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DISSERTATION ABSTRACT 

Jonathan Wright 

Doctor of Philosophy  

Department of Linguistics  

September 2021  

Title: Factors affecting the incidental formation of novel suprasegmental categories  

Humans constantly use their senses to categorize stimuli in their environment. They 

develop categories for stimuli when they are young and constantly add to existing categories 

and learn novel categories throughout their life. A key factor when learning novel sound 

categories is the method a person uses to acquire the novel sound categories. Different learning 

methodologies interact with different neural processes and mechanisms, leading to diverse 

learning outcomes. However, auditory learning research has only recently begun to focus on the 

ways that various auditory processing structures interact with different learning methodologies. 

This dissertation investigates the acquisition of novel tone categories using natural tokens and 

an incidental learning paradigm. Throughout the experiments we demonstrated that native 

English participants with no prior experience with the target tone categories, from 18 to 66 

years old, can use an incidental learning paradigm with natural tokens to form four novel tone 

categories after 30 minutes of training with very high, even perfect, accuracy. These findings 

confirm results from previous studies that suggest that participants can effectively learn novel 

sound categories through incidental learning paradigms, and we extend the investigation of 

factors impacting incidental learning into natural speech sound categories.  

Across the four experiments we examined factors known to impact novel sound 

category acquisition. We demonstrated that high variability of tokens within trials resulted in 

greater learning than when the variability was spread out across trials. We also demonstrated 

that training on a single talker results in robust learning to novel tokens but a sharp decline 

when generalizing to novel talkers. By contrast, if participants are trained on multiple talkers 

during training, there is less learning, but there is little or no difference when generalizing 

learning to novel talkers. We also demonstrated that the presence of an unfamiliar vowel in the 

auditory stimuli did not impact the incidental formation of novel tone categories during 
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perception only training. Further, we demonstrated that producing the tokens on each trial 

destroyed perceptual learning, and we presented multiple hypotheses regarding the nature of 

the disruption for future investigation. We also demonstrated that the presence of an unfamiliar 

vowel did not further disrupt perceptual learning over training with familiar segments. Thus, as a 

whole, this dissertation illustrated that incidental learning paradigms are an effective and 

efficient means for learning novel tone categories and investigating factors known to impact 

novel sound category acquisition.  
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I. INTRODUCTION  

Organisms are prone to categorize objects, sounds, and events in their environment. 

Categorization is fundamental for survival. Animals need to know which items are edible and 

which are harmful if consumed. They need to know which sounds indicate the availability of 

water, the presence of prey, or a potential attack from a predator. Humans use visual and 

auditory categorization processes and mechanisms to make split-second decisions that may be 

fatal if they make the wrong decision and constantly add to existing categories and learn novel 

categories throughout their life. The process of visual categorization involves learning to sort 

objects into categories and then extend that learning to novel examples of the category. 

Typically, the objects in a category have a feature or features that they share, but they also have 

features that are different. We can picture the category “dog” and imagine the shared features 

across the members of that category, but we can also imagine features that differ across the 

members of that category. Then, when we see a novel member of the category, we can identify 

that novel member as a dog. Similarly, auditory categorization involves sorting sounds into 

categories based on shared features and extending that learning to novel members of the 

category. We can imagine the sound of the wind even though the sounds we recognize as 

“wind” differ depending on the geography and vegetation of the area we are in. This 

categorization provides us with the ability to distinguish the sound of the wind from the sound 

of the waves at the beach or the sound of cars along a highway. We can then extend that 

knowledge when we are in a new geographical area and hear a novel sound that we 

immediately categorize as “wind”. We also learn to sort sounds that we hear in speech into 

categories. For example, all languages use variations in the pitch of the voice to categorize 

sounds (Maddieson, 2013). In English we can tell if an utterance is a declarative statement or a 

question based on the pattern of the pitch across the utterance (i.e., intonation). The utterance, 

“We’re leaving today,” can be understood as a question or as an answer to a question 

depending on the pitch contour used to express it.1 Different pitch categories can also be used 

to differentiate meaning at the word level. Pitch categories that are used to differentiate words 

                                                            
1 When communicating, meaning can also be transmitted through the visual domain via gestures and 
facial expressions (Colin & Radeau, 2003). However, it is possible to transfer meaning via acoustic 
information alone, such as over the phone. 
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in a language are called lexical tones, or just tones for short, and languages that use tones are 

often called tonal languages (Maddieson, 2013). These pitch categories are typically 

differentiated based on the height of the pitch and/or the contour of the pitch. For example, a 

language may have three tone categories where the pitch remains even across the word and 

one category is identified by its low pitch, another by its high pitch, and another by its medium 

level pitch. When the pitch remains at a fairly constant level across the word, the tone category 

is called a level tone category. Therefore, this language would contain three level tone 

categories. Another possibility would be for the pitch in one or more categories to change by 

rising or falling across the word. The pitch could also rise and then fall or fall and then rise across 

the word. Tone categories where the pitch changes across the word are called contour tones. 

When discussing tones, we often use numbers to describe the pitch level. Thus, T11 would refer 

to a low level tone, T44 would refer to a high tone, T41 would refer to a high falling contour 

tone, and T13 could refer to a low rising contour tone. The tone categories in the current study 

come from Thai, which includes T45, T241, T315, T33 and T21.2 The Thai tone categories used in 

the current study are discussed in detail in Chapter 2.  

When communicating using a tonal language, the accurate perception and production 

of tones is vital. Mispronunciations can result in an inability to communicate, which is especially 

important to adults attempting to learn tonal languages. As discussed below, it is well noted 

that tone categories are difficult for adults to learn, especially if they do not have experience 

with tone categories in their first language. Resulting miscommunications from 

mispronunciations or misperceptions of tones can end in discouragement and eventual failure 

to learn the language. Despite the central role that tone categories have in language acquisition, 

relatively little research has been done regarding factors that impact novel tone acquisition. This 

lack of progress is in part due to the difficulty researchers face during experimentation in the 

lab. Traditionally, studying novel tone category formation requires learners to return to the lab 

over several days or weeks for training sessions (Chandrasekaran 2010; Francis et al. 2008). 

These training sessions typically include explicit instruction regarding the target categories and 

feedback on performance. Considering the effort required for such experimentation, findings 

have mostly been limited to inherent factors within listener and within L1 group that affect 

novel tone category formation. A wider range of factors such as number of talkers in the 

                                                            
2 Tone notation from Chao (1930) is used throughout.  
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stimulus set, segmental composition of the stimuli, and the effect of production during learning 

are understudied. However, more recent methodologies have arisen that permit examinations 

of a wider range of factors that impact novel tone category acquisition and the learning 

mechanisms that contribute to novel sound category formation in adults. 

In the present chapter, we provide an overview of tone perception research in light of 

the wider literature on category acquisition. In section 1.1 we discuss work on novel tone 

discrimination and novel tone category acquisition. In Section 1.2 we discuss novel sound 

category learning in the field of auditory perceptual learning by examining methodologies used 

to study stimuli categorization. Specifically, we discuss categorization, focusing on the 

categorization of speech sounds and then methodological approaches to novel sound category 

learning. In Section 1.3 we discuss the potential contributions of the current research and the 

hypotheses examined in this dissertation.   

1.1 NOVEL TONE PERCEPTION 

As a child learns their first language, they progressively develop speech sound categories specific 

to that language (Eimas et al. 1971; Kuhl 1987; Werker 1989; Kuhl et al. 1992). Speech sound 

categories that contrast with other speech sound categories to differentiate lexical meaning in a 

language are often referred to as phonemes. Children learn to differentiate between phonemes 

based on features such as voice onset time, phonation, F1, F2, F0 (pitch) height, and F0 contour. 

Further, as the child learns their first language, they learn to differentiate phonemic categories 

using only features present in their first language (L1). Consequentially, as they gain experience 

with the L1, the ability to discriminate between phonemic contrasts not present in their L1 is 

reduced. A commonly used example is the difficulty Japanese speakers face when discriminating 

between the English “r” and “l” (Goto 1971; MacKain et al. 1981, Sheldon and Strange 1982). For 

Japanese speakers this difficulty arises as English differentiates between two phonemes, but in 

Japanese a single sound category utilizes the same perceptual space (Sheldon and Strange 

1982). When a person attempts to learn a second language, they often attempt to map the 

perceptual space of L2 phonemes onto the available perceptual spaces of their L1 phonemic 

categories. This mapping occurs in various ways, and several models account for possible 

mappings. 
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 The Perceptual Assimilation Model (PAM) was originally designed for naïve learners 

(e.g., Best 1995), but was later extended to account for L2 learners (Best and Tyler 2007). PAM, 

the Speech Learning Model (SLM) (e.g., Flege, 1995), and the Second Language Linguistic 

Perception Model (L2LP) (e.g., Escudero 2005) all predict that L2 learners will adapt L2 phonemic 

categories to L1 categories that are closest to them in native perceptual space. PAM also 

provides predictions for several possibilities depending on the target phonemes in the L1 and L2, 

predicting that two target L2 phonemes may be mapped onto a single L1 category, as in the 

Japanese example above. Two target L2 phonemes may also map well onto two L1 categories. 

Similarly, an individual target L2 phoneme may map well onto an L1 category or it could fall in 

between two L2 categories. Another possibility is that there simply is no L1 category for the L2 

phoneme to map onto. In this case discrimination ability can vary widely from poor to excellent. 

Acquiring L2 tone categories provides an example of mapping.  

Some languages, such as Mandarin and Thai, are tonal languages and have tone categories, 

where pitch height and/or pitch contour differentiates speech sound categories. L2 learners 

with tonal L1s are able to map L2 tone categories onto L1 tone categories (Reid et al. 2015; Chen 

et al. 2018; Chen et al. 2019). Chen et al. (2019) had Mandarin listeners match Thai tones to 

Mandarin tone categories. Thai tones that were similar to Mandarin categories were more 

consistently matched to Mandarin tone categories than dissimilar tones. It is suggested that 

experience with L1 tone benefits L2 tone discrimination ability in learners when encountering 

novel tones (Wayland and Guion 2004). On the other hand, L2 learners with non-tonal L1s (e.g. 

English) do not have L1 categories to map L2 tones onto.3 Research suggests that novel tone 

discrimination is difficult for native English speakers (Kiriloff 1969; Bluhme & Burr 1971; Shen 

1989; Sun 1998; Wang et al. 1999; Wayland and Guion 2004; Reid et al. 2015), but training 

studies have shown that they are capable of learning to discriminate between tone categories 

(Chen and Pederson 2017; Chen et al. 2019) forming novel tone categories (Kiriloff 1969; Wang 

et al. 1999; Guion and Pederson 2007) and using tone categories to learn new lexical meanings 

(Wong and Perrachione 2007).  

                                                            
3 Non-tonal languages are not equivalent. There may be non-contrastive phonetic features that benefit 
learners from some L1s over other L1s. However, in the current study we limit our scope to native English 
speakers. 
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1.1.1 Tone Discrimination 

In general, work on tone perception can be separated into three areas: discrimination, 

adaptation, and novel category formation. Tone discrimination results suggest that directed 

attention, the number of speakers in the stimulus set, and variability in the phonological context 

influence tone discrimination accuracy. Although the current experiment examines novel 

category formation, factors involved in novel phoneme discrimination can inform our 

hypotheses regarding category formation. For example, training on novel segmental contrasts 

benefits from attention directed to the target contrast (Guion and Pederson 2007; Pederson and 

Guion 2010). Learners improve in discrimination of contrasts that they are made aware of but 

do not improve on other contrasts present in the stimuli. For example, in related work, Chen 

and Pederson (2017) found that, when exposed to stimuli differing in both tonal and segmental 

contrasts, Mandarin learners improved on discriminating between novel tones when their 

attention was directed to the tonal contrasts, but they did not improve on tonal discrimination 

when their attention was directed to novel segmental contrasts. Further, due to influence from 

the L1, listeners may also be endogenously oriented to features in the stimuli. For example, tone 

perception studies show that native English listeners weigh pitch cues differently than Mandarin 

listeners (Guion and Pederson 2007). It may be that native English speakers, due to lack of 

experience with lexical pitch, are endogenously oriented to direct their attention to segmental 

structure during auditory perception, leading to difficulty during tone discrimination and 

category formation during L2 acquisition.  

 Tone discrimination studies have also examined the effect of speaker variability and 

phonotactic variability on tone perception. To avoid ceiling effects, tone perception studies have 

typically introduced difficulty by including tokens from multiple talkers while controlling the 

phonotactic structure and segmental composition of the carrier syllable. This isolates the target 

tones while producing enough difficulty to attain comparable results. However, Chen and 

colleagues (Chen et al. 2018; Chen et al. 2019) examined the effect of number of talkers in the 

stimulus set and segmental variability on novel tone discrimination and adaptation among 

native Mandarin speakers. Discrimination was easiest in conditions where tokens were from the 

same talker and had the same vowel (Chen et al. 2019). When tokens came from multiple 
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talkers or when they contained different vowels, discrimination of tones became significantly 

more difficult.4  

 In a similar study we investigated the impact of phonotactic structure and segmental 

composition on novel tone discrimination with naïve English and Mandarin participants (Wright 

& Baese-Berk, under review). We found that native English participants’ novel tone 

discrimination accuracy was not impacted by phonotactic structure but was negatively impacted 

by segmental composition. The presence of /ŋ/ onsets, which are illegal in English, significantly 

reduced tone discrimination accuracy. For native English participants, /ŋ/ onsets resulted in no 

discrimination between tones. These results suggest that the segmental composition of carrier 

words for tones interacts with L1 phonotactic experience in modulating novel tone perception 

ability. These results, along with the work of Chen and colleagues, lead to the hypotheses tested 

in the current study.  

1.1.2 Novel Tone Category Formation 

Tone discrimination is measured by the ability to discriminate whether the tones in 

auditory stimuli are the same or different. Tone category formation is typically measured by the 

ability to identify the tone category of an auditory token out of a set of possible tones. In 

general, speech categorization can be a challenging task. When categorizing speech sounds, 

there is no single cue that might signal category membership. Rather, there are multiple cues 

underlining category membership for speech sounds. Further, the realization of the multiple 

cues of a speech sound vary across productions of the speech sound. Therefore, the task of 

speech categorization is to generalize across acoustically variant sounds to determine which 

features are salient to a specific type of sound and use those salient features to classify novel 

sounds. The ability to classify novel sounds based on an established sound category is called 

generalization (Palmeri & Gauthier, 2004; Holt & Lotto, 2010). 

Although challenging, results from tone category formation studies suggest that native 

English speakers can learn novel tone categories (Wang et al. 1999) and use them to contrast 

word meaning (Wong and Perrachione 2007). Findings from these studies also suggest that 

                                                            
4 This result pertains to native Mandarin participants. A similar study with native English listeners may 
differ. However, we would expect native English listeners to experience greater difficulty in a similar 
study.   
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there are experimental factors and individual factors that impact novel tone category formation 

success.  

 Experimental factors contributing to the success of novel tone category formation 

include phonotactic variability and number of talkers in the stimulus set (Wang et al. 1999). In 

speech perception there have been numerous studies on the effect of number of talkers during 

phoneme discrimination and novel category formation. Results suggest that participants in 

multiple talker conditions are initially slower and less accurate (Mullennix and Pisoni 1990). 

However, accuracy scores in multiple talker conditions can level off to match scores in single 

talker conditions. Further, multiple talker conditions can benefit learners as they help learners 

to better generalize learning to new talkers (Logan et al. 1991). Thus, talker variability during the 

novel category formation process can operate at an initial cost but end up helping the learner to 

generalize to new talkers. Talker variability exposes the learner to a greater range of possible 

acoustic output due to varying vocal tracts, speaking rates, etc. It is suggested that talker 

variability during novel tone category training is crucial to the ability to normalize differences in 

F0 across speakers, and this benefits the generalization of categories to new speakers (Wang et 

al. 1999). In current study we examine the effect of talker variability on the incidental 

acquisition of novel tone categories. The studies cited suggest that learners trained in a single 

talker condition will learn faster at first, but will perform worse when generalizing to new 

talkers. 

Similarly, we examine the effect of segmental familiarity during novel tone category 

formation training. A hypothesis presented by Liu et al. (2011) is that phonotactic and segmental 

composition, especially involving novel segments, inhibits the learner’s ability to attend to tone. 

Further, when attention is directed to segments, learners do not improve in tone discrimination 

ability (Chen and Pederson 2017). Therefore, researchers specifically avoid using segments or 

phonotactic structures that are not native to the participants’ first language or use pseudowords 

to avoid negative effects from non-native phonological patterns (Wong & Perrachione, 2007; 

Chandrasekaran et al., 2010). As stated above, we specifically tested this hypothesis in a tone 

discrimination study and found that native English participants were unable to discriminate 

between novel tone categories when /ŋ/ onsets were present in the tokens (Wright & Baese-

Berk, under review). In the current study we examine the impact of segmental familiarity on the 

formation of novel tone categories during incidental learning.  
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1.2 AUDITORY CATEGORY LEARNING 

As discussed above, organisms constantly categorize input in their environment based on their 

senses. Stated another way, organisms respond differently to objects and events in their 

environment based on the way that they have categorized that input. Initial work on human 

speech categorization observed the way humans categorized speech sounds and concluded that 

the process of speech sound category learning was unique to the human auditory domain 

(Liberman, 1957; Liberman et al., 1957). The driving factor behind this perspective was research 

on categorical perception (Liberman et al., 1967; Kuhl, 1994, 2004). Categorical perception is the 

ability to identify discrete categories along an acoustic continuum of equal steps. In typical 

categorical perception studies sounds that differ on an acoustic dimension are presented to 

participants in equal steps along that dimension. The participant’s categorization responses to 

each sound along the continuum do not vary gradually. Rather, there is an abrupt shift at one 

point on the continuum where the participant will switch from labeling the stimuli as one 

category to labeling the stimuli as the other category. The concept that categorical perception 

was specific to human speech resulted in expectations that human speech was driven by 

specialized processes and mechanisms (see Diehl, Lotto, & Holt, 2004). These concepts impacted 

research on the acquisition of novel speech sound categories. 

For example, the Perceptual Assimilation Model (PAM; Best, 1995; Best and Tyler, 2007) 

provided predictions regarding how a person might assimilate pairs of sound categories from 

other languages based on their first language experience. As a child learns their first language 

(L1), they develop sound categories specific to that language (Eimas et al., 1971; Kuhl, 1987; 

Werker, 1989; Kuhl et al., 1992). They learn to differentiate between sound categories based on 

multiple cues, such as voice onset time, phonation, F1, F2, f0 (pitch) height, and f0 contour, 

which vary as a function of the specific language. As the child learns their first language, they 

learn to differentiate sound categories using only features present in their L1. Consequentially, 

as they gain experience with the L1, the ability to discriminate between contrasts not present in 

their L1 is reduced. A commonly used example is the difficulty Japanese speakers face when 

discriminating between the English “r” and “l” (Goto, 1971; MacKain et al., 1981, Sheldon and 

Strange, 1982). For Japanese speakers this difficulty arises as English differentiates between two 

speech sound categories, but in Japanese a single category utilizes the same acoustic space 

(Sheldon and Strange, 1982). When a person learns a second language, they often attempt to 
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map the speech sounds of the L2 onto the available acoustic spaces in their L1. Several speech 

perception models have been presented to account for this mapping. The Perceptual 

Assimilation Model (PAM) (e.g., Best, 1995; Best and Tyler, 2007), the Speech Learning Model 

(SLM) (e.g., Flege, 1995), and the Second Language Linguistic Perception Model (L2LP) (e.g., 

Escudero, 2005) all predict that L2 learners will try to map L2 categories to L1 categories that are 

closest to them in native acoustic space. However, this mapping can occur in various ways. For 

example, two target L2 sound categories may be mapped onto a single L1 category, as in the 

Japanese example above. This can create difficulty in learning the two competing phonemes. It 

is much easier when two L2 sound categories map onto two different L1 categories. It can be 

the case, however, that there may not be an L1 category for the L2 phoneme to map onto and 

the resulting acquisition of the phoneme can vary widely from poor to excellent (Best, 1995).  

