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DISSERTATION ABSTRACT

Joe Webster

Doctor of Philosophy

Department of Mathematics

June 2021

Title: The Combinatorics of log-Coulomb Gases in p-Fields

This thesis is based on the article [16], which studies the integral

∫
KN

ρ(x1, . . . , xN)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

where K is an arbitrary p-field, ρ is a well-behaved function that depends only

on the norm of (x1, . . . , xN) ∈ KN , and a, b, sij are certain complex numbers.

A mixture of analysis and combinatorics is used to find two explicit formulas for

the integral (one for b 6= 0 and one for b = 0) and an explicit description of all

sij ∈ C for which it converges absolutely (for fixed ρ, a, and b). The integral’s

role as the canonical partition function for a log-Coulomb gas (in K) is highlighted

throughout, leading to a p-field analogue of Mehta’s Integral Formula and formulas

for the joint moments of the gas’ diameter and minimum particle spacing. The

notion of log-Coulomb gas in P1(K) is also addressed and related to that in K in

a concrete way: The grand canonical partition function for a log-Coulomb gas in

P1(K) is the (q + 1)th power of the grand canonical partition function for a log-

Coulomb gas in the open unit ball of K.
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CHAPTER I

INTRODUCTION, BACKGROUND, AND RESULTS

1.1. Introduction

This thesis is the result of an investigation of the following problem: Find an

explicit formula for the (Haar) integral

ZN(β) =

∫
ZNp

∏
i<j

|xi − xj|βp dx1 . . . dxN

where p is a prime number, N is a positive integer, and β is a complex number.

This integral is relevant in two seemingly disjoint areas of mathematics. On one

hand, it is the direct p-adic analogue of the classical Mehta Integral, which plays

an important role in random matrix theory and defines the canonical partition

function for the statistical mechanical model known as log-Coulomb gas. On the

other hand, ZN is the local zeta function attached to the Vandermonde polynomial

V (x1, . . . , xN) =
∏

i<j(xi − xj) and it encodes the sequence (Nm(V ))∞m=0 defined by

Nm(V ) := #{(x1, . . . , xN) ∈ (Z/pmZ)N : V (x1, . . . , xN) ≡ 0 mod pm}.

More precisely, the generating function PV (t) =
∑∞

m=0(Nm(V )/pmN)tm is analytic

for |t| < 1 and satisfies PV (p−β) = 1−p−βZN (β)
1−p−β whenever Re(β) > 0 [3], so finding a

formula for ZN(β) is essentially equivalent to finding one for all Nm(V ).

Despite their apparent differences, the statistical-physical and arithmetical

interpretations of ZN share a common combinatorial theme. This stems from the

fact that all p-fields (such as Qp) have finite residue fields and canonical absolute
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values (such as | · |p) with countable images. In fact, these two properties are

responsible for the common idea behind almost all of the results in this thesis:

Main Idea: The integration domain ZNp can be broken into finitely many subsets

that are indexed and explicitly described by chains in the partition lattice for the set

[N ] = {1, . . . , N}. The integral over each of these subsets can be computed explicitly

using a mixture of counting and geometric series summation.

By making this idea precise, we will find explicit formulas for ZN(β), its

projective analogue, and more general p-field integrals of the form

∫
KN

ρ(x1, . . . , xN)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN .

All of them turn out to be finite sums over the same set of chains of partitions,

and they turn out to be valid for all p-fields K simultaneously. We will spend the

next few sections of this chapter developing relevant background on log-Coulomb

gases, local fields, local zeta functions, and the metric and measure structures on

the projective lines of p-fields. In the last section of the chapter we will define the

chains of partitions mentioned above and conclude with precise statements and

some consequences of our main results.

1.2. log-Coulomb gases and canonical partition functions

Let X be a topological space with a metric d and a finite positive Borel

measure λ such that λN({(x1, . . . , xN) ∈ XN : xi = xj for some i 6= j}) = 0

for every N ≥ 1. A log-Coulomb gas with N particles in X is a statistical model

described as follows: Consider N particles with fixed charge values q1, . . . , qN ∈ R

and corresponding variable locations x1, . . . , xN ∈ X. Whether or not the
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charge values are distinct, we assume the particles are distinguished by the labels

1, . . . , N , so that unique configurations of the system correspond to unique tuples

(x1, . . . , xN) ∈ XN . We call each tuple a microstate of the system, and each

microstate has an energy defined by

E(x1, . . . , xN) :=


−∑1≤i<j≤N qiqj log d(xi, xj) if xi 6= xj for all i < j,

∞ otherwise.

(1.2.1)

Note that E−1(∞) has measure zero in XN by our choice of λ, and that E is

identically zero if N = 1. We assume the system is in thermal equilibrium with a

heat reservoir at inverse temperature β > 0, so that the microstates are distributed

according to the density e−βE(x1,...,xN ) =
∏

i<j d(xi, xj)
qiqjβ. The canonical partition

function β 7→ ZN(X, β) is defined as the total mass of this density, namely

ZN(X, β) :=

∫
XN

∏
1≤i<j≤N

d(xi, xj)
qiqjβ dλ(x1) . . . dλ(xN), (1.2.2)

and it readily describes explicit relationships between the system’s temperature and

observable parameters. For instance, the system’s dimensionless free energy, mean

energy, and energy fluctuation (variance) are respectively given by − logZN(X, β),

−∂/∂β logZN(X, β), and ∂2/∂β2 logZN(X, β), all of which are functions of β (and

hence of temperature). In general, a closed formula for the integral ZN(X, β) and

a description of its “analytic domain” (i.e., the largest open set of complex β for

which the integral converges absolutely) are useful for precisely understanding

the system’s macroscopic behavior as a function of its temperature. We will now

discuss three examples in which the desired closed formulas and explicit analytic

domains for ZN(X, β) can be found.
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Example 1.2.1. Let X = R with the standard metric d, the standard Gaussian

measure λ (i.e., dλ(x) = 1√
2π
e−x

2/2 dx), and N ≥ 2 charges with q1 = · · · = qN = 1.

In this case ZN(R, β) is known as Mehta’s integral [7]. It converges absolutely if

and only if Re(β) > −2/N , and in this case it converges to

N∏
j=1

Γ(1 + jβ/2)

Γ(1 + β/2)
. (1.2.3)

Before moving to the next examples, it is important to note that Mehta’s

integral ZN(R, β) is traditionally written in the form

1

(2π)N/2

∫
RN
e−

1
2

(x2
1+···+x2

N )
∏
i<j

|xi − xj|β dx1 . . . dxN .

We will prefer to treat the Gaussian factor e−
1
2

(x2
1+···+x2

N ) as part of the measure in

this thesis, though it is traditionally incorporated into (1.2.2) by adding a harmonic

potential term 1
2β

(x2
1 + · · · + x2

N) to the microstate energy E(x1, . . . , xN) in (1.2.1)

and using the scaled Lebesgue measure dλ(x) = 1√
2π
dx instead of the Gaussian

measure. In the early 1960’s, Mehta and Dyson showed that the integrand describes

the distribution of eigenvalues x1, . . . , xN (with multiplicity) for the N×N Gaussian

orthogonal, unitary, and symplectic random matrix ensembles at the respective

special values β = 1, β = 2, and β = 4. Bombieri extended the formula (1.2.3) to

Re(β) > −2/N roughly a decade later [7].

As far as Fourier analysis is concerned, the QN
p -analogue of the normalized

Gaussian 1
(
√

2π)N
e−

1
2

(x2
1+···+x2

N ) is the indicator function 1ZNp (x1, . . . , xN). More

precisely, both functions are centrally symmetric probability densities and are equal

to their respective real and p-adic Fourier transforms [12]. If we now let dx stand

for the standard Haar measure on Qp (i.e., the one that gives Zp measure 1), then
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we may understand the measure λ satisfying dλ = 1Zp(x) dx as the p-adic analogue

of the standard Gaussian measure on R, and henceforth the integral ZN(β) from

the beginning of this chapter can be understood as the p-adic Mehta integral :

ZN(Qp, β) =

∫
QNp

1ZNp (x1, . . . , xN)
∏
i<j

|xi − xj|βp dx1 . . . dxN .

That is, ZN(β) = ZN(X, β) is the canonical partition function for a log-Coulomb

gas in X = Qp with the standard p-adic metric d, the p-adic “Gaussian” measure

λ, and the charge values q1 = · · · = qN = 1. Like the harmonic potential in

the classical setting, the indicator 1ZNp can be attributed to “adding an ∞ term”

to the microstate energy E(x1, . . . , xN) whenever (x1, . . . , xN) ∈ QN
p \ ZNp , and

this amounts to saying that the gas is confined to an infinite potential well in Zp.

We will see later that the indicator function may be replaced by more general

functions ρ : QN
p → R which correspond to other kinds of potentials. Unlike

ZN(R, β), we will find that the formula for ZN(Qp, β) generalizes easily to gases

with multiple components (meaning q1, . . . , qN may be distinct). However, even in

the one component case q1 = · · · = qN = 1, the explicit formulas for ZN(Qp, β)

and its relatives become complicated very rapidly as N increases. Thus we will only

consider N = 3 in the next two examples:

Example 1.2.2. Let X = Zp with the standard p-adic metric, standard Haar

measure, and N = 3 charges with values q1 = 1, q2 = 2, and q3 = 3. Then

one of our main results implies that Z3(Zp, β) converges absolutely if and only if

Re(β) > −1/6, and in this case it converges to

(p− 1)(p− 2)p11β

p2+11β − 1
+

(p− 1)2p11β

p2+11β − 1

[
1

p1+2β − 1
+

1

p1+3β − 1
+

1

p1+6β − 1

]
.
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In fact, we will show that multi-component canonical partition functions can

be defined and computed in the p-adic projective setting as well:

Example 1.2.3. Let X = P1(Qp) with the spherical metric δ, the unique

PGL2(Zp)-invariant Borel probability measure λ, and N = 3 charges with values

q1 = 1, q2 = 2, and q3 = 3 as above. Another of our main results implies that

Z3(P(Qp), β) also converges absolutely if and only if Re(β) > −1/6, and in this case

it converges to

(p− 1)(p3+11β − 2)

(p+ 1)2(p2+11β − 1)
+

(p− 1)(p3+11β − 1)

(p+ 1)2(p2+11β − 1)

[
1

p1+2β − 1
+

1

p1+3β − 1
+

1

p1+6β − 1

]
.

The evident similarities between Examples 1.2.2 and 1.2.3 hint at an

interesting relationship between log-Coulomb gases in Qp and those in the

projective line P1(Qp). This relationship will be made explicit at the end of this

chapter and proved in Chapter 5. Moreover, the large expression in Example 1.2.3

is invariant under the involution p 7→ p−1, and the same becomes true for the large

expression in Example 1.2.2 after it is scaled by p−
11
2
β. This type of symmetry is a

familiar—though not yet fully understood—phenomenon in the theory of local zeta

functions [5], and it will make another brief appearance in the Appendix. We will

now review the necessary background on local fields, projective lines, and local zeta

functions (which include ZN(R, β) and ZN(Qp, β)), then conclude this chapter with

the statement of our main theorem before returning to the subject of log-Coulomb

gases in Chapter 2.
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1.3. Local fields and their projective lines

A topological field K is called a local field if it is Hausdorff, non-discrete, and

locally compact. Among the best known examples are R, C, and Qp, but we allow

K to remain arbitrary for the moment, and recall that an isomorphism of local

fields K ∼= K ′ is both an algebraic isomorphism and a homeomorphism. Following

[17], recall that every local field K admits an additive Haar measure µ which is

unique up to normalization. Given a measurable set M ⊂ K with 0 < µ(M) < ∞,

it can be shown that the function | · | : K → R≥0 defined by

|x| :=


√
µ(xM)/µ(M) if K ∼= C,

µ(xM)/µ(M) otherwise,

satisfies the axioms of an absolute value on K. In fact, | · | is independent of M

and the normalization of µ, the metric topology generated by | · | coincides with the

intrinsic topology on K, and K is complete with respect to | · |. Thus, | · | is aptly

called the canonical absolute value on K, and we will fix a normalization of µ once

and for all by specifying the measure of the closed unit ball:

µ({x ∈ K : |x| ≤ 1}) :=



π if K ∼= C,

2 if K ∼= R,

1 otherwise.

At first glance, the condition “K is a local field not isomorphic to R or C” seems

rather vague, but the following summary shows that it is quite specific.
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Theorem 1.3.1 (The main dichotomy and properties of local fields [17]). Suppose

K is a local field with canonical absolute value | · |. There are two main possibilities:

1. K is archimedean, meaning the image of the canonical ring homomorphism

Z → K is unbounded with respect to | · |. In this case K ∼= R or K ∼= C,

| · | is respectively identified with the usual absolute value on R or C, and µ is

respectively identified with the standard Lebesgue measure on R or C.

2. K is nonarchimedean, meaning the image of Z → K is bounded. In this case

| · | satisfies the strong triangle inequality: |x + y| ≤ max{|x|, |y|} for all

x, y ∈ K. Consequently, K is totally disconnected and the unit balls

R := {x ∈ K : |x| ≤ 1} and P := {x ∈ K : |x| < 1}

are both open, compact, and closed under addition and multiplication. In fact,

R is a local PID, its unique maximal ideal is P , its group of units is

R× = R \ P = {x ∈ K : |x| = 1},

and its residue field R/P is isomorphic to Fq for some prime power q. There

is a canonical isomorphism of (R/P )× onto the group of (q − 1)th roots of

unity Uq−1 ⊂ K×. It extends to a bijection R/P → {0} t Uq−1 with inverse

x 7→ x+ P , so {0} t Uq−1 is a canonical set of representatives for the cosets of

P ⊂ R. On the other hand, there is a canonical valuation v : K → Z ∪ {∞}

given by

v(x) :=


− logq |x| if x 6= 0,

∞ if x = 0,

8



which satisfies v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ K and restricts to a

surjective homomorphism K× → Z. Then |x| = q−v(x) is an integer power of

q for each x ∈ K×, and the surjectivity of v implies that K has uniformizers,

i.e., elements π ∈ K satisfying v(π) = 1. Fixing a uniformizer π ∈ K provides

a concrete approach to the elements, balls, and Haar measure µ:

(a) If x ∈ K× and m = v(x), there is a unique u ∈ R× such that x = uπm

and a unique sequence (d(n))∞n=m such that d(m) 6= 0 and

x =
∞∑
n=m

d(n)πn.

(b) The open balls in K are precisely the sets of the form y + πmR with

y ∈ K and m ∈ Z, and every such ball is compact with measure equal to

its radius, i.e., µ(y + πmR) = |πm| = q−m. In particular, if m1,m2 ∈ Z

and m1 ≤ m2, then πm2R is a subgroup of πm1R with index qm2−m1.

Indeed, a local field K that is not isomorphic to R or C has a surprisingly rich

structure. The properties above are actually strong enough to classify all such K:

Corollary 1.3.2 (The classification of nonarchimedean local fields [17]). Suppose

K is a nonarchimedean local field with canonical absolute value | · | and R, P , and q

as above. Since q is a prime power, there is a unique prime p such that q = pf for

some integer f ≥ 1, and there are only two possibilities:

1. char(K) = 0, in which case K is isomorphic to a finite extension of Qp and

hence called a p-adic field. In particular, if K ∼= Qp, then | · | is identified with

| · |p, R ∼= Zp, P ∼= pZp, R/P ∼= Fp, and hence q = p.

9



2. char(K) = p, in which case K ∼= Fq((t)), R ∼= Fq[[t]], P ∼= tFq[[t]], and K is

called a function field.

In light of the role played by p in the classification, we will follow Weil and

use the term “p-field” as a shorthand for “nonarchimedean local field” from now

on. It should also be emphasized that for any p-field K, the absolute value | · |,

the valuation v, the subsets R, P and R×, the group isomorphism R/P ∼= Uq−1,

and hence the prime power q are all canonical (i.e., “built in”) features of K. There

is no canonical uniformizer in K and and no canonical choice of Haar measure on

K, but the set of uniformizers and the set of Haar measures are both canonical: If

π ∈ K is a fixed uniformizer and µ is the aforementioned Haar measure (the unique

one satisfying µ(R) = 1), then the uniformizers in K are precisely the elements

of the form uπ with u ∈ R× and the additive Haar measures on K are precisely

the measures of the form cµ with c ∈ R>0. With these facts in mind, it will be

convenient to settle on notation that will be used frequently from here on out:

Notation 1.3.3. Whenever K is declared to be a p-field, the symbols | · |, v, R, P ,

q, and Uq−1 will be understood to be the items defined above, and we will assume

π stands for a fixed uniformizer of K (in particular, π = t and v = ordt if K =

Fp((t)), or π = p and v = ordp if K = Qp). For any local field K, we reserve the

symbol dx for integration against the Haar measure µ, and for each positive integer

N we define the standard norm ‖ · ‖ on the N -fold product KN via

‖(x1, . . . , xN)‖ :=


√∑N

i=1 |xi|2 if K is archimedean,

max
1≤i≤N

|xi| if K is nonarchimedean.

Note that ‖ · ‖ has the same image as | · | in either case.
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The following lemma is a straightforward consequence of the definition of ‖ · ‖

and the strong triangle inequality for p-fields:

Lemma 1.3.4. If K is a p-field and N is any positive integer, then the inequality

‖(x1, . . . , xN) + (y1, . . . , yN)‖ ≤ max{‖(x1, . . . , xN)‖, ‖(y1, . . . , yN)‖}

holds for all (x1, . . . , xN), (y1, . . . , yN) ∈ KN , and it becomes equality whenever

‖(x1, . . . , xN)‖ 6= ‖(y1, . . . , yN)‖. Moreover, ‖ · ‖ decomposes KN \ {(0, . . . , 0)} into

countably many fibers of the form

{(x1, . . . , xN) ∈ KN : ‖(x1, . . . , xN)‖ = q−m} = πmRN \ πm+1RN = πm(RN \ πRN).

We now recall some useful facts about projective lines from [6] in our present

notation. If K is a local field, recall that its projective line is the quotient space

P1(K) := (K2 \ {(0, 0)})/ ∼, where (x0, x1) ∼ (y0, y1) if and only if y0 = λx0 and

y1 = λx1 for some λ ∈ K×. Thus we regard P1(K) concretely as the set of symbols

[x0 : x1] such that (x0, x1) ∈ K2 \ {(0, 0)}, subject to [λx0 : λx1] = [x0 : x1] for all

λ ∈ K× and endowed with the topology induced by the quotient map (x0, x1) 7→

[x0 : x1]. Note that [x0 : x1] 6= [1 : 0] if and only if x1 6= 0, so x = x0/x1 is the

unique element of K satisfying [x : 1] = [x0 : x1], and the rule ι(x) := [x : 1] defines

a homeomorphism ι : K → P1(K) \ {[1 : 0]}. The projective line is compact and

metrizable by the spherical metric δ : P1(K)× P1(K)→ [0, 1], which is defined via

δ([x0 : x1], [y0 : y1]) :=
|x0y1 − x1y0|

‖(x0, x1)‖ · ‖(y0, y1)‖ . (1.3.4)
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Suppose K is a p-field and leave it fixed for the rest of this section. The

image of δ is clearly {0} ∪ {q−m : m ∈ Z≥0}, every open set in P1(K) is a union

of balls of the form

Bm[x0 : x1] := {[y0 : y1] ∈ P1(K) : δ([x0 : x1], [y0 : y1]) ≤ q−m} (1.3.5)

with [x0 : x1] ∈ P1(K) and m ∈ Z≥0, and every such ball is open and compact. The

homeomorphism ι : K → P1(K) \ {[1 : 0]} also relates the metric structures of K

and P1(K) in an explicit and convenient way: For any x, y ∈ K, (1.3.4) implies

δ(ι(x), ι(y)) =



|x− y| if x, y ∈ R,

1 if x ∈ R and y /∈ R,

|x−1 − y−1| if x, y /∈ R,

(1.3.6)

and δ(ι(x), [1 : 0]) = (max{1, |x|})−1 for all x ∈ K. By the definition in (1.3.5), the

rule (1.3.6), and the strong triangle “equality” for | · | (i.e., Lemma 1.3.4 for N = 1),

one easily verifies that

ι(y + πmR) =


Bv(ι(y)) if y ∈ R,

Bm−2v(y)(ι(y)) if y /∈ R,
(1.3.7)

whenever y ∈ K and m ∈ Z>0. That is, ι sends the open ball of radius r ∈ (0, 1)

centered at y ∈ K onto the open ball of radius r/max{1, |y|2} centered at ι(y) ∈

P1(K) \ {[1 : 0]}, so ι : K → P1(K) \ {[1 : 0]} restricts to an isometry on R and a

contraction on K \R.
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Though P1(K) lacks a natural Haar measure (since it is not a group), it is

a homogeneous space for the projective linear group PGL2(R), which is defined

to be the quotient of GL2(R) = {A ∈ M2(R) : det(A) ∈ R×} by its center

Z = {( λ 0
0 λ ) : λ ∈ R×} ∼= R×. Indeed, it is straightforward to check that the rule

φ[x0 : x1] := [ax0 + bx1 : cx0 + dx1], where φ ∈ PGL2(R) and ( a bc d ) ∈ GL2(R) is any

representative of φ, gives a well-defined transitive action of PGL2(R) on P1(K).

This action is compatible with δ and endows P1(K) with a nice measure:

Lemma 1.3.5 (PGL2(R)-invariance [6]). The spherical metric satisfies

δ(φ[x0 : x1], φ[y0 : y1]) = δ([x0 : x1], [y0 : y1])

for all φ ∈ PGL2(R) and all [x0 : x1], [y0 : y1] ∈ P1(K). There is also a unique Borel

probability measure ν on P1(K) satisfying ν(φ(M)) = ν(M) for all φ ∈ PGL2(R)

and all Borel subsets M ⊂ P1(K). In particular, for each m ∈ Z≥0 the relation

φ(Bm[x0 : x1]) = Bm(φ[x0 : x1]) defines a transitive PGL2(R) action on the set of

balls of radius q−m, and thus the measure of a ball Bm[x0 : x1] ⊂ P1(K) depends

only on m.

The map ι also relates the measures on K and P1(K) in a simple way: Given

m > 0 and a complete set of representatives y1, . . . , yqm ∈ R for the cosets of

πmR ⊂ R, applying (1.3.7) to the partition R = (y1 + πmR) t · · · t (yqm + πmR)

yields

ι(R) = Bm[y1 : 1] t · · · tBm[yqm : 1].

13



Therefore PGL2(R)-invariance of ν implies that the measure of ι(R) is qm times

the measure of Bm[0 : 1] = ι(πmR). On the other hand,

ι(K \R) = ι({x : |x| ≥ q}) = {ι(x) : δ(ι(x), [1 : 0]) ≤ q−1} = B1[1 : 0] \ {[1 : 0]}

implies P1(K) = ι(R) t ι(K \ R) t {[1 : 0]} = ι(R) t B1[1 : 0], which has measure

1. But ι(R) has q times the measure of B1[1 : 0], so the measure of ι(R) must be

q/(q + 1) and hence every ball Bv[x0 : x1] ⊂ P1(K) with m > 0 has measure

q−m · q/(q + 1). Combining this with (1.3.7), we conclude that the measure ν on

P1(K) \ {[1 : 0]} pulls back along ι to an explicit measure ν ◦ ι on K, i.e.,

ν(ι(M)) =
q

q + 1

∫
M

(
max{1, |x|2}

)−1
dx (1.3.8)

for all Borel subsets M ⊂ K.

Remark 1.3.6. Recall that {0} t Uq−1 is a full set of representatives for the cosets

of P ⊂ R. Thus if we fix a primitive root ξ ∈ Uq−1, we may write {0} ∪ Uq−1 =

{0, 1, ξ, . . . , ξq−2} and get an explicit partition of R into q cosets of P :

R = P t (1 + P ) t (ξ + P ) t · · · t (ξq−2 + P )︸ ︷︷ ︸
R×

. (1.3.9)

Note that two elements x, y ∈ R satisfy |x − y| = 1 if and only if x and y belong to

different cosets, and each coset is a ball with measure and radius q−1. Applying ι to

(1.3.9) and using the rule (1.3.7) allows P1(K) = ι(R) t B1[1 : 0] to be refined into
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an analogous partition with q + 1 parts:

P1(K) = B1[0 : 1] tB1[1 : 1] tB1[ξ : 1] t · · · tB1[ξq−2 : 1]︸ ︷︷ ︸
ι(R×)

tB1[1 : 0]. (1.3.10)

Indeed, two elements [x0 : x1], [y0 : y1] ∈ P1(K) satisfy δ([y0 : y1], [y0 : y1]) = 1 if

and only if [x0 : x1] and [y0 : y1] belong to different parts, and each part is a ball

with measure 1/(q + 1) and radius q−1. Moreover, ι sends R× onto the “equator”

ι(R×), i.e., the set of points in P1(K) with δ-distance 1 from both the “south pole”

[0 : 1] and the “north pole” [1 : 0]. The “reflection” φ ∈ PGL2(R) represented by

( 0 1
1 0 ) ∈ GL2(R) fixes B1[1 : 1], interchanges B1[0 : 1] and B1[1 : 0], and interchanges

B1[ξk : 1] and B1[ξq−1−k : 1] for 0 < k < q − 1.

