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THESIS ABSTRACT 

 

Eric Steven Levenson 
 
Master of Science 
 
Department of Geography 
 
June 2021 
 
Title: Multiscale Grain-Size Mapping Along the Upper Sandy River 

 

Grain-size remote sensing presents an opportunity to address our poor 

understanding of the relationships among the patterns and processes of sediment sorting 

across spatial scales and advance the accessibility to riverscape mapping approaches. 

This thesis confronts the barriers to applying image-based grain-size mapping techniques 

by presenting a methodological framework that addresses the principal components of 

photosieving and their implications for the resulting grain-size dataset. This framework is 

leveraged to develop a protocol for mapping the spatial variability in coarse sediment 

within gravel bars and throughout a 12 km segment of the upper Sandy River, Oregon, 

USA. I analyze the grain-size variability at the river segment and bar scales in relation to 

active channel width. The results illustrate that bar scale variability in some cases is 

nearly equivalent to the grain-size variability observed within the 12 km reach. 

Additionally, the results show that grain-size is inversely correlated with channel width, 

but that this relationship is strongest for patches located at bar heads. These finding 

indicate that systematic patterns are modulated by local processes such as hydraulics or 

sediment supply, and that the application of downstream fining models may have limited 

application on the Upper Sandy River at scales finer than a few kilometers. 
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CHAPTER I 

INTRODUCTION 

1. Introduction 

Alluvial river forms such as channel geometry and planform are the product of 

sediment that has been mobilized, transported, and deposited by the river itself. The river 

morphodynamics paradigm describes interactions between alluvial river morphology and 

sediment dynamics as a feedback cycle: channel morphology influences the flow 

hydraulics of moving water; flow hydraulics drive the erosion and deposition of bed 

material; bed material transport in turn shapes channel morphology (Church and 

Ferguson, 2015). Given this relationship, the size of sediment grains and their spatial 

distribution are fundamental metrics for many research topics in fluvial geomorphology 

such as sediment transport (e.g. Paola and Seal, 1995), flow resistance and velocity (e.g. 

Lee and Ferguson, 2002), channel geometry (e.g. Dade, 2000) salmonid habitat suitability 

(e.g. Kondolf and Sale, 1993), and morphodynamic model calibration (e.g. Van De Wiel 

et al., 2007).  

The patterns and processes of fluvial grain-size sorting operate at spatial scales 

ranging from the river’s entire longitudinal profile to small clusters of grains (Powell, 

1998). At the scale of a few individual grains, size-dependent differences in inertia lead 

to pebble clusters when a single immobile clast encourages an upstream deposit of coarse 

bedload and a downstream deposit of fine material (Richards and Clifford, 1991). 

Channel width scale bedforms, such as a gravel bar, exert topographic control over the 

flow structure leading to sediment sorting (Ashworth, 1996). At the channel length scale 

of an entire stream or river, the exponential downstream decrease in grain-size arises 

from size selective transport and abrasion processes. The interdependencies among the 

patterns and processes of sediment sorting across these spatial scales are poorly 

understood (Powell, 1998) despite the importance of the distribution of sediment for 

shaping channel morphology, flow hydraulics, and sediment transport regimes. Recent 

efforts to develop image-based remote sensing solutions for measuring sediment grain-

sizes (i.e. photosieving) present an opportunity to advance our understanding of sediment 
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sorting across spatial scales and its relationship to channel morphology. However, the 

growing collection of photosieving methodologies and software products remain largely 

in the development and ‘proof-of-concept’ stages due to uncertainty surrounding the key 

methodological choices and their implications.  

Overcoming these barriers to map river morphological parameters, such as grain-

size, at high resolutions and across large extents is growing research field due to the 

implications for our basic understanding of fluvial forms and processes. Carbonneau et al. 

(2012) argued that traditional widely spaced surveys have led to a focus on averages and 

trends rather than heterogeneity in river morphology. Drawing from landscape ecology 

theory, they argue for a representation of riverscapes as a combination of broad and local 

scale trends marked by discontinuities and heterogeneity. Many conceptual frameworks 

for relating systematic trends and local discontinuities were conceived based on 

traditional observations of river environments. For example, the River Continuum 

Concept (Vannote et al., 1980) and the Process Domain Concept (Montgomery, 1999) 

hypothesize how local river dynamics emerge from coarser scale processes. Developing 

and applying riverscape mapping strategies provides an opportunity to evaluate these 

conceptual frameworks (e.g. Fonstad and Marcus, 2010) and even construct new theory 

that explains how systematic patterns emerge from local processes. 

Mapping sediment grain-size variability at high resolutions and across a large 

extent is situated within the riverscape paradigm for its relevance to understanding fluvial 

form and process. The results of such an effort can also contribute to practical river 

management issues such as aquatic habitat and channel migration hazards. The residents 

and river management agencies surrounding the study site – the upper Sandy River in 

Oregon, USA – is particularly interested in the hazards and aquatic habitat produced by 

the natural dynamics of the upper Sandy River. The upper Sandy River’s path begins on 

the glaciers of Mt. Hood in the Oregon Cascades before traveling approximately 90 

kilometers to the northwest where it joins the Columbia River. Glaciers carved the Sandy 

River valley from volcanic bedrock, and the current state of the watershed is the result of 

deposition of volcanic material over the past 1,700 years and subsequent surface erosion 

(Handelman et al., 2014). Lahar events have deposited highly erodible sediment within 
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the channel and along the valley bottom. The combination of steep terrain, abundant 

sediment, and flooding contributes to a dynamic channel that frequently migrates 

laterally.  

Major flooding events in 1964, 1996, and 2011 caused channel migration that 

destroyed private and public property. In response to the 2011 40-year flood, the Sandy 

River Watershed Council has spearheaded a restorative flood response plan that focuses 

on restoration actions to mitigate channel migration hazards while improving aquatic 

habitat for salmonids. Many of the proposed river management interventions, such as 

levee deconstruction or side-channel reconnection, function by imposing certain 

morphologic conditions in hopes of producing desirable river states and processes into 

the future. These applications motivate the continued development of our understanding 

of the relationship between fluvial forms and processes. The consequences of 

management interventions that are out of step with river behavior are exemplified by the 

flood risk mitigation efforts in the 1960s on the upper Sandy River that rechannelized the 

river and stabilized banks with levees. Today, many of the restoration actions are undoing 

these earlier projects that increased channel conveyance and prevented the more frequent 

and smaller magnitude channel adjustments that serve to dissipate the river’s energy 

during floods. These management issues in the upper Sandy River are fundamentally 

linked to sediment patterns and processes as well as an understanding of river behavior 

that embraces the combination of large and local scale form and process. This 

examination of the spatial patterns of sediment grain-size may be useful for practitioners 

and managers in the upper Sandy River as they seek context for specific restoration 

locations within the larger river system.  

2. Research Questions 

This research aims firstly to address the current barrier facing researchers and 

practitioners who may benefit from image-based grain-size measurement techniques by 

introducing a methodological framework that describes the principal components of 

photosieving approaches and the aspects of the resulting grain-size data products that are 

influenced by methodological choices. The second objective of this study is to apply this 
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methodological framework to map the variability of coarse sediment within the upper 

Sandy River, Oregon, USA, analyze the results in relation to channel morphology, and 

discuss the results in the context of local controls and systematic patterns. These research 

objectives are guided by the following research questions: 

1. Which existing image-based grain-size measurement methods will enable locally 

accurate and precise grain-size observations across a large extent? 

2. What are the sources of coarse grain-size variability at patch, bar, and river 

segment scales along the upper Sandy River? 
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CHAPTER II 

A METHODOLOGICAL FRAMEWORK FOR IMAGE-BASED GRAIN-SIZE 

MAPPING 

1. Introduction 

Significant research energy has been dedicated to developing image-based 

solutions for measuring sediment grain-sizes (i.e. photosieving) in order to reduce the 

labor associated with traditional measurements (e.g. Wolman, 1954; Bunte and Abt, 

2001) and enable grain-size mapping over larger extents. Grain-size remote sensing thus 

far has largely remained in the methods development and ‘proof-of-concept’ stages of 

research. The result has been a multitude of photosieving methodologies and software 

products – each of which has only seen a handful of applications. Each of these image-

based grain-size mapping techniques applied to the same study area will lead to distinct 

grain-size datasets due to the variation in their range of measurable grain sizes, precision, 

accuracy, spatial coverage, equipment cost, fieldwork, and software requirements. 

Currently, river researchers who may benefit from the efficiency and coverage afforded 

by these procedures are left without a structure for evaluating each photosieving 

method’s suitability for specific research objectives. The aim of this article is to provide a 

model for aligning methodological choices within the photosieving chain of production 

with pre-defined research objectives. 

This work presents a methodological framework that describes the main 

components of image-based grain-size mapping approaches and the aspects of the 

resulting grain-size data products that are influenced by methodological choices. I apply 

this framework to a case study on the upper Sandy River in order to facilitate a 

combination of literature reviews and quantitative analyses of photosieving 

methodologies and their implications for specific research applications. Sediment grain-

size and its distribution throughout the river system is a fundamental metric for many 

research topics in fluvial geomorphology such as sediment transport (e.g. Paola and Seal, 

1995), flow resistance and velocity (e.g. Lee and Ferguson, 2002), channel geometry (e.g. 

Dade, 2000) salmonid habitat suitability (e.g. Kondolf and Sale, 1993), and 
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morphodynamic model calibration (e.g. Van De Wiel et al., 2007). The variety of data 

requirements among these research topics as well as the continued development of 

photosieving methods motivates the methodological framework and case study approach 

used here. 

All image-based methods for grain-size mapping consist of three fundamental 

components: (a) surveying and image acquisition, (b) photosieving (i.e. estimating grain-

sizes from images); and (c) geographic representation. Note that the term ‘photosieving’ 

is often used as shorthand for the entire process of producing a grain-size map using 

imagery, however photosieving moving forward refers specifically to extracting grain-

size information from images. Image acquisition strategies in previous studies range from 

helicopter-based aerial surveys, handheld images of 1 m2 extents, and orthomosaics of 

gravel bars produced through structure from motion (SfM) photogrammetric processing 

of drone-based images (Carbonneau et al., 2004; Chardon et al., 2020; Fonstad and 

Zettler-Mann, 2020). Existing photosieving techniques vary from manual measurements 

of grains in photographs to fully automated algorithms for estimating either grain-size 

distribution percentiles or the size of individual grains. Geographic representation 

emerges as a third component because the utility of grain-size results depends upon 

descriptions of the grains’ locations. Geographic topological attributes for grain-size 

mapping are most commonly described as distance downstream in studies of downstream 

fining, however this single metric fails to describe sample locations at local scales. In this 

article, I propose a more robust method and some automated tools for improving the 

geographic representation of image-based grain-size measurements. Table 1 shows a 

subset of the previously used methods for each of these three components. This 

framework does not provide a comprehensive summary of existing methods, but instead 

aims to enable deliberate choices for each of these three components by identifying the 

overarching differences and implications among existing approaches. 

The data requirements for image-based grain-size measurement applications will 

drive the methodological decisions for the three components listed above. The specific 

data characteristics that are directly influenced by surveying, photosieving, and 

geographic representation methods include: (i) the range of measurable grain-sizes; (ii) 
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the error present in grain-size measurements; (iii) whether information regarding 

individual grains is retained; and (iv) the spatial scales of interest. Figure 1 delineates 

which of the steps in data production affect each of these data requirements. The 

connections between data requirements and framework components are governed by 

overarching commonalities among contemporary photosieving approaches such as the 

inverse relationship between image resolution and spatial extent, and the correlation 

between precision of photosieved grain-size measurements and image resolution. The 

specifics of these connections are discussed below in Section 2. 

Table 1: A subset of published approaches to the three principal components of image-

based grain-size mapping. 

 

Task Method Citation 

Surveying and 

image-acquisition 

Handheld cameras 

Drone-based orthomosaics 

Drone-based non-orthorectified images 

Helicopter-based non-orthorectified images 

Piegay et al., 2020 

Fonstad and Zettler-Mann, 2020 

Carbonneau et al., 2018 

Carbonneau et al., 2004 

Photosieving Manual 

SediNet 

PebbleCounts 

BaseGrain 

GrainNet 

Semivariance 

Autocorrelation 

Adams, 1979 

Buscombe, 2020 

Purinton and Brookhagen, 2019 

Detert and Weitbrecht, 2013 

Lang et al., 2020 

Carbonneau et al., 2004 

Buscombe, 2008 

Geographic 

Representation 

Distance downstream 

Downbar position 

Raster cells 

Zettler-Mann and Fonstad, 2020 

Rice and Church, 2010 

Carbonneau et al., 2004 
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Figure 1: The three components of producing a grain-size dataset and the characteristics 

of the data product that are influenced by these methodological choices. 

2. Grain-Size Mapping Case Study: Upper Sandy River 

The remainder of the article is organized to produce a single configuration of pre-

existing approaches to the principal tasks of grain-size mapping – surveying, 

photosieving, and geographic representation – for a case study on the Upper Sandy River 

in Oregon. The case study’s overarching research objectives are translated into grain-size 

data requirements, which guide a combination of literature and quantitative analyses in 

support of decisions for each of the components of image-based grain-size mapping. 

The Upper Sandy River in Northwest Oregon is a wandering gravel bed river in 

which gravel bar development commonly leads to channel migration and avulsions. 

