economic often assume that ∆t = 1. This assumption

makes models less notationally bulky. However, in doing so, information is lost, the

utility functions used in economics are utility per unit time, and our discrete discount

factor is dependent on units of time as well. The model outlined below considers
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these units of time, and carefully examines the optimality conditions with this ∆t

term.

Before describing the model, it is important to understand the discount factor’s

dependence on time. The discount factor β is defined as the discount rate per unit of

time and can be written as a function of the increment of time β(∆t). Furthermore,

lim
∆t→0

[β(∆t)]t = e−ρt.

Using this discount factor, we can proceed with our model. A representative agent

in this setting will maximize utility per unit time according to

max
ct

E0

∞∑
t=0

b 1
∆t
c∑

n=0

βt+n∆tu(ct+n∆t)∆t, (II.5)

here b 1
∆t
c limits n to integer values, since ∆t ≤ 1. In this setting, capital evolves

according to the following process2

kt+∆t = (eztf(kt)− δkt − ct)∆t+ kt (II.6)

where f(kt) = kαt .3 In this deterministic setting we will have the following process

for the evolution of productivity zt,
4

zt+∆t = (1− η∆t)zt (II.8)

2Setting

k̇ =
kt+∆t − kt

∆t
= eztf(kt)− δkt − ct

(II.6) is the typical equation for the evolution of capital in a discrete Ramsey model
3In this discrete model if we normalize ∆t = 1, (II.6) is the standard equation for capital accumu-
lation.

kt+1 = eztf(kt) + (1− δ)kt − ct

4In a stochastic setting productivity zt will evolve according to the following AR(1) process. This
process was derived from the standard Ornstein-Uhlenbeck process in (II.30) using the Euler-
Maruyama method

zt+∆t = (1− η∆t)zt + σεt
√

∆t (II.7)

Here εt ∼ N(0, 1).
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This model is closely related to the stochastic continuous model outlined later in

this section. We can note that ∆t becomes dt in the limit, using this the equations

(II.5)-(II.8) will be equivalent to the ones used for the continuous deterministic model.

Optimization problems in this setting can take several different forms. First, we

can write out the Lagrangian.

L (z0, c0, λ0) = E0

∞∑
t=0

b 1
∆t
c∑

n=0

βt+n∆t{u(ct+n∆t)∆t

+ λt+n∆t[kt+n∆t + (eztf(kt+n∆t)− δkt+n∆t − ct+n∆t)∆t− kt+(n+1)∆t]}

In this setting our first order conditions will be the following,

∂L

∂ct
=
∂u

∂c
∆t− λt∆t = 0 (II.9)

∂L

∂kt+∆t

= βt+∆tEtλt+∆t

[(
eztf ′(kt+∆t)− δ

)
∆t+ 1

]
− βtλt = 0 (II.10)

∂L

∂λt
= kt + (eztf(kt)− δkt − ct)∆t− kt+∆t = 0 (II.11)

where we have supposed that λt+∆t = λt + λ̇∆t, where λ̇ is that rate at which it will

change over our interval of time. Since this setting is deterministic, we can now drop

the expectation term. Then we can rewrite (II.10).

∂L

∂kt+∆t

= λt[e
ztf ′(kt+∆t)− δ] = −λt ln β − λ̇ (II.12)

For a full derivation of (II.12) see the appendix.

We can look at this problem from a Hamiltonian framework. In this setting the

current value Hamiltonian is,

J(kt, µt+∆t, ct, t, t+ ∆t) = u(ct) +µt+∆t(e
ztf(kt)− δkt− ct) +γt+∆t

(
−ηzt∆t

)
(II.13)
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with the transversality condition

lim
t→∞

βtµtkt ≤ 0. (II.14)

The first order conditions for this system are given by the following equations,

∂J

∂ct
= u′(ct)− µt+∆t = 0 (II.15)

∂J

∂kt
= µt+∆t(e

ztf ′(kt)− δ) = −µt+∆t − µt
∆t

− ln(β)µt+∆t (II.16)

in this setting µt+∆t−µt
∆t

= µ̇t. At a glance (II.16), looks very similar to (II.12). Using

(II.15) and (II.16) we can get the typical first order conditions for a Hamiltonian

system, (
eztf ′(kt)− δ + ln(β)

)
= −u

′′(ct)

u′(ct)
ċt.

This is similar to the continuous time version; however, the multiplier in this case

is incremented forward one unit of time, and our discrete discount rate causes our

first order conditions to include a ln(β) term. As the increment of time approaches

zero, the discrete Hamiltonian outlined here will be equivalent to the continuous

Hamiltonian described in the following section.

We can also write a discrete Bellman equation for this system

V (zt, kt) = max
ct

u(ct)∆t+ β∆t[V (zt+∆t, kt+∆t)]. (II.17)

This setting will have similar first conditions. First we can take the first order condi-

tion of this system with respect to ct

∂u

∂ct
∆t+ β∆t ∂

∂ct
V (zt+∆t, kt+∆t, t+ ∆t) = 0. (II.18)

28



In this case ∂
∂ct
V (kt+∆t, zt+∆t, t+ ∆t) = ∂V (·)

∂kt+∆t

∂kt+∆t

∂ct
. Thus, we will have

∂u

∂ct
∆t = β∆t ∂V (·)

∂kt+∆t

∂kt+∆t

∂ct
∆t.

Simplifying and denoting the marginal value of capital at time t as µt = ∂
∂k
V (k, t) we

will have the following equation

∂u

∂ct
= β∆tµt+∆t

∂kt+∆t

∂ct
,

this is equivalent to (II.15). Taking the first-order condition with respect to k will

then yield,

µt = [1 +
(
eztf ′(kt)− δ

)
∆t](µt+∆t)β

∆t

Simplifying this will give us (II.16) from our discrete Hamiltonian. Examining this,

we can see that the value function and Hamiltonian are closely related as in Dorfman

(1969).

The Continuous-Time Deterministic Model

The continuous-time version of this model can be described according to the fol-

lowing equations. Our agent will maximize expected utility according to the following

equation, here e−ρt will be the continuous time equivalent of the discrete discount fac-

tor βt,

max
ct

E0

∫ ∞
t=0

e−ρtu(ct)dt. (II.19)

This is setting capital will evolve according to the following process

dkt = (eztf(kt)− δkt − ct)dt, (II.20)
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where the production function is the same as before. Productivity will evolve accord-

ing to

dzt = −ηztdt, (II.21)

the continuous time analog to the discrete process in the previous section.

In this setting, the current value Hamiltonian can be rewritten as follows,

H(kt, zt, ct, γt, µt, t) = u(ct) + µt(e
ztf(kt)− δkt − ct)− γt(ηzt).

It is clear that H(·) = lim
∆t→0

J(·), thus this directly related to our discrete time problem.

The following equations will give the first-order conditions for this system.

∂H

∂kt
= µt(e

ztf ′(kt)− δ) = −dµt
dt

+ ρµt (II.22)

∂H

∂ct
= u′(ct)− µt = 0 (II.23)

The transversality condition in continuous time can be written as follows.

lim
t→∞

e−ρtµtkt ≤ 0

Together the first order conditions (II.22) and (II.23) imply,

u′(ct)(e
ztf ′(kt)− δ − ρ) = −dµt

dt

We can also write a HJB for this system, since we are in a continuous time setting.

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(ezf(k)− δk − c)− ∂zV (k, z)(ηz) (II.24)

Setting µt in the current value Hamiltonian equal to ∂kV (k, z), and γt equal to
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∂zV (k, z) we can rewrite this again.

ρV (k, z) = max
c

H
(
k, z, c, ∂kV (k, z), ∂zV (k, z)

)
(II.25)

Comparing the Deterministic Models

For a clear comparison of the discrete and continuous time models outline in this

section, we can examine the discrete Bellman equation (II.17) as ∆t → 0. First, we

can take an approximation of V (kt+∆t, zt+∆t), in a method similar to Dorfman (1969).

V (kt+∆t, zt+∆t) = V (kt, zt)+∂kV (kt, zt)(kt+∆t−kt)+∂zV (kt, zt)(zt+∆t−zt)+O
(
∆t

3
2

)
All other partials and cross partial derivatives will be in the O term. These terms

will all be approximately zero in the limit as ∆t → 0. Next, we will approximate

β∆t ≈ e−ρ∆t ≈ (1 − ρ∆t). Using these two approximations we can rewrite (II.17) as

follows.

V (kt, zt) = max
ct

u(ct)+(1−ρ∆t)[V (kt, zt)+∂kV (kt, zt)(kt+∆t−kt)+∂zV (kt, zt)(zt+∆t−zt)]

Simplifying and substituting in for the changes in k and z, this will yield

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(ezf(k)− δk − c)− ∂zV (k, z)(ηz). (II.26)

This is the same equation as the HJB derived earlier in this section (II.24). In

the deterministic system, comparing the HJB and the Bellman equation is more

simple since we do not need to worry about expectation terms. This is because the

deterministic version of this model does not have uncertainty, adding in a continuous-

time version of our process in (II.7) will give us a more complicated optimization
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problem.

II.4.2 A Stochastic Model

Now, we build a stochastic model in discrete and continuous time. Adding in

stochasticity will yield more complex models and additional terms in the HJB equa-

tion. These stochastic models are more common in literature and are closely related

to the Ramsey models used later in this paper.

The Discrete-Time Stochastic Model

This model will be a stochastic version of the discrete-time model defined previ-

ously. In this setting, agents will maximize utility according to (II.5), and capital

will evolve according to (II.6) with the same Cobb-Douglas production function. The

main difference between this model and the previous deterministic model is that zt

evolves according to the following AR(1) process,

zt+∆t = (1− η∆t)zt + σεt
√

∆t, (II.27)

where εt ∼ N(0, 1). This model is closely related to the continuous stochastic model

outlined later in this section.

Optimization problems in this setting can take several different forms. The current

value Hamilton for this problem is,

J(kt, µt+∆t, ct, t, t+ ∆t) = u(ct) +µt+∆t(e
ztf(kt)− δkt− ct) + γt+∆t

(
− ηzt +σεt

√
∆t
)
.

(II.28)

The transversality condition will be the same as in the discrete deterministic model

(II.14). Despite the presence of an additional term, the first-order conditions for this

system will be the same as the ones from the discrete deterministic model. Also, as
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the increment of time approaches zero, the discrete Hamiltonian outlined here will be

equivalent to the continuous Hamiltonian described in the following section.

We can also write the discrete Bellman equation for this system

V (kt, zt) = max
ct

u(ct)∆t+ β∆tE[V (zt+∆t, kt+∆t)]. (II.29)

This setting will have similar first conditions to the discrete model previously studied.

The Continuous-Time Stochastic Model

One of the key differences between the continuous-time model in this section

and the one previously outlined is the process for productivity. Productivity in the

continuous-time setting will evolve according to the following Ornstein-Uhlenbeck

process, the continuous-time analog of (II.27).

dzt = −ηztdt+ σdWt (II.30)

Where dWt is the increment of the Wiener process.

Equilibrium in the continuous-time setting is given by the following equations.

First, equilibrium will depend on the HJB equation (II.31), the continuous-time ana-

log of the Bellman equation. We can first write this equation in a form similar to

(II.17).

V (k, z) = max
ct

u(ct) + e−ρtE[V (k′, z′)]

The expectation term in this model will differ from the expectations in (II.17). This

is because the Wiener process in (II.30) is continuous but is nowhere differentiable,

making it impossible to treat this expectation like a standard Riemann integral. Using

stochastic calculus to solve for this expectation will yield the following HJB equation.
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ρV (k, z) = max
c

u(c)+∂kV (k, z)(eztf(k)−δk−ct)+∂zV (k, z)(−ηzt)+
1

2
∂zzV (k, z)σ2

(II.31)

Taking the first order condition with respect to consumption for the HJB equation

will give us (II.32).

u′(ct) = ∂kV (k, z)

This is analogous to (II.9) in the discrete model or (II.23) in the deterministic con-

tinuous model. The term setting the µt from the continuous time current value

Hamiltonian (II.13) equal to ∂kV (k, z) we can rewrite the HJB.

ρV (k, z) = max
c

H
(
k, c, z, ∂kV (k, z), ∂zV (k, z)

)
+

1

2
∂zzV (k, z)σ2 (II.32)

This equation links the HJBs of our stochastic and non-stochastic continuous time

models.

Comparing the Stochastic Models

Furthermore, we can compare the discrete and continuous stochastic models we

have outlined thus far. If we take the discrete Bellman in (II.29), we can recast

it and make it more similar to (II.32). First, we can take an approximation of

V (kt+∆t, zt+∆t), in a method similar to Dorfman (1969).

V (kt+∆t, zt+∆t) = V (kt, zt)+∂kV (kt, zt)dk+∂zV (kt, zt)dz+
1

2
∂zzV (kt, zt)dz

2+O(∆t
3
2 )

All other partials and cross partial derivatives will be in the O term. These terms

will all be approximately zero in the limit as ∆t → 0. Next, we will approximate

β∆t ≈ e−ρ∆t ≈ (1 − ρ∆t). Using these two approximations we can rewrite (II.17) as
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follows.

V (kt, zt) = max
ct

u(ct) + (1− ρ∆t)[V (kt+∆t, zt+∆t)]

= V (kt, zt) + ∂kV (kt, zt)dk + ∂zV (kt, zt)dz +
1

2
∂zzV (kt, zt)dz

2

Simplifying and taking the limit as ∆t→ 0 we wil be left with the following equation.

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(eztf(k)− δk − c)− ∂zV (k, z)(ηzt) +
1

2
∂zzV (k, z)σ2

Using this derivation we have gotten the stochastic HJB in equation (II.31). Thus,

we have connected our discrete and continuous models in both deterministic and

continuous settings.

II.4.3 Results

We have built four closely related models in this section and shown how discrete-

time models limit to their continuous-time counterparts. With the correct setup,

discrete-time models will be the same in the limit as the continuous-time models.

The model comparisons in this section have demonstrated clear connections between

discrete and continuous models. These connections are especially evident in the de-

terministic version of our models; however, with the use of stochastic calculus, they

are easily seen.

Furthermore, in this section, we have recast discrete-time models so that they

contain the increment of time, ∆t. This alone is a contribution to current literature

as few economists examine models where ∆t = 1. Within this class of models where

∆t is built into the model, one could explore and compare many models with different

values for ∆t.
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II.5 Adaptive Learning Rules

Now that we have developed our modeling framework for this paper, we will

move on to examining representative agent exercises in learning. The first group of

exercises will focus on an “stylized” learning rule. In this setting, we build models

where our agents have a misperception of the true underlying parameters. Then our

agents receive information dumps where they get some insight into the correct model

parameters. Here agents are trying to update their parameters to make optimal

steady-state decisions. Thus, our system is not time-dependent. Agents recalculate

the model for many periods, but those periods do not correspond to time periods in

our model.

The following section explores three different models. The first examines the

stylized learning rule when the unknown model parameter is part of the exogenous

stochastic process. Next, the stylized learning rule is applied to a model with mis-

specification in an endogenous stochastic process for the evolution of capital stock.

Lastly, we modify the model with a stochastic process for productivity and implement

a real-time updating rule that utilizes recursive least squares, a more meaningful and

realistic approach.

II.5.1 Learning the Process for Productivity

There is a representative agent that makes consumption choices c and has capital

stock k. The state of the economy depends on the flow of capital stock. The agent

has standard preferences over utility flows based on capital discounted at rate ρ ≥ 0.

This can be written as the following equation:

E0

∫ ∞
t=0

e−ρtu(ct)dt (II.33)
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Here consumption, ct ≥ 0 for all periods. The agent’s capital stock will evolve ac-

cording to the following stochastic process used in Achdou et al. (2014).

dkt =
(
ztk

α
t − δkt − ct

)
dt (II.34)

This is the continuous time analog of the typical equation for the evolution of capital

stock. The production function used in this section is Cobb-Douglas, f(kt) = kαt .

Technological progress zt will evolve according to the following equation

d log(zt) = −θ log(zt)dt+ σdWt. (II.35)

This is a logged version of an Ornstein-Uhlenbeck process, this means that zt will

follow a stationary continuous process that is analogous to an AR(1) process. This

can be rewritten in terms of zt,

dzt =

(
− θ log(zt) +

σ2

2

)
ztdt+ σztdWt. (II.36)

In this form we can more clearly see the drift for this process will be,
(
− θ log(zt) +

σ2

2

)
zt, and the variance term will be, σzt.

The utility function used throughout this project will have constant relative risk

aversion (CRRA),

u(ct) =
c1−γ
t − 1

1− γ

here the CRRA parameter will be γ and γ > 0.
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Stationary Equilibrium

A stationary equilibrium in this setting is given by the following equations. Our

HJB for this problem is

ρV (k, z) = max
c

u(c) + ∂kV (k, z) ·
(
ztf(k)− δk − c

)
+

+ ∂zV (k, z) ·
(
− θ log(z) +

σ2

2

)
z + ∂zzV (k, z) · 1

2
σ2z2.

The derivation of this HJB can be found in the appendix along with a description of

the algorithm used to solve this value function problem.

The agents in this simple model hold an incorrect belief about the diffusion process

for technological progress. In this setting with exogenous learning, they predict that

the diffusion process is given by the equation below,

d log(zt) = −θg log(zt)dt+ σgdWt

There are two parameters that the agent misspecifies in this setting, σ and θ. These

misspecifications could be modeled in several different ways, but in this section, we

have selected misspecified values of θ and σ that move the drift of the zt in the same

direction. The results from other specifications are shown in the appendix. In the

results presented in this section, the agent initially believes that θ is larger than the

actual value and that σ is smaller than the true value. Specifically, in period one,

θg = 0.25 while θ = 0.105 and σ2
g = 0.008 when σ2 = 0.015.

To test how a learning process could evolve in this environment, we first introduce

an exogenous learning process. Since the process is exogenous, the agents will repeat-

edly solve the steady-state of the HJB with different amounts of information at each

period. In each one of these periods, there is a chance that the agents will have the

opportunity to gain more information in the form of noisy observations of the true
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parameter values. In this model, these noisy observations will be of the form,

θ̃i = θ + εi,θ, εθ ∼ N(0, 0.1) (II.37)

σ̃2
i = σ2 + εi,σ, εσ ∼ N(0, 0.01) (II.38)

The information will be given to an agent based on a draw from a standard Bernoulli

distribution, and the agents will update their estimate of both parameters using the

following equations

θg,i+1 = θg,i + 0.01(θ̃i − θg,i),

σ2
g,i+1 = σ2

g,i + 0.01(σ̃2
i − σ2

g,i).

In this problem θ and σ are the true values of the parameters, and i is an index for the

updating period. Parameters are updated using the algorithm above, and then used

to calculate the steady-state of our system; this steady-state algorithm is described

in the appendix (Achdou et al., 2014).

Productivity Process Results

Below are the convergence results for the stylized learning rule in this setting. The

following figure displays the value function over z and k. Looking at the convergence

in the value function over z for a median value of k, we can see apparent convergence,

here our value function starts flat and develops the correct slope and curvature as

our updating procedure continues. However, after 1, 000 periods, we are still some

distance from the true value function. Convergence over k for a median value of

z is less impressive. In this case, there is appropriate convergence. However, the

difference between the misspecification and the true value is much smaller than in

the z dimension.
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Figure II.1

(a) (b)

The misspecified parameters, θ and σ, converge as we would thought. Below is a

graph of the values of σ and θ at each period, including those in which the system

does not update.

Figure II.2

(a) (b)

This exercise displays the type of convergence we would have predicted.. Thus,

we expect that learning rules would perform in a predictable manner in a stochastic

continuous-time setting.

II.5.2 Learning the Process for Capital

After examining the stylized learning rule’s impacts on a model with a misspecified

exogenous process, we investigate a model with a misspecified endogenous process. In
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this model, we have a diffusion process that summarizes the evolution of capital stock.

Misspecification in this diffusion process impacts optimal savings and, therefore, the

optimal consumption choice in the model. Thus, an incorrect specification of this

process directly impacts our equilibrium choices. Furthermore, a poor consumption

choice directly impacts the drift term in our diffusion process.

In our endogenous process model, there is a representative agent that makes con-

sumption choices c and has capital stock k. The state of the economy depends on the

flow of capital stock. The agent has standard preferences over utility flows based on

capital discounted at rate ρ ≥ 0. This can be written as the following equation:

E0

∫ ∞
t=0

e−ρtu(ct)dt

Here consumption, ct ≥ 0 for all periods. The agent’s capital stock will evolve ac-

cording to the following stochastic process used in Merton (1975). This change has

been made so that we can model learning with stochastic process capital. The earlier

specification where our stochasticity came from zt is more common in the literature.

In this setting, capital will follow the stochastic process

dkt =
(
f(kt)− (δ + n− σ2)kt − ct

)
dt+ σktdWt.

Here n measures the growth of the work force and dWt is the increment of a Wiener

process. In this setting, f(kt) − (δ + σ2)kt − ct summarizes the drift of capital and

σkt describes the variance.
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Stationary Equilibrium

Stationary equilibrium in this setting will be given by several equations. The HJB

for this problem will be

ρV (k) = max
c

u(c) + V ′(k) ·
(
f(k)− (δ + n− σ2)k − c

)
+

1

2
V ′′(k) · (σk).

The derivation of the HJB can be found in the appendix. This system will be defined

on (k̄,∞) where k̄ is the value of capital at which the agent would consume nothing.