1.4. Local zeta functions

We have already seen three examples of local zeta functions: The classical

Mehta Integral ZN(R, β) in Example 1.2.1, its p-adic analogue ZN(Qp, β), and its

multi-component variant in Example 1.2.2. In particular, we saw that the last of

these converges absolutely to a rational expression of p and p−β whenever β has

sufficiently large real part. The celebrated Igusa’s Theorem shows that this notion

of rationality holds for a very wide class of local zeta functions, and it will be

apparent in our main results. Though our methods will be independent of Igusa’s

Theorem, it is worthwhile to recall what local zeta functions are, what the theorem

states and implies, and how it generalizes to a “multivariate” version.
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Definition 1.4.1. Suppose K is a local field and N is a positive integer.

(a) If K ∼= R or K ∼= C, one defines smooth functions Φ on KN as usual. For

such K, a Schwartz-Bruhat function is a smooth function Φ : KN → C that

satisfies a “rapid decay” condition, namely

sup
(x1,...,xN )∈KN

|(∂Φ)(x1, . . . , xN)| <∞

for all operators ∂ = xm1
1 (∂/∂x1)n1 · · ·xmNN (∂/∂xN)nN with mi, ni ∈ Z≥0.

(b) If K is a p-field, a function Φ : KN → C is Schwartz-Bruhat if it is locally

constant (an analogue of “smooth”) and with compact support (an analogue

of “rapid decay”).

The C-vector space of Schwartz-Bruhat functions plays a fundamental role

in Fourier analysis and the theory of distributions on KN (for any local field K).

Basic examples of Schwartz-Bruhat functions include the familiar Gaussian on RN

and the indicator 1ZNp on QN
p , and both will continue to play a role in this section.

Definition 1.4.2. Fix a local field K and finitely many polynomials f1, . . . , fk ∈

K[x1, . . . , xN ] in N ≥ 1 variables, write s = (s1, . . . , sk) for a generic element

of Ck, and suppose Φ : KN → C is a Schwartz-Bruhat function. The associated

multivariate local zeta function is the holomorphic function defined on the open

region Hk = {s ∈ Ck : Re(sj) > 0 for all j} by

ZΦ(s,f) :=

∫
KN

Φ(x1, . . . , xN)
k∏
j=1

|fj(x1, . . . , xN)|sj dx1 . . . dxN .
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It is easy to verify that ZΦ(·,f) is holomorphic at every s ∈ Hk, though it is

generally difficult to find its closed form and describe its meromorphic continuation.

Igusa’s Theorem partially solves this problem in the univariate case (i.e., k = 1)

when K is a p-adic field (a p-field with char(K) = 0):

Proposition 1.4.3 ([10]). Let K be a p-adic field, suppose Φ : KN → C is a

Schwartz-Bruhat function, and suppose f ∈ K[x1, . . . , xN ]. Then there is a rational

function r ∈ C(t) such that the local zeta function defined by

ZΦ(s, f) =

∫
KN

Φ(x1, . . . , xN)|f(x1, . . . , xN)|s dx1 . . . dxN

satisfies ZΦ(s, f) = r(q−s) for Re(s) > 0. In particular, the meromorphic

continuation of ZΦ(s, f) is given by r(q−s).

The general theorem is established in [9] and [10] and gives a similar result

when | · |s is replaced by any continuous homomorphism K× → C× (we need not

deal with these here), but Igusa’s proof relies on the existence of a certain type of

resolution of singularities for f . Existence of such a resolution is guaranteed by [8]

if char(K) = 0, but otherwise depends more subtly on K and f . Though Igusa’s

Theorem does not address the char(K) > 0 case, it is quite powerful. For instance,

the generating function Pf (t) =
∑∞

m=0(Nm(f)/pmN)tm for the sequence defined by

Nm(f) := #{(x1, . . . , xN) ∈ (Z/pmZ)N : f(x1, . . . , xN) ≡ 0 mod pm}

is analytic for |t| < 1, and if Φ = 1ZNp it satisfies Pf (p
−s) = 1−p−sZΦ(s,f)

1−p−s whenever

Re(s) > 0 [3]. Now Proposition 1.4.3 implies Pf (t) is rational in t, and hence Pf (t)

is the sum of a polynomial and finitely many geometric series in powers of t.
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Using similar resolution techniques, Loeser generalized Igusa’s Theorem to

k > 1 in [11], which implies the following analogue of Proposition 1.4.3:

Proposition 1.4.4 ([11]). Let K be a p-adic field. If Φ : KN → C is a Schwartz-

Bruhat function and f = (f1, . . . , fk) with fj ∈ K[x1, . . . , xN ], then there is a

rational function r ∈ C(t1, . . . , tk) such that the local zeta function defined by

ZΦ(s,f) :=

∫
KN

Φ(x1, . . . , xN)
k∏
j=1

|fj(x1, . . . , xN)|sj dx1 . . . dxN

satisfies ZΦ(s,f) = r(q−s1 , . . . , q−sk) for all s ∈ Hk.

If supp(Φ) is no longer assumed to be compact, then ZΦ(·,f) is no longer

a proper local zeta function in the sense Definition 1.4.2, but it may still admit a

meromorphic continuation of a similar rational form. Such an example was recently

investigated in [1] with applications to p-adic string theory. Therein it is shown

that for N ≥ 4 the p-adic open string N-point zeta function, defined by

Z(N)(s) :=

∫
QN−3
p

N−2∏
i=2

|xi|s1i |1− xi|si(N−1)

∏
2≤i<j≤N−2

|xi − xj|sij dx1 . . . dxN ,

coincides with a rational function in p−sij for all 1 ≤ i < j ≤ N − 1 on a nonempty

open domain of tuples s = (sij)1≤i<j≤N−1 ∈ C(N−1
2 ), despite the unbounded

support of the integrand. Unlike Igusa’s original method, a formula for Z(N)(s) was

found by decomposing QN−3
p into finitely many sets, integrating over each one, and

summing the results. This method does not require char(K) = 0 and generalizes

to all p-fields, while also providing a description of the domain and poles of Z(N) in

terms of the decomposition of QN−3
p . Without placing any restrictions on char(K)

or q, we will use a similar method to prove our main results.
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1.5. Norm Densities and log-Coulomb gases in K and P1(K)

Recall that both of the integrals ZN(R, β) and ZN(Qp, β) from Section 1.2 are

examples of the generalized Mehta integral

∫
KN

ρ(‖x‖)
∏
i<j

|xi − xj|β dx1 . . . dxN , (1.5.11)

where ‖x‖ is shorthand for ‖(x1, . . . , xN)‖. Indeed, if we let K = R (with the

appropriate dx, | · |, and ‖ · ‖) and let ρ(t) = 1
(2π)N/2

e−t
2/2, then the integral becomes

ZN(R, β). Similarly, if we let K = Qp (with the appropriate dx, | · |, and ‖ · ‖) and

let ρ = 1[0,1], then the integral becomes ZN(Qp, β).

We will work exclusively with p-fields K from now on, but will further

generalize (1.5.11) in several ways. To help our arguments and results work for

all p-fields K, we note that the set

N := {0, 1, 2, 3, . . . } ∪ {1/2, 1/3, 1/4, . . . }

always contains the image ‖KN‖ (no matter which p-field K is) and make the

following definition:

Definition 1.5.1. A norm-density is a function ρ : N → C satisfying the mild

growth conditions

lim sup
n→∞

log |ρ( 1
n
)|C

log(n)
≤ 1 and lim sup

n→∞

log |ρ(n)|C
log(n)

= −∞, (1.5.12)

where | · |C denotes the canonical absolute value on C and log : [0,∞]→ [−∞,∞] is

the extended natural logarithm (i.e., log(0) := −∞ and log(∞) :=∞).
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Note that the function x 7→ ρ(‖x‖) has modest growth as ‖x‖ → 0 and fast

decay as ‖x‖ → ∞, regardless of our choice of KN . Examples of norm-densities

include ρ(t) = e−t, ρ(t) = e−t
2/2, ρ(t) = − log(t)1[0,1](t), and ρ(t) = 1[0,1](t).

Definition 1.5.2. Suppose K is a p-field, suppose ρ is a norm-density, let a

and b be complex numbers, and let N be a positive integer. For all suitable

s = (sij)1≤i<j≤N ∈ C(N2 ) , define

Zρ
N(K, a, b, s) :=

∫
KN

ρ(‖x‖)
(

max
i<j
|xi−xj|

)a(
min
i<j
|xi−xj|

)b∏
i<j

|xi−xj|sij dx1 . . . dxN .

Our first main theorem establishes an explicit formula for Zρ
N(K, a, b, s) and

an explicit description of its domain (s values for which it converges absolutely),

both in terms of combinatorial objects that will be defined in the next section. It is

not hard to show that the integral

Zρ
N(K, 0, 0, s) =

∫
KN

ρ(‖x‖)
∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely when all sij = 0, so if the norm-density ρ is positive and

not identically zero, then ρ(‖x‖) dx1 . . . dxN is a finite positive Borel measure on

KN . In this case Zρ
N(K, 0, 0, s) becomes the canonical partition function for a log-

Coulomb gas in K when it is evaluated at sij = qiqjβ for all i < j (for some

choice of charge values q1, . . . , qN ∈ R). For suitable β ∈ R, the expectation of

the random variable
(

maxi<j |xi − xj|
)a(

mini<j |xi − xj|
)b

against the probability

density 1
ZρN (K,0,0,s)

ρ(‖x‖)∏i<j |xi − xj|qiqjβ is given by

E
[(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b]
=
Zρ
N(K, a, b, s)

Zρ
N(K, 0, 0, s)

. (1.5.13)
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In particular, taking a, b ∈ Z≥0 in (1.5.13) gives the joint moments of the

gas’ diameter maxi<j |xi − xj| and minimum particle spacing mini<j |xi − xj|.

Though these canonical partition functions and joint moments have not been

computed before, the study of Coulomb gases (which include log-Coulomb gases)

in such p-fields K, or more generally Kd with d ≥ 1, has become increasingly

active in the last decade. Following the classical Rd analogue in [13], the article

[18] gives Coulomb gases in Kd a natural motivation by realizing their potentials as

fundamental solutions to the pseudodifferential analogue of Poisson’s electrostatic

equation. The same article also realizes the Haar measure µd (restricted to Rd) as

the equilibrium measure for the confining potential − log 1[0,1](‖x‖) in the non-log-

Coulomb case. In the log-Coulomb case, the more recent article [19] uses graph-

theoretic machinery to establish and analyze formulas for Zρ
N(K, 0, 0, s) with

ρ = 1[0,1] and sij = qiqjβ, with arbitrary q1, . . . , qN ∈ R. Our results are closely

related to [19] but were discovered by “unwinding” a recurrence for ZN(Qp, β) that

was established in [14]. A related recurrence can be found in the Appendix.

In Section 1.2 we recognized the p-adic Mehta Integral ZN(Qp, β) as an

example of ZN(X, β) with X = Qp and dλ(x) = 1ZNp (x) dx. However, we could as

well have chosen X = Zp and dλ(x) = dx and imagined the gas to be inherently in

Zp (rather than probabilistically confined to Zp by an infinite potential well), which

is a reasonable argument for writing the Mehta integral as ZN(Zp, β) instead. This

interpretation will be useful for highlighting relationships between the canonical

partition functions for log-Coulomb gases in R, P , and P1(K), which motivates the

following definition:
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Definition 1.5.3. If N ≥ 0, m ∈ Z, and s = (sij)1≤i<j≤N ∈ C(N2 ) (the empty tuple

if N = 0 or N = 1), define Z0(πmR, s) = Z0(P1(K), s) = 1,

ZN(πmR, s) =

∫
πmRN

∏
i<j

|xi − xj|β dx1 . . . dxN , and

ZN(P1(K), s) =

∫
(P1(K))N

∏
i<j

δ([xi,0 : xi,1], [xj,0 : xj,1])sij d[x1,0 : x1,1] . . . d[xN,0 : xN,1]

for N ≥ 1, where d[x0 : x1] stands for the unique PGL2(R)-invariant Borel

probability measure ν on P1(K). Note that the first integral is equal to ZN(R, s)

if m = 0 and equal to ZN(P, s) if m = 1. We will reserve the notation ZN(R, β),

ZN(P, β) and ZN(P1(K), β) for the one-component canonical partition functions

(where q1 = · · · = qN = 1) obtained by respectively evaluating ZN(R, s), ZN(P, s)

and ZN(P1(K), s) at sij = β for all i < j.

1.6. Splitting chains and the Main Theorem

There are two main factors comprising Zρ
N(K, a, b, s), and they can be defined

in their own right. Thus, until the statement of the main theorem, we will allow N

and q to be arbitrary integers satisfying N ≥ 2 and q ≥ 2. The first of the two main

factors is the root function, defined on a convex domain called the root polytope as

follows:

Definition 1.6.1. For N ≥ 2 and a, b ∈ C we define the root polytope RPN(a, b) by

RPN(a, b) :=

{
s ∈ C(N2 ) : Re

(
N − 1 + a+ b+

∑
i<j

sij

)
> 0

}
.
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For such N , a, b, an integer q ≥ 2, and a norm-density ρ, the associated root

function RPN(a, b)→ C is defined by

s 7→ Hρ
q

(
N + a+ b+

∑
i<j

sij

)
where Hρ

q (z) :=
1− q−z

1− q−(z−1)
·
∑
m∈Z

ρ(qm)qmz.

The second factor is more complicated and requires some combinatorial

language. Recall that a partition of the set [N ] := {1, 2, . . . , N} is a set t of

nonempty pairwise disjoint subsets λ ⊂ [N ] satisfying
⋃
λ∈t λ = [N ]. If t1 and

t2 are partitions of [N ], we write t2 ≤ t1 and call t2 a refinement of t1 if each

part λ2 ∈ t2 is contained in some part λ1 ∈ t1. We write t2 < t1 and call

t2 a proper refinement of t1 if both t2 ≤ t1 and t2 6= t1. The relation ≤

makes the collection of all partitions of [N ] into a partially ordered lattice with

height N , unique maximal element t := {[N ]}, and unique minimal element

t := {{1}, {2}, . . . , {N}}. The rank of a partition t of [N ] is the integer

rank(t) := N −#t =
∑
λ∈t

(#λ− 1).

Definition 1.6.2. Suppose N ≥ 2. As needed, empty sums are defined to be 0.

(a) For each nonempty subset λ ⊂ [N ], define the part exponent eλ : C(N2 ) → C by

eλ(s) :=
∑
i<j
i,j∈λ

(
sij +

2

#λ

)
= (#λ− 1) +

∑
i<j
i,j∈λ

sij.

(b) For each partition t of [N ], define the partition exponent Et : C(N2 ) → C by

Et(s) :=
∑
λ∈t

eλ(s) = rank(t) +
∑
λ∈t

∑
i<j
i,j∈λ

sij.
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Definition 1.6.3 (Splitting chains). A finite tuple ttt = (t0,t1, . . . ,tL) of

partitions of [N ] satisfying

t = t0 > t1 > t2 > · · · > tL = t

shall be called a splitting chain of order N . We write SN for the set of all splitting

chains of order N , and we attach the following terminology and notation to each

ttt ∈ SN with N ≥ 2:

(a) The positive integer L(ttt) := L is the length of ttt and the partitions

t0,t1, . . . ,tL(ttt)−1 are the levels of ttt. Call each non-singleton part λ ∈

t0 ∪t1 ∪ · · · ∪tL(ttt)−1 a branch of ttt and write B(ttt) for the set of all branches

of ttt, i.e.,

B(ttt) := (t0 ∪ t1 ∪ · · · ∪ tL(ttt)−1) \ t.

(b) Since ttt must terminate at tL(ttt) = t, each branch appears in a final

level t` before it refines into two or more parts in t`+1. Thus for each

λ ∈ B(ttt) we define the depth `ttt(λ) ∈ {0, 1, . . . , L(ttt) − 1} and degree

degttt(λ) ∈ {2, 3, . . . , N} respectively by

`ttt(λ) := max{` : λ ∈ t`} and degttt(λ) := #{λ′ ∈ t`ttt(λ)+1 : λ′ ⊂ λ}.

(c) Using the falling factorial notation (z)n = z · (z − 1) · (z − 2) · . . . · (z − n + 1)

for integers n ≥ 1, we define the multiplicity polynomial Mttt(t) ∈ Z[t] by

Mttt(t) :=
∏

λ∈B(ttt)

(t− 1)degttt(λ)−1.
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It is a key observation that SN is finite for each N ≥ 2. This is easily seen

from the definition, since every ttt ∈ SN must satisfy 0 < L(ttt) < N and there

are at most finitely many ttt ∈ SN of a given length. One should also note that the

multiplicity polynomial for a splitting chain ttt ∈ SN factors as

Mttt(t) =
N−1∏
d=1

(t− d)pttt(d) where pttt(d) = #{λ ∈ B(ttt) : degttt(λ) > d},

because the falling factorial (t− 1)degttt(λ)−1 contributes a factor of (t− d) if and only

if degttt(λ) > d, and there are precisely pttt(d) such falling factorials in the definition

of Mttt(t). Thus, given an integer q ≥ 2, we have Mttt(q) > 0 if degttt(λ) ≤ q for all

λ ∈ B(ttt), and Mttt(q) = 0 otherwise. Multiplicity polynomials and the exponents in

Definition 1.6.2 together form the branch/level polytopes and branch/level functions

defined below. As we shall soon see, the sum of level functions over all ttt ∈ SN is

the second main factor in our formula for Zρ
N(K, a, b, s).

Definition 1.6.4. Suppose N ≥ 2 and q ≥ 2 are integers and suppose ttt ∈ SN . As

needed, products and intersections over empty index sets are respectively defined to

be 1 and C(N2 ).

(a) The branch polytope BPttt and branch function Ittt,q : BPttt → C are

respectively defined by

BPttt :=
⋂

λ∈B(ttt)\t

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}
and

Ittt,q(s) :=
Mttt(q)

qN−1
·
∏

λ∈B(ttt)\t

1

qeλ(s) − 1
.
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(b) Given b ∈ C, the level polytope LPttt(b) and level function Jttt,q(b, ·) :

LPttt(b)→ C are respectively defined by

LPttt(b) :=

L(ttt)−1⋂
`=1

{
s ∈ C(N2 ) : Re(b+ Et`(s)) > 0

}
and

Jttt,q(b, s) :=
Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

1

qb+Et` (s) − 1
.

Note that Ittt,q(s) and Jttt,q(b, s) are rational functions in the variables q, q−b,

and q−sij for all i < j, with Q coefficients determined by ttt alone. Given ttt and an

integer q ≥ 2, there are two possibilities:

(i) If degttt(λ) ≤ q for all λ ∈ B(ttt), then Mttt(q) > 0, and hence Ittt,q(s) and

Jttt,q(b, s) are never zero.

(ii) If degttt(λ) > q for some λ ∈ B(ttt), then Mttt(q) = 0, and hence Ittt,q and

Jttt,q(b, ·) are identically zero on BPttt and LPttt(b) respectively.

In any case, Ittt,q and Jttt,q(b, ·) are holomorphic on their respective polytopes BPttt

and LPttt(b), which are both open and convex. These polytopes are related by the

following lemma, which is the last ingredient we need to state the main theorem.

Lemma 1.6.5. We say that a splitting chain ttt is reduced if for each λ ∈ B(ttt)

there is a unique level t` containing λ (namely, the level t`ttt(λ)). We write

RN := {ttt ∈ SN : ttt is reduced}

and define an equivalence relation ' on SN by writing ttt ' ttt′ if and only if B(ttt) =

B(ttt′).
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(a) If ttt ' ttt′, then the branch degrees, part exponents, multiplicity polynomials,

and branch polytopes for ttt and ttt′ respectively coincide.

(b) For each ttt ∈ SN there is a unique ttt∗ ∈ RN such that ttt ' ttt∗. We call this

ttt∗ the reduction of ttt and regard RN as a complete set of representatives for

SN modulo '.

(c) For each ttt∗ ∈ RN we have

⋂
ttt∈SN
ttt'ttt∗

LPttt(0) = BPttt∗ ,

and therefore ⋂
ttt∈SN

LPttt(0) =
⋂

ttt∗∈RN

BPttt∗ .

Our main theorem shows that Zρ
N(K, a, b, s) and ZN(P1(K), s) can be

expressed neatly in terms of root, level, and branch functions, and that their

domains of absolute convergence are simply intersections of root, level, and branch

polytopes:

Theorem 1.6.6 (Main Theorem). Fix N ≥ 2 and a, b ∈ C and define the convex

open polytope

ΩN(a, b) := RPN(a, b) ∩
⋂

ttt∈SN

LPttt(b).

(a) If K is a p-field and ρ is a norm-density that is not identically zero, then the

integral Zρ
N(K, a, b, s) converges absolutely for all s ∈ ΩN(a, b), and ΩN(a, b)

is the largest open subset of C(N2 ) with this property.
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(b) If K and ρ are as above, then on each compact subset of ΩN(a, b) the integral

is given by the uniformly convergent sum

Zρ
N(K, a, b, s) = Hρ

q

(
N + a+ b+

∑
i<j

sij

)
·
∑
ttt∈SN

Jttt,q(b, s).

(c) Given b = 0, K and ρ as above, and ttt∗ ∈ RN , we have

∑
ttt∈SN
ttt'ttt∗

Jttt,q(0, s) = Ittt∗,q(s) for all s ∈ BPttt∗ .

Thus on each compact subset of ΩN(a, 0) the integral is given by the uniformly

convergent sum

Zρ
N(K, a, 0, s) = Hρ

q

(
N + a+

∑
i<j

sij

)
·
∑

ttt∗∈RN

Ittt∗,q(s).

(d) Given K as above, the integral ZN(P1(K), s) converges absolutely if and only

if s ∈ ΩN(0, 0), and for such s it is given by the finite sum

ZN(P1(K), s) =
(q/(q + 1))N−1

qe[N ](s) − 1
·
∑

ttt∗∈RN

qe[N ](s)+1 + 1− degttt∗([N ])

q + 1− degttt∗([N ])
· Ittt∗,q(s).

The denominator q + 1 − degttt∗([N ]) in the summand for ttt∗ ∈ RN is also a

factor of Mttt∗(q) (and hence can be cancelled out of Ittt∗,q(s)), so the apparent

singularity at q = degttt∗([N ])− 1 is removable.

There are several features of Theorem 1.6.6 that are worth emphasizing

here. Note that part (a) is independent of K and ρ, and that the rest of the

theorem depends on K only via q. That is, the region of absolute convergence
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ΩN(a, b) is always the same, no matter what the p-field K is, and the formulas

for Zρ
N(K, a, b, s) and ZN(P1(K), s) are “uniform in K” in the sense that there

are no extra cases or constraints for q. Moreover, the dependence of Zρ
N(K, a, b, s)

on ρ and a is carried entirely by the root functions appearing in parts (b) and (c).

Setting a = b = 0, we see that Zρ
N(K, 0, 0, s) and ZN(P1(K), s) have the same

region of absolute convergence (namely, ΩN(0, 0), unless ρ is identically zero), and

both are given by similar sums over RN . The term in Zρ
N(K, 0, 0, s) corresponding

to ttt∗ ∈ RN can be rearranged into the explicit form

Hρ
q

(
N +

∑
i<j

sij

)
Ittt∗,q(s) =

1− q−(N+
∑
i<j sij)

1− q−(N−1+
∑
i<j sij)

·
∑
m∈Z

ρ(qm)qm(N+
∑
i<j sij)

· Mttt∗(q)

qN−1
·

∏
λ∈B(ttt∗)\t

1

qeλ(s) − 1

=
q
∑
i<j sij − q−N

q
∑
i<j sij − q−(N−1)

·
∑
m∈Z

ρ(qm)qm(N+
∑
i<j sij)

· (q − 1)degttt∗ ([N ])−1

qN−1
·

∏
λ∈B(ttt∗)\t

(q − 1)degttt∗ (λ)−1

qeλ(s) − 1

= (q
∑
i<j sij − q−N) ·

∑
m∈Z

ρ(qm)qm(N+
∑
i<j sij) ·

∏
λ∈B(ttt∗)

(q − 1)degttt∗ (λ)−1

qeλ(s) − 1

and similarly, the term in ZN(P1(K), s) corresponding to the same ttt∗ ∈ RN can be

written explicitly as

(q/(q + 1))N−1

qe[N ](s) − 1
· q

e[N ](s)+1 + 1− degttt∗([N ])

q + 1− degttt∗([N ])
· Ittt∗,q(s)

=
1

(q + 1)N−1
· q

e[N ](s)+1 + 1− degttt∗([N ])

q + 1− degttt∗([N ])
·
∏

λ∈B(ttt∗)

(q − 1)degttt∗ (λ)−1

qeλ(s) − 1
.