Mapping the distribution of coarse alluvial grains throughout the river system is 

important for characterizing the spatial patterns of channel morphology and development, 

as well as the relationship between patterns and processes of sediment sorting across 

spatial scales ranging from a few grains to the channel length. The overarching objective 

is to produce a multi-scale map of coarse sediment grain size that resolves sediment 

sorting patterns from the patch to river segment scale. Such a dataset would enable 

analyses of the interdependencies among the scales of sediment sorting and their 

relationship to channel morphology. Therefore, the decisions for surveying, photosieving, 

and geographic representation are based on the following research criteria: (i) Capability 

in capturing the spatial distribution of exposed coarse sediment (b-axis ≥16 mm) at patch, 
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bar, and channel length scales; (ii) B-axis estimates within 10% of the actual length and a 

standard deviation of errors of 1 cm or less;  (iii) Applicability to complex river 

environments characterized by a mosaic of exposed sediment, vegetation, and water 

surface; and (iv) Efficient and cost-effective grain-size surveying and measurement. The 

following sections seek an answer to the following question: Which existing image-based 

grain-size measurement methods will enable locally accurate and precise grain-size 

observations across a large extent? 

2.1. Surveying Approaches 

Producing a multi-scale grain-size map on the Upper Sandy River presents a 

significant surveying challenge related to accessing exposed sediment patches throughout 

the river system. Traditional surveying and measurement approaches such as the Wolman 

pebble count or grid sampling are far too labor intensive for multi-scale analysis across 

large extents, however a solution may exist within the increasing number of remote 

sensing techniques for measuring surface grains. This study focuses on image-based 

surveys of sediment grains because cameras are a cost effective, widely available, and 

easily deployable survey tool in comparison to alternatives such as Terrestrial Laser 

Scanners and LiDAR.  

Defining a survey approach depends on a few basic commonalities among 

contemporary photosieving techniques: (i) Grain-size is first measured in pixels and 

converted to a metric unit using the known image scale (i.e. cm/pixel); (ii) The precision 

and accuracy of the grain-size measurements increases with image resolution; (iii) The 

size of the smallest measurable grain decreases as image resolution increases; (iv) The 

spatial extent of an image decreases as its resolution increases for a given camera. Given 

these commonalities, the required image resolution will depend on the portion of the 

grain-size distribution of interest and acceptable level of error for the end user. Although 

image resolution requirements vary, all image-based surveys must provide accurate 

geographic locations of the grains of interest and an accurate image scale to convert 

pixels to metric units.  

Orthoimages are an obvious choice to meet the location and resolution 
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requirements, and they have been used previously in grain-size mapping efforts (Fonstad 

and Zettler-Mann, 2020; Zettler-Mann and Fonstad, 2020). Direct georeferencing (DG) 

of structure from motion (SfM) photogrammetry using drone images and the onboard 

GPS enables efficient production of orthomosaics without the need for collecting ground 

control points – an expensive and time-consuming process (Carbonneau and Dietrich, 

2017; Carbonneau et al., 2018). However, orthomosaics are associated with blurring 

effects and require a large number of images to achieve an image resolution comparable 

to undistorted non-orthorectified images. Fonstad and Zettler-Mann (2020) faced 

challenges at the photosieving stage of this approach on the Lower Sandy River as 

downstream fining led to grains that were not consistently resolvable in their 

orthomosaics.  

Carbonneau et al. (2005) collected aerial imagery from helicopters and conducted 

extensive ground surveys to georeference the non-orthorectified images with resolutions 

of 3 cm/pixel and 10 cm/pixel. They limited their analysis to areas of continuous exposed 

gravel and created a statistical relationship between ground truth samples and quantitative 

image properties including texture and semivariance, which was only successful for the 3 

cm images. This approach has the advantage of mapping grain-sizes at the catchment 

scale, but its uptake by others has been limited due to the high cost of helicopter surveys 

and the extensive fieldwork involved in collecting ground control points and ‘truth’ 

grain-size distributions. On the opposite end of the spatial extent spectrum, Chardon et al. 

(2020) used a handheld camera to collect high resolution images of 1 m2 areas with pixel 

ranges from 0.18 mm to 0.30 mm, but this was limited to 20 images in total. 

These existing methods either focus on obtaining high resolution imagery to 

photosieve local areas with acceptable accuracy and precision (Chardon et al., 2020), or 

collecting lower resolution imagery to estimate grain sizes across larger extents 

(Carbonneau et al., 2004; Carbonneau et al., 2005). Obtaining high precision 

measurements across large extents therefore requires either automating the application of 

high-resolution image collection and photosieving methods, or decreasing the cost and 

error associated with coarse scale approaches. 



11 
 

Carbonneau et al. (2018) presented a proof-of-concept for ‘robotic photosieving’ 

– an alternative that uses drone-based images and a directly georeferenced SfM workflow 

to efficiently acquire near ground, high resolution, non-orthorectified images and enable 

calculations of their image scale and locations. They show that the image scale of near-

ground non-orthorectified images can be predicted within 3% without the need for 

ground control or scale objects. The objective of their workflow is to calculate precise 

camera locations and altitude above ground level (AGL) of near ground non-overlapping 

images to be used for photosieving by combining them with overlapping imagery from 

higher altitudes AGL. This process has the added benefit of producing orthomosaics and 

DEMs, although the topography is not survey grade (Carbonneau and Dietrich, 2017).  

Robotic photosieving has a number of advantages for multi-scale grain-size 

mapping on the Upper Sandy compared to the other surveying methods. First, the drone 

surveys are very efficient because they do not require ground control points and the 

resolution of the orthomosaics does not affect the photosieving results. Second, 

measuring finer grains is possible using high resolution non-orthorectified images 

compared to the orthomosaics. Third, this workflow provides insurance in the form of 

orthomosaics that can also be used for photosieving should there be an issue in 

calculating the image scale or locating the near ground imagery. Finally, extending this 

proof-of-concept to a robust mapping effort would represent a major contribution to the 

river remote sensing field. The default flying height for near ground imagery will depend 

on the chosen photosieving method and its minimum number of measurable pixels. In the 

context of the overarching grain-size mapping framework, the decision to employ robotic 

photosieving surveys implies the general approach of automating high-resolution local 

scale methods for the application across large extents. 

2.2. Photosieving: Image Based Grain Size Measurement 

Obtaining grain-size information from the near ground images through 

photosieving is now possible given the ability to acquire high resolution images with 

acceptably accurate and precise GPS coordinates and image scales. This section focuses 

on navigating the range of photosieving choices for estimating grain sizes from the drone 
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images. 

Manual measurements of surface grains from photographs in the 1970s initiated 

the development of photosieving. Contemporary photosieving methods generally fall into 

two categories as they automate the process of either: a) extracting and measuring 

individual grains, or b) extracting and correlating image statistical properties with the 

grain-size distribution (Piégay et al., 2020). Applications requiring information at the 

scale of grains are limited to the photosieving methods that segment individual clasts, 

such as the PebbleCounts or Basegrain algorithms (Purinton and Brookhagen, 2019; 

Detert and Weitbrecht, 2013). Many research applications can forego grain-by-grain 

information and can therefore adopt either grain segmentation or statistical approaches. 

Carbonneau et al. (2004) provide an early example of the statistical approach using 

correlations between ground-truth grain-size distributions and the image texture and 

semivariance of their helicopter-based imagery. The most recent iteration of the statistical 

approach involves machine learning architectures such as GrainNet and SediNet, which 

both use convolutional neural networks (CNNs) to extract image properties and predict 

sediment characteristics – including grain-size percentiles (Buscombe, 2020; Lang et al., 

2020). Cases in which the primary objective is to capture the grain-size distribution, it 

can be derived from either a correlation with image properties such as texture or 

semivariance, or from the outputs of grain segmentation techniques (e.g. PebbleCounts).  

2.2.1. Photosieving Comparison: PebbleCounts and SediNet 

PebbleCounts and SediNet represent the cutting edge of these two strains of 

image-based grain-size measurement techniques. PebbleCounts segments individual 

grains while SediNet extracts image properties and predicts grain-size percentiles. A 

comparison of PebbleCounts and SediNet’s photosieving performance for the task of 

producing a grain-size map on the Upper Sandy River is based on their error in 

measuring grain-size percentiles for grains over 16 mm, and efficiency when applied to a 

large number of images. Manual measurements of grain-size b-axes in ten images from 

the Upper Sandy provide the means to evaluate the accuracy of photosieving outputs. The 

manual measurements are used here to produce a ‘labeled’ dataset, which is analogous to 
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a ‘truth’ dataset for the purpose of model evaluation. All methods in question – labeling, 

PebbleCounts, and SediNet – deal with grain size in pixels, which are later converted to 

metric units using the image resolution.  

2.2.2. PebbleCounts Introduction 

PebbleCounts is an open-source algorithm that uses k-means clustering of both 

spatial and spectral information to delineate individual grains (Purinton and Brookhagen, 

2019). The algorithm begins with a series of pre-processing steps designed to mask 

shadows, sand, and vegetation. The first step is non-local means denoising of the RGB 

image, which deals with intra-grain color differences. The RGB image is converted to 

gray-scale with top-hat, Sobel, and Canny methods to detect edges and preserve inter-

grain differences. Following edge detection, the algorithm uses K-means clustering with 

manual selection (KMS) to segment individual pebbles. The number of clusters begins 

with 1 and is recalculated with an inertia improvement of 1-10%. This clustering method 

allows PebbleCounts to accept images with varying number of grains to segment. The 

algorithm uses a ‘windowing’ approach, which runs the KMS on three scales of the 

image. This allows the recognition and removal of the largest grains, then intermediate, 

and finally the smallest resolvable grains. The segmentation approach is naturally limited 

in its application to sub-pixel grains, whereas SediNet may be capable of predicting sub-

pixel grain sizes (Buscombe, 2020). 

The PebbleCounts software includes semi-automated and fully automated 

algorithms designed for the application to orthorectified or regular images at 

approximately 1 m2 scales. Its primary advantage over previously developed watershed 

segmentation approaches (e.g. BaseGrain) is its potential application in complex settings 

without ideal interlocking, uniformly colored, and oblate grains (Purinton and 

Brookhagen, 2019). The example images in Figure 2 show the importance of 

applicability to complex settings defined by intragranular variability, mixed in vegetation, 

and sand. 
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Figure 2: Eight of the ten images used to compare SediNet and PebbleCounts to 

manually measured grain-sizes. 

2.2.3. SediNet Introduction 

SediNet is an open-source configurable machine learning framework designed by 

Daniel Buscombe to extract sediment characteristics from imagery. It uses a 

convolutional neural network (CNN) to map image inputs to desired outputs, including 

continuous prediction of grain-size percentiles and categorical prediction of grain shape 

and color (Buscombe, 2020). The image feature extractor is composed of four 

convolutional blocks. Each convolutional block includes multiple two-dimensional 

convolutional filter layers, batch normalization layers, and two-dimensional max pooling 

layers. A customizable dropout layer after the last convolutional block is used to prevent 

overfitting, and the outputs of the feature extraction become the inputs of a multilayer 

perceptron, creating a prediction layer that is run through a linear activation function. 

Along with the model architecture, SediNet provides a dataset of 409 images with labeled 

grain-size percentiles and a modular file structure that allows adjustment to the models 

through a defaults script and configuration file. 

SediNet is a framework rather than a single model, and therefore decisions in 

implementation will impact the resulting model as well as its performance. The set of 

images used for model training, loss functions, and optimization functions are all easily 

configurable components of the SediNet framework. In this study, three SediNet 

implementations are trained and evaluated in comparison to the semi-automated 
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PebbleCounts algorithm. The first implementation is hereafter referred to as the ‘stock’ 

model, as it uses the default configuration and training set available through the SediNet 

Github. The stock model uses a Pinball loss function and a Root Mean Square 

Propagation (RMSProp) optimization function. Pinball loss is used specifically for 

calculating quantile loss, which is appropriate for the prediction of nine grain-size 

percentiles. The RMSProp optimizer is similar to the commonly used gradient descent 

with momentum, but functions by maintaining a discounted average of the square of the 

gradients, which is used to normalize the current gradient. The initial learning rate was 

defined as 0.002 with 5 training epochs. The model was trained on 204 images and tested 

on 205 before its use to predict on the 10 images from the Upper Sandy.  

Figure 3 visualizes the performance of the stock model on the 204 training images 

and 205 testing images provided with SediNet. Specifically, each individual chart 

displays one of the nine percentiles predicted by the model. This dataset includes both 

sand and gravel images with a range of image spatial resolutions. The results indicate that 

prediction skill degrades for the larger grain sizes within each percentile. Specifically, 

this appears to include some bias as the predictions are consistently larger than the actual 

grain sizes. 

 The second implementation – ‘Gravel1’ – uses the same model architecture, but 

it is trained on a subset of the training set that only includes images of gravel. Gravel is 

defined as sediment with at least a 2 mm intermediate axis. The third implementation – 

‘Gravel2’ – changes a number of model components and again is trained on only images 

of gravel. All input features are scaled, and the Pinball loss function is replaced with a 

mean square error (MSE) loss function. The rationale for this replacement is to deal with 

the Pinball loss function’s heavy penalization of negative errors in higher percentiles, and 

positive errors in lower percentiles, which could have contributed to the stock model’s 

overpredictions of large grains and underpredictions of small grains. The MSE loss 

function – commonly referred to as L2 loss – computes the sum of squared distances 

between our target variable and predicted values, which can lead to outsized influence by 

outliers in the dataset. The RMSProp optimizer is replaced by an Adam optimizer, which 

uses an adaptive learning rate for each parameter. It maintains an exponentially decaying 
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average of past squared gradients and past gradients, thus combining features of 

RMSProp and momentum. The biased predictions were slightly improved in the Gravel 2 

model, however all three models struggled to predict grain-sizes with any meaningful 

accuracy or precision on the labeled dataset.   