The agents in this simple model hold an incorrect belief about the diffusion pro-

cess for capital stock. In this setting with exogenous learning they predict that the

diffusion process is given by equation (II.39).

dkt =
(
f(kt)− (δ + n− σ2

g)kt − ct
)
dt+ σgktdWt

In this model the agent believes that the parameter σ is smaller than it should

be, σg < σ. Specifically, σg = 0.02 when the true value σ = 0.5. With this misspec-

ification, the agent believes the drift is larger than it should be and the variance is

smaller than the true variance of the process. Other misspecifications for this process

were examined; these results are in the appendix.

To test how a learning process could evolve in this environment, we first introduce

a stylized learning process. Since the information gain is exogenous, the agents will

repeatedly solve the steady-state of the HJB with different amounts of information

at each period. In each one of these periods, there is a chance that the agents will

have a chance to gain more information in the form of a noisy observation of the true

parameter estimate. The noisy parameter estimate will take the form,

σ̃i = σ + εi, εi ∼ N(0, 0.1). (II.39)
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The information will be given to the agent based on draw from a standard Bernoulli

distribution and the agents will update their estimate of σg according to

σg,i+1 = σg,i + 0.01(σ̃i − σg,i).

Here i is the index for the updating period and this updating process will continue

for 1,000 periods.

Capital Process Results

Below are several results, the figures on the left show all the output from all 1,000

iterations of the endogenous learning algorithm. Figures on the right display select

output from different periods of the iteration.

Figure II.3

(a) (b)

When the agent uses the learning rule, the value function converges to the true

estimate over time. In this setting, convergence is slow, and even after 1,000 periods,

the value function is still a small distance from the true value. Convergence is equally

slow for some measures, such as savings.
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Figure II.4

(a) (b)

From these figures, we can see that the savings policies appear to converge more

quickly to the true policy than the value functions converge to the true steady-state

estimates. This is likely due to the fact that optimal savings policies don’t depend

as strongly on the parameter σ. While σ does impact the calculations of the savings

policies, it is only one part of the savings decision. This parameter impacts the

value function more directly since it will affect the evolution of the system and the

algorithm’s choice of implementing a forward difference or backward difference for

calculating the derivative of the value function.

Our prediction of σ converges in an expected way. We can see this in the graph

below, which verifies that our updating rule works as expected. After 1,000 iterations,

the guess for σ is 0.005 away from the true parameter value. This is why our value

functions and optimal savings policies have not completely converged to their true

values.

44



Figure II.5

II.5.3 Learning Using Real-Time Updating

In this next section, we will explore a modified model with a stochastic process

for productivity. In this model, agents will observe the process over time and update

their parameter estimates based on these observations. Agents will maximize utility

according to

E0

∫ ∞
t=0

e−ρtu(ct)dt.

Here productivity will evolve according to the same process as before, (II.35). Pro-

duction will still be a standard Cobb-Douglas function used in previous sections.

This means that log(zt) is evolving according to an Ornstein-Uhlenbeck process, the

continuous-time analog of an AR(1) process. Defining the process for zt this way

avoids negative values for zt. Looking more closely at the log(zt) process we have

figure II.6.
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Figure II.6

This process does have negative values, but the process for zt will not.

Real Time Updating of Parameter Estimates

The HJB for this stochastic Ramsey model will be

ρV (k, z) = max
c

u(c) + ∂kV (k, z) ·
(
zf(k)− δk − c

)
+

∂zV (k, z) ·
(
− θ log(z) +

σ2

2zt

)
+ ∂zzV (k, z) · 1

2
σ2z2,

in this setting our parameter for σ will be set equal to one. Setting σ = 1 will not only

simplify our updating problem, but it will also allow for a more intuitive connection

between our Ornstein-Uhlenbeck process and an AR(1) process.

In this model, agents believe that the stochastic process for productivity evolves

according to

d log(zt) = −θg log(zt)dt+ dWt.

Where θg is the agent’s forecast for the process’s parameter θ. Before the agents in

this model begin trying to solve their value function problem, they look at the first
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100 observations of the process and use ordinary least squares (OLS) to predict a

value for θ and a possible constant.

In this setting, the agent can use OLS to predict an initial value for θg, since

the process for log(zt) can be rewritten as a discrete AR(1) process using the Euler-

Maruyama method. Applying this method the AR(1) process for log(zt) will be,

log(zt+∆t) = (1− θg∆t) log(zt) + εt
√

∆t

for simplicity we will assume that the agent estimates these parameters as if ∆t is

observable.

Next, they use the finite difference algorithm described in the appendix. They

implement this algorithm 10,000 times, each time they observe several additional

values of the productivity process. Therefore, in this setting, we should think of

the updating periods as independent intervals of time that each contains several

observations. Next, using recursive least squares (RLS), the agent updates their

parameter estimates. This RLS formula is given by,

Rg,t+1 = Rg,t + γt(xx
′∆t−Rg,t)

φg,t+1 = φg,t + γtR
−1
g,t+1 · x(y − x′φg,t)∆t

here all variables with a g subscripts represent the agent’s forecast x and y are matrices

that contain value of xt and yt for all points between t−1 to t and t to t+1 respectively.

The number of points in each of these intervals will depend on dt. In the results below,

the agent observes 5 points of the process in each updating period. This means that

after 100 periods, the agent has 500 new points on which to base their estimates. This

has been done in order to maintain continuity in the time dimension. Additionally,
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xt and φg,t are defined as

xt =

 1

log(zt)

 , φg,t =

 cg,t

1− θg,t∆t

 ,
where cg,t is our estimate for a constant in the model. The agent uses this formula

to update parameter estimates and then reruns the finite difference algorithm; this is

done 10, 000 times.

Real Time Updating Results

Some of the results from the forecasting model resemble the results from previous

sections. In this setting, value functions converge quickly in the k dimension and

more slowly in the z dimension. This is in line with the results from before and

makes sense as the misspecification is for the process that governs z.

First, we will look at results for an algorithm where the gain γt = 1
t
. This

means that the agent discounts the information in each updating period by 1
t
. Here

t represents the updating period that the agent is in.

Figure II.7

(a) (b)

We can take a closer look at convergence in this setting by examining our param-

eter estimates over time.
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Figure II.8

(a) (b)

Looking at the results above we can see that convergence in this setting is fast.

Despite starting from incorrect parameter values, θ, and the constants are close to

their true parameter values after 200 periods.

We can also examine this real-time updating rule with a constant gain. Here we

set the gain γt = 0.01 for all time periods. The value functions converge similarly to

the decreasing gain case, as seen below.

Figure II.9

(a) (b)

We can again examine the convergence of θg and the estimate for the constant

over time.
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Figure II.10

(a) (b)

Since, we are using a constant gain algorithm there is noise in our parameter

estimates even after many periods. Constant gain algorithms place equal emphasis

on all observed points from the Ornstein-Uhlenbeck process, since this is a noisy

process we will see our estimates trend about the correct parameter value instead of

directly to the correct value. Due to this, it is helpful to examine the mean estimates

of θ and the constant over time.

Figure II.11

(a) (b)

Here the mean estimates of θ and the constant are approaching the true parameter

values.

50



II.5.4 Summary

Our exogenous learning rules perform well in the stochastic continuous-time steady

state calculations. This is encouraging because it means that we can expect some

of the familiar results from discrete-time learning to carry over in our continuous

setting. Although the results in this section are not particularly stunning, there are

several extensions to this simple learning rule that may yield more interesting results.

Looking at this exogenous learning rule in a heterogeneous agent setting may allow for

more feedback through the system KF equation, thus yielding less predictable results.

A heterogeneous agent model creates this additional feedback through internal pricing

frictions that do not exist in our representative agent model.

The performance of the forecasting rule demonstrates that using adaptive learn-

ing techniques over intervals of time works well. This method may be beneficial

for future work, as it provides a clear link between discrete RLS methods and the

continuous-time framework. Despite using different methodologies, it appears that

the forecasting rule in section 5.3 and the exogenous learning rule in section 5.1 have

similar convergence results, this is an interesting result that may be due to the model

similarities in these sections.

II.6 Conclusion

This paper serves a primer on continuous-time modeling and adapting discrete

adaptive learning methods to continuous-time. The mathematical results in section 4

link discrete models to continuous-time counterparts. Section 5 contains some basic

results for a simple learning method applied to continuous-time models. Using the

results of this paper, we can conclude that the continuous-time framework is compa-

rable to discrete-time and that learning algorithms can be adapted and form well in

this setting. Future extensions to work could include implementing a continuous-time
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version of recursive least squares to simple continuous-models and creating a learning

algorithm with more feedback in a representative agent model. There remains much

to do in order to modify adaptive learning techniques to a continuous-time setting

properly.
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CHAPTER III

BOUNDEDLY RATIONAL DECISION

MAKING IN CONTINUOUS-TIME

III.1 Introduction

The macroeconomics toolkit has significantly expanded in recent years due to

increased access to computational power and interdisciplinary research. One promis-

ing modeling framework emerging from this development is stochastic continuous-

time modeling. Continuous-time models have existed in economics literature for over

thirty years, becoming popular during the period Black and Scholes (1973) was first

published. During this time economists published papers using the continuous-time

framework including, Brock and Mirman (1972), Merton (1969, 1975), and Mirrlees

(1971). However, many of these works could only examine specific aspects of mod-

els, such as the steady-state distribution of key parameters, as economists did not

have techniques for solving the systems of partial differential equations that represent

most continuous-time models. Now, with methods drawn from the field of applied

mathematics, it has become feasible to solve more continuous-time macroeconomic

models.

Continuous-time macroeconomic models have become increasingly popular for two

distinct reasons. First, the field of finance has long favored continuous-time model-

ing, thus building macroeconomic models in continuous-time allows economists to

include financial frictions as in Brunnermeier and Sannikov (2014). Second, as we

previously mentioned, solutions to many macroeconomic models can now be easily
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found—because of better computers and new solution methods—and these solutions

often include detailed distributional information. Several works that take advantage

of this property are Ahn et al. (2018), Achdou et al. (2020), Kaplan et al. (2018)

and Gabaix et al. (2016). As this class of models becomes popular, economists must

redevelop traditional macroeconomic modeling techniques to create richer models in

this continuous-time framework. This paper modifies adaptive learning techniques

for use with continuous-time economies.

Currently, the continuous-time macroeconomic literature consists primarily of

models that depend on rational expectations. Rational expectations is a standard

modeling technique where agents within economics are assumed to understand the-

oretical models correctly—the agents know the value of all parameters in the model

and understand the distribution of any unobserved processes. It is improbable that

individuals in the real world have this level of knowledge about the economy. How-

ever, individuals can likely perceive the world around them and gradually adjust their

expectations based on their observations—adaptive learning takes this approach.

Allowing for adaptive learning, as opposed to rational expectations, in macroe-

conomic models avoids allowing agents to have unrealistic amounts of information

about the system by instead allowing them to gather information on the economy

over time slowly. This technique was developed initially in Bray (1982) and been

further refined in more recent work Evans and Honkapohja (2001). Adaptive learn-

ing is an attractive modeling tool since rational expectations often make to many

strict assumptions about agents’ knowledge of parameter values and the distribution

of parameters.

Additionally, adaptive learning models often converge to a rational expectations

equilibrium over time; however, if a model has two rational expectations equilibria, an

adaptive learning model may only converge to one—the equilibria learned by these

agents would then be stable under adaptive learning whereas the other equilibria
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would not. Therefore adaptive learning techniques are beneficial when economists

want to examine the stability or particular outcomes.

Despite this, rational expectations is a standard model assumption and the emerg-

ing continuous-time literature centers on rational expectations models—some continuous-

time asset pricing models use Bayesian methods, for instance, Hansen and Sargent

(2019a) and Hansen and Sargent (2019b). However, these methods require agents’ to

have prior belief over the distribution of parameters another strong assumption. We

instead concentrate on an adaptive learning technique called shadow-price learning,

or SP-learning, outlined in Evans and McGough (2018). Under SP-learning agents

view their optimization problem as a two-period problem.

During the first period (today), they use a forecast of their shadow-price to form

the best possible choices for today, given those choices’ impacts on tomorrow (the sec-

ond period). Hence this learning mechanism focuses on an agent’s ability to generate

optimal forecasts and the agent’s ability to make optimal decisions with the forecasted

information, an issue discussed in (Marimon and Sunder, 1993, 1994; Hommes, 2011).

In continuous-time, this problem is very similar; however, instead of having today

and tomorrow, the agents examine the trade-off between choices using the change in

parameters over time—in other words—the continuous-time version of SP-learning

examines derivatives of variables with respect to time.

We develop a tractable setting for SP-learning by building a continuous-time

linear-quadratic (LQ) framework. The LQ environment aids the study of adaptive

learning techniques due to the linearity of first-order conditions, generality, and cer-

tainty equivalence in this framework. In economics, the LQ framework is useful for

approximations of complex economies since these models can contain lots of infor-

mation. There is wide-ranging literature on discrete-time economic optimal linear

regulator problems that includes several works on optimal policies such as Benigno

and Woodford (2004) and Benigno and Woodford (2006), as well as a wealth of pa-
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pers on techniques and developing the LQ framework in economics, Kendrick (2005),

Amman and Kendrick (1999), and Benigno and Woodford (2012). Because of the

richness of this framework and the sparse usage of continuous-time LQ problems in

economics, further exploration of this technique is necessary.

Although continuous-time LQ problems are not common in economics, some

economists have examined this type of modeling framework. Hansen and Sargent

(1991) develops a framework for continuous-time LQ problems. Several chapters of

this book examine various models and the identification of parameters in this setting.

The LQ framework we build in this paper differs from Hansen and Sargent (1991), as

it does not use solution methods based on the Lagrangian. Instead, we take a value

function approach. Value function methods are conventional in the discrete-time eco-

nomics literature, and many continuous-time problems in other fields feature similar

solution methods.

We build this framework by outlining a basic discrete LQ problem and then de-

scribing a similar continuous-time problem, using a value function approach for both

settings. We work through both types of problems, so those familiar with only the dis-

crete case can more easily see the parallels between these two settings. After setting

up the LQ problems, we look at solution methods for the resulting algebraic Riccati

equations (AREs). Though there are many methods for solving AREs, we concen-

trate on iterative Newtonian methods, as in Kleinman (1968), as this method better

complements the adaptive learning environment in later sections. Also, discrete-time

LQ systems commonly use iterative methods (Hansen and Sargent, 2013).

After developing a continuous-time LQ framework, we can then examine continuous-

time adaptive learning rules. Before reworking discrete-time adaptive learning rules

into continuous-time rules, we need to consider several important items. First, does

an agent have “continuous” observations of continuous variables, or do they have dis-

crete observations? If these observations are discrete, are they taken at specific points
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in time or over intervals, and does the spacing of these points or intervals matter?

We take a simplified approach, drawing from empirical economics and finance

literature. Bergstrom (1993), a general survey of continuous-time econometric meth-

ods, highlights that continuous-time systems can be measured accurately with exact

discrete-time equivalents that take time-interval lengths into account, a conclusion

initially drawn from Phillips (1959) and discussed further in Bergstrom (1984). In fi-

nance, Kellerhals (2001) uses discrete-time data to measure continuous-time financial

systems while carefully implementing exact discrete-time models as in the economics

literature. Additional work on this topic includes Aı̈t-Sahalia (2010), which examines

the maximum likelihood estimation of continuous model parameters using discrete

data points. All of these works find that it is possible to measure continuous-time

systems with discrete data.

When using learning algorithms to forecast an agent’s perception of the model,

we implement the exact discrete-time method since—despite the model parameters

evolving continuously—as it is most likely that agents observe the data discretely but

at fine intervals. The agents observe data as it becomes available, and they observe

all data points. Concentrating on this approach for the agent’s sampling of the data

allows for more direct tie-ins with typical discrete learning methods. Extensions

to this work may include observation intervals that vary from the data generating

process’s time intervals and data that arrive at random intervals.

The contributions of this work are two-fold. First, to create a modeling frame-

work in which we can develop adaptive learning techniques, we construct a novel

continuous-time LQ framework. We outline this framework and discuss it in detail in

sections III.2 and III.3. Continuous-time optimal linear regulator problems similar to

those outlined in this paper do exist in other disciplines; however, problems outside

of economics do not usually include key features such as stochasticity and discount-

ing. Second, we use this new LQ framework to develop continuous-time shadow-price
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learning in section III.4. Also, we demonstrate parallels between the discrete and con-

tinuous models and derive a continuous-time version of recursive least squares (RLS).

The bulk of this is done in section III.2.2 and section III.4.

The paper precedes as follows. Section III.2 builds a simple LQ problem with-

out interaction terms or stochasticity. This section also examines iterative solution

methods with a univariate test case and convergence of the discrete test case to the

continuous one under small time increments. Section III.3 studies a more complicated

univariate model with stochasticity as well as this model’s solutions, the convergence

results with the equivalent discrete-time model. Preliminary results for a simple

learning algorithm and the convergence of a discrete-time learning rule to the con-

tinuous solution are discussed in section III.4. We evaluate a simple economic model

in section III.5; the model used is a simple Robin Crusoe economy as in Evans and

McGough (2018). Section III.6 concludes.

III.2 The Optimal Linear Regulator Problem

Before examining a continuous-time LQ problem, we start with a review of a

generic deterministic discrete case and focus on defining recursive solutions for this

class of problems. In the LQ framework, we examine a value function problem where

our objective function is quadratic with respect to our state and choice variables.

The state variables are commonly denoted as xt, here xt takes the form of an (n× 1)

vector and contains variables that evolve based on past states and past choices. In an

economic setting xt might include variables like capital or productivity. Our choice

variables, ut, are represented by an (m × 1) vector. These choice variables reflect

decisions made by our agent and they can impact future states. A deterministic linear-

quadratic problem can be expressed according to the following equations (Ljungqvist
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and Sargent, 2012),

V (x0) = max
u
− E

∞∑
t=0

βt{x′tRxt + u′tQut} (III.1)

where xt evolves according to

xt+1 = Axt +But. (III.2)

Here A and R are (n×n) matrices that summarize how xt influences future states and

our objective function, respectively. For our purposes, xt always includes a constant;

however, the constant is not necessary (Hansen and Sargent, 2013). Similarly, B

and Q are (m × m) matrices that summarize how ut influences future states and

the objective function. Using equations (III.1) and (III.2), we can write the Bellman

system as,

V (xt) = max
u
{−x′tRxt − u′tQut + βEV (xt+1)}. (III.3)

To solve the Bellman in the LQ framework we use a guess-and-verify approach,

positing that V (xt) = −x′tPxt, where P is a positive semi-definite matrix (Hansen

and Sargent, 2013). Based on the initial posit of the value function’s form and

the evolution of that state variables we can measure expected future values as,

EV (xt+1) = −E(x′t+1Pxt+1) = −(Axt + But)
′P (Axt + But). Substituting these ex-

pressions for V (xt) and V (xt+1) into (III.3) yields,

−x′Px = max
u
{−x′Rx− u′Qu− β(Ax+Bu)′P (Ax+Bu)}.

To create a recursive solution for this system we need to further simplify this expres-

sion by eliminating u and x. If we look at the first order condition with respect to

u, we get an equation that allows us to expresses choices, u, based solely on model
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parameters and our states, x.

u = −β(Q+ βB′PB)−1(B′PA)x = −Fx

using this expression for u, often called a policy function, we can now eliminate u

and x from equation (III.3) and write a recursive solution for P using our Riccati

equation

Pj+1 = R + βA′PjA− β2A′PjB(Q+ βB′PjB)−1B′PjA (III.4)

where j denotes the iterations. By implementing this recursive solution method, not

only can we find the solution to the discrete-time ARE, but we can start understanding

how an agent might update an initial estimate of the value function. Equation (III.4)

provides a solution for our value function problem only when certain conditions are

met, in this paper we focus on the stability conditions for the continuous-time case;

for a treatment of the discrete-time case see Hansen and Sargent (2013), Lewis (1986),

or Anderson and Moore (2007).

III.2.1 The Continuous-Time Optimal Linear Regulator

The continuous-time version of this problem is solved with a similar approach. We

now examine the continuous-time optimal linear regulator problem using a system

similar to—but not the same as—the one in the previous section. The vectors xt

and ut maintain the same dimensions and continue to represent our state and control

variables, respectively. Matrices B, R, and Q also remain the same as before. The

matrix A is altered; it maintains its (n × n) dimensions but not contains different

values since we now measure the evolution of our state variables in changes in levels.

We assume that A is symmetric to simplify arithmetic for this problem.1 In the

1For a version of this problem that does not assume A is symmetric, please see the appendix.
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continuous-time setting, the maximization problem is written as follows,

V (x0) = max
u
− E

∫ ∞
t=0

e−ρt{x′tRxt + u′tQut}dt (III.5)

where xt evolves according to,

dxt = Axtdt+Butdt (III.6)

here our discount factor takes the form of an exponential, e−ρt. Equation (III.6)

is a standard expression of a continuous-time deterministic process, in continuous-

time the levels of variables over time do not summarize their evolution—instead the

changes in a variable describe how it grows over time Dixit (1992).

The continuous value function problem takes a distinct form called the Hamilton-

Jacobi-Bellman (HJB). HJBs differ from discrete-time Bellman problems in how they

apply discounting and handle expectations; however, they are still closely related to

Bellman systems. To demonstrate the close connection between discrete-time and

continuous-time value function problems, we show how to derive the HJB from a

Bellman equation. First, we write down our problem discretely using the power

series expansion of e−ρ∆, (1− ρ∆), as a representation of our discount over a period

of time (Dixit, 1992). Here ∆ represent the increments of the time periods.