Note that both of these terms share a common factor of
∏

λ∈B(ttt∗)
(q−1)degttt∗ (λ)−1

qeλ(s)−1
,

which generalizes the similarity between Examples 1.2.2 and 1.2.3. In addition
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to being independent of K and ρ, the next proposition implies that ΩN(a, b) is

independent of splitting chains altogether:

Proposition 1.6.7. If N ≥ 2 and b ∈ C, the intersection of level polytopes⋂
ttt∈SN LPttt(b) is equal to the following intersection over all partitions t of [N ]

satisfying t < t < t:

⋂
ttt∈SN

LPttt(b) =
⋂

t<t<t

{
s ∈ C(N2 ) : Re(b+ Et(s)) > 0

}
.

Similarly, the intersection of branch polytopes
⋂

ttt∗∈RN BPttt∗ is equal to an

intersection over all proper subsets λ ( [N ] of size #λ > 1:

⋂
ttt∗∈RN

BPttt∗ =
⋂
λ([N ]
#λ>1

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}
.

Therefore

ΩN(0, b) =
⋂

t<t≤t

{
s ∈ C(N2 ) : Re(b+ Et(s)) > 0

}
and

ΩN(0, 0) =
⋂
λ⊂[N ]
#λ>1

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}
.

The last claim in this proposition follows immediately from its first two claims

and the definition of ΩN(a, b) in Theorem 1.6.6. The proofs of the first two claims

will occur inside the proofs of the main theorem in Chapters 3 and 4, and we will

indicate where they happen.

30



1.7. Simple examples and a note about poles

Of the “parameters” ρ, K, a, b, and N , the last has the most complicated role

by far. Thus we work only with the N = 2 and N = 3 examples for now. In order

to streamline notation, we will write each partition t = {λ1, λ2, . . . , λk} as a string

of parts, i.e., t = λ1λ2 . . . λk.

Example 1.7.1. Fix a, b ∈ C and a norm-density ρ.

– If N = 2, then
(
N
2

)
= 1, so each s ∈ C(N2 ) is simply a number s ∈ C. The only

splitting chain in S2 is ttt = ({1, 2}, {1}{2}), and by Definition 1.6.4 it has

LPttt(b) = C and Jttt,q(b, s) = Ittt,q(s) =
q − 1

q
for all q ≥ 2.

Thus for all p-fields K with residue cardinality q and all s in the region

Ω2(a, b) = RP2(a, b) ∩ C = RP2(a, b) = {s ∈ C : Re(1 + a+ b+ s) > 0},

the integral Zρ
2 (K, a, b, s) converges absolutely to the value

Zρ
2 (K, a, b, s) =

q − 1

q
· 1− q−(2+a+b+s)

1− q−(1+a+b+s)
·
∑
m∈Z

ρ(qm)qm(2+a+b+s).

– If N = 3, then we have s = (s12, s13, s23) ∈ C3 with root polytope

RP3(a, b) = {s ∈ C3 : Re(2 + a+ b+ s12 + s13 + s23) > 0},

and Definition 1.6.4 provides the following table for all four splitting chains in

S3:
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ttt ∈ S3 Jttt,q(b, s) LPttt(b)

t0 = {1, 2, 3}

t1 = {1}{2}{3}

(q − 1)(q − 2)

q2
C3

t0 = {1, 2, 3}

t1 = {1, 2}{3}

t2 = {1}{2}{3}

(q − 1)2

q2
· 1

q1+b+s12 − 1
{s ∈ C3 : Re(1 + b+ s12) > 0}

t0 = {1, 2, 3}

t1 = {1, 3}{2}

t2 = {1}{2}{3}

(q − 1)2

q2
· 1

q1+b+s13 − 1
{s ∈ C3 : Re(1 + b+ s13) > 0}

t0 = {1, 2, 3}

t1 = {1}{2, 3}

t2 = {1}{2}{3}

(q − 1)2

q2
· 1

q1+b+s23 − 1
{s ∈ C3 : Re(1 + b+ s23) > 0}

Thus, for all p-fields K with residue cardinality q and for all s in the region

Ω3(a, b) = {s ∈ C3 : Re(2 + a+ b+ s12 + s13 + s23) > 0}

∩
⋂

1≤i<j≤3

{s ∈ C3 : Re(1 + b+ sij) > 0},
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the integral Zρ
3 (K, a, b, s) converges absolutely to the value

Zρ
3 (K, a, b, s) =

1− q−(3+a+b+s12+s13+s23)

1− q−(2+a+b+s12+s13+s23)
·
∑
m∈Z

ρ(qm)qm(3+a+b+s12+s13+s23)

·
(

(q − 1)(q − 2)

q2
+

(q − 1)2

q2

[
1

q1+b+s12 − 1
+

1

q1+b+s13 − 1
+

1

q1+b+s23 − 1

])
.

Remark 1.7.2. Note that every splitting chain of order 2 or 3 is reduced and

Jttt(0, s) = Ittt(s) for all ttt ∈ S2 and all ttt ∈ S3. Therefore part (c) of Theorem

1.6.6 is redundant when N = 2 or N = 3, for in these cases it coincides with part

(b) applied to b = 0. If N ≥ 4 we have RN ( SN , because there is at least one

non-reduced splitting chain ttt = (t0,t1,t2,t3) ∈ SN such as the one given by

t0 = {1, 2, 3, 4, . . . , N},

t1 = {1, 2}{3, 4, . . . , N},

t2 = {1, 2}{3}{4} . . . {N},

t3 = {1}{2}{3}{4} . . . {N}.

Finding closed forms for the cardinalities of SN and RN for general N is nontrivial,

but they can be bounded below as follows. Given ttt ∈ RN and i ∈ [N ], we may

construct a particular ttt′ ∈ RN+1: For each ` ∈ {0, 1, 2, . . . , L(ttt)}, let t′` be the

partition of [N+1] obtained from t` by replacing the unique part λ ∈ t` containing

i by the larger part λ ∪ {N + 1}. If we then set t′L(ttt)+1 := t, it is easily verified

that ttt′ = (t′0,t′1, . . . ,t′L(ttt)+1) is a reduced splitting chain of order N + 1. Thus

(ttt, i) 7→ ttt′ defines a function RN × [N ] → RN+1, which is injective because it has

a left inverse: The integer i can be recovered from ttt′ because it is the only element

of [N ] satisfying {i, N + 1} ∈ ttt′L(ttt), and then ttt can be recovered from ttt′ by simply
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removing tL(ttt)+1 and all copies of N+1 from ttt′. Thus we have #RN ·N ≤ #RN+1

for all N ≥ 2, and we saw before that #R2 = #S2 = 1, #R3 = #S3 = 4, and

RN ( SN for all N ≥ 4. Induction on N then gives the following bounds:

(N − 1)! ≤ #RN ≤ #SN for all N ≥ 2.

The left inequality is strict for N ≥ 3 and both are strict for N ≥ 4.

The preceding remark implies that the branch function sum
∑

ttt∗∈RN Ittt
∗,q(s)

has strictly fewer terms than the level function sum
∑

ttt∈SN Jttt,q(b, s) when N ≥ 4,

and hence part (c) of Theorem 1.6.6 becomes a simplification of part (b) applied to

b = 0. Though N = 4 is the least N for which this simplification is noticeable, the

sums of branch functions and level functions respectively have #R4 = 26 terms and

#S4 = 32 terms in this case, so the rather large computation of Zρ
4 (K, a, b, s) will

be postponed until the Appendix. For now we consider only three elements from S4

to discuss how part (c) of Theorem 1.6.6 simplifies the b = 0 case of part (b).

Example 1.7.3. Consider the three splitting chains ttt∗,ttt′,ttt′′ ∈ S4 defined by

t∗0 = {1, 2, 3, 4},

t∗1 = {1, 2}{3, 4},

t∗2 = {1}{2}{3}{4},

t′0 = {1, 2, 3, 4},

t′1 = {1, 2}{3, 4},

t′2 = {1, 2}{3}{4},

t′3 = {1}{2}{3}{4},

and

t′′0 = {1, 2, 3, 4},

t′′1 = {1, 2}{3, 4},

t′′2 = {1}{2}{3, 4},

t′′3 = {1}{2}{3}{4}.
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Recalling Lemma 1.6.5, ttt∗ is the common reduction of all three, and it is easily

verified that no other ttt ∈ S4 \ {ttt∗,ttt′,ttt′′} satisfies ttt ' ttt∗. By Definition 1.6.4, the

splitting chains ttt∗, ttt′, and ttt′′ contribute the following level functions to the sum∑
ttt∈S4

Jttt,q(b, s) in part (b) of Theorem 1.6.6:

Jttt∗,q(b, s) =
(q − 1)3

q3
· 1

q2+b+s12+s34 − 1
,

Jttt′,q(b, s) =
(q − 1)3

q3
· 1

q2+b+s12+s34 − 1
· 1

q1+b+s12 − 1
,

Jttt′′,q(b, s) =
(q − 1)3

q3
· 1

q2+b+s12+s34 − 1
· 1

q1+b+s34 − 1
.

In particular, their total contribution to the sum can be written as

∑
ttt∈S4
ttt'ttt∗

Jttt,q(b, s) =
(q − 1)3

q3
· 1

q1+b+s12 − 1
· 1

q1+b+s34 − 1
· q

2+2b+s12+s34 − 1

q2+b+s12+s34 − 1
. (1.7.14)

Equation (1.7.14) hints at an interesting analytic feature of the parameter b.

Indeed, if q ≥ 2 and b ∈ C are fixed, then each of the summands Jttt∗,q(b, s),

Jttt′,q(b, s), and Jttt′′,q(b, s) is meromorphic in s = (s12, s13, s14, s23, s24, s34) ∈ C6,

and each of their sets of poles contains the infinite set

C(b) =

{
s ∈ C6 : 2 + b+ s12 + s34 ∈

2πiZ
log(q)

,

1 + b+ s12 /∈
2πiZ
log(q)

,

1 + b+ s34 /∈
2πi

log(q)

}
.

If b is not an integer multiple of 2πi/ log(q), the poles for the sum in (1.7.14)

also include C(b). However, if b is an integer multiple of 2πi/ log(q), then
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(q2+2b+s12+s34 − 1)/(q2+b+s12+s34 − 1) = 1 and none of the s ∈ C(b) are poles for

the sum in (1.7.14). In particular, C(0) is a common set of poles for all of the level

functions Jttt∗,q(0, s), Jttt′,q(0, s), and Jttt′′,q(0, s), but all such poles “cancel” when the

level functions are added together:

∑
ttt∈S4
ttt'ttt∗

Jttt,q(0, s) =
(q − 1)3

q3
· 1

q1+s12 − 1
· 1

q1+s34 − 1
= Ittt∗,q(s).

Thus, by collapsing the sum
∑

ttt∈S4
Jttt,q(0, s) from part (b) of Theorem 1.6.6 into

its “reduced” form
∑

ttt∈R4
Ittt,q(s), part (c) shows that many level function poles

“cancel” in the b = 0 case.

Remark 1.7.4. For simple choices of ρ, the root function sums to a closed

form. In this case Theorem 1.6.6 provides meromorphic continuations of both

s 7→ Zρ
N(K, a, b, s) and s 7→ Zρ

N(K, a, 0, s), and their candidate poles may be

easily described. For example, suppose ρ = 1[0,1]. It is easily verified from Definition

1.6.1 and Theorem 1.6.6 that Zρ
N(K, a, b, s) coincides with the sum

qa+b+
∑
i<j sij

qN−1+a+b+
∑
i<j sij − 1

·
∑
ttt∈SN

Mttt(q) ·
L(ttt)−1∏
`=1

1

qb+Et` (s) − 1
(1.7.15)

on the convex open region ΩN(a, b). Since each summand is meromorphic in C(N2 )

with set of poles

Lttt,q :=

{
s ∈ C(N2 ) : N − 1 + a+ b+

∑
i<j

sij ∈
2πiZ
log(q)

}

∪
L(ttt)−1⋃
`=1

{
s ∈ C(N2 ) : b+ Et`(s) ∈ 2πiZ

log(q)

}
,
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then (1.7.15) defines the meromorphic continuation of Zρ
N(K, a, b, s) to C(N2 ), and

its poles are contained in the union
⋃

ttt∈SN Lttt,q. Similarly, Definition 1.6.1 and part

(c) of Theorem 1.6.6 show that Zρ
N(K, a, 0, s) coincides with the sum

qa+
∑
i<j sij

qN−1+a+
∑
i<j sij − 1

·
∑

ttt∗∈RN

Mttt∗(q) ·
∏

λ∈B(ttt∗)\t

1

qeλ(s) − 1
(1.7.16)

on a convex open region, and each summand is meromorphic in C(N2 ) with set of

poles

Bttt∗,q :=

{
s ∈ C(N2 ) : N − 1 + a+

∑
i<j

sij ∈
2πiZ
log(q)

}

∪
⋃

λ∈B(ttt∗)\t

{
s ∈ C(N2 ) : eλ(s) ∈ 2πiZ

log(q)

}
.

Therefore (1.7.16) defines the meromorphic continuation of Zρ
N(K, a, 0, s) to C(N2 ),

and its poles are contained in the union
⋃

ttt∗∈RN Bttt∗,q. Though the poles of each

summand in (1.7.15) and (1.7.16) are easily described, we saw in Example 1.7.3

that pole cancellation is possible when summands are brought together. As is true

for general local zeta functions, determining precisely which of the poles in the

candidate sets
⋃

ttt∈SN Lttt,q and
⋃

ttt∗∈RN Bttt∗,q cancel is a highly nontrivial task.

1.8. Outline of the remaining chapters

In Chapter 2 we will focus on the specialization of Theorem 1.6.6 to the log-

Coulomb gas setting (i.e., where sij = qiqjβ for all i < j). After discussing the

moments of the gas’ diameter and minimum particle spacing, we will conclude

with a section on grand canonical partition functions and the so-called qth and
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(q + 1)th Power Laws. The qth Power Law (for log-Coulomb gas in R) was proved

recently by Sinclair [14], and the (q + 1)th Power Law (for log-Coulomb gas

in P1(K)) may be considered another of our main results. However, it requires

a significantly shorter proof of the Main Theorem (Theorem 1.6.6), which is

distributed throughout Chapters 3-5 as follows: Chapter 3 uses the levels of

splitting chains prove parts (a) and (b) in the ρ = 1[0,1] case and establishes

the first claim of Proposition 1.6.7 in the process. Chapter 4 uses the branches of

splitting chains to prove Lemma 1.6.5 and part (c) and establishes the second claim

in Proposition 1.6.7. It then concludes the proof of parts (a) and (b) for general

ρ. Chapter 5 establishes a decomposition of (P1(K))N that leads to a proof of

part (d) and the (q + 1)th Power Law. Finally, the Appendix contains the full

explicit computation of Zρ
4 (K, a, b, s), followed by a quadratic recurrence (in N)

that allows for efficient computation of the canonical partition functions ZN(R, β)

and ZN(P1(K), β).
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CHAPTER II

CONSEQUENCES FOR LOG-COULOMB GAS IN K

2.1. The sij = qiqjβ specialization and one-component symmetries

Formulas for the multi-component p-field analogue of Mehta’s Integral and

the expected value in (1.5.13) are easily obtained by evaluating the formulas in

Theorem 1.6.6 at special values of s. With this in mind, we define several new

items that are closely related to those in Definitions 1.6.1 and 1.6.4.

Definition 2.1.1. Suppose a, b ∈ C and q1, q2, . . . , qN > 0 where N ≥ 2, and let

c := (qiqj)i<j.

(a) Define the root abscissa RPc
N(a, b) by

RPc
N(a, b) := −N − 1 + Re(a+ b)∑

i<j qiqj
.

(b) For each ttt ∈ SN , define the branch abscissa BPc
ttt by

BPc
ttt := − inf

λ∈B(ttt)\t

{
#λ− 1

ελ(c)

}
where ελ(c) :=

∑
i<j
i,j∈λ

qiqj.

(c) For each ttt ∈ SN , define the level abscissa LPc
ttt by

LPc
ttt(b) := − inf

1≤`≤L(ttt)−1

{
rank(t`) + Re(b)

Et`(c)

}
where Et`(c) :=

∑
λ∈t`

ελ(c).
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If β ∈ C and c is defined as above, then Definitions 1.6.1, 1.6.3, 1.6.4, and

2.1.1 together imply

βc ∈ RPN(a, b) ⇐⇒ Re(β) > RPc
N(a, b),

βc ∈ BPttt ⇐⇒ Re(β) > BPc
ttt,

βc ∈ LPttt(b) ⇐⇒ Re(β) > LPc
ttt(b),

and hence the convergence criteria for s in Theorem 1.6.6 become criteria for β

when s = βc. The following corollary comes straight from this observation and

Theorem 1.6.6:

Corollary 2.1.2. Fix N ≥ 2, a, b ∈ C, a nonzero norm-density ρ, and c = (qiqj)i<j

where q1, q2, . . . , qN > 0.

(a) If K is any p-field, the integral Zρ
N(K, a, b, βc) converges absolutely to

Hρ
q

(
N + a+ b+

∑
i<j

qiqjβ

)
·
∑
ttt∈SN

Jttt,q(b, βc)

if and only if

Re(β) > sup

{
RPc

N(a, b), sup
ttt∈SN

LPc
ttt(b)

}
.

(b) For the same K, if b = 0, the integral Zρ
N(K, a, 0, βc) converges absolutely to

Hρ
q

(
N + a+

∑
i<j

qiqjβ

)
·
∑

ttt∗∈RN

Ittt∗,q(βc)

if and only if

Re(β) > sup

{
RPc

N(a, 0), sup
ttt∗∈RN

BPc
ttt∗

}
.
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Before concluding this section with formulas for the analogue of Mehta’s

integral and the expectation in (1.5.13), we remark on the one-component case,

namely q1 = q2 = · · · = qN = 1. In this case c = 1 is simply the
(
N
2

)
-tuple of 1’s,

and for each ttt ∈ SN it is easily verified that

eλ(β1) = #λ− 1 + ελ(1)β =

(
#λ

2

)(
β +

2

#λ

)

for all λ ∈ B(ttt) and

Et`(β1) =
∑
λ∈t`

eλ(β1) =
∑
λ∈t`

(
#λ

2

)(
β +

2

#λ

)

for all ` ∈ {0, 1, . . . , L(ttt) − 1}. The exponents above have no dependence on the

particular labels 1, 2, . . . , N , so we shall take a moment to discuss a relationship

between SN and the symmetric group action on the label set {1, 2, . . . , N}.

Definition 2.1.3. Denote the symmetric group on [N ] = {1, 2, . . . , N} by

Sym([N ]). Given σ ∈ Sym([N ]) and a nonempty subset λ = {i1, i2, . . . , ik} ⊂ [N ],

we write σ(λ) := {σ(i1), σ(i2), . . . , σ(ik)}, for a partition t = {λ1, λ2, . . . , λn}

of [N ] we write σ(t) := {σ(λ1), σ(λ2), . . . , σ(λn)}, and finally, for each ttt =

(t0,t1, . . . ,tL(ttt)) ∈ SN we write σ(ttt) := (σ(t0), σ(t1), . . . , σ(tL(ttt))).

If Aut(SN) denotes the group of bijections SN → SN , the homomorphism

Sym([N ]) → Aut(SN) given by σ 7→ (ttt 7→ σ(ttt)) is an action of Sym([N ]) on SN .

The following properties of this action are clear from Definitions 1.6.3 and 1.6.4: If

ttt ∈ SN and σ ∈ Sym([N ]), then

– L(σ(ttt)) = L(ttt), and σ(ttt) = ttt if and only if σ(t`) = t` for all

` ∈ {0, 1, . . . , L(ttt)},
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– σ(λ) ∈ B(σ(ttt)) if and only if λ ∈ B(ttt),

– for each λ ∈ B(ttt) we have #σ(λ) = #λ, `σ(ttt)(σ(λ)) = `ttt(λ), and

degσ(ttt)(σ(λ)) = degttt(λ), so

– Mσ(ttt)(t) = Mttt(t), eσ(λ)(β1) = eλ(β1) for all λ ∈ B(ttt), and hence

Eσ(t`)(β1) = Et`(β1) for all ` ∈ {0, 1, . . . , L(ttt)− 1}.

In particular, the Sym([N ]) action on SN restricts to one on RN .

Definition 2.1.4. For each splitting chain ttt ∈ SN , define the orbit by Orb(ttt) :=

{σ(ttt) : σ ∈ Sym([N ])}, the stabilizer by Stab(ttt) := {σ ∈ Sym([N ]) : σ(ttt) = ttt},

and the weight by W (ttt) := # Orb(ttt) = N !
# Stab(ttt)

.

Definitions 1.6.4 and 2.1.4 and the properties of the action immediately imply

the following:

Lemma 2.1.5. Suppose q ≥ 2, b ∈ C, and ttt ∈ SN .

(a) For each β in the domain of β 7→ Ittt,q(β1) we have

∑
ttt′∈Orb(ttt)

Ittt′,q(β1) = W (ttt)Ittt,q(β1)

=
W (ttt)(q − 1)degttt([N ])−1

qN−1
·
∏

λ∈B(ttt)\t

(q − 1)degttt(λ)−1

q(
#λ
2 )(β+ 2

#λ) − 1
.

(b) For each β in the domain of β 7→ Jttt,q(b, β1) we have

∑
ttt′∈Orb(ttt)

Jttt′,q(b, β1) = W (ttt)Jttt,q(b, β1)

=
W (ttt)Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

1

qb+
∑
λ∈t` (#λ

2 )(β+ 2
#λ) − 1

.
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If CN ⊂ SN is a complete set of orbit representatives for the action of

Sym([N ]) on SN , then CN ∩ RN is a complete set of orbit representatives for the

restricted action on RN . Then by part (a) of Lemma 2.1.5, the sum over ttt ∈ SN
appearing in the main formula for Zρ

N(K, a, b, β1) can be grouped into a weighted

sum over CN . Similarly, part (b) of Lemma 2.1.5 implies that the sum over ttt∗ ∈

RN in the formula for Zρ
N(K, a, 0, β1) can be grouped into a weighted sum over

CN ∩RN . From the viewpoint of log-Coulomb gas, the appearance of these weighted

sums has an intuitive explanation: The condition q1 = q2 = · · · = qN = 1 makes

the particles of the gas identical and imposes symmetries on the set of microstates

x ∈ KN . Each ttt ∈ CN represents a distinct symmetry class of microstates, the

factor W (ttt)Mttt(q)
qN−1 can be regarded as its weight, and the two products of rational

functions of q−β appearing in Lemma 2.1.5 are its respective contributions to the

functions β 7→ Zρ
N(K, a, 0, β1) and β 7→ Zρ

N(K, a, b, β1). In particular, each

symmetry class contributes a weighted term to the canonical partition function

β 7→ Zρ
N(K, 0, 0, β1). It is also worth noting that the condition on Re(β) in part (b)

of Corollary 2.1.2 simplifies further when a = b = 0 and c = 1. Indeed, for general

c = (qiqj)i<j we have

sup

{
RPc

N(0, 0), sup
ttt∗∈RN

BPc
ttt∗

}
= − inf

ttt∗∈RN

 inf
λ∈B(ttt∗)

 #λ− 1∑
i<j
i,j∈λ

qiqj


 , (2.1.1)

so if ttt∗ ∈ RN and c = 1 we have

#λ− 1∑
i<j
i,j∈λ

qiqj
=

#λ− 1(
#λ
2

) =
2

#λ
for all λ ∈ B(ttt∗).
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Thus if c = 1, the inner infima in (2.1.1) are all 2
N

, so the quantity in (2.1.1)

is simply − 2
N

. This fact and Lemma 2.1.5 yield the p-field analogue of Mehta’s

integral formula:

Theorem 2.1.6 (Mehta’s integral formula for p-fields). Suppose K is a p-field,

suppose ρ is a nonzero norm-density, let c = (qiqj)i<j where q1, q2, . . . , qN > 0, and

consider the generalized Mehta Integral:

Zρ
N(K, 0, 0, βc) =

∫
KN

ρ(‖x‖)
∏
i<j

|xi − xj|qiqjβ dx1 . . . dxN

(a) The integral converges absolutely if and only if

Re(β) > − inf
ttt∗∈RN

 inf
λ∈B(ttt∗)

 #λ− 1∑
i<j
i,j∈λ

qiqj


 ,

and in this case it converges to

(q
∑
i<j qiqjβ − q−N) ·

∑
m∈Z

ρ(qm)qm(N+
∑
i<j qiqjβ) ·

∑
ttt∗∈RN

∏
λ∈B(ttt∗)

(q − 1)degttt∗ (λ)−1

qeλ(βc) − 1
.

(b) In particular, if q1 = · · · = qN = 1, the integral converges absolutely if and

only if Re(β) > − 2
N

. In this case it converges to

(q(
N
2 )β − q−N) ·

∑
m∈Z

ρ(qm)qm(N+(N2 )β) ·
∑

ttt∗∈CN∩RN

W (ttt∗)
∏

λ∈B(ttt∗)

(q − 1)degttt∗ (λ)−1

q(
#λ
2 )(β+ 2

#λ) − 1

where CN ⊂ SN is a set of orbit representatives the Sym([N ]) action on SN .