 

2.2.4. PebbleCounts and SediNet Comparison: Results 

Grain-size percentiles were calculated from the manual grain-size measurements 

and PebbleCounts segmentation for each of the ten labeled images from the Upper Sandy 

to enable comparison with the grain-size percentiles predicted by the three SediNet 

models.  

Figure 3 visualizes each model’s accuracy as percent error for each percentile (mean 

error divided by the mean b-axis for a given percentile). All three SediNet models 

displayed inaccurate predictions of the coarse end of the distribution while PebbleCounts 

was inaccurate in measuring the 5th, 10th, and 16th percentiles. The segmentation 

Figure 3: Stock model predicted vs. actual (horizontal axis) grain sizes for each of the 

nine percentiles on the 204 train images (black) and 205 test images (blue). Prediction 

skill for the training and testing images is displayed in the upper left of each graph. 
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algorithm reliably predicted the D50 b-axis within 10% of the labeled length. The 

precision of each model is not characterized by the errors shown in Figure 4. The 

standard deviation for PebbleCounts’ errors in prediction the median b-axis was 8.27 

pixels, which was significantly lower than the SediNet models’ standard deviations 

ranging from 20.3 to 22.5 pixels. This indicates that PebbleCounts is more precise than 

SediNet above the 25th percentile. 

After initial model training, SediNet’s application is far more time efficient in 

comparison to PebbleCounts. Percentiles predictions for an individual image is 

accomplished in under one second, and this prediction can easily be scaled to a very large 

number of images. PebbleCounts requires 5-10 minutes per image, and this timeframe 

includes active participation by a researcher to operate the commandline interface and 

manually select correctly segmented grains. 

 

Figure 4: Comparison of the performance of three configurations of the SediNet 

architecture and PebbleCounts in predicting the grain-size percentiles of 10 manually 

labeled images. Mean Percent Error is calculated as the RMSE normalized for each 

percentile's mean value. 
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2.2.5. PebbleCounts and SediNet Comparison: Discussion 

PebbleCounts’ poor performance on lower percentiles can easily be explained by 

its limitation in segmenting grains with b-axes shorter than 20 pixels (Purinton and 

Brookhagen, 2019), whereas manual measurements can resolve pixels down to a single 

pixel. PebbleCounts’ performance across these low percentiles improves drastically when 

the labeled dataset is truncated at 20 pixels. Figure 5 shows a comparison of aggregated 

grain size distributions for the 10 labeled images produced by: (a) manual measurements 

of b-axes, (b) manual measurements of b-axes with a lower end truncation at 20 pixels, 

and (c) PebbleCounts photosieving. Visual inspection of the three distributions reveals 

strong agreement between the PebbleCounts and the truncated labels. It is worth noting 

that the errors calculated for Figure 3 were for the untruncated labels, which means that 

the PebbleCounts accuracy is improved following low-end truncation.  

The SediNet models’ inability to accurately predict the higher percentiles is a 

more complicated challenge to overcome. A 409 image train and test set is very small for 

a machine learning model, and the two gravel implementations were trained on an even 

smaller set. The SediNet models did not see any images from the Upper Sandy during 

training, and it is reasonable to expect that its performance will improve drastically as the 

labeled dataset increases in number of images and representation of diverse 

sedimentological environments. The biased predictions may be attributable to the 

challenge of calculating quantile loss, and therefore studies that only require a single 

grain-size metric, such as the D50, may have much greater success in applying SediNet. 

Another outstanding question in the use of CNNs for photosieving is whether loss 

functions such as RMSProp or Adam cause overshooting of flat minima and therefore 

reduce the capacity for the model to generalize to other imagery datasets. 
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Figure 5: Aggregated grain-size distributions of 10 images from the Upper Sandy. 

Manual photosieving is shown in orange. Manual photosieving with a low-end truncation 

at 20 pixel b-axes is shown in blue. PebbleCounts is shown in red. 

Based on the results of this comparison and the research objectives focused on 

characterizing the distribution of coarse sediment, this study moves forward with the 

PebbleCounts photosieving method. Although SediNet is limited in predicting the larger 

grain-size percentiles, its efficiency is far superior to PebbleCounts and it is more capable 

at representing the fine end of the grain-size distribution. A growing labeled dataset and 

continued refinements to the algorithm indicate that SediNet will be a much more useful 

tool in future investigations into grain-size variability that do not require grain-by-grain 

information. 

2.2.6. Grain-Size Percentiles 

Photosieving in PebbleCounts produces a matrix for each image (i.e. sample) in 

which rows represent individual grains and columns provide measurements such as a and 

b axes measured in both pixels and meters (see ‘PebbleCounts Outputs’ in Figure 6). 

Comparisons among each of the samples depends upon a common description of the 

grain-size distribution that can be stored in a single matrix. Grain-size percentiles meet 
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this requirement, but their calculations require careful consideration of the interactions 

among the image acquisition process, the limitations of PebbleCounts, and the study 

objectives. Image-based approaches to measuring grain sizes are all limited in the range 

of measurable grain-sizes, and this range cannot vary among samples if comparisons are 

desired (Graham et al., 2010). The low end of the distribution is limited by image 

resolution, while the coarse end is limited by the area covered in the image. A size-

dependent bias in the distribution can result from such limits to the range of measurable 

grains as the coarsest and finest grains may be undercounted.  

 

Figure 6: Excerpts from two example outputs from PebbleCounts on the left. Grain-size 

percentiles are calculated from each of these outputs. Each sample’s unique label, number 

of grains measured, and grain size percentiles become one observation (i.e. row) in the 

master grain size matrix.  

The coarsest grains may not be represented if the sampling area is too small, 

while the finest grains are certainly not represented if the image cannot resolve individual 

grains. This size-dependent bias presents a challenge for multi-scale analyses of grain-

size as observations of local variability necessitate small sampling areas, but larger 

sampling areas are needed to represent the population (Graham et al., 2010); a conflict 

that is exacerbated in river environments such as the Upper Sandy in which the surfaces 

of gravel bars are mosaics of vegetation, exposed gravel, and sand rather than idealized 

continuous gravel surfaces. Given this mosaic, researchers generally estimate grain size 

populations by ignoring smaller patches of exposed sediment in favor of larger sampling 

locations that provide the areal extent necessary to include the coarsest grains. To deal 
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with size-dependent bias on the coarse tail of the distribution, I take the alternative 

approach of sampling small patches to enable examinations of variability at small spatial 

scales. These patches can be aggregated with nearby samples to represent the grain-size 

population. 

Fine sediment provides a much greater obstacle to representing grain-size 

distributions through segmentation-based photosieving. The PebbleCounts algorithm 

reliably measures grains with b-axes of at least 20 pixels (Purinton and Brookhagen, 

2019). Purinton and Brookhagen (2019) altered the image resolution within a controlled 

experiment and showed the predictable result that decreased resolution led to 

undercounting of fine pebbles.  

Figure 7 displays an extreme case of the effect of varying AGLs between two 

images acquired on the Upper Sandy. Image A has an image resolution of 1.1 mm/pixel, 

while Image B has a resolution of 0.3178 mm/pixel. Given the 20-pixel lower cutoff, 

grains with b-axes longer than 22 mm would be measured for Image A, while all grains 

with b-axes longer than 6.4 mm will be measured in Image B. A simple solution is to use 

a consistent near ground flying height, however bar topography and deviations in flying 

height due to wind, obstacle avoidance, and errors in the drone’s internal GPS introduce 

deviations in drone AGL and therefore image resolution. Figure 5 in Section 2.3.5 shows 

that PebbleCounts’ precision is improved across the grain-size distribution with the 

application of a 20-pixel low end truncation. This technique can serve a dual purpose by 

identifying a metric b-axis length as the threshold for low-end truncation and choosing a 

default flying height that produces a pixel resolution less than 5% of the metric threshold. 

For example, the objectives here are to measure grains with a b-axis of at least 16 mm. 

Given the 20-pixel truncation, the default flying height and camera specifications should 

therefore produce images with a resolution less than 0.8 mm/pixel.  

Following low-end truncation, calculating a percentile from the grain-by-grain 

data requires interpolating between the two grains on either side of the given percentile. 

Linear interpolation is limited when applied to classified data measured with sieves or 

templates, however these issues do not apply to the continuous outputs measured through 
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photosieving (Graham et al., 2010). Therefore, a simple quantile calculation can be used 

to calculate the following percentiles: D5, D10, D16, D25, D50, D75, D84, D90, D95.  

  

Figure 7: A comparison of images captured from a flying height of 4.258 m (A) and 

1.348 m (B). Both images are 3628 x 5472 pixels. The red lines in the bottom right corner 

each show 500 mm in real-world distance, which reflects differences in image resolution 

(i.e. mm/pixel). These images were not processed with PebbleCounts and are therefore 

not included in the grain size mapping analysis. 

2.3. Geographic Representation 

The photosieving processes described above are not geographical, meaning that 

the resulting grain-size distributions have no information regarding their location. The 

objective of this section is to identify geographic attributes that will describe each grain-

size distribution’s specific location and its spatial relationship to other samples in the 

dataset. A key challenge is automating the process of calculating these geographic 

attributes and attaching them to the individual grain-size distributions. 

The implication of adopting the robotic photosieving methodology for grain-size 

surveying is that each near-ground image represents one ‘sample;’ the location of which 

is derived from the camera location upon image acquisition. Each image displays grains 

at the scale of a ‘patch,’ which has been defined by both spatial scale and bed material 

composition (Paola and Seal, 1995; Nelson et al., 2014). The term patch is used here to 

refer to a local spatial scale of approximately 1 m2. In this case, the terms ‘patch,’ 

‘sample,’ and ‘near ground image’ are analogous and will be used interchangeably based 

on the context. Although a sample covers an area of approximately 1 m2, it may be useful 

for its geographic location to be represented as a point to enable easy comparisons of 



23 
 

grain-sizes based on sampling location. The point location of the sample can be derived 

from the camera location obtained through the robotic photosieving workflow. The 

camera’s latitude and longitude approximate the sample’s centroid given the 

understanding that the surveying methods utilize nadir near ground imagery. 

Latitude and longitude do not necessarily provide meaningful geographic 

information for comparing grain-size variability or characterizing the scales of sediment 

sorting throughout a river system. In order to examine topological relationships among 

patches at the bar-scale and the river segment scale, locational attributes must represent 

the sample’s location within the gravel bar and within the river system. Table 1 provides 

a list of quantitative attributes that describe a sample’s position at various spatial scales. 

Global positions (i.e. latitude and longitude) can be projected onto a two-dimensional 

Cartesian plane, however even Cartesian coordinate systems such as Universal 

Transverse Mercator (UTM) do not adequately represent a sample’s position within a 

meandering river system.  

Table 2: The desired geographic attributes for each grain-size sample and their associated 

spatial scale. 

Attribute Scale 

Latitude Global 

Longitude Global 

X (UTM) Global 

Y (UTM) Global 

Distance Downstream River 

Distance from centerline River 

Bar Name Bar 

Distance Downbar Bar 

Normalized Distance Downbar Bar 

Distance from Bar Edge Bar 

 

Channel-fitted coordinate systems present a solution at the river scale by 

describing a sample’s location using a streamwise axis (s) based on downstream distance 
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from a chosen point along the channel centerline, and an axis that is normal (n) to the 

streamwise axis. Legleiter and Kyriakidis (2006) present the mathematical basis for such 

a coordinate transformation procedure. Figure 8 provides a reference to compare the 

Cartesian x and y axes to the channel-fitted s and n axes and how a point’s position is 

described by the two systems.  

This channel-fitted coordinate system does not characterize a sample’s location 

within a gravel bar, but it does provide a framework for transforming its UTM 

coordinates into a bar scale location. Figure 9 shows an example of how the Legleiter and 

Kyriakidis (2006) transformation can describe point’s bar-scale position in terms of its 

downbar distance. Downbar distance is calculated by replacing the channel centerline 

with a bar centerline in the same script. The purple ‘Downbar Distance Reference’ within 

Figure 9 provides an example of a manually digitized bar centerline. At this point, 

determining the position of this line is left to researcher judgement. A sample’s distance 

from the boundary between the exposed bar and the low flow channel can also be 

obtained by digitizing the bar edge and measuring the shortest Euclidean distance 

between the sample centroid and the bar edge.  

These global, river, and bar scale geographic coordinates enable comparisons of 

patch-scale grain size distributions at multiple scales. Samples can also be aggregated 

based on proximity in terms of Euclidean distance, stream normal distance, or bar 

membership to extend the patch-scale grain size distributions to larger spatial scales. This 

strategy for representing samples’ spatial attributes is essential for investigations into 

sediment sorting, which inherently ask how grain size responds to geographic position 

within a given scale. Downstream fining is a familiar example that uses downstream 

distance as the sole representation of a grain-size sample location, but it ignores 

remarkable variability and patterning in the distribution of sediment that is often observed 

within a downstream fining trend due to lateral sediment sources (Rice, 1998) and local 

variability within gravel bars (Rice and Church, 2010). 