As discussed, early investigation into novel sound category acquisition was impacted by 

categorical perception research and the focus of the field of speech perception on speech sound 

category formation as a speech-specific phenomenon. However, later research demonstrated 

that categorical perception is not specific to the auditory domain or to humans (Kuhl & Miller, 

1978; Kuhl, 1985; Beale & Keil, 1995; Bimler & Kirkland, 2001; Krumhansl, 1991; Livingston et al., 

1998; Kluender et al., 2012). The understanding that categorical perception is not unique to 

human speech corresponded with a greater interest in investigating domain-general processes 

and mechanisms involved in categorization across modalities.  

Psychological research on how humans form novel categories is extensive (Bruner et al., 

1956; Smith & Medin, 1981; Nosofsky, 1986; Estes, 1994; Ashby and Maddox, 2005, 2010; 

Chandrasekaran et al., 2014a, 2014b). The majority of category learning research has focused on 

visual categorization (see Cohen & Lefebvre, 2005). However, research on auditory 

categorization has been expanding, resulting in investigations of the applicability of visual 

categorization research to auditory categorization (Samuel, 1982; Maddox, Molis, & Diehl, 2002; 

Nearey, 1990; Johnson, 1997). By examining categorization across sensory domains, a more 

generalized picture has emerged suggesting that the processes involved in category learning 

may differ depending on the way a person learns the target categories (Ashby & Maddox, 2011; 

Richler & Palmeri, 2014). Thus, an important factor when learning novel sound categories is the 

method a person uses to acquire the novel sound categories. Until recently the majority of the 
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research examining how people learn novel sound categories has focused on auditory category 

learning via learning paradigms that incorporate explicit instruction and feedback.  

Explicit category learning occurs when learners are made aware of the categories they 

are learning. With explicit instruction, they learn rules that govern which category a given 

stimulus belongs to. Learners then apply the rule-based knowledge of the categories as they 

learn the target categories. Explicit feedback on performance is typically provided throughout 

training to let learners know if their application of the rules is accurate. By contrast, implicit 

category learning occurs when there are no instructions about the categories. Therefore, the 

learner does not have a conscious awareness of rules that govern category membership and 

thus, does not make a conscious effort to apply rules during category learning (see Reber, 1989). 

Research focused on a single learning methodology limits our knowledge of the 

processes involved in the wider range of situations humans experience during auditory category 

learning. For example, we might “know” that certain factors impact learning, but it may be that 

they impact acquisition only under the particular methodology used, and that methodology 

might not be the optimal methodology for the particular learning situation. Limitations on our 

research could lead to misconceptions that can become rooted in societal knowledge. For 

example, we may “know” that older adults over a certain age cannot learn novel sound 

categories as well as younger populations. That is, we can make the mistake of generalizing 

knowledge that may only be specific to one learning methodology.  

In the last two decades there has been a growing interest in novel sound category 

learning under various methodologies, leading to results that may differ from methodologies 

that only incorporate explicit instruction and feedback. Research on incidental and passive 

learning, for example, has resulted in new insight to difficult questions that have arisen in the 

field of category learning and has resulted in new models incorporating neural mechanisms and 

processes activated across learning methodologies (see Chandrasekaran et al., 2014). The 

current research contributes to the expanding knowledge of ways in which alternative learning 

methodologies result in novel auditory category learning by examining how multiple factors 

modulate the formation of novel sound categories during incidental auditory category learning. 
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1.2.1 Incidental auditory category learning 

Unlike most of the previous novel tone category formation studies that used explicit 

categorization training (e.g., Wang et al. 1999; Wong and Perrachione 2007), the experiments in 

the present study utilize an incidental category formation paradigm. Much has been learned 

from novel tone category studies that use explicit categorization training. However, as 

discussed, results from explicit categorization training may have limited applicability, especially 

when learning novel categories in natural environments. For example, in everyday life, humans 

are rarely directed to look for specific sound categories and apply rules about categories to 

perceived sounds in an effort to learn to differentiate those sounds. Incidental category learning 

paradigms are thought to more closely approximate category learning that occurs in a human’s 

natural environment (see Roark et al., 2020 for review). 

The incidental learning paradigm used in the current study builds on the Systematic 

Multimodal Association Reaction Time (SMART) paradigm developed in Wade and Holt (2005) 

and Gabay et al. (2015). Gabay et al. (2015) successfully used an incidental learning paradigm to 

test category learning of four synthesized frequency categories. Instead of explicit instruction 

explaining tone categories combined with feedback during training, participants form tone 

categories incidentally while focused on a visual detection task. In each trial, listeners heard one 

of the synthesized frequencies repeated five times and then saw a visual target appear on the 

screen in one of four rectangles—the rectangles remained in place for the duration of the 

experiment. When the visual target appeared, the participants pressed a corresponding key. 

They were instructed to respond as quickly as possible (see Figure 1). 

  

Figure 1. Incidental auditory learning paradigm used in Gabay et al. (2015). After hearing the five 
auditory stimuli, the visual target appears, and learners respond by pressing the key matching 
the location of the visual target (image from Gabay et al. 2015). 

On each trial, the auditory categories in the stimuli were matched to visual locations. As 

participants discovered that auditory stimuli predicted the location of the visual target, auditory 
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categories were developed and reinforced. Learning occurs even though participants make little 

effort on each trial. Participants simply see the visual target on the screen and then they 

respond with the keyboard or mouse. They are not consciously trying to learn. Therefore, it may 

seem that learning in this paradigm is passive learning. However, learning is not passive. There is 

a feedback mechanism incorporated in the incidental learning paradigm (Schultz et al., 1993, 

1997; Gabay et al. 2015; Ashby & Casale, 2003; Sutton & Barto, 2005; Lim et al., 2014, Reynolds 

& Wickens, 2002).  

In the incidental learning paradigm, learning occurs when the participant begins to use 

the auditory tokens as clues that reveal the upcoming location of the visual targets. They begin 

to use the auditory clues to predict where the visual target would appear. Then, participants 

receive feedback when the visual target appears and their prediction is proven to be correct or 

incorrect. Participants use this auditory-to-visual correspondence on each trial as reinforcing 

feedback to refine their categorical judgments of the following auditory stimuli. As they become 

more confident in their predictions, they move the mouse cursor to the location where they 

think the visual target will appear. When it appears where they predicted, they are rewarded by 

being able to click on the visual target faster. If they are wrong in their prediction, they will have 

to move the cursor to the location of the visual target and their reaction time will be slower.  

Evidence of learning in incidental learning paradigms can come from several measures. 

Response times across training blocks become faster as the auditory-to-visual mapping is 

discovered. In some studies, learning is also measured by randomizing the auditory-to-visual 

mapping on a later training block, which has the effect of drastically slowing response times and 

the response time cost is measured. Further, typically a posttest with novel auditory stimuli is 

included. On the posttest, participants predict where the visual target would appear after only 

hearing the auditory stimuli. The experiments in the current study adapt the SMART task for 

natural tone categories. The adaptation is discussed in more detail in the description of the 

methodology of the first experiment in Section 3.3.  

Incidental auditory category learning studies claim that sound category learning during 

incidental category learning better approximates sound learning in natural environments and 

predict that incidental learning is better suited for natural speech sound categories. However, 

almost all incidental sound category learning studies use synthesized speech sounds rather than 
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natural speech tokens. In the current study we investigate the acquisition of novel speech sound 

categories through an incidental learning paradigm using natural tokens. The use of natural 

tokens allows us to investigate multiple factors known to impact novel speech sound category 

formation in explicit learning paradigms.  

1.3 CURRENT RESEARCH 

The goal of this dissertation is to examine the perceptual formation of novel tone categories 

with natural tokens through an incidental learning paradigm. Using natural tokens extends the 

applicability of research on the incidental formation of novel sound categories and permits the 

investigation of a number of factors known to impact the perceptual formation of novel sound 

categories during explicit learning. Specifically, in Experiment 1 we test the impact of within-trial 

token variability on novel tone category formation. In Experiment 2 we test the impact of talker 

variability on novel tone category formation. We also test a Control Condition to provide a 

baseline for the effect of age on the task in order to better compare the impact of age across 

conditions. In Experiment 3 we test the impact of segmental familiarity on novel tone category 

formation. In Experiment 4 we test the impact of production during perceptual learning on the 

perceptual formation of novel tone categories. We also test the modulation of segmental 

familiarity on the impact of production during perceptual learning.  

1.3.1 Structure of the dissertation 

The studies in this dissertation use natural tokens from multiple talkers. The use of natural 

tokens results in potentially large amounts of variation between auditory tokens. Acoustic 

differences between tokens could impact results. Therefore, it is valuable to examine acoustic 

differences among stimuli in detail. In Chapter 2 we present a characterization of the stimuli, 

describing differences regarding duration and F0. Chapter 3 through Chapter 6 present four 

experimental studies performed to analyze different factors that impact the incidental 

formation of novel tone categories. In the first experiment in Chapter 3 we investigate the role 

of token variability within trial, comparing trials that contain identical tokens with trials that 

contain variable tokens. By examining the impact of token variability on the incidental formation 

of novel tone categories we test the hypothesis that high token variability in close proximity to 

the audio-to-visual correspondence benefits learners by aiding in categorization and 

generalization to novel tokens (see Gabay et al., 2015). In the second experiment, in Chapter 4, 
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we examine the impact of talker variability during training on the ability to generalize learning to 

novel tokens and novel talkers. By examining talker variability across trials, we test the 

hypothesis that exposure to multiple talkers during training aids in the ability to generalize to 

novel talkers. Further, in Experiment 2 we also examine a Control Condition where participants 

have no ability to learn the audio-to-visual correspondence and therefore receive no reinforcing 

feedback. Therefore, participants should not be able to have faster reaction times across 

training blocks. By examining a condition that includes no audio-to-visual correspondence, we 

test the impact of age on the task alone to observe a baseline effect of age on the task. In the 

third experiment, in Chapter 5, we include conditions containing tokens with different vowels to 

investigate the impact of segmental familiarity on novel tone category learning. By examining 

conditions with familiar and unfamiliar segments, we test potential impacts to perceptual 

learning from increased attentional load stemming from novel segments. In Chapter 6 we 

investigate the impact of production during perceptual learning, as well as the impact of 

segmental familiarity during production on perceptual learning. By examining production by 

participants immediately after auditory perception and the corresponding motor response on 

each trial, we test the impact that the anticipation of production during the audio-to-visual 

reinforcement has on perceptual learning. Further, we test the additional impact that the lack of 

segmental familiarity during motor planning has on perceptual learning. In Chapter 7 we present 

a summary of the findings and novel contributions to the field as well as future directions of this 

research. 

1.3.2 Hypotheses explored in the current research 

In the current study we investigate factors that impact the incidental formation of novel natural 

speech sound categories. Our hypotheses consider predictions from incidental auditory learning 

and the formation of natural sound categories. Below, we present hypotheses for each 

experiment. 

Experiment 1, Chapter 3 

One hypothesis we consider is that the incidental learning of novel tone categories will result in 

substantially better learning in a shorter amount of time compared to explicit learning 
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methodologies.5 We also hypothesize that token variability within trial will matter for incidental 

learning (Gabay et al., 2015). Specifically, variable tokens within trial will result in greater 

learning than identical tokens within trial.  

Experiment 2, Chapter 4 

We hypothesize that talker variability will matter for incidental acquisition of novel tone 

categories. Specifically, training on multiple talkers, compared to training on a single talker, will 

result in greater similarity in accuracy scores between Posttest 1, where participants generalize 

to novel tokens from the same talker(s) and Posttest 2, where participants generalize to novel 

tokens from novel talkers (Lively et al., 1993). However, it may be that overall, learners trained 

on a single talker could learn more accurately than learners trained on multiple talkers 

(Perrachione et al., 2011). 

Experiment 3, Chapter 5 

We hypothesize that segmental familiarity will matter for learning (Liu et al., 2011). Specifically, 

we expect that results from the two conditions with familiar segments, the /ma/ Condition and 

the /mi/ Condition will not differ but that a lack of familiarity would negatively impact learning 

in the /mɯ/ Condition. However, the impact of segmental familiarity on novel tone category 

formation may differ under the reflexive learning paradigm in the current study compared to 

the reflective learning paradigms used in previous studies. 

Experiment 4, Chapter 6   

We hypothesize that production during perceptual learning will matter and that segmental 

familiarity in the produced token will matter. Specifically, we predict that perceptual learning 

will be hindered when participants produce the tokens compared to the Perception Only 

Condition. Further, we expect that the effort to produce unfamiliar segments will increase the 

inhibitory effect of production on perceptual learning. 

                                                            
5 In this study we do not directly compare explicit and incidental learning. The hypothesis, based on 
previous incidental learning studies (Wade & Holt, 2005; Gabay et al., 2015; Roark et al., 2020) is that 
categories will be formed in a single session during incidental learning rather than over the course of 
multiple days or weeks, which has been required for the formation of four new tone categories during 
explicit learning paradigms. 
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 II. STIMULI  

As discussed in Chapter 1, we use natural tokens to test the incidental formation of novel tone 

categories. Specifically, we use four Thai tone categories produced by six native Thai talkers in 

/ma/, /mi/, and /mɯ/ syllables. In Section 2.2 we provide a characterization of the stimuli, 

including details regarding the recording of the stimuli. In Section 2.2.1 we provide an analysis of 

token duration across tone categories, syllable types, and talkers. In Section 2.2.2 we provide an 

analysis of the F0 contours that comprise each tone category, provide details for each talker’s 

productions. We also compare F0 range across tone categories, syllable types, and talkers.  

2.1 CHARACTERIZATION OF THE STIMULI 

In the present experiments, stimuli were natural tokens that were recorded from six talkers, 

who were Thai females in their 20s and 30s and were living in the United States at the time of 

recording. Tokens from four talkers were used in Experiment 1 and Experiment 2. Tokens from 

all six talkers were used in Experiment 3 and Experiment 4.  

Due to Covid-19 restrictions, recordings of the stimuli were done remotely. A Shure 

SM35 microphone and a Zoom H4N Pro audio recorder were sent to each talker for recording 

stimuli. After receiving the recording equipment, video sessions were held to explain recording 

instructions. Talkers were instructed to record the stimuli in a quiet setting. They were provided 

spreadsheets with the stimuli they were to record, which contained the syllables /ma/, /mi/, and 

/mɯ/ with the five Thai tones in the order that they are traditionally practiced in Thai schools: 

T33 (mid), T21 (low), T241 (falling), T45 (high), T315 (rising). In this way, all Thai talkers were 

very familiar with the pronunciation and cadence of the token sets. The set of five tokens was 

then repeated ten times to give ten unique productions of each token. Tokens for all 

experiments were recorded by each talker in a single recording session.  

 Tokens were normalized to an average intensity of 70 dB, and noise was reduced in 

Praat (Boersma & Weenik, 2015). Following Gabay et al. (2015), tokens were from four 

categories. The tone categories used in all experiments were based on four Thai tones: T45 (high 

rising), T241 (high falling), T315 (low rising), and T21 (low falling), using tone notation from Chao 

(1930). I excluded Thai tone T33 as I wanted to train participants on only four categories, and I 
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wanted to maximize differences in each category. The four chosen tones provide a contrast 

between the categories with one high rising tone category, one high falling tone category, one 

low rising tone category, and one low falling tone category. Schematics for the five Thai tone 

categories, as seen in Figure 2, are presented by Reid et al. (2015). 

 

Figure 2. Schematics of Thai tones (Reid et al. 2015) 

Tokens from all four tone categories were produced in the syllables /ma/, /mi/, and /mɯ/. 

Ten exemplars of each tone category were recorded from all four talkers. Typically, half of the 

exemplars were used for training, and half of the exemplars were used to test generalization of 

learning to new exemplars on Posttest 1. This is described in more detail in Section 3.2, 4.2, 5.2, 

and 6.2. Following Gabay et al. (2015), auditory stimuli in each trial consisted of five 

concatenated tokens, which, in most conditions, were randomly selected without duplication. 

However, due to the difficult circumstances of the recordings, a few productions by the talkers 

were not usable, resulting at times in only eight or nine exemplars of a category, rather than the 

normal ten. In these situations, where only four tokens were available for a trial, one randomly 

selected token was duplicated. These occurrences are listed in Section 3.2, 4.2, 5.2, and 6.2.  

Due to Covid-19 restrictions, all experiments were run online. So, to minimize potential 

problems during auditory playback across a range of devices, browsers, and internet 

configurations, each set of five tokens within trial for the Variable Token Condition was 

randomly selected and concatenated before the experiments and then uploaded as single 

auditory files.  

All tokens were individually inspected for abnormalities. Despite the difficult circumstances 

requiring that the audio recordings be done in the talkers’ homes or offices, there were no 

noticeable abnormalities, such as clicks or pops, found in any of the stimuli used in the 
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experiments. Further, after tokens were normalized for peak intensity and noise was reduced, 

there were no instances of obvious background noise (e.g., people talking or doors closing) 

found in any of the tokens. 

2.1.1 Duration 

Figure 3 illustrates duration for all talkers across tone categories and syllable types. The four 

boxplots in each of the three charts represent the distribution of durations for tokens from each 

tone of the chart’s syllable type, with the solid line in the middle of each box representing the 

median, the bottom and top of the box representing the first and third quartiles, and the 

whiskers representing the furthest value at no more than 1.5 times the interquartile range. The 

dots in the boxes represent the mean duration for tokens of the specific tone. The dashed lines 

in each of the three charts represent the aggregated mean duration for all tokens of the chart’s 

syllable type. The letters represent the means of the six individual talkers for the specific tone 

and syllable type.   

 

Figure 3. Aggregated duration means for each syllable type (dashed lines), for each tone (dots 
inside the box plots), and for each talker (letters). 

To test differences in duration, I compared several mixed models. To determine 

whether an interaction between tone category and syllable type made a significant contribution 
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to model fit, I compared models with and without an interaction, and results indicated a 

nonsignificant interaction (X2 (6) = 4.86, p = .56).  

duration ~ syllable*tone + (1|talker) 
duration ~ syllable + tone + (1|talker) 

To test whether duration differed as a function of tone category, I compared models with and 

without tone category, and results indicated that duration did not significantly differ as a 

function of tone category (X2 (3) = 4.60, p = .20).  

duration ~ syllable + tone + (1|talker) 
duration ~ syllable + (1|talker) 

Also, to test whether duration differed as a function of syllable type (e.g., /ma/, /mi/, /mɯ/), I 

compared models with and without syllable type, and results indicated that duration 

significantly differed as a function of syllable type (X2 (2) = 8.20, p = .017). Bonferroni corrected 

post-hoc comparisons revealed that /mi/ syllables were shorter than /mɯ/ syllables (β = -.018, 

SE = .006, t = -2.84, p = .015), but /ma/ syllables did not differ from /mi/ syllables (β = .007, SE = 

.006, t = 1.07, p = .86) or from /mɯ/ syllables (β = .011, SE = .006, t = -1.74, p = .25). 

duration ~ syllable + tone + (1|talker) 
duration ~ tone + (1|talker) 

To test whether duration differed as a function of talker, I compared models with and without 

talker, and as expected from the visualization in Figure 3, duration significantly differed as a 

function of talker (X2 (1) = 449.68, p < 0.001).  

duration ~ syllable + tone + (1|talker) 
duration ~ syllable + tone 

Figure 3 illustrates that Talker A had the shortest durations while Talkers E and F had the longest 

durations. Table 1 provides the mean, standard deviation, min, max, and range for each talker’s 

durations across syllable types to illustrate differences in duration at the syllable level. Table 1 

quantifies the expectation illustrated in Figure 3, that Talker A had the shortest mean durations 

across syllable types and Talkers E and F had the longest mean durations.  