If the norm-density ρ above is not identically zero and nonnegative, then

Zρ
N(K, 0, 0, βc) ∈ (0,∞) for all β > 0 and 1

ZρN (K,0,0,βc)
ρ(‖x‖)∏i<j |xi − xj|qiqjβ is a
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well-defined probability density on the microstates x ∈ KN . Moreover, none of the

abscissae in Definition 2.1.1 are positive if both Re(b) ≥ −1 and Re(a+ b) ≥ 1−N ,

in which case the conditions on Re(β) in Corollary 2.1.2 are met by all β > 0. This

observation and (1.5.13) imply the following corollary:

Corollary 2.1.7. Suppose K is a p-field, suppose ρ is a norm-density, and let

c = (qiqj)i<j where q1, q2, . . . , qN > 0.

(a) If Re(b) ≥ −1 and Re(a+ b) ≥ 1−N , then for any inverse temperature β > 0

we have

E
[(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b]

=

Hρ
q

(
N + a+ b+

∑
i<j qiqjβ

)
·∑ttt∗∈SN Jttt,q(b, βc)

Hρ
q

(
N +

∑
i<j qiqjβ

)
·∑ttt∗∈SN Jttt,q(0, βc)

=

Hρ
q

(
N + a+ b+

∑
i<j qiqjβ

)
·∑ttt∗∈SN Jttt,q(b, βc)

Hρ
q

(
N +

∑
i<j qiqjβ

)
·∑ttt∗∈RN Ittt

∗,q(βc)

.

(b) In particular, if b = 0 and Re(a) ≥ 1 − N , then for any inverse temperature

β > 0 we have

E
[(

max
i<j
|xi − xj|

)a]
=

Hρ
q

(
N + a+

∑
i<j qiqjβ

)
Hρ
q

(
N +

∑
i<j qiqjβ

) .

As we mentioned in Section 1.5, applying part (a) of Corollary 2.1.7 to

a, b ∈ Z≥0 gives the joint moments of the random variables maxi<j |xi − xj| and

mini<j |xi − xj|. In particular, the average value in part (b) of Corollary 2.1.7

45



can be computed without the use of branch or level functions, and thus admits a

simple closed form for suitably chosen ρ. The next example demonstrates this and

addresses the low-temperature limit (i.e., β →∞) in the b = 0 case.

Example 2.1.8. Recall that ‖KN \{0}‖ = qZ and let ρ be the norm-density defined

by ρ(t) = 1[0,qM ](t) where M ∈ Z. Since ρ(‖x‖) = 1 if and only if all xi are in the

ball π−MR = {y ∈ K : |y| ≤ qM} and otherwise ρ(‖x‖) = 0, ρ guarantees that the

charges are almost surely confined to this ball, and by Definition 1.6.1 we have

Hρ
q (z) =

1− q−z
1− q−(z−1)

·
∞∑

m=−M

(q−z)m =
qMz

1− q−(z−1)
for Re(z) > 1.

Then for Re(a) ≥ 1−N part (b) of Corollary 2.1.7 gives the explicit formula

E
[(

max
i<j
|xi − xj|

)a]
=

(
q
M(N+a+

∑
i<j qiqjβ)

1−q−(N−1+a+
∑
i<j qiqjβ)

)
(

q
M(N+

∑
i<j qiqjβ)

1−q−(N−1+
∑
i<j qiqjβ)

) = qMa · qN−1+
∑
i<j qiqjβ − 1

qN−1+
∑
i<j qiqjβ − q−a

,

from which the following asymptotic estimate is clear:

E
[(

max
i<j
|xi − xj|

)a] ∼ qMa as N →∞ or β →∞.

(By taking N → ∞, we are assuming here that a charge qi > 0 has been specified

for every i ∈ N.) Since maxi<j |xi − xj| ≤ qM almost surely, this estimate implies

that a gas comprised of many particles and/or held at a low temperature has a

relatively high probability of attaining microstates x ∈ KN with maxi<j |xi − xj| =

qM . Roughly speaking, this says the gas is very likely to spread out as widely as

possible if it is cold and/or if it has many particles.
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Remark 2.1.9. The previous example hints at a more general feature of low-

temperature limits: Suppose ρ is a compactly supported nonzero norm-density.

There is a greatest M ∈ Z for which ρ(qM) 6= 0, so given δ > 1 the scaled sum

Hρ
q (z)

qMz = 1−q−z
1−q−(z−1) ·

∑∞
m=−M ρ(q−m)q−(m+M)z converges uniformly for Re(z) ≥ δ by

(1.5.12). Therefore we may take z → ∞ term-by-term to obtain limz→∞
Hρ
q (z)

qMz =

ρ(qM), and the ratio of root functions in part (a) of Corollary 2.1.7 satisfies

lim
β→∞

Hρ
q

(
N + a+ b+

∑
i<j qiqjβ

)
Hρ
q

(
N +

∑
i<j qiqjβ

) = lim
β→∞

qM(a+b) · H
ρ
q

(
N+a+b+

∑
i<j qiqjβ

)
q
M(N+a+b+

∑
i<j qiqjβ)

Hρ
q

(
N+

∑
i<j qiqjβ

)
q
M(N+

∑
i<j qiqjβ)

= qM(a+b).

(2.1.2)

The ratio of sums in part (a) of Corollary 2.1.7 also converges as β → ∞. More

precisely, for each ttt ∈ SN , define

Qttt(c) :=

L(ttt)−1∑
`=1

Et`(c) =

L(ttt)−1∑
`=1

∑
λ∈t`

∑
i,j∈λ
i<j

qiqj.

For any q ≥ 2, the set SN,q = {ttt ∈ SN : Mttt(q) > 0} contains the splitting chain

ttt = ([N ], [N − 1]{N}, [N − 2]{N − 1}{N}, . . . , {1}{2} . . . {N}),

so SN,q 6= ∅ and hence a non-negative minimum Qmin
N,q (c) := min{Qttt(c) : ttt ∈ SN,q}

exists. Taking β →∞ gives

Jttt,q(b, βc) =
Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

1

qb+Et` (βc) − 1

∼ Mttt(q)

qN−1
· q−

∑L(ttt)−1
`=1 (b+Et` (βc)) =

Mttt(q)

qN−1+
∑L(ttt)−1
`=1 (b+rank(t`))

· q−βQttt(c),
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and therefore

∑
ttt∈SN

Jttt,q(b, βc) ∼
∑

ttt∈SN,q
Qttt(c)=Qmin

N (c)

Mttt(q)

qN−1+
∑L(ttt)−1
`=1 (b+rank(t`))

· q−βQmin
N,q(c).

The factors q−(N−1) and q−βQ
min
N,q(c) are independent of b and common to all terms in

the right-hand sum, so we may abbreviate the above summation by
∑′ and obtain

lim
β→∞

∑
ttt∈SN Jttt,q(b, βc)∑
ttt∈SN Jttt,q(0, βc)

=

∑′Mttt(q)q−
∑L(ttt)−1
`=1 (rank(t`)+b)∑′Mttt(q)q−
∑L(ttt)−1
`=1 rank(t`)

. (2.1.3)

Combining this with part (a) of Corollary 2.1.7 and (2.1.2) gives the low-

temperature limit of any joint moment:

lim
β→∞

E
[(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b]
= qM(a+b) ·

∑′Mttt(q)q−
∑L(ttt)−1
`=1 (rank(t`)+b)∑′Mttt(q)q−
∑L(ttt)−1
`=1 rank(t`)

.

(2.1.4)

Explicit computation of (2.1.4) is generally impractical as it depends on N ,

q, and c in very complicated ways. Still, it is interesting that the ratio of sums in

(2.1.4) is a weighted average of the finite set of values

{q−b(L(ttt)−1) : ttt ∈ SN with Mttt(q) > 0 and Qttt(c) = Qmin
N,q (c)},

with each weight Mttt(q)q−
∑L(ttt)−1
`=1 rank(t`) independent of a, b, and ρ. Moreover, if

q ≥ N , then the splitting chain ttt = ([N ], {1}{2} . . . {N}) ∈ SN has Mttt(q) =

(q − 1)N−1 > 0 and Qttt(c) = Qmin
N,q (c) = 0, and in fact it is the only one satisfying

Qttt(c) = Qmin
N,q (c). Therefore limβ→∞

∑
ttt∈SN Jttt,q(b, βc) = (q − 1)N−1 > 0 whenever

q ≥ N and we obtain a final corollary:
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Corollary 2.1.10. Suppose K is a p-field such that q ≥ N and suppose Re(b) ≥ −1

and Re(a + b) ≥ 1 − N . Then if ρ is a compactly supported nonzero norm-density

and M is the largest integer satisfying ρ(qM) 6= 0, we have

lim
β→∞

E
[(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b]
= qM(a+b).

2.2. Grand canonical partition functions and the Power Laws

So far, we have only considered log-Coulomb gases with N labeled (and

hence distinguishable) particles. Our second main result concerns the situation

in which all particles are identical with charge qi = 1 for all i, in which case

the microstates (x1, . . . , xN) ∈ XN are “unlabeled” and hence unique only up

to permutations of their entries. Since the energy E(x1, . . . , xN) and measure on

XN are invariant under such permutations, each unlabeled microstate makes the

contribution e−βE(x1,...,xN )dx1 . . . dxN to the integral ZN(X, β) in (1.2.2) precisely

N ! times. Therefore the canonical partition function for the unlabeled microstates

is given by ZN(X, β)/N !. We further assume that the system exchanges particles

with the heat reservoir with chemical potential µ and define the fugacity parameter

f = eµβ. In this situation the particle number N ≥ 0 is treated as a random

variable and the canonical partition function is replaced by the grand canonical

partition function

Z(f,X, β) :=
∞∑
N=0

ZN(X, β)
fN

N !
(2.2.5)

with the familiar convention Z0(X, β) = 1. Many properties of the system can

be deduced from the grand canonical partition function. For instance, if β > 0 is

fixed and ZN(X, β) is sub-exponential in N , then Z(f,X, β) is analytic in f and

the expected number of particles in the system is given by f ∂
∂f

ln(Z(f,X, β)). The
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canonical partition function for each N ≥ 0 can also be recovered by evaluating the

Nth derivative of Z(f,X, β) with respect to f at f = 0.

We are interested in the examples Z(f,R, β), Z(f, P, β), and Z(f,P1(K), β),

which turn out to share several common properties and interesting relationships.

By setting sij = β in Definition 1.5.3, one sees that |ZN(R, β)|C, |ZN(P, β)|C, and

|ZN(P1(K), β)|C are bounded above by 1 for all N ≥ 0 and all β > 0, and hence

Z(f,R, β), Z(f, P, β), and Z(f,P1(K), β) are analytic in f when β > 0. Sinclair

recently found an elegant relationship between the first two, which is closely related

to the partition of R into cosets of P (as in (1.3.9)):

Proposition 2.2.1 (The qth Power Law [14]). For β > 0 we have

Z(f,R, β) = (Z(f, P, β))q.

Roughly speaking, the qth Power Law states that a log-Coulomb gas in R

exchanging energy and particles with a heat reservoir “factors” into q identical

sub-gases (one in each coset of P ) that exchange energy and particles with the

reservoir. For β > 0, note that the series equation Z(f,R, β) = (Z(f, P, β))q is

equivalent to the coefficient identities

ZN(R, β)

N !
=

∑
N0+···+Nq−1=N
N0,...,Nq−1≥0

q−1∏
k=0

ZNk(P, β)

Nk!
for all β > 0 and N ≥ 0. (2.2.6)

The β = 1 case of (2.2.6) is given in [2], in which the positive number ZN(R, 1)/N !

is recognized as the probability that a random monic polynomial in R[x] splits

completely in R. The more general β > 0 case given in [14] makes explicit use

of the partition of R into cosets of P (as in (1.3.9)). In Chapter 5 we will use the
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analogous partition of P1(K) into q + 1 balls (recall (1.3.10)) to show that

ZN(P1(K), β)

N !
=

∑
N0+···+Nq=N
N0,...,Nq≥0

q∏
k=0

(
q

q + 1

)Nk ZNk(P, β)

Nk!
for all β > 0 and N ≥ 0,

(2.2.7)

which immediately implies our second main result:

Theorem 2.2.2 (The (q + 1)th Power Law). For all β > 0 we have

Z(f,P1(K), β) = (Z( qf
q+1

, P, β))q+1.

Like the qth Power Law, the (q + 1)th Power Law roughly states that a

log-Coulomb gas in P1(K) exchanging energy and particles with a heat reservoir

“factors” into q + 1 identical sub-gases in the balls B1[0 : 1], B[1 : 1], B[ξ : 1], . . . ,

B[ξq−2 : 1], B1[1 : 0] (all of which are homeomorphic to P ), with fugacity qf
q+1

. As

a final note, The qth Power Law also allows the (q + 1)th Power Law to be written

more crudely as

Z(f,P1(K), β) = Z( qf
q+1

, R, β) · Z( qf
q+1

, P, β), (2.2.8)

which is to say that the gas in P1(K) “factors” into two sub-gases: one in ι(R) and

one in B[1 : 0] (which are respectively homeomorphic to R and P ), both with

fugacity qf
q+1

.
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CHAPTER III

SERIES REPRESENTATIONS, TREES, AND LEVEL PAIRS

From now on K will be a fixed p-field with µ, | · |, ‖ · ‖, R, P , and π as defined

in Section 1.3, and D will stand for any fixed set of representatives for the cosets of

P in R (such as D = {0} ∪ Uq−1). The results in this chapter will depend largely on

the following proposition, which is a straightforward consequence of Theorem 1.3.1:

Proposition 3.0.1. For each x ∈ R there is a unique sequence (d(0), d(1), d(2), . . . )

in D such that

x =
∞∑
n=0

πnd(n).

It converges absolutely with respect to | · | and satisfies v(x) = inf{n : d(n) 6= 0}.

If (d′(0), d′(1), d′(2), . . . ) is the corresponding sequence for another element y ∈ R,

then we have v(x− y) = inf{n : d(n) 6= d′(n)}, and the following are equivalent:

(i) |x− y| ≤ q−m,

(ii) v(x− y) ≥ m,

(iii) inf{n : d(n) 6= d′(n)} ≥ m,

(iv) x ≡ y mod πm.

Moreover, for each m, the collection of partial sums {∑m−1
n=0 π

nd(n) : d(n) ∈ D} is a

full set of representatives for the quotient R/πmR.

In Section 3.1 we will use Proposition 3.0.1 to explain how elements of RN

may be visualized as trees, leading to a relationship with splitting chains in Section

3.2. This will allow us to express certain integrals in terms of level functions
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in Proposition 3.3.3 in Section 3.3. We conclude this chapter with the proof of

Proposition 3.3.4, which implies parts (a) and (b) of Theorem 1.6.6 in the special

case ρ = 1[0,1].

3.1. Series representations and trees

Fix an integer N ≥ 2 and henceforth write x (and y, z, etc.) for tuples

(x1, . . . , xN) ∈ RN . With Proposition 3.0.1 in hand, our next task is to give a

consistent method for visualizing and organizing the elements of RN \ V0, where

V0 := {x ∈ RN : xi = xj for some i < j}. Given x = (x1, . . . , xN) ∈ RN ,

Proposition 3.0.1 provides a unique sequence (di(0), di(1), di(2), . . . ) in D satisfying

xi =
∑∞

n=0 π
ndi(n) for each entry xi. This gives a unique series representation for x,

namely

x =
∞∑
n=0

πnd(n) where d(n) = (d1(n), d2(n), . . . , dN(n)) ∈ DN ,

and this series converges absolutely in RN . Moreover, given m ∈ N, the set of finite

sums {∑m−1
n=0 π

nd(n) : d(n) ∈ DN} is a complete set of representatives for the

quotient RN/πmRN , so we will abuse notation and write

RN/πmRN =

{
m−1∑
n=0

πnd(n) : d(n) ∈ DN

}
.

Given x =
∑∞

n=0 π
nd(n) ∈ RN and m ∈ N, it is clear that the unique elements y ∈

RN/πmRN and z ∈ πmRN satisfying x = y + z are respectively y =
∑m−1

n=0 π
nd(n)

and z =
∑∞

n=m π
nd(n). Our next definition makes use of this and the following

observation: x ∈ RN \ V0 if and only if x ∈ RN and supi<j v(xi − xj) <∞.
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Definition 3.1.1. We call an element y ∈ RN \ V0 a tree of length m ∈ N if

y ∈ RN/πmRN and maxi<j v(yi − yj) + 1 = m.

Given x =
∑∞

n=0 π
nd(n) ∈ RN \ V0 with m = maxi<j v(xi − xj) + 1, note that

y =
∑m−1

n=0 π
nd(n) is the unique partial sum of x satisfying Definition 3.1.1, so y will

accordingly be called the tree part of x. The reason for the name “tree” is clarified

by the next example, which will be revisited in later proofs.

Example 3.1.2. Suppose N = 9 and K = Q5 with uniformizer π = 5 and

digit set D = {0, 1, 2, 3, 4}. The tree y =
∑7

n=0 5nd(n) corresponding to the digit

vectors d(0), d(1), . . . , d(7) in Figure 1 can be visualized as a rooted tree. The root

represents the value 0, and the nodes traversed by the path from the root down to

the leaf yi represent the consecutive partial sums of yi =
∑7

n=0 5ndi(n). It should be

noted that for general trees y ∈ RN \ V0, the corresponding diagram need not have

yi in index order at the bottom. The tree in this example was only chosen this way

only to make the diagram in Figure 1 easily discernible from the digits.
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•

•

•

•

•
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•
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•
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•
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•
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y9

y

=
d(0) = (2, 2, 2, 2, 2, 2, 2, 2, 2) 50d(0)

+

d(1) = (0, 0, 0, 0, 0, 3, 3, 3, 3) 51d(1)

+

d(2) = (3, 3, 3, 4, 4, 1, 1, 1, 1) 52d(2)

+

d(3) = (2, 2, 2, 1, 1, 0, 0, 0, 0) 53d(3)

+

d(4) = (4, 4, 4, 0, 0, 4, 4, 4, 4) 54d(4)

+

d(5) = (1, 1, 1, 2, 4, 0, 1, 3, 4) 55d(5)

+

d(6) = (0, 0, 0, 4, 3, 3, 2, 2, 0) 56d(6)

+

d(7) = (0, 1, 4, 3, 4, 2, 1, 1, 1) 57d(7)

FIGURE 1. The diagram for a tree y ∈ Z9
5 of length 8.
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3.2. Useful properties of level pairs

The connection between splitting chains and elements of RN \ V0 begins with

the following definition:

Definition 3.2.1. If ttt ∈ SN and n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt), we call the pair

(ttt,n) a level pair.

Given x ∈ RN \ V0, we may associate a unique level pair to x as follows. Its

tree part y has some length m, so we have m = maxi<j{v(yi − yj)} + 1 and hence

there is a unique positive integer L and unique integers m0,m1, . . . ,mL+1 satisfying

−1 =: m0 < m1 < · · · < mL+1 := mL + 1 = m and

{v(yi − yj) : 1 ≤ i < j ≤ N} = {m1,m2,m3, . . . ,mL}.

Then for each ` ∈ {0, 1, 2, . . . , L} we define an equivalence relation ∼` on [N ] via

i ∼` j ⇐⇒ yi ≡ yj mod πm`+1

and let t` be the partition of [N ] comprised of ∼`-equivalence classes. Since

mini<j{v(yi − yj)} = m1, Proposition 3.0.1 implies yi ≡ yj mod πm1 for all

i < j and hence t0 = {[N ]} = t. Similarly, maxi<j{v(yi − yj)} = mL < mL+1

implies yi 6≡ yj mod πmL+1 for all i < j and hence tL = {{1}, {2}, . . . , {N}} = t.

For each ` ∈ {0, 1, . . . , L − 1}, note that every pair i < j satisfying i ∼`+1 j

also satisfies i ∼` j, and hence t`+1 ≤ t`. In particular, since v(yi − yj) = m`+1

for at least one pair i < j, then this pair satisfies i ∼` j and i 6∼`+1 j, so in fact

we have t`+1 < t`. Then t = t0 > t1 > t2 > · · · > tL = t, meaning

ttt = (t0,t1,t2, . . . ,tL) is a splitting chain of order N and length L(ttt) = L.
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Finally, define n = (η0, η1, . . . , ηL−1) ∈ NL via η` := m`+1 − m`. Thus (ttt,n) is a

level pair determined completely by x, so we call it the level pair associated to x.

For any x ∈ Z9
5 with tree part y as in Example 3.1.2, the level pair

(ttt,n) associated to x can be seen in the tree diagram as in Figure 2 below. It

is comprised of the splitting chain ttt = (t0,t1,t2,t3,t4) ∈ S9 described

at right and the tuple n = (2, 1, 3, 2) described at left. We have also included

the (boxed) integers m0,m1,m2,m3,m4 to make it clear that m0 = −1 and

m`+1 = −1 + η0 + · · ·+ η` for 0 ≤ ` ≤ 3:
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•
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•
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•••••••••m0 = −1 t0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

η0 = 2

η1 = 1

η2 = 3

η3 = 2

degttt({1, 2, 3, 4, 5, 6, 7, 8, 9}) = 2

m1 = 1 t1 = {1, 2, 3, 4, 5}{6, 7, 8, 9}
degttt({1, 2, 3, 4, 5}) = 2

degttt({6, 7, 8, 9}) = 4

m2 = 2 t2 = {1, 2, 3}{4, 5}{6, 7, 8, 9}

degttt({4, 5}) = 2

m3 = 5 t3 = {1, 2, 3}{4}{5}{6}{7}{8}{9}
degttt({1, 2, 3}) = 3

m4 = 7 t4 = {1}{2}{3}{4}{5}{6}{7}{8}{9}

FIGURE 2. The level pair (ttt,n) associated to the tree in Example 3.1.2

The level pair associated to x should be regarded as a compact summary

of key features of the diagram for the tree part of x. More precisely, for each

` ∈ {0, 1, . . . , L(ttt)−1} we have yi−yj ∈ πm`+1R (where m`+1 = −1+η0+η1+· · ·+η`)

if and only if i and j are contained in the same λ ∈ t`. The proper refinement

t` > t`+1 reflects the fact that at least one λ ∈ t` breaks into degttt(λ) > 1 parts in

t`+1, because at least one pair i, j ∈ λ satisfies yi 6≡ yj mod πm`+1+1, and hence the

paths for yi and yj in the diagram split at level m`+1 (see Figure 2). The integers
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m1,m2, . . . ,mL(ttt) mark the levels where these splittings happen, and the integers

η0, η1, . . . , ηL(ttt)−1 appearing in the tuple n are the spacings between those m`.

Definition 3.2.2. For each level pair (ttt,n) define

T (ttt,n) := {x ∈ RN \ V0 : (ttt,n) is the level pair associated to x}.

There are three key properties of the sets T (ttt,n) that will be used in our

proof. The first is the following decomposition of RN , which is immediate from

Definition 3.2.2 because each x ∈ RN \ V0 has exactly one associated level pair

(ttt,n):

RN = V0 t
⊔

ttt∈SN

⊔
n∈NL(ttt)

T (ttt,n). (3.2.1)

In particular, note that the union is countable because SN is finite and NL(ttt) is

countable for each ttt ∈ SN , and note that some T (ttt,n) may be empty. The second

key property of T (ttt,n) is the following lemma:

Lemma 3.2.3. Each T (ttt,n) is compact and open with measure

µN(T (ttt,n)) = Mttt(q) ·
L(ttt)−1∏
`=0

q− rank(t`)η` .

In particular, T (ttt,n) = ∅ if and only if Mttt(q) = 0.

Proof. Fix a level pair (ttt,n). Using the tuple n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt), we

define the familiar integers m0,m1, . . . ,mL(ttt)+1 by m0 := −1,

m`′+1 := −1 +
`′∑
`=0

η` for 0 ≤ `′ ≤ L(ttt)− 1,
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and

mL(ttt)+1 := mL(ttt) + 1 =

L(ttt)−1∑
`=0

η`,

and note that η` = m`+1 − m` for all ` ∈ {0, 1, . . . , L(ttt) − 1}. By the discussion

following Definition 3.2.1, note that x ∈ T (ttt,n) if and only if x ∈ y + πmL(ttt)+1RN ,

where y is a tree with the following properties:

(i) y is a finite sum of the form y =
∑mL(ttt)

n=0 πnd(n),

(ii) {v(yi − yj) : 1 ≤ i < j ≤ N} = {m1,m2, . . . ,mL(ttt)}, and

(iii) for λ ∈ t`, i, j ∈ λ if and only if yi ≡ yj mod πm`+1 .