25 
 

 

Figure 8:  Comparison of Cartesian (x, y) coordinates and channel-fitted (s, n) 

coordinates adapted from Legleiter and Kyriakidis (2006) and Smith and McLean (1984) 

shown on a ~1.5 km reach within the study site. Flow is from right to left. The dashed 

lines show the coordinates within each coordinate system for an arbitrary point. 

 

Figure 9: Orthophoto of gravel bar within the study area produced by the drone survey 

with the associated bar-scale geographic attributes. The dotted black lines are included to 

conceptualize the measurements of the two principal bar-scale attributes of interest: 

downbar distance and bar edge distance. 
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3. Outcomes 

Section 2 describes a configuration of a grain-size mapping framework that uses 

Carbonneau et al. (2017)’s robotic photosieving method for surveying, the PebbleCounts 

software for photosieving (Purinton and Brookhagen, 2019), and an approach to 

geographic representation that describes each sample’s position within the river system 

(Legleiter and Kyriakidis, 2006) and gravel bar. The deployment of this methodology 

would produce a dataset of grain-size samples with the attributes displayed in Table 2, 

however applying each of these steps to a large number of samples presents a barrier to 

producing a true multi-scale grain-size map over a large extent. Processing each 

individual sample through structure from motion, PebbleCounts photosieving, and the 

numerous geographic transformations restricts the number of total samples – an obstacle 

that may contribute to the limited adoption of image-based grain-size mapping methods. 

To address this challenge, a set of tools for automating many steps in the process of 

producing a grain-size dataset are or will be available through Github. For example, 

James Dietrich coded the stream normal transformation into a Python script (Dietrich, 

2019). Using the UTM coordinates of evenly spaced points along channel centerline to 

define the streamwise axis, this script efficiently transforms a series of points’ (i.e. 

sample centroids) UTM coordinates to the stream normal coordinate system. This same 

script can be applied with the bar centerlines to retrieve each sample’s downbar distance. 

I wrote a new open source script that measures this distance from edge using the shortest 

Euclidean distance between the sample centroid and the bar edge. Table 3 describes each 

step of the mapping process and delineates which steps are automated, semi-automated, 

or manual. The automated steps are generally in the form of Python scripts available 

through Github with well-defined input and output files. Although many of these tasks 

could have been combined into a single script, the step-by-step approach allows others to 

adapt these scripts to their own tasks and research goals.  
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Table 3: Descriptions of the attributes produced through the configuration of the grain-

size mapping framework presented in Section 2. 

 

 

 

 

 

 

 

 

 

Attribute Description 

Label Unique to each sample based on bar name and original image 

file. 

Grain-Size Percentiles 

(mm) 

D5, D10, D16, D25, D50, D75, D84, D90, D95 calculated from 

PebbleCounts outputs with a 16 mm lower truncation 

Grain-Size Percentiles 

(psi) 

D5, D10, D16, D25, D50, D75, D84, D90, D95 calculated from 

PebbleCounts outputs with a 4 psi lower truncation 

Latitude GPS coordinates exported from Agisoft Metashape 

Longitude GPS coordinates exported from Agisoft Metashape 

X Location coordinates projected to the UTM coordinate system 

Y Location coordinates projected to the UTM coordinate system 

Bar Delineates the bar from which the sample was obtained 

Distance Downstream 

(m) 

Distance in meters downstream along the channel centerline 

from the upstream boundary of the study area 

Cross Stream (m) Distance from the channel centerline 

Distance Downbar (m) Distance in the downstream direction from the bar head 

Distance from Edge (m) Shortest distance from the bar edge 
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Grain-Size Map Production Steps 
Color Legend   

Manual: Step must be 

performed entirely by a 

researcher 

Automated: Step can be 

performed entirely by open-

source scripts  

Semi-automated: Step requires 

a researcher to operate tools. 

Objective Inputs Outputs 

Acquire Images Fieldwork JPEG images organized based 

on gravel bar membership 

Rename image files to: a) 

include bar name b) give each 

image a unique name 

A folder containing subfolders 

for each bar containing 

corresponding image files 

Renamed files. Example: 

‘DJI_0001’ → ‘C_DJI_0001’ 

SfM to create orthophotos and 

DEMs of each bar; corrected 

camera locations 

Geotagged images acquired in 

the field. 

Orthomosaics and DEMs stored 

as GeoTIFFs; camera locations 

stored as xml files. 

Extract the corrected camera 

locations from SfM processing 

into a usable format 

Folder of xml files containing 

camera location information 

exported from Agisoft 

Metashape 

‘Master Matrix’ in which each 

row includes an image label, bar 

name, latitude, longitude, 

elevation stored in a csv file. 

Find bar elevations at sampling 

locations 

‘Master matrix’; DEMs; Sample 

DEM rasters at point locations  

Datasets of sample labels and 

corresponding bar elevation 

stored in csv files 

Calculate image resolution; 

subset high resolution images 

for photosieving; write 

PebbleCounts commandline 

arguments for each image 

‘Master matrix;’ folder of bar 

elevations at sampling points; 

camera specifications; empty 

folder to store high resolution 

images 

Folder of high resolution image 

jpeg files; unique PebbleCounts 

commandline arguments  

Measure grain-sizes PebbleCounts commandline 

arguments and image files 

Csv files storing grain sizes 

measured through PebbleCounts 

Calculate grain-size percentiles ‘Master matrix’ and csv file 

outputs from PebbleCounts 

Grain-size percentiles attached 

to the ‘master matrix’ 

Map channel centerlines, bar 

centerlines, and bar edges 

Manually digitize and convert to 

points the channel centerline, bar 

centerlines, and bar edges 

UTM coordinates for: channel 

centerline; bar centerlines; bar 

edges 

Transform UTM coordinates to 

channel-fitted coordinates  

James Dietrich script; channel 

centerline; master matrix 

Channel-fitted coordinates 

attached to the master matrix 

Separate ‘master matrix’ into 

individual datasets for each bar 

‘Master matrix;’ Empty folder to 

hold bar-scale datasets 

Folder containing datasets of 

grain-size samples for each bar  

Calculate downbar distance 

 

Bar-scale matrix; bar centerline 

UTM coordinates 

Downbar distance attached to 

bar-scale matrices 

Calculate distance from bar edge Bar-scale matrix; bar edge UTM 

coordinates 

Bar edge distance attached to 

bar-scale matrices 

Combine bar-scale datasets back 

into a ‘master matrix’ 

Folder containing bar-scale 

datasets in csv format 

‘Master matrix’ 

Measure active channel widths 

vs. downstream distance 

NAIP Imagery, channel 

centerline 

Active channel width vs. 

downstream distance dataset 

Calculate active channel widths 

for every sample 

‘Master matrix;’ active channel 

width matrix 

Active channel width attached to 

master matrix 

Create longitudinal profile Channel centerline, LiDAR 

DEM 

Elevation vs. downstream 

distance dataset 

Calculate slope for every sample ‘Master matrix’; long profile Slope attached to master matrix 

Figure 10: Steps required to produce a dataset of point locations with GSDs, geographic, 

and morphological attributes. Colors represent manual, automated, and semi-automated 

steps. 
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4. Discussion 

The motivation for measuring grain sizes is a first order determinant of the 

limitations, advantages, and applicability of this grain-size mapping methodology. 

Research objectives drive decisions regarding the grain-size sampling strategy in terms of 

sample topological relationships and spatial extent, as well as the within-sample 

measurement of the grain-size distribution. For example, a particular project’s research 

impetus will determine whether excluding fine grains is appropriate or if measuring 

surface grains is sufficient. Ideally, a single grain-size map can serve any research 

question. The map presented here does not meet this goal, however the multi-scale map 

production strategy and individually automated tools (Figure 10) can serve the continued 

development towards this objective. At this point, a universally-applicable grain-size map 

may be out of reach, but a configurable mapping methodology to meet a variety of 

research objectives is still useful. 

4.1. Limitations 

Photosieving in general presents some shortcomings in measuring within sample 

grain-size distributions, the clearest of which is the restriction to surficial grains. This 

precludes any studies requiring sub-surface grain size measurements from adopting this 

approach. For investigations into surficial grain-sizes, the research objectives must be 

aligned with the chosen photosieving technique. PebbleCounts was deemed suitable here 

based on the primary interest in coarse grains, however this segmentation approach has a 

number of downsides. The 20-pixel b-axis cutoff for the smallest measurable grains as 

well as the 5–10-minute processing time per sample (with researcher involvement) will 

likely prevent the widespread adoption of PebbleCounts. This cutoff introduces surveying 

challenges even for studies that are uninterested in the finest grains because higher 

resolution images are required to measure grains of the same size as statistical 

photosieving approaches or other segmentation approaches such as BaseGrain.  

The lower cutoff is also an issue for studies such as this that seek comparisons 

among samples with possibly varying image resolutions. This variation leads to 

differences in the range of measurable grains. This variation in range can be dealt with 
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using a universal low-end truncation, however low-end truncation modifies the entire 

cumulative grain-size distribution curve (Bunte and Abt, 2001). Therefore, the 

application of a low-end truncation must be addressed by future researchers adopting 

similar methodology or by future users of this dataset. Graham et al. (2010) quantified the 

effect of lower end truncation and demonstrated that a truncation at 32 mm led to a mean 

error at the D50 of -0.2 psi. This bias may not be acceptable for applications requiring 

high precision and unbiased grain-size percentiles such as bed-load transport calculations 

(Reid et al., 1996), or for applications that require information about the finest grains. 

The effect of truncation on percentiles is deemed acceptable for this study based on the 

primary goal of comparing variability in the distribution of coarse grains. This effect may 

actually be advantageous for understanding channel development as it removes the effect 

of sand deposited over coarse grains during receding flows (Graham et al., 2010). 

The sampling strategy used here is another potential limitation depending on 

research goals. The measurement strategy is restricted to exposed areas and excludes 

subsurface grains and those positioned within the low flow channel. Second, the direct 

georeferencing robotic photosieving workflow does not lead to continuous data even for 

exposed areas. The grain-size measurements are limited to the patches where individual 

non-overlapping images were acquired in the field. Photosieving orthomosaics could 

theoretically lead to continuous data at least for gravel bars, but there is a sacrifice in 

terms of image resolution or surveying time. Many river environments, such as the Upper 

Sandy, prohibit the collection of continuous grain-size information anyway due to the 

widespread presence of vegetation on bar tops. Nevertheless, the robotic photosieving 

workflow is not a route towards the measurement of every sediment grain in the river. 

4.2. Advantages 

The primary advantage of this approach is its efficiency in collecting a large 

number of samples distributed throughout a complex river environment. The map product 

is well-suited for examining how grain-size varies throughout the river system from patch 

to reach spatial scales, and the ability to automate many of the steps facilitates repeat 

mapping efforts through time or in new locations. Observing grain-size variability in this 
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manner can serve modeling and empirically based efforts to further our understanding of 

channel development and relationships among the patterns of sediment sorting and fluvial 

processes.  

The mapping workflow is easily configurable, meaning that specific steps may be 

altered to meet varying research goals. The automated tools described in Figure 10 could 

even be applied to tasks besides grain-size mapping. For example, examinations of the 

distribution of vegetation throughout a river system could apply the same bar-scale 

location protocols.  

4.3. Future Directions 

Advancements to image-based approaches to grain-size mapping should focus on 

reducing grain-size errors and improving efficiency by integrating the components of the 

mapping process. The machine learning approach to photosieving will likely produce 

more accurate and precise models in the near future that are transferrable to a range of 

sedimentological environments. Studies that are only interested in a single grain-size 

percentile may be able to immediately adopt SediNet due to the challenges associated 

with calculating quantile loss and optimizing models for nine percentiles. Another 

outstanding objective is the ability to reliably and efficiently survey and measure grains 

within the channel. 

Simple tools for measuring grain-sizes integrated into a GIS would surely 

increase photosieving’s uptake by river researchers and managers. An interesting 

possibility is the combination of photosieving with land cover classification algorithms to 

create a continuous raster model of channel and floodplain surface material that includes 

grain-sizes for the cells classified as exposed sediment. The ability to produce such a 

model would be valuable for morphological change detection and could be combined 

with topographic surveys and hydraulic models to more fully capture the relationship 

between the erosional forces and boundary resistance that shapes fluvial environments. 

5. Conclusion 

Image-based remote sensing of fluvial grain-sizes has the potential to dramatically 
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improve researchers and practitioners access to grain-size information. This article 

presented a framework that deconstructed these image-based methods into three principal 

tasks: surveying, photosieving, and geographic representation. Comparisons among 

existing approaches to accomplishing these tasks was guided by a case study seeking 

observations of coarse sediment grain-sizes at patch, bar, and river segment scales on the 

upper Sandy River. The result was a proposed methodology that uses drone-based 

surveys to acquire near ground non-orthorectified images and derive their accurate 

locations and image-scales through a directly georeferenced SfM workflow. These 

images are then processed through PebbleCounts to obtain grain-size information. River-

scale and bar-scale geographic attributes are attached to each sample through a set of 

automated tools. This undertaking represents a step in the progression from methods 

development efforts to photosieving’s role as a useful tool for a wider range of river 

scientists.   
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CHAPTER III 

SOURCES OF COARSE SEDIMENT GRAIN-SIZE VARIABILITY ALONG THE 

UPPER SANDY RIVER 

1. Introduction 

The patterns and processes of fluvial grain-size sorting operate at spatial scales 

ranging from the river’s entire longitudinal profile to small clusters of grains (Powell, 

1998). At the scale of a few individual grains, size-dependent differences in inertia lead 

to pebble clusters when a single immobile clast leads to an upstream deposit of coarse 

bedload and a downstream deposit of fine material (Richards and Clifford, 1991). 