Table 2 provides comprehensive summary statistics for the six talkers, showing the 

mean, standard deviation, min, max, and range for each talker’s durations for each tone 

category in each syllable type.  
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Table 1. Summary statistics for duration across syllable types 

Talker Syllable n Mean SD Min Max Range 

A /ma/ 40 0.76 0.06 0.66 0.92 0.26 

A /mi/ 40 0.74 0.04 0.66 0.83 0.17 

A /mɯ/ 40 0.79 0.04 0.69 0.9 0.21 

B /ma/ 40 0.89 0.04 0.81 0.99 0.17 

C /ma/ 32 0.90 0.05 0.81 0.99 0.18 

D /ma/ 20 0.79 0.02 0.76 0.83 0.07 

D /mi/ 20 0.82 0.03 0.75 0.87 0.12 

D /mɯ/ 20 0.83 0.02 0.79 0.87 0.09 

E /ma/ 16 0.95 0.04 0.88 1.01 0.12 

E /mi/ 20 0.95 0.05 0.84 1.09 0.25 

E /mɯ/ 20 0.95 0.05 0.85 1.03 0.18 

F /ma/ 20 0.95 0.04 0.88 1.04 0.16 

F /mi/ 20 0.91 0.03 0.84 0.96 0.12 

F /mɯ/ 20 0.91 0.06 0.82 1.01 0.19 

 

Table 2. Summary statistics for duration across syllable types and tone categories 

Talker Syllable Tone n Mean SD Min Max Range 

A /ma/ T21 10 0.79 0.07 0.73 0.92 0.19 

A /ma/ T241 10 0.73 0.05 0.66 0.81 0.14 

A /ma/ T315 10 0.75 0.06 0.67 0.87 0.20 

A /ma/ T45 10 0.76 0.04 0.66 0.84 0.18 

A /mi/ T21 10 0.75 0.04 0.68 0.83 0.15 

A /mi/ T241 10 0.74 0.04 0.69 0.82 0.13 

A /mi/ T315 10 0.73 0.03 0.67 0.77 0.10 

A /mi/ T45 10 0.75 0.05 0.66 0.82 0.15 

A /mɯ/ T21 10 0.78 0.06 0.69 0.9 0.21 

A /mɯ/ T241 10 0.77 0.04 0.71 0.83 0.13 

A /mɯ/ T315 10 0.80 0.05 0.73 0.89 0.16 

A /mɯ/ T45 10 0.79 0.02 0.75 0.81 0.06 

B /ma/ T21 10 0.88 0.03 0.83 0.95 0.11 

B /ma/ T241 10 0.93 0.04 0.89 0.99 0.10 

B /ma/ T315 10 0.87 0.03 0.82 0.93 0.10 

B /ma/ T45 10 0.87 0.03 0.81 0.92 0.10 

C /ma/ T21 8 0.89 0.03 0.85 0.93 0.08 

C /ma/ T241 8 0.91 0.04 0.87 0.99 0.12 

C /ma/ T315 8 0.94 0.05 0.84 0.99 0.15 

C /ma/ T45 8 0.85 0.03 0.81 0.89 0.08 
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Table 2. (continued). 

Talker Syllable Tone n Mean SD Min Max Range 

D /ma/ T21 5 0.79 0.02 0.76 0.80 0.05 

D /ma/ T241 5 0.79 0.03 0.76 0.83 0.07 

D /ma/ T315 5 0.8 0.02 0.77 0.83 0.05 

D /ma/ T45 5 0.79 0.01 0.78 0.80 0.02 

D /mi/ T21 5 0.84 0.03 0.80 0.86 0.06 

D /mi/ T241 5 0.83 0.02 0.81 0.87 0.06 

D /mi/ T315 5 0.81 0.04 0.75 0.86 0.11 

D /mi/ T45 5 0.82 0.02 0.79 0.85 0.06 

D /mɯ/ T21 5 0.83 0.02 0.80 0.84 0.04 

D /mɯ/ T241 5 0.84 0.03 0.82 0.87 0.05 

D /mɯ/ T315 5 0.84 0.02 0.82 0.85 0.04 

D /mɯ/ T45 5 0.82 0.02 0.79 0.84 0.06 

E /ma/ T21 4 0.94 0.03 0.91 0.98 0.07 

E /ma/ T241 4 0.97 0.04 0.91 1.01 0.09 

E /ma/ T315 4 0.92 0.03 0.88 0.95 0.07 

E /ma/ T45 4 0.97 0.03 0.93 0.99 0.07 

E /mi/ T21 5 0.92 0.03 0.89 0.98 0.08 

E /mi/ T241 5 0.94 0.09 0.84 1.09 0.25 

E /mi/ T315 5 0.99 0.02 0.96 1.01 0.05 

E /mi/ T45 5 0.95 0.02 0.91 0.98 0.06 

E /mɯ/ T21 5 0.92 0.05 0.85 0.99 0.14 

E /mɯ/ T241 5 0.95 0.06 0.87 1.03 0.16 

E /mɯ/ T315 5 0.98 0.03 0.95 1.02 0.07 

E /mɯ/ T45 5 0.93 0.04 0.88 0.98 0.10 

F /ma/ T21 5 0.95 0.02 0.92 0.97 0.05 

F /ma/ T241 5 0.99 0.04 0.95 1.04 0.09 

F /ma/ T315 5 0.90 0.02 0.88 0.93 0.05 

F /ma/ T45 5 0.96 0.03 0.91 0.99 0.07 

F /mi/ T21 5 0.93 0.03 0.88 0.95 0.07 

F /mi/ T241 5 0.91 0.05 0.84 0.96 0.12 

F /mi/ T315 5 0.89 0.01 0.87 0.90 0.03 

F /mi/ T45 5 0.90 0.02 0.88 0.92 0.04 

F /mɯ/ T21 5 0.93 0.08 0.82 1.01 0.19 

F /mɯ/ T241 5 0.94 0.06 0.87 1.01 0.14 

F /mɯ/ T315 5 0.89 0.06 0.84 1.00 0.16 

F /mɯ/ T45 5 0.89 0.04 0.84 0.96 0.12 

 

In addition to differences across talkers, there were also some differences within talker. For 

each talker, I performed ANOVAs examining tone category, syllable type, and an interaction 
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between the two. Durations for Talker A are shown in Figure 4. Results from a two-way ANOVA 

indicated that duration significantly differed as a function of syllable type [F(2, 108) = 7.89, p < 

.001, η2
p = .13, η2

G = .12]. However, duration did not differ as a function of tone category [F(3, 

108) = 1.12, p = .34, η2
p = .03, η2

G = .03], and the interaction between syllable type and tone 

category was nonsignificant [F(6, 108) = .94, p = .47, η2
p = .05, η2

G = .04]. Bonferroni corrected 

post-hoc comparisons revealed that /mi/ syllables were shorter than /mɯ/ syllables (β = -.042, 

SE = .011, t ratio = -3.89, p < .001), and /ma/ syllables were shorter than /mɯ/ syllables (β = -

.029, SE = .011, t ratio = -2.66, p = .027). However, /ma/ syllables did not differ from /mi/ 

syllables (β = .013, SE = .011, t ratio = 1.23, p = 0.66). 

 

Figure 4. Aggregated duration means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker A. 

Talker B was one of three talkers in the multitalker condition in the second experiment, 

which only used /ma/ syllables. Therefore, /mi/ and /mɯ/ tokens from Talker B were not used 

or analyzed. Durations for /ma/ syllables for Talker B are shown in Figure 5. Results from a one-

way ANOVA indicated that duration significantly differed as a function of tone category [F(3, 36) 

= 7.02, p < .001, η2
p = .37, η2

G = .37]. Bonferroni corrected post-hoc comparisons revealed that 

T241 durations were longer than T21 durations (β = -.046, SE = .015, t ratio = -3.03, p = .027), 

T315 durations (β = .06, SE = .015, t ratio = 3.98, p = .002), and T45 durations (β = .059, SE = .015, 

t ratio = 3.92, p = 0.002).  
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Figure 5. Aggregated duration means for /ma/ syllables (dashed lines) and tone category (dots 
inside the box plots) for Talker B. 

Talker C was also one of three talkers in the multitalker condition in the second 

experiment, which only used /ma/ syllables. Therefore, /mi/ and /mɯ/ tokens from Talker C 

were not used or analyzed. Durations for /ma/ syllables for Talker C are shown in Figure 6. 

Results from a one-way ANOVA indicated that duration significantly differed as a function of 

tone category [F(3, 28) = 8.36, p < .001, η2
p = .47, η2

G = .47]. Bonferroni corrected post-hoc 

comparisons revealed that T45 durations were shorter than T241 durations (β = .058, SE = .018, 

t ratio = 3.31, p = .015) and T315 durations (β = .086, SE = .018, t ratio = 4.89, p < .001).  

 

Figure 6. Aggregated duration means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker C. 
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Durations for Talker D are shown in Figure 7. Results from a two-way ANOVA indicated 

that duration significantly differed as a function of syllable type [F(2, 48) = 17.24, p < .001, η2
p = 

.42, η2
G = .37]. However, duration did not significantly differ as a function of tone category [F(3, 

48) = 1.06, p = .37, η2
p = .06, η2

G = .03], and the interaction between syllable type and tone 

category was nonsignificant [F(6, 48) = 1.05, p = .41, η2
p = .12, η2

G = .07]. Bonferroni corrected 

post-hoc comparisons revealed that /ma/ syllables were shorter than /mi/ syllables (β = -.034, 

SE = .008, t ratio = -4.51, p < .001) and /mɯ/ syllables (β = -.042, SE = .008, t ratio = -5.51, p < 

.001). However, /mi/ syllables did not differ from /mɯ/ syllables (β = -.008, SE = .008, t ratio = -

1.00, p = 0.96). 

 

Figure 7. Aggregated duration means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker D. 

Durations for Talker E are shown in Figure 8. Results from a two-way ANOVA indicated 

that duration did not significantly differ as a function of syllable type [F(2, 44) = .05, p = .95, η2
p = 

.002, η2
G = .002], nor as a function of tone category [F(3, 44) = 1.75, p = .17, η2

p = .11, η2
G = .09], 

and the interaction between syllable type and tone category was nonsignificant [F(6, 44) = 1.40, 

p = .24, η2
p = .16, η2

G = .15]. 
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Figure 8. Aggregated duration means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker E. 

Durations for Talker F are shown in Figure 9. Results from a two-way ANOVA indicated 

that duration significantly differed as a function of syllable type [F(2, 48) = 5.77, p = .006, η2
p = 

.19, η2
G = .15], and as a function of tone category [F(3, 48) = 3.94, p = .01, η2

p = .20, η2
G = .16]. 

However, the interaction between syllable and tone was nonsignificant [F(6, 48) = .77, p = .60, 

η2
p = .09, η2

G = .06]. Bonferroni corrected post-hoc comparisons revealed that /ma/ syllables 

were longer than /mi/ syllables (β = -.042, SE = .014, t ratio = 3.06, p = .010), and /ma/ syllables 

were longer than /mɯ/ syllables (β = -.039, SE = .014, t ratio = 2.81, p = .022). However, /mi/ 

syllables did not differ from /mɯ/ syllables (β = -.003, SE = .014, t ratio = -.25, p = 1.00). Also, 

T241 was longer than T315 (β = .05, SE = .016, t ratio = 3.17, p = .016).  

The tokens used in the current studies were natural tokens. Duration was not 

controlled. Therefore, there were differences in duration. Controlling for talker, duration 

differed as a function of syllable type but not as a function of tone category. Specifically, /mi/ 

syllables were shorter than /mɯ/ syllables. Within talker there were individual differences in 

duration. For talker A duration differed as a function of syllable type, with /mɯ/ syllables being 

longer than /ma/ or /mi/ syllables. For talker B duration differed as a function of tone category, 
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with tone T241 being longer than the other tones. For talker C duration differed as a function of 

tone category, with tone T315 being longer than the other tones. For talker D duration differed 

as a function of syllable type, with /ma/ syllables being shorter than /mi/ or /mɯ/ syllables. For 

talker E duration did not differ as a function of syllable type or tone category. For talker F 

duration differed as a function of syllable type and tone category, with /ma/ syllables being 

longer than /mi/ or /mɯ/ syllables and tone T241 being longer than tone T315. Overall, there 

were no consistent differences in durations across tone categories that might aid in an 

interpretation of the results from the current study. The duration differences across syllable 

type could affect results. Each condition in the current studies uses a single syllable type. So, it 

may be that participants exposed to /mɯ/ syllables have an advantage or disadvantage due to 

the longer duration of the syllable type. This will be considered in the analysis of the results. 

 

Figure 9. Aggregated duration means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker F. 

2.1.2 F0 

The following section presents an analysis of F0 contours and F0 range across talkers and within 

talker. I investigate F0 contours of the tone categories across talkers and systematic differences 

in F0 range of the tone categories across talkers and syllable types to provide analyses of 

differences between talkers or aberrations within talker that may impact learning in the current 

experiments. 
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Figure 10 illustrates the tone contours from the stimuli taken from each talker with 

normalized time. The contours represent means extracted from every five percent of the 

duration of the tone bearing unit across all tokens. The initial and final portions – about ten 

percent – of the durations were not used as they included large numbers of missing and 

randomly jittered values due to transitions to silence. F0 values were extracted using Praat 

(Boersma & Weenink, 2015), and the values were carefully inspected. Values were sometimes 

missing or randomly jittered due creaky voice, which occurred predominantly on lower F0 

contours. These values were then measured manually. The light grey areas bordering the F0 

contours represent ± 1 standard error of the mean.  

 A visual inspection of the F0 contours reveals individual differences in the realization of 

the tone categories. From the differences in ranges of Hertz on the y axis, it is easy to see that 

talkers differed somewhat in the F0 range that they used across all tones and for each tone 

category. F0 range specifically will be discussed in detail below. There are also individual 

differences in the shape of the F0 contours. For example, the crest of the T241 contour and 

trough of the T315 contour occur at different durations across the contours, the shape of the 

T45 rising contour differs, and the T21 ending may fall, rise slightly, or level off.  

 

Figure 10. Mean F0 contours and ± 1 standard error of the mean for each tone category for each 
talker across normalized time. 
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Figure 11 illustrates F0 range values for all talkers across tone categories and syllable 

types. The four boxplots in each of the three charts represent the distribution of F0 ranges for 

tokens from each tone of the chart’s syllable type, with the solid line in the middle of each box 

representing the median, the bottom and top of the box representing the first and third 

quartiles, and the whiskers representing the furthest value at no more than 1.5 times the 

interquartile range. The dots in the boxes represent the mean F0 range for tokens of the specific 

tone. The dashed lines in each of the three charts represent the aggregated mean F0 range for 

all tokens of the chart’s syllable type. The letters represent the means of the six individual 

talkers for the specific tone and syllable type.   

 

Figure 11. Aggregated F0 range means for each syllable type (dashed lines), for each tone (dots 
inside the box plots), and for each talker (letters). 

The overall F0 range across all tones and the F0 range for each tone is a primary feature 

of F0 that differs across the speakers of a language and thus may impact learners’ ability to 

perceive and learn tone categories. Therefore, it is expected that F0 range will differ across 

talkers and across tones. A visual inspection of the differences between talkers and tones in 

Figure 11 seems to confirm this hypothesis. However, it is unclear whether F0 range will differ 
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across syllable types for all talkers or within talker. To test differences in F0 range across 

syllables, talkers, and tones, I compared several mixed models.  

I compared models with and without talker, and as expected, F0 range significantly 

differed as a function of talker (X2 (1) = 106.96, p < 0.001).  

F0 range ~ syllable + tone + (1|talker) 
F0 range ~ syllable + tone 

I also compared models with and without tone category to test whether F0 range differed as a 

function of tone category, and as expected, results indicated that F0 range significantly differed 

as a function of tone category (X2 (3) = 232.17, p = .20). Bonferroni corrected post-hoc 

comparisons revealed that the F0 range of each tone was significantly different from each other 

tone. In a visual inspection of Figure 11 it appears that T315 and T45 have a very similar F0 

range, but the difference between the two is still significant (β = 6.4, SE = 2.3, t = 2.78, p = .034). 

Pairwise comparisons are presented in Table 3. 

F0 range ~ syllable + tone + (1|talker) 
F0 range ~ syllable + (1|talker) 

Table 3. Bonferroni corrected pairwise comparisons for F0 range across tone categories 

Tone β SE t p 

T21 – T241 -40.74 2.30 -17.68 < .001 

T21 – T315 -22.34 2.30 -9.70 < .001 

T21 – T45 -15.94 2.30 -6.92 < .001 

T241 – T315 18.40 2.30 7.99 < .001 

T241 – T45 24.80 2.30 10.77 < .001 

T315 – T45 6.40 2.30 2.78 .034 

 

Also, to test whether F0 range differed as a function of syllable type (e.g., /ma/, /mi/, 

/mɯ/), I compared models with and without syllable type, and results indicated that F0 range 

significantly differed as a function of syllable type (X2 (2) = 8.62, p = .013). Bonferroni corrected 

post-hoc comparisons revealed that the F0 range of /mi/ syllables was wider than /ma/ syllables 

(β = -6.35, SE = 2.23, t = -2.85, p = .014), but /ma/ syllables did not differ from /mɯ/ syllables (β 

= -4.61, SE = 2.23, t = -2.07, p = .12) and /mi/ syllables did not differ from /mɯ/ syllables (β = 

1.75, SE = 2.21, t = .79, p = 1). 
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F0 range ~ syllable + tone + (1|talker) 
F0 range ~ tone + (1|talker) 

A main interest was to examine F0 range for each tone category across syllable types, and so I 

compared models with and without an interaction between tone category and syllable type to 

determine if an interaction made a significant contribution to model fit. Results indicated a 

significant interaction between tone category and syllable type (X2 (6) = 32.04, p < .001). 

F0 range ~ syllable * tone + (1|talker) 
F0 range ~ syllable + tone + (1|talker) 

To further investigate the interaction between tone category and syllable type, I used subsets of 

the data to measure each tone category across syllable types. For each tone category I 

compared models with and without syllable type to determine if syllable type made a significant 

contribution to model fit. If F0 range differed as a function of syllable type for a tone category, I 

performed Bonferroni corrected post-hoc comparisons to further investigate differences across 

syllable types. 

F0 range ~ syllable + (1|talker) 
F0 range ~ (1|talker) 

Syllable type did not make a significant contribution to model fit as a predictor for T241 F0 range 

(X2 (2) = 3.76, p = .15), T21 F0 range (X2 (2) = 3.92, p = .14), or T315 F0 range (X2 (2) = 4.24, p = 

.12). However, syllable type did make a significant contribution to model fit for T45 (X2 (2) = 

28.10, p < .001). Bonferroni corrected post-hoc comparisons revealed that for T45 the F0 range 

of /ma/ syllables was narrower than /mi/ syllables (β = -11.93, SE = 2.93, t = -4.08, p < .001) and 

/mɯ/ syllables (β = -16.00, SE = 2.93, t = -5.47, p < .001). However, for T45 the F0 range of /mi/ 

syllables did not differ from /mɯ/ syllables (β = -4.06, SE = 2.90, t = -1.40, p = .50). Figure 11 

illustrates these differences in F0 range across syllables for T45, with /ma/ syllables illustrating 

lower F0 range than /mi/ or /mɯ/ syllables.  

Figure 11 illustrates F0 s for each talker for each tone category across the three syllable 

types. A visual inspection of Figure 11 indicates that patterns emerge for each talker across 

syllable types and that some talkers have consistently wider or narrower F0 ranges than other 

talkers. For example, Talker B consistently has wider F0 ranges across tone categories than 

Talker E. Table 4 provides the F0 mean, standard deviation, min, max, and range for each 

talker’s productions across tone categories and syllable types. Table 4 is ordered by talker and 
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by tone category to facilitate the comparison of F0 range values of the tone categories within 

talker.  