Since y + πmL(ttt)+1RN is open and compact with measure

µN(y + πmL(ttt)+1RN) = µN(πmL(ttt)+1RN) = q−NmL(ttt)+1 =

L(ttt)−1∏
`=0

q−Nη` ,

it remains to find the number of trees y satisfying (i)-(iii) and multiply the measure

above by this number. According to (i), every such y corresponds to a unique finite

sequence of digit tuples d(0), d(1), . . . , d(mL(ttt)) ∈ DN , so we will count all valid y

by counting sequences. The terms in such a sequence may be chosen independently,

so we will start by counting valid d(n) ∈ DN for each n ∈ {0, 1, . . . ,mL(ttt)} in two

cases, maintaining conditions (i)-(iii) as we go:

(I) Suppose m` < n < m`+1 for some ` ∈ {0, 1, . . . , L(ttt) − 1}. For each λ ∈ t`

we must have yi ≡ yj mod πm`+1 for all i, j ∈ λ. By Proposition 3.0.1, we

must therefore choose d(n) ∈ DN in such a way that for every λ ∈ t`, we have

inf{n : di(n) 6= dj(n)} = v(yi − yj) ≥ m`+1 for all i, j ∈ λ. As n < m`+1, this

means we must ensure di(n) = dj(n) for all i, j ∈ λ. Thus, for each λ ∈ t`
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we must choose one value dλ ∈ D and set di(n) = dλ for all i ∈ λ. This must

be done for #t` parts λ with #D = q choices per part, so we have q#t` valid

choices of d(n).

(II) Suppose n = m`+1 for some ` ∈ {0, 1 . . . , L(ttt) − 1}. Recall that t`+1 is a

proper refinement of t`, note that t` decomposes into the two disjoint sets

t′` := {λ ∈ t` : λ ∈ t`+1} and

t′′` := {λ ∈ t` : λ is a union of at least two λ′ ∈ t`+1},

and note that the latter is actually t′′` = {λ ∈ B(ttt) : `ttt(λ) = `} by part (b) of

Definition 1.6.3. We use the decomposition t` = t′` t t′′` to break the problem

of counting valid digit tuples d(m`+1) ∈ DN into two corresponding subcases:

• If λ ∈ t′`, then λ ∈ t`+1, and this means any i, j ∈ λ must satisfy

yi ≡ yj mod πm`+2 . Recalling Proposition 3.0.1, this means we must

have inf{n : di(n) 6= dj(n)} = v(yi − yj) ≥ m`+2, so we need only choose

one value dλ ∈ D and set di(m`+1) = dλ for all i ∈ λ just as in (I). Thus

for each λ ∈ t′` we have q = #D valid ways to choose the partial digit

tuple (di(m`+1))i∈λ.

• If λ ∈ t′′` , then the number of parts λ′ ∈ t`+1 comprising λ is precisely

degttt(λ). Given one such λ′ ⊂ λ, every pair i, j ∈ λ′ must satisfy yi ≡ yj

mod πm`+2 , or equivalently inf{n : di(n) 6= dj(n)} = v(yi − yj) ≥ m`+2.

Thus by Proposition 3.0.1 again, for every pair i, j ∈ λ′ we must have

di(m`+1) = dj(m`+1). On the other hand, if λ′, λ′′ ∈ t`+1 are distinct

parts contained in λ and we have i ∈ λ′ and j ∈ λ′′, then both yi ≡ yj

mod πm`+1 and yi 6≡ yj mod πm`+2 must be satisfied. By Proposition
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3.0.1 and the necessary condition v(yi − yj) ∈ {m1,m2, . . . ,mL(ttt)},

we must ensure inf{n : di(n) 6= dj(n)} = v(yi − yj) = m`+1 and

hence di(m`+1) 6= dj(m`+1). Therefore we must choose an ordered set of

degttt(λ) distinct values dλ′ ∈ D (one for each part λ′ ∈ t`+1 contained

in λ, and ordered because these λ′ are distinct), and for each λ′ ⊂ λ

we must set di(m`+1) = dλ′ for all i ∈ λ′. Thus, for each λ ∈ t′′` the

number of valid ways to choose the partial digit tuple (di(m`+1))i∈λ is

the number of ways of choosing these dλ′ , namely

(
#D

degttt(λ)

)
· (degttt(λ))! = (q)degttt(λ) = q · (q − 1)degttt(λ)−1.

The two subcases now combine to conclude case (II) as follows: The entries

in the tuple d(m`+1) = (d1(m`+1), . . . , dN(m`+1)) are partitioned according to

t` = t′` t t′′` , so the number of valid such tuples is simply the product

∏
λ∈t`

#{valid ways to choose (di(m`+1))i∈λ} =
∏
λ∈t′`

q ·
∏
λ∈t′′`

(q · (q − 1)degttt(λ)−1)

= q#t′` · q#t′′` ·
∏
λ∈t′′`

(q − 1)degttt(λ)−1

= q#t` ·
∏

λ∈B(t)
`ttt(λ)=`

(q − 1)degttt(λ)−1.

Finally, we combine cases (I) and (II): For each 0 ≤ ` ≤ L(ttt) − 1, case (I)

provides q#t`(m`+1−m`−1) = q#t`(η`−1) valid choices for the partial list of tuples

d(m` + 1), d(m` + 2), . . . , d(m`+1 − 1), and the final product from case (II) is the

number of valid ways to choose d(m`+1) and hence extend the list to one of the

form d(m` + 1), d(m` + 2), . . . , d(m`+1 − 1), d(m`+1). Concatenating these lists for
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` ∈ {0, 1, . . . , L(ttt)− 1}, we conclude that there are

L(ttt)−1∏
`=0

q#t`(η`−1) · q#t` ·
∏

λ∈B(t)
`ttt(λ)=`

(q − 1)degttt(λ)−1

 = Mttt(q) ·
L(ttt)−1∏
`=0

q#t`η`

ways to choose a sequence of digit tuples d(0), d(1), . . . , d(mL(ttt)) such that

y =
∑mL(ttt)

n=0 πnd(n) satisfies (i)-(iii). Thus T (ttt,n) is a disjoint union of

Mttt(q) · ∏L(ttt)−1
`=0 q#t`η` sets of the form y + πmL(ttt)+1RN , so clearly T (ttt,n) = ∅

if and only if Mttt(q) = 0, and T (ttt,n) is open and compact with measure

µN(T (ttt,n)) = Mttt(q) ·
L(ttt)−1∏
`=0

q#t`η` ·
L(ttt)−1∏
`=0

q−Nη` = Mttt(q) ·
L(ttt)−1∏
`=0

q− rank(t`)η` .

The final key property of the sets T (ttt,n) is that all factors of the integrand

in Definition 1.5.2 (except possibly ρ) are constant on each one. More precisely:

Lemma 3.2.4. If (ttt,n) is a level pair, a, b ∈ C, s ∈ C(N2 ), and x ∈ T (ttt,n), then

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij

= q−(a+b+
∑
i<j sij)(η0−1) ·

L(ttt)−1∏
`=1

q−(b+Et` (s)−rank(t`))η` .

Proof. Just as in the proof of Lemma 3.2.3, we use the given tuple n =

(η0, η1, . . . , ηL(ttt)−1) to define integers m0,m1, . . . ,mL(ttt)+1 via m0 := −1,

m`′+1 := −1 +
`′∑
`=0

η` for `′ ∈ {0, 1, . . . , L(ttt)− 1}
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and mL(ttt)+1 := mL(ttt) + 1, and have η` = m`+1 −m` for all ` ∈ {0, 1, . . . , L(ttt)− 1}.

Now if y is the tree part of x, we have mL(ttt) = maxi<j{v(yi − yj)} and x = y + z

with z ∈ πmL(ttt)+1RN , so mini<j{v(zi−zj)} > mL(ttt) and hence v(yi−yj) = v(xi−xj)

for all i < j by the strong triangle equality. Therefore

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij

=
(

max
i<j
|yi − yj|

)a(
min
i<j
|yi − yj|

)b∏
i<j

|yi − yj|sij ,

where

(i) y is a finite sum of the form y =
∑mL(ttt)

n=0 πnd(n),

(ii) {v(yi − yj) : 1 ≤ i < j ≤ N} = {m1,m2, . . . ,mL(ttt)}, and

(iii) for λ ∈ t`, i, j ∈ λ if and only if yi ≡ yj mod πm`+1

as in the proof of Lemma 3.2.3. Now

(
max
i<j
|yi − yj|

)a
= q−a·mini<j v(yi−yj) = q−am1 = q−a(η0−1),(

min
i<j
|yi − yj|

)b
= q−b·maxi<j v(yi−yj) = q−bmL(ttt) = q−b(η0−1) ·

L(ttt)−1∏
`=1

q−bη` ,
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and

∑
i<j

sijv(yi − yj) =

L(ttt)∑
`=1

∑
i<j

v(yi−yj)=m`

sijm`

=

L(ttt)∑
`=1

∑
i<j

v(yi−yj)=m`

sij(−1 + η0 + η1 + · · ·+ η`−1)

=
∑
i<j

v(yi−yj)=m1

sij(−1 + η0)

+
∑
i<j

v(yi−yj)=m2

sij(−1 + η0 + η1)

...

+
∑
i<j

v(yi−yj)=mL(ttt)

sij(−1 + η0 + η1 + · · ·+ ηL(ttt)−1),

so exchanging the order of summation in the above sum of sums gives

∑
i<j

sijv(yi − yj) =

 ∑
i<j

v(yi−yj)≥m1

sij

 (η0 − 1) +

L(ttt)−1∑
`=1

 ∑
i<j

v(yi−yj)≥m`+1

sij

 η`.

Since v(yi − yj) ≥ m1 for all i < j, the first term in brackets is simply
∑

i<j sij. For

the other terms in brackets, recall

v(yi − yj) ≥ m`+1 ⇐⇒ yi ≡ yj mod πm`+1

⇐⇒ i, j ∈ λ for some λ ∈ t`
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by Proposition 3.0.1 and property (iii) of y. Therefore

∑
i<j

v(yi−yj)≥m`+1

sij =
∑
λ∈t`

∑
i<j
i,j∈λ

sij = Et`(s)− rank(t`)

by part (c) of Definition 1.6.3, and hence

∑
i<j

sijv(yi − yj) =

[∑
i<j

sij

]
(η0 − 1) +

L(ttt)−1∑
`=1

[Et`(s)− rank(t`)] η`

implies ∏
i<j

|yi − yj|sij = q−(
∑
i<j sij)(η0−1) ·

L(ttt)−1∏
`=1

q−(Et` (s)−rank(t`))η` .

Combining this with the max and min factors gives the desired result:

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij

=
(

max
i<j
|yi − yj|

)a(
min
i<j
|yi − yj|

)b∏
i<j

|yi − yj|sij

= q−(a+b+
∑
i<j sij)(η0−1) ·

L(ttt)−1∏
`=1

q−(b+Et` (s)−rank(t`))η` .

3.3. Integration with level pairs

Though Lemmas 3.2.3 and 3.2.4 are useful on their own, their combination

is especially important. Indeed, Lemma 3.2.3 provides an explicit formula for the
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measure of T (ttt,n), on which the constant value taken by

x 7→
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij

is given in Lemma 3.2.4. Thus the integral of this function over a given set T (ttt,n)

is simply the product of the function value and the value of µN(T (ttt,n)):

Corollary 3.3.1. If a, b ∈ C, then for every s ∈ C(N2 ) we have

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

= q−(N−1+a+b+
∑
i<j sij)(η0−1) · Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

q−(b+Et` (s))η` .

Note that this quantity is entire in each of the variables a, b, and sij, and all mixed

partial derivatives in those variables commute with each other and the integral sign.

Remark 3.3.2. Note that Corollary 3.3.1 actually generalizes Lemma 3.2.3, as

the latter can be recovered by setting sij = a = b = 0 in integral formula above.

Moreover, the exponential factors in the formula are completely determined by

the level pair (ttt,n), which encodes the common features of the tree diagrams for

x ∈ T (ttt,n) (recall 2). In particular, we may regard t0 = {[N ]} and η0 as “root

data” that determine the factor

q−(a+b+Et0
(s))(η0−1) = q−(N−1+a+b+

∑
i<j sij)(η0−1),

and note that

|q−(N−1+a+b+
∑
i<j sij)|C < 1 ⇐⇒ s ∈ RPN(a, b). (3.3.2)
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This is precisely the reason we named RPN(a, b) the “root polytope”. Similarly,

for each ` ∈ {1, 2, . . . , L(ttt) − 1}, recall that t` describes how the N paths

representing (x1, x2, . . . , xN) = x ∈ T (ttt,n) branch in a particular level in the

tree diagram, and that η` measures the vertical distance between the tree diagram

levels corresponding to t` and t`+1. Thus we regard t` and η` as the `th “level

data”, which determine the exponential factor q−(b+Et` (s))η` . Accordingly, we named

LPttt(b) the “level polytope” in Definition 1.6.4 because

|q−(b+Et` (s))|C < 1 for all ` ∈ {1, 2, . . . , L(ttt)− 1} ⇐⇒ s ∈ LPttt(b).

(3.3.3)

In the following proposition, we will finally see how the exponential factors

corresponding to the root and how level polytopes combine to form the root and

level functions. It is the most important result in this chapter.

Proposition 3.3.3. Suppose a, b ∈ C and define RN
ttt :=

⊔
n∈NL(ttt) T (ttt,n) for each

ttt ∈ SN . If Mttt(q) > 0, then the integral

∫
RNttt

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely if and only if s ∈ RPN(a, b) ∩ LPttt(b), and for such s it

converges to

1

1− q−(N−1+a+b+
∑
i<j sij)

· Jttt(b, s).

Otherwise Mttt(q) = 0, in which case RN
ttt = ∅ and the integral is simply zero.

Proof. The Mttt(q) = 0 case is immediate from Lemma 3.2.3, so suppose Mttt(q) > 0

and s ∈ C(N2 ). Then Corollary 3.3.1 and Fubini’s Theorem for sums of nonnegative
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terms imply

∫
RNttt

∣∣∣∣∣(max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

dx1 . . . dxN

=
∑

n∈NL(ttt)

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)Re(a)(
min
i<j
|xi − xj|

)Re(b)

·
∏
i<j

|xi − xj|Re(sij) dx1 . . . dxN

=
∑

n∈NL(ttt)

q−Re(N−1+a+b+
∑
i<j sij)(η0−1) · Mttt(q)

qN−1

L(ttt)−1∏
`=1

q−Re(b+Et` (s))η`

=
∞∑
η0=1

|q−(N−1+a+b+
∑
i<j sij)|(η0−1)

C · Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

∞∑
η`=1

|q−(b+Et` (s))|η`C .

Therefore the integral on the first line converges if and only if all of the geometric

series in the product on the last line converge. But this is the case if and only if

s ∈ RPN(a, b) ∩ LPttt(b) by (3.3.2) and (3.3.3), so we have established the first

claim. Moreover, if s ∈ RPN(a, b) ∩ LPttt(b) then the function

x 7→ 1RNttt (x)

∣∣∣∣∣(max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

is in L1(KN , µN) and dominates every partial sum of the function

x 7→
∑

n∈NL(ttt)

1T (ttt,n)(x)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij ,

so the Dominated Convergence Theorem, Corollary 3.3.1, and Fubini’s Theorem for

absolutely convergent sums together imply
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∫
RNttt

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sijdx1 . . . dxN

=
∑

n∈NL(ttt)

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b
·
∏
i<j

|xi − xj|sij dx1 . . . dxN

=
∑

n∈NL(ttt)

q−(N−1+a+b+
∑
i<j sij)(η0−1) · Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

q−(b+Et` (s))η`

=
∞∑
η0=1

q−(N−1+a+b+
∑
i<j sij)(η0−1) · Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

∞∑
η`=1

q−(b+Et` (s))η`

=
1

1− q−(N−1+a+b+
∑
i<j sij)

· Jttt,q(b, s).

Proposition 3.3.3 is the key ingredient in the next proposition, which is the

foundation of parts (a) and (b) of Theorem 1.6.6.

Proposition 3.3.4. Suppose K is a p-field and suppose a, b ∈ C. Then the integral

∫
RN

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely if and only if s belongs to ΩN(a, b), and for such s it converges

to

1

1− q−(N−1+a+b+
∑
i<j sij)

·
∑
ttt∈SN

Jttt,q(b, s).
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Proof. First, note that the decomposition in (3.2.1) can be rewritten as

RN = V0 t
⊔

ttt∈SN

RN
ttt , (3.3.4)

and that for each integer m ≥ 1 we have

V0 =
⋃

1≤i<j≤N

{x ∈ RN : xi = xj} ⊂
⋃

1≤i<j≤N

⊔
y∈RN/πmRN

yi=yj

(y + πmRN).

For each pair {i, j} satisfying 1 ≤ i < j ≤ N , we have

#{y ∈ RN/πmRN : yi = yj} = q(N−1)m and µN(y + πmRN) = q−Nm

by Proposition 3.0.1 and Theorem 1.3.1. Thus V0 is contained in a union of
(
N
2

)
sets of µN -measure q(N−1)m · q−Nm = q−m, and since m ≥ 1 can be arbitrarily large

it follows that µN(V0) = 0. This fact and (3.3.4) together imply

∫
RN

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

=
∑
ttt∈SN

∫
RNttt

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN .

According to Proposition 3.3.3, the integral over RN
ttt converges absolutely if and

only if Mttt(q) = 0 (in which case RN
ttt = ∅) or s ∈ RPN(a, b) ∩ LPttt(b). Therefore

the integral over RN converges if and only if s is in the polytope

RPN(a, b) ∩
⋂

ttt∈SN
Mttt(q)>0

LPttt(b).
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Recalling the definition of ΩN(a, b) in part (a) of Theorem 1.6.6, it remains to show

that the condition “Mttt(q) > 0” in the intersection above is extraneous. If N = 2,

the only splitting chain in S2 is ttt = ([N ], {1}{2}), which has Mttt(q) = q − 1 > 0

because q ≥ 2. Thus if N = 2 the condition “Mttt(q) > 0” is automatic and the

proof is complete. Now suppose N > 2. It suffices to show that

⋂
ttt∈SN

Mttt(q)>0

LPttt(b) ⊂
⋂

ttt∈SN

LPttt(b) (3.3.5)

because the reverse containment is obvious. To this end, let t◦ be an arbitrary

partition of [N ] other than t = {[N ]} or t = {{1}, {2}, . . . , {N}}. We will

construct a splitting chain ttt◦ ∈ SN that has t◦ as a level, satisfies Mttt◦(q) > 0

for any q ≥ 2, and has length L(ttt◦) ≥ 2 as follows. Put k = #t◦ − 1 and define

tk := t◦. Then k ≥ 1 and we may write tk = {λ1, λ2, . . . , λk+1} where #λ1 ≥ 2

and #λ1 ≥ #λ2 ≥ · · · ≥ #λk+1. Now for each ` ∈ {0, 1, 2, . . . , k − 1}, define

t` := {λ1, λ2, . . . , λ`, (λ`+1 ∪ λ`+2 ∪ · · · ∪ λk+1)}

and note that t = t0 > t1 > · · · > tk where each refinement is given by splitting a

single part into two parts. For ` ≥ k + 1, recursively define t` to be any refinement

of t`−1 such that each non-singleton part λ ∈ t`−1 splits into λ′ = λ \ {i} ∈ t` and

{i} ∈ t` for some i ∈ λ. The largest part λ1 ∈ tk will fully refine into singletons

after #λ1 − 1 steps in the recursion, by which time all other parts will have also

refined into singletons. Therefore the recursion must stop at ` = k + #λ1 − 1 with

tk > tk+1 > · · · > tk+#λ1−1 = t, where each refinement is given by refining non-

singleton parts into exactly two parts. Thus we have constructed a splitting chain
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ttt◦ = (t0,t1, . . . ,tk+#λ1−1) ∈ SN that has the given partition t◦ as its kth level,

has length L(ttt◦) = k + #λ1 − 1 ≥ k + 1 = #t ≥ 2, and has degttt◦(λ) = 2 ≤ q for

all branches λ ∈ B(ttt◦). The last property implies Mttt◦(q) > 0, so we have

⋂
ttt∈SN

Mttt(q)>0

LPttt(b) ⊂ LPttt◦(b) =

L(ttt◦)−1⋂
`=1

{
s ∈ C(N2 ) : Re(b+ Et`(s)) > 0

}

⊂
{
s ∈ C(N2 ) : Re(b+ Et◦(s)) > 0

}
.

This argument works for every partition t◦ with t < t◦ < t, so it follows that

⋂
ttt∈SN

Mttt(q)>0

LPttt(b) ⊂
⋂

partitions t
t<t<t

{
s ∈ C(N2 ) : Re(b+ Et(s)) > 0

}
.

On the other hand, for every splitting chain ttt ∈ SN , each level t` with 1 ≤ ` ≤

L(ttt)− 1 is a partition of [N ] satisfying t < t` < t, so

⋃
ttt∈SN

{t1,t2, . . . ,tL(ttt)−1} ⊂ {partitions t : t < t < t}.

This implies

⋂
ttt∈SN

Mttt(q)>0

LPttt(b) ⊂
⋂

partitions t
t<t<t

{
s ∈ C(N2 ) : Re(b+ Et(s)) > 0

}

⊂
⋂

ttt∈SN

L(ttt)−1⋂
`=1

{
s ∈ C(N2 ) : Re(b+ Et`(s)) > 0

}
=
⋂

ttt∈SN

LPttt(b),

so (3.3.5) holds and the proof is complete. Note that we also just proved the first

claim in Proposition 1.6.7.
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CHAPTER IV

BRANCH PAIRS AND THE CONCLUSION FOR Zρ
N

The goals of this chapter are to prove Lemma 1.6.5, find a correspondence

between level pairs and branch pairs (to be defined shortly), and use them to

write some of the previous integrals in a simpler way. Defining and proving the

correspondence is arguably the most technical part of this thesis and will take

the majority of Section 4.1. In Section 4.2 we will use the correspondence to

prove Proposition 4.2.4, which is a “branch-centric” analogue of Proposition 3.3.4.

Finally, in Section 4.3 we will extend Propositions 3.3.4 and 4.2.4 to general norm-

densities and conclude the proof of parts (a)-(c) of Theorem 1.6.6.

4.1. Reduced splitting chains, branch pairs, and a correspondence

Before defining branch pairs, we will restate and prove Lemma 1.6.5.

Lemma 4.1.1 (Lemma 1.6.5). We say that a splitting chain ttt is reduced if for

each λ ∈ B(ttt) there is a unique level t` containing λ (namely, the level t`ttt(λ)). We

write RN := {ttt ∈ SN : ttt is reduced} and define an equivalence relation ' on SN by

writing ttt ' ttt′ if and only if B(ttt) = B(ttt′).

(a) If ttt ' ttt′, then the branch degrees, part exponents, multiplicity polynomials,

and branch polytopes for ttt and ttt′ respectively coincide.

(b) For each ttt ∈ SN there is a unique ttt∗ ∈ RN such that ttt ' ttt∗. We call this

ttt∗ the reduction of ttt and regard RN as a complete set of representatives for

SN modulo '.
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(c) For each ttt∗ ∈ RN we have

⋂
ttt∈SN
ttt'ttt∗

LPttt(0) = BPttt∗ ,

and therefore ⋂
ttt∈SN

LPttt(0) =
⋂

ttt∗∈RN

BPttt∗ .

Proof.

(a) Suppose ttt,ttt′ ∈ SN and ttt ' ttt′. Then B(ttt) = B(ttt′) and our only

task is to prove that degttt(λ) = degttt′(λ) for all λ ∈ B(ttt), for then

the rest of (a) will follow immediately from part (c) of Definition 1.6.3

part (b) of Definition 1.6.4. To this end, suppose λ ∈ B(ttt). Any branch

λ′ ∈ B(ttt) contained in both t`ttt(λ)+1 and λ must not appear in any of the

levels t0,t1, . . . ,t`ttt(λ) because t`ttt(λ)+1 properly refines all of them and by

definition, `ttt(λ) = max{` ∈ {0, 1, . . . , L(ttt) − 1} : λ ∈ t`}. Moreover,

no branch λ′′ ( λ′ can appear in t`ttt(λ)+1 because λ′ ∈ t`ttt(λ)+1. Therefore

{λ′ ∈ t`ttt(λ)+1 : λ′ ⊂ λ} is comprised of precisely the largest branches in

B(ttt) that are properly contained in λ, along with any remaining singletons

{i} ⊂ λ. Thus {λ′ ∈ t`ttt(λ)+1 : λ′ ⊂ λ} is completely determined by B(ttt) and

λ. But B(ttt) = B(ttt′), so

{λ′ ∈ t`ttt(λ)+1 : λ′ ⊂ λ} = {λ′ ∈ t′`ttt′ (λ)+1 : λ′ ⊂ λ}

and we conclude that degttt(λ) = degttt′(λ).
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(b) Suppose ttt ∈ SN and note that B(ttt) is partially ordered by ⊂ with unique

largest element [N ]. We will construct an element ttt∗ ∈ RN satisfying

B(ttt∗) = B(ttt). Begin by letting t∗0 := {[N ]}, and continue recursively for

` ≥ 0 as follows: Define a partition t∗`+1 of [N ] by taking the largest branches

remaining in B(ttt∗) \ (t∗0 ∪ t∗1 ∪ · · · ∪ t∗`) and any leftover singletons in

[N ]. At the first ` ≥ 0 for which B(ttt) \ (t∗0 ∪ t∗1 ∪ · · · ∪ t∗`) = ∅, end

the recursion and let L∗ := ` + 1 and t∗L∗ := t. Then by construction we

have t∗`+1 < t∗` because each part of t∗`+1 is contained in a part of t∗` and

at least one part of t∗`+1 is properly contained in one of those in t∗` . Thus

ttt∗ = (t∗0,t∗1, . . . ,t∗L∗) is a splitting chain of order N and length L∗ ≤ L(ttt)

with B(ttt∗) =
(⋃L∗−1

`=0 t∗`
)
\ t = B(ttt). Moreover, ttt∗ is reduced because each

λ ∈ B(ttt∗) is contained in exactly one t∗` , and ttt∗ is unique because it was

completely determined by B(ttt).