Channel width scale bedforms, such as a gravel bar, exert topographic control over the 

flow structure leading to sediment sorting (Ashworth, 1996). At the channel length scale 

of an entire stream or river, the exponential downstream decrease in grain-size arises 

from size selective transport and abrasion processes. The interdependencies among the 

patterns and processes of sediment sorting across these spatial scales are poorly 

understood (Powell, 1998) despite the importance of the distribution of sediment for 

shaping channel morphology, flow hydraulics, and sediment transport regimes. 

Our limited ability to observe grain-size patterns across these spatial scales is an 

obstacle to the continued development of our understanding of their relationships with 

other morphological descriptors such as channel width and slope. Traditional surveying 

methods such as Wolman counts provide detailed information about grain-sizes in a 

particular location, but the labor requirements prevent the use of field surveys for 

producing multiscale grain-size datasets capable of revealing interactions among the 

scales of sediment sorting. Recent advancements in grain-size remote sensing techniques 

present an opportunity to collect sedimentological information from the patch to river 

segment scale (see Chapter 2). Below, I argue that these innovations in grain-size data 

collection are tied to opportunities to advance our explanations of the physical processes 

of sediment transport as well as our conceptual frameworks for relating local to 

catchment scale geomorphic information. Next, I present a multiscale grain-size map on a 

12 km segment of the upper Sandy River in Oregon, USA and answer the following 
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research question: What are the sources of grain-size variability at patch, bar, and river 

segment scales along the upper Sandy River? 

1.1. Implications of Multiscale Grain-Size Mapping 

Previous research relating downstream fining with physical explanations of 

sediment transport provides a useful example of the potential for grain-size patterns at 

one scale (i.e. channel length) to improve our understanding of fluvial processes. A 

prominent physical explanation for the relationship between sediment grain-size and 

entrainment is the equal mobility hypothesis, which is based on field observations and 

quantitative models. Equal mobility states that all grain-sizes within a mixture are 

transported at the same rate (Parker and Klingeman, 1982; Parker and Dhamothoran, 

1982), which is contrary to size-selective transport in which finer grains are more easily 

transported than coarser grains. The ensuing debate regarding equal mobility versus size-

selective transport led to the recognition that many observed downstream fining rates 

cannot be explained by abrasion alone – a strong argument against the equal mobility 

hypothesis (Powell, 1998).  

Paola and Seal (1995) addressed the seeming contradiction between the concept 

of equal mobility for sediment entrainment and systematic downstream fining by 

showing mathematically that equal mobility can in fact produce downstream fining when 

the bed texture is considered as a mosaic of heterogeneous ‘patches’ instead of a spatially 

homogeneous grain-size mixture. They argued that equal mobility can be satisfied within 

each patch, and that coarser patches with larger median grain-sizes are transported at 

lower rates than finer patches. In an accompanying empirical study, they confirmed that 

this model sufficiently accounts for field observations of downstream fining on the North 

Fork Toutle River (Seal and Paola, 1995). This advance to our understanding of fluvial 

process was facilitated by observations of the systematic pattern of downstream fining, 

which illustrates the utility of empirical datasets in driving forward fluvial theory by 

forcing physical explanations to reproduce the patterns observed in actual rivers.  

Given the traditional limitation in collecting high resolution grain-size 

measurements across vast spatial extents, it is worth questioning whether systematic 
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grain-size sorting patterns within river systems have gone unnoticed. Advancements to 

fluvial remote sensing techniques have allowed researchers to capture high resolution 

information at larger areas (e.g. Fonstad and Marcus, 2010; Dietrich, 2016; Zettler-Mann 

and Fonstad, 2020). These surveying developments enable data-driven approaches for 

researching fluvial form and process (Fonstad and Zettler-Mann, 2020), which may 

uncover systematic patterns – or geomorphic signals – that can inform theories of 

physical processes such as sediment transport and channel development.  

Multiscale observations of river environments allow researchers to engage with 

the complexity within river environments, rather than smoothing over local heterogeneity 

in favor of capturing larger extents or conducting intensive analyses at local scales. This 

presents another application of fluvial remote sensing: novel evaluations of our 

conceptual frameworks for relating geomorphic information across scales such as 

downstream hydraulic geometry, the river continuum concept, sediment links, and the 

process domains concept. Fonstad and Marcus (2010) introduced the importance of 

multiscale data for identifying patterns and comparing fluvial models. Zettler-Mann and 

Fonstad (2020) leveraged this approach to evaluate the utility of the sediment links 

concept for explaining downstream patterns on the Rogue River. Their work shows that 

our geomorphic questions and theories reflect our observational techniques, and recent 

advancements to surveying methods present a continued opportunity to advance our 

understanding of river form and process (Fonstad and Zettler-Mann, 2020).  

In this article, I focus specifically on mapping coarse sediment grain-size 

variability within gravel bars and across a 12 km river segment. Although admittedly 

limited in the representation of components of a river system, measuring patterns in 

grain-sizes is commonly employed to characterize important fluvial patterns and 

processes such as local versus upstream controls on sediment supply, salmonid habitat, 

and downstream fining rates. Fonstad and Zettler-Mann (2020) raise questions about the 

implications of our particle size sampling techniques, such as identifying beforehand the 

sample spacing necessary to capture the patterns of sediment sorting that are important 

for understanding processes of interest including habitat suitability and channel 

development. Below, I apply a set of methods capable of capturing high resolution and 
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precision grain-size data across a large extent of the upper Sandy River and leverage the 

resulting dataset to analyze grain-size variability at river segment and gravel bar scales 

and suggest potential morphological sources of the observed variability. 

2. Methods: Grain-Size Map Production 

The desired dataset consists of observations of patch scale coarse sediment grain-

size distributions across gravel bars within a 12 km reach of the upper Sandy River. The 

term ‘patch’ is used in this study to describe the spatial extent of individual samples 

similar to Chardon et al. (2020), rather than its traditional use as a synonym for grain-size 

facies in reference to discrete zones on the bed surface of varying area that are 

distinguished by researchers based on a characteristic grain-size (e.g. Buffington and 

Montgomery, 1999). Along with grain-size percentiles, each observation should include 

multi-scale geographic attributes that convey the sample’s location within a gravel bar 

and the river system, as well as geomorphic metrics such as channel width and slope. The 

methods for producing such a dataset are dependent on a remote sensing approach using 

images to locate samples and estimate grain-sizes. Previous work (Chapter 2) 

investigating the suitability of image-based grain-size surveying and measurement 

techniques for creating such a multi-scale grain-size map of coarse sediment suggested 

combining drone-based images, directly georeferenced structure from motion (SfM) to 

obtain accurate image locations and resolutions, and the PebbleCounts photosieving 

software for estimating grain-sizes from the non-orthorectified images. This section 

describes the application of this approach to the upper Sandy and introduces a few 

efficient methods for characterizing each grain-size sample’s basic morphological setting. 

2.1. Study Area 

The upper Sandy River (Figure 11) drains the flanks of Mt. Hood in northern 

Oregon, USA and is characterized by its steep valley, large floods, and abundant 

sediment. The natural river dynamics are defined by its geomorphic history including 

glacier activity that carved the valley from volcanic bedrock, and volcanic emissions 

from Mt. Hood that have deposited masses of ash and rock fragments into the valley 

bottom (Cameron and Pringle, 1986; Handelman et al., 2014). The Timberline Lahar 
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1,700 years ago and the Old Maid Lahar 200 years ago introduced incredible volumes of 

sediment ranging from sand to boulders, forcing the Sandy River to readjust its form 

through incision, lateral migration, channel widening, and avulsions. These adjustments 

have organized sediment into gravel bars, which continue to develop during high flows 

today. The growth and erosion of these bars plan a central role in driving channel 

adjustments and sediment transport rates (Handelman et al., 2014).  

The adjustments described above are punctuated rather than continuous – usually 

driven by flood events. High magnitude flows interact with the sediment within the 

channel as well as the unconsolidated and easily erodible lahar deposits that form much 

of the river bank. A 250-year flood occurred in 1964 that devastated nearby communities 

as it destroyed roads, bridges, and entire neighborhoods. More recently, a 40-year flood 

in 2011 caused significant damage to infrastructure along the upper Sandy. These events 

have caused nearby communities to seek an understanding of the natural river dynamics 

and its relation to channel migration hazards and salmonid habitat. Ongoing restoration 

efforts organized by the Sandy River Watershed Council focus on buffering development 

from the river channel to provide room for channel migration and avulsions and 

reconnecting floodplains and side channels to improve habitat while dissipating the 

river’s energy (Handelman et al., 2014).  

The downstream boundary of the study site drains 318.6 km2 of forested (87% 

forest cover) and steep terrain. The average channel slope within the 12 km study 

segment is 0.013 m/m and the average active channel width is 40 m. The area receives a 

mean annual precipitation of 97.4 with additional streamflow generated from glacier melt 

on Mt. Hood during the warm season. Elevation above sea level ranges from 

approximately 460 m at the upstream boundary of the study site to 300 m. The watershed 

contains very little human development, however the infrastructure and developed 

properties that do exist are in relatively close proximity to the river corridor.  



38 
 

 

Figure 11: A map of the study site on the Upper Sandy River, Oregon, USA. 

2.2. Image Acquisition 

Fieldwork was conducted during multiple trips to the upper Sandy River between 

August 15, 2020 and September 10, 2020. Figure 12 shows the hydrograph 

approximately 20 km downstream of the study site for the 2020 water year. The field 

season is marked by the red box, which indicates that images were collected during the 

lowest flows of the year and with the greatest area on gravel bars exposed. 

Drone-based surveys were conducted for individual gravel bars following the 

protocol presented by (Carbonneau and Dietrich, 2017) for directly georeferenced (DG) 

SfM photogrammetric surveys. I followed a protocol by Carbonneau et al. (2018) to 

extend this DG workflow to include non-overlapping near ground images designated for 

photosieving. SfM processing was used to calibrate the altitude above ground level 

(AGL) and image scale for these individual images within the photogrammetric block. 

This DG workflow enabled efficient field surveys by predicting the scale of individual 

images within 3% and survey sites (e.g. gravel bars) within 1% without any calibration in 

the field (Carbonneau et al., 2018). 
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Figure 12: Hydrograph for Water Year 2020 at the USGS operated gage downstream of 

the study site. The time span for fieldwork is marked by the red box. 

Previous work on SfM for geomorphic mapping shows that multiple camera 

heights and convergent imagery can mitigate systematic error in mapping products 

(Fonstad et al., 2013). For each gravel bar survey, nadir imagery was collected from 18 m 

AGL using automated flight plans and image intervals in the Litchi application 

specifically designed to produce 80% forward overlap and 50% sidelaps. Images were 

also acquired from 60 m AGL at 30 degrees off-nadir using manual flight operations in 

order to avoid collisions with the tall vegetation canopy within the study site. These 60 m 

AGL images were positioned to converge on the study site and overlap with the 18 m 

nadir images. In addition to these higher altitude photos, near-ground images at 3 m AGL 

were acquired to provide millimeter scale high-resolution images suitable for delineating 

grains in the photosieving process. The near-ground images were non-overlapping for 

more efficient surveying. 

2.3. Obtaining Image Location and Resolution  

Multiple gravel bars were surveyed on each day of fieldwork, so a data 
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management strategy was required to ensure that the correct images were grouped into 

SfM projects. Each gravel bar was assigned a unique name (e.g. ‘A’, ‘B’, ‘C’, etc.), 

which was used to organize image processing. Timestamps were recorded in the field 

upon the beginning and end of the survey of each gravel bar. In the evening, these 

timestamps were used to sort images into unique folders for each gravel bar and rename 

image files. For example, an image taken of Bar ‘C’ named ‘DJI_0001’ was renamed to 

‘C_DJI_0001.’ Due to the large number of files, the image renaming process was 

automated. 

2.3.1. Structure from Motion Processing 

Each gravel bar was processed as an independent project in Agisoft Metashape 

using the collection of the 60 m, 18 m, and 3 m images. The objective of SfM processing 

was to produce the necessary ingredients for calculating an accurate image scale for the 

non-orthorectified near ground images: an orthophoto, a DEM, and the aligned camera 

locations for all images. A standard SfM processing workflow described by Carbonneau 

et al. (2018) was used for each project to align cameras and build dense clouds, 

orthomosaics, and DEMs. The orthophotos and DEMs were exported as GeoTIFFs from 

Agisoft Metashape and imported into ArcGIS Pro. Camera locations for all images (3m, 

18 m, 60 m) were exported as Extensible Markup Language (xml) files into a common 

folder. A Python script was written to parse each of these xml files and concatenate every 

individual’s unique label, latitude, longitude, and elevation into a single camera location 

data matrix. 

2.3.2. Image-scale calculation  

Converting the photosieved grain-size measurements in pixels to metric units 

requires accurate image scales in mm per pixel. The camera specifications such as field 

of view, focal length, and image size were known entities, however the camera’s altitude 

AGL at the time of image acquisition must be calculated using the camera locations and 

DEMs exported from Agisoft Metashape. Every DEM raster pixel value that corresponds 

with a camera location was sampled and attached to that camera’s label using the ‘Extract 

Values to Points’ tool in ArcGIS Pro. A Python script automated the task of matching bar 
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elevations to the corresponding image in the matrix of camera location information. This 

script also calculated the camera’s altitude AGL by subtracting the bar elevation from the 

camera elevation for each image. The image resolution was also calculated using the 

camera specifications and the altitude AGL. Lastly the script copied all image files with 

an altitude AGL less than 4 m from the original individual bar folders to a new folder 

consisting of only the high-resolution images designated for photosieving. 