V (xt) = max
u
{−x′tRxt∆− u′tQut∆ + (1− ρ∆)E[V (xt+∆)]}.

Expectations in this setting are found by applying Itô’s lemma, i.e. by measuring the

expected change in the value function Vx(x) weighted by the expected in change in x.

Thus, as ∆ → 0 our expectational term E[V (xt+∆)] = Vx(x). After simplifying the
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system and taking the limit as ∆→ 0, the HJB becomes

ρV (x) = max
u

(
− x′Rx− u′Qu+ Vx(x)

dxt
dt

)
(III.7)

Now applying the same guess-and-verify approach as before, we posit that V (x) =

−x′Px. Using this value function we can rewrite the HJB in (III.7),

−ρx′Px = max
u

(
− x′Rx− u′Qu− 2x′P

dxt
dt

)
= max

u
{−x′Rx− u′Qu− 2x′P (Ax+Bu)} (III.8)

Again, we our goal is to create a recursive iterative solution method for finding P .

Therefore, we need to eliminate u and x from the system. This is accomplished by

taking the first order condition with respect to u,

u = −Q−1B′Px = −F̃ x. (III.9)

This equation is our policy function for u in the continuous-time system. Note that

the policy for u is not the same as the discrete case policy. We should expect the

policies for the discrete and continuous-time cases to differ, since expectations2 and

discounting between discrete and continuous-time varies.

Utilizing our policy function we remove u and then x from the HJB equation

giving us our Riccati equation,

R + 2PA− PBQ−1B′P − ρP = 0. (III.10)

Getting the continuous-time system into a final recursive form can be done with two

different methods. Both methods begin with the Lyapunov equation for our optimal

2In discrete-time, E[V (xt+1] = E(xt+1Pxt+1) = (Axt+But)P (Axt+But). While in continuous-time
expectations depend on Itô’s lemma, E[V (xt+∆)] = Vx(x)dxt

dt = 2x′P (Ax+Bu).
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linear regulator problem,

2Ã′iPi = −(R + F̃ ′iQ
−1F̃i).

Here, Ãi = A − 1
2
Iρ − BF̃i, F̃i = Q−1B′Pi−1, and i indexes each iteration. The first

method we explore involves subtracting, 2Ã′iPi−1 from both sides giving us,

2Ã′i(Pi − Pi−1) = −2Ã′iPi−1 − F̃ ′iQ−1F̃i +R. (III.11)

We can then rewrite this as,

Pi = Pi−1 − (2Ã′i)
−1(2Ã′iPi−1 − F̃ ′iQ−1F̃i +R) (III.12)

the main benefit of this method is that it clearly demonstrates how past values Pi−1

are altered over recursions. Alternatively we can use the second method which is

more easily mathematically derived,

Pi = −(2Ã′i)
−1(F̃ ′iQ

−1F̃i +R). (III.13)

With these recursive algorithms we can now solve the individual’s value function

problem. These algorithms also provide insight into how an initial posit of the value

function matrix P is updated over time, this system of revising estimates of P will be

crucial to the learning dynamics we introduce in later sections. To ensure solutions

to (III.12) and (III.13) are asymptotically stable and exist, several conditions must

be met (Lewis, 1986; Anderson and Moore, 2007; Evans and McGough, 2018).

LQ.1 The matrix R is symmetric positive semi-definite and thus can be decomposed

in R = DD′ by rank-decomposition, and the matrix Q is symmetric positive

definite.
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LQ.2 The matrix pair (A,B) is stabilizable—there exists a matrix F̃ such that A−BF̃

is stable, meaning the eigenvalues of A−BF̃ have modulus less than one.

LQ.3 The pair (A,D) is detectable—if y is a non-zero eigenvector of A associated with

eigenvector µ then D′y = 0 only if |µ| < 0. Detectability implies that the

feedback control will plausibly stabilize any unstable trajectories.

The conditions outlined in LQ.1-LQ.3 are standard in optimal linear regulator lit-

erature and are necessary for stable solutions in both discrete and continuous time-

invariant problems. LQ.1 can be interpreted as a condition on the concavity of the

system, making sure that the system is bounded above. Additionally, LQ.2 ensures

that the value function V (x) does not become infinitely negative by guaranteeing that

it is possible to find a policy F that drives the state x to zero.

Theorem 1. If the conditions outlined in LQ.1-LQ.3 are true, then the continuous-

time algebraic Riccati equation has a unique positive semi-definite solution P

For a proof of theorem 1 see Lewis (1986).

Now that we have examined both discrete and continuous-time linear-quadratic

problems and their solutions, we must compare the two and relate them to one an-

other. In the following section, we recast the discrete model so that it depends on

discrete-time increments ∆ and examining its convergence to the continuous-time

problem as ∆→ 0.

III.2.2 Convergence of the Discrete Case to the Continuous

Case

The discrete and continuous LQ problems outlined in the previous sections had

different Riccati equations because these systems have several differences that cause

these equations to evolve dissimilarly. In this section, we rewrite the discrete problem
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and demonstrate that as time intervals become increasingly small, the discrete Riccati

equation solution converges to the continuous solution.

Theorem 2. The discrete-time system outlined in (III.1) and (III.2) can be trans-

formed so that its solutions converge to the continuous-time solutions outlined in

(III.5) and (III.6).

Proof. To begin, we start with the typical continuous-time system given by equations

(III.5) and (III.6). To discretize this system, we rewrite (III.5) as a summation

over time periods that increment over integers and an integral over individual time

increments, ∆.

−E
∞∑
k=0

∫ ∆(k+1)

t=∆k

{e−ρt(x′tRxt + u′tQut)}dt = −E
∞∑
k=0

∫ ∆(k+1)

∆k

{e−ρtf(xt, ut, t)}dt

(III.14)

For convenience the boundaries on the integral will be changed from (∆k,∆(k + 1))

to (0,∆), thus f(xt, ut, t) must be transformed to f(xt+s, ut+s, t + s) and integrated

over ds. Using a Taylor approximation, the function becomes,

f(x∆k+s, u∆k+s,∆k + s) =x′∆kRx∆k + u′∆kQu∆k + 2x′∆kR(x∆k+s − x∆k) + 2u′∆kQ(u∆k+s − u∆k)

+R(x∆k+s − x∆k)
2 +Q(u∆k+s − u∆k)

2.

This function can be further simplified since x∆k+s − xs = (Ax∆k + Bu∆k)s and

u∆k+s− ut = u̇s where u̇ is a smooth function that summarizes that change in u over

an increment of time. Using these substitutions only a few terms in the function will

remain—as s2 ≈ 0 in the continuous-time limit,

f(x∆k+s, u∆k+s,∆k+ s) = x′∆kRx∆k +u′∆kQu∆k + 2x′∆kR(Ax∆k +Bu∆k)s+ 2u′∆kQu̇s

65



plugging this into (III.14) yields,

−E
∞∑
k=0

∫ ∆

s=0

e−ρ(∆k+s){x′∆kRx∆k + u′∆kQu∆k + 2x′∆kR(Ax∆k +Bu∆k)s+ 2u′∆kQu̇s}ds

Focusing on the inter integral,

∫ ∆

s=0

e−ρ(∆k+s){x′∆kRx∆k + u′∆kQu∆k + 2x∆kR(Ax∆k +Bu∆k)s+ 2u′∆kQu̇s}ds

= −1

ρ
e−ρ∆k[e−ρ∆ − 1](x′∆kRx∆k + u′∆kQu∆k).

Plugging this result3 back into the main summation term and replacing k with t while

setting x̂t = x∆, ût = u∆, and ρ̂ = ρ∆ yields,

−E
∞∑
t=0

1

ρ̂
e−ρ̂t[1− e−ρ̂](x̂′tRx̂t + û′tQût)∆ (III.15)

to get this into the typical discrete LQ format, as in (III.1), β, R, and Q must be

appropriately transformed. The discount factor β becomes β(∆) = e−ρ̂, R is now

R(∆) = 1
ρ
(1− e−ρ̂)R, and Q(∆) = 1

ρ
(1− e−ρ̂)Q.

Lastly, the equation for the evolution of the state variables must be transformed

by applying the Euler-Maruyama method to equation (III.6) yielding,

x∆(t+1) = (I + A∆)x∆t +B∆u∆t (III.16)

where I is an (n× n) identity matrix. Thus the transformed coefficients are A(∆) =

(I + A∆) and B(∆) = B∆.

We have now built a discrete version of the model that now takes increments of

time ∆ into account. As ∆ → 0, this system becomes our continuous-time version

3The term
∫∆

0
e−ρ(∆k+s){2x∆kR(Ax∆k + Bu∆k)s + 2u′∆kQu̇s}ds goes to zero after implementing

integration by parts and then using the power series expansion of e−ρ(∆), (1− ρ∆).
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of the model, which will have a slightly different numeric solution than the discrete

version of the model due to continuous-time discounting methods and constantly

evolving states. We turn to demonstrate that, numerically, the discrete version of the

model that utilizes time periods ∆ does converge to the continuous-time solutions as

∆ becomes increasingly small.

A Numerical Illustration

Now that we have shown all of the necessary variable transformations, we can

examine the convergence of the transformed discrete-time system to the continuous-

time system. As shown in figure III.1 after decreasing ∆ from 1.0 to 0.001 the

transformed discrete-time system converges to the same solution as the continuous-

time system.

Figure III.1

Figure III.1 displays the unique tie between the discrete-time LQ solutions and

the continuous-time version. Thus far, our analysis has focused on deterministic

LQ problems. To applied adaptive learning techniques properly, we need to add

stochasticity to our problem; this is our main focus in the following section.
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III.3 A Model with Stochasticity

Thus far, the models explored were deterministic, meaning that our states evolved

according to a known process that did not involve randomness. We now recast our

state variables so that they evolve according to a stochastic process. Thus specific

state values are impacted by a random normally distributed shock each period. Fur-

thermore we include interaction terms between x and u, these are summarized by

the (n × m) matrix W . Our stochastic optimal linear regulator problem takes the

following form,

V (x0) = max
u
− E

∫ ∞
t=0

e−ρt{x′tRxt + u′tQut + 2x′tWut}dt. (III.17)

Where the state of the system, xt, evolves according to a continuous-time stochastic

process

dxt = Axtdt+Butdt+ CdZt (III.18)

here dZt is the increment of the Wiener process4 and A is again assumed to be

symmetric. As before xt is an (n × 1) vector of state variables and ut is a (m × 1)

vector of control variables.

The HJB for this problem can be found using the same approach implemented in

section III.2. In the stochastic case our HJB is,

ρV (x) = max
u
− x′Rx− u′Qu− 2x′Wu+

1

dt
E
(
Vx(x)dxt +

1

2
Vxx(x)(dxt)

2

)
. (III.19)

Note that unlike the HJB in (III.8), this HJB equation has an additional term that

comes from applying Itô’s lemma to the stochastic process for dxt (Dixit, 1992). This

additional term changes the proposed V (x) (Hansen and Sargent, 2013). When using

4The increment of the Wiener process can be approximated as dZt = εt
√
dt where εt ∼ N(0, 1).

Thus, E[dZt] = 0 and E[(dZt)
2] = dt

68



the guess-and-verify method for the stochastic problem our initial posit is,

V (x) = −x′Px− ξ

where P is a positive semi-definite matrix and ξ is a constant that does not depend

on our state or control variables. Substituting the proposed value function for V (x)

in (III.19) yields,

ρx′Px+ ρξ = max
u
{x′Rx+ u′Qu+ 2x′Wu+ 2x′P (Ax+Bu) + P (CC ′)}. (III.20)

As before, our goal is to create a recursive solution method for finding the matrix P .

To accomplish this, we must eliminate u and x from equation (III.20). The policy

function for u is almost the same as before; however, it now includes the interaction

terms in W ,

u = −(Q′)−1(W + PB)′x = −Fx.

Using this policy function to remove u and x from (III.20) produces,

ρP = R + F ′QF − 2WF + 2A′P − 2PBF

ρξ = PCC ′.

Our continuous-time system of equations is similar to the discrete stochastic case dis-

cussed in Hansen and Sargent (2013) in that the matrix C that multiplies the Wiener

process dZt does not impact P ; instead, it affects ρ. The matrix P is independent of

the stochasticity in this problem, a beneficial outcome since we can now solve the more

complex stochastic problem by finding the solution to the more simple deterministic

version. Steady-state solutions for this type of system can be found recursively like
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in section III.2.1 using the following recursive scheme,

Pi = −(2Ã′i)
−1(F̃ ′iQ

−1F̃i +R− 2WF̃i) (III.21)

ξi = ρ−1trace(Pi−1CC
′), (III.22)

where Ãi = (A−BF̃i−.5ρ) and F̃i = (Q′)−1(W+Pi−1B)′. These equations will provide

a positive semi-definite solution for the matrix P and a solution for the constant ξ as

long as the conditions outlined in LQ.1-LQ.3 hold.

III.3.1 Convergence in the Complex Case

Before moving on, it is worth noting that under transformations similar to those

in section III.2.2 a discrete version of this system converges to the continuous model

we described in the previous section. The necessary transformations are β becomes

β(∆) = e−ρ̂, R is now R(∆) = 1
ρ
(1 − e−ρ̂)R, Q(∆) = 1

ρ
(1 − e−ρ̂)Q, W (∆) = 1

ρ
(1 −

e−ρ̂)W , A(∆) = (I + A∆) and B(∆) = B∆, and C(∆) = C
√

∆ where ρ̂ = ρ∆. To

test convergence for this model, we used the same univariate case as in section III.2

with W = 1.0 and C = 1.0. The rate of convergence for the matrix P in the complex

case is similar to the rate of convergence in the simple case considered earlier.

Figure III.2

(a) (b)

In figure III.2a the transformed discrete system’s value function, or P matrix,
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converges to the continuous system’s value function, and in figure III.2b the value

function’s constant term ξ converges to the continuous-time system’s constant. Fig-

ure III.2 demonstrates that even in the more complicated model, the discrete-time

system’s solutions can limit to the continuous-time solutions.

III.4 Learning Dynamics

The primary goal of this work is to capture an agent’s behavior under bounded

rationality in a basic continuous-time setting. To fulfill this objective, we need a

continuous-time updating rule to describe how agents take-in information and adap-

tive learning dynamics define how agents’ choices and forecasts impact their future

observations. In this section, we outline both a continuous-time updating rule and

adaptive learning dynamics. Modeling the agent’s ability to update forecasts is done

using a continuous-time analog to recursive least squares (RLS) (Lewis et al., 2007),

we derive our version of continuous-time RLS using the continuous-time Kalman

filter. Adaptive learning dynamics used in this paper follow shadow-price learning

techniques from Evans and McGough (2018).

III.4.1 Continuous-Time Recursive Least Squares

Recursive algorithms are used to estimate parameters and states in a wide variety

of models. However, as stated in Ljung and Söderström (1983), “There is only one

recursive identification method. It contains some design variables to be chosen by

the user.” While this statement is not valid for all models, we can use the same

general algorithm for a wide variety of linear regression and state-space models. This

relationship between recursive algorithms has been often noted for the Kalman filter

and LQ problems as in Ljungqvist and Sargent (2012); however, we explore this

relationship with two other standard recursive algorithms in economics—recursive

71



least squares and the Kalman filter.

Connections between the Kalman filter and RLS are well understood in economics

research and have been cited in Branch and Evans (2006) and Sargent (1999). Ex-

ploiting the likeness of these two algorithms, we derive the RLS algorithm from the

Kalman filter. We first explore the connection between the Kalman filter and RLS

in discrete-time to better understand their linkage before examining both these sys-

tems in continuous-time. Direct connections between discrete and continuous-time

recursive algorithms have been noted in Ljung (1977) and Lewis et al. (2007). These

relationships prove helpful when we turn to examine continuous-time algorithms.

The recursive least squares algorithm used in adaptive learning literature is not

more conceptually complex than weighted least squares. We derive RLS as a simple

weighted least squares algorithm. The main difference between RLS and weight

least squares is that our RLS algorithm is designed to update and account for new

information each period. Instead of having our agent re-run their estimation scheme

each period RLS has built-in updating methods that take into account the agent’s

original estimation and the updated information. As with most least squares methods

our problem begins with a simple linear regression,

yt = θ′xt + et

where et ∼ N(0, 1). Here our agent can estimate the model parameters, θ, by choosing

an estimator that minimizes the model’s errors. We select a generic least-squares

method that allows for the possibility of weights,

VN(θ) =
1

N

N∑
t=1

αt[yt − θ′xt]2 (III.23)

where N is the number of observations in the data and αt is a weighting vector that

may depend on time. The weighting vector αt is indirectly related to the gain sequence

72



in adaptive learning literature, it is one of two parameters that determines whether or

not our system has constant gain (all data points are evenly weighted) or decreasing

gain (as more data is accumulated the data are gradually given less weight). The

optimal method of setting αt depends on the variance of et. For simplicity we set

αt = 1, i.e. we assume et ∼ N(0, 1). Implementing this least-squares method we can

derive a common form of RLS that uses decreasing gain,

θ̂t = θ̂t−1 +
1

t
R−1
t xt[yt − θ̂′t−1xt],

Rt = Rt−1 +
1

t
[xtx

′
t −Rt−1]

This recursive algorithm estimates coefficients based on observations and estimates

of the second moment Rt. The avoid the matrix inversion in the system above we

can instead use Pt = (t ·Rt)
−1.

Pt = [P−1
t−1 + xtx

′
t]
−1

= Pt−1 −
Pt−1xtx

′
tPt−1

1 + x′tPt−1xt
.

Thus our system will become,

θ̂t = θ̂t−1 + Lt[yt − θ̂′txt], (III.24)

Lt =
Pt−1xt

1 + x′tPt−1xt
, (III.25)

Pt = Pt−1 −
Pt−1xtx

′
tPt−1

1 + x′tPt−1xt
. (III.26)

The method of deriving RLS examined thus far is not ideal. While it does intuitively

connect the least-squares framework to our agent’s recursive updating scheme, it is

distant from the behavioral perspective from which we want to examine forecasting.

Re-approaching this algorithm from a filtering viewpoint allows us to separate two

key parts of developing forecasts: one, how do individuals observe information, and
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two, how do they use this information to develop forecasts.

Now, we re-derive recursive least squares using Kalman filter, a recursive algorithm

used for tracking unobservable states. Suppose we have the following state-space

model,

Transition Equation: xt+1 = Atxt + wt, (III.27)

Measurement Equation: yt = θ′txt + et (III.28)

Where {wt} ∼ N(0, Rt) and {et} ∼ N(0, rt), rt and Rt may be defined as constants.

The Kalman filter is a valuable method for examining our agent’s behavior and beliefs

via parameters rt and Rt. As previously mentioned, our agent can weigh observations

one of two ways, they can either give more weight to the first few observations and

decrease weights to data points observed at later dates or give all observations equal

weighting. For the first method, decreasing gain, we select Rt = 0 and rt = 1,

meaning the agent believes there is no noise behind the process for xt and the errors

for equation (III.28) are from an i.i.d white noise process. A constant gain system

requires Rt = γ
1−γPt and rt = (1 − γ) where γ ∈ (0, 1) is our “constant.” Under

constant gain, the agent believes their forecasts to be subject to some error and that

the states they are trying to predict, xt, are stochastic. Under constant gain, learning

forecasts oscillate about equilibrium and are expected to respond to shocks in all

periods equally.

A general Kalman Filter, that allows for the possibility of either type of gain, can

be described by the following equations

xt+1 = Atxt +Kt[yt − θ′txt], (III.29)

Kt =
AtPtθ′t

rt + θtPtθ′t
, (III.30)

Pt+1 = AtPtA′t +Rt − AtPtθ′t[rt + θtPtθ′t]−1θtPtθ′t. (III.31)
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Note the parallels between this and the system in (III.26). We can imagine these as

the same algorithm. If we re-imagine the state-space model we used to derive the

recursive least squares algorithm as,

Transition Equation: θt+1 = θt + νt (III.32)

Measurement Equation: yt = θ′txt + et (III.33)

where νt ∼ N(0, Rt) and et ∼ N(0, rt), the Kalman filter will become our RLS system

from (III.24)-(III.26) when Rt = 0 and rt = 1. This particular RLS system will have

a decreasing gain. The transition equation in (III.32) is now the transition equation

for model parameters θt instead of data xt, as shown in (III.32) the parameters in this

setting are constant over time. The measurement equation in (III.33) is essentially

the same as the measurement equation in (III.28); however, now there is uncertainty

about the parameters θt as apposed to the data xt. The decreasing gain Kalman filter

for the system described in (III.32) and (III.33) yields,

θ̂t+1 = θ̂t +Kt[yt − x′tθt], (III.34)

Kt =
Ptxt

1 + x′tPtxt
, (III.35)

Pt+1 = Pt − Ptxt[1 + x′tPtxt]−1x′tPt. (III.36)

As we can see this is equivalent to the system in (III.24)-(III.26) with Kt = Lt,

decreasing gain values for rt and Rt, and some modified timing conventions. Thus,

we can see the connection between the Kalman filter and RLS.

Constant gain RLS, which we did not derive earlier, is more easily defined from

the Kalman filter since it requires the agent to believe they are estimating a stochastic
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state. For constant gain RLS our Kalman filter derivation method yields

θ̂t+1 = θ̂t +Kt[yt − x′tθt],

Kt =
Ptxt

(1− γ) + x′tPtxt
,

Pt+1 =
1

1− γ
Pt − Ptxt[(1− γ) + x′tPtxt]−1x′tPt.