(c) Suppose ttt∗ ∈ RN . The first claim is obvious from Definition 1.6.4 if

B(ttt∗) \ t = ∅, so suppose otherwise and choose an arbitrary branch

λ◦ ∈ B(ttt∗)\t. We will construct a splitting chain ttt◦ ∈ SN such that ttt◦ ' ttt∗

and such that ttt◦ has a level containing λ◦ and no other branches. The set

B′ := {λ ∈ B(ttt∗) : λ 6⊂ λ◦} is partially ordered by ⊂ with unique largest

element [N ], so we may apply the same algorithm in the proof of part (b) to

obtain the unique reduced splitting chain ttt′ = (t′0,t′1, . . . ,t′L) satisfying

B(ttt′) = B′. There is a smallest branch in B(ttt′) that contains λ◦, say λ′,

and there are no subsets of λ◦ in B(ttt′). Thus if λ◦ = {i1, i2, . . . , in}, the

singletons {i1}, {i2}, . . . , {in} must appear in t′` for all ` > `ttt′(λ
′). Now let

t0,t1, . . . ,tL′ be the partitions satisfying t` = t′` for 0 ≤ ` ≤ `ttt′(λ
′), and

for ` > `ttt′(λ
′) take t` to be equal to t′` but with {i1}{i2} . . . {in} replaced by
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λ◦ = {i1, i2, . . . , in}. This yields partitions

t = t0 > t1 > · · · > tL′

with B(ttt∗) \ (t0 ∪ t1 ∪ · · · ∪ tL′) = {λ ∈ B(ttt∗) : λ ( λ◦} where λ◦

is the only non-singleton part in tL′ . We continue recursively for ` ≥ L′,

defining t`+1 to be the partition comprised of the largest branches remaining

in B(ttt∗) \ (t0 ∪ t1 ∪ · · · ∪ t`) and any leftover singletons in [N ]. We end the

recursion at the first ` ≥ L′ such that B(ttt∗) \ (t0 ∪ t1 ∪ · · · ∪ t`) = ∅ and set

L := ` + 1 and tL := t. The result is a splitting chain ttt◦ = (t0,t1, . . . ,tL)

with B(ttt◦) = B(ttt∗) (i.e., ttt◦ ' ttt∗) and a level tL′ whose only non-singleton

part is λ◦, and hence EtL′ (s) = eλ◦(s). Thus for λ◦ ∈ RN we have a splitting

chain ttt◦ ' ttt∗ satisfying

LPttt◦(0) =
L−1⋂
`=1

{
s ∈ C(N2 ) : Re(Et`(s)) > 0

}
⊂
{
s ∈ C(N2 ) : Re(EtL′ (s)) > 0

}
=
{
s ∈ C(N2 ) : Re(eλ◦(s)) > 0

}
,

and hence ⋂
ttt∈SN
ttt'ttt∗

LPttt(0) ⊂
{
s ∈ C(N2 ) : Re(eλ◦(s)) > 0

}
.

Since this argument works for any λ◦ ∈ B(ttt∗) \ t, it follows that

⋂
ttt∈SN
ttt'ttt∗

LPttt(0) ⊂
⋂

λ∈B(ttt)\t

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}
= BPttt∗ .
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To show the reverse containment, suppose s ∈ BPttt∗ , so that Re(eλ(s)) > 0

for all λ ∈ B(ttt∗) \ t. For any splitting chain ttt ' ttt∗ and any level t` with

1 ≤ ` ≤ L(ttt) − 1, the level exponent Et`(s) =
∑

λ∈t` eλ(s) is a sum over at

least one λ ∈ B(ttt)∩t` ⊂ B(ttt∗) \t and hence Re(Et`(s)) > 0. It follows that

s ∈ LPttt(0) for all ttt ' ttt∗, and we conclude that

⋂
ttt∈SN
ttt'ttt∗

LPttt(0) = BPttt∗ .

Finally, since this holds for all ttt∗ ∈ RN , part (b) implies
⋂

ttt∈SN LPttt(0) =⋂
ttt∗∈RN BPttt.

It is worth noting here that the recursive algorithm in the proof of part (b)

of Lemma 1.6.5 can be used to find the reduction of any splitting chain. We now

apply this algorithm to the splitting chain ttt ∈ S9 from Figure 2 in Section 3.2.

Example 4.1.2. Recall ttt = (t0,t1,t2,t3,t4) ∈ S9 from Figure 2, where

t0 = {1, 2, 3, 4, 5, 6, 7, 8, 9},

t1 = {1, 2, 3, 4, 5}{6, 7, 8, 9},

t2 = {1, 2, 3}{4, 5}{6, 7, 8, 9},

t3 = {1, 2, 3}{4}{5}{6}{7}{8}{9},

t4 = {1}{2}{3}{4}{5}{6}{7}{8}{9}.

Before starting the algorithm, note that its branch set is

B(ttt) =
{
{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2, 3, 4, 5}, {6, 7, 8, 9}, {1, 2, 3}, {4, 5}

}
.
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We initialize the algorithm by letting t∗0 := {1, 2, 3, 4, 5, 6, 7, 8, 9}, and the recursive

part runs as follows:

– ` = 0 : The maximal branches remaining in

B(ttt) \ t∗0 =
{
{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {1, 2, 3}, {4, 5}

}
(partially ordered via ⊂) are the incomparable sets {1, 2, 3, 4, 5} and

{6, 7, 8, 9}, so we define the partition

t∗1 := {1, 2, 3, 4, 5}{6, 7, 8, 9}.

– ` = 1 : The maximal branches remaining in B(ttt) \ (t∗0 ∪ t∗1) =

{{1, 2, 3}, {4, 5}} are the incomparable sets {1, 2, 3} and {4, 5}, so by

including leftover singletons {i} ⊂ [9] we define the partition

t∗2 := {1, 2, 3}{4, 5}{6}{7}{8}{9}.

– ` = 2 : We now have B(ttt) \ (t∗0 ∪ t∗1 ∪ t∗2) = ∅, so end the recursion.

Finally, since the recursion stopped at step ` = 2, we set L∗ := ` + 1 = 3, define the

last partition via

t∗3 := t = {1}{2}{3}{4}{5}{6}{7}{8}{9},

and note that the algorithm is done. It is straightforward to verify that the

resulting tuple ttt∗ := (t∗0,t∗1,t∗2,t∗3) is a reduced splitting chain of order 9 with

ttt ' ttt∗ and L(ttt∗) ≤ L(ttt).
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We are now ready to define and discuss branch pairs:

Definition 4.1.3. If ttt∗ ∈ RN and k = (kλ) is a tuple of positive integers indexed

by λ ∈ B(ttt∗), we call [ttt∗,k] a branch pair.

The following theorem establishes a useful and explicit correspondence

between the set of all branch pairs [ttt∗,k] with a particular ttt∗ ∈ RN and the set of

all level pairs (ttt,n) such that ttt has reduction ttt∗:

Theorem 4.1.4. Suppose ttt∗ ∈ RN . There is a bijection

{
[ttt∗,k] : k = (kλ) ∈ NB(ttt∗)

}
←→

⊔
ttt∈SN
ttt'ttt∗

{
(ttt,n) : n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt)

}

such that if [ttt∗,k] and (ttt,n) correspond, then we have k[N ] = η0 and for each

λ ∈ B(ttt) \ t we have

kλ =

`ttt(λ)∑
`=`ttt(λ∗)+1

η` (4.1.1)

where λ∗ ∈ B(ttt) is the smallest branch properly containing λ.

Proof. Fix ttt∗ ∈ RN and let k = (kλ) be an arbitrary tuple of positive integers

indexed by λ ∈ B(ttt∗). We associate a unique level pair to [ttt∗,k] as follows. The

set

M :=

−1 +
∑

λ′∈B(ttt∗)
λ′⊃λ

kλ′ : λ ∈ B(ttt∗)


is comprised of finitely many, say L, nonnegative integers. Put m0 := −1 and let

{m1,m2, . . . ,mL} be the enumeration of M satisfying m0 < m1 < m2 < · · · < mL.
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For each λ ∈ B(ttt∗) define

`[ttt∗,k](λ) := the unique ` ∈ {0, 1, . . . , L− 1} such that
∑

λ′∈B(ttt∗)
λ′⊃λ

kλ′ = m`+1 + 1.

Then by the definition of M = {m1,m2, . . . ,mL}, for each ` ∈ {0, 1, . . . , L − 1}

there is at least one λ ∈ B(ttt∗) satisfying `[ttt∗,k](λ) = `, and λ = [N ] is the unique

branch satisfying `[ttt∗,k](λ) = 0. Moreover, we have `[ttt∗,k](λ
′) < `[ttt∗,k](λ) whenever

λ, λ′ ∈ B(ttt∗) satisfy λ ( λ′. We now construct L partitions t0,t1, . . . ,tL−1 of [N ]

as follows. Let t0 := {[N ]}, and for each ` ∈ {1, . . . , L− 1} let B`(ttt∗) be the subset

of B(ttt∗) defined by

λ ∈ B`(ttt∗) ⇐⇒
`[ttt∗,k](λ) ≥ ` and `[ttt∗,k](λ

∗) < `, where λ∗ is the

smallest branch in B(ttt∗) satisfying λ ( λ∗,

let t` be the partition of [N ] comprised of all λ ∈ B`(ttt∗) and all {i} ⊂ [N ] \⋃
λ∈B`(ttt∗) λ, and finally let tL := t. Now if ` ∈ {1, 2, . . . , L} and λ ∈ t`, then either

λ is a singleton or λ ∈ B`(ttt∗). In the latter case we have `[ttt∗,k](λ
∗) < ` ≤ `[ttt∗,k](λ)

where λ∗ is the smallest branch in B(ttt∗) satisfying λ ( λ∗. If `[ttt∗,k](λ
∗) = ` − 1,

then λ∗ ∈ t`−1. Otherwise `[ttt∗,k](λ
∗) < `− 1, in which case λ ∈ t`−1, so in any case

each λ ∈ t` is contained in some part of t`−1 and hence t` ≤ t`−1. Moreover, there

is at least one part λ′ ∈ t`−1 with `[ttt∗,k](λ
′) = ` − 1, so λ′ /∈ B`(ttt∗) implies λ′ /∈ t`

and hence t` < t`−1. Now ttt := (t0,t1, . . . ,tL) is a tuple of partitions of [N ]

satisfying t0 > t1 > · · · > tL = t, so ttt is a splitting chain of order N and length

L(ttt) = L. It is clear from the construction of ttt that B(ttt) =
⋃L−1
`=0 B`(ttt∗) = B(ttt∗),

and that each branch λ ∈ B(ttt) = B(ttt∗) has depth `ttt(λ) = `[ttt∗,k](λ). Thus if we

define n := (η0, η1, . . . , ηL−1) ∈ NL by η` := m`+1 − m`, it follows that (ttt,n) is a
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level pair such that ttt ' ttt∗ and every λ ∈ B(ttt) satisfies

∑
λ′∈B(ttt)
λ′⊃λ

kλ′ = m`[ttt∗,k](λ)+1 + 1 =

`[ttt∗,k](λ)∑
`=0

(m`+1 −m`) =

`ttt(λ)∑
`=0

η`.

Then k[N ] = η0, and if λ ∈ B(ttt) \ t and λ∗ is the smallest branch in B(ttt) properly

containing λ we have

kλ =
∑

λ′∈B(ttt)
λ′⊃λ

kλ′ −
∑

λ′∈B(ttt)
λ′⊃λ∗

kλ′ =

`ttt(λ)∑
`=0

η` −
`ttt(λ∗)∑
`=0

η` =

`ttt(λ)∑
`=`ttt(λ∗)+1

η`.

Therefore by setting F ([ttt∗,k]) := (ttt,n) we obtain a well-defined map

F :
{

[ttt∗,k] : k = (kλ) ∈ NB(ttt∗)
}

−→
⊔

ttt∈SN
ttt'ttt′

{
(ttt,n) : n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt)

}

satisfying (4.1.1). We will now show that F is a bijection by constructing an

inverse. Let ttt ∈ SN be any splitting chain with reduction ttt∗, let n =

(η0, η1, . . . , ηL(ttt)−1) be an arbitrary tuple of L(ttt) positive integers, and define

G((ttt,n)) := [ttt∗,k] by defining kλ ∈ N for each λ ∈ B(ttt∗) = B(ttt) via

kλ :=


η0 if λ = [N ],

`ttt(λ)∑
`=`ttt(λ∗)+1

η` if λ∗ ∈ B(ttt) is the smallest branch properly containing λ.
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Therefore we have a well-defined map

G :
⊔

ttt∈SN
ttt'ttt∗

{
(ttt,n) : n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt)

}
−→

{
[ttt∗,k] : k = (kλ) ∈ NB(ttt∗)

}
,

and it is immediate from (4.1.1) and the definition of G that G◦F ([ttt∗,k]) = [ttt∗,k]

for every k = (kλ) indexed by λ ∈ B(ttt∗). It remains to show that F ◦ G((ttt,n)) =

(ttt,n) for all level pairs in

⊔
ttt∈SN
ttt'ttt∗

{
(ttt,n) : n = (η0, η1, . . . , ηL(ttt)−1) ∈ NL(ttt)

}
.

To this end, let (ttt′,n′) be such a level pair and suppose [ttt∗,k] = G((ttt′,n′)), so

that

kλ =


η′0 if λ = [N ],

`ttt′ (λ)∑
`=`ttt′ (λ∗)+1

η′` if λ∗ ∈ B(ttt′) is the smallest branch properly containing λ,

(4.1.2)

for each λ ∈ B(ttt′). Now suppose (ttt,n) = F ([ttt∗,k]) and recall the following

details from our definition of F . The strictly increasing set of integers M =

{m1,m2, . . . ,mL} is defined by

M =

−1 +
∑

λ′∈B(ttt∗)
λ′⊃λ

kλ′ : λ ∈ B(ttt∗)
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and satisfies η` = m`+1 −m` for all ` ∈ {0, 1, . . . , L− 1}, where m0 = −1. Moreover,

recall that ttt = (t0,t1, . . . ,tL) is then completely determined using the integers

defined for each λ ∈ B(ttt∗) by

`[ttt∗,k](λ) = the unique ` ∈ {0, 1, . . . , L− 1} such that
∑

λ′∈B(ttt∗)
λ′⊃λ

kλ′ = m`+1 + 1,

and we saw that L(ttt) = L, B(ttt) = B(ttt∗), and `ttt(λ) = `[ttt∗,k](λ) for all λ ∈ B(ttt) =

B(ttt∗). Now since B(ttt∗) = B(ttt′) and each integer kλ with λ ∈ B(ttt′) is given by

(4.1.2), we have

{m1,m2, . . . ,mL} =M =

−1 +
∑

λ′∈B(ttt′)
λ′⊃λ

kλ′ : λ ∈ B(ttt′)


=

−1 +

`ttt′ (λ)∑
`=0

η′` : λ ∈ B(ttt′)

 .

In particular, for each λ ∈ B(ttt) = B(ttt∗) = B(ttt′) we have

`ttt(λ)∑
`=0

η` = m`ttt(λ)+1 + 1 =
∑

λ′∈B(ttt∗)
λ′⊃λ

kλ′ =
∑

λ′∈B(ttt′)
λ′⊃λ

kλ′ =

`ttt′ (λ)∑
`=0

η′`. (4.1.3)

Since ttt′ is a splitting chain, it must satisfy {[N ]} = t′0 > t′1 > · · · > t′L(ttt′) = t,

and hence for each level index `′ ∈ {0, 1, 2, . . . , L(ttt′) − 1} we may select a branch

λ(`′) ∈ B(ttt′) ∩ t′`′ satisfying `ttt′(λ
(`′)) = `′ and have

L(ttt′)− 1 = `ttt′(λ
(L(ttt′)−1)) = max{`ttt′(λ) : λ ∈ B(ttt′)}.
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Now since each η′` is positive, it follows that

{m1,m2, . . . ,mL} =

−1 +

`ttt′ (λ)∑
`=0

η′` : λ ∈ B(ttt′)


=

{
−1 +

`′∑
`=0

η′` : `′ ∈ {0, 1, . . . , L(ttt′)− 1}
}
.

But the values m1,m2, . . . ,mL strictly increase and the sums −1 +
∑`′

`=0 η
′
` also

strictly increase with `′, so it must be the case that L(ttt′) = L = L(ttt) and

moreover,

m`′+1 = −1 +
`′∑
`=0

η′` for all `′ ∈ {0, 1, . . . , L(ttt′)− 1}.

Thus η′0 = m1 + 1 = η0, and for every `′ ∈ {1, . . . , L(ttt)− 1} we have

η`′ = m`′+1 −m`′ =

(
−1 +

`′∑
`=0

η′`

)
−
(
−1 +

`′−1∑
`=0

η′`

)
= η′`′ ,

so we conclude that n = n′. Now (4.1.3) and positivity of η` = η′` imply `ttt′(λ) =

`ttt(λ) = `[ttt∗,k](λ) for all λ ∈ B(ttt′) = B(ttt∗) = B(ttt), so each partition t` defined via

the set B`(ttt∗) above is precisely t′`. Therefore ttt = ttt′, so

F ◦G((ttt′,n′)) = F ([ttt∗,k]) = (ttt,n) = (ttt′,n′)

and we conclude that G = F−1.

To make the correspondence more intuitive, we recall that the splitting pair

(ttt,n) associated to the tree in Example 3.1.2 had n = (2, 1, 3, 2) in Figure 2. By

Theorem 4.1.4, (ttt,n) corresponds to [ttt∗,k] where ttt∗ is the reduction computed in
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Example 4.1.2 and k is displayed in the diagram below. Note that these k and n

indeed satisfy (4.1.1).
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k{1,2,3,4,5,6,7,8,9} = 2

k{1,2,3,4,5} = 1

k{1,2,3} = 5

k{4,5} = 3

k{6,7,8,9} = 4

FIGURE 3. The branch pair [ttt∗,k] associated to the tree in Example 3.1.2

4.2. Integration with branch pairs

With Lemma 1.6.5 and Theorem 4.1.4 in hand, we may now give a “branch-

centric” reinterpretation of Proposition 3.3.1 in the b = 0 case.

Corollary 4.2.1. If a ∈ C, [ttt∗,k] is a branch pair, and (ttt,n) is the level pair

corresponding to [ttt∗,k], then for every s ∈ C(N2 ) we have

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

= q−(N−1+a+
∑
i<j sij)(k[N ]−1) · Mttt∗(q)

qN−1
·

∏
λ∈B(ttt∗)\t

q−eλ(s)kλ .
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Proof. If b = 0, Proposition 3.3.1 gives

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

= q−(N−1+a+
∑
i<j sij)(η0−1) · Mttt(q)

qN−1
·
L(ttt)−1∏
`=1

q−Et` (s)η` .

Since ttt ' ttt∗, part (a) of Lemma 1.6.5 implies Mttt∗(q) = Mttt(q) and B(ttt∗) = B(ttt).

We also have k[N ] = η0 by Theorem 4.1.4, so it suffices to show that

L(ttt)−1∑
`=1

Et`(s)η` =
∑

λ∈B(ttt)\t

eλ(s)kλ. (4.2.4)

To see why (4.2.4) is true, note that

Et`(s) =
∑

λ∈B(ttt)∩t`

eλ(s),

and for ` ∈ {1, 2, . . . , L(ttt) − 1} we have λ ∈ B(ttt) ∩ t` if and only if `ttt(λ∗) + 1 ≤

` ≤ `ttt(λ), where λ∗ denotes the smallest branch in B(ttt) properly containing λ.

Therefore if λ ∈ B(ttt) \ t, then the branch exponent eλ(s) is a summand of Et`(s)

if and only if `ttt(λ∗) + 1 ≤ ` ≤ `ttt(λ), so we have

L(ttt)−1∑
`=1

Et`(s)η` =
∑

λ∈B(ttt)\t

 `ttt(λ)∑
`=`ttt(λ∗)+1

eλ(s)η`

 =
∑

λ∈B(ttt)\t

eλ(s)

 `ttt(λ)∑
`=`ttt(λ∗)+1

η`

 .

But kλ =
∑`ttt(λ)

`=`ttt(λ∗)+1 η` by (4.1.1) in Theorem 4.1.4, so (4.2.4) is proved and the

corollary follows.
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The following remark should be understood of the “branch-centric” analogue

of Remark 3.3.2.

Remark 4.2.2. Note that the integral formula in Corollary 4.2.1 provides yet

another method for computing µN(T (ttt,n)), but now in terms of the branch pair

[ttt∗,k] corresponding to (ttt,n). Indeed, setting sij = a = 0 for all i < j gives

eλ(s) = #λ − 1 by part (b) of Definition 1.6.4, and then the formula in Corollary

4.2.1 simplifies very nicely:

µN(T (ttt,n)) = Mttt∗(q) ·
∏

λ∈B(ttt∗)

q−(#λ−1)kλ . (4.2.5)

The exponential factors in the formula in Corollary 4.2.1 are completely determined

by the branch pair [ttt∗,k] corresponding to the level pair (ttt,n). Since k[N ] = η0 in

this case, the leftmost factor q−(N−1+a+
∑
i<j sij)(k[N ]−1) pertains to “root data” and

the root polytope (just as in Remark 3.3.2), with b = 0. The “branch data” that

determine the factor q−eλ(s)kλ is comprised of the branch λ ∈ B(ttt∗) \ t = B(ttt) \ t

and the integer kλ, which have clear visual interpretations in the tree diagram for

any x ∈ T (ttt,n) (recall Figure 3). In analogy with (3.3.3) in Remark 3.3.2, we have

|q−eλ(s)|C < 1 for all λ ∈ B(ttt∗) \ t ⇐⇒ s ∈ BPttt∗ , (4.2.6)

which is precisely why we call BPttt∗ the branch polytope.

We now give the “branch-centric” analogue of Proposition 3.3.3, which

will have a similar proof and a similar purpose. Just as for level functions in

Proposition 3.3.3, this is where branch functions enter the picture.
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Proposition 4.2.3. Suppose ttt∗ ∈ RN and a ∈ C. If Mttt∗(q) > 0, then for every

ttt ' ttt∗ the integral

∫
RNttt

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely for all s ∈ RPN(a, 0) ∩ BPttt∗, and for such s we have

∑
ttt∈SN
ttt'ttt∗

∫
RNttt

(
max
i<j
|xi−xj|

)a∏
i<j

|xi−xj|sij dx1 . . . dxN =
1

1− q−(N−1+a+
∑
i<j sij)

· Ittt∗,q(s).

Otherwise Mttt∗(q) = 0, in which case RN
ttt = ∅ for all ttt ' ttt∗ and all integrals above

are zero.

Proof. The Mttt∗(q) = 0 case is immediate from (4.2.5) and the definition of RN
ttt ,

so suppose Mttt∗(q) > 0. The first claim follows from part (c) of Lemma 1.6.5 and

Proposition 3.3.3. To prove the second claim, suppose s ∈ RPN(a, 0) ∩ BPttt∗ , note

the function

x 7→
∑
ttt∈SN
ttt'ttt∗

1RNttt (x)

∣∣∣∣∣(max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

is in L1(KN , µN) by Proposition 3.3.3, and that it dominates every partial sum of

the function

x 7→
∑
ttt∈SN
ttt'ttt∗

∑
n∈NL(ttt)

1T (ttt,n)(x)
(

max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij .

Then the Dominated Convergence Theorem, Theorem 4.1.4, Corollary 4.2.1,

Fubini’s Theorem for absolutely convergent sums, (3.2.1), (3.3.2), and (4.2.6) imply
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∑
ttt∈SN
ttt'ttt∗

∫
RNttt

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

=
∑
ttt∈SN
ttt'ttt∗

∑
n∈NL(ttt)

∫
T (ttt,n)

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

=
∑

k∈NB(ttt∗)

q−(N−1+a+
∑
i<j sij)(k[N ]−1) · Mttt∗(q)

qN−1
·

∏
λ∈B(ttt∗)\t

q−eλ(s)kλ

=
∞∑

k[N ]=1

q−(N−1+a+
∑
i<j sij)(k[N ]−1) · Mttt∗(q)

qN−1
·

∏
λ∈B(ttt∗)\t

∞∑
kλ=1

q−eλ(s)kλ

=
1

1− q−(N−1+a+
∑
i<j sij)

· Ittt∗,q(s).