2.4. Grain-Size Attributes 

Photosieving in PebbleCounts requires commandline arguments to designate 

image file locations and resolution among other settings described by Purinton and 

Brookhagen (2019). Given PebbleCounts’ significant processing time of 5-10 minutes 

per image, I automated the production of the commandline arguments for each image for 

the sake of efficiency. A new Python script looped through every high-resolution image 

to write its unique commandline argument that can easily be pasted into the terminal. 

PebbleCounts was run in accordance with the accompanying manual available for 

download at the PebbleCounts Github. Photosieving in PebbleCounts produces a matrix 

for each image (i.e. sample) in which rows represent individual grains and columns 

provide measurements such as a and b axes measured in both pixels and meters. The only 

alteration to the algorithm was a change to the output file location, so the matrices of 

grain-size measurements stored in csv files were all written to the same folder and named 

using each image’s unique label. 

Comparisons among each of the 463 samples depend upon a common description 

of the grain-size distribution that can be stored in a single matrix. A newly developed 

automated tool looped through each PebbleCounts output matrix to remove any grains 

smaller than 16 mm and calculate the following percentiles: D5, D10, D16, D25, D50, D75, 

D84, D90, D95. These percentiles were calculated in both millimeters and psi (𝑝𝑠𝑖 =

−𝑝ℎ𝑖 = 𝑙𝑜𝑔2𝑚𝑚). The script also merged each sample’s unique label and percentiles 

into a single row within a master grain-size matrix. 

2.5. Geographic Attributes 

Although each sample covers an area of approximately one square meter, their 
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geographic locations are represented as points based on the latitude and longitude 

recorded by the drone GPS upon image acquisition and corrected during SfM processing. 

Representing each sample’s location involves leveraging the latitude and longitude 

coordinates exported from Agisoft Metashape to obtain samples’ river-scale and bar-scale 

coordinates. I automated a process to parse the latitude and longitude coordinates from 

their individual xml files and merge these coordinates into a single csv file, which I 

subsequently projected to a UTM coordinate system. The remainder of the geographic 

transformations utilized these UTM coordinates. Table 1 shows the geographic attributes 

attached to each sample and the process for producing those attributes are described 

below.  

Table 4: Geographic attributes attached to each grain-size sample and its associated 

spatial scale. 

Attribute Abbreviation Scale 

Latitude Lat Global 

Longitude Lon Global 

X (UTM) X Global 

Y (UTM) Y Global 

Distance Downstream Ds River 

Cross Stream Xs River 

Bar Name Bar Bar 

Distance Downbar Db_dist Bar 

Normalized Distance Downbar Db_norm Bar 

Distance from Bar Edge Edge_dist Bar 

 

2.5.1. River Scale Locational Attributes: Channel-fitted Coordinate System 

The channel-fitted coordinate system presented by Legleiter and Kyriakidis 

(2006) and described in Chapter 2 represents points based on their streamwise (s) and 

stream-normal (n) positions relative to a defined channel centerline. The transformation 

from UTM (x, y) locations to channel-fitted (s, n) coordinates requires a csv file 

containing the UTM coordinates of regularly spaced points along the centerline. To 
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produce this file, the channel centerline was manually digitized in ArcGIS Pro based on 

National Aerial Imagery Program (NAIP) imagery acquired in July 2020 at a consistent 

scale of 1:2,000. Decisions for defining the channel centerline were not significant factors 

in this study as changes in the centerline’s path through time are not part of the analysis. 

Nevertheless, I defined the centerline based on the dominant low flow channel, 

determined by channel width and experience floating the channel during fieldwork. 

Figure 13 shows the digitized centerline over the 2020 NAIP imagery across a reach with 

multiple low flow channels. The UTM (x, y) coordinates for points spaced every 1 m 

along the digitized centerline were exported from ArcGIS Pro as a csv file. This file and a 

matrix of grain-size sample labels with their UTM (x, y) coordinates comprised the two 

inputs to a Python script (Dietrich, 2019) to automate this transformation using the 

default transformation parameters aside from setting rMax to 50, which is the maximum 

perpendicular distance in meters from the centerline that the code will search for points.  

The output of the coordinate transformation was a matrix in which each row 

represented an individual grain size sample with the following attributes: label, x, y, s, n. 

The (s, n) coordinates provide a simple representation of the location of each patch 

sampled within the river system. The s coordinate reveals the downstream distance from 

the study area’s upstream boundary to a given sample, while the n coordinate provides 

the sample’s cross stream distance from the digitized centerline.  

2.5.2. Bar Scale Locational Attributes 

All samples included in the study are associated with one of 33 gravel bars. A 

sample’s location within this bar is described by its distance down bar and its distance 

from the bar edge. I used methods analogous to calculating samples’ downstream 

distance to identify the downbar distance by replacing the channel centerline with a 

digitized bar centerline in the channel-fitted transformation. I processed each gravel bar 

separately using its unique centerline and the associated samples’ (x, y) coordinates. The 

output of these transformations provides the sample’s downbar distance. In order to make 

comparisons among gravel bars of varying size, the downbar distance attribute was used 

to calculate downbar normalized using Equation 1 where dn is downbar normalized, db is 



44 
 

downbar distance, and b is the bar’s total length measured from head to tail: 

(1)  𝑑𝑛 =
𝑑𝑏

𝑏
 

Bar edge distance was measured using a digitized boundary between each bar’s exposed 

surface and the water’s edge. I developed an automated tool to measure the minimum 

Euclidean distance between every within a bar sample and the digitized boundary. I 

attached these bar-scale attributes to the master data matrix based on the unique label for 

each grain-size sample to produce associations between grain-size percentiles and bar and 

river-scale geographic attributes. 

2.6. Morphological Attributes 

I extended the dataset to provide basic information regarding the morphologic 

setting using commonly available datasets such as aerial imagery and large-scale 

topography. Below, the local active channel width and reach-scale water surface slope are 

quantified and attached to each grain-size sample. These attributes were chosen based on 

their physical connection to grain size, data availability, and potential for automating 

their measurement for each sample. 

2.6.1. Active Channel Width 

Active channel width quantifies the area that is undergoing fairly regular bed reworking 

(i.e. sediment transport) by measuring the width of the unvegetated floodplain 

perpendicular to the channel centerline (see Figure 13). The assumption underlying this 

measurement is that the influence of bed reworking prevents riparian vegetation from 

colonizing these areas, and vegetated portions of the floodplain are included in the active 

channel in areas where they separate active channels (East et al., 2017; O’Connor et al., 

2003). The active channel widths were manually measured at 70 m intervals (roughly two 

channel widths) along the channel centerline using 2020 NAIP imagery. Figure 13 

provides a visual key for the determination of active flow zones. 
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The active channel width for a given grain-size sample was calculated using the 

two nearest transects as shown in Figure 14. The equation within the image calculates the 

weighted average of the upstream and downstream channel width measurements. The 

weights are based on the sample’s distance from each transect. To automate this 

calculation, the (x, y) locations for each transect’s intersection with the channel centerline 

were first transformed to the channel-fitted coordinate system. A new Python script 

automated the active channel width calculation using the master grain-size matrix as well 

as the transect downstream locations and widths. The script also attached the resulting 

width as a column in the master matrix. 

Figure 13: Examples of centerline (blue) and transects (orange) 

measuring the active channel width in multi-threaded reaches. 
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Figure 14: Diagram of the method for interpolating the active channel widths for each 

grain-size sample from the transect measurements. 

2.6.2. Slope 

A longitudinal profile is a prerequisite for attaching the slope attribute for each grain-

size sample. A LiDAR-derived DEM available through Oregon’s Department of Geology 

and Mineral Industries (DOGAMI) provided the topographic information to produce the 

longitudinal profile. The LiDAR survey took place in 2011 shortly after a 40-year flood 

event, which gave rise to the most recent major reconfiguration of channel morphology 

on the upper Sandy River. The longitudinal profile in this study used the water surface 

elevation due to the near-infrared (NIR) LiDAR survey, which is not capable of 

accurately measuring channel bathymetry on the Upper Sandy. The primary concern in 

using the 2020 centerline was the possibility that changes to the river channel over the 

preceding nine years could cause the digitized path to lie outside of the channel in the 
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2011 DEM. In this case the longitudinal profile would reflect bank and floodplain 

topography rather than the water surface. In order to determine whether the use of a 2011 

topographic survey was appropriate for relating water surface slopes to the 2020 grain 

size samples, I produced and compared two longitudinal profiles. The first profile was 

derived solely from the 2011 LiDAR survey using the procedure described by Cavalli et 

al. (2008): 

1. Remove local depressions using the ‘Fill’ tool in ArcGIS Pro. 

2. Determine flow directions using the D8 algorithm within the Flow Direction tool 

in ArcGIS Pro. 

3. Calculate the number of contributing cells using the ‘Flow Accumulation’ tool in 

ArcGIS Pro, and then reclassify the output raster using a constant threshold to 

distinguish the stream network. 

4. Convert the stream cells tool to a polyline using the ‘Stream to Feature’ tool. 

5. Generate points spaced every 1 m along the stream polyline and use their 

elevation on the DEM to produce the longitudinal profile. 

The second longitudinal profile was produced using the same DEM and the low flow 

centerline digitized based on the 2020 NAIP imagery. Figure 15 shows a comparison of 

the DEM-derived path and the NAIP-derived path. I visually inspected these two paths 

with the 2011 DEM and hillshade layers at a scale of 1:1200 (Figure 15) across the entire 

study area in search of locations where the 2020 centerline deviates from the 2011 

channel water surface. With no significant deviations, I moved forward using the 2020 

centerline to produce the longitudinal profile (Figure 16) for the purpose of compatibility 

with the downstream distances associated with each grain-size sample.   
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Figure 15: Comparison of the channel centerline derived from the 2011 LiDAR survey 

and from manually digitizing the dominant low-flow channel from 2020 NAIP imagery. 

I transformed the (x, y, z) coordinates for evenly spaced points along the channel 

centerline to the channel-fitted coordinate system to produce (s, n, z) points. The resulting 

s-coordinates represent the distance downstream, the n-coordinates are all equal to zero, 

and the z-coordinates remain unchanged. The longitudinal profile shown in Figure 16 is a 

plot of the z (elevation) vs. s (streamwise) coordinates. 

 

 
Figure 16: Longitudinal profile of the study site. 
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The use of water surface elevations for developing a one-dimensional longitudinal 

profile as well as the likelihood of morphologic adjustments during the nine-year span 

between the topographic and grain-size surveys prevent the characterization of local 

slopes in the immediate area surrounding each grain-size sample. Instead, slopes were 

calculated using points on the channel centerline located 50 m upstream and downstream 

from each sample. Again, I automated this calculation and attached the results to each 

sample in the master grain-size matrix. 

2.7. Multi-Scale Grain-Size Map 

This grain-size mapping effort produced a dataset of 463 observations of patch-

scale grain-size distributions associated with geographic topological attributes and 

channel morphology metrics. Table 5 provides a description of the grain-size, geographic, 

and morphological attributes attached to each sample. The distribution of the samples 

within the study area is displayed in Figure 17, along with examples of the available 

grain-size information available at the bar and patch scales.  

Table 5: Attribute descriptions for each grain-size sample within the dataset. 

Attribute Description 
Label Unique to each sample based on bar name and original image file. 

Grain-Size Percentiles 

(mm) 

D5, D10, D16, D25, D50, D75, D84, D90, D95 calculated from PebbleCounts 

outputs with a 16 mm lower truncation 

Grain-Size Percentiles 

(psi) 

D5, D10, D16, D25, D50, D75, D84, D90, D95 calculated from PebbleCounts 

outputs with a 4 psi lower truncation 

Latitude GPS coordinates exported from Agisoft Metashape 

Longitude GPS coordinates exported from Agisoft Metashape 

X Location coordinates projected to the UTM coordinate system 

Y Location coordinates projected to the UTM coordinate system 

Bar Delineates the bar from which the sample was obtained 

Distance Downstream (m) Distance in meters downstream along the channel centerline from the 

upstream boundary of the study area 

Cross Stream (m) Distance from the channel centerline 

Distance Downbar (m) Distance in the downstream direction from the bar head 

Distance from Edge (m) Shortest distance from the bar edge 

Active Channel Width (m) Width of the active flow zone interpreted from aerial imagery 

Slope Water surface slope of the 200 m surrounding the sample 

Bar Type Classified bar morphology based on Charlton (2007). 
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Figure 17: Multiscale grain-size information mapped in the upper Sandy River 

3. Grain-Size Sorting  

The dataset above enables quantitative descriptions of sediment sorting and its 

relation to channel morphology throughout the study area. Two general statistical 

approaches are employed to describe the sources of grain-size variability. The first is to 

compare the distribution of grain-sizes among different groups of samples based on 

geographic and morphological attributes such as bar membership and bar-scale position. 