Table 4. Summary statistics for F0 range across syllable types and tone categories, ordered by 
talker and tone category to facilitate comparison of F0 range for each tone category across 
syllable types 

Talker Tone Syllable n Mean SD Min Max Range 

A T21 /ma/ 120 196.85 12.7 171.87 218.28 46.41 

A T21 /mi/ 120 203.64 11.5 173.55 227.76 54.21 

A T21 /mɯ/ 120 200.98 11.97 179.79 268.83 89.04 

A T241 /ma/ 120 259.74 35.66 165.12 307.18 142.06 

A T241 /mi/ 120 259.4 30.9 179.77 291.34 111.57 

A T241 /mɯ/ 120 261.15 31.43 178.86 291.97 113.11 

A T315 /ma/ 120 188.05 20.23 162.48 274.56 112.08 

A T315 /mi/ 120 196.49 17.96 177.3 269.31 92.01 

A T315 /mɯ/ 120 193.21 18.05 169.88 278.17 108.29 

A T45 /ma/ 120 257.26 20.7 229.21 329.43 100.22 

A T45 /mi/ 120 268.89 23.95 223.73 347.11 123.38 

A T45 /mɯ/ 120 265.91 25.89 214.54 351.67 137.13 

B T21 /ma/ 120 208.25 23.35 169.41 251.16 81.75 

B T241 /ma/ 120 282.22 28.49 218.1 321.99 103.89 

B T315 /ma/ 120 207.68 29.82 163.06 295.87 132.82 

B T45 /ma/ 120 262.78 15.83 245.08 315.73 70.66 

C T21 /ma/ 96 173.28 11.7 146 198.58 52.58 

C T241 /ma/ 96 226.27 21.37 176.12 252.8 76.68 

C T315 /ma/ 96 171.79 13.15 157 213.24 56.24 

C T45 /ma/ 96 218.36 19.42 191.14 270.85 79.71 

D T21 /ma/ 60 197.08 10.62 181.48 224.54 43.06 

D T21 /mi/ 60 205.64 14.25 184.2 231.91 47.7 

D T21 /mɯ/ 60 205.31 12.23 188.05 232.37 44.32 

D T241 /ma/ 60 287.12 18.87 190.48 301.34 110.86 

D T241 /mi/ 60 314.78 24.01 246.63 337.94 91.31 

D T241 /mɯ/ 60 308.26 23.59 223.84 330.75 106.92 

D T315 /ma/ 60 198.96 18.92 179.03 258.52 79.48 

D T315 /mi/ 60 204.23 21.28 184.45 273.2 88.75 

D T315 /mɯ/ 60 203.69 18.82 184.67 264.83 80.16 

D T45 /ma/ 60 238.27 13.1 227.17 280.38 53.21 

D T45 /mi/ 60 257.44 14.03 244.79 296.09 51.29 

D T45 /mɯ/ 60 253.18 15.72 238.84 295.7 56.86 

E T21 /ma/ 48 184.04 12.32 162 210.08 48.08 

E T21 /mi/ 60 183.89 13.08 166.36 210.9 44.54 

E T21 /mɯ/ 60 188.21 10.61 168.52 218.07 49.56 
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Table 4. (continued). 

Talker Tone Syllable n Mean SD Min Max Range 

E T241 /ma/ 48 239.63 19.92 192.77 263.13 70.37 

E T241 /mi/ 60 248.64 26.9 190.4 277.5 87.1 

E T241 /mɯ/ 60 247.83 25.78 191.05 272.71 81.66 

E T315 /ma/ 48 183.41 8.47 164.37 206.79 42.42 

E T315 /mi/ 60 185.58 14.18 167.89 231.91 64.01 

E T315 /mɯ/ 60 182.47 9.18 171.95 213.66 41.71 

E T45 /ma/ 48 213.18 11.71 200.66 248.44 47.78 

E T45 /mi/ 60 225.25 15.54 209.89 273.68 63.79 

E T45 /mɯ/ 60 223.65 12.92 211.55 263.36 51.81 

F T21 /ma/ 60 166.07 14.45 142 197.6 55.6 

F T21 /mi/ 60 170.13 16.33 138 196.23 58.23 

F T21 /mɯ/ 60 170.87 15.16 145 195.47 50.47 

F T241 /ma/ 60 213.7 24.15 170.21 237.51 67.3 

F T241 /mi/ 60 229.88 31.23 173.57 271.37 97.8 

F T241 /mɯ/ 60 221.17 29.13 149.1 255.21 106.11 

F T315 /ma/ 60 172.24 17.68 142 214.91 72.91 

F T315 /mi/ 60 170.39 22.33 141.41 228.58 87.17 

F T315 /mɯ/ 60 176.12 21.27 146.88 226.11 79.23 

F T45 /ma/ 60 197.25 11.52 187.27 229.37 42.1 

F T45 /mi/ 60 205 14.31 191.62 250.28 58.65 

F T45 /mɯ/ 60 210.96 15.97 189.94 255.25 65.31 

 

A comparison of F0 range for each tone category across syllable types reveals some 

differences within talker. Figure 12 illustrates mean F0 contours and ± 1 standard error of the 

mean for each tone category for /ma/, /mi/, and /mɯ/ syllables for Talker A across normalized 

time. A visual inspection of the contours in Figure 12 reveals differences in the shape of T45, 

with /ma/ syllables differing from /mi/ and /mɯ/ syllables. There were systematic differences in 

Talker A’s productions of T45 across syllable types. Figure 13 illustrates Talker A’s productions of 

T45 in /ma/, /mi/, and /mɯ/ syllables, with F0 illustrated by dotted lines and intensity illustrated 

by solid lines. The F0 contours of /mi/ and /mɯ/ syllables differ from /ma/ syllables, along with 

intensity. Talker A had two methods for producing T45. These methods were slightly 

interchangeable, but the majority of the productions followed the patterns shown in Figure 13. 

It is possible that these differences impacted perceptual learning if learners found one method 

to be more salient than the other method. This difference will be considered in the discussion of 

the results of the corresponding experiments.  
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Figure 12. Mean F0 contours and ± 1 standard error of the mean for each tone category for 
/ma/, /mi/, and /mɯ/ syllables for Talker A across normalized time. 

 

Figure 13. Mean F0 contours and ± 1 standard error of the mean for each tone category for 
/ma/, /mi/, and /mɯ/ syllables for Talker A across normalized time. 

F0 ranges for each syllable type for Talker A are shown in Figure 14. The four boxplots in 

each of the three charts represent the distribution of F0 ranges for tokens from each tone of the 

chart’s syllable type, with the solid line in the middle of each box representing the median, the 
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bottom and top of the box representing the first and third quartiles, and the whiskers 

representing the furthest value at no more than 1.5 times the interquartile range. The dots in 

the boxes represent the mean F0 range for tokens of the specific tone. The dashed lines in each 

of the three charts represent the aggregated mean F0 range for all tokens of the chart’s syllable 

type. An obvious difference observed in Figure 14 regards the F0 range for T45 in /ma/ syllables 

compared with the F0 range of T45 in /mi/ and /mɯ/ syllables, with T45 in /ma/ syllables having 

a narrower F0 range. This difference is also observable in Table 4. The F0 range difference 

between syllables is likely due to the difference between production methods shown in Figure 

12. 

Results from a two-way ANOVA examining F0 range across syllable types for Talker A 

indicated that, as expected, F0 range differs as a function of tone category [F(3, 108) = 122.08, p 

< .001, η2
p = .77, η2

G = .72]. Overall F0 range did not significantly differ as a function of syllable 

type [F(2, 108) = .28, p = .76, η2
p = .005, η2

G = .001]. However, the interaction between syllable 

type and tone category was significant [F(6, 108) = 5.28, p < .001, η2
p = .22, η2

G = .06].  

To further investigate the interaction between tone category and syllable type for Talker 

A, I used subsets of the data to measure each tone category across syllable types. For each tone 

category I compared models with and without syllable type to determine if syllable type made a 

significant contribution to model fit. If F0 range differed as a function of syllable type for a tone 

category, I performed Bonferroni corrected post-hoc comparisons to further investigate 

differences across syllable types. 

F0 range ~ syllable 
F0 range ~ 1 
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Figure 14. Aggregated F0 range means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker A. 

Syllable type did not make a significant contribution to model fit as a predictor for T241 

F0 range (F (2) = 2.96, p = .07), T21 F0 range (F (2) = .29, p = .75), or T315 F0 range (F (2) = .28, p 

= .76). However, syllable type did make a significant contribution to model fit for T45 (F (2) = 

13.42, p < .001). Bonferroni corrected post-hoc comparisons revealed that for T45 for Talker A 

the F0 range of /ma/ syllables was narrower than /mi/ syllables (β = -19.64, SE = 5.68, t = -3.46, p 

= .006) and /mɯ/ syllables (β = -28.83, SE = 5.68, t = -5.07, p < .001). However, for T45 the F0 

range of /mi/ syllables did not differ from /mɯ/ syllables (β = -9.19, SE = 5.68, t = -1.62, p = .35). 

Figure 14 illustrates these differences in F0 range across syllables for T45, with /ma/ syllables 

illustrating lower F0 range than /mi/ or /mɯ/ syllables.  

Talker B was one of three talkers in the multitalker condition in the second experiment, 

which only used /ma/ syllables. Therefore, /mi/ and /mɯ/ tokens from Talker B were not used 

or analyzed and comparisons were not investigated. Figure 15 illustrates Talker B’s productions 

of the four tone categories with the solid lines representing the mean F0 contours and ± 1 

standard error of the mean for each tone category for /ma/ syllables across normalized time. F0 

range for each tone category for /ma/ syllables for Talker B are shown in Figure 16.  
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Figure 15. Mean F0 contours and ± 1 standard error of the mean for each tone category for /ma/ 
syllables for talker B across normalized time. 

 

Figure 16. Aggregated F0 range means for /ma/ syllables (dashed lines) and tone category (dots 
inside the box plots) for Talker B. 

Talker C was also one of three talkers in the multitalker condition in the second 

experiment, which only used /ma/ syllables. So, like Talker B, /mi/ and /mɯ/ tokens from Talker 

C were not used or analyzed and comparisons were not investigated. Figure 17 illustrates Talker 

C’s productions of the four tone categories with the solid lines representing the mean F0 

contours and ± 1 standard error of the mean for each tone category for /ma/ syllables across 

normalized time. F0 range for each tone category for /ma/ syllables for Talker C are shown in 

Figure 18.  
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Figure 17. Mean F0 contours and ± 1 standard error of the mean for each tone category for /ma/ 
syllables for talker C across normalized time. 

 

Figure 18. Aggregated F0 range means for /ma/ syllables (dashed lines) and tone category (dots 
inside the box plots) for Talker C. 

Figure 19 illustrates mean F0 contours and ± 1 standard error of the mean for each tone 

category for /ma/, /mi/, and /mɯ/ syllables for Talker D across normalized time. A visual 

inspection of the tone contours suggests that Talker D’s productions of the F0 contours across 

syllable types was consistent.  
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Figure 19. Mean F0 contours and ± 1 standard error of the mean for each tone category for 
/ma/, /mi/, and /mɯ/ syllables for Talker D across normalized time. 

F0 ranges for each syllable type for Talker D are shown in Figure 20. The four boxplots in 

each of the three charts represent the distribution of F0 ranges for tokens from each tone of the 

chart’s syllable type, with the solid line in the middle of each box representing the median, the 

bottom and top of the box representing the first and third quartiles, and the whiskers 

representing the furthest value at no more than 1.5 times the interquartile range. The dots in 

the boxes represent the mean F0 range for tokens of the specific tone. The dashed lines in each 

of the three charts represent the aggregated mean F0 range for all tokens of the chart’s syllable 

type.  

Results from a two-way ANOVA examining F0 range across tone category and syllable 

type for Talker D indicated that, as expected, F0 range differs as a function of tone category [F(3, 

48) = 37.35, p < .001, η2
p = .70, η2

G = .64]. Also, F0 range significantly differed as a function of 

syllable type [F(2, 48) = 3.98, p < .001, η2
p = .14, η2

G = .05], but the interaction between syllable 

type and tone category was not significant [F(6, 48) = 1.09, p = .38, η2
p = .12, η2

G = .04]. 

Bonferroni corrected post-hoc comparisons revealed that the F0 range of /ma/ syllables was 

narrower than /mi/ syllables (β = -9.32, SE = 3.53, t = -2.64, p = .03), but /ma/ syllables did not 
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differ from /mɯ/ syllables (β = -7.71, SE = 3.53, t = -2.18, p = .10) and /mi/ syllables did not differ 

from /mɯ/ syllables (β = 1.61, SE = 3.53, t = .46, p = 1). 

 

Figure 20. Aggregated F0 range means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker D. 

Figure 21 illustrates mean F0 contours and ± 1 standard error of the mean for each tone 

category for /ma/, /mi/, and /mɯ/ syllables for Talker E across normalized time. A visual 

inspection of the tone contours suggests that Talker E’s productions of the F0 contours across 

syllable types was consistent.  

F0 ranges for each syllable type for Talker E are shown in Figure 22. The four boxplots in 

each of the three charts represent the distribution of F0 ranges for tokens from each tone of the 

chart’s syllable type, with the solid line in the middle of each box representing the median, the 

bottom and top of the box representing the first and third quartiles, and the whiskers 

representing the furthest value at no more than 1.5 times the interquartile range. The dots in 

the boxes represent the mean F0 range for tokens of the specific tone. The dashed lines in each 

of the three charts represent the aggregated mean F0 range for all tokens of the chart’s syllable 

type.  
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Figure 21. Mean F0 contours and ± 1 standard error of the mean for each tone category for 
/ma/, /mi/, and /mɯ/ syllables for Talker E across normalized time. 

Results from a two-way ANOVA examining F0 range across tone category and syllable 

type for Talker E indicated that, as expected, F0 range differs as a function of tone category [F(3, 

44) = 75.98, p < .001, η2
p = .84, η2

G = .69]. Also, F0 range significantly differed as a function of 

syllable type [F(2, 44) = 16.33, p < .001, η2
p = .43, η2

G = .10], and the interaction between syllable 

type and tone category was significant [F(6, 44) = 4.32, p = .002, η2
p = .37, η2

G = .08]. Bonferroni 

corrected post-hoc comparisons revealed that the F0 range of /ma/ syllables was narrower than 

/mi/ syllables (β = -12.31, SE = 2.31, t = -5.34, p < .001), but /ma/ syllables did not differ from 

/mɯ/ syllables (β = -2.93, SE = 2.31, t = -1.27, p = .63). Also, the F0 range of /mi/ syllables was 

wider than /mɯ/ syllables (β = 9.38, SE = 2.17, t = 4.32, p < .001).  

To further investigate the interaction between tone category and syllable type for Talker 

F, I used subsets of the data to measure each tone category across syllable types. For each tone 

category I compared models with and without syllable type to determine if syllable type made a 

significant contribution to model fit. If F0 range differed as a function of syllable type for a tone 

category, I performed Bonferroni corrected post-hoc comparisons to further investigate 

differences across syllable types. 
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F0 range ~ syllable 
F0 range ~ 1 

 

Figure 22. Aggregated F0 range means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker E. 

Syllable type made a significant contribution to model fit as a predictor for F0 range for 

all tones: T241 (F (2) = 7.33, p = .009), T21 (F (2) = 4.38, p = .04), T315 (F (2) = 9.66, p = .004), T45 

(F (2) = 5.11, p = .03). Bonferroni corrected post-hoc comparisons revealed that for T241 for 

Talker A the F0 range of /ma/ syllables was narrower than /mi/ syllables (β = -19.44, SE = 5.43, t 

= -3.58, p = .01) and /mɯ/ syllables (β = -16.96, SE = 5.43, t = -3.12, p = .03). However, the F0 

range of /mi/ syllables did not differ from /mɯ/ syllables (β = 2.48, SE = 5.12, t = .48, p = 1). 

Although syllable type made a significant contribution to model fit for T21, Bonferroni corrected 

post-hoc comparisons revealed no differences. The F0 range of /ma/ syllables did not differ from 

/mi/ syllables (β = 1.24, SE = 3.92, t = .32, p = 1) or /mɯ/ syllables (β = 10.29, SE = 3.92, t = 2.62, 

p = .07), and /mi/ syllables did not differ from /mɯ/ syllables (β = 9.05, SE = 3.70, t = 2.45, p = 

.10). For T315 the F0 range of /ma/ syllables was narrower than /mi/ syllables (β = -21.59, SE = 

5.43, t = -3.98, p = .007) but did not differ from /mɯ/ syllables (β = -3.55, SE = 5.43, t = -.65, p = 

1). Further, the F0 range of /mi/ syllables was wider than /mɯ/ syllables (β = 18.04, SE = 5.12, t 

= 3.53, p = .01). For T45 the F0 range of /ma/ syllables was narrower than /mi/ syllables (β = -
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9.46, SE = 3.28, t = -2.89, p = .04) but did not differ from /mɯ/ syllables (β = -1.50, SE = 3.28, t = -

.46, p = 1). Further, /mi/ syllables did not differ from /mɯ/ syllables (β = 7.96, SE = 3.09, t = 2.58, 

p = .08). Figure 22 illustrates these differences in F0 range across syllable types.  

Figure 23 illustrates mean F0 contours and ± 1 standard error of the mean for each tone 

category for /ma/, /mi/, and /mɯ/ syllables for Talker F across normalized time. A visual 

inspection of the tone contours suggests that Talker F’s productions of the F0 contours across 

syllable types was mostly consistent. The trough of T315 occurs at different durations across 

syllable types. An inspection of the individual tokens reveals that differences in voice quality are 

likely the cause of the differences in T315. All /ma/ syllables, as illustrated in Figure 24, were 

produced with long durations of creaky voice. In Figure 24 F0 is illustrated by a dotted line and 

intensity is illustrated by a solid line. Creaky voice occurs in the middle of the syllable and 

disrupts the F0 contour. Creaky voice did occur on most of Talker F’s productions of /mi/ and 

/mɯ/, but some did not have creaky voice, and when creaky voice occurred the duration was 

not as long as on /ma/ syllables. Voice quality is a feature that can be used to distinguish tone 

categories. For example, in the four tone categories used in the current studies, creaky voice 

occurs on low tones. Participants could use creaky voice, especially creaky voice as prominent as 

that used by Talker F, as a cue to identify and learn the tone categories.  

 

Figure 23. Mean F0 contours and ± 1 standard error of the mean for each tone category for 
/ma/, /mi/, and /mɯ/ syllables for Talker F across normalized time. 
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Figure 24. T315 produced by Talker F in a /ma/ syllable illustrating creaky voice occurring on 
lower F0 ranges. 

F0 ranges for each syllable type for Talker F are shown in Figure 25. The four boxplots in 

each of the three charts represent the distribution of F0 ranges for tokens from each tone of the 

chart’s syllable type, with the solid line in the middle of each box representing the median, the 

bottom and top of the box representing the first and third quartiles, and the whiskers 

representing the furthest value at no more than 1.5 times the interquartile range. The dots in 

the boxes represent the mean F0 range for tokens of the specific tone. The dashed lines in each 

of the three charts represent the aggregated mean F0 range for all tokens of the chart’s syllable 

type.  

Results from a two-way ANOVA examining F0 range across tone category and syllable 

type for Talker F indicated that, as expected, F0 range differs as a function of tone category [F(3, 

48) = 73.73, p < .001, η2
p = .82, η2

G = .70]. Also, F0 range significantly differed as a function of 

syllable type [F(2, 48) = 14.74, p < .001, η2
p = .38, η2

G = .09], and the interaction between syllable 

type and tone category was significant [F(6, 48) = 2.66, p = .026, η2
p = .25, η2

G = .05]. Bonferroni 

corrected post-hoc comparisons revealed that the F0 range of /ma/ syllables was narrower than 

/mi/ syllables (β = -10.69, SE = 2.16, t = -4.94, p < .001) and /mɯ/ syllables (β = -9.56, SE = 2.16, t 
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= -4.42, p < .001). The F0 range of /mi/ syllables did not differ from /mɯ/ syllables (β = 1.13, SE = 

2.16, t = .52, p = 1). The narrower F0 range of ma syllables may impact perceptual learning.  