At this point, we can easily prove the first statement in part (c) of Theorem

1.6.6: Given ttt∗ ∈ RN with Mttt∗(q) > 0 and a = b = 0, the two formulas in

Propositions 3.3.3 and 4.2.3 imply

∑
ttt∈SN
ttt'ttt∗

Jttt,q(0, s) = (1− q−(N−1+
∑
i<j sij)) ·

∑
ttt∈SN
ttt'ttt∗

∫
RNttt

∏
i<j

|xi − xj|sij dx1 . . . dxN = Ittt∗,q(s)

for all s ∈ RPN(0, 0) ∩ BPttt∗ . The leftmost and rightmost expressions above are

both holomorphic in the open set BPttt∗ , which is simply connected because it is

convex. Therefore since the two expressions agree on RPN(0, 0) ∩ BPttt∗ , they must

in fact agree on all of BPttt∗ . Otherwise Mttt∗(q) = 0 and all three expressions above

are identically zero on BPttt∗ , so the first statement in part (c) of Theorem 1.6.6 is

proved in all cases. Finally, we obtain the analogue of Proposition 3.3.4, which is

immediate from Proposition 4.2.3 and part (c) of Lemma 1.6.5:
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Corollary 4.2.4. Suppose K is a p-field and suppose a ∈ C. The integral

∫
RN

(
max
i<j
|xi − xj|

)a∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely for all s ∈ RPN(a, 0) ∩⋂ttt∗∈RN BPttt∗ = ΩN(a, 0), and for such

s it converges to

1

1− q−(N−1+a+
∑
i<j sij)

·
∑

ttt∗∈RN

Ittt∗,q(s).

It is worth settling the second claim of Proposition 1.6.7 here before returning

to this chapter’s main proof. To this end, recall that

⋂
ttt∗∈RN

BPttt∗ =
⋂

ttt∗∈RN

⋂
λ∈B(ttt∗)\t

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}

by part (a) of Definition 1.6.4. Given a non-singleton subset λ ( [N ], let ttt∗ =

(t∗0,t∗1,t∗2) be the unique splitting chain such that the level t∗1 is comprised of λ

and all of the singletons {i} ∈ [N ] \ λ. Clearly ttt∗ ∈ RN and λ ∈ B(ttt∗) \ t, so it

follows that

{λ ( [N ] : #λ > 1} ⊂
⋃

ttt∗∈RN

(B(ttt∗) \ t).

The reverse containment is clear from Definition 1.6.3, so the union at right is

simply {λ ( [N ] : #λ > 1}, meaning

⋂
ttt∗∈RN

BPttt∗ =
⋂
λ([N ]
#λ>1

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}

and hence Proposition 1.6.7 is proved.
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4.3. The final step

We need one more lemma to finish the proofs of parts (a)-(c) of Theorem

1.6.6:

Lemma 4.3.1. Suppose K is a p-field, suppose a, b ∈ C, suppose ρ is a norm

density, and define

ZN(K, a, b, s) :=

∫
RN

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

for all s ∈ ΩN(a, b). Then for all such s we have

Zρ
N(K, a, b, s) =

(∑
m∈Z

ρ(q−m)

qm(N+a+b+
∑
i<j sij)

)(
1− 1

qN+a+b+
∑
i<j sij

)
ZN(K, a, b, s),

and the sum over m ∈ Z converges absolutely uniformly on each compact subset of

ΩN(a, b).

Proof. We first prove the following claim: For each m ∈ Z and every s ∈ ΩN(a, b)

the integral

∫
(πmR)N\(πm+1R)N

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

converges absolutely to

ρ(q−m)

qm(N+a+b+
∑
i<j sij)

(
1− 1

qN+a+b+
∑
i<j sij

)
ZN(K, a, b, s).

To see why this claim holds, note that ZN(K, a, b, s) is defined for all s ∈ ΩN(a, b)

by Proposition 3.3.4. Then for any m ∈ Z, the change of variables RN → (πmR)N
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defined by x 7→ πmy gives

∫
(πmR)N

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

=
1

qmN

∫
RN

(
max
i<j
|πmyi − πmyj|

)a(
min
i<j
|πmyi − πmyj|

)b
·
∏
i<j

|πmyi − πmyj|sij dy1 . . . dyN

=
1

qm(N+a+b+
∑
i<j sij)

∫
RN

(
max
i<j
|yi − yj|

)a(
min
i<j
|yi − yj|

)b
·
∏
i<j

|yi − yj|sij dy1 . . . dyN

=
1

qm(N+a+b+
∑
i<j sij)

· ZN(K, a, b, s)

for all s ∈ ΩN(a, b). But the norm ‖x‖ = max1≤i≤N |xi| takes the constant value

q−m at every x ∈ (πmR)N \ (πm+1R)N , so for every m ∈ Z and every s ∈ ΩN(a, b)

we have

∫
(πmR)N\(πm+1R)N

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij dx1 . . . dxN

= ρ(q−m)

(
1

qm(N+a+b+
∑
i<j sij)

· ZN(K, a, b, s)

− 1

q(m+1)(N+a+b+
∑
i<j sij)

· ZN(K, a, b, s)

)
=

ρ(q−m)

qm(N+a+b+
∑
i<j sij)

(
1− 1

qN+a+b+
∑
i<j sij

)
ZN(K, a, b, s)

and the desired claim is proved. In particular, since (Re(sij))i<j ∈ ΩN(Re(a),Re(b))

whenever s ∈ ΩN(a, b), note that the claim also holds if ρ(·), a, b, and sij are
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replaced by |ρ(·)|C, Re(a), Re(b), and Re(sij). Now for the main claim, note that

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij

=
∑
m∈Z

ρ(q−m)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij1(πmR)N\(πm+1R)N (x)

for all x ∈ KN \ {0}, and therein each partial sum is dominated by the function

x 7→
∣∣∣∣∣ρ(‖x‖)

(
max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

=
∑
m∈Z

(
|ρ(q−m)|C

(
max
i<j
|xi − xj|

)Re(a)(
min
i<j
|xi − xj|

)Re(b)

·
∏
i<j

|xi − xj|Re(sij)1(πmR)N\(πm+1R)N (x)

)
.

Now Fubini’s Theorem for sums of nonnegative terms and the claim we just proved

give

∫
KN

∣∣∣∣∣ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

dx1 . . . dxN

=
∑
m∈Z

(∫
(πmR)N\(πm+1R)N

|ρ(q−m)|C
(

max
i<j
|xi − xj|

)Re(a)(
min
i<j
|xi − xj|

)Re(b)

·
∏
i<j

|xi − xj|Re(sij) dx1 . . . dxN

)
=
∑
m∈Z

( |ρ(q−m)|C
qm(Re(N+a+b+

∑
i<j sij))

(
1− 1

qRe(N+a+b+
∑
i<j sij)

)
· ZN(K,Re(a),Re(b), (Re(sij))i<j)

)

for every s ∈ ΩN(a, b). Now suppose C is any compact subset of ΩN(a, b). Since C

is therefore a compact subset of the root polytope
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RPN(a, b) = {s ∈ C(N2 ) : Re(N − 1 + a+ b+
∑
i<j

sij) > 0},

there exist real numbers σ1 and σ2 satisfying

lim sup
n→∞

log |ρ( 1
n
)|C

log(n)
≤ 1

< σ1 ≤ Re

(
N + a+ b+

∑
i<j

sij

)
≤ σ2

<∞ = − lim sup
n→∞

log |ρ(n)|C
log(n)

for all s ∈ C. To show that the preceding sum over m ∈ Z converges uniformly on

C, it suffices to verify the convergence of the two series

∞∑
m=0

|ρ(q−m)|C
qmσ1

and
∞∑
m=1

|ρ(qm)|Cqmσ2 .

Indeed, if log : [0,∞]→ [−∞,∞] is the extended logarithm we have

log

(
lim sup
m→∞

m

√
|ρ(q−m)|C
qmσ1

)
= log(q) ·

(
lim sup
m→∞

log |ρ(q−m)|C
log(qm)

− σ1

)
≤ log(q) ·

(
lim sup
n→∞

log |ρ( 1
n
)|C

log(n)
− σ1

)
< 0

and

log

(
lim sup
m→∞

m
√
|ρ(qm)|Cqmσ2

)
= log(q) ·

(
lim sup
m→∞

log |ρ(qm)|C
log(qm)

+ σ2

)
≤ log(q) ·

(
lim sup
n→∞

log |ρ(n)|C
log(n)

+ σ2

)
< 0,
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so the series both converge by the root test and we conclude that our series

expansion for

∫
KN

∣∣∣∣∣ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sij
∣∣∣∣∣
C

dx1 . . . dxN

converges uniformly on C. Thus by the dominated convergence theorem we have

Zρ
N(K, a, b, s)

=

∫
KN

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b∏
i<j

|xi − xj|sijdx1 . . . dxN

=

(∑
m∈Z

ρ(q−m)

qm(N+a+b+
∑
i<j sij)

)(
1− 1

qN+a+b+
∑
i<j sij

)
ZN(K, a, b, s),

and we conclude that the sum over m ∈ Z converges absolutely uniformly on C.

Finally, we combine Lemma 4.3.1 with Propositions 3.3.4 and 4.2.3 to finish

the proof of Theorem 1.6.6:

Proof of Theorem 1.6.6.

(a) Since ρ is not identically zero, there exists m ∈ Z such that ρ(q−m) 6= 0.

Moreover, the quantity 1− 1

q
N+a+b+

∑
i<j sij

attains nonzero values on every open

subset U ⊂ C(N2 ), so the quantity

ρ(q−m)

qm(N+a+b+
∑
i<j sij)

(
1− 1

qN+a+b+
∑
i<j sij

)
ZN(K, a, b, s)

appearing in the proof above may converge absolutely at every point of an

open set U ⊂ C(N2 ) only if the integral ZN(K, a, b, s) does. But Proposition
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3.3.4 says that the integral defining ZN(K, a, b, s) converges absolutely if and

only if s ∈ ΩN(a, b), and we know that the parenthetical sum over m ∈ Z in

Lemma 4.3.1 converges absolutely uniformly on ΩN(a, b). Thus Zρ
N(K, a, b, s)

converges absolutely for every s ∈ ΩN(a, b), and ΩN(a, b) is the largest open

set with this property.

(b) If C is a compact subset of ΩN(a, b), then ZN(K, a, b, s) restricts to a

continuous and hence bounded function on C, and note that the same is

true for the function s 7→ 1 − 1

q
N+a+b+

∑
i<j sij

. We already showed that the

parenthetical sum in Lemma 4.3.1 converges uniformly on C, so by Lemma

4.3.1, Proposition 3.3.4, and Definition 1.6.1 we have

Zρ
N(K, a, b, s) =

(∑
m∈Z

ρ(qm)qm(N+a+b+
∑
i<j sij)

)(
1− 1

qN+a+b+
∑
i<j sij

)
· 1

1− q−(N−1+a+b+
∑
i<j sij)

·
∑
ttt∈SN

Jttt,q(b, s)

= Hρ
q

(
N + a+ b+

∑
i<j

sij

)
·
∑
ttt∈SN

Jttt,q(b, s),

and the sum converges uniformly on C.

(c) We already proved the first claim relating level and branch functions

immediately after the proof of Proposition 4.2.3. If C is a compact subset of

RPN(a, 0) ∩ ⋂ttt∗∈RN BPttt∗ , then ZN(K, a, 0, s) (i.e., the value of the integral

from Proposition 4.2.4) restricts to a continuous and hence bounded function

on C. But

RPN(a, 0) ∩
⋂

ttt∗∈RN

BPttt∗ = ΩN(a, 0),
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so Lemma 4.3.1, Proposition 4.2.4, and Definition 1.6.1 similarly imply

Zρ
N(K, a, 0, s) =

(∑
m∈Z

ρ(qm)qm(N+a+
∑
i<j sij)

)(
1− 1

qN+a+
∑
i<j sij

)
· 1

1− q−(N−1+a+
∑
i<j sij)

·
∑

ttt∗∈RN

Ittt∗,q(s)

= Hρ
q

(
N + a+

∑
i<j

sij

)
·
∑

ttt∗∈RN

Ittt∗,q(s),

and the sum converges uniformly on C.
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CHAPTER V

THE INTEGRAL OVER (P1(K))N

In this chapter we will establish part (d) of Theorem 1.6.6 and Theorem 2.2.2

(the (q + 1)th Power Law). The rough idea behind both is a decomposition of

(P1(K))N into (q + 1)N cells that are isometrically homeomorphic to PN . We will

setup prerequisite notation and results in Section 5.1, then use the decomposition

to relate the integrals ZN(P1(K), s) and ZN(P, s) (recall Definition 1.5.3) in

Section 5.2. With this relationship in hand, we will conclude the chapter with

proofs of Theorem 1.6.6 and Theorem 2.2.2 in their own sections.

5.1. I-analogues of integrals and splitting chains

We begin with a p-field K and an integer N ≥ 2 that shall remain fixed

for the rest of this chapter, and recall that symbol s stands for a complex tuple

(sij)1≤i<j≤N . To better organize the forthcoming arguments, we fix the following

notation as well:

Notation 5.1.1. Let I be a subset of [N ] = {1, . . . , N}.

– For any set X we write XI for the product
∏

i∈I X = {xI = (xi)i∈I : xi ∈ X}

and assume XI has the product topology if X is a topological space.

– We write dxI for the product Haar measure on KI satisfying
∫
RI
dxI = 1, and

we make this consistent for I = ∅ by giving the singleton space K∅ = R∅ =

{0} measure 1. We also write d[x0 : x1]I for the product measure on (P1(K))I

(where d[x0 : x1] is the measure from Lemma 1.3) with the same measure 1

convention when I = ∅.

97



– For a measurable subset X ⊂ K we set Z∅(X, s) := 1 and

ZI(X, s) :=

∫
XI

∏
i<j
i,j∈I

|xi − xj|sij dxI if I 6= ∅.

Note that ZI(X, s) is constant with respect to those sij with i or j not in I,

and it is equal to ZN(X, s) if I = [N ].

– We write (I0, . . . , Iq) ` [N ] (recall q = #(R/P )) for an ordered partition of

[N ] into at most q + 1 parts. That is, (I0, . . . , Iq) ` [N ] means I0, . . . , Iq are

q + 1 disjoint ordered subsets of [N ] with union equal to [N ], where some Ik

may be empty.

– We generalize the explicit form of ΩN(0, 0) in Proposition 1.6.7 via

ΩI :=
⋂
λ⊂I

#λ>1

{
s ∈ C(N2 ) : Re(eλ(s)) > 0

}
.

We will also need I-analogues of splitting chains:

Definition 5.1.2. Suppose I ⊂ [N ]. An I-splitting chain of length L ≥ 0 is a tuple

ttt = (t0, . . . ,tL) of partitions of I satisfying

{I} = t0 > t1 > t2 > · · · > tL = {{i} : i ∈ I}.

If #I ≥ 2, we define B(ttt), `ttt(λ), and degttt(λ) ∈ {2, 3, . . . ,#I} just as in Definition

1.6.3. Otherwise B(ttt) will be treated as the empty set and there is no need to

define `ttt or degttt. An I-splitting chain ttt is reduced if each λ ∈ B(ttt) satisfies

λ ∈ t` ⇐⇒ ` = `ttt(λ), and we write RI for the set of reduced I-splitting chains.
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Note that R∅ = ∅ because I = ∅ has no partitions, Ω∅ = CN(N−1)/2 because

Ω∅ is an intersection of subsets of CN(N−1)/2 over an empty index set, and e∅(s) =

−1 for a similar reason. For each singleton {i}, the set R{i} is comprised of a single

splitting chain of length zero, we have Ω{i} = CN(N−1)/2 for the same reason as the

I = ∅ case, and similarly e{i}(s) = 0. At the other extreme, taking I = [N ] in

Definition 5.1.2 recovers Definition 1.6.3 and ΩI = ΩN(0, 0).

Proposition 5.1.3. For any m ∈ Z and any nonempty subset I ⊂ [N ], the integral

ZI(πmR, s) converges absolutely if and only if s ∈ ΩI , and in this case

ZI(πmR, s) =
1

q(m−1)(eI(s)+1)+#I

∑
ttt∈RI

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
.

Proof. First suppose I is a singleton, so that the product inside the integral

ZI(π
mR, s) is empty and hence

ZI(π
mR, s) =

∫
(πmR)I

1 dxI =

∫
πmR

dx = q−m.

This integral is constant, and hence absolutely convergent, for all s ∈ CN(N−1)/2 =

ΩI . On the other hand, RI consists of a single I-splitting chain, namely the one-

tuple ttt = ({I}). Then B(ttt) = ∅ and eI(s) = 0 imply

1

q(m−1)(eI(s)+1)+#I

∑
ttt∈RI

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
=

1

q(m−1)·1+1

∏
λ∈∅

(q − 1)degttt(λ)−1

qeλ(s) − 1
= q−m

as well, so the claim holds for any singleton subset I ⊂ [N ]. Now suppose I is not a

singleton. By relabeling I we may assume I = [n] where 2 ≤ n ≤ N , in which case
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ZI(πmR, s) is equal to

Zρ
n(K, 0, 0, (sij)1≤i<j≤n) =

∫
Kn

ρ(‖x‖)
∏

1≤i<j≤n

|xi − xj|sij dx1 . . . dxn

where ρ = 1[0,q−m]. By part (a) of Theorem 1.6.6, this integral converges absolutely

if and only if s ∈ Ωn(0, 0) × C(N2 )−(n2) = Ω[n] (the factors of C stand for those

sij in s with {i, j} ⊂ [N ] and {i, j} 6⊂ [n]). Therefore every s ∈ Ω[n] satisfies

(sij)1≤i<j≤n ∈ Ωn(0, 0), so Definition 1.6.1 and part (c) of Theorem 1.6.6 imply

ZI(πmR, s) = Zρ
n(K, 0, 0, (sij)1≤i<j≤n)

= Hρ
q

(
n+

∑
i<j

sij

)
·
∑
ttt∈Rn

Ittt,q(s)

=
q−m(n+

∑
i<j sij)

1− q−(n+
∑
i<j sij−1)

·
∑
ttt∈Rn

(q − 1)degttt([n])−1

qn−1

∏
λ∈B(ttt)\t

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
q−m(e[n](s)+1)

1− q−e[n](s)
·
∑
ttt∈Rn

(q − 1)degttt([n])−1

qn−1

∏
λ∈B(ttt)\t

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
1

q(m−1)(eI(s)+1)+n

∑
ttt∈Rn

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
.

Since the claim holds for I = [n], we conclude that it holds for any non-singleton

subset I ⊂ [N ] and the proof is complete.

Our proof of part (d) of Theorem 1.6.6 will be essentially a combination of

the m = 1 case of Proposition 5.1.3 with the main result of the next section.
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5.2. The decomposition of ZN(P1(K), s)

Our only task in this section is to prove the following theorem:

Theorem 5.2.1. For each N ≥ 2, the integral ZN(P1(K), s) converges absolutely if

and only if s ∈ ΩN , and in this case

ZN(P1(K), s) =

(
q

q + 1

)N ∑
(I0,...,Iq)`[N ]

q∏
k=0

ZIk(P, s).

Proof. The partition of P1(K) in (1.3.10) can be rewritten in the form

P1(K) =

q⊔
k=0

φk(B1[0 : 1]),

where φk ∈ PGL2(R) is the element represented by ( 1 0
0 1 ) if k = 0,

(
1 ξk−1

0 1

)
if

0 < k < q, or ( 0 1
1 0 ) if k = q. This leads to a partition of the N -fold product,

(P1(K))N =
⊔

(I0,...,Iq)`[N ]

C(I0, . . . , Iq),

where each part is a “cell” of the form

C(I0, . . . , Iq) :=

{
([x1,0 : x1,1], . . . , [xN,0 : xN,1]) ∈ (P1(K))N :

[xi,0 : xi,1] ∈ φk(B1[0 : 1]) ⇐⇒ i ∈ Ik
}

=

q∏
k=0

(φk(B1[0 : 1]))Ik .

Accordingly, the integral ZN(P1(K), s) breaks into a sum of integrals of the form

∫
C(I0,...,Iq)

∏
1≤i<j≤N

δ([xi,0 : xi,1], [xj,0 : xj,1])sij d[x1,0 : x1,1] . . . d[xN,0 : xN,1], (5.2.1)
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summed over all (I0, . . . , Iq) ` [N ]. Since each cell C(I0, . . . , Iq) has positive

measure, the integral ZN(P1(K), s) converges absolutely if and only if the integral

in (5.2.1) converges absolutely for every (I0, . . . , Iq) ` [N ]. Recall that two points

in P1(K) are δ-distance 1 apart if and only if they are in different balls in the

decomposition (1.3.10). Thus, by the definition of C(I0, . . . , Iq), it follows that

the entries of each tuple ([x1,0 : x1,1], . . . , [xN,0 : xN,1]) ∈ C(I0, . . . , Iq) satisfy

δ([xi,0 : xi,1], [xj,0 : xj,1])sij = 1 if and only if i ∈ Ik, j ∈ Ik′ , and k 6= k′. Therefore

the integrand in (5.2.1) factors as

∏
1≤i<j≤N

δ([xi,0 : xi,1], [xj,0 : xj,1])sij =

q∏
k=0

∏
i<j
i,j∈Ik

δ([xi,0 : xi,1], [xj,0 : xj,1])sij ,

and the measure on C(I0, . . . , Iq) factors in a similar way, namely
∏q

k=0 d[x0 : x1]Ik ,

where each factor has the form d[x0 : x1]Ik :=
∏

i∈Ik d[xi,0 : xi,1]. Now Fubini’s

Theorem for positive functions and PGL2(R)-invariance give

∫
C(I0,...,Iq)

∣∣∣∣∣ ∏
1≤i<j≤N

δ([xi,0 : xi,1], [xj,0 : xj,1])sij

∣∣∣∣∣
C

d[x1,0 : x1,1] . . . d[xN,0 : xN,1]

=

q∏
k=0

∫
(φk(B1[0:1]))Ik

∣∣∣∣∣ ∏
i<j
i,j∈Ik

δ([xi,0 : xi,1], [xj,0 : xj,1])sij

∣∣∣∣∣
C

d[x0 : x1]Ik

=

q∏
k=0

∫
(B1[0:1])Ik

∣∣∣∣∣ ∏
i<j
i,j∈Ik

δ([xi,0 : xi,1], [xj,0 : xj,1])sij

∣∣∣∣∣
C

d[x0 : x1]Ik ,

so the integral in (5.2.1) converges absolutely if and only if all q + 1 of the integrals

∫
(B1[0:1])Ik

∏
i<j
i,j∈Ik

δ([xi,0 : xi,1], [xj,0 : xj,1])sij d[x0 : x1]Ik (5.2.2)

102



converge absolutely. The change of variables P Ik → (B1[0 : 1])Ik given by the

isometry ι : P → B1[0 : 1] in each coordinate, along with (1.3.6), (1.3.7), and

(1.3.8), allows the integral in (5.2.2) to be rewritten as ( q
q+1

)#IkZIk(P, s). Thus,

Proposition 5.1.3 implies that the integral in (5.2.2) converges absolutely if and

only if s ∈ ΩIk . It follows that the integral over C(I0, . . . , Iq) in (5.2.1) converges

absolutely if and only if s ∈ ΩI0 ∩ · · · ∩ ΩIq , and in this case Fubini’s Theorem for

absolutely integrable functions, PGL2(R)-invariance, and the change of variables

above allow it to be rewritten as

∫
C(I0,...,Iq)

∏
1≤i<j≤N

δ([xi,0 : xi,1], [xj,0 : xj,1])sij d[x1,0 : x1,1] . . . d[xN,0 : xN,1]

=

q∏
k=0

∫
(B1[0:1])Ik

∏
i<j
i,j∈Ik

δ([xi,0 : xi,1], [xj,0 : xj,1])sij d[x0 : x1]Ik

=

q∏
k=0

(
q

q + 1

)#Ik

ZIk(P, s) =

(
q

q + 1

)N q∏
k=0

ZIk(P, s).

Finally, since ZN(P1(K), s) is the sum of these integrals over all (I0, . . . , Iq) ` [N ],

it converges absolutely if and only if

s ∈
⋂

(I1,...,Iq)`[N ]

(
ΩI1 ∩ · · · ∩ ΩIq

)
=
⋂
I⊂[N ]
#I>1

ΩI .