The underlying objective of these statistical analyses, such as analysis of variance 

(ANOVA) and Bartlett’s test, is to determine whether our knowledge of a given attribute 

should influence our expectation of that sample’s grain-size. The second category of 

statistical approaches includes various regression analyses, which follow the conceptual 

model that grain-size = predictable component + noise, in which the predictable 

component is derived from geographic and morphological information about the samples, 

such as streamwise position or active channel width. The significance of the relationship 

between grain-size and the predictor variable of interest can be described by regression 

outputs that reflect the ratio of signal (i.e. predictability) vs. noise in grain-size response. 
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My analysis uses the psi grain-size scale instead of millimeters due to the long-

tailed distribution of metric b-axis lengths (Figure 18). The conversion from mm to psi 

(𝑝𝑠𝑖 = 𝑙𝑜𝑔2𝑚𝑚) is important because many of the statistical techniques used here 

assume that the response values are normally-distributed.   

 

Figure 18: Comparison of D84 histograms for grain-sizes measured in millimeters (left) 

and psi (right). 

3.1. Downstream Grain-Size Variability 

Downstream sediment sorting patterns can be evaluated through grain-size 

response to downstream distance. It is important to note that specific regression 

techniques analyze different aspects of the relationship between grain-size and 

downstream distance. For example, the following hypotheses make different statements 

regarding downstream grain-size sorting:  

H1: Grain-sizes will decrease in the downstream direction. 

H2: Grain-sizes are autocorrelated with upstream observations of grain-size. 

H1 refers to a global relationship among grain-size and streamwise position, while H2 

seeks an understanding of local relationships throughout the study area. A global 

statistical analysis, such as OLS linear regression, defines a relationship by drawing a 

curve that is optimized while considering the entire dataset. This approach lends itself to 

understanding patterns such as downstream fining, and therefore the significance of the 

relationship produced by a linear regression between grain-size and downstream distance 

is used to test H1.  
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Nonparametric regression takes an alternate approach by re-calculating the local 

relationships between response and predictor variables with a moving window throughout 

the dataset, which is most commonly seen through scatter-diagram smoothing. The 

relationship produced by nonparametric regression is formed without initial assumptions 

of the overall form of the relationship and the resulting ratio of signal from the smoothing 

component and noise reflects how similar nearby observations are relative to the entire 

population. Put differently, a smoothing curve drawn through a scatter plot of grain-size 

vs. downstream distance that does not offer a significant predictable component for grain-

size indicates that nearby grain-sizes are randomly distributed across the streamwise axis. 

The OLS regression among median grain-size and downstream distance employed 

to test H1 produced a slight yet statistically significant decrease in grain-size in the 

downstream direction. The slope indicates a median b-axis reduction of 0.2 

mm/kilometer within the study site. Despite the statistical significance, we should be 

wary of claiming that grain-size varies systematically with downstream position given the 

degree of precision of the photosieving methodology. Median grain-size is plotted against 

downstream position in Figure 19 with a red line representing the OLS regression.  

The general additive model (GAM) utilized to test H2 is analogous to the blue 

smoothing curve displayed in Figure 19. The GAM produced a p-value less than 2.2e-16, 

suggesting that median grain-size is significantly related to nearby samples. Although the 

GAM shows that grain-sizes vary with streamwise position, it fails to characterize the 

spatial scale at which patch-scale median b-axis length is related. Autocorrelation is 

oftentimes applied to time-series to investigate a variable’s association with its previous 

value. This approach has been extended to spatial autocorrelation to investigate how a 

variable is correlated with nearby observations while accounting for multiple spatial 

dimensions (i.e. x, y, z). Time-series autocorrelation methods turn out to be very 

applicable to H2 given the single streamwise dimension. Therefore, I tested the 

correlation of median grain-size with itself at various downstream lags (Figure 20). The 

results indicate that grain-size is serially correlated along the streamwise axis, but this 

effect degrades within 50 m. 
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Figure 19:  Median grain-size vs. downstream position. The red line visualizes the 

statistical approach of an OLS regression, and the blue curve reflects the general 

approach of the general additive model used to test H2. 

  

 

Figure 20: Correlogram of median grain-size at various downstream lags computed using 

a time-series autocorrelation. 
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3.2. Bar-scale Sorting 

The grain-size samples can be classified into groups based on bar membership 

and position within the bar head or bar tail, which enables statistical evaluations of the 

differences among these groups. Grain-size response to bar-scale location is evaluated 

across the entire dataset and within individual bars to address the following hypothesis: 

H3: Sediment grains are larger at bar heads compared to bar tails. 

The global relationship between D50 and downbar position is presented in Figure 21 

based on metric distance from the barhead (A), downbar distance normalized by the size 

of the bar (B), and through a comparison of the distribution of median grain-size 

classified by bar head and bar tail (C). The means are not significantly different based on 

an analysis of variance (F-Statistic = 0.468; P-Value = 0.494), however a Bartlett’s test 

shows that the variance of bar head median grain-size is significantly larger than bar tails 

(K2 = 24.397; P-value = 7.838e-07). Although the median bar head D50 is smaller than 

the median bar tail D50, visual inspection of Figure 21 A and B suggests that the coarsest 

grains within the river system are positioned at bar heads and that these coarsest samples 

decrease downbar.  

The validity of H3 was also evaluated on the basis of individual bars (Table 6). 

These results suggest significant variability in bar scale sorting among the 33 gravel bars. 

ANOVAs testing the differences among bar head and bar tail mean grain-sizes for each 

bar showed that 8 bars had significantly different head to tail grain-sizes. Bartlett tests 

examining differences in the variance of each group showed that 5 gravel bars had 

significantly different head to tail grain-size variance.  

Comparisons of grain-size variability within and among gravel bars (Figure 22) 

shows that the range of patch-scale median grain-sizes within some gravel bars are nearly 

equivalent to that observed within the entire study area. This result demonstrates the 

importance of local and bar scale sediment sorting processes within the upper Sandy 

River. It also likely reflects the distinct sediment supply regime that introduces a wide 
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range of sediment sizes into the river system.  

 

Figure 21: Median grain-size vs. downstream distance from the barhead (A); Median 

grain-size vs. downbar position normalized by gravel bar length (B); and boxplots 

comparing the D50 of patches located within bar heads and bar tails (C). 

 

Figure 22: Variability in patch scale median grain-size among gravel bars within the 

study area. 



56 
 

 

 

Table 6: Statistical descriptions of the differences in median grain-size with bar heads 

and bar tails for each individual gravel bar within the site. Four gravel bars did not have 

enough observations at the bar head or tail to conduct an ANOVA or Bartlett's test. 

Significant results are shown in bold. The fining rate is dimensionless and represents the 

inverse of the coefficient to multiply bar head grain-sizes to calculate bar tail grain-sizes. 

Positive fining rates indicate downbar fining and negative values indicate downbar 

coarsening. 

 

Bar Downstream 

Distance (m) 

Active 

Width 

(m) 

ANOVA 

F-

Statistic 

ANOVA 

P-value 

Bartlett 

K2 

Bartlett 

P-

value 

Bar head  

D50 

(mm) 

Bar tail  

D50 

(mm) 

Fining 

Rate 

C 66.09232 28.81838 0.711 0.488 2.5479 0.1104 69.89159 61.38765 0.121673 

D 577.5483 36.62233 0.149 0.705 3.7324 0.05337 64.97442 69.54361 -0.07032 

E 1476.522 37.39758 13.32 0.00446 0.13992 0.7084 198.1569 30.84887 0.844321 

F 1832.037 15.18182 0.63 0.511 2.7387 0.09794 103.3393 61.2274 0.407511 

G 1983.204 48.38453 3.931 0.0947 5.1298 0.02352 46.61987 26.09659 0.440226 

H 2068.053 52.63428 4.123 0.098 3.8181 0.0507 30.97705 50.95053 -0.64478 

I 2216.842 28.8779 NA NA NA NA 118.3623 38.11354 0.677993 

J 2466.575 32.76882 7.231 0.115 1.1908 0.2752 64.66913 101.9966 -0.57721 

K 2629.772 27.83181 322218 0.00112 1.1908 0.2752 79.25139 236.6353 -1.98588 

L 2720.813 26.5404 0.097 0.785 1.1908 0.2752 60.08445 77.91999 -0.29684 

M 2925.528 59.36405 12.75 0.00602 3.6607 0.05571 75.07654 29.15316 0.611687 

O 3785.176 57.54698 NA NA NA NA NA NA NA 

Q 4302.301 50.18533 0.915 0.393 5.9656 0.01459 93.07365 69.79232 0.250139 

R 4362.095 48.25068 1.496 0.249 0.96104 0.3269 30.63673 49.12401 -0.60344 

U 4832.218 101.6055 8.177 0.0126 4.7776 0.02883 28.15737 37.34541 -0.32631 

V 5000.303 116.5441 5.413 0.0335 1.2165 0.2701 25.53513 30.38834 -0.19006 

Y 5581.129 88.57917 0 0.988 1.0616 0.3029 23.41744 25.50088 -0.08897 

Z 5795.735 48.01631 0 0.995 2.1968 0.1383 33.51442 29.05291 0.133122 

BB 6704.195 48.96098 0.92 0.36 3.0606 0.08021 36.54966 41.36491 -0.13175 

EE 7204.153 74.78024 10.95 0.00187 0.03448 0.8527 34.71881 44.63558 -0.28563 

FF 7562.82 65.26251 0.125 0.73 0.11638 0.733 35.63752 30.48148 0.14468 

GG 7816.939 32.11673 5.393 0.0453 4.0037 0.0454 41.59098 24.34392 0.414683 

HH 8009.067 41.33461 1.53 0.247 0.35225 0.5528 43.29632 36.41578 0.158917 

II 8123.319 26.58445 NA NA NA NA 31.13431 58.19533 -0.86917 

JJ 8231.454 31.11721 0.415 0.548 0.98145 0.3218 66.21334 70.26004 -0.06112 

KK 8707.817 22.88421 NA NA NA NA 33.65978 45.05315 -0.33849 

LL 9205.764 18.18441 2.012 0.292 0.4113 0.5213 85.56115 58.39336 0.317525 

QQ 9649.259 19.11581 1.124 0.349 0.87284 0.3502 68.87536 61.46793 0.107548 

RR1 9929.454 34.81914 15.83 0.0073 0.20347 0.6519 129.68 54.14377 0.582482 

RR2 10123.35 35.93316 12.07 0.0178 5.4725 0.01932 70.61797 43.88292 0.378587 

SS 10255.43 44.39034 4.647 0.164 0.41811 0.5179 69.06307 59.31634 0.141128 

UUVV 10391.78 42.63297 0.417 0.536 0.91338 0.3392 33.77976 43.59357 -0.29052 
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3.3. Morphological Sources of Grain-Size Variability 

Due to the long-tailed distribution of active channel widths (Figure 23), the 

logarithm of channel widths is used to evaluate the following hypothesis: 

H4:  Grain-sizes are negatively correlated with active channel width. 

Grain-size varies significantly (decreases) with channel width based on an OLS linear 

regression, which produced an F-statistic of 77.97, a p-value less than 2.2e-16, and an 

r2=0.1441. There is significant variability in median grain-size within a given channel 

width, and particularly for narrow reaches (Figure 24). Visualizing the downbar position 

of each sample reveals that bar-scale location is a source of variability in the grain-size 

response to channel width (Figure 24). An additional OLS regression between median 

grain-size and active channel width for samples located at bar heads produced an F-

statistic of 87.49, a p-value less than 2.2e-16, and an r2=0.3606. Active channel width 

may play a leading role in driving the downstream grain-size autocorrelation (Figure 20) 

since nearby observations are likely within similar channel conditions. Visualizing active 

channel width within the plot of grain-size vs. downstream distance shows the strong 

relationship between downstream patterns in grain-size and channel width (Figure 25).  

 

Figure 23: Histogram of the channel width at 

each grain-size sample location. 
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Figure 24: D84 vs. the active channel width for all samples within the study area. 

Downbar position is represented by sample colors. The purple line is fitted to samples 

located at the bar head and the orange line is fitted to bar tail samples. 

 

Figure 25: A multivariate plot showing D84 response to downstream position and 

channel width showing the importance of local channel morphology in driving 

downstream grain-size patterns. 
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4. Discussion 

The results from Section 3 describe associations among grain-size, geomorphic 

attributes, and geographic position within the study area. The aim of this discussion is to 

leverage these associations to examine the sources of sediment grain-size variability in 

the Upper Sandy River and situate the results within the context of conceptual models of 

local versus upstream influences on sediment sorting. I focus on downstream grain-size 

patterns, the importance of active channel width, and bar-scale variability to discuss the 

implications of multiscale grain-size mapping in addressing the fundamental relationship 

between local grain-sizes and systematic patterns.  

4.1. Surveying Limitations and Advantages 

 Characterizing the influence of the sampling strategy on the results is a 

prerequisite for the following interpretations regarding fluvial form and process. 

Comparisons between grain-size distributions measured through standard techniques such 

as the Wolman pebble count (Wolman, 1954) and an individual sample in this study are 

not appropriate due to the small areal extent for each sample survey. The sampling 

strategy was appropriate for this study given the explicit goal of comparing the spatial 

grain-size patterns at multiple scales within the study area. In order to produce a grain-

size distribution that is comparable to other studies or other rivers, nearby samples would 

need to be aggregated to increase the sampling area following guidelines for areal 

sediment size surveying (Bunte and Abt, 2001). While this limits comparisons from 

individual samples in this dataset to grain-size distributions calculated elsewhere, future 

research could compare distributions calculated by aggregating patch-scale photosieved 

samples with traditional techniques. 