 

Figure 25. Aggregated F0 range means for each syllable type (dashed lines) and tone category 
(dots inside the box plots) for Talker F. 

To further investigate the interaction between tone category and syllable type for Talker F, I 

used subsets of the data to measure each tone category across syllable types. For each tone 

category I compared models with and without syllable type to determine if syllable type made a 

significant contribution to model fit. If F0 range differed as a function of syllable type for a tone 

category, I performed Bonferroni corrected post-hoc comparisons to further investigate 

differences across syllable types. 

F0 range ~ syllable 
F0 range ~ 1 

Syllable type did not make a significant contribution to model fit as a predictor for T21 F0 range 

(F (2) = .92, p = .43). However, syllable type did make a significant contribution to model fit for 

T241 F0 range (F (2) = 10.22, p = .003), T315 F0 range (F (2) = 3.95, p = .048), and T45 (F (2) = 

6.78, p = .01). Bonferroni corrected post-hoc comparisons revealed that for T241 for Talker F the 

F0 range of /ma/ syllables was narrower than /mi/ syllables (β = -17.55, SE = 4.57, t = -3.84, p = 

.007) and /mɯ/ syllables (β = -18.18, SE = 4.57, t = -3.98, p = .006). However, the F0 range of 
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/mi/ syllables did not differ from /mɯ/ syllables (β = -.64, SE = 4.57, t = -.14, p = 1). Although 

syllable type made a significant contribution to model fit for T315, Bonferroni corrected post-

hoc comparisons revealed no differences. The F0 range of /ma/ syllables did not differ from /mi/ 

syllables (β = -14.86, SE = 5.46, t = -2.72, p = .056) or /mɯ/ syllables (β = -10.75, SE = 5.46, t = -

1.97, p = .22), and /mi/ syllables did not differ from /mɯ/ syllables (β = 4.12, SE = 5.46, t = .75, p 

= 1). For T45 the F0 range of /ma/ syllables did not differ from /mi/ syllables (β = -9.00, SE = 

3.51, t = -2.56, p = .07), but /ma/ syllables were narrower than /mɯ/ syllables (β = -12.52, SE = 

3.51, t = -3.57, p = .01). Further, the F0 range of /mi/ syllables did not differ from /mɯ/ syllables 

(β = -3.53, SE = 3.51, t = -1.01, p = 1). Figure 25 illustrates these differences in F0 range across 

syllable types.  

Overall, as expected, the F0 ranges of the stimuli used in the current experiments 

differed across talkers and across tone categories. However, there were overall patterns in F0 

ranges across tone categories. Typically, T21 had the narrowest F0 range and T241 had the 

widest F0 range. T315 had the greatest variation in F0 ranges across talkers. F0 ranges also 

differed across syllable types, often with /ma/ syllables having a narrower F0 range than /mi/ or 

/mɯ/ syllables. When comparing individual tone categories across syllable types, only T45 

differed, with /ma/ syllables having narrower F0 range than /mi/ or /mɯ/ syllables. There were 

also some differences in the shapes of the F0 contours. Talker A employed two methods for the 

production of T45, consistently using one method for /ma/ syllables and another method for 

/mi/ and /mɯ/ syllables. Talker F displayed differences in the trough of T315 as a result of 

differences in the amount of creaky voice present across syllables, with /ma/ syllables having 

longer durations of creaky voice than /mi/ or /mɯ/ syllables. These differences will be 

considered in the analysis of the results of the corresponding experiments. 
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 III. TOKEN VARIABILITY  

3.1 INTRODUCTION 

One challenge when listening to an interlocutor is that the interlocutor’s productions of a 

particular sound category can have features that widely vary from production to production. 

Variability in productions could be affected by the phonotactic environment of the sound 

category, but even if the phonotactic environment is the same, features are likely to vary, as 

pointed out in the productions used in the current study in Chapter 2. Therefore, the task of the 

listener is the task of categorization, which refers to the process of identifying which features of 

the target sound category are salient to the category and which are unimportant so that the 

sound can be perceived as the intended category.6 Thus, the learner must develop the ability to 

separate salient acoustic features from unimportant features so that when they hear novel 

productions of the target category, they will be able to recognize the sound as the intended 

category, a process called generalization. Generalization has become an important test of 

categorization. If learners are able to generalize to novel tokens, then they display higher levels 

of category learning. Therefore, previous research has concluded that exposure during training 

to a wide range of variability is vital for category development (e.g., Bradlow et al., 1997; Iverson 

et al., 2005; Jamieson & Morosan, 1989; Lively et al., 1993; Wang et al., 1999). However, the 

manner in which variability is encountered during training significantly impacts the ability to 

acquire novel sound categories. In Experiment 1 we investigate within-trial variability and 

across-trial variability to examine the impact of the temporal distribution of acoustic variability 

on incidental auditory learning. 

3.1.1 Incidental learning 

The incidental acquisition of novel sound categories is a relatively new area of investigation in 

the field of speech perception and production. Initial investigations sought to understand 

factors driving incidental learning using nonspeech auditory categories (Wade & Holt, 2005; 

Seitz et al., 2010; Lim & Holt, 2011; Vlahou et al., 2012; Emberson et al., 2013; Gabay et al., 

                                                            
6 See Section 1.2.2 for a discussion on categorization. 
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2015; Lim et al., 2019; Roark et al., 2020). Experiment 1 extends the investigation of factors 

driving incidental learning into natural speech sound categories. 

As discussed in Section 1.2, traditionally, studies investigating novel tone category 

formation require learners to return to the lab over several days or weeks for training sessions 

to develop behavioral mastery of four novel tone categories (Francis et al., 2008; 

Chandrasekaran, 2010; Wong Puisan & Lam Ka Yu, 2021). These training sessions typically 

include explicit instruction regarding the target categories and feedback on performance. The 

difference between the time course of learning for incidental and explicit learning paradigms is 

notable and may be attributed to differences in the learning systems engaged by the paradigms 

(Tricomi et al., 2006; Lim et al., 2013). These differences may also result in more robust learning 

in incidental paradigms (Wiener et al., 2019). Traditional paradigms and incidental paradigms 

are somewhat similar but also have several differences. As discussed in section 1.2, incidental 

learning is not passive learning. There is a feedback mechanic incorporated in the incidental 

learning paradigm. In the incidental paradigm learning occurs when the participant realizes that 

the auditory tokens provide clues regarding the location of the visual targets. Then they begin to 

use those clues to predict where the visual target would appear. On a trial they hear the sounds 

and are predicting where the target will be when it appears. This provides implicit feedback 

telling them if they were right or wrong in their prediction. They use that feedback to refine 

their categorical judgments of the following auditory stimuli. Therefore, one difference is that 

feedback is delayed in traditional paradigms compared to the feedback received in an incidental 

paradigm. Thus, Gabay et al. (2015) hypothesized that token variability within trial, due to the 

close temporal proximity to the feedback mechanism in the incidental paradigm, would result in 

better categorization and generalization than variability spread across trials. Their results 

indicated that within trial variability was substantially better for category learning than identical 

tokens within trial.  

3.1.2 The impact of within-trial token variability on sound category learning 

When a participant hears multiple tokens close together on the same trial, they are able to 

practice token normalization. That is, they are able to compare tokens to each other and 

determine what features are similar across tokens. This aids in the extraction of the salient 

features of the category. If the variability from the unimportant acoustic features is spread out 

temporally, token normalization is much more difficult. Explicit sound category learning studies 
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often contain a limited number of auditory tokens on each trial. By contrast, incidental learning 

paradigms typically include multiple auditory tokens on each trial (Wade & Holt, 2005). For 

example, Gabay et al. (2015) included five auditory tokens on each trial and they hypothesized 

that the composition of the auditory tokens on each trial might matter for learning. Therefore, 

they tested one condition that contained identical tokens on each trial and one condition that 

contained variable tokens on each trial. As mentioned, their findings indicated that participants 

learn much better from variable tokens on each trial. They concluded that variable tokens within 

trial temporally places auditory exemplar variability in closer proximity to the mechanic in the 

paradigm that drives learning. Specifically, variable auditory tokens within each trial allows 

participants to better refine their categorization of stimuli by aiding in the extraction of salient 

acoustic features from the various exemplars as they identify the acoustic characteristics that 

are essential to the specific category. When this process occurs in close proximity to the learning 

reinforcement mechanic, learning is enhanced. 

3.1.3 Current experiment 

In the current experiment we investigate whether an incidental learning paradigm using natural 

auditory tokens will result in the formation of novel tone categories and the ability to generalize 

learning to novel tokens and novel talkers. Further, we determine the impact of acoustic 

variability within trial on incidental perceptual learning. By investigating within-trial variability 

and across-trial variability, we examine whether the proximity of the acoustic variability to the 

visuomotor associations impacts the incidental learning of novel tone categories.  

Based on previous research, we expect that participants will be able to acquire four 

natural novel tone categories in a single session via incidental learning. We also expect that 

reaction times across blocks during training will get faster if they are learning the categories. 

Further, we expect that accuracy scores at test will correlate with reaction times during training. 

We also expect that within-trial variability in the Variable Token Condition will result in greater 

learning than across-trial variability in the Identical Token Condition.   
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3.2 METHODS  

3.2.1 Participants 

Participants were recruited online on the Prolific online research platform. All participants self-

identified as being monolingual English speakers and identified as being native English speakers 

from America, Canada, the United Kingdom, South Africa, Australia, or New Zealand. 

Participants that reported significant language learning experience, that reported hearing 

impairments, or that did not use the right equipment (headphones and an external mouse) were 

excluded from the study. 

In Experiment 1, participants were recruited for two separate conditions. In the Identical 

Token Condition, 25 participants were recruited (11 female, 14 male). No participants were 

excluded for not meeting the inclusion criteria in this condition. Participants in this condition 

spoke a variety of English dialects (14 American, 2 Australian, 5 British, 1 Canadian, 1 Irish, 3 

New Zealand).7 Ages ranged from 18 to 63 with a mean of 34.52 and standard deviation of 

13.87.8  

In the Variable Token Condition, 29 participants were recruited. Four participants were 

excluded for using the wrong equipment or for hearing impairments, leaving 25 participants (13 

female, 11 male, 1 non-binary). Participants in this condition spoke a variety of English dialects 

(6 American, 2 Australian, 14 British, 1 Canadian, 1 Irish, and 1 NA). Ages ranged from 19 to 56 

with a mean of 29.08 and standard deviation of 9.45. All participants were paid for their 

participation through Prolific. 

3.2.2 Stimuli 

Stimuli used in Experiment 1 were natural tokens recorded from four female native Thai 

speakers9. Figure 26 illustrates the four tone categories as produced by the four talkers in the 

current study. Talker A stimuli were used during training and on Posttest 1. Talker D, Talker E, 

                                                            
7 It is not expected that experience with specific English dialects would aid in novel tone category 
acquisition over other dialects. English dialects do not use F0 information contrastively at the lexical level. 
Further, experience with other regional languages used in proximity to the specific dialect should not be a 
factor as participation was limited to those that identified as being monolingual English speakers. 
8 Age is considered as a covariate during analysis and is reported in the results. 
9 The four tone categories, as produced by each talker, are illustrated and characterized in more detail in 
Chapter 2. 
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and Talker F stimuli were used for Posttest 2. The contours in Figure 26 represent means 

extracted from each token produced by the individual talkers who recorded the stimuli for the 

current experiment. The light grey areas bordering the F0 contours represent ± 1 standard error 

of the mean. 

 

Figure 26. Mean F0 contours and ± 1 standard error of the mean for each tone category for each 
talker across normalized time. 

Tokens from all four categories were produced in the syllable /ma/. Ten exemplars of each 

category were recorded from all four talkers. Half of the exemplars of each category from Talker 

A were used for training, and half of the exemplars were used to test generalization of learning 

to new exemplars on Posttest 1. Five tokens from Talker D and Talker E and four tokens from 

Talker F10 were used to test generalization of learning to new speakers on Posttest 2. Following 

Gabay et al. (2015), auditory stimuli in each trial consisted of five concatenated tokens. In the 

Identical Token Condition, the five concatenated tokens within trial were identical. In the 

Variable Token Condition, the five concatenated tokens were randomly selected.  

                                                            
10 Due to Covid restrictions, which led to talkers recording themselves, some tokens were not usable. In 
these situations, trials were still comprised of five randomly selected tokens with one token being 
duplicated.  
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3.3 PROCEDURE 

In Experiment 1, two groups of participants were exposed to four novel Thai tone categories 

through an incidental learning paradigm, which was developed based on previous incidental 

learning paradigms (Gabay et al., 2015; Lim et al., 2013; Lim & Holt, 2011; Wade & Holt, 2005). 

As in Gabay et al. (2015), participants received a brief introduction that made sure they were 

using the right equipment (i.e., an external mouse and headphones) and then introduced the 

task, but did not include information regarding the target auditory categories. Participants were 

then trained via the incidental learning paradigm and went through four training blocks. Then 

the first two posttests were introduced to prepare the participants for the task on the posttests, 

which differed slightly from the training task. After completing posttests 1 and 2, participants 

were given instructions for posttest 3, which tested production of the tone categories11, and 

participants completed posttest 3. Finally, participants completed a language background 

questionnaire.  

3.3.1 Training 

Before training began participants received a short introduction to the task. They were told that 

they would hear a sound repeated several times. After that, they saw four boxes appear and 

one box would have an X inside it. They were then instructed to use their mouse to click on the 

X as fast as they could. Then they were to move their mouse to the center target on the screen 

to start the next trial. Before beginning the training blocks, the participants performed eight 

practice trials. 

The training section of the experiment included four blocks with 48 trials in each block 

and a thirty second break between each block. Each training block contained the same trials, but 

the order of the trials across blocks was randomly selected by the experiment. On each trial 

participants first heard the five auditory stimuli from Talker A. In the Identical Token Condition, 

these tokens were the same auditory stimulus repeated five times. In the Variable Token 

Condition, the five stimuli were composed of five different auditory stimuli played in a random 

order that was compiled before the experiment. Across trials, in the Incidental Token Condition, 

participants heard six different productions of each tone category randomly selected by the 

                                                            
11 Posttest 3 elicited productions of the tone categories from the participants for analyses of correlations 
between production and perceptual learning. However, analyses of the production data will not be 
included in the present work. 
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experiment, for a total of twenty-four trials. This random selection was then repeated for a total 

of forty-eight trials. Across trials, in the Variable Token Condition, participants heard six 

different concatenations of five randomly selected productions of each tone category, which 

were selected prior to the experiment. The order of the auditory stimuli across trials was 

randomly selected by the experiment. This resulted in twenty-four trials, which were repeated 

once for a total of forty-eight trials. Immediately after the auditory stimuli played in each trial, 

four boxes appeared on the screen, and one of the boxes had an X in the box, as illustrated in 

Figure 27.  

 

Figure 27. Example of a visual target displayed on a training trial. 

Participants had been instructed to click on the X as fast as they could. After clicking on 

the visual target, the visual stimulus disappeared. Clicking on an empty box did not progress the 

trial. In this way, the participant was forced to respond correctly. After the visual stimulus 

disappeared, a visual prompt was displayed in the middle of the screen, as shown in Figure 28.  

 

Figure 28. Example of a circle displayed on a training trial prompting the participant to move 
their cursor back to the middle of the screen. 

Participants had been instructed to move their cursor back to the visual prompt in the middle of 

the screen to advance to the next trial. By arranging the visual target in a 2 x 2 grid, as shown in 

Figure 27, and having the participants bring the cursor back to the middle of the screen, I was 

able to track mouse movement, which permits the measurement of the participant’s decision 
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space as well as a confusion matrix that investigates which categories sound more similar to the 

participant12. Besides mouse tracking, I also measured reaction time from the initial appearance 

of the boxes to the time the participant clicked on the X. Initially participants would not be able 

to use the auditory stimuli to predict the appearance of the X, but as they learned the mapping, 

they would come to predict where the X would appear, and their reaction times would become 

faster. 

3.3.2 Testing 

After the training trials, participants received a brief introduction to the test trials. Participants 

were told that the task would change some. They would hear the sound and boxes would 

appear, as shown in Figure 29, but an X would not appear. They had to click on the box where 

they thought the X should appear. After clicking on a box, the trial ended and the next trial 

began. 

 

Figure 29. Example of a visual target displayed on a test trial in Posttest 1 and Posttest 2. 

3.3.2.1 Posttest 1: Generalization to new tokens 

Posttest 1 measured generalization to new tokens from Talker A. It was composed of thirty-six 

trials. Like the training blocks, on each trial participants first heard the five auditory stimuli. As in 

training, in the Identical Token Condition, the five stimuli were composed of the same auditory 

stimulus repeated five times, and in the Variable Token Condition the five stimuli were 

composed of five different auditory stimuli played in a random order that was compiled before 

the experiment. However, the tokens were new tokens that were not used during training. 

                                                            
12 An analysis of mouse tracking data is not included in the dissertation. Future analyses and description of 
the current work will analyze and consider mouse tracking data and report results. 
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Across trials, in the Identical Token Condition, participants heard three different productions of 

each tone category randomly selected by the experiment, making twelve trials. This random 

selection was then repeated three times for a total of thirty-six trials. Across trials, in the 

Variable Token Condition, participants heard three different concatenations of five randomly 

selected productions of each tone category, which were selected prior to the experiment. The 

order of the auditory stimuli across trials was randomly selected by the experiment. This 

resulted in twelve trials, which were repeated three times for a total of thirty-six trials. Accuracy 

on each trial was measured. 

3.3.2.2 Posttest 2: Generalization to new talkers 

Posttest 2 measured generalization to new talkers. Before it began participants were told that 

they would do the same task but that now they would hear different voices saying the sounds. 

Everything was the same as Posttest 1 except for the stimuli, which came from Talker D, Talker 

E, and Talker F. In the Identical Token Condition, where the five sounds within trial were 

identical repetitions of a single sound, three different productions of each tone category from 

each talker were used, for a total of thirty-six trials (3 productions X 4 tones X 3 talkers). In the 

Variable Token Condition, where the five sounds within trial were randomly selected 

productions, three different concatenations of each tone category from each talker were used 

for a total of thirty-six trials (3 concatenations X 4 tones X 3 talkers). The order of presentation 

across trials was randomly selected by the experiment. Accuracy on each trial was measured. 

3.3.2.3 Posttest 3: Production of the tone categories 

After the two posttests that tested perceptual learning, posttest 3 tested production of the four 

tone categories. To accomplish this more explicit instruction was required. Participants were 

told that each box during the training and Posttest 1 and 2 had a unique pitch pattern associated 

with it and that now they would be recorded producing the pitch patterns that went with each 

box. They were told that in posttest 3 the four boxes would appear and one box would have the 

X in it, as shown in Figure 30. They were to say the box’s pitch pattern with ‘ma’ a single time. 

Together with the visual target a button with a microphone and a button with a stop signal on it 

appeared. The participant clicked on the microphone button to begin the recording and then 
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clicked on the stop button to end the recording. The trial automatically ended after the stop 

button was pressed. Thirty-six trials were conducted13. 

 

Figure 30. Example of a visual target displayed on a trial from posttest 3. 

3.4 RESULTS 

Category learning was assessed with four measures. During training participants’ reaction times 

were measured to investigate learning across training blocks. Mouse tracking was also used 

during training to permit the investigation of changes in the participant’s decision space over 

the course of learning14. Also, by investigating the deviations towards other choices I measure 

the perceptual similarity of the categories and determine the time course of the perceptual 

separation of the analogous categories. During Posttest 1 participants’ accuracy scores were 

measured to test generalization to novel tokens from the same talker. During Posttest 2 

participants’ accuracy scores were measured to test generalization to novel tokens from novel 

talkers. During posttest 3 participants’ productions were recorded to test correlations between 

perceptual learning and production accuracy across the experiment’s conditions15.  