The last equality of intersections holds because each subset I ⊂ [N ] with #I > 1

appears as a part in at least one of the ordered partitions (I1, . . . , Iq) ` [N ], and

none of the parts with #Ik ≤ 1 affect the intersection (because ΩIk = CN(N−1)/2 for

such Ik). The intersection of ΩI over all I ⊂ [N ] with #I > 1 is clearly equal to

Ω[N ] = ΩN by Definition 5.1.2, so the proof is complete.
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5.3. The last piece of the Main Theorem

Theorem 5.2.1 established that the integral ZN(P1(K), s) converges absolutely

if and only if s ∈ ΩN , and for such s it gave

ZN(P1(K), s) =

(
q

q + 1

)N ∑
(I0,...,Iq)`[N ]

q∏
k=0

ZIk(P, s). (5.3.3)

It remains to show that the righthand sum can be converted into the sum over

ttt ∈ RN proposed in part (d) of Theorem 1.6.6.

Proof of part (d) of Theorem 1.6.6. We begin by breaking the terms of the sum in

(5.3.3) into two main groups. The simpler group is indexed by those (I0, . . . , Iq)

with Ij = [N ] for some j and Ik = ∅ for all k 6= j, in which case ZIj(P, s) =

ZN(P, s) and ZIk(P, s) = 1 for all k 6= j. Therefore each of the group’s q + 1 terms

(one for each j ∈ {0, . . . , q}) contributes the quantity
∏q

k=0ZIk(P, s) = ZN(P, s) to

the sum in (5.3.3) for a total contribution with value

(q + 1)ZN(P, s) =
q + 1

qN

∑
ttt∈RN

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
(5.3.4)

by the m = 1 and I = [N ] case of Proposition 5.1.3. The other group of terms

is indexed by the ordered partitions (I0, . . . , Iq) ` [N ] satisfying I0, . . . , Iq ( [N ].

To deal with them carefully, we fix one such (I0, . . . , Iq) for the moment, and note

that the number d of nonempty parts Ik must be at least 2. Thus we have indices

k1, . . . , kd ∈ {0, . . . , q} with Ikj 6= ∅, and for every k ∈ {0, . . . , q} \ {k1, . . . , kd} we

have Ik = ∅ and hence ZIk(P, s) = 1. For the nonempty sets Ikj , Proposition 5.1.3

expands ZIkj (P, s) as a sum over RIkj
(whose elements shall be denoted tttj instead
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of ttt) and hence

q∏
k=0

ZIk(P, s) =
d∏
j=1

1

q#Ikj

∑
tttj∈RIkj

∏
λ∈B(tttj)

(q − 1)degtttj (λ)−1

qeλ(s) − 1

=
1

qN

∑
(ttt1,...,tttd)∈RIk1

×···×RIkd

d∏
j=1

∏
λ∈B(tttj)

(q − 1)degtttj (λ)−1

qeλ(s) − 1

=
1

qN

∑
(ttt1,...,tttd)∈RIk1

×···×RIkd

∏
λ∈B(ttt1)t···tB(tttd)

(q − 1)degtttj (λ)−1

qeλ(s) − 1
.

We now make use of a simple correspondence between the tuples (ttt1, . . . ,tttd) ∈

RIk1
× · · · × RIkd

and the reduced splitting chains ttt = (t0,t1, . . . ,tL) ∈ RN

satisfying t1 = {Ik1 , . . . , Ikd}. To establish it, note that each ttt ∈ RN corresponds

uniquely to its branch set B(ttt) by part (b) of Lemma 1.6.5, which generalizes in

an obvious way to reduced I-splitting chains (for any nonempty I ⊂ [N ]). Now if

ttt = (t0,t1, . . . ,tL) ∈ RN satisfies t1 = {Ik1 , . . . , Ikd}, the corresponding branch

set B(ttt) decomposes as

B(ttt) = {[N ]} t
d⊔
j=1

{λ ∈ B(ttt) : λ ⊂ Ikj}.

Each of the sets {λ ∈ B(ttt) : λ ⊂ Ikj} is the branch set B(tttj) for a unique tttj ∈

RIkj
, so in this sense ttt “breaks” into a unique tuple (ttt1, . . . ,tttd) ∈ RIk1

×· · ·×RIkd
.

On the other hand, any tuple (ttt1, . . . ,tttd) ∈ RIk1
× · · · × RIkd

can be “assembled”

as follows. Since {Ik1 , . . . , Ikd} is a partition of [N ], taking the union of the d

branch sets B(ttt1), . . . ,B(tttd) and the singleton {[N ]} forms the branch set B(ttt)

for a unique ttt ∈ RN . It is clear that “breaking” and “assembling” are inverses,

giving a correspondence RN ←→ RIk1
× · · · × RIkd

under which each identification
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ttt←→ (ttt1, . . . ,tttd) amounts to a branch set equation, i.e.,

B(ttt) \ {[N ]} = B(ttt1) t · · · t B(tttd).

In particular, each λ ∈ B(ttt) \ {[N ]} is contained in exactly one B(tttj), and

degttt(λ) = degtttj(λ) by Definition 1.6.3 in this case. These facts allow the sum

over RI1 × · · · × RId above to be rewritten as a sum over all ttt ∈ RN with

t1 = {Ik1 , . . . , Ikq}, and each product over λ ∈ B(tttk1) t · · · t B(tttkd) inside it

is simply a product over λ ∈ B(ttt) \ {[N ]}. We conclude that an ordered partition

(I0, . . . , Iq) ` [N ] with I0, . . . , Iq ( [N ] contributes the quantity

q∏
k=0

ZIk(P, s) =
1

qN

∑
ttt∈RN

t1={Ik1
,...,Ikd}

∏
λ∈B(ttt)\{[N ]}

(q − 1)degttt(λ)−1

qeλ(s) − 1
(5.3.5)

to the sum in (5.3.3), where {Ik1 , . . . , Ikd} is the (unordered) subset of nonempty

parts in that particular ordered partition. We must now total the contribution in

(5.3.5) over all possible (I0, . . . , Iq) ` [N ] with I0, . . . , Iq ( [N ]. Given a partition

{λ1, . . . , λd} ` [N ] with d ≥ 2, note that there are precisely (q + 1)d = (q + 1) ·

(q)d−1 ordered partitions (I0, . . . , Iq) ` [N ] such that {Ik1 , . . . , Ikd} = {λ1, . . . , λd}.

Therefore summing (5.3.5) over all (I0, . . . , Iq) ` [N ] with I0, . . . , Iq ( [N ] gives

∑
(I0,...,Iq)`[N ]
I0,...,Iq([N ]

q∏
k=0

ZIk(P, s) =
1

qN

∑
(I0,...,Iq)`[N ]
I0,...,Iq([N ]

∑
ttt∈RN

t1={Ik1
,...,Ikd}

∏
λ∈B(ttt)\{[N ]}

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
q + 1

qN

∑
{λ1,...,λd}`[N ]

d≥2

(q)d−1

∑
ttt∈RN

t1={λ1,...,λd}

∏
λ∈B(ttt)\{[N ]}

(q − 1)degttt(λ)−1

qeλ(s) − 1
,
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Given a partition {λ1, . . . , λd} ` [N ], those splitting chains ttt ∈ RN with t1 =

{λ1, . . . , λd} all have degttt([N ]) = #t1 = d by Definition 1.6.3. Moreover, no

ttt ∈ RN is missed or repeated in the sum of sums above, so it can be rewritten as

∑
(I0,...,Iq)`[N ]
I0,...,Iq([N ]

q∏
k=0

ZIk(P, s) =
q + 1

qN

∑
ttt∈RN

(q)degttt([N ])−1

∏
λ∈B(ttt)\{[N ]}

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
q + 1

qN

∑
ttt∈RN

(q)degttt([N ])−1

(q − 1)degttt([N ])−1

· (qe[N ](s) − 1)
∏

λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
q + 1

qN

∑
ttt∈RN

qN+
∑
i<j sij − q

q + 1− degttt([N ])

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
.

Note that the summand for each ttt ∈ RN is still defined for any prime power q

since the denominators (q − 1)degttt([N ])−1 and q + 1 − degttt([N ]) (which vanish when

q = degttt([N ]) − 1) are cancelled by the numerator (q − 1)degttt([N ])−1 appearing

in the product over λ ∈ B(ttt). Finally, we obtain the righthand side of (5.3.3) by

combining the sum directly above with that in (5.3.4) and multiplying through by

( q
q+1

)N . This yields the desired formula for ZN(P1(K), s):

ZN(P1(K), s) =
1

(q + 1)N−1

∑
ttt∈RN

(
1 +

qN+
∑
i<j sij − q

q + 1− degttt([N ])

) ∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1

=
1

(q + 1)N−1

∑
ttt∈RN

qN+
∑
i<j sij + 1− degttt([N ])

q + 1− degttt([N ])

∏
λ∈B(ttt)

(q − 1)degttt(λ)−1

qeλ(s) − 1
.
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5.4. The proof of the (q + 1)th Power Law

Our final task is to prove the (q + 1)th Power Law, which we noted in Section

2.2 is equivalent to the equations in (2.2.7). That is, it remains to prove

ZN(P1(K), β)

N !
=

∑
N0+···+Nq=N
N0,...,Nq≥0

q∏
k=0

(
q

q + 1

)Nk ZNk(P, β)

Nk!
for all β > 0 and N ≥ 0.

Proof. Fix N ≥ 0 and β > 0, and fix s via sij = β for all i < j, so that

ZN(P1(K), s) = ZN(P1(K), β) and ZI(P, s) = Z#I(P, β) for any subset I ⊂ [N ].

The formula in Theorem 5.2.1 relates these functions of β via

ZN(P1(K), β) = ZN(P1(K), s)

=

(
q

q + 1

)N ∑
(I0,...,Iq)`[N ]

q∏
k=0

Z#Ik(P, s)

=
∑

(I0,...,Iq)`[N ]

q∏
k=0

(
q

q + 1

)#Ik

Z#Ik(P, β).

For each choice of q+1 ordered integers N0, . . . , Nq ≥ 0 satisfying N0+· · ·+Nq = N ,

there are precisely (
N

N0, . . . , Nq

)
=

N !

N0! · · ·Nq!

ordered partitions (I0, . . . , Iq) ` [N ] satisfying #I0 = N0, . . . ,#Iq = Nq.

Finally, grouping ordered partitions according to all possible ordered integer choices
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establishes the desired equation:

ZN(P1(K), s)

N !
=

1

N !
·

∑
(I0,...,Iq)`[N ]

q∏
k=0

(
q

q + 1

)#Ik

Z#Ik(P, β)

=
1

N !
·

∑
N0+···+Nq=N
N0,...,Nq≥0

(
N

N0, . . . , Nq

) q∏
k=0

(
q

q + 1

)Nk
ZNk(P, β)

=
∑

N0+···+Nq=N
N0,...,Nq≥0

q∏
k=0

(
q

q + 1

)Nk ZNk(P, β)

Nk!
.
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APPENDIX

A.1. Explicit computation of Zρ
4 (K, a, b, s)

Let N = 4, fix a, b ∈ C, let ρ be any norm-density. We will tabulate all

splitting chains of order 4 and use Theorem 1.6.6 to compute the integral

∫
K4

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b ∏
1≤i<j≤4

|xi − xj|sij dx1dx2dx3dx4

explicitly. Writing s for the 6-tuple s = (s12, s13, s14, s23, s24, s34) ∈ C6, we have a

root polytope

RP4(a, b) = {s ∈ C6 : Re(3 + a+ b+
∑

1≤i<j≤4

sij) > 0},

on which

Hρ
q

(
4+a+b+

∑
1≤i<j≤4

sij

)
=

1− q−(4+a+b+
∑

1≤i<j≤4 sij)

1− q−(3+a+b+
∑

1≤i<j≤4 sij)
·
∑
m∈Z

ρ(qm)qm(4+a+b+
∑

1≤i<j≤4 sij)

is defined and holomorphic. There are 32 splitting chains ttt ∈ S4, so we will save

table space below by suppressing the partition labels “t` =” and by only writing

all of the polytope conditions “Re(b + Et`(s)) > 0” at the end (not along the way).

Given ttt ∈ S4, the level t1 can either contain one part of size 3 (and a singleton),

one part of size 2 (and two singletons), two parts of size 2, or four singletons. Thus

it will be practical to sort ttt ∈ S4 according to the form of t1:
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(1) There are four ttt ∈ S4 with t1 = {1, 2, 3}{4}. Unsurprisingly, they form a

table very similar to the one for S3 in Example 1.7.1:

ttt Jttt,q(b, s)

{1, 2, 3, 4}

{1, 2, 3}{4}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q2+b+s12+s13+s23 − 1

{1, 2, 3, 4}

{1, 2, 3}{4}

{1, 2}{3}{4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s13+s23 − 1

· 1

q1+b+s12 − 1

{1, 2, 3, 4}

{1, 2, 3}{4}

{1, 3}{2}{4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s13+s23 − 1

· 1

q1+b+s13 − 1

{1, 2, 3, 4}

{1, 2, 3}{4}

{2, 3}{1}{4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s13+s23 − 1

· 1

q1+b+s23 − 1

All four of the splitting chains in the table are reduced and each satisfies

Jttt,q(0, s) = Ittt,q(s). There are also four ttt ∈ S4 satisfying t1 = {1, 2, 4}{3},

and their table is obtained by simply transposing the indices 3 and 4 in

the table above. Similarly, there are another four ttt ∈ S4 satisfying t1 =

{1, 3, 4}{2} and another four satisfying t1 = {2, 3, 4}{1}. Thus there are 16

distinct ttt ∈ S4 such that t1 has a part of size 3, and all of them are reduced.
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(2) There are six ttt ∈ S4 such that t1 contains a single part of size 2. All six are

reduced and satisfy Jttt,q(0, s) = Ittt,q(s):

ttt Jttt,q(b, s)

{1, 2, 3, 4}

{1, 2}{3}{4}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s12 − 1

{1, 2, 3, 4}

{1, 3}{2}{4}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s13 − 1

{1, 2, 3, 4}

{1, 4}{2}{3}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s14 − 1

{1, 2, 3, 4}

{2, 3}{1}{4}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s23 − 1

{1, 2, 3, 4}

{2, 4}{1}{3}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s24 − 1

{1, 2, 3, 4}

{3, 4}{1}{2}

{1}{2}{3}{4}

(q − 1)2(q − 2)

q3
· 1

q1+b+s34 − 1
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(3) There are three splitting chains ttt ∈ S4 with t1 = {1, 2}{3, 4}:

ttt Jttt,q(b, s)

{1, 2, 3, 4}

{1, 2}{3, 4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s34 − 1

{1, 2, 3, 4}

{1, 2}{3, 4}

{1, 2}{3}{4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s34 − 1

· 1

q1+b+s12 − 1

{1, 2, 3, 4}

{1, 2}{3, 4}

{1}{2}{3, 4}

{1}{2}{3}{4}

(q − 1)3

q3
· 1

q2+b+s12+s34 − 1

· 1

q1+b+s34 − 1

There are also three ttt ∈ S4 satisfying t1 = {1, 3}{2, 4}, and their table

is obtained by simply transposing the indices 2 and 3 in the table above.

Similarly, there are another three ttt ∈ S4 satisfying t1 = {1, 4}{2, 3}. Thus

there are nine distinct ttt ∈ S4 such that t1 has a pair of parts of size 2, but

only three of them are reduced (the three that have length 2).
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(4) Finally, we have only one ttt ∈ S4 with t1 = {1}{2}{3}{4}. It is ttt =

({1, 2, 3, 4}, {1}{2}{3}{4}), which is clearly reduced and has

Jttt,q(b, s) =
(q − 1)(q − 2)(q − 3)

q3
.

Combining the level polytopes for all ttt ∈ S4 with the root polytope condition

Re(3 + a+ b+
∑

1≤i<j≤4) > 0, we conclude that s ∈ Ω4(a, b) if and only if

Re(1 + b+ sij) > 0 for 1 ≤ i < j ≤ 4,

Re(2 + b+ s12 + s34) > 0,

Re(2 + b+ s13 + s24) > 0,

Re(2 + b+ s14 + s23) > 0,

Re(2 + b+ sij + sik + sjk) > 0 for 1 ≤ i < j < k ≤ 4, and

Re(3 + a+ b+ s12 + s13 + s14 + s23 + s24 + s34) > 0.

On every compact subset of C ⊂ Ω4(a, b), the integral

∫
K4

ρ(‖x‖)
(

max
i<j
|xi − xj|

)a(
min
i<j
|xi − xj|

)b ∏
1≤i<j≤4

|xi − xj|sij dx1dx2dx3dx4

converges absolutely to the product of the root function value

Hρ
q

(
4+a+b+

∑
1≤i<j≤4

sij

)
=

1− q−(4+a+b+
∑

1≤i<j≤4 sij)

1− q−(3+a+b+
∑

1≤i<j≤4 sij)
·
∑
m∈Z

ρ(qm)qm(4+a+b+
∑

1≤i<j≤4 sij)

and the following sum of level function values:
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(q − 1)(q − 2)(q − 3)

q3
+

(q − 1)2(q − 2)

q3

[
1

q2+b+s12+s13+s23 − 1
+

1

q2+b+s12+s14+s24 − 1

+
1

q2+b+s13+s14+s34 − 1
+

1

q2+b+s23+s24+s34 − 1

+
1

q1+b+s12 − 1
+

1

q1+b+s13 − 1
+

1

q1+b+s14 − 1

+
1

q1+b+s12 − 1
+

1

q1+b+s13 − 1
+

1

q1+b+s14 − 1

]

+
(q − 1)3

q3

[
1

q2+b+s12+s34 − 1

(
1 +

1

q1+b+s12 − 1
+

1

q1+b+s34 − 1

)
+

1

q2+b+s13+s24 − 1

(
1 +

1

q1+b+s13 − 1
+

1

q1+b+s24 − 1

)
+

1

q2+b+s14+s23 − 1

(
1 +

1

q1+b+s14 − 1
+

1

q1+b+s23 − 1

)]

+
(q − 1)3

q3

[
1

q2+b+s12+s13+s23 − 1

(
1

q1+b+s12 − 1
+

1

q1+b+s13 − 1
+

1

q1+b+s23 − 1

)
+

1

q2+b+s12+s14+s24 − 1

(
1

q1+b+s12 − 1
+

1

q1+b+s14 − 1
+

1

q1+b+s24 − 1

)
+

1

q2+b+s13+s14+s34 − 1

(
1

q1+b+s13 − 1
+

1

q1+b+s14 − 1
+

1

q1+b+s34 − 1

)
+

1

q2+b+s23+s24+s34 − 1

(
1

q1+b+s23 − 1
+

1

q1+b+s24 − 1
+

1

q1+b+s34 − 1

)]
.

The terms inside {. . . } are grouped to emphasize several facts: The first group

(q−1)(q−2)(q−3)
q3 vanishes unless q ≥ 4. The second group (q−1)2(q−2)

q3

[
. . .
]

vanishes

unless q ≥ 3. The third group (q−1)3

q3

[
. . .
]

is nonzero for all q ≥ 2 (and hence all

K), but collapses from nine terms down to three by part (c) of Theorem 1.6.6 when

b = 0 (recall Example 1.7.3). The last group (q−1)3

q3

[
. . .
]

is also nonzero for all q ≥ 2

and corresponds to the 12 splitting chains of length 3 from case (1).

115



A.2. Functional equations and a quadratic recurrence

Although Theorem 1.6.6 provides explicit formulas for the canonical

partition functions ZN(R, β) and ZN(P1(K), β), they are generally not efficient

for computation as they require a tabulation of reduced splitting chains of order

N . For a practical alternative, we take advantage of both Power Laws and the

following ideas from [2] and [14]: Apply Z(f, P, β) · ∂
∂f

to the qth Power Law

Z(f,R, β) = (Z(f, P, β))q to get

Z(f, P, β) · ∂
∂f
Z(f,R, β) = q · Z(f,R, β) · ∂

∂f
Z(f, P, β),

then expand both sides as power series in f to obtain the coefficient equations

N∑
k=1

ZN−k(P, β)

(N − k)!

Zk(R, β)

(k − 1)!
= q ·

N∑
k=1

ZN−k(R, β)

(N − k)!

Zk(P, β)

(k − 1)!
for all N ≥ 1. (A.2.1)

The identities Zj(P, β) = q−j−(j2)βZj(R, β) follow easily from Definition 1.5.3 and

eliminate all instances of Zj(P, β) in (A.2.1) while introducing powers of the form

q−j−(j2)β. For N ≥ 2, a careful rearrangement of these powers, the factorials, and

the terms in (A.2.1) yields the explicit recurrence

ZN(R, β)

N !q
1
2(N2 )β

=
N−1∑
k=1

k

N
· sinh( log(q)

2 [(N+(N2 )β)(1− 2k
N )+1])

sinh( log(q)
2 [(N+(N2 )β)−1])

· ZN−k(R, β)

(N − k)!q
1
2(N−k2 )β

· Zk(R, β)

k!q
1
2(k2)β

.

The expression at left is identically 1 if N = 0 or N = 1, so induction confirms

that it is polynomial in ratios of hyperbolic sines for all N ≥ 0. In particular, its

dependence on q is carried only by the factor log(q) appearing inside the hyperbolic

sines, which motivates the following lemma:

116



Lemma A.2.1 (The Quadratic Recurrence). Set F0(t, β) = F1(t, β) = 1 for all

β ∈ C and all t ∈ R. For N ≥ 2, Re(β) > −2/N , and t ∈ R, define FN(t, β) by the

recurrence

FN(t, β) :=



N−1∑
k=1

k

N
· sinh( t2 [(N+(N2 )β)(1− 2k

N )+1])
sinh( t2 [(N+(N2 )β)−1])

· FN−k(t, β) · Fk(t, β) if t 6= 0,

N−1∑
k=1

k

N
·
(
N +

(
N
2

)
β
) (

1− 2k
N

)
+ 1(

N +
(
N
2

)
β
)
− 1

· FN−k(0, β) · Fk(0, β) if t = 0.

(a) For fixed N ≥ 2 and fixed t, the function β 7→ FN(t, β) is holomorphic for

Re(β) > −2/N .

(b) For fixed N ≥ 2 and fixed β, the function t 7→ FN(t, β) is defined, even, and

smooth on R.

Both parts of the Quadratic Recurrence are straightforward to verify by

induction. An interesting and immediate consequence of The Quadratic Recurrence

and the preceding discussion is the formula

ZN(R, β) = N !q
1
2(N2 )βFN(log(q), β),

which offers a computationally efficient alternative to part (b) of Theorem 2.1.6 and

extends ZN(R, β) to a smooth function of q ∈ (0,∞) in an obvious way. Moreover,

the extended function transforms nicely under the involution q 7→ q−1:

ZN(R, β)
∣∣
q 7→q−1 = N !q−

1
2(N2 )βFN

(
log(q−1), β

)
= N !q−

1
2(N2 )βFN (log(q), β) = q−(N2 )βZN(R, β).
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The Quadratic Recurrence serves the projective analogue as well. Expanding

(2.2.8) into powers of f yields the coefficient equations

ZN(P1(K), β)

N !
=

N∑
k=0

(
q

q + 1

)N
ZN−k(R, β)

(N − k)!

Zk(P, β)

k!
for all N ≥ 0, (A.2.2)

and the identities Zj(P, β) = q−j−(j2)βZj(R, β) and Zj(R, β) = j!q
1
2(j2)βFj(log(q), β)

allow the kth summand to be rewritten as

(
q

q + 1

)N
ZN−k(R, β)

(N − k)!

Zk(P, β)

k!
=

q
1
2(N+(N2 )β)(1− 2k

N )(
2 cosh

(
log(q)

2

))N · FN−k(log(q), β) · Fk(log(q), β)

for all N ≥ 1. Thus, adding two copies of the sum in (A.2.2) together, pairing the

kth term of the first copy with the (N − k)th term of the second copy, and dividing

by 2 gives

ZN(P1(K), β)

N !
=

N∑
k=0

cosh( log(q)
2 (N+(N2 )β)(1− 2k

N ))

(2 cosh( log(q)
2 ))

N · FN−k(log(q), β) · Fk(log(q), β)

which is also valid for all N ≥ 1 and Re(β) > −2/N . Through this formula,

ZN(P1(K), β) clearly extends to a smooth function of q ∈ (0,∞) and is invariant

under the involution q 7→ q−1. We conclude this section with the following

summary:
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Theorem A.2.2 (Efficient Formulas and Functional Equations). Suppose N ≥

2 and Re(β) > −2/N , and define (Fk(t, β))Nk=0 as in A.2.1. The N th canonical

partition functions are given by the formulas

ZN(R, β) = N !q
1
2(N2 )βFN(log(q), β) and

ZN(P(K), β) = N !
N∑
k=0

cosh( log(q)
2 (N+(N2 )β)(1− 2k

N ))

(2 cosh( log(q)
2 ))

N · FN−k(log(q), β) · Fk(log(q), β),

which extend ZN(R, β) and ZN(P1(K), β) to smooth functions of q ∈ (0,∞)

satisfying

ZN(R, β)
∣∣
q 7→q−1 = q−(N2 )βZN(R, β) and ZN(P1(K), β)

∣∣
q 7→q−1 = ZN(P1(K), β).

It should be noted here that the first q 7→ q−1 functional equation is a special

case of the one proved in [4], and that both functional equations closely resemble

the ones in [15].
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