While this RLS algorithm is very similar to the decreasing gain case, it will not

generate the same results, although both may converge to the same equilibrium.

For our purposes, we need a version of RLS that assumes measurements are con-

tinuous functions of time. While not widely used, the continuous-time Kalman filter

is commonly implemented in some engineering and applied mathematics fields. A

continuous-time analog of RLS called the continuous-time recursive least squares fil-

ter does exist; however, as discussed, we would like an approach that allows us to

derive algorithms for decreasing and constant gain.

In this section, we derive the continuous-time Kalman filter using methods from

Lewis et al. (2007). First, we modify (III.27)-(III.28) to depend on increments of time

(∆) and recast our state transition matrix,

xt+1 = (I + At∆)xt + wt

yt = θtxt + et

here the covariance matrix for {wt} is Rt∆ and the covariance matrix for {et} is

rt/∆. First, we examine what happens to the Kalman gain in (III.30) as ∆→ 0. Our

Kalman gain becomes,

Kt =
(I + At∆)Ptθ′t
(rt/∆) + θtPtθ′t

or

1

∆
Kt =

(I + At∆)Ptθ′t
rt + θtPtθ′t∆
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and taking the limit of this as ∆→ 0 yields,

lim
∆→0

1

∆
Kt = Ptθ′tr−1

t . (III.37)

This is our continuous-time Kalman gain. Next, we examine (III.31),

Pt+∆ = (I + At∆)Pt(I + At∆)′ +Rt∆− (I + At∆)Ptθ′t[(rt/∆) + θtPtθ′t]−1θtPt(I + At∆)′.

Eliminating and terms and dividing by ∆ yields,

1

∆
Pt+∆ =

1

∆
Pt + AtPt + PtA′t +Rt − (I + At∆)Ptθ′t[rt + θtPtθ′t∆]−1θtPt(I + At∆)′.

Then, taking the limit as ∆→ 0,

lim
∆→0

1

∆

(
Pt+∆ − Pt

)
=
dPt
dt

= AtPt + PtA′t +Rt − Ptθ′t[rt]−1θtPt

this equation is our continuous-time covariance updating equation.

Last, we derive the estimate updating equation. In this setting (III.29) will be-

come,

x̂t+∆ = (I + At∆)x̂t +Kt[yt − θtx̂t]

diving this by ∆ will give us,

1

∆
(x̂t+∆ − x̂t) = Atẑt +

Kt

∆
[yt − θtx̂t].

Now, we can take the limit as ∆→ 0 and use equation (III.37),

dx̂t
dt

= Atx̂t + Ptθ′tr−1
t [yt − θ′tx̂t]
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this will be our systems estimate updating equation.

Thus our continuous-time Kalman filter for the system can be described by the

following equations.

dPt
dt

= θ′tPt + PtA′t +Rt − Ptθ′tr−1
t θ′tPt

K = Pθ′tr−1
t

dx̂t
dt

= Atx̂t +K[yt − θ′tx̂t]

Our corresponding transition and measurement equations for this filter are

dxt
dt

= Axt + wt

yt = θ′xt + vt

Here wt and vt are error terms and w ∼ N(0, Rt) and v ∼ N(0, rt).

Since we have established how to derive the continuous-time Kalman filter and the

Kalman filter’s connections to recursive least squares, we exploit these connections to

create a continuous version of RLS. We can rewrite our state-space model in (III.32)-

(III.33) as,

dθt
dt

= νt

yt = θ′txt + et

Now, νt ∼ N(0, Rt) and variance for et is rt, our RLS system will be

dPt
dt

= −Ptx′tr−1
t xtPt +Rt (III.38)

K = Ptx′tr−1
t (III.39)

dθ̂t
dt

= K[yt − θ̂′txt]. (III.40)
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The constant gain version of the algorithm used later on this paper can be represented

as

dPt
dt

=
1

1− γ
(−Ptx′txtPt + γPt)

K =
1

1− γ
Ptx′t

dθ̂t
dt

= K[yt − θ̂′txt].

For the decreasing gain version of the algorithm simply use rt = 1 and Rt = 0 in

equations (III.38)-(III.40). A more direct definition of continuous-time RLS that

stems from discrete RLS is included in the appendix.

We now have a continuous-time updating rule that will govern how our agents take

in information and updater their estimates of key model parameters. To complete our

adaptive learning model, we need one more item, adaptive learning dynamics, that

reflect how an agent’s estimates and perceptions impact the economy and the future

states the agent observes. Our approach to modeling these dynamics is shadow-price

learning. In the following section, we expand upon what shadow-price learning means

and define our adaptive learning model.

III.4.2 Adaptive Learning Rules in Continuous-Time

Before we can start analyzing and implementing adaptive learning in basic macroe-

conomic models, we need to develop our actual learning dynamics. Thus far, we have

created a rich environment that will facilitate learning and an updating algorithm

that will allow our agent to utilize the information they obtain; however, we still need

to connect the agent’s forecasts and choices to their impact on the agent’s perceptions

of the future. First, we review the continuous-time LQ problem described in section

III.3. Our agent seeks to maximize the value of a quadratic objective function by
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selecting a sequence of optimal choices ut.

V (x0) = max
u
− E

∫ ∞
t=0

e−ρt{x′tRxt + u′tQut + 2x′tWut}dt.

Where the state of the system, xt, evolves according to a continuous-time stochastic

process

dxt = Axtdt+Butdt+ CdZt

In the adaptive learning model agents gain information about a data generating pro-

cess for xt and use this information to update their predictions of parameters and op-

timal choices in turn their decisions will impact the states that they observe. Agent’s

modify their optimal choices in this setting using shadow-price parameters, in eco-

nomics these parameters function as future prices for objects that may not tradition-

ally have prices—i.e. capital or investment. The agent will update their estimates

of the system’s transition matrix, A, and the shadow price parameters which we will

denote as H (H = −2P ) using the continuous analog of recursive least squares. Esti-

mated values of A and H will then impact the agent’s policy decision and the shadow

prices they observe next period. Our use of H impacts our policy function, changing

it to

u = −1

2
(Q′)−1(2W −HB)′x = −F SP (H,B)x. (III.41)

To differentiate between this version of the continuous-time policy function and the

version define earlier we label the shadow-price version, F SP , and specify that it is a

function of shadow-prices, H.

Before delving into the adaptive learning model and the specifics of our adaptive

learning dynamics, we preview the interactions between our LQ model, continuous-

time RLS, and the adaptive learning methodology, and we develop later in this section.

Below is our adaptive learning algorithm that determines our model outcomes, please

note that we have formatted the learning algorithm in terms of changes in levels as
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opposed to time derivatives to more closely fit the formatting of stochastic processes

in macroeconomic literature.

dxt = Axtdt+Butdt+ CdZt

dPt =
1

1− γt
(γtPt − Ptxtx′tPt)dt

dH ′t =
1

1− γt
Ptxt(λt −Htxt)

′dt

dA′t =
1

1− γt
Ptxt(dxt −Butdt− Atxtdt)′ (III.42)

ut = −F SP (Ht, B)xt = −1

2
(Q′)−1(2W −H ′tB)′xt

λt = T SP (Ht, At, B)xt

γt = κ(t+N)−ν .

Here Pt is the covariance matrix for xt and γt is the gain sequence that measures the

response of estimates to forecast errors. For simplicity, we assume that the gain is

constant—ν = 0 and κ = 0.01. Additionally, F SP (Ht, B) is the policy under shadow

price learning and T SP (Ht, At, B) is the T-map—a link between agent’s perception

and the actual system, we will describe both functions as well as the link between H

and P in the following section.

Continuous-time Policies and the T-map

Previously we focused on solving optimal linear regulator problems using recursive

methods, meaning that given an approximation to the solution Vk(x) a new approx-

imation Vk+1(x) can be obtained. Note that here k is not a measure of time but

an index representing iterations. This approach conveniently lends itself to learning

algorithms as the first approximation Vk(x) can be viewed as the perceived value

function, using Vk(x) one can then compute the induced value function Vk+1(x). For

the following derivation we utilize P to represent the perceived value function matrix
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and V P (x) to represent the induced value function that results from the agent’s initial

estimation of P

ρV P (x) = max
u
{−x′Rx− u′Qu− 2x′Wu− 2x′P (Ax+Bu)− P (CC ′)} (III.43)

Agent’s need to select u in order to solve the value function problem in (III.43). The

unique optimal control decision for perceptions P is given by,

u = −F (P )x = −(Q′)−1(W + PB)′x.

We first examine the deterministic case for this problem, where C = 0. Recall from

earlier that the solution for our deterministic problem yields the solution for the

stochastic case. In this setting, the induced value function is defined as V P (x) =

−x′T (P )x, T (P ) is a function that maps the agent’s perception or initial estimate of

P to the resulting updated value function V P (x). The mapping function T (P ), more

formally called the T-map, for this problem is

T (P ) = (2Ã′)−1(F ′Q−1F +R− 2WF ) (III.44)

here Ã = A − 1
2
Iρ − BF . Note the right-hand-side of T (P ) is similar to the Riccati

equation (III.21). Based on it’s similarity to the Riccati equation and the underlying

iterative solution methods we can conclude that the fixed point of this T-map identifies

the solution to the agent’s optimal control problem. In the stochastic case where

C 6= 0 our T-map is given by,

T ε(P̃ ) = P̃ − ρ−1trace(P̃CC ′)
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where T (P̃ ) = P̃ . Optimally decision making in this setting is determined by the

fixed pint of T ε(P ∗ε ), P ∗ε . The fixed point of the stochastic system is directly related

to the solution for the deterministic case, P ∗, by the following equation

P ∗ε = P ∗ − ρ−1trace(P ∗CC ′).

Thus, the solution to the deterministic problem yields the solution to the stochastic

problem. This aligns with the rational expectations problems discussed earlier in this

work.

III.4.3 Shadow Price Learning

The learning dynamics outlined thus far have made strong assumptions about

the agent’s knowledge of the value function. In the problem outlined in (III.43), an

agent understands that the value function is quadratic in x, knows how to solve for the

matrix P by iterating on the Riccati equation, and knows parameters A and B. In the

following section, we modify these assumptions. As opposed to assuming the agent

knows A and B, we assume that the agent does know B, indicating they understand

how their control decisions impact the state. However, the agent is not assumed to

know the parameters of the state-contingent transition dynamics. Meaning they must

estimate A. Additionally, the agent in the following problem is not assumed to know

how to solve the programming problem. Instead, they use a simple forecasting model

to estimate the value of the state tomorrow—the shadow price of the state. The agent

then uses this estimate and an estimate of the transition equation to determine the

best control response for today.

We now outline a learning framework in which the agent forms expectations of

future shadow prices. The boundedly optimal behavior modeled in this section is

shadowing price learning or SP-learning (Evans and McGough, 2018). Under SP-
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learning, the agent believes that the shadow price, λ, is linear in x. Thus they can

forecast the shadow price as,

λt = Hxt + µt (III.45)

where µt is some error term. Using this perceived law of motion (PLM), we can create

a T-map for the agent’s perceptions using our HJB equation. we first estimate that,

E[Vx(x)] = λe = Hx

where λe is the updated estimate of λ. Plugging this into the HJB for our stochastic

LQ problem we get,

ρV (x) = max
u
{−x′Rx− u′Qu− 2x′Wu+ (Hx)′(Ax+Bu) +

1

2
(H ′CC ′)}.

In this new setting our policy function will depend on H and B,

u = −1

2
(Q−1)′(2W −H ′B)′x = −F SP (H,B)x (III.46)

this is the same policy function mentioned earlier in this section. Next, to get the

mapping from the PLM to the actual law of motion (ALM) we use the envelope

condition,

ρVx(x) = ρλe = −2x′R− 2u′W + 2x′A′H + u′B′H. (III.47)

We can rewrite (III.47) to clearly define expected shadow-prices λe,

λe =ρ−1{−2x′R− 2u′W + 2x′A′H + u′B′H}
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or

λe = T SP (H,A,B)x (III.48)

= ρ−1
(
− 2R + 2H ′A− (H ′B − 2W )F SP (H,B)

)
x.

This is the T-map we use to model the agent’s boundedly rational behavior. The

fixed points of this mapping correspond to equilibrium values of shadow-prices, H.

In terms of the shadow-price learning algorithm, the T-map provides feedback for

the agent’s choices and allows them to update to more optimal choices as they gain

experience and information.

Stability of shadow-price learning dynamics

The stability of the T-map is essential to learning dynamics. If the fixed points of

our T-map are not stable, it is possible that our agent will not reach an equilibrium

or that they will deviate from the desired rational expectations equilibrium. The

following conjecture provides conditions that should insure T-map stability in both

the discrete and continuous-time cases,

Conjecture 1. Assuming that LQ.1-LQ.3 hold, there exists an n× n solution P ∗ to

the Riccati equation given any symmetric positive definite initial matrix P0 (Evans

and McGough, 2018). Therefore Tm(P0)→ P ∗ as m→∞ and

1. T (P ∗) = P ∗—the solution P ∗ is a fixed point of the T-map.

2. DTv(vec(P ∗)) is stable—has eigenvalues less than one.

3. P ∗ is the unique fixed point of T among the class of n× n, symmetric positive

semi-definite matrices.

Thus, if the Riccati equation has asymptotically stable solutions, the T-map for

the system is stable. Conjecture 1 is proved to be true in the discrete-time setting
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in Evans and McGough (2018). Based on numerical and analytical results, it is

conjectured to hold true in the continuous-time setting as well.

Next, we will examine the solutions and stability of the learning system using

A = 0.0, R = Q = B = 1.0, W = C = 0, and ρ = 0.05. Our T-map (III.48) can be

rewritten as a function of H using these values. This function T (H) has two fixed

points. One at H̃ ≈ 2.880 and a second solution at H∗ ≈ −2.778. This second

solution is consistent with the solutions for P from both the continuous iterative

scheme and the icare function since H = −2P . Directly comparing the solution for

P from the iterative schemes and −1
2
H∗ there is a difference of 2.220× 10−16.

The solution H∗ is stable, based on stability conditions for the Riccati and the

T-map. For the continuous-time Riccati equation to be stable, A + BF SP (H∗, B)

must have eigenvalues with real parts less than one, and our T-map must satisfy the

condition that DT SP (H∗, At, B) has eigenvalues with real parts less than one. H∗

meets these stability conditions as,

A+BF SP (H∗, B) = −0.975, DT SP (H∗, A,B) = −39.012.

However, the unstable solution H̃ does not meet these criteria as

A+BF SP (H̃, B) = 1.025, DT SP (H̃, A,B) = 41.012.
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Figure III.3
T-map

Now that we have examined adaptive learning dynamics and derived a continuous-

time version of RLS, we can examine the convergence of the learning algorithm out-

lined in (III.42).

Continuous-Time Learning Results

Using the learning dynamics we have already developed, we examine how the

agent in the univariate learning model estimates the shadow-price parameter H. As

shown below in figure III.4, when using an approximation of the length of the time

increment (dt ≈ 0.01) and constant gain (γ = 0.01) the method outlined in (III.42)

will converge to the rational expectations equilibrium.
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Figure III.4
Univariate Continuous-Time SP-Learning

Though our result is simple, it is encouraging that our adaptive learning displays

convergence to rational expectations equilibrium. One would expect and hope that

a simple stochastic model would display the behavior exhibited in III.4. For better

reference, we compare our results to a discrete-time system where an agent’s bounded

rational behavior can be modeled by the following equations (Evans and McGough,

2018),
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xt = Axt−1 +But−1dt+ Cεt

Rt = Rt−1 + γt(xtx
′
t −Rt−1)

H ′t = Ht−1 + γtR−1
t−1xt−1(λt−1 −Ht−1xt−1)′

A′t = At−1 + γtR−1
t−1xt−1(xt −But−1 − At−1xt−1)′ (III.49)

ut = −F SPD(Ht, At, B)xt

= (2Q− βB′HB)−1(βB′HAt − 2W ′)xt

λt = T SPD(Ht, At, B)xt

=
(
− 2R− 2WF SPD(Ht, At, B) + βA′tH

(
At +BF SPD(Ht, At, B)

))
xt

γt = κ(t+N)−ν .

Here (t · Rt)
−1 = Pt, this does impact the model besides requiring the use of matrix

inversion. Using the equivalent parameter values from our univariate continuous-time

case this system has comparable convergence results,

Figure III.5

both models convergence to rational expectations equilibria; however, by construc-
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tion the continuous-time case updates more frequently and experiences more rapid

changes over time. In an economic model, this could lead to second-moments vary-

ing between continuous and discrete models, depending on the setting and how the

models are calibrated. This could lead to better-fitting second moments from our

continuous-time model.

Our results thus far are encouraging. In the simplest case, our continuous-time

learning algorithm converges to rational expectations equilibrium and performs com-

parably to a well-tested discrete-time algorithm. In advance of moving to a more

complicated and economically motivated LQ problem, we exploit our simple uni-

variate test case to inspect whether our discrete learning algorithm can converge to

continuous-time rational expectation equilibrium.

Convergence in the Context of Learning

In section III.3, we showed that our discrete-time system’s solution for the value

function matrix P can converge to the continuous-time solution under certain trans-

formations. Similarly, we will show that the discrete learning rule outlined in equation

(III.49) with γt = (0.01)∆ converges to the continuous-time expected shadow price

parameter when ∆ is sufficiently small.

Figure III.6 shows how the discrete learning rule responds under the transforma-

tions in section III.3 with select values of ∆.5 In figure III.6 the modified discrete

learning rule gradually gets closer to the continuous-time rational expectations solu-

tion as ∆ gets increasingly small.

5The learning iterations in figure III.6 have been re-scaled for easier representation. Each iteration
is equivalent to a discrete time period t = 1, 2, . . . 10, 000 that contains ∆−1 observations. Meaning
that for ∆ = 1/4 this graph is displaying the results from 40, 000 iterations
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Figure III.6
Univariate Discrete-Time SP-Learning

III.5 A Robinson Crusoe Economy

Now that we have developed the modeling framework for continuous-time LQ

problems and examined basic learning rules in this setting, we can examine a slightly

more involved model.

We begin with a simple Robinson Crusoe economy as in, Evans and McGough

(2018). The representative agent in this model maximizes a quadratic objective func-

tion that depends on their consumption decisions, preferences, and resources

max
ct
− E

∫ ∞
t=0

e−ρt
(
(ct − bt)2 + φl2t

)
(III.50)
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where the economy is subject to,

yt = A1st

dst = (yt − ct − st)dt+ dZt

st = lt (III.51)

bt = b∗

as before dZt is the increment of the Wiener process. The model we have outlined in

(III.50) and (III.51) is a version of the discrete Robinson Crusoe (RC) model used in

Evans and McGough (2018).

The agent in our setting has only one consumable good, fruit, and only one means

of production, growing trees from seeds of the fruit. Thus, income yt can be thought

of as fruit, and consumption ct as consumption of that fruit and its seeds. The

production of the fruit comes from planting seeds, st. The change in the number of

seeds over time depends on growing conditions—represented by the increment of the

Wiener process dZt—and leftovers from consumption. In this one-person economy,

work is burdensome and causes disutility for the worker (φ > 0). Lastly, bt is a bliss

point represented by the constant b∗.

We have simplified this model to maintain similarities between a continuous and

discrete case. For instance, we do not have a possible time lag in production—in this

model, young trees and old trees produce the same amount. Additionally, the bliss

point is non-stochastic, and there are no productivity shocks; instead, production

only depends on the availability of seeds.

To analyze this model in our LQ environment, we need to transform this system

into the format from (III.17) and (III.18). We set our state vector as xt = (1, st)
′ and
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the vector of control variables to be ut = ct. Our states evolve according to,

dxt = Axtdt+Butdt+ CdZt.

The matrices A, B, and C are defined as

A =

0 0

0 A1 − 1

 , B =

 0

−1

 , C =

0

1

 .
The final objects necessary for transforming our RC model into an easy to analyze

LQ problem are the R, Q, and W matrices. Given the already quadratic nature of

the agent’s objective function we can find via inspection that,

R =

b∗2 0

0 φ

 , Q = 1.0, W =

−b∗
0

 .
Using these matrices and parameter values we can now calculate the rational expec-

tations equilibrium for this system and implement our adaptive learning model.

III.5.1 Learning in the Continuous RC Model

In this setting, it is likely that our agent does not know the parameters of the

production function, or the value of an additional tree tomorrow. However, the agent

can use the system outlined in (III.42) to forecast these unknown values. As the agent

gains more information they can update their parameter estimates using (III.42); the

matrices B, C, R, Q, and W ; and initial values for At, Ht, Pt, and λt.

Under the learning rules described in (III.42), the agent learns parameters for the

matrix H and the matrix A (in this case, both are a 2× 2 matrix). To generate data

for this model, an approximation for dt was necessary. For the following results, we

used dt ≈ ∆ = 1/100. Additionally, we used a constant gain term where κ = 0.01,
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and ν = 0.

Figure III.7
Expected Shadow-Price Parameters, The Continuous Case

As shown in figure III.7, an agent with boundedly rational behavior modeled by

(III.42) will be able to generate an accurate estimate of the steady-state shadow price

parameters. In figure III.7 we plot 10, 000 discrete time periods, in the continuous-

time case with dt = 0.01 this means we have included 1, 000, 000 learning iterations

or updates of the shadow-price parameters.