3.4.1 Training reaction times 

As in Gabay et al. (2015), the first measure of category learning uses changes in visual target 

detection time as a metric. Across the four training blocks, the auditory stimuli on each trial 

correlates with one of the four visual targets that follow the stimuli. For example, T241 always 

                                                            
13 An analysis of production data is not included in the dissertation. Future analyses and description of the 
current work will analyze and consider production data and report results. 
14 An analysis of mouse tracking data is not included in the dissertation. Future analyses and description of 
the current work will analyze and consider mouse tracking data and report results. 
15 An analysis of production data is not included in the dissertation. Future analyses and description of the 
current work will analyze and consider production data and report results. 
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occurs with a visual target in the top right quadrant. As participants learn the auditory-to-visual 

mapping, they begin to use the auditory stimuli to predict the location of the visual target. In 

this way they become faster at clicking on the visual target. As in Gabay et al. (2015), I expect 

that if participants are able to use an incidental auditory-to-visual mapping task to learn natural 

sound categories, then visual target detection times will become faster across training blocks. As 

discussed, the two conditions in this experiment are designed to test the impact of category 

exemplar variability on incidental auditory-to-visual category learning. Although both conditions 

contain the same tokens and therefore the same overall variability, the auditory stimuli in 

Identical Token Condition only contains identical repetitions of one token within a trial. 

Therefore, the variability of the exemplars is spread out across trials. In the Variable Token 

Condition, the auditory stimuli contain five different tokens within trial. Therefore, in the 

Variable Token Condition the exposure to exemplar variability occurs in close proximity to the 

visual detection task. By comparing these two conditions, I test the impact of proximity of 

exemplar variability to the visuomotor associations on natural sound category learning. 

Proximity of exemplar variability to the visuomotor associations is operationalized in the current 

study as the temporal distance that variable productions are from the visual detection task, and 

that temporal distance is either within a trial, as in the Variable Token Condition, or across trials, 

as in the Identical Token Condition. It is expected, following results from Gabay et al. (2015), 

that high variability in closer proximity to the visuomotor associations will result in more robust 

learning. So, although I expect that both conditions will result in faster visual target detection 

times across training blocks, I predict that reaction times will be faster in the Variable Token 

Condition. 

 It is important to note that for Experiment 1, and for all experiments in the current 

work, the study was conducted online rather than in a lab. In a lab there is control over the 

environment, which results in control over the computer interface as well as peripherals. 

Conducting the experiment online permits participants to have multiple screens or devices 

available for working on other tasks while doing the experiment. There may also be other 

distractors such as other people present or food and drink available. These external factors may 

result in differences in reaction times across training blocks that might not be experienced in a 

controlled lab setting, thereby potentially adding noise to the present data. Therefore, it is 
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expected that results, especially from measures that correlate with each other, would 

potentially be even stronger in a controlled environment.  

3.4.1.1 Analysis 

Visual target detection times were measured from the end of the auditory stimuli to the time 

the participant clicked on the visual target. Reaction times greater than 1,500 ms were excluded 

from analyses. For each condition, I compare reaction times across training blocks by comparing 

a full model and a reduced model without training block. I then conduct contrast coded linear 

mixed-effects regressions to compare each training block to the subsequent training block to 

examine changes in reaction times from block to block. Also, as differences in age can affect 

learning and hearing ability (Kiessling et al., 2003; Clinard et al., 2010), I conduct model 

comparisons to examine age as a fixed effect. Finally, I compare reaction times across training 

blocks across the two conditions by comparing a full model with an interaction between 

condition and training block and a reduced model without an interaction.  

3.4.1.2 Reaction Times 

Results indicated that participants in both conditions became faster across training blocks. 

Figure 31 illustrates log-transformed reaction times across training blocks for the Identical Token 

Condition, where participants heard identical tokens within trial. The four boxplots in each of 

the three charts represent the distribution of reaction times for each block, with the solid line in 

the middle of each box representing the median, the bottom and top of the box representing 

the first and third quartiles, and the whiskers representing the furthest value at no more than 

1.5 times the interquartile range. The dots in the boxes represent the mean reaction time for 

the specific block, illustrating that reaction times in the Identical Token Condition become faster 

across blocks. 

To test whether reaction times differed as a function of training block, I compared 

models with and without training block, controlling for participant age, and results indicated 

that reaction time significantly differed as a function of training block in The Identical Token 

Condition (X2 (3) = 22.43, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 



58 
 

 

Figure 31. Log-transformed reaction times across training blocks in the Identical Token 
Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.71, SD = 

.27) were significantly slower than block 2 (M = 6.68, SD = .30; β = -.025, t = -2.58, p < .01), 

reaction times in block 2 did not differ from block 3 (M = 6.67, SD = .34; β = -.003, t = -.27, p = 

.79), and reaction times in block 3 did not differ from block 4 (M = 6.66, SD = .35; β = -.018, t = 

2.37, p = .07).  

 To test whether reaction times differed as a function of age, I compared models with 

and without age, controlling for training block, and results indicated that reaction time 

significantly differed as a function of age in the Identical Token Condition (X2 (1) = 5.47, p = 

.019). 

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ training_block + (1|participant) 

Figure 32 illustrates log-transformed reaction times as a function of age. Mean reaction times 

across blocks for each participant are illustrated as dots with error bars illustrating 95% 

confidence intervals. If participants are learning the categories, quantified as faster reaction 
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times across training blocks, then darker blocks will be lower on the y axis in Figure 32 and 

lighter blocks will be higher. This is evident in the youngest participant, who displayed learning 

and had the fastest reaction times, which occurred in block 3 and block 4. However, the oldest 

participant also displayed learning, but their reaction times were not as fast as the younger 

participants. So, although faster reaction times display learning within participant, overall, 

reaction times differ as a function of age in the Identical Token Condition. Also, the linear 

regression lines illustrate the point at which participants are learning the categories. For 

younger participants, block 1 is slower but block 2, block 3, and block 4 do not differ, indicating 

that category acquisition is occurring around block 2. However, for older participants, this is not 

the case. Block 1 does not differ from block 2. Block 3 begins to differ, and block 4 is faster, 

indicating that category learning is occurring later for older participants, around block 3 or block 

4. 

  

Figure 32. Log-transformed reaction times across age in the Identical Token Condition. 

Figure 33 illustrates log-transformed reaction times across training blocks for the 

Variable Token Condition. The four boxplots in each of the three charts represent the 

distribution of reaction times for each block, and the dots in the boxes represent the mean 
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reaction time for the specific block. As in the Identical Token Condition, reaction times in the 

Variable Token Condition become faster across blocks. 

 

Figure 33. Log-transformed reaction times across training blocks in the Variable Token 
Condition. 

To test whether reaction times differed as a function of training block, I compared 

models with and without training block, controlling for participant age, and results indicated 

that reaction time significantly differed as a function of training block in the Variable Token 

Condition (X2 (3) = 114.05, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 with 

block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.63, SD = .31) 

were significantly slower than block 2 (M = 6.56, SD = .39; β = -.065, t = -5.55, p < .001), reaction 

times in block 2 did not differ from block 3 (M = 6.54, SD = .42; β = -.022, t = -1.89, p = .06), and 

reaction times in block 3 were significantly slower than block 4 (M = 6.51, SD = .47; β = -.012, t = 

-2.98, p = .003).  
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 To test whether reaction times differed as a function of age, I compared models with 

and without age, controlling for training block, and results indicated that reaction time did not 

significantly differ as a function of age in the Variable Token Condition (X2 (1) = 1.55, p = .21). 

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ training_block + (1|participant) 

Figure 34 illustrates log-transformed reaction times as a function of age in the Variable Token 

Condition. In the Variable Token Condition, few participants over forty and having none of those 

participants exhibit learning led to results being uninformative regarding the time course of 

learning across age groups. 

  

Figure 34. Log-transformed reaction times across training blocks in the Variable Token 
Condition. 

Finally, I compared reaction times across the two conditions. As mentioned, it was expected 

that learning would be more robust in the Variable Token Condition, where tokens within trial 

were variable. Figure 35 illustrates mean reaction times across training blocks for the Identical 

Token Condition and the Variable Token Condition with whiskers illustrating 95% confidence 

intervals. Table 5 provides the mean and standard deviation of response times for both 

conditions. 
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Figure 35. Log-transformed mean reaction times across training blocks for the Identical Token 
Condition and the Variable Token Condition. Error bars represent 95% confidence intervals. 

Table 5. Summary statistics for reaction times for the Identical Token Condition with identical 
within trial tokens and the Variable Token Condition with variable within trial tokens 

Condition 
Block 1  
(mean, SD) 

Block 2  
(mean, SD) 

Block 3  
(mean, SD) 

Block 4  
(mean, SD) 

Identical Token  6.71, .27 6.68, .30 6.67, .34 6.66, .35 

Variable Token 6.63, .31 6.56, .39 6.54, .42 6.51, .47 

 

To test whether reaction times differed across conditions, I compared models with and without 

an interaction between condition and training block. Results indicated that reaction time differs 

across training blocks as a function of condition (X2 (3) = 28.63, p < .001). 

reaction_time ~ condition * training_block + age + (1|participant) 
reaction_time ~ condition + training_block + age + (1|participant) 

By comparing reaction times across training blocks as a function of condition, I tested the impact 

of proximity of exemplar variability to the visuomotor associations on natural sound category 

learning. In the Identical Token Condition, stimuli within trial contained identical tokens and 

therefore less variability immediately before the visuomotor associations than the Variable 

Token Condition, which contained variable tokens within trial. Thus, the greater variability of 
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tokens immediately before the visual detection task in the incidental learning paradigm resulted 

in greater learning across training blocks. So, as expected, both conditions resulted in faster 

visual target detection times across training blocks, but reaction times were faster in the 

Variable Token Condition.  

3.4.2 Generalization to new tokens and talkers 

Posttest 1 tested participants’ ability to generalize to new tokens from the same talker, and 

Posttest 2 tested generalization to new talkers. Generalization is the ability to use past learning 

in present situations that are similar (e.g., Kruschke, 2005). If participants learned the four tone 

categories during training, then it is expected that they will be able to accurately identify the 

categories in novel tokens from the same talker. It is also expected that they will be able to 

identify the categories in novel tokens from novel talkers but with less accuracy due to greater 

variance in the signal as a result of multiple talkers. The structure of both posttests is identical 

and both measure identification accuracy of the target tone category. If participants have 

learned the categories they should be able to accurately identify in which box the visual target 

should have appeared based solely on hearing the auditory stimuli, and therefore, their 

accuracy scores will be higher. As in the reaction time metric from the training blocks, it is 

expected that the closer proximity of exemplar variability to the visuomotor associations in the 

Variable Token Condition will result in more robust category learning, which will be evident from 

accuracy scores on Posttest 1 and Posttest 2.  

3.4.2.1 Analysis 

Accuracy scores for both conditions were measured on Posttest 1 and Posttest 2. For each 

condition, I compare accuracy scores on both posttests to chance using one sample t-tests. To 

test whether accuracy scores differ as a function of condition, I conduct model comparisons with 

and without condition for each posttest. To test whether there is a correlation between the 

learning measures, I conduct correlation tests between reaction times during training and 

accuracy scores at test for each condition. Finally, I conduct model comparisons to examine age 

as a fixed effect for both conditions on Posttest 1 and Posttest 2.  

3.4.2.2 Accuracy 

Figure 36 illustrates mean proportion correct scores with 95% confidence intervals for the 

Identical Token Condition and the Variable Token Condition on Posttest 1 and Posttest 2. The 
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figure suggests that participants in both conditions accurately identified the target categories 

above chance on Posttest 1 and on Posttest 2, and that participants in the Variable Token 

Condition may have performed better on Posttest 1 than participants in the Identical Token 

Condition.  

 

Figure 36. Mean proportion correct for the Identical Token Condition and the Variable Token 
Condition on Posttest 1 and Posttest 2. Error bars represent 95% confidence intervals. The 
dashed line represents chance at 25%. 

 To test whether accuracy scores differed from chance, I examined accuracy scores 

within condition on Posttest 1 and Posttest 2. In the Identical Token Condition participants were 

able to match novel sounds to the visual locations at above-chance levels on Posttest 1, t(24) = 

2.46, p = .01, (M = 36.83, SE = 4.80) and on Posttest 2, t(24) = 2.46, p = .01, (M = 33.56, SE = 

3.48). Also, in the Variable Token Condition participants were able to match novel sounds to the 

visual locations at above-chance levels on Posttest 1, t(24) = 4.80, p < .001, (M = 52.83, SE = 

5.80) and on Posttest 2 , V = 247, p < .001, (Mdn = 34.72)16.  

                                                            
16 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 2 (W = .88, p = .008). 
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 To test whether accuracy scores differed across conditions on Posttest 1 and Posttest 2, 

I compared models with and without condition for each posttest. Results indicated that accuracy 

scores on Posttest 1 differ as a function of condition (X2 (1) = 4.42, p = .035). However, accuracy 

scores on Posttest 2 did not differ as a function of condition (X2 (1) = .47, p = .49). 

accuracy ~ condition + age + (1|participant) 
accuracy ~ age + (1|participant) 

Overall, participants in both conditions accurately identified the target categories above chance 

on Posttest 1 and on Posttest 2, indicating that both conditions resulted in learning and that 

learning generalized to novel tokens on Posttest 1 and novel talkers on Posttest 2. A comparison 

of conditions on Posttest 1 indicated that participants in the Variable Token Condition, more 

accurately identified the target categories than participants in the Identical Token Condition, 

indicating that high variability within trial led to more robust generalization to novel tokens than 

identical tokens within trial. However, the benefit from high variability within trial did not result 

in more robust generalization to novel talkers over and above exposure to identical tokens 

within trial. 

 During training, greater learning was measured through reaction times becoming faster 

across training blocks. At test, greater learning was measured through higher accuracy scores. It 

was expected that faster reaction times at the end of training would correlate with higher 

accuracy scores at test. Figure 37 illustrates the correlation between reaction times on block 4 

and accuracy scores on Posttest 1, suggesting a relationship between the two measures.  

Spearman’s rho correlation coefficient17 was used to assess the relationship between 

reaction times on training block 4 and accuracy scores on Posttest 1. The relationship between 

the two measures was significant in the Identical Token Condition (r = -.49, p = .01), and the 

Variable Token Condition (r = -.69, p < .001). The correlation between the two measures across 

conditions suggests that faster reaction times in training relates to better accuracy on the 

generalization test and that both measures reliably assess category learning. 

                                                            
17 A Shapiro-Wilk normality test indicated the data for Condition 1 were not normally distributed (W = .86, 
p = .002; W = .90, p = .02). Therefore, we conducted the non-parametric Spearman’s test for Condition 1. 
Although the data for Condition 2 were normally distributed (W = .93, p = .08; W = .96, p = .37), 
Spearman’s test was used for consistency. Pearson’s correlation coefficient was also significant for 
Condition 2 (r(23) = -.67, p < .001).  
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Figure 37. Relationship between two measures assessing category learning across conditions 
with log transformed reaction times on training block 4 on the x axis and accuracy scores on 
Posttest 1 on the y axis.  

 To test whether accuracy scores at test differed as a function of age, I compared models 

with and without age, and results indicated that accuracy scores did not significantly differ as a 

function of age in the Identical Token Condition on Posttest 1 (X2 (1) = .61, p = .44) or on Posttest 

2 (X2 (1) = 1.80, p = .18). Further, accuracy scores did not significantly differ as a function of age 

in the Variable Token Condition on Posttest 1 (X2 (1) = .44, p = .51) or on Posttest 2 (X2 (1) = 3.62, 

p = .057). 

accuracy ~ age + (1|participant) 
accuracy ~ (1|participant) 

Figure 38 illustrates accuracy scores on Posttest 1 and Posttest 2 as a function of age across 

conditions. The model comparison demonstrated that accuracy scores did not differ as a 

function of age. However, Figure 38 suggests the possibility of different trends in accuracy 

scores across age groups, with accuracy scores disproportionately impacted by variability within 
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trial. It may be that younger learners benefit more from higher variability within trial than older 

learners. 

 

Figure 38. Accuracy scores on Posttest 1 and Posttest 2 across age in the Identical Token 
Condition and the Variable Token Condition. 

3.5 DISCUSSION 

In Experiment 1 we investigated whether an incidental learning paradigm using naturally 

produced auditory tokens would result in the formation of novel tone categories and the ability 

to generalize learning to novel tokens and to novel talkers. We also examined the impact of 

acoustic variability within trial on incidental perceptual learning. By investigating within trial 

variability, we examine the impact of the temporal distribution of acoustic variability on 

incidental auditory learning. Results indicated that participants were successful in using the 

incidental paradigm to develop four novel tone categories in a single session. Results also 

indicated that high variability of tokens within trial resulted in more robust learning than 

identical tokens within trial. Below, we describe the implications of these results in more detail. 
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3.5.1 Incidental learning with natural tokens  

The present study extends the investigation of factors driving incidental learning into natural 

speech sound categories and finds that adults with no prior experience with the target tone 

categories can use an incidental learning paradigm with natural tokens to form four novel tone 

categories after 30 minutes of training with up to 100% accuracy. Participants did not achieve 

this success due to experience. All participants were monolingual English speakers with little or 

no experience learning another language and had no experience learning the tone categories. 

Further, participants did not succeed because of age. Both younger and older participants 

demonstrated substantial learning. Also, participants did not succeed because the task of 

category learning was easy. Learning to accurately perceive tone categories in other languages is 

known to be very difficult for native English speakers (Ke & Reed, 1995; Sun, 1998; Hao, 2012; 

Hao, 2018). Further, participants did not have any particular motivation to acquire the target 

categories. Participants were unaware of the categories during training, had not made efforts in 

their lives to acquire other languages, and several participants expressed that the learning 

paradigm was not particularly engaging. It is most likely that participants learned the four tone 

categories despite a lack of motivation, instead of because of a surplus of motivation. Indeed, it 

could be that increasing motivation and engagement in the task could further improve accuracy. 

In this task participants were only clicking on an X in one of four boxes on the screen, which is 

not particularly interesting. Some incidental category learning studies increase engagement in 

the task by embedding the incidental learning paradigm in a video game (Wade & Holt, 2005; 

Wiener et al., 2019). In these experiments, participants respond during the task by shooting 

aliens that appear on the screen. Auditory tokens predict the location and type of alien that 

appears. If participants are able to learn the audio-to-visual mapping they are rewarded by 

being able to better keep up with the pace of the game as the speed of the ships increases and 

by being able to maximize the limited range of their weapon (Wiener et al., 2019). It may be that 

novel tone learning can be increased beyond the results of the current study by increasing 

engagement through similar mechanics.  

The results from Experiment 1 suggest that adults attempting to learn the tone 

categories in tonal languages do not fail because they are too old or are unmotivated or lack 

experience. Rather, it may be that the learning methodologies typically employed by adults do 

not facilitate the formation of novel tone categories. Adults may have greater success learning 
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novel tone categories through an incidental paradigm such as the one used in the current study. 

Behavioral studies examining novel tone category formation across learning paradigms (e.g., 

explicit, incidental, and passive) could address this question by training participants in each 

paradigm to the point of behavioral mastery and measuring the time course of learning, as well 

as retention after a set period of time past behavioral mastery. Alternatively, learning could be 

measured across paradigms by examining the development of sensory plasticity, which is 

measured through the frequency-following response, a neurophonic potential encoding acoustic 

details along the early auditory pathway (see Reetzke et al., 2018). A study could measure the 

time course of the development of sensory plasticity across learning paradigms and investigate 

differences in retention after a set period of time. 

3.5.2 Within trial variability 

Experiment 1 measured learning through two measures: change in reaction times across 

training blocks and posttest accuracy. These measures were correlated, with the training 

reaction times predicting accuracy on posttest 1, which measured generalization to novel 

tokens. Training reaction times and posttest accuracy indicated that participants in both the 

Identical Token Condition and in the Variable Token Condition learned the four target tone 

categories. However, as expected from results from Gabay et al. (2015), results in the two 

conditions were not the same. Reaction times across training blocks in the Variable Token 

Condition were faster than reaction times in the Identical Token Condition. Further, accuracy 

scores on Posttest 1 were higher in the Variable Token Condition than in the Identical Token 

Condition. These results replicate results from Gabay et al. (2015), which found that variable 

tokens within trial resulted in greater learning than identical tokens within trial and extend 

these results to naturally produced tone categories.  