 The small sampling area likely contributes to the significant scatter shown within 

the results (e.g. Figures 22 and 25) since the grain-size distribution is calculated from 

relatively few grains positioned within a smaller spatial extent compared to traditional 

techniques. The scatter turns out to be one of the most interesting results of this study as 

it provides a distinct description of sediment within riverscapes when compared to 

standard grain-size measurement techniques. The impression of standard grain-size 
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distributions is that the percentiles of interest, such as median b-axis length, are 

characteristic of the grain-sizes throughout the sampling area. These results show that for 

the Upper Sandy this assumption is better suited to wider reaches with well sorted 

sediment (e.g. 4500-7500 m downstream in Figure 25), while the majority of the study 

site shows significant spread in the data within small areas such as an individual gravel 

bar (e.g. Figure 22).  

4.2. Downstream Grain-Size Variability 

The relationship between downstream position and fluvial physical features such 

as grain-size contextualizes observations at particular locations within larger extents. The 

River Continuum Concept (RCC) and Process Domains Concept (PDC) are two 

competing theoretical frameworks for defining the relationships among scales of 

geomorphic information. They share the approach of explaining local forms as a product 

of larger scale processes. Below, I discuss the implications of my results for H1 and H2 

for the application of the RCC and PDC to understanding the Upper Sandy River. 

The RCC is a multi-scalar hypothesis that describes a downstream continuous 

gradient of a river system’s physical features (Vannote, 1980). The RCC is organized by 

dynamic equilibrium and sees rivers as adjusting towards a mean state, with deviations 

being caused by external factors such as geologic controls or disturbances. This focus on 

continuous downstream variations in channel morphology is based on downstream 

hydraulic geometry (DHG) (Leopold and Maddock, 1953). Downstream fining is a well-

observed systematic pattern of sediment sorting at the channel length scale that reflects 

the application of the downstream continuum conception of fluvial systems to the grain-

size variable. From this perspective, grain-size at a particular location is explained based 

on its position within a downstream fining sequence. Selective entrainment and 

deposition as well as abrasion are the physical processes behind downstream fining. 

Researchers have acknowledged that local processes may ‘disrupt’ these longitudinal 

patterns. Grain-size specific efforts to reconcile the influence of local conditions with 

systematic downstream fining led to amendments to downstream sediment sorting such 

as the Sediment Links Concept (Rice, 1998; Rice, 1999), which incorporates the effect of 
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lateral sediment sources into downstream grain-size patterns. Zettler-Mann and Fonstad 

(2020) used similar but more extensive drone-based grain-size remote sensing to evaluate 

the Sediment Links Concept on the Rogue River; however, the extent of the current 

study’s multiscale grain-size map is too small to reveal a downstream fining sequence 

and the effect of lateral sediment sources such as hillslopes and tributaries. Instead, the 

resolution of the dataset lends itself to evaluating the sources of downstream variations in 

grain-sizes within the study area without a specific focus on fining sequences. 

The longitudinal plot of grain-sizes in Figure 19 shows a distinct 3 km zone from 

4500 m to 7500 m in which grain-sizes are smaller than those observed upstream and 

downstream. Figure 25 shows that this departure from the downstream trend is associated 

with a significantly wider active channel. While the sediment links concept seeks an 

explanation for disruptions to downstream fining where lateral sediment inputs produce a 

sudden increase in grain-sizes, these results suggest that systematic downstream trends 

are also disrupted due to decreased flow competency in wide reaches.  

The PDC is an alternative approach that considers river forms within 

heterogeneous spatial zonations that are defined by a suite of geomorphic processes 

(Montgomery, 1999). In considering scale, Montgomery argues that regional 

characteristics including climate, geology, vegetation, and topography influence the 

process domain, which in turn determines the disturbance regime impacting the river 

corridor. From this vantage point, the physical features of the river system at a particular 

point have a range of variability that emerges from the disturbance regime – a stark 

contrast from the RCC’s vision of continuous downstream changes in river morphology 

that are periodically ‘disrupted’ by local conditions. 

This study’s multiscale grain-size mapping results have important implications for 

Montgomery’s proposed method for drawing process domain boundaries. The method 

suggests a hierarchical approach in which larger scale processes associated with tectonics 

and lithotopographic units allow the identification of discrete regions associated with 

geomorphic disturbance regimes (i.e. process domains). The spatially extensive 

observations of geomorphic variables such as grain-size may enable researchers to forego 
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the top-down hierarchical approach by defining process domain boundaries using 

geomorphic signals. Visual inspection of Figure 25 suggests a distinct process domain 

from 4500 m to 7500 m within the study area defined by decreased grain-sizes and 

increased active flow width. Continued advancements to riverscape mapping can enable 

bottom-up data driven analyses that use signal to noise ratios among hydrogeomorphic 

variables to reveal the spatially variable effect of large-scale process such as lithology. 

The results of this study do not suggest that either the RCC or PDC is a superior 

conceptual model for the upper Sandy river. Instead, the aim is to communicate how 

multiscale fluvial mapping can enhance our understanding of river environments within 

both of these theoretical frameworks. A future application of multiscale mapping is to 

support the application of complexity science to river environments. Both RCC and PDC 

describe fluvial forms at particular locations within the context of the constraints of larger 

scale patterns and processes such as downstream fining or lithology. Complexity science 

takes a different approach by seeking explanations of how simple and fundamental 

processes at much smaller scales combine and produce systematic patterns and behavior 

(Malanson, 1999). Much of complexity science focuses on computer simulations, 

however its relevance to real world places will depend upon empirical observations at the 

scales of fundamental processes and the emerging systematic patterns.  

4.3. Bar Scale Variability 

Variations in local flow patterns around coarse sediment grain clusters (Brayshaw 

et al., 1883) and gravel bars (Ashworth et al., 1996) lead to bar scale bed material sorting 

during transport. Sediment sorting at this scale may play an important role in producing 

downstream fining if bar heads trap coarse material and reduce its availability to 

downstream reaches (Rice and Church, 2010). Despite the recognition that within-bar 

grain-size variability may have implications for downstream fining, bed load transport, 

and channel hydraulics, there have been relatively few examinations of bar scale grain-

size sorting. Rice and Church (2010) examined grain-size variability within and among 

gravel bars on the Fraser River 50 km gravel reach. They found that individual bars 

contained on average 25% and up to 68% of the surface median grain-size range of the 
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entire study are. Figure 22 shows boxplots of the median grain-size distribution for 

individual bars within the Upper Sandy study site. The average range of patch-scale D50 

within these bars was 34% of the study site with a single bar hosting 91% of the range of 

the study area. This increase relative to the Fraser gravel reach is expected given the 

smaller study site on the Upper Sandy. Both studies demonstrate the limitations of 

downstream fining models for understanding grain-sizes at spatial extents less than this 

12 km study area given the impressive variability contained within bars. 

Rice and Church also examined sorting based on longitudinal position on gravel 

bars They found a 34% average head to tail decrease in median surface grain-size on their 

gravel bars, however this bar scale fining pattern decreased in the downstream distance 

due to a reduction in the size of the coarsest available grains. My bar scale sorting results 

in Table 3 suggest that longitudinal sorting is inconsistent – 14 of the 33 bars exhibited 

coarser bar tails than bar heads compared with 2 of 8 bars coarsening on the Fraser River. 

This variability in longitudinal bar scale sorting among gravel bars is a limitation to Rice 

and Church’s proposed model for estimating local grain-sizes based on an expression for 

downstream fining to predict bar head grain-sizes combined with the average down-bar 

fining rate to predict the local median grain-size. 

4.4. Grain-size association with active channel width 

The inverse scaling relationship between active channel width and median b-axis 

length (Figure 24) emerged as the most important source of grain-size variability within 

our study area, which was likely too small for downstream fining to exert a significant 

control over grain-size. The cause of this relationship remains an outstanding question, 

but two hypotheses emerge from the results. The first potential explanation is that spatial 

differences in the grain-size of external sediment sources such as riverbanks enabled 

channel widening to occur in specific locations. The second hypothesis is that channel 

widening occurred in particular locations because of differences in lateral channel 

constraints, which produced differences in flow hydraulics that drove sediment sorting. 

Future research on the size of subsurface sediment within the widest reaches and the 

upper Sandy floodplain, or studies investigating the cause of future channel development 
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and widening would be necessary to definitively decide among these hypotheses. 

The grain-size patterns within gravel bars and their relationship to channel width 

does provide insights into the role of flow hydraulics in sorting surface sediment. The 

active channel width variable is related to flow competence, which is the maximum 

transportable sediment grain-size through the channel at a given discharge (Charlton, 

2007). Wider channels generally have a lower hydraulic radius resulting in decreased 

hydraulic efficiency, bed shear stress, and flow competence. This physical interaction 

among channel form and sediment movement likely encourages the decrease in grain-

sizes associated with increased channel width throughout the study area. Channel width 

influences the median and variance of grain-sizes among patches. Specifically, narrow 

channels host the full range of grain-sizes observed in the study area while the coarsest 

patches do not occur in wide reaches (Figure 23). Given this result, what can explain the 

occurrence of coarse, medium, and fine patches within narrow channels?  

Bar-scale position is an important source of grain-size variability within narrow 

channels. Figure 24 shows that the coarsest patches in the river appear at bar heads in 

narrow channels and that bar head grain-sizes decrease with increased channel width, 

while bar tail grain-sizes are less responsive to variations in width. At first glance, this 

result appears to contradict the boxplot comparing the distribution of median grain-sizes 

at bar heads and bar tails showing a longer median b-axis length at bar tails (Figure 21c). 

These observations can be reconciled by considering the larger spread in the grain-size 

distribution at bar heads, which is attributable to the coarser maximum patch-scale grain-

size from samples located in narrow channels. The insignificant difference in median 

grain-size between bar heads and tails is likely due to the fact that bar tail grain-size is 

relatively unaffected by channel width leading to observed head to tail coarsening in wide 

channels (Table 6).  

The differential response to active channel width among bar heads and tails 

suggests that flow competence calculations from channel cross-section dimensions are 

more suitable to understanding surface grain-sizes at bar heads, while bar tails are more 

consistent across morphological conditions. One hypothesis is that bar tail grain-size 
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distributions are reflective of secondary flow and local scale hydraulics from eddies, 

while bar heads are related to primary flow parallel to the channel centerline that is more 

subject to change with differences in channel width. Future research should investigate 

the agreement between conceptual models of bar development and sediment mobility 

with the observed pattern showing that the systematic relationship among channel width 

and grain-size is modulated by bar scale position. 

5. Conclusions 

This study argues that multiscale observations of fluvial physical characteristics 

may reveal systematic patterns that enable more detailed analyses of our physical 

explanations for fluvial process as well as our conceptual models relating local conditions 

with downstream patterns. I mapped the distribution of coarse sediment within 33 gravel 

bars along the upper Sandy River and analyzed the grain-size variability at the river 

segment and bar scales in related to active channel width. The results showed that grain-

size was inversely correlated with channel width, but that this relationship was only 

significant for patches located at bar heads. Additionally, the results showed that local 

variability in some cases was nearly equivalent to the grain-size variability observed 

within the 12 km reach. This finding indicates that the application of downstream fining 

models may have limited application on the upper Sandy River at spatial extents smaller 

than approximately 1 km. 
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CHAPTER IV 

CONCLUSION 

Chapter 2 of this thesis addresses a methodological barrier to leveraging grain-size 

remote sensing techniques by presenting a methodological framework for image-based 

grain-size mapping. The framework describes the principal components photosieving. I 

outline the key decisions within the chain of grain-size map production and their 

implications for their resulting dataset. Given a set of research objectives for the upper 

Sandy River, I design a grain-size mapping protocol to efficiently survey grain-size 

variability within gravel bars and across a 12 km river segment.  

Chapter 3 argues that multiscale observations of fluvial physical characteristics 

may reveal systematic patterns that enable more detailed analyses of our physical 

explanations for fluvial process as well as our conceptual models relating local conditions 

with larger scale downstream patterns. I map the distribution of coarse sediment within 

33 gravel bars along the Upper Sandy River and analyze the grain-size variability at the 

river segment and bar scales in relation to active channel width. The results show that 

grain-size is inversely correlated with channel width, but that this relationship is only 

significant for patches located at bar heads. Additionally, the results illustrate that bar 

scale variability in some cases is nearly equivalent to the grain-size variability observed 

within the 12 km reach. This finding indicates that the application of downstream fining 

models may have limited application on the Upper Sandy River at scales finer than a few 

kilometers. 

 The limitations of this research include its focus solely on surface sediment. 

Image-based techniques are not capable of sampling subsurface sediment, which means 

traditional surveys will continue to be important for producing grain-size datasets. This 

surveying strategy also does not lead to continuous data of exposed gravel, which is a 

fundamental component of riverscape mapping. Future research will likely sacrifice the 

increased resolution of individual images to utilize the continuous coverage provided by 

orthomosaics as photosieving algorithms such as SediNet increase in accuracy and 

precision. An interesting opportunity would be to combine photosieving with land cover 
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classification, vegetation mapping, and topographic surveys to increase our 

understanding of various components of river morphology. A major limitation of this 

study is that it excludes in-channel geomorphic measurements and hydraulic information.  

 The advantages of this approach are its efficiency, accessibility, high resolution 

data, and relatively large spatial extent. The methodological approach enabled 

observations of the deviations from the systematic relationship between channel width 

and sediment grain-size based on downbar position, which also warrants further 

investigation to determine whether local sediment supply or hydraulics offer a more 

suitable explanation. Lastly, the upper Sandy River is dynamic through space and time. 

More surveys through time would enable a better understanding of channel development 

as future high flow events reshape the topography and texture of the river system.  
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