III.5.2 Learning in the Discrete RC Model

A discrete version of this model with, as outlined in Evans and McGough (2018),

converges similarly with the same constant gain parameter. Below we have plotted

10, 000 discrete periods to make it easy to compare the convergence of this system to

the continuous system in section III.5.1.
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Figure III.8
Expected Shadow-Price Parameters, The Discrete Case

The agent in our discrete-time shadow-price learning model displays similar be-

havior to our continuous-time agent. Both agents converge to rational expectations

equilibrium, and both estimations oscillate about their respective equilibrium. One

interesting outcome in this model is that the continuous-time shadow-price value cor-

responding to our constant converges more quickly in our continuous-time model.

Additionally, analysis on continuous-time learning techniques may provide insight

into why this occurs; however, there is no intuitive explanation.

III.6 Conclusion

As continuous-time macroeconomic literature expands, it is necessary to modify

and re-evaluate discrete modeling techniques in this framework. Adaptive learning

mechanisms are particularly essential to modify as they relax the strong assumption

of rational expectations—the belief that agents forecast optimally. The shadow-price

learning technique outlined in the previous sections goes beyond easing rational ex-

pectations, as it also examines the optimality of an agent’s decisions as they optimize
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according to their forecasts. Since agents in this setting use available information to

forecast their shadow-prices and then make control decisions based on their forecasts

(Evans and McGough, 2018).

It was beneficial to develop a continuous-time linear-quadratic framework for

macroeconomic models to implement shadow price learning in a continuous-time envi-

ronment efficiently. Other disciplines, such as engineering, frequently use continuous-

time linear quadratic methods (Vrabie et al., 2009; Lewis, 1986). However, very few

examples of economic models in this framework exist (Hansen and Sargent, 1991). Af-

ter building this general framework, we examined convergence results and equilibrium

stability in this class of models.

Within this continuous-time LQ framework, we implemented a continuous analog

to recursive least squares and analyzed a continuous-time T-map. This system yielded

results that suggest an agent can learn to optimize decisions in both simple univariate

cases and with more sophisticated models. This paper serves as a basic template for

continuous-time shadow-price learning. Our main result is simply that shadow-price

learning can be done in continuous-time through the framework we have defined.

The basic tools provided in this chapter lay the groundwork for many poten-

tial applications and explorations of adaptive learning methods in continuous-time

macroeconomic models. Our RLS algorithm creates a baseline for updating rules

in a continuous-time setting, which is necessary for nearly all learning models. The

continuous-time LQ framework implemented in this chapter is restrictive since most

macroeconomic models are not linear-quadratic. However, our LQ setting provides

a basis from which a well-sized class of models can be explored and allows us to be-

gin exploring the underlying dynamics and differences that occur in continuous-time

settings.
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CHAPTER IV

BOUNDED RATIONALITY IN

MACROECONOMIC MODELS: A

CONTINUOUS-TIME APPROACH

IV.1 Introduction

Macroeconomic models often assume that both changes in the economy and agent’s

decisions occur at quarterly intervals, since data are most often available at that fre-

quency. This approximation is bound to generate a loss of precision; since individu-

als make decisions about their employment, consumption, and investment at higher

frequencies—arguably every day—despite less frequent economic data on these mea-

sures. In the economy, factors such as productivity and technology also change at a

high frequency since computing power and innovations change rapidly. While discrete-

time models provide useful insight into the economy, parameters that evolve quar-

terly and quarterly decision making can produce less accurate measures of volatility

in real business cycle models (Aadland, 2001). One way to easily capture these high-

frequency changes is continuous-time modeling, which assumes that the economic

system is constantly evolving. Thus, building economic models in continuous-time

provides an attractive alternative to discrete-time modeling.

We use a continuous-time real business cycle model combined with continuous-

time adaptive learning dynamics, which allow our agent to improve their forecasts of

key parameters and their optimal choices at high frequencies, to show that volatil-

ity of parameter estimates can be improved using high-frequency information. We
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demonstrate that the continuous-time model has less volatile parameter estimates

as the agent’s forecasts near rational expectations equilibrium (REE). Additionally,

when examining these models near REE, the second moments of the continuous-time

model came closer to matching relative moments from economic data than the model’s

discrete version.

We chose the continuous-time setting not just because of its ability to include high-

frequency data and dynamics easily but also because it has a few key advantages over

discrete-time and has recently gained popularity in macroeconomics. This class of

models had been studied and examined in the past; however, continuous-time models

did not gain the same prevalence as discrete-time modeling in economics due to their

more complicated solution methods (Merton, 1971; Mirman, 1973; Mirrlees, 1971).

With increased computing power and more interdisciplinary research from applied

mathematics and engineering, continuous-time macroeconomic models can now be

easily solved even if they are involved. There are several different solution methods

for these models ranging from viscosity solutions as in Kaplan et al. (2018), Achdou

et al. (2020), and Ahn et al. (2018) to martingale methods as in Brunnermeier and

Sannikov (2014).

As this literature enters the mainstream, it is necessary to modify macroeco-

nomic modeling tools standard in discrete-time research. Thus far, continuous-time

macroeconomic literature has focused almost exclusively on rational expectations,

a modeling assumption wherein the agent knows key model parameters’ values and

distributions. We aim to extend an alternative to rational expectations, adaptive

learning, to continuous-time literature. Adaptive learning models allow the agent

to misspecify parameters and then—using data or knowledge that becomes available

over time—update their estimates of these parameters. One complication with ex-

tending this technique is time-dependency in continuous-time models. For instance,

the viscosity solution method and the martingale method both require the system to
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be either independent of time or if the system is time-dependent, it must be solved

working backward from the steady-state (i.e., t = ∞). Neither of these methods

creates an ideal environment for learning; solving the system from the end of time

backward does not facilitate the agent’s observation of new data. Additionally, the

solution methods for continuous-time systems that do not depend on time lack the

necessary feedback mechanisms for learning.

The insufficiency of feedback and observability in these methods necessitates the

re-examination of continuous-time macroeconomic problems in a new environment. In

this work and previous work, we have examined a linear-quadratic (LQ) framework

that though independent of time, allows for the feedback necessary for agent-level

adaptive learning. There are extensive studies of discrete LQ environments in eco-

nomics and other fields, as outlined in Kendrick (2005). One of the LQ setting’s key

features is that the agent maximizes an objective function with a quadratic form, lead-

ing to linear first-order conditions. However, most economic models are non-linear

and do not fit into the traditional LQ format. Several papers, including Benigno and

Woodford (2004, 2006, 2012), use discrete-time linearization techniques to recast non-

linear models into the LQ setting. Benigno and Woodford (2012) examines various

linearization frameworks and how to ensure accurate linearization, the LQ methods

implemented in this paper carefully follow the dynamic programming approach out-

lined Benigno and Woodford (2012) and Hansen and Sargent (2013).

With few exceptions (Hansen and Sargent, 1991), the continuous-time LQ envi-

ronment has been under-explored in the economic literature, despite its promise for

building tractable and complex economic models. The field of computational finance

has a considerable number of works on the continuous-time LQ environment, includ-

ing Forsyth and Labahn (2007), Wang and Forsyth (2010), Huang et al. (2012), and

Xie et al. (2008). In these papers, the optimization problems have a finite horizon,

making these LQ settings distinct from the one we will outline in this paper. Addition-

99



ally, some studies implement learning dynamics in linear optimal regulator problems;

for instance, Vrabie et al. (2007) and Wang and Zhou (2019) focus on reinforcement

learning in an LQ environment.

Recasting non-linear models into the LQ setting has a few key advantages. The LQ

framework allows for the inclusion of many economic variables in a compact model,

allowing economists to study complex economies with ease. Additionally, solving

LQ problems tends to be less computationally intensive than solution methods for

complex non-LQ economies. These advantages are particularly relevant in the context

of rational expectations equilibrium, solving the REE of the models outlined in the

following sections takes mere seconds using the LQ solution methods. This setting’s

solution method also does not depend on sparse grids or complicated differentiation

schemes. The most important advantage of the LQ-setting, concerning adaptive

learning, is that LQ methods contain important feedback mechanisms that allow

us to understand the decisions an agent makes based on their observations; this is

especially important in our shadow-price learning setting.

We aim to not only create a continuous-time setting where an agent learns how

to forecast parameter values accurately; we construct a framework in which an agent

learns to forecast and make decisions optimally. An adaptive learning technique that

accomplishes both of these goals is shadow-price learning. Shadow-price learning,

or SP-learning, assumes the agent uses observations of state variables to understand

how the states evolve and future shadow prices. Using these estimates, the agent

modifies their behavior using updated shadow prices and the state transition dynamics

through the LQ framework’s built-in feedback mechanism. Since the state variables’

evolution depends on the agent’s choices, the agent’s behavior influences the states

they observe. Eventually, after gaining enough information, the agent in our SP-

learning environment learns how to make decisions optimally and how to forecast

future state values.
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SP-learning allows us to examine better our agent’s ability to learn to forecast and

make decisions in our economy. The agent in our setting does not know the conditional

distribution of key variables and faces uncertainty in our stochastic environment. It

has been shown that discrete-time SP-learning can converge asymptotically to fully

optimal decision-making in Evans and McGough (2018); we demonstrate that those

same results hold in the continuous-time version of a real business cycle (RBC) model.

We also compare the results of the continuous-time SP-learners to their discrete-time

counterparts. Other works have explored various adaptive learning dynamics in RBC

models, including Branch and McGough (2011), Eusepi and Preston (2011), and

Mitra et al. (2013); this paper builds on this literature by re-examining learning in a

continuous-time real-business cycle model.

We also explore data frequency dynamics in the continuous-time version of the

model after inspecting the relationship between the discrete and continuous-time ver-

sions of the model and learning outcomes in these settings. Though often overlooked

in macroeconomic models, data frequency impacts real-world decisions and macroe-

conomic outcomes. The importance of data frequency in estimating continuous-time

financial models via maximum-likelihood methods has previously been studied in

Aı̈t-Sahalia (2010), which examines model estimation based on exact discrete-time

estimates that take time-interval length into account. Here we approach this problem

using learning algorithms that rely on recursive least squares instead of the maximum

likelihood approach.

As part of this exercise, we relax the assumption of continuous updating to better

match empirical reality. Our approach assumes that the agent views the time and

the economic changes as continuous occurrences and estimates a continuous-time ver-

sion of our RBC model. Because real-world agents take in information at discrete

time intervals and then, in turn, use this information to update their parameter esti-

mates. Some additional considerations have been made regarding data observation.
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In particular, we examine how observing continuous processes at different frequencies

impacts agents’ responses and how information asymmetries can influence economic

outcomes by comparing outcomes in an RBC model under learning with varying data

collection frequencies and examining a version of the model wherein the agent collects

data at varying frequencies. This question of how data availability can impact eco-

nomic agents is of increasing importance since data today is available at increasingly

higher frequencies. While quarterly data will likely be the most common frequency

in macroeconomic data for some time to come, as macroeconomists move to include

more micro-data and even big-data in macroeconomic analysis, we must consider how

data frequency can impact our models.

Our work accomplishes several tasks; first, we demonstrate that the continuous-

time learning algorithm does converge to rational expectations equilibrium. Then

we closely contrast the outcomes of discrete and continuous-time learning models.

Our comparison highlights the varying outcomes between these models, particularly

the differences between the volatility of estimates and convergence rates in this set-

ting. Additionally, we explore the linearization of simple macroeconomic models

in continuous-time. There is sparse literature on this topic; some linearization of

continuous-time macroeconomic models has been researched in other settings (Ahn

et al., 2018). We also build on the work done in Evans and McGough (2018) and

demonstrate that SP-learning can be modified for a continuous-time setting. Lastly,

we examine how data collection can impact the agent’s decisions in our model’s

continuous-time version.

This paper proceeds as follows, section IV.2 outlines a simple real business cycle

model in continuous-time and describes the SP-learning algorithm that the continuous-

time agent uses to estimate parameters. A discrete-time version of this model is in-

cluded in the appendix. After separately examining the discrete and continuous-time

algorithms, we compare the rational expectations equilibrium of both settings and the
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learning outcomes in section IV.3. In this section, we compare the second moments

of the discrete and continuous-models to the data; the continuous-time version of the

model slightly outperforms the discrete version when examining standard deviations

of key variables relative to the standard deviation of output. The fourth section ex-

amines the impact of data frequency on continuous-time models under learning. The

final section concludes.

IV.2 A Real Business Cycle Model—An LQ Ap-

proach

The framework used throughout this paper is that of a standard real business

cycle model. We select this framework because our baseline model’s simplicity allows

us to add complex dynamics more easily. To efficiently use common SP-learning

methods defined in Evans and McGough (2018), we need our RBC model to fit into a

linear quadratic format. Accomplishing this involves linearizing our model objective

function and recasting it into a quadratic form. The purpose of utilizing the LQ

framework is to generate a model that can be solved recursively with clear and well

defined connection between our agent’s perceptions, or initial prediction for the value

function, and the rational expectations equilibrium value. The continuous-time real

business cycle model has a few key differences from a familiar discrete model. Our

objective function maintains a similar form; it employs an isoelastic utility function

that depends on labor and consumption. However, our discount factor is represented

by an exponential function. Additionally, the processes that describe the evolution

of capital and government spending now follow Brownian motions. Our household

maximizes the following objective function over consumption and labor input,

V (k0, z̃0) = max
ct,kt,ht

E
∫ ∞
t=0

e−ρt
{
c1−σ
t

1− σ
− χ h

1+ϕ
t

1 + ϕ

}
(IV.1)
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subject to the following conditions on consumption, productivity, and capital,

ct + it = Akαt (ez̃tht)
1−α (IV.2)

dz̃t = −θz̃ z̃tdt+ σz̃dZt (IV.3)

dkt = (−δkt + it)dt. (IV.4)

In equation (IV.3) z̃ represents the logarithm of productivity and dZt is the increment

of the Wiener process1. Firms in this economy maximize profits, using a Cobb-

Douglas production function, f(kt, z̃t) = kαt (ez̃tht)
1−α. Under this production function

the equilibrium rental rate on capital is rt = αAkα−1
t (ez̃tht)

1−α and the equilibrium

wage is wt = (1− α)Akαt (ez̃tht)
−αez̃t .

It is standard to take a dynamic programming approach to find the system’s

steady-state. Our value function problem takes the form of a Hamilton-Jacobi-

Bellman (HJB) equation—the continuous-time analog of a Bellman equation. The

HJB for the household’s problem takes the following form,

ρV (kt, z̃t) = max
ct

{
c1−σ
t

1− σ
−χ h

1+ϕ
t

1 + ϕ

}
+Vk(−δkt+Akαt (ez̃tht)

1−α− ct)−θVz̃ z̃t+
1

2
Vz̃z̃σ

2
ε

the terms Vk, Vz, and Vzz all represent partial derivatives of the value function V (k, z)

these terms are functions of k and z. The main difference between the HJB and

a Bellman equation is how expectations are handled in continuous-time. Deriving

expectations of the future value function requires using Itô’s lemma since our state

variables’ evolution depends on continuous-time stochastic processes. Using the HJB

we can find the non-stochastic steady state values for our parameters by analyzing

1One method of approximating dZt, is setting dZt = εt
√
dt where εt ∼ N(0, 1) (Dixit, 1992). Thus

the increments of the Wiener process are independent and Gaussian.
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this system’s first order conditions

ρVk = Vk(αAk
α−1(ez̃h)1−α − δ)

c−σ = Vk

χhϕ = Vk(1− α)Akα(ez̃h)−α

in this setting Vk is analogous to the shadow-price of capital as it measures the esti-

mated value of a unit of capital. With our first order conditions defined, a numerical

optimizer can be used to find the non-stochastic steady-state for our household’s prob-

lem. Knowing the non-stochastic steady-state values of key parameters allows us to

linearize our model about this point and simplifies the eventual LQ system we build in

this work. After finding the system’s non-stochastic steady state, we re-examine the

planner’s problem. First, we eliminate consumption, ct, from our objective function

by re-writing it as a function of capital, labor, investment, and productivity. This

allows us to recast our maximization problem so that it only depends on state and

control variables,

V (x0) = max
xt,ut

E
∫ ∞
t=0

e−ρtr(xt, ut).

where,

r(xt, ut) =
1

1− σ
[Akαt (ez̃tht)

1−α − it]1−σ − χ
h1+ϕ
t

1 + ϕ

The vectors xt and ut contain the state and control variables for the system, xt =

(1, kt, z̃t)
′ and ut = (ht, it)

′. Now that the maximization problem is in terms of

the state and control vectors, we use a second-order linear approximation of r(x, u)

about the non-stochastic steady state to recast the maximization problem into a

linear-quadratic format.

The second-order Taylor expansion about the steady-state—where x̄ and ū are the

steady-state values of x and u is standard and the same in continuous and discrete-
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time,

r(x, u) = r(x̄, ū) + (x− x̄)′rx(x̄, ū) + (u− ū)′ru(x̄, ū)

+
1

2
(x− x̄)′rxx(x̄, ū)(x− x̄) +

1

2
(u− ū)′ruu(x̄, ū)(u− ū)

+ (x− x̄)′rxu(x̄, ū)(u− ū)

automatic differentiation can be used to compute the partial derivatives of r(x, u).

Once this is complete the problem is easily reformatting into a linear quadratic prob-

lem. This system does not gain any terms from Itô’s lemma since the Taylor expansion

is about a single point, instead of a stochastic process.

The maximization problem can now be put into a standard LQ representation.

Our objective function now depends on several matrices, R is a 3 × 3 matrix that

summarizes how our states impact the optimization problem directly, Q is a 2 ×

2 matrix that describes how choice variables affect the system, and W is a 3 × 2

matrix that captures indirect effects (terms that involve both x and u). Below is the

continuous-time LQ representation of our RBC model,

V (x0) = max
ut
− E

∫ ∞
t=0

e−ρt(x̂′tRx̂t + û′tQût + 2x̂′tWût)

where the state variables evolve according to

dx̂t = Ax̂t +Bût + CdZt.

This problem is linearize about the steady-state, thus x̂t = xt − x̄ and û = ut − ū.

The matrices R, Q, and W are equivalent to the following,

R
3×3

=

 r(x̄, ū) 1
2
rx(x̄, ū)

1
2
rx(x̄, ū) 1

2
rxx(x̄, ū)

 Q
2×2

=

[
1
2
ruu(x̄, ū)

]
W
3×2

=

 ru(x̄, ū)

rxu(x̄, ū)


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The matrices R, Q, and W are the same for both the discrete and continuous-time

version of our model. Although the matrices that summarize our objective function

remain the same between these two settings, the matrices that describe the evolution

of our state variables are not the exactly alike. In the continuous-time setting our

matrix A is noticeable different from what we might expect from a discrete version

of the model. This is because in continuous-time our system depends on changes in

the state variables not on levels of the state variables at particular moments of time.

The matrices that describe the evolution of our states are defined as follows,

A =


0 0 0

0 −δ 0

0 0 −θ

 B =


0 0

0 1

0 0

 C =


0

0

σz̃


this difference occurs because in the discrete version of our model we are measuring

the level of x̂t whereas in the continuous version we are calculating changes over

increments of time.

To solve the value function problem we utilize a “guess-and-verify” approach by

positing that the value function takes the form V (xt) = −x′tPxt − ξ, where P is a

positive semi-definite matrix. We then solve for P by substituting our supposed value

function into the HJB equation

ρx′Px+ ρξ = max
u
{x′Rx+ u′Qu+ 2x′Wu+ 2x′P (Ax+Bu) + P (CC ′)}. (IV.5)

As previously mentioned, one of the advantages of the LQ setting is its neat recursive

solution methods. To implement this method we need to eliminate x and u from equa-

tion (IV.5), this can be achieved by finding the system’s policy function (a function

that defines choices u based on states and model parameters). Using this system’s
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first order conditions with respect to u we can define this system’s policy function,

u = −(Q′)−1(W + PB)′x = −F̃ x. (IV.6)

Combining the policy function in equation (IV.6) and the system in equation (IV.5)

allows us to eliminate both u and x from the system. With the state-independent

version of our value function problem we formulate a recursive algorithm that solves

for the value function matrix P (Anderson and Moore, 2007; Vrabie et al., 2007),

Pi = −(2Ã′i)
−1(F̃ ′iQ

−1F̃i +R− 2WF̃i) (IV.7)

ξi = ρ−1trace(Pi−1CC
′) (IV.8)

where Ãi = (A−BF̃i − .5ρ), F̃i = (Q′)−1(W + Pi−1B)′, i represents iterations of the

recursive algorithm, and P0 is set exogenously. Additionally, note that this system is

formulated under the assumption that A is symmetric.

Several conditions must be met to ensure solutions to the algorithm are asymptot-

ically stable and exist (Lewis, 1986; Anderson and Moore, 2007; Evans and McGough,

2018).

LQ.1 The matrix R is symmetric positive semi-definite and can be decomposed in R =

DD′ by rank-decomposition, and the matrix Q is symmetric positive definite.

LQ.2 The matrix pair (A,B) is stabilizable—there exists a matrix F̃ such that A−BF

is stable, meaning the eigenvalues of A−BF̃ have modulus less than one.

LQ.3 The pair (A,D) is detectable—if y is a non-zero eigenvector of A associated with

eigenvector µ then D′y = 0 only if |µ| < 0. Detectability implies that the

feedback control will plausibly stabilize any unstable trajectories.