Gabay et al. (2015) hypothesized that the difference in learning occurs due to the 

proximity of the token variability to the visuomotor association. In the Variable Token Condition, 

token variability occurs within trial. In the Identical Token Condition, token variability occurs 

across trials. The visuomotor association occurs at the end of each trial. Therefore, token 

variability in the Variable Token Condition occurs in closer proximity to the visuomotor 

association in the visual detection task. The visual detection task is the binding signal that drives 

learning in the paradigm. Under this account, in the incidental paradigm, learning occurs when 

the participant begins to use the auditory clues to predict where the visual target will appear. 
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After this process begins, when the participant hears the sounds on each trial, they make 

predictions regarding where the target will appear. Then, the appearance of the target provides 

implicit feedback telling them if they were right or wrong in their prediction. They use that 

feedback to refine their categorization of the auditory stimuli. Gabay et al. (2015) argue that 

variable tokens within trial temporally places auditory exemplar variability in closer proximity to 

the mechanic in the paradigm that drives learning. Specifically, variable auditory tokens within 

each trial allows participants to better refine their categorization of stimuli by aiding in the 

extraction of salient acoustic features from the various exemplars as they identify the acoustic 

characteristics that are essential to the specific category. When this process occurs in close 

proximity to the learning reinforcement mechanic, learning is enhanced. In the Identical Token 

Condition, the acoustic variability is spread out across trials, making it more difficult to extract 

the salient acoustic features of each tone category and is not tightly coupled to the learning 

reinforcement mechanic. However, the benefit of high variability in close temporal proximity to 

the learning reinforcement mechanic may be an untested hypothesis. Results in Gabay et al. 

(2015) and in Experiment 1 in the present study only indicate that token variability matters for 

category learning and that variable tokens in close temporal proximity result in greater category 

learning. It may or may not be that proximity of the variability to the learning mechanic matters 

for category learning. Experiments that do not use learning reinforcement mechanics (e.g., 

passive learning paradigms) may be needed to investigate the impact of the temporal proximity 

of token variability on novel sound category acquisition.   

3.5.3 Generalization to novel talkers 

Posttest 2 tested generalization to novel talkers, and as expected from results from Gabay et al. 

(2015), participants in both conditions were able to generalize to novel talkers. In Gabay et al. 

(2015) participants that heard variable tokens within trial and identical tokens within trial were 

able to learn the sound categories and generalize learning to novel exemplars. Generalization to 

novel tokens indicates categorization (Palmeri & Gauthier, 2004; Holt & Lotto, 2010). In speech 

categorization a listener must generalize across acoustically variant sounds to determine which 

features are salient to a specific type of sound and use those salient features to classify novel 

sounds. In Gabay et al. (2015) and in Experiment 1, if the learners had not learned the sound 

categories during training, they would not have been accurate on novel tokens at test. Even 

though talkers that share the same language background differ widely in the acoustic 
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realizations of their productions, previous tone acquisition studies indicate that learners can 

generalize learning of novel tone categories to novel talkers (Wang et al., 1999; Qin & Zhang, 

2020). Therefore, it was expected that learners in Experiment 1 would be able to generalize 

learning to novel talkers as well as novel tokens from the talker they were trained on. However, 

due to the differences in productions between talkers (see Chapter 2), it was expected that 

participants would perform worse on Posttest 2 than on Posttest 1.  

Participants in both conditions were able to successfully generalize learning to novel 

talkers, but they were less accurate than when generalizing to novel tokens from the same 

talker. This is likely due to variations in productions across talkers. As discussed in Holt and Lotto 

(2010), acoustic variations between talkers arise from differences in anatomy and physiology 

(Fant, 1966), speaking rate (Gay, 1978; Miller & Baer, 1983), and the environments that the 

stimuli were recorded in, which were not controlled in this study (Houtgast & Steeneken, 1973; 

Kuttruff, 2016). Differences in the stimuli from the talkers in Experiment 1 are outlined in detail 

in Chapter 2 and include variations in F0 range, F0 contour shape, and syllable duration. When 

moving from tokens used over the training blocks and on Posttest 1, which all came from the 

same talker, to tokens on Posttest 2, which came from three new talkers, the potential variation 

of acoustic features increases exponentially and categorization of the stimuli became more 

difficult. It may be that if participants experience greater acoustic variability by hearing multiple 

talkers during training, then their results when generalizing to novel talkers will be more similar 

to their results when generalizing to novel tokens from the talkers they were trained on. This 

topic is addressed in Experiment 2.   

3.5.4 Stimuli effects 

Chapter 2 characterizes the stimuli used in the experiments in this study and discusses 

differences in the stimuli that may affect results in the experiments. The stimuli from Talker A 

differed from the talkers used on Posttest 2 in a few ways. Talker A had shorter syllable 

durations than the other talkers. There were also individual differences in durations across tone 

categories, with Talker A differing from the other talkers. Talker A’s productions of T21 were 

longer than the other tone categories. Talker D’s productions did not differ across tone 

categories. Talker E’s productions of T45 were relatively longer and productions of T315 were 

relatively shorter than the other tone categories. Talker F’s productions of T315 were shorter 

than the other tone categories. Further, Talker A’s F0 contour for T45 also differed some from 
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the F0 contours of the other talkers. There were also differences in the amount of creaky voice 

that each talker used on T21 and T214. It is possible that these differences made it more difficult 

to generalize to novel talkers on Posttest 2 as participants might have expected Talker A’s 

idiosyncrasies to be features of the tone categories across talkers. It may be that accuracy scores 

on Posttest 2 could be higher if the stimuli from the talker that participants heard in training was 

more similar to the stimuli from the talkers they heard on Posttest 2.  

3.5.5 Learning differences as a function of age 

Participation in the study was not limited based on age, and therefore ages ranged from 18 to 

63. Results in the Identical Token Condition suggested that reaction times differed as a function 

of age, with reaction times being slower for older participants. Reaction times in the Variable 

Token Condition did not differ as a function of age. It was expected that older participants 

would have slower reaction times across training blocks than younger participants. The task 

used in the study includes auditory perception when listening to stimuli, working memory when 

using processing auditory stimuli and using the stimuli to predict the location of the visual 

target, visuomotor control when identifying the visual target, and hand motor control when 

directing the mouse cursor to the visual target. Cognitive function and motor control processes 

generally slow across the lifespan (e.g., Salthouse, 1985). This tendency is especially evident in 

temporal tasks that involve reaction time as a measure (e.g., Lima et al., 1991). It is likely that 

reaction times did not differ as a function of age in the Variable Token Condition due to the 

small number of older participants in that condition. 

Expectations regarding age as a predictor of accuracy on the posttests, however, were 

less clear. It was possible that a general cognitive slowing across the lifespan might result in 

information decay during the processing of the auditory signal, resulting in lower accuracy 

scores (Salthouse, 1996). However, not all cognitive functions are adversely impacted by age. 

Language comprehension ability remains stable across the lifespan for healthy individuals 

(Madden, 1988; Burke et al., 2012), but this is particular to lexical items. The processing of 

nonlexical items is negatively impacted by age (Lima et al., 1991). Further, reduced frequency 

following response (FFR) amplitude and increased non-stimulus neural activity among adults 

over 40 (Skoe et al., 2015), suggest that novel tone learning may be more challenging for older 

participants. Therefore, it was expected that older participants’ accuracy scores would be lower 

than younger participants’ scores, but accuracy results on the posttests did not indicate a 
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relationship between age and learning. However, there were few older participants compared 

to younger participants, reducing the ability to statistically compare differences in learning 

across different age groups. However, there are a few observations that may be made from the 

results. In Experiment 1 we can see that individuals across all ages were able to learn from the 

incidental paradigm and form the novel tone categories. Therefore, if challenges resulted from 

declined cognitive processing ability for older participants, it did not hinder them from using the 

incidental learning paradigm to form novel tone categories. However, in both conditions, no 

individuals over 40 achieved accuracy scores as high as participants under 40. This was 

particularly true for the Variable Token Condition, which resulted in six of the participants under 

40 achieving scores near 75% accuracy or higher. Further, high variability within trial was 

especially beneficial for younger participants compared to older participants.  

3.6 CONCLUSION 

In Experiment 1 we investigated the role of token variability within trial, comparing trials that 

contained identical tokens with trials that contain variable tokens from the same talker. By 

examining the impact of token variability on the incidental formation of novel tone categories 

we tested the hypothesis that high token variability in close proximity to the reinforcement 

learning mechanism benefits learners by aiding in categorization and generalization to novel 

tokens. Results indicated that native English participants with no prior experience with the 

target tone categories can use an incidental learning paradigm with natural tokens to form four 

novel tone categories after 30 minutes of training with very high, even perfect, accuracy. These 

findings extend the investigation of factors impacting incidental learning into natural speech 

sound categories, confirming hypotheses suggesting that incidental learning is an effective 

means of learning natural speech sound categories. Further, the examination of token variability 

within trial replicated the results of previous studies, indicating that presenting five different 

tokens on each trial resulted in greater learning than presenting five identical tokens on each 

trial. As predicted by previous categorization research, high variability in close temporal 

proximity to a response resulted in greater learning. Similarly, as predicted by incidental 

category formation research, high variability of tokens in close proximity to the mechanism in 

the incidental learning paradigm that drives learning resulted in greater learning than when the 

variability was spread out across trials. Further, our results, replicating previous studies, 
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demonstrated that the two measures of reaction time during training and accuracy at test are 

correlated and provide consistent measures of learning. However, we also demonstrated that 

additions to the paradigm, such as age as a factor, can disrupt the correlation between 

measures. 

 In Experiment 1 we also tested the ability to generalize to novel talkers. Participants 

were able to generalize learning to novel talkers but as expected, they were less accurate when 

categorizing stimuli from novel talkers. The difficulty generalizing to novel talkers was expected 

because, as illustrated in Chapter 2, stimuli from multiple talkers presents a much wider range 

of acoustic variability across multiple dimensions. We concluded that to prepare for 

generalization to novel talkers, exposure to a wider range of acoustic features during training 

may be required. 

  



75 
 

 IV. TALKER VARIABILITY 

4.1 INTRODUCTION 

In Experiment 1 we found that higher token variability within trial resulted in greater acquisition 

of novel tone categories. However, results indicated a sharp decline when generalizing learning 

to novel talkers. These results demonstrated that training had not prepared learners for 

categorization under conditions with greater variability (e.g., multiple talkers). Therefore, in 

Experiment 2 we examine the impact of training with multiple talkers. Will participants better 

generalize to novel talkers if they are trained on multiple talkers compared to a single talker? 

Further, if we increase variability during training, will learners still be able to acquire the 

categories as effectively as they did in the single talker condition? 

In Experiment 2 we also include a Control Condition where the audio-to-visual 

correspondence of tone categories to a visual target on the screen is removed during training by 

randomizing the correspondence of tone categories and visual categories from trial to trial. This 

will effectively remove reinforcement learning from the paradigm as the auditory tokens will not 

map to the visual targets. By including the Control Condition, we are able to investigate the 

effect of age on the task. That is, if participants are not able to learn a mapping, they will not be 

able to respond faster across training blocks. Therefore, the Control Condition will allow us to 

investigate a baseline effect for age. We expect that there will be a linear relationship between 

age and reaction times during training. This will provide a baseline that we can use to analyze 

the effect of age on training reaction times in other conditions. Further, participants in the 

Control Condition will not have learned the audio-to-visual mapping during training. That is, 

they will not have learned where the visual target should appear after hearing the auditory 

stimuli. For example, they will not know that the low tone occurs with the visual target in the 

bottom right box. Therefore, at test they will not be able to accurately associate the tone 

categories with the visual targets as participants in the other conditions did.  

4.1.1 The impact of talker variability on sound category learning 

A challenging yet common task humans face in auditory perception is the need to identify 

speech sound categories across interlocutors. As discussed in Chapter 3, multiple productions of 

the same sound category by a single talker can contain a range of acoustic variability. 
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Productions from multiple talkers introduces an even wider range of acoustic features for 

listeners to generalize across. Therefore, due to the lack of invariance in the acoustic signal 

between talkers, generalization of sound categories across multiple talkers is very challenging, 

especially when learning novel sound categories. That is, there are numerous cues that might 

distinguish an individual category and each speaker of a language varies in their production of 

those cues. For example, as indicated in Chapter 2, a common production effect as F0 drops 

lower during productions of tone categories is the occurrence of creaky voice. There is a wide 

range in the amount of creaky voice that may occur. Some talkers may produce creaky voice on 

every production of a low tone category while others may produce none, and there can be a 

wide range in between. Therefore, to better generalize to novel talkers, it is typically beneficial 

to be exposed to a range of productions from multiple talkers during training (Jamieson & 

Morosan, 1989; Lively et al., 1993; Bradlow et al., 1997; Wang et al., 1999; Barcroft & Sommers, 

2005; Iverson et al., 2005; Brooks et al., 2006). Previous research suggests that training people 

on multiple talkers helps them to generalize better to novel talkers. For example, Lively et al. 

(1993) found that participants trained with stimuli from multiple talkers resulted in greater 

categorization of sound categories after training.   

As discussed, previous research indicates that training on multiple talkers helps learners 

generalize learning to novel talkers. Further, greater token variability in Experiment 1 improved 

category learning. Considering these results, should it be expected that further increasing 

variability through the addition of multiple talkers during training will improve learning? What if 

we also increased segmental and phonotactic variability? Would learning continue to improve? 

The underlying question is, is there a limit to the benefit of variability during novel category 

learning? Is there a point where learning is hindered by an amount of variability that reduces 

the learner’s ability to attend to the salient features of the category? According to Reverse-

Hierarchy Theory (RHT; Ahissar & Hochstein, 2004; Ahissar et al., 2008) perceptual learning 

occurs when listeners identify the correct perceptual level (e.g., pitch contour) and attend to 

meaningful input. One hypothesis is that large amounts of variability during initial category 

learning will inhibit learners from attending to the correct perceptual level. This may be the case 

for studies with results suggesting that exposure to multiple talkers reduces perceptual learning 

(Mullenix & Pisoni, 1990; Magnuson & Nusbaum, 2007; Perrachione et al., 2011; Bradley, 2017). 

During the formation of novel tone categories with explicit learning paradigms, high variability 
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through multiple talkers can reduce learning compared to low variability conditions 

(Perrachione et al., 2011). The impact of talker variability on novel tone formation during 

incidental learning has not yet been studied. In the current experiment we ask whether high 

variability from multiple talkers will also impact incidental learning. 

In Experiment 2 we examine these questions by testing the impact of talker variability 

across trials during training on the ability to generalize learning to novel tokens from the same 

talkers and to novel tokens from novel talkers. However, without previous research 

investigating talker variability during incidental category learning, it is difficult to know if high 

talker variability in the present experiment will hinder the initial formation of novel tone 

categories. 

4.1.2 Unsupervised learning 

Experiment 2 also contains a Control Condition, which is a passive listening condition with no 

ability to learn the audio-to-visual correspondence and therefore no reinforcement learning. By 

examining a condition that includes no audio-to-visual correspondence and no reinforcement, 

participants should not be able to respond faster across blocks. This will allow us to test the 

impact of age on the task alone to observe a baseline effect of age on the task. However, this 

also means that at test we will not be able to measure learning in the same way that other 

conditions are measured. At test participants will not have learned which tone category is 

assigned to which visual target. Therefore, it is most likely that they will attempt determine their 

own auditory to visual mapping and this will likely differ for each participant. Using the same 

measure as the other conditions would only measure those participants that happen to choose 

a mapping that aligns with our predetermined mapping.   

 Since there will be no reinforcement during training, any tone category formation that 

occurs in this condition will be due to passive exposure to the stimuli. Here, passive indicates 

that their participants did not receive instruction regarding the tone categories and they did not 

receive feedback, whether explicit or via an implicit reinforcement learning mechanic. However, 

participants are aware of the number of categories due to the presence of the four boxes when 

the visual target appears. Therefore, this fits the definition of unsupervised category learning, 

where the learner is told the number of categories to be learned but does not receive feedback 

(Ashby et al., 1999). Therefore, this use of passive exposure differs from some other studies in 
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small but potentially important ways. For example, the passive condition in Roark et al. (2020) 

did not include a motor response, but the audio-to-visual correspondence was left intact. 

Therefore, the reinforcement learning mechanism was present in the paradigm. Participants 

were still able to make predictions and see if the predictions were accurate. Therefore, their 

passive condition would not meet the definition of unsupervised category learning. Roark et al. 

(2020) concluded that a motor response was not necessary for learning, but the audio-to-visual 

correspondence was necessary. They also stated that passive accumulation of acoustic input 

regularities was insufficient for learning. Results and expectations from Roark et al. (2020) 

follow expectations found in the COVIS model (Ashby et al., 1998) 18. In the research regarding 

the COVIS model, especially regarding incidental learning with information-integration 

categories, a key factor that drives learning is the nature and timing of the feedback on each 

trial (Ashby & Casale, 2003; Ashby et al., 1999). If there is no reinforcement from the audio-to-

visual mapping, learning will not occur. Further, Ashby and Casale (2003) state that there is no 

evidence that people can learn information-integration categories without feedback. Therefore, 

it is not expected that participants’ responses will indicate any sign of learning in the Control 

Condition. To be clear here, signs of learning in this condition would occur if participants show 

consistency in their audio-to-visual mapping at test, whatever mapping they decide to use. 

4.1.3 Current experiment 

Experiment 2 contains three conditions: Single Talker Condition, Multi-talker Condition, Control 

Condition. By examining talker variability during training, we investigate the impact of talker 

variability on the ability to form novel tone categories and generalize learning to new talkers. 

We also compare the Single Talker Condition to a Control Condition where there is no auditory 

to visual mapping during training, meaning that the auditory stimuli and visual targets are 

randomly selected each trial. This condition will provide a baseline for the effect of age on the 

incidental learning task. 

It is expected that participants in the Single Talker Condition and the Multi-talker Condition 

will learn, but that generalization to novel tokens from the same talker(s) on Posttest 1 might be 

                                                            
18 The COmpetition between Verbal and Implicit Systems model (COVIS; Ashby et al., 1998, 2011; 
Chandrasekaran et al., 2014a) is a dual-learning systems model of speech category learning. COVIS posits 
there is a reflective learning system that is activated during explicit, rule-based learning, and a reflexive 
learning system that is activated during implicit learning. 



79 
 

more robust in the Single Talker Condition than in the Multi-talker Condition. Further, we expect 

that there will be a greater difference between scores on Posttest 1 and Posttest 2 for the Single 

Talker Condition than the Multi-talker Condition. That is, accuracy scores will likely decrease 

more when generalizing to novel talkers on Posttest 2 for participants in the Single Talker 

Condition than for participants in the Multi-talker Condition.  

We expect that participants in the Control Condition will not learn the tone categories. 

Further, during training their reaction times will not get faster and they will not display accuracy 

at test. 

4.2 METHODS 

4.2.1 Participants 

As in Experiment 1, participants were recruited online via Prolific. All participants self-identified 

as being monolingual English speakers and identified as being native English speakers from 

America, Canada, the United Kingdom, South Africa, Australia, or New Zealand. Participants that 

reported significant language learning experience, that reported hearing impairments, or that 

did not use the right equipment (headphones and an external mouse) were excluded from the 

study. 