The continuous-time recursive algorithm will have a unique solution provided that

the conditions in LQ.1-LQ.3 hold true for this system’s R, Q, A, and B matrices
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and the continuous-time policy function F̃ .2 Conveniently, the conditions outlined in

LQ.1-LQ.3 also apply to the discrete-time version of this system; the only difference

being that the discrete problem has a different policy function F . Now we turn to

adding adaptive learning dynamics to our linearized RBC model.

IV.2.1 Shadow-Price Learning in the Continuous-Time RBC

Model

The recursive solution method for our linearized model has a clear linkage be-

tween perceptions and actuality, which can be used to establish learning dynamics

in this setting (Evans and McGough, 2018). Focusing on equation (IV.7), we see a

relationship between our agent’s initial perception, Pi−1, and updated calculations of

their value function matrix Pi. In this setting we define the agent’s perceived value

function as V P (x) = −x′T (P )x where T (P ) is our T-map, the formal link between

perceptions and actuality in learning models.

The T-map, T (P ) is matrix function that maps an initial perception of shadow-

prices, P , to the updated shadow-prices generated by our agent’s choices. Our T-

map’s fixed point, T (P ∗) − P ∗ = 0, is our learning model’s equilibrium point, given

that certain stability conditions hold. As shown by our derivation of the recursive

algorithm in (IV.7) and (IV.8), the stochasticity of our system does not impact the

solution to our value function problem. The solution for P is not impacted by the

stochastic term C. Knowing this, we begin our explanation of the learning algorithm

by focusing on our problem’s non-stochastic version. The agent’s perceived value

function in the continuous-time non-stochastic setting is,

ρV P (x) = max
u
{−x′Rx− u′Qu− 2x′Wu− 2x′P (Ax+Bu)}. (IV.9)

2For a proof of this result, see Lewis (1986).
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The unique optimal control decision for perceptions P is given by,

u = −F̃ (P )x = −(Q′)−1(W + PB)′x.

Our policy function is then substituted into equation (IV.9) to find the T-map for

our system,

T (P ) = (2Ã′)−1(F̃ ′Q−1F̃ +R− 2WF̃ ) (IV.10)

here Ã = A − 1
2
Iρ − BF̃ and we again assume that Ã is symmetric. The T-map

above describes the mapping between perceptions and reality in a model without

stochasticity. The unique fixed point, P ∗ of this mapping, is the solution to our

value function problem. This result has been proved in discrete-time and has been

analytically demonstrated to hold for continuous-time models (Evans and McGough,

2018; Lester, 2020). As in the discrete-time case, the non-stochastic case mapping

will yield the same fixed point as the T-map for the stochastic version of the system.

Thus far, the continuous-time learning dynamics assume that our agent knows

information about the value function’s quadratic nature and the values of the state

transition dynamics. These assumptions are strict, it is unlikely an average person

would understand the form of their utility function let alone assume that it was

quadratic in nature. Instead it is more likely they estimate the system’s shadow-

prices using a simple linear forecasting rule. Equation (IV.11) represents this simple

linear forecasting model, where the agent predicts shadow prices µt using state values,

µt = Hxt + εµt . (IV.11)

The matrix H is the shadow-price parameter matrix as we soon show it is directly

related to our value function matrix P , in fact H = −2P at rational expectations

equilibrium. This forecasting rule can then be used to estimate the shadow-price
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parameters for our state variables, x.

E[Vx(x)] = µe = Hx

where µe is the updated estimate of µ. We use this forecasting rule to estimate the

future expected utility in our HJB equation,

ρV (x) = max
u
{−x′Rx− u′Qu− 2x′Wu+ (Hx)′(Ax+Bu) +

1

2
(H ′CC ′)}.

Our modified HJB equation provides insight into how our agent selects optimal choice

variables under their forecast of shadow-price parameters. Again we use the policy

function to eliminate x and u from our system, to create a compact recursive solution

method. We find our learning agent’s policy function using the first-order conditions

of the HJB,

u = −1

2
(Q−1)′(2W −H ′B)x = −F̃ SP (H,B)x.

Then to get the mapping from the PLM to the actual law of motion (ALM) we use

the envelope condition,

ρE[Vx(x)] = ρµe = −2x′R− 2u′W + 2x′A′H + u′B′H. (IV.12)

we can rewrite (IV.12) as,

µe = ρ−1{−2x′R− 2u′W + 2x′A′H + u′B′H}

= ρ−1
(
− 2R + 2H ′A− (H ′B − 2W )F̃ SP (H,B)

)
x (IV.13)

= T SP (H,A,B)x.

The T-map in equation (IV.13) will define the mapping between the agent’s PLM

in equation (IV.11) and the actual law of motion (ALM) of the system. Our T-
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map allows us to model the boundedly rational behavior of an agent in this model,

using a continuous-time analog to recursive least squares (RLS) that has been derived

using the parallels between RLS and the Kalman filter (Lewis et al., 2007; Ljung and

Söderström, 1983; Huarng and Yeh, 1992).

A brief discussion of recursive least squares methods is necessary before we define

our SP-learning algorithm. To create a functional SP-learning algorithm, we need to

define how the agent updates forecasts in the continuous-time setting. In discrete-

time, this forecasting updating rule takes the form of RLS, an adaptive algorithm

that allows an agent to update their parameter estimates as they acquire additional

information. We begin in a discrete setting with a simple linear regression model,

yt = θ′xt + εt.

For this example yt is a vector that contains our dependent variable, xt is a ma-

trix of independent variables (the information that agents’ receive), θ is a vector of

coefficients, and εt our error term, which is assumed to be a normally distributed

white-noise process. The recursive least squares algorithm’s objective is to update

parameter estimates as new data points are observed by minimizing a weighted func-

tion of the summed of squared errors. In discrete-time this objective function takes

a familiar form,

φN(θ) =
1

N

N∑
t=1

αt[yt − θ′xt]2.

since this is a weighted least squares problem, αt is a vector of weights set by the

modeler. This vector of weights is related to the gain parameter present in most

adaptive learning algorithms. Using this estimator we arrive at a simple recursive

algorithm for estimates of the vector of parameters θt and the second moment of the
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data xt,

θ̂t = θ̂t−1 + γtR−1
t xt−1[yt − θ̂′t−1xt], (IV.14)

Rt = Rt−1 + γt[xtx
′
t −Rt−1],

the parameter γt is the aforementioned gain parameter. The RLS algorithm allows

for the agent to use an initial estimate of the coefficient matrix and second moment

matrix, Rt, and then update their estimates as they acquire additional information.

RLS takes a similar form in the continuous-time setting; however, our algorithm

becomes a system of stochastic differential equations. We begin with a stochastic

differential equation instead of the linear regression model,

dyt = θ′xtdt+ dZt

the term dZt represent the increment of the Wiener process as we’ve described previ-

ously. The RLS estimator now takes the form of

φN(θ) =
1

N

∫ N

τ=1

ατ [dyτ − θ′xτdτ ]2.

The continuous-time version of RLS is then found using parallels between recursive

least squares and other filtering methods (Sastry and Bodson, 1989). We use a con-

stant gain algorithm in this work, thus below is a version of RLS where γt is set as a

constant. Implementing this version of RLS means that individuals put equal weight

on all observations and expect some noise in their parameter estimates,

dθ̂t =
1

1− γt
Ptxt[dyt − θ̂′t−1xtdt], (IV.15)

dPt =
1

1− γt
[γtPt − Ptxtx′tPt]dt.
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It is most common in continuous-time literature to use the matrix Pt, the covariance

matrix, to avoid matrix inversion. The “recursive least squares filter” as it often

called in engineering literature, is strikingly similar to the system in (IV.14). By

observation one can see that (IV.15) is essential the derivative of the system in (IV.15)

with respect to time. For a full derivation of the continuous-time RLS system, please

see the appendix or Goodwin and Mayne (1987).

With an established background in Shadow-Price learning dynamics and continuous-

time recursive least squares, we can now outline an algorithm that models an agent’s

bounded rationality in our framework. In this system, the agent’s policy function F̃

impacts the choices they make, and the future states they observe. Thus, our learning

algorithm includes updates to the state variable impacted by the agent’s choices and

subsequent updates to agent’s choice and forecasts based on the current state of the

economy.

dxt = Axtdt+Butdt+ CdZt

dPt =
1

1− γt
(γtPt − Ptxtx′tPt)dt

dH ′t =
1

1− γt
Ptxt(λt −Htxt)

′dt

dA′t =
1

1− γt
Ptxt(dxt −Butdt− Atxtdt)′ (IV.16)

ut = −F SP (Ht, B)xt = −1

2
(Q′)−1(2W −HtB)′xt

λt = T SP (Ht, At, B)xt

γt = κ(t+N)−ν .

In this algorithm Pt is the covariance matrix, unlike the discrete algorithm that uses

Rt, an approximation for the second moment, Pt can tend toward zero, something

we need to be careful of in our setting (Sastry and Bodson, 1989). The use of Pt

reduces the computational burden of taking the matrix inverse and is more in-line
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with the continuous-time Kalman filter notation. The gain parameter, γt, will again

be assume to be constant with κ = 0.01 and ν = 0.

Continuous-Time Learning Results

Now that we have defined an agent’s bounded rationality in this setting, we can

examine our learning algorithm’s convergence. Before we can examine the dynamics

of the learning model, the model parameters must be set. The continuous-time model

was selected to align with parameters from discrete-time literature. To select appro-

priate values for some of the parameters, such as the discount factor, we consulted

Kaplan et al. (2018). For the continuous-time SP-learning algorithm, it is necessary

to approximate the time-step dt. We selected 1/100. Since the discrete-time ver-

sion of the model is calibrated based on quarterly data, dt = 1/100 indicates that

our agent updates parameters at least once a day.3 The final parameters, σz̃ and θz̃

were set in accordance with discrete time literature. The process for z̃t defined in

equation (IV.3) is the continuous-time analog to an AR(1) process, thus there exist

many comparisons of the two. Basing our estimates off a discrete model with an

auto-regressive term of 0.895 and white-noise term with a standard deviation of 0.01,

the parameters of the continuous-time model are set to θz̃ = 0.105 and σz̃ = 0.01.4

Table IV.1 summarizes the parameter values for the continuous-time model.

3Approximately 1.09 times a day. Assuming 91 days in a quarter.
4With our naive estimation approach, the limiting distributions of the discrete and continuous-time
models have approximately the same variance (Posch et al., 2011). For the discrete-time case

Var(x) =
σ2
z

1−θ2z
= (0.01)2

1−0.8952 ≈ 0.0005. While in the continuous-time setting Var(x) =
σ2
z̃

2θz̃
= (0.01)2

2·0.105 ≈
0.0005.
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Table IV.1
Continuous-Time Parameter Values

Description Parameter Value
A Total Factor Productivity 1.0
ρ Discount factor 0.01
σ Intertemporal elasticity of subst. 1.0 (log utility)
ϕ Frisch elasticity of labor supply -1.0 (log utility)
χ Disutility of labor 1.75
α Capital share 1/3
δ Depreciation rate 0.025
θz̃ Drift parameter for tech. 0.105
dt Approximation of time-step 1/100
σz̃ Standard deviation for tech. 0.01

After finalizing key parameter values, we focused on the initial values for the

learning algorithm. The misspecification used in this setting varied from the discrete-

time version. Here A and H were set to small negative constants times identity

matrices. Initial values for x0 and u0 were, again, set near steady-state values. The

second-moment matrix P was initialized based on initial values of x0. Misspecification

in the continuous-time was set to ensure stability with the continuous-time T-map

and policy function. While the SP-learning algorithm’s initialization does not need

to be near the REE, it is best if the initial policy is stable, meaning the T-map’s

derivative has eigenvalues within the unit root. Additionally, the agent in this setting

understands the basic structure of the transition matrix A and does not use the

constant in estimating parameters; instead, they estimate the technology and capital

processes’ parameters separately.

Simulations of the model were run for the equivalent 10, 000 discrete-time periods

so the agents were able to update their forecasts over (100× 10, 000) iterations, since

dt = 1/100. Examining figure IV.1 we see that in the continuous-time model the

agent’s estimates converge quickly and fluctuate around their REE values. At the

end of 10, 000 periods the agent in continuous-time model forecasts a shadow-price

parameter matrix that is a distance of 11.25 from REE according to the matrix norm
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Figure IV.1
Convergence of Shadow-Price Parameters

measurement. The agent also updated their estimates of the state transition matrix

A over these 50,000 periods. The distance between the agent’s estimate of A and

the true transition matrix, measured using matrix norms, is 0.012 after only 10,000

periods.

Thus far, we have demonstrated that the continuous-time real business cycle model

converges to REE under our SP-learning algorithm. Next, we compare these models’

learning outcomes to understand the differences between bounded rationality in these

settings. The following section of this paper examines parameter values and their

distances from REE values, the volatility of these models’ estimations, and the second

moments of key variables, as is common in real business cycle literature.

IV.3 Comparing Discrete and Continuous-Time Sys-

tems

We now compare the REE values to the learning models’ outcomes, with the

models initialized “far-away” from the rational expectations equilibrium. As mea-
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sured by state and choice variable values, the economic outcomes of the discrete

and continuous-time models closely match REE values after 50,000 periods; how-

ever, the continuous-time model comes closer to reaching the REE for shadow-price

parameters. Additionally, the continuous-time model’s shadow-price parameter esti-

mates display less volatility than the estimates for the discrete-time model, implying

that the continuous-time learning estimates exhibit more stability than their discrete

counterparts.

For some reference, the rational expectations equilibrium values of the discrete

and continuous-time shadow-price parameter matrices are given in equations (IV.17)

and (IV.18). Solutions for the steady-state values of key variables and the value

function matrix H are similar for the discrete and continuous-time versions of the

real-business cycle model.

H∗Discrete =


−190.764 1.29026 7.67191

1.29026 −0.0753887 −0.210606

7.67191 −0.210606 2.73081

 (IV.17)

and

H∗Continuous =


−190.642 1.2759 7.6087

1.2759 −0.0724069 −0.212827

7.6087 −0.212827 2.64364

 (IV.18)

The fact that the continuous-time matrix is so close to the discrete-time version (the

matrix norm of the discrete solution minus the continuous one is 0.386) solidifies that

these matrices are the equivalent solutions to their respective problems.

There are some minor computational gains when solving for the rational expec-

tations equilibrium in continuous-time. The discrete version of the recursive LQ al-

gorithm presented which is presented in the appendix converges in 0.009413 seconds

and 1,333 iterations for the model with government spending. While the continuous
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version, from section IV.2, converges in 0.000316 seconds and 11 iterations.5 Addition-

ally, the discrete-time algorithm used 10.764 MiB of memory, while the continuous-

time version only required 0.2849 MiB. The continuous-time LQ algorithm’s speedier

convergence is not observable by the programmer in this instance but could have

serious impacts on a more complex economy with more than four state variables.

IV.3.1 Comparing Learning Outcomes

Comparing learning outcomes between the discrete and continuous-time models is

difficult since there are many factors to consider, such as the distance between REE

and the initial specifications and how the initial covariance/second-moment matrix is

set. Since the learning algorithms both implement constant gain, the most accurate

method of comparing learning outcomes in both models is to examine the learning

parameters over the last 1, 000 periods of the learning iterations.

For a better comparison between the discrete and continuous-time cases, we have

only included points from the continuous models that occurred at the end of each

discrete period, so the continuous-time mean values and standard deviations are cal-

culated using the same observation size as the discrete-case. Without this sampling

scheme, the continuous-time standard deviations would still be almost the same any

change in these values occurred at the third (or higher) decimal place. Standard

deviations of state and choice variables are included in the table, in parentheses un-

derestimated parameter values.

In our shadow-price learning algorithm, the agent forecasts two key objects, the

state transitions matrix, and their shadow prices; these state-transition dynamics

and shadow-prices impact the system’s evolution via the choices our agent makes

regarding investment and hours worked. We first examine the impact of learning on

key parameters’ values, such as investment and capital, before more closely examining

5Run-times were calculated using the instructions in Julia documentation. This requires compiling
functions beforehand for accurate measurements.
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shadow-price parameters. Table IV.2 lists the REE equilibrium values of economic

variables for the continuous-time and discrete-time models as well as the averaged

learning outcomes over the last 1,000 periods.

Table IV.2
Steady State Values and Learning Outcomes

Discrete Continuous
Variable REE Value Learning REE Value Learning
Labor 0.333 0.333 0.333 0.333
Investment 0.244 0.243 0.245 0.245
Capital 9.749 9.758 9.797 9.805
Consumption 0.783 0.783 0.784 0.785
Wages 2.054 2.055 2.057 2.059
Rental Rate on Capital 0.035 0.035 0.035 0.035

Although the differences between the discrete-time and continuous-time steady

state values are similar they highlight a few key differences between the systems. In

the continuous-time system, steady-state wages are slightly higher, as is an invest-

ment. This is likely necessary to help offset continuous-time discounting. Learning

outcomes between these two models are similar; however, the discrete version of our

learning model appears to underestimate the level of capital. This likely comes from

the shadow-price parameter estimates as these impact the agent’s investment choices,

which in turn impact capital accumulation.

Next, we examine the shadow-price parameters. The matrix norm between the

agent’s forecast of H and the REE was 2.35. in the continuous case and 2.42 in the

discrete case. In the discrete case, the matrix norm between the initial guess H0 and

the true value was 192, and in the continuous version, that same measure was 191.

To analyze the difference between shadow-price forecasts in the continuous and

discrete model, we again examine the last 1,000 periods of both learning algorithms.

Table IV.3 contains the average learning outcome over the last 1,000 periods, the

standard deviation of the parameter over the last 1,000 periods, and the rational
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expectations equilibrium values.

Table IV.3
Shadow-Price Parameter Outcomes

Learning Outcome REE Value
Variable Discrete Continuous Discrete Continuous
Constant -189.909 -190.564 -190.764 -190.642

(0.026) (0.0018)

Capital -0.077 -0.075 -0.075 -0.072
(0.0002) (0.0000)

Productivity 2.544 2.548 2.731 2.644
(4.64) (0.004)

Overall the continuous-time version of the model has more accurate measures of

shadow-price parameter values and lower standard deviations for these parameter

estimates.

IV.3.2 Comparing the Accuracy of the Models’ Second Mo-

ments

After examining the parameter estimates under SP-learning dynamics, a few ques-

tions arise about the impact of continuous-time on the model’s second moments. In

real business cycle literature, it is common to examine the theoretical model’s second

moments and compare them to economic data (Plosser, 1989; Hansen and Wright,

1992; Romer, 1996). In this exercise, we compare the outcomes of the discrete and

continuous-time learning models to second moments from data that have been de-

trended using the HP-filter.

Economic data from 1960-2019 on GDP, consumption, investment, wages, and

hours worked was collected using the FRED database. Then using the HP-filter and

logarithmic transformation, we detrended the data. We simulated the same model

used in the previous sections to compare the second moments between the data,

discrete, and continuous-time systems. The calibration of our model was changed
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the stochastic process for technology in this version has an auto-correlation term of

0.99 in the discrete case and 0.01 for the continuous-time case. In both instances, the

standard deviation of the white-noise process was also set to 0.01. In the continuous-

time setting time intervals, dt are approximated as 1/100. This approximation of

dt means that the agent updates their estimates about once a day since the discrete

model is calibrated using quarterly data.

Each model’s economy was simulated for 240 periods (the same number of periods

present in the data). We ran these simulations one thousand times for the discrete and

continuous-time models with learning dynamics and applied the logarithmic trans-

formation and HP-filter to these 1,000 series. We report standard deviations and

correlations averaged over all 1,000 simulations in table IV.4. Since the variables we

measured are primarily flow variables, the continuous-time model’s points were ag-

gregated by integrating information to compare with the discrete model. Table IV.4

displays the standard deviations of values from the data and the theoretical models,

along with the correlations between key variables and output.

Table IV.4
Second Moments and Autocorrelations of Key Economic Variables

Standard Deviation* Correlation w. Output
Variable Data Discrete Cont. Data Discrete Cont.
Output 1.43% 1.30% 1.06% 1.00 1.00 1.00
Consumption 0.510 0.471 0.515 0.748 0.971 0.773
Investment 2.880 2.815 2.879 0.799 0.989 0.972
Hours 0.646 0.365 0.471 0.650 0.982 0.854
Wage 0.660 0.645 0.646 0.172 0.994 0.925

*standard deviations for variables other than output are measured relative to output

The continuous-time version of the model matches the relative second moments

from the data slightly better for consumption, investment, and hours worked. While

the continuous version of the model still overestimates economic variables’ procycli-

cality, it does so by less than the discrete version.
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IV.4 Learning and Data Frequency

Now that we have outlined methods and results for continuous-time learners, we

examine outcomes when an agent takes in information over larger intervals. In this

section, the economy that the agent participates in is continuous, and state vari-

ables update continuously as well; however, the agent is only capable of taking in

observations at lower frequencies. This setting parallels the real-world where we may

believe that economic factors like productivity or even GDP are continually updating.

However, due to our limited ability to take in information and data availability re-

strictions, we cannot constantly update our estimates of these parameters. Our state

variables evolve according to a continuous-time process we approximate as updating

daily—dt ≈ 1/100. We examine three different agents in this setting. The first up-

dates information weekly, the second bi-weekly, and the third every day. An essential

aspect of our agent’s forecasts is that they understand that they are approximating

a higher frequency process, i.e., the weekly updater understands that they are using

weekly data and includes that information in their estimations.

IV.4.1 Learning under Varying Data Frequencies

As previously mentioned, the agents in this section exist in an economy where

variables are continuously evolving. They maximize their utility subject to the

continuous-time RBC model in section IV.2. However, the agents in this setting

do not continuously update their parameters. Instead, they only observe data at

specific time intervals, and they know they are approximating a continuous-time sys-

tem using this discrete data. Considering this, they use ∆—the time step of their

discrete observations—in their forecasts to approximate dt. The learning algorithm

implemented by these agents is similar to the continuous-time algorithm, with a few
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key changes.

dxt = Axtdt+Butdt+ CdZt

∆Pt =
1

1− γt
(γtPt − Ptxtx′tPt)∆

∆H ′t =
1

1− γt
Ptxt(λt −Htxt)

′∆

∆A′t =
1

1− γt
Ptxt(xt −But∆− Atxt∆− xt−∆)′ (IV.19)

ut = −F SP (Ht, B)xt = −1

2
(Q′)−1(2W −HB)′xt

λt = T SP (Ht, At, B)xt

γt = κ(t+N)−ν .

The state variables for this system still evolve continuously but now they are observed

at distinct periods of time. Meaning the agent will observe, x1, x1+∆, x1+2∆ + . . . xτ

where τ represents the end period of the model.

We examine three different agents that observe data at the three varying frequen-

cies in this system. For ease, we assume that our state variables evolve almost daily

and approximate dt = 1/100. This is consistent for all agents in this section and

is the same approximation of dt used in the previous sections. For these versions

of the model, the same parameterization from IV.2 is recycled; however, the three

models explored in this section have an additional parameter ∆. The new parameter

∆ represents the intervals at which agents take in additional information, whereas dt

is the actual time interval for the data generating process.

We use three specifications, one where ∆ = 1/25 for individuals that update their

estimates every four days, or about twice a week, another with ∆ = 1/50 to represent

weekly up-daters, and the last has ∆ = 1/100 meaning that the agent observes every

point in the true data generating process. In all three of these cases, agents updated

thier shadow-price forecasts over 10,000 discrete-time periods (in this case, over 10,000
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quarters). Initially, this exercise examines the differences in learning dynamics over

varying time intervals. However, learning outcomes are nearly identical in all three

cases– likely because we did not constrain the number of learning iterations and

gave each type of agent 10,000 periods of data. The only major difference between

these specifications was run-time. Measurements for matrix norms and the standard

deviation of matrix norms were measured using the mean matrix norms and standard

deviation of the matrix norm over the last 1, 000 discrete-time periods.

Table IV.5
Continuous-Time Learning Results under Varying Data Frequencies

dt ∆ Matrix Norm Norm Std. Run Time

dt = 1/364

∆ = 1/364 12.86 15.37 187
∆ = 1/91 13.26 15.56 58
∆ = 1/52 13.34 15.49 19
∆ = 1/26 13.07 15.12 12

dt=1/100

∆ = 1/100 13.28 16.96 36
∆ = 1/50 13.25 16.88 12
∆ = 1/25 13.46 17.13 7

Table IV.5 demonstrates that one the short comings of the continuous-time learn-

ing algorithm, long run-times, can be minimized by implementing different sampling

frequencies. This table also includes extra specifications using dt = 1/364 to provide

additional evidence on how sampling frequencies and smaller approximations for dt

can reduce computational time.

IV.5 Conclusion

Rational expectations is a powerful modeling tool that allows economists to com-

pute equilibrium outcomes efficiently. However, as we look to micro-foundations, that

assumption of rational expectations is far too strict. It is unlikely that individuals

understand the evolution and distribution of productivity or the capital stock. It is

also unlikely that they understand how to fully optimize when making decisions.

125



The adaptive learning literature has relaxed both of these assumptions; in this

paper, we relax a third assumption: that agents make decisions intermittently at fixed

time intervals. Previous literature has approached optimization and forecasting as a

discrete problem. We introduce a continuous-time shadow-price learning algorithm

that converges to the rational expectations equilibrium without imposing unrealistic

assumptions.

Not only does this result match the point estimates in the continuous-time ratio-

nal expectations model, it improves the estimates volatility when compared against

discrete-time models and economic data. This result supports the outcomes of continuous-

time rational expectations models while demonstrating that convergence in the continuous-

time setting is not the same as convergence in the discrete-time case. Our continuous-

time model displays less volatile shadow-price parameter estimates and smoother

convergence (measured using matrix norms) of the shadow-price parameter matrix to

REE values. This decreased volatility demonstrates that when agents gain more in-

formation more rapidly and have the ability to update their forecasts more frequently,

they will make smaller, less reactionary updates to their predictions and choices.

Furthermore, we demonstrate that the continuous-time version of the model can

provide improvements when matching the data’s second moments. Since the continuous-

time model more closely matches the data and displays less volatile convergence to

the REE values of shadow-price parameters, we can conclude that our continuous-

time model captures important dynamics that the discrete version of our model does

not.

Though helpful in demonstrating the continuous-time framework, continually up-

dating is unlikely for agents and computationally burdensome for modelers. In a

refinement exercise, we introduce an alternative sampling method that allows the

continuous-time agent to sample data observed at high frequency and update their

forecasts less frequently. This alternative sampling method results in faster compu-
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tational time and similar parameter estimates.

Since the continuous-time shadow-price learning algorithms presented in this work

converge to REE, it would be simple to conclude that we should model agents as

fully rational and fully optimizing or as discrete decision-makers. However, in real-

ity, agents are not infinitely lived, and they may experience structural changes that

will cause them to re-evaluate their decisions. Additionally, there are key differences

between convergence in continuous and discrete settings. These dissimilarities show

that the agent more gradually converges to REE in continuous-time and makes less

volatile choices as they near convergence. It seems that continuous-time agents make

more stable decisions and smaller updates to their choices. The proposed framework

improves on two desirability properties of agent optimization models: predictive pre-

cision and assumption parsimony.

Continuous-time adaptive learning literature is limited, and there is much work

to be done on this topic. We intend to explore extensions to this work, including

further improvements to the shadow-price learning algorithm. Improvements to our

basic shadow-price learning algorithms likely exist; unlike the discrete version of the

algorithm, our problem is a system of differential equations with no matrix inverse

necessary. Therefore, we could attempt to simplify our problem using matrix algebra.

We also would like to apply this method to a wide range of macroeconomic and

financial models. For instance, many portfolio selection problems are already in

the LQ format; thus, our shadow-price learning framework could be easily extended

to these models. Additionally, we would like to find applications for continuous-

time adaptive learning algorithms to economic models outside of the linear-quadratic

format.
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CHAPTER V

DISSERTATION CONCLUSION

In this dissertation, we examine how to incorporate adaptive learning dynamics

in continuous-time macroeconomic models. There are several motivations for extend-

ing these techniques to continuous-time frameworks. Firstly, we aim to provide an

alternative to rational expectations—a modeling technique wherein individuals have

a complex understanding of the economy—in continuous-time models, thus far, the

literature relies on this strong modeling assumption. However, in our adaptive learn-

ing framework, individuals don’t necessarily understand economic parameters or the

economic model they interact with; instead, they use observations from the world

around them to update their estimations and perceptions.

Capturing this level of realistic agent-level behavior not only adds credibility to

our model assumptions. It also aids us in exploring key features of models that are

important to our economy and policymakers. For instance, if policies change or follow

a particular rule, policymakers want to understand how quickly individuals react to

these changes and how fast they adapt their economic expectations. Additionally,

they would want to understand if people will respond to specific changes in rational

or predictable ways. Adaptive learning provides insight into how individuals react

to new information and economic changes; however, the literature thus far focuses

on discrete-time modeling, which often assumes that decision-makers update their

predictions and gather information at quarterly or at most monthly intervals. In this

dissertation, we relax the assumption that data is only available over these longer

discrete intervals. We allow individuals to access high-frequency information and

enable them to make decisions at higher frequencies.
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Chapter II reviews continuous-time and adaptive learning literature, examines the

connections between continuous-time and discrete-time models and begins exploring

methods of incorporating adaptive learning rules in continuous-time frameworks. This

initial work adds salient information about estimation and data frequency to existing

literature and lays the groundwork for the rest of this dissertation. The third chap-

ter delves into a major issue with continuous-time economic models—solution meth-

ods accessible in continuous-time macroeconomics do not allow for feedback because

they rely on agents’ knowledge of the future. To add endogenous learning rules to

continuous-time models, we build a linear-quadratic framework in continuous-time by

drawing upon engineering literature. Linear-quadratic methods are standard in many

scientific fields because, in these models, individuals observe the world around them

and respond based on their observations, making this framework ideal for learning.

Combining this framework with a continuous-time analog to recursive least squares,

we find that it is possible to incorporate bounded rationality in continuous-time eco-

nomic models.

We conclude with chapter IV; this chapter applies the shadow-price learning envi-

ronment developed in chapter III to a classic real business cycle model. To accomplish

this, we must linearize the RBC model and carefully implement our SP-learning al-

gorithm. In addition to extending the methods outlined in chapter III, chapter IV

analyzes the continuous-time learning model’s ability to match the data and overall

accuracy when compared to a discrete version of the learning model. We find that

the continuous-time model better matches relative second moments from economic

data. Lastly, we explore the implications of sampling frequencies in our continuous-

time model. We find that decreasing the sampling frequency in our continuous-time

SP-learning model can decrease computational time while maintaining results. How-

ever, it seems that estimates are more likely to possess increased accuracy and lower

volatility when sampling is more frequent.

129



This dissertation begins a distinct body of work that has many potential exten-

sions. With this research, we have developed rich and complex methods of modeling

expectations in continuous-time macroeconomic models. The shadow-price learn-

ing framework outlined in this dissertation could readily be applied to various LQ

models, which are present in economic and finance literature, or simple linearized

models. Additionally, the methods outlined in this work can be improved upon using

various sampling schemes or streamlining the continuous-time recursive least squares

algorithm. However, much work is necessary to incorporate these dynamics in sophis-

ticated mainstream models with complicated economic dynamics or multiple agents.

Ultimately, this work aims to create a baseline from which continuous-time heteroge-

neous agent models could utilize adaptive learning techniques. Such work would be

appealing to policymakers as heterogeneous agent models provide insight into how

resources are distributed amongst individuals from varying backgrounds, something

that is relevant today.
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APPENDIX A

THE KOLMOGOROV FORWARD

EQUATION

The derivation of the KF equation is not always intuitive. Dixit (1992) gives

one of the clearest derivations of the KF equation targeted at economists. In this

next section, we will present this derivation and compare the KF equation to discrete

distributional methods. The Kolmogorov forward and backward equations govern the

more general dynamics of stochastic processes. Suppose we are in a discrete system

at a point (x1, t1 + ∆t) there two ways we could have gotten to this point. First, we

could have previously been at (x1−∆h, t1) before moving forward in the x direction.

Alternatively, we may have been located at (x1 + ∆h, t1) and then moved back in the

x direction. Using this information we can write the probability of of being at (x1, t1)

as,

Π(x1, t1 + ∆t) = pΠ(x1 −∆h, t1) + qΠ(x1 + ∆h, t1)

in this equation p is the probability of moving forward in the x direction and q = 1−p

is the probability of moving backward. For a Brownian motion, dx = µdt + σdWt,

p = 1
2
[1 + µ

σ2 ∆h] and q = 1
2
[1 − µ

σ2 ∆h]. Using a Taylor expansion, our previous

expression will become,

Π(x1, t1) + Πt(x1, t1)∆t+O(∆t) =
1

2
[1 +

µ

σ2
∆h]

(
Π(x1, t1)− Πx(x1, t1)∆h

+
1

2
Πxx(x1, t1)(∆h)2 +O(∆h)2

)
+

1

2
[1− µ

σ2
∆h]

(
Π(x1, t1)

− Πx(x1, t1)∆h+
1

2
Πxx(x1, t1)(∆h)2 +O(∆h)2

)
.
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As ∆t→ 0 this equation will become

Πt(x1, t1) =
1

2
σ2Πxx(x1, t1)− µΠx(x1, t1),

our standard KF equation. This derivation is less intuitive and not as straight forward

for other stochastic processes.

A.1 Deriving Equation (12)

First simplifying the original equation (II.10) we get,

β∆tλt+∆t[
(
f ′(kt+∆t)− δ

)
∆t+ 1] = λt

Then we can set λt+∆t = λt + λ̇∆t and use the expansion β∆t = 1 + ∆t ln β

[1 + ∆t ln β][λt + λ̇∆t][
(
f ′(kt+∆t)− δ

)
∆t+ 1] = λt

Foiling this out yields the following.

[λt∆t ln(β) + λt + λ̇∆t+ λ̇(∆t)2 ln(β)][f ′(kt+∆t)− δ]∆t

= λt − λt − λt∆t ln(β)− λ̇∆t− λ̇(∆t)2 ln(β)

Diving through by ∆t and then assuming any remaining terms with ∆t are negligible

we will get equation (II.12).

λt[f
′(kt+∆t)− δ] = −λt ln β − λ̇
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A.2 Steady State Algorithm for solving the HJB

The steady-state algorithm used in section 5 of this paper comes from Achdou

et al. (2014) and is one of the more simple solution methods in this setting.

For a simple Ramsey model as described in section 5, the algorithm proceeds as

follows,

1. Compute ∂kV (·) for all k

2. Compute the value of consumption from ci = (u′)−1[∂kV (·)]

3. Implement an upwind scheme to find “correct” ∂kV (·)

4. Using the coefficients determined by the upwind scheme create a transition

matrix for this system

5. Solve the following system of non-linear equations

ρV n+1 +
V n+1 − V n

∆
= u(V ) + AnV n+1

6. Iterate until V n+1 − V n ≈ 0

For the most part, the algorithm described above is a typical finite difference

scheme. The main difference between this algorithm and what is often used for value

function iteration is the upwind scheme. The upwind scheme described in this paper

selects a forward difference when we experience positive drift, i.e., positive savings,

in our variable of interest, a backward difference if this drift term is negative, and

selects a steady-state value if we see no drift. In this scheme, we continue our difference

algorithms for (n+1) iterations until we are no longer significantly updating our value

functions.
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Now, we will describe the upwind scheme in more detail. For the algorithm

described above, we need to approximate three different derivatives, the backward

and forward difference of the first derivative of the value function and the second

derivative for the value function.

The forward difference will be given by,

Vi+1 − Vi
∆k

and the backward difference will be

Vi − Vi−1

∆k
.

The second derivative will be approximated by

Vi+1 − 2Vi + Vi−1

(∆k)2
,

where i represents the point in the k grid-space. When the drift of the state variable

is positive, the upwind scheme will choose the forward difference, and when it is

negative, the upwind scheme will select the backward differences. If neither of these

conditions holds, then the upwind scheme will select a steady-state value.

There are several different ways to explain the upwind scheme. We can think of

it as a method for consistent estimation in this setting. In this setting, we need our

finite difference scheme to take the dynamics of our system into consideration.

Suppose we have the following HJB,

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(f(k)− δk − c)− ∂zV (k, z)(ηzt) +
1

2
∂zzV (k, z)σ2

in order to approximate the derivatives of our values functions, we need to consider
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the flow of k and z. For z this is simple since the sign of −ηzt will be the same for all

positive values of zt, we can use the backward difference at all points. This works as

long as our z-grid contains only positive points. (The log(zt) processes from earlier

in this paper was used to help ensure we could use only one differencing method).

Since our values of k cannot be similarly limited, especially since they rely on

c, we need to use an upwind scheme in order to approximate the derivative in this

dimension. Suppose we at one specific point in the k-dimension, and we are unsure

about the shape and differentiability of our value function. However, we do know that

the drift of the k process has a positive drift at that value of ki or, in other terms, the

savings function at ki is positive. As discussed in Achdou et al. (2014), we can then

what matters most is how our value function changes when capital increases by a

small amount. Conversely, if savings are negative, we want to measure how the value

function changes when capital decreases by a small amount. This is our motivation

for using the upwind scheme. This numerical approximation technique will take the

forward difference when savings is positive and the backward difference when savings

is negative.

It is worth noting that in fluid dynamics literature, the upwind scheme is defined

differently. In these works, the upwind scheme takes the forward difference when drift

is negative and the backward difference when the drift is positive. This difference

emerges because these systems of partial differentials are solved forward in time,

whereas in this setting, we in effect solving our system of equation backward in time.

In the problems outlined in this paper, we are solving for the steady-state of our

system. Hence, we are effectively at t =∞, meaning that our solution techniques can

be thought of as working backward in time.
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APPENDIX B

ALTERNATIVE SPECIFICATIONS

This section of the appendix outlines several different initial specifications that

could have been used for the models in section 5 of this paper.

B.1 Learning the Process for Productivity

In section 5, the agents specified that θ was larger than its true value, 0.105 and

σ was smaller than its true value, 0.015. Now, in the following sections, we will look

at various misspecifications of these parameters and the convergence results. Below,

is a table of the various initial values we examine in sections D.1.1-D.1.7.

Table B.1
Initial values for σ and θ

Specification θg σ2
g

Section 5 0.25 0.008
B.1.1 0.08 0.008
B.1.2 -0.11 0.008
B.1.3 2.0 0.008
B.1.4 0.25 0.8
B.1.5 0.25 1.5
B.1.6 -0.11 1.5
B.1.7 -0.11 0.8

B.1.1

We first examine what would happen to this model if θ was set to be smaller and

the correct sign and if σ was also a smaller value. In this section the initial value for

θg is 0.08 and the initial value for σ2
g is 0.008.
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Figure B.1

(a) (b)

Figure B.2

(a) (b)

The key differences in this specification are in the value function convergence. In

this setting the slope of the value function in the z dimension changes significantly

as the parameters update over time.

B.1.2

Next, we examined convergence when the initial θ value was set to a negative

value and left the value for σ smaller than the true value. In this section the initial

value for θg is −0.11 and the initial value for σ2
g is 0.008.
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Figure B.3

(a) (b)

Figure B.4

(a) (b)

These results were similar to the previous specification’s graphs.

B.1.3

The last value tested for θ was a much larger positive value, again σ was initialized

with a value smaller than the true parameter value. In this section the initial value

for θg is 2.0 and the initial value for σ2
g is 0.008.
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Figure B.5

(a) (b)

Figure B.6

(a) (b)

B.1.4

Next, different values for σ were explored. In the results below σ was set to be

much higher than the original value but still less than one and θ was set to a larger

value. Here the initial value for θg is 0.25 and the initial value for σ2
g is 0.8.
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Figure B.7

(a) (b)

Figure B.8

(a) (b)

B.1.5

The same algorithm was run with a θ value that was much larger than the true

value. In this section the initial value for θg is 0.25 and the initial value for σ2
g is 1.5.
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Figure B.9

(a) (b)

Figure B.10

(a) (b)

B.1.6

These initial values for σ were then run again with a small negative value for θ.

In this section the initial value for θg is −0.11 and the initial value for σ2
g is 1.5.
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Figure B.11

(a) (b)

Figure B.12

(a) (b)

B.1.7

Last, we examine what would happen to this model if θ was set to be small and

negative and if σ was a large value. In this section the initial value for θg is −0.11

and the initial value for σ2
g is 0.8.
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Figure B.13

(a) (b)

Figure B.14

(a) (b)

B.2 Learning the Process for Capital

Section five examined converge when σg was set to a lower initial value than the

true parameter value, 0.5. In the following section we will explore different initial

values for σg with varying signs and magnitudes. Below is a table of the initial values

we will examine.
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Table B.2
Initial values for σ

Specification σg
Section 5 0.02
B.2.1 -0.02
B.2.2 8.0
B.2.3 -4.0

B.2.1

In our first alternative misspecification we look at an initial value of σg that is

the same magnitude as the correct value, but the incorrect sign. In this section

σg = −0.02.

Figure B.15

(a) (b)

Figure B.16

(a) (b)
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Figure B.17

B.2.2

Next, we examine what would happen if the agents initial specification were much

larger than the true value. Here the initial σg is 8.0.

Figure B.18

(a) (b)
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Figure B.19

(a) (b)

Figure B.20

B.2.3

Last, we set the initial value for σ so that it is negative and has a large magnitude,

σg = −4.0.
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Figure B.21

(a) (b)

Figure B.22

(a) (b)

Figure B.23
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APPENDIX C

ALGEBRAIC RICCATI EQUATION

SOLUTIONS

To verify the convergence of (III.4), (III.12), and (III.13) a simple univariate

system was tested. In this test case, A = 0, B = 1, R = 2, Q = 1, β = .95,

and ρ = − ln β (for consistency between the continuous and discrete discount rates).

Below, is a table comparing the results of the iterative methods to output from

MATLAB’s built-in functions for solving AREs, icare for continuous systems and

idare for discrete ones.

Table C.1
Iterative Scheme Results

Iterative Scheme Iterative Solution MATLAB Solution Difference
Equation (III.4) 2.0000 2.0004 4.1670e-04
Equation (III.12) 1.3887 1.3894 6.3507e-04
Equation (III.13) 1.3887 1.3894 6.3507e-04

As table C.1 shows the results from the iterative schemes are fairly close to the

standard MATLAB solutions.1 Additionally, (III.12) and (III.13) output identical

solutions in our simple case and should be able to be used interchangeably.

1The iterative solutions were found using julia not MATLAB. This may contribute to the difference
between the iterative solutions and MATLAB functions as julia and MATLAB round differently.
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APPENDIX D

OLRP WITH FEWER SYMMETRY

ASSUMPTIONS

Here we outline a continuous-time optimal linear regulator problem without sym-

metry assumptions. In this section we revisit the continuous-time problem in section

III.3 and relax the assumption that the matrix A is symmetric. In this setting the an

agent faces the following optimization problem,

V (x0) = max−E
∫ ∞
t=0

e−ρt{x′tRxt + u′tQut + 2x′tWut}dt. (D.1)

Where the state of the system, xt, evolves according to,

dxt = Axtdt+Butdt+ CdWt (D.2)

here dWt is the increment of the Wiener process. The HJB for this problem can be

found similarly to (III.8). For this system, the HJB will be,

ρV (x) = max
u
− x′Rx− u′Qu− 2x′Wu+ E

(
Vx(x)ẋ+

1

2
Vxx(x)ẋ2

)
. (D.3)

In this setting the value function takes the form (Hansen and Sargent, 2013),

V (x) = −x′Px− ξ
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where ξ does not depend on the state or control variables. Plugging the proposed

value function into (D.3) yields,

ρx′Px+ρξ = x′Rx+u′Qu+ 2x′Wu+x′P (Ax+Bu)(Ax+Bu)′Px+P (CC ′). (D.4)

This yields the following policy for u,

u = −(Q′)−1(W + PB)′x = −Fx. (D.5)

Now, plugging this policy into (D.4) and rewriting the result in a general form pro-

duces,

ρP = R + F ′QF − 2WF + PA+ A′P − PBF − F ′B′P (D.6)

ρξ = PCC ′. (D.7)

This is similar to the discrete stochastic case discussed in Hansen and Sargent (2013).

The steady-state solution for this system can be found similarly to the system in

section III.2.1 using the following iterative scheme

Pi = −(In ⊗ Ã′ + Ã′ ⊗ In)−1vec(F̃ ′iQ
−1F̃i +R− 2WF̃i)

ξi = ρ−1trace(Pi−1CC
′),

where Ãi = (A−BF̃i − .5ρ) and F̃i = (Q′)−1(W + Pi−1B)′.
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APPENDIX E

AN ADDITIONAL DERIVATION OF

CONTINUOUS-TIME RLS

We can also derive RLS more rigorously starting from a discretized version of the

model. The discretized version of our model with an undetermined time step ∆ is,

θt+∆ = θt

yt = θ′txt + et

Where, the covariance matrix for et ∼ N(0, 1
∆

) as in Lewis et al. (2007). First, we

can examine the gain term in (III.25). Writing (III.25) in this setting we’ll have,

Lt = Pt−∆xt[(1/∆) + xtPt−∆x
′
t]
−1

= Pt−∆xt∆[1 + xtPt−∆x
′
t∆]−1.

Dividing through by ∆ and then taking the limit as ∆→ 0 we get,

K = lim
∆→0

1

∆
Lt = Ptxt (E.1)

Next, if we look at (III.26) we can rewrite this equation as,

Pt − Pt−∆ = −Pt−∆xtx
′
tPt−∆[(1/∆) + xtPt−∆x

′
t]
−1

= −Pt−∆xtx
′
tPt−∆∆[1 + xtPt−∆x

′
t∆]−1.
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Dividing through by ∆ and taking the limit as ∆→ 0,

dPt
dt

= −Ptxtx′tPt = −Kx′tPt.

Last, we can derive the continuous-time estimate updating equation (III.24).

Rewriting this equation and diving through by ∆ yields,

1

∆

(
θ̂t − θ̂t−∆

)
=

1

∆
Lt[yt − θ̂′t−∆xt].

Limiting this as ∆→ 0 we get,

dθ̂t
dt

= K[yt − θ̂′txt]. (E.2)

These equations we have just derived are the same as the Kalman filter equations in

(III.38)-(III.40).
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APPENDIX F

THE DISCRETE-TIME MODEL

We examine decision making under bounded rationality using a real business cycle

model with taxation on wages and capital. In this RBC model households maximize

their utility according to the following function of consumption and labor,

V (k0, z0) = max
ct,kt+1,ht

Et
∞∑
t=0

βt
{
c1−σ
t

1− σ
− χ h

1+ϕ
t

1 + ϕ

}
. (F.1)

This maximization problem is subject to the following constraints on consumption

and capital accumulation

ct + kt+1 = Akαt (ztht)
1−α − δkt (F.2)

kt+1 = (1− δ)kt + it. (F.3)

Firms in this economy seek to maximize profits according to their costs and production

capabilities with a Cobb-Douglas production function, f(kt, ztht) = Akαt (ztht)
1−α.

Productivity, zt, evolves according to

log(zt) = θz log(zt−1) + εzt . (F.4)

and εzt ∼ N(0, σ2
z). The LQ format necessary for implementing SP-learning in our

social planner’s problem must be linearized about the steady state, thus we must first

find the non-stochastic steady state of the system. We use these steady state values

to build the LQ version of the model by recasting the objective function to depend

solely on state and choice variables than then re-writing this new objective function
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as a second degree Taylor expansion about the system’s steady state (Ljungqvist and

Sargent, 2012).

To use the LQ framework we want need the RBC model in the following form

V (x0) = max
xt,ut

Et
∞∑
t

βtr(xt, ut).

where ut is a vector of the agent’s choice variables and xt is a vector of state variables.

These state variables evolve according to the following process,

xt+1 = Axt +But + εt

Reformatting the problem is accomplished using the modified equation for consump-

tion. Using this, the objective function depends solely on capital, labor, investment,

and technology

r(xt, ut) =
1

1− σ
[Akαt (ztht)

1−α − it − gt]1−σ − χ
h1+ϕ
t

1 + ϕ
.

The vectors xt and ut contain the state and control variables for the system respectively—

xt = (1, kt, log(zt), gt)
′ and ut = (ht, it)

′. Now that our maximization problem is

rewritten to depend on xt and ut, we use a second order linear approximation of

r(xt, ut) about the non-stochastic steady state to reformat the maximization prob-

lem.

The second-order Taylor expansion about the steady-state where x̄ and ū are

the steady-state values of x and u, can be found using automatic differentiation to

compute the partial derivatives of r(x, u). Once this is complete the problem is easily

reformatted into a linear-quadratic optimization problem,

V (x0) = max
ut
− Et

∞∑
t=0

βt(x̂′tRx̂t + û′tQût + 2x̂′tWût)
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where the state variables evolve according to

x̂t+1 = Ax̂t +Bût + Cεt

here x̂t = xt − x̄ and û = ut − ū.

A =


1 0 0

0 (1− δ) 0

0 0 θz

 B =


0 0

0 1

0 0

 C =


0

0

1


The matrices that define the objective function—R, Q and W– will be the same

as before. These matrices combined with the matrices that define the state variables’

evolution—A, B, and C—can solve the value function problem for the system above

V (x̂t, ût) = −x̂′tRxt − û′tQût − 2x̂′tWût + βEtV (xt+1, ut+1).

To get a closed-form solution to this problem we posit that the value function takes the

form V (xt) = −x̂tPx̂t−ξ, where P is a positive semi-definite matrix that summarizes

the evolution of value function Hansen and Sargent (2013). Thus, we can rewrite the

problem above as

−x̂tPx̂t−ξ = −x̂′tRx̂t−û′tQût−2x̂′tWût−β(Ax̂t+Bût)
′P (Ax̂t+Bût)−βtrace(PCC ′)−βξ.

To simplify this system we eliminate û by taking the first-order condition with respect

to û, this yields our policy function

ût = −(Q+ βB′PB)−1(βB′PB +W ′)x̂t = −Fx̂t

Next, using a well-established algorithm we can use the matrices above to calculate

the matrix P that summarizes the evolution of the value function. In this stochastic
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discrete-time setting this algorithm will take the form,

Pj+1 = R + βA′PjA− (βA′PjB +W ′)(Q+ βB′PjB)−1(βB′PjA+W ) (F.5)

ξj+1 = β(1− β)−1trace(Pj+1CC
′) (F.6)

the subscript j represents iterations of the recursive solution method and P0 is set

exogenously.

F.0.1 Shadow-Price Learning in the Discrete Model

The iterative solution method outlined in the previous section, provides more

information about the system than simply the solution. In the recursive algorithm

outlined in (F.5) and (F.6) an initial guess or perception of the equilibrium in these

equations maps to an updated perception of the value function matrix.

We can describe this mapping between perceptions and actuality using an adaptive

learning tool called the T-map. The T-map is constructed by examining the link

between agents’ perceptions and the updated value function that results from these

perceptions. The T-map is derived by examining the induced value functions for

perception, V P (x) = −xT (P )x. For the discrete non-stochastic case (C = 0) the

value function induced by a perceived matrix P is

V P (x) = max
u
− (x′Rx+ u′Qu+ 2x′Wu)− β(Ax+Bu)′P (Ax+Bu).

Once we characterize agent’s control decision we can then describe the T-map, T (P ).

In the discrete setting the control decision will take the following form,

F (P ) = (Q+ βB′PB)−1(βB′PA+W ′)
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using this we can rewrite the induced value function for perceptions as

T (P ) = R + βA′PA− (βA′PB +W )′(Q+ βB′PB)−1(βB′PA+W ′).

This is the mapping between agent’s perceptions and actuality in this model. The

fixed point of the T-map is the unique steady-state solution for our system (Evans

and McGough, 2018).

We, as in the continuous-time case, impose a linear forecasting rule for µt since

long the optimal path µ∗t = −2P ∗xt. For additional simplification we assume that

the agent forecasts a matrix H instead of −2P ∗; thus

µt = Hxt + εµt (F.7)

This forecasting rule is what our agent believes at time t, the rule acts as a perceived

law of motion (PLM). Our agent wants to develop a forecast of future prices using

this linear relationship and their beliefs about transition matrix for the state variables

A,

Et+1µt+1 = HEt+1(xt+1) = H(Ãxt +But)

in this forecast Ã represents the agent’s estimation of A. When the agent uses this

estimate in their decision making they will estimate the following policy rule and

shadow-price parameters

u = (2Q− βB′HB)−1(βB′HÃ− 2W ′) = F SPD(H, Ã, B)x (F.8)
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and

µ =
(
− 2R− 2WF SPD(H, Ã, B) + βÃ′H

(
Ã+BF SPD(H, Ã, B)

))
x (F.9)

= T SPD(H, Ã, B)

Equation (F.9) defines the T-map for our learning rule, this maps the agent’s perceived

law of motion to the actual law of motion for the system. In our models the agent

takes in more information over time using new data. The basic forecasting model the

agent implement is,

xt+1 = Atxt +But + εxt

µt = Htxt + εµt

where εµt and εµt are error terms. The agent updates their estimates of At and Ht using

this new information. Below is a dynamic system describing how the agent estimates

At and Ht, and how this estimations evolve over time under bounded rationality
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(Evans and McGough, 2018).

xt = Axt−1 +But−1 + Cεt

Rt = Rt−1 + γt(xtx
′
t −Rt−1)

H ′t = Ht−1 + γtR−1
t−1xt−1(λt−1 −Ht−1xt−1)′

A′t = At−1 + γtR−1
t−1xt−1(xt −But−1 − At−1xt−1)′ (F.10)

ut = −F SPD(Ht, At, B)xt

= (2Q− βB′HB)−1(βB′HAt − 2W ′)xt

µt = T SPD(Ht, At, B)xt

=
(
− 2R− 2WF SPD(Ht, At, B) + βA′tH

(
At +BF SPD(Ht, At, B)

))
xt

γt = κ(t+N)−ν .

Here Rt is a measurement for the second moment of the state variable observations

xt and γt is a standard gain sequence. For our purposes we will use a constant gain

thus κ = 0.01 and ν = 0.

Learning Results

The algorithm in (F.10) was applied to a misspecified version of the RBC model

outlined in the beginning of this section and a simplified version of the RBC model

without government spending or taxation. For both misspecifications, the initial

H and A matrices were set as identity matrices, and R was set to fifty times an

identity matrix. The initial x and u observations were set near their steady-state

values, despite being in deviation from steady-state form. In the discrete-time RBC

model we used typical parameter values for the many of the model parameters, the

parameter χ was set so that the portion of hours worked in the non-stochastic steady

state was 33% (Hansen, 1985). Below is a table summarizing our parameter values.
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Table F.1
Discrete-Time Parameter Values

Description Value
A Total Factor Productivity 1.0
β Discount factor 0.99
σ Intertemporal elasticity of subst. 1.0 (log utility)
ϕ Frisch elasticity of labor supply -1.0 (log utility)
χ Disutility of labor 1.75
α Capital share 1/3
δ Depreciation rate 0.025
θ Drift parameter for tech. 0.895
σz Standard Deviation for tech. 0.01

The agent in this setting understands the basic structure of the transition matrix

A and does not use the constant in estimating parameters, instead they estimate

coefficients for the processes governing technology and capital using only relevant

data. Similar results can be achieved when the agent uses the full set of regressors.

Since we use constant gain, the agent’s forecast of these parameters oscillates around

their rational expectations equilibrium (REE) value, since the agent places equal

weight on the information gained from all observations.

The simple model without government spending was run for 50, 000 discrete time

periods, at the end of which subtracting the shadow-price parameter matrix from its

REE counterpart results in matrix with a norm of 2.42.

160



REFERENCES CITED

Aadland, D. (2001). High Frequency Real Business Cycles. Journal of Monetary
Economics, 48(2):271 – 292.

Achdou, Y., Buera, F., Lasry, J., Lions, P., and Moll, B. (2014). Partial Differen-
tial Equation Models in Macroeconomics. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028).

Achdou, Y., Han, J., Lasry, J., Lions, P., and Moll, B. (2020). Income and Wealth Dis-
tribution in Macroeconomics: A Continuous-Time Approach. Review of Economic
Studies.

Ahn, S., Kaplan, G., Moll, B., Winberry, T., and Wolf, C. (2018). When Inequality
Matters for Macro and Macro Matters for Inequality. NBER Macroeconomics
Annual, 32(1).

Aı̈t-Sahalia, Y. (2002). Maximum Likelihood Estimation of Discretely Sampled Dif-
fusions: A Closed-Form Approximation Approach. Econometrica, 70:202–262.

Aı̈t-Sahalia, Y. (2004). Disentangling Diffusion from Jumps. Journal of Financial
Economics, 74:487–528.

Aı̈t-Sahalia, Y. (2010). Estimating Continuous-Time Models with Discretely Sampled
Data. Advances in Economics and Econometrics, Theory and Applications, Ninth
World Congress.

Amman, H. M. and Kendrick, D. A. (1999). Should Macroeconomic Policy Makers
Consider Parameter Covariances? Computational Economics, 14(3):263–267.

Anderson, B. D. and Moore, J. B. (2007). Optimal Control Linear Quadratic Methods.
Dover.

Benigno, P. and Woodford, M. (2004). Optimal Monetary and Fiscal Policy: A
Linear-Quadratic Approach. In NBER Macroeconomics Annual 2003, Volume 18,
NBER Chapters, pages 271–364. National Bureau of Economic Research, Inc.

Benigno, P. and Woodford, M. (2006). Optimal Taxation in an RBC Model: A
Linear-Quadratic Approach. Journal of Economic Dynamics and Control, 30(9-
10):1445–1489.

Benigno, P. and Woodford, M. (2012). Linear-Quadratic Approximation of Optimal
Policy Problems. Journal of Economic Theory, 147(1):1–42.

Bergstrom, A. (1984). Continuous Time Stochastic Models and Issues of Aggregation
over Time. In Griliches, Z. and Intriligator, M., editors, Handbook of Economics,
volume 2, chapter 2, pages 1145–1212. Amsterdam: Elsveier.

161



Bergstrom, A. (1993). Survey of Continuous Time Econometrics. In Barnett, William
A. and Giancarlo, Gandolfo and Hillinger, Clauda, editor, Dynamic Disequilibrium
Modeling: Theory and Applications, chapter 1, pages 3–25. Cambridge University
Press.

Bhamra, H. and Uppal, R. (2014). Asset Prices with Heterogeneity in Prices. The
Review of Financial Studies.

Black, F. and Scholes, M. (1973). Pricing of Options and Corporate Liabilities.
Journal of Political Economy, 81(3):637–654.

Branch, W. and Evans, G. (2006). A Simple Recursive Forecasting Model. Economics
Letters, 91(2):158.

Branch, W. and McGough, B. (2011). Business Cycle Amplification with Heteroge-
neous Expectations. Economic Theory, 47(2):395–421.

Bray, M. (1982). Learning, Estimation, and the Stability of Rational Expectations.
Journal of Economic Theory, 26:318–339.

Brock, W. and Mirman, L. (1972). Optimal Economic Growth and Uncertainty: The
Discounted Case. Journal of Economic Theory, 4(3):479–513.

Brunnermeier, M. K. and Sannikov, Y. (2014). A Macroeconomic Model with a
Financial Sector. American Economic Review, 104(2):379–421.

DeMarzo, P. and Sannikov, Y. (2006). Optimal Security Design and Dynamic Capital
Structure in a Continuous-Time Agency Model. Journal of Finance, 61(6):2681–
2724.

Dixit, A. (1989). Entry and Exit Decisions under Uncertainty. Journal of Political
Economy, 97(3):620–638.

Dixit, A. (1992). The Art of Smooth Pasting. STICERD - Theoretical Economics
Paper Series, Suntory and Toyota International Centres for Economics and Related
Disciplines, LSE.

Dixit, A. and Pindyck, R. (1994). Investment under Uncertainty. Princeton University
Press.

Dorfman, R. (1969). An Economic Interpretation of Optimal Control Theory. The
American Economic Review, 59(7):817 – 831.

Duffie, D. and Epstein, L. (1992). Stochastic Differential Utility. Econometrica,
60(2):353–394.

Eaton, J. (1981). Fiscal Policy, Inflation and the Accumulation of Risky Capital.
Review of Economic Studies, 48(3):435–445.

162



Eusepi, S. and Preston, B. (2011). Expectations, Learning, and Business Cycle Fluc-
tuations. American Economic Review, 101(6):2844–72.

Evans, G. and Honkapohja, S. (2009). Learning and Macroeconomics. Annual Review
of Economics.

Evans, G. and McGough, B. (2018). Learning to Optimize. Draft.

Evans, G. W. and Honkapohja, S. (2001). Learning and Expectations in Macroeco-
nomics. Princeton University Press.

Forsyth, P. and Labahn, G. (2007). Numerical Methods of Controlled Hamilton-
Jacobi-Bellman PDEs in Finance. Journal of Computational Finance, 11(2):1–44.

Gabaix, X. (2009). Power Laws in Economics and Finance. Annual Review of Eco-
nomics, 1:255–293.

Gabaix, X., Lasry, J., Lions, P., Moll, B., and Qu, Z. (2016). The Dynamics of
Inequality. Econometrica, 84(6):2071–2111.

Goodwin, G. and Mayne, D. (1987). A Parameter Estimation Perspective of Contin-
uous Time Model Reference Adaptive Control. Automatica, 23(1):57–70.

Hansen, G. (1985). Indivisible Labor and the Business Cycle. Journal of Monetary
Economics, 16(3):309–327.

Hansen, G. and Wright, R. (1992). The Labor Market in Real Business Cycle Theory.
Quarterly Review, 16(Spr):2–12.

Hansen, L. and Sargent, T. (1991). Rational Expectations Econometrics. Underground
classics in economics. Westview Press. Includes bibliographical references (pages
283-293).

Hansen, L. and Sargent, T. (2013). Recursive Models of Dynamic Linear Economies.
Princeton University Press.

Hansen, L. and Sargent, T. (2019a). Macroeconomic Uncertainty Prices when Beliefs
are Tenuous. NBER working paper.

Hansen, L. and Sargent, T. (2019b). Structured Uncertainty and Model Misspecifi-
cation. University of Chicago, Becker Friedman Institute for Economics Working
Paper No. 2018-77.

Hansen, L., Sargent, T., Turmuhambetova, G., and Williams, N. (2006). Robust
Control and Model Misspecification. Journal of Economic Theory, 128(1):45–90.

Hansen, L. and Scheinkman, J. (1995). Back to the Future - Generating Moment
Implications for Continuous-Time Markov Processes. Econometrica, 63:767–804.

163



Hommes, C. (2011). The Heterogeneous Expectations Hypothesis: Some Evidence
from the Lab. Journal of Economic Dynamics and Control, 35(1):1–24.

Huang, M., Caines, P. E., and Malhame, R. P. (2012). Social Optima in Mean Field
LQG Control: Centralized and Decentralized Strategies. IEEE Transactions on
Automatic Control, 57(7):1736–1751.

Huarng, K. and Yeh, C. (1992). Continuous-time recursive least-squares algorithms.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Process-
ing, 39(10):741–745.

Kaplan, G., Moll, B., and Violante, G. (2018). Monetary Policy According to HANK.
American Economic Review, 108(3):697–743.

Kellerhals, P. B. (2001). Financial Pricing Models in Continuous Time and Kalman
Filtering, volume 506. Springer Science & Business Media.

Kendrick, D. A. (2005). Stochastic Control for Economic Models: Past, Present and
the Paths Ahead. Journal of Economic Dynamics and Control, 29(1-2):3–30.

Kleinman, D. L. (1968). On an Iterative Technique for Riccati Equation Computa-
tions. IEE Transactions on Automatic Control, 13(1):114–115.

Lester, C. (2020). Boundedly rational decision making in continuous-time. Working.

Lewis, F. L. (1986). Optimal Control. Wiley-Interscience.

Lewis, F. L., Xie, L., and Popa, D. (2007). Optimal and Robust Estimation: With an
Introduction to Stochastic Control Theory. CRC Press, Second edition.

Ljung, L. (1977). Analysis of Recursive Stochastic Algorithms. IEEE Transactions
on Automatic Control, 22(4):551–575.
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