In the Single Talker Condition, where participants heard a single talker across trials during 

training, 29 participants were recruited19. Four participants were excluded for using the wrong 

equipment or for hearing impairments, leaving 25 participants (13 female, 11 male, 1 non-

binary). Participants in this condition spoke a variety of English dialects (6 American, 2 

                                                            
19 The Single Talker Condition in the present experiment is the Variable Token Condition from Experiment 
1. Therefore, descriptions of the Single Talker Condition here in Experiment 2 are a restatement of details 
from the Variable Token Condition in Experiment 1. Primary differences in the description of the Single 
Talker Condition in the present chapter arise from the differences in the comparisons made across the 
experiments. Experiment 1 compared token variability within and across trials. Experiment 2 examines 
talker variability across trials, comparing training on a single talker in the Single Talker Condition with 
multiple talkers in the Multiple Talker Condition. 
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Australian, 14 British, 1 Canadian, 1 Irish, and 1 NA) 20. Ages ranged from 19 to 56 with a mean 

of 29.08 and standard deviation of 9.4521.  

In the Multi-talker Condition, where participants heard multiple talkers across trials during 

training, 27 participants were recruited. Two participants were excluded for using the wrong 

equipment, leaving 25 participants (14 female, 11 male). Participants spoke a variety of English 

dialects (4 American, 14 British, 2 Canadian, and 5 NA). Ages ranged from 19 to 59 with a mean 

of 34.80 and standard deviation of 13.92. 

Experiment 2 also contains a Control Condition, where audio-to-visual mapping was 

randomized, making it impossible to learn an audio-to-visual mapping scheme during training. In 

the Control Condition, 25 participants were recruited (13 female, 11 male, 1 NA). No 

participants were excluded. Participants spoke a variety of English dialects (5 American, 3 

Australian, 13 British, 2 Canadian, 1 New Zealand, 1 South African). Ages ranged from 19 to 62 

with a mean of 30.87 and a standard deviation of 11.78. All participants were paid for their 

participation through Prolific. 

4.2.2 Stimuli 

Stimuli used in the Single Talker Condition and the Control Condition were the same stimuli used 

in the Variable Token Condition in Experiment 122. In each condition in experiment 2, the set of 

five tokens within trial contained random tokens, constructed as described in experiment 1. 

However, in the multitalker condition, during training, participants heard stimuli from three 

talkers, randomly presented across trials. 

Tokens from all four tone categories were produced in the syllable /ma/. Ten exemplars of 

each category were recorded from all six talkers. In the Single Talker Condition and the Control 

Condition, half of the exemplars of each category from Talker A were used for training, and half 

of the exemplars were used to test generalization of learning to new exemplars on Posttest 1. 

                                                            
20 It is not expected that experience with specific English dialects would aid in novel tone category 
acquisition over other dialects. English dialects do not use F0 information contrastively at the lexical level. 
Further, experience with other regional languages used in proximity to the specific dialect should not be a 
factor as participation was limited to those that identified as being monolingual English speakers. 
21 Age is considered as a covariate during analysis and is reported in the results. 
22 Properties of the stimuli are discussed in detail in Chapter 2. 
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Five exemplars from Talker D and Talker E and four exemplars from Talker F23 were used to test 

generalization of learning to new speakers on Posttest 2 in the Single Talker Condition and the 

Control Condition. In the Multi-talker Condition, five exemplars of each tone category from 

Talker A and Talker B and four exemplars from Talker C were used for training, and five different 

exemplars from Talker A and Talker B and four different exemplars from Talker C were used to 

test generalization of learning to new exemplars on Posttest 1. Posttest 2 stimuli were identical 

to the other conditions.  

4.3 PROCEDURE 

The procedure for Experiment 2 was the same as the procedure for Experiment 1. The primary 

difference regards the stimuli and the Control Condition. In Experiment 2, three groups of 

participants were exposed to four novel Thai tone categories through an incidental learning 

paradigm. Participants went through four training blocks with forty-eight trials in each block. 

Then, Posttest 1 tested generalization to novel tokens from the same talker(s) over thirty-six 

trials, and Posttest 2 tested generalization to novel talkers over thirty-six trials. Posttest 3 tested 

production of the tone categories over thirty-six trials. Finally, participants completed a 

language background questionnaire. 

4.3.1 Training 

Participants in each condition were trained with the incidental paradigm described in 

Experiment 1. On each trial participants heard five sounds and then clicked on a visual target, an 

‘X’, that appeared in one of four boxes. Participants were trained across four training blocks with 

forty-eight trials in each block. For all conditions, auditory stimuli in each trial consisted of five 

concatenated exemplars. The concatenations were randomly selected prior to subject running. 

However, the presentation of trials was randomly selected by the experiment. In the Single 

Talker Condition and the Control Condition, training was composed of six different 

concatenations of each tone category from Talker A for a total of twenty-four trials (6 

concatenations X 4 tones X 1 talker). These twenty-four trials were duplicated on each training 

block for a total of forty-eight trials per block. In the Multi-talker Condition, training was 

                                                            
23 Due to Covid restrictions, which led to talkers recording themselves, some tokens were not usable. In 
these situations, trials were still comprised of five randomly selected tokens with one token being 
duplicated.  
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composed of four different concatenations of each tone category from each talker for a total of 

forty-eight trials (4 concatenations X 4 tones X 3 talkers), which were repeated on each training 

block. 

 The Control Condition differed from the other conditions in that the audio-to-visual 

mapping was randomized. Therefore, the auditory stimuli did not provide consistent clues 

regarding the location of the visual target, making it impossible to develop an audio-to-visual 

mapping scheme over the course of training. Therefore, they completed training having heard 

the same stimuli as the Single Talker Condition, but did not experience the reinforcement from 

the incidental learning that participants in the Single Talker Condition experienced. 

 For all conditions, reaction times were measured to examine learning across the four 

training blocks. It is expected that faster reaction times across training blocks will occur for 

those that learn the target tone categories and that faster reaction times will correlate with 

performance at test. Further, mouse tracking was conducted to examine changes in decision 

space over time as participants acquire the tone categories24. 

4.3.2 Testing 

The testing procedure for Experiment 2 was the same as Experiment 1. Participants heard five 

sounds and then saw four boxes appear without a visual target. They then chose which box the 

target should appear in. Posttest 1 tested generalization to novel tokens and Posttest 2 tested 

generalization to novel talkers. Posttest 1 and Posttest 2 were the same for all conditions. Unlike 

the training blocks, in the Control Condition, the mapping was not randomized. The mapping 

scheme was present and consistent, like the Single Talker Condition and the Multi-talker 

Condition. The difference for participants in the Control Condition is that they had no clues 

during training to help them learn the mapping scheme. Further, since there was no explicit or 

implicit feedback regarding the mapping scheme during the posttests, they also had no clues 

during the tests to help them learn the auditory-to-visual mapping scheme that was being used 

to test them. However, as mentioned, it is possible that they will develop their own mapping 

scheme and that their mapping scheme may overlap or be the same as the mapping scheme 

predetermined by the test. 

                                                            
24 An analysis of mouse tracking data is not included in the dissertation. Future analyses and description of 
the current work will analyze and consider mouse tracking data and report results. 
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4.3.2.1 Posttest 1: Generalization to new tokens 

Posttest 1 trials for the Single Talker Condition and the Control Condition were composed of 

three different concatenations of each tone category from Talker A for a total of twelve trials (3 

concatenations X 4 tones X 1 talker). These twelve trials were repeated three times on Posttest 

1 for a total of thirty-six trials. Posttest 1 trials for the Multi-talker Condition were composed of 

three different concatenations of each tone category from Talker A, Talker B, and Talker C for a 

total of thirty-six trials (3 concatenations X 4 tones X 3 talker).  

4.3.2.2 Posttest 2: Generalization to new talkers 

Posttest 2 trials for all conditions were composed of three different concatenations of each tone 

category from each Talker D, Talker E, and Talker F, for a total of thirty-six trials (3 

concatenations X 4 tones X 3 talkers). 

4.3.2.3 Posttest 3: Production of the tone categories 

Experiment 2 also contained a third posttest, which was conducted in the same way as 

Experiment 1. Participants saw the visual target appear in one of the four boxes and recorded 

themselves saying the target tone with the syllable /ma/. Thirty-six trials were conducted. 

4.4 RESULTS 

4.4.1 Training reaction times 

Experiment 1 tested the impact of token variability on novel tone category learning, finding that 

token variability within trial resulted in more robust learning than token variability across trials. 

In Experiment 2 all conditions utilize token variability within trial. The main variable measured in 

Experiment 2 is talker variability across trials. In the Single Talker Condition, all training trials 

contained auditory stimuli from a single talker. In the Multi-talker Condition, training trials 

contained auditory stimuli from one of three talkers. Experiment 1 found that participants that 

learn the target tone categories have reaction times that get faster across training blocks. It is 

expected that participants in the Multi-talker Condition, will learn the tone categories and will 

have faster reaction times across training blocks. However, due to greater variability in the 



84 
 

auditory signal from acoustic variations across talkers25, it is expected that reaction times will be 

slower across training blocks for the Multi-talker Condition than for the Single Talker Condition.  

 Experiment 2 also contains a Control Condition. The primary purpose of the Control 

Condition is to measure reaction times across training blocks for comparison with the Single 

Talker Condition and the Multi-talker Condition. Participants in the Control Condition receive no 

clues regarding the audio-to-visual mapping scheme. Therefore, there is nothing that will enable 

them to predict where the visual target will appear. This should make it impossible for any 

participant in the Control Condition to have reaction times that become faster across blocks. 

Since participants in the Single Talker Condition and the Multi-talker Condition will receive 

auditory clues regarding the appearance of the visual targets, those that learn the audio-to-

visual mapping should have reaction times that get faster across training blocks. 

4.4.1.1 Analysis 

As in Experiment 1, visual target detection times were measured from the end of the auditory 

stimuli to the time the participant clicked on the visual target. Reaction times greater than 1,500 

ms were excluded from analyses. For each condition, I compare reaction times across training 

blocks by comparing a full model and a reduced model without training block. I then conduct 

contrast coded linear mixed-effects regressions to compare each training block to the 

subsequent training block to examine changes in reaction times from block to block. Further, I 

compare reaction times across training blocks across the three conditions by comparing a full 

model with an interaction between condition and training block and a reduced model without 

an interaction, followed up by post-hoc comparisons of each condition with each other 

condition. Finally, as differences in age can affect learning and hearing ability (Kiessling et al., 

2003; Clinard et al., 2010), I conduct model comparisons to examine age as a fixed effect.  

4.4.1.2 Reaction Times 

Results indicated that reaction times from participants in the Single Talker Condition, became 

faster across training blocks. However, reaction times from participants in the Multi-talker 

Condition and the Control Condition did not become faster. Figure 39 illustrates log-transformed 

reaction times across training blocks for the Single Talker Condition. The four boxplots in each of 

                                                            
25 See Chapter 2 for a detailed characterization of the auditory stimuli. 
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the three charts represent the distribution of reaction times for each block, and the dots in the 

boxes represent the mean reaction time for the specific block.  

 

Figure 39. Log-transformed reaction times across training blocks in the Single Talker Condition. 

To test whether reaction times differed as a function of training block, I compared 

models with and without training block, controlling for participant age, and results indicated 

that reaction time significantly differed as a function of training block in the Single Talker 

Condition (X2 (3) = 114.05, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 with 

block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.63, SD = .31) 

were significantly slower than block 2 (M = 6.56, SD = .39; β = -.065, t = -5.55, p < .001), reaction 

times in block 2 did not differ from block 3 (M = 6.54, SD = .42; β = -.022, t = -1.89, p = .06), and 

reaction times in block 3 were significantly slower than block 4 (M = 6.51, SD = .47; β = -.012, t = 

-2.98, p = .003).  
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Figure 40 illustrates log-transformed reaction times across training blocks for the Multi-

talker Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block.  

 

Figure 40. Log-transformed reaction times across training blocks in the Multi-talker Condition. 

As a whole, participants’ reaction times in the Multi-talker Condition did not get faster 

across training blocks. Instead, they became slightly slower across training blocks. To test 

whether reaction times differed as a function of training block, I compared models with and 

without training block, controlling for participant age, and results indicated that reaction time 

significantly differed as a function of training block in the Multi-talker Condition (X2 (3) = 40.60, p 

< .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 with 

block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.77, SD = .26) did 

not differ from block 2 (M = 6.78, SD = .26; β = .012, t = 1.56, p = .12), reaction times in block 2 
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differed significantly from block 3 (M = 6.79, SD = .26; β = .024, t = 2.97, p = .003), and reaction 

times in block 3 did not differ from block 4 (M = 6.79, SD = .26; β = .01, t = 1.17, p = .24).  

Figure 41 illustrates log-transformed reaction times across training blocks for the 

Control Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block. Figure 41 suggests that, as expected, participants’ reaction times did not get 

faster across training blocks.  

 

Figure 41. Log-transformed reaction times across training blocks in the Control Condition. 

As a whole, participants’ reaction times in the Control Condition became slower across 

training blocks. To test whether reaction times differed as a function of training block, I 

compared models with and without training block, controlling for participant age, and results 

indicated that reaction time significantly differed as a function of training block in the Multi-

talker Condition (X2 (3) = 52.80, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 
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A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 with 

block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.70, SD = .26) did 

not differ from block 2 (M = 6.70, SD = .25; β = -.006, t = -.71, p = .48), reaction times in block 2 

differed significantly from block 3 (M = 6.72, SD = .26; β = .029, t = 3.44, p < .001), and reaction 

times in block 3 differed significantly from block 4 (M = 6.75, SD = .27; β = .025, t = 3.06, p = 

.002).  

I compared reaction times across the three conditions. Figure 42 illustrates mean 

reaction times across training blocks for each condition with whiskers illustrating 95% 

confidence intervals. Table 6 provides the means and standard deviations of response times for 

the three conditions. It was expected that learning would be more robust in the Single Talker 

Condition but that participants in the Multi-talker Condition would still learn. However, as 

illustrated in Figure 42 and described in Table 6, reaction times in the Multi-talker Condition did 

not become faster across training blocks. In the Control Condition, as illustrated in Figure 42 and 

Table 6, reaction times condition slowed substantially across training blocks.  

 

Figure 42. Log-transformed mean reaction times across training blocks for the Single Talker 
Condition, the Multi-talker Condition, and the Control Condition. Error bars represent 95% 
confidence intervals. 
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Table 6. Summary statistics for reaction times for the Single Talker Condition, the Multi-talker 
Condition, and the Control Condition 

Condition 
Block 1  
(mean, SD) 

Block 2  
(mean, SD) 

Block 3  
(mean, SD) 

Block 4  
(mean, SD) 

Single Talker 6.63, .31 6.56, .39 6.54, .42 6.51, .47 

Multi-talker 6.77, .26 6.78, .26 6.79, .26 6.79, .26 

Control 6.70, .26 6.70, .25 6.72, .26 6.75, .27 

 

To test whether reaction times differed across conditions, I compared models with and without 

an interaction between condition and training block. Results indicated that reaction time differs 

across training blocks as a function of condition (X2 (6) = 229, p < .001). 

reaction_time ~ condition * training_block + age + (1|participant) 
reaction_time ~ condition + training_block + age + (1|participant) 

Bonferroni corrected post-hoc comparisons revealed that reaction times in the Single Talker 

Condition differed from the Multi-talker Condition (β = -.185, SE = .066, z = -2.81, p = .015) and 

the Control Condition (β = -.171, SE = .066, z = -2.59, p = .029), but the Multi-talker Condition did 

not differ from the Control Condition (β = .014, SE = .066, z = .22, p = 1). 

By comparing reaction times across training blocks as a function of condition, I tested 

the impact of talker variability on natural sound category learning. In the Single Talker Condition 

stimuli across trials contained tokens from a single talker and therefore less overall variability in 

the acoustic signal than the Multi-talker Condition. The greater variability in the acoustic signal 

from multiple talkers in the Multi-talker Condition resulted in slower reaction times across 

training blocks. Slower reaction times were expected in the Multi-talker Condition. However, it 

was expected that participants in the Multi-talker Condition would still exhibit learning, but their 

reaction times across training blocks was not indicative of learning. Further, it was expected that 

reaction times in the Control Condition would not get faster, and as expected, they did not get 

faster. Instead, they got slower across training blocks.  

I also tested whether reaction times differed as a function of age in each condition by 

comparing models with and without age, controlling for training block. Results from the Single 

Talker Condition indicated that reaction times did not significantly differ as a function of age (X2 

(1) = 1.55, p = .21). 
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reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ training_block + (1|participant) 

Figure 43 illustrates log-transformed reaction times as a function of age in the Single Talker 

Condition. Mean reaction times across blocks for each participant are illustrated as dots with 

error bars illustrating 95% confidence intervals. If participants are learning the categories, 

quantified as faster reaction times across training blocks, then darker blocks will be lower on the 

y axis in Figure 43 and lighter blocks will be higher. In the Single Talker Condition, none of the 

participants over forty exhibited faster reaction times across blocks, which led to results being 

uninformative regarding the time course of learning across age groups in this condition. 

  

Figure 43. Log-transformed reaction times across training blocks in the Single Talker Condition. 

Results from the Multi-talker Condition indicated that reaction time significantly 

differed as a function of age (X2 (1) = 7.02, p = .008). Figure 44 illustrates log-transformed 

reaction times as a function of age in the Multi-talker Condition. Few participants in the Multi-

talker Condition exhibited signs of learning. However, some of the oldest participants had 

reaction times that became faster across training blocks. Although their reaction times became 

faster across blocks, overall, their reaction times were not as fast as the younger participants, 

even those that did not display learning. So, although faster reaction times display learning 
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within participant, overall, reaction times differ as a function of age in the Multi-talker 

Condition.  

  

Figure 44. Log-transformed reaction times across age in the Multi-talker Condition. 

Results from the Control Condition indicated that reaction time significantly differed as 

a function of age (X2 (1) = 8.21, p = .004). Figure 45 illustrates log-transformed reaction times as 

a function of age in the Control Condition. As expected, participants in the Control Condition did 

not show signs of learning. Therefore, Figure 45 provides a clearer understanding of the baseline 

effect of age on reaction times during the task and the effect of training block on reaction times 

during the task. Overall, younger participants perform the task faster than older participants, 

and reaction times from participants tend to get slower across training blocks. 

In Experiment 2 I measured the reaction times of participants across training blocks in 

three conditions. In the Single Talker Condition, reaction times became faster across training 

blocks, indicating that participants learned the novel tone categories and were able to use that 

learning to predict the locations of the visual targets. By contrast, in the Multi-talker Condition 

reaction times did not get faster across training blocks. Rather, they became slightly slower, 

indicating that relatively few participants learned the novel tone categories. In the Control 
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Condition reaction times also became slower across training blocks. Results also indicated that 

age has an effect on reaction times during the experiment. Reaction times from older 

participants tend to be slower than younger participants. 

  

Figure 45. Log-transformed reaction times across age in the Control Condition. 

4.4.2 Generalization to new tokens and new talkers 

As in Experiment 1, Posttest 1 tested participants’ ability to generalize to new tokens from the 

same talker(s), and Posttest 2 tested generalization to new talkers. The structure of both 

posttests is identical and both measure identification accuracy of the target tone category. If 

participants have learned the categories they should be able to accurately identify in which box 

the visual target should have appeared based solely on hearing the auditory stimuli, and 

therefore, their accuracy scores will be higher. Experiment 1 confirmed that participants that 

hear a single talker during training are able to accurately identify the four novel tone categories 

on Posttest 1. However, when they hear novel talkers on Posttest 2, they are less accurate. The 

Multi-talker Condition in the present experiment trained participants on multiple talkers with 

the expectation that greater variability in the acoustic signal from multiple talkers during 

training may result in lower accuracy on Posttest 1 compared with the Single Talker Condition, 

but should also result in more equivalent generalization to new talkers on Posttest 2. In the 
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Control Condition participants did not learn the audio-to-visual mapping during training. They 

also received no clues regarding the audio-to-visual mapping at test. 

4.4.2.1 Analysis 

Accuracy scores for all conditions were measured on Posttest 1 and Posttest 2. For each 

condition, I compare accuracy scores on both posttests to chance using one sample t-tests. To 

test whether accuracy scores differ as a function of condition, I conduct model comparisons with 

and without condition for each posttest. To test whether there is a correlation between the 

learning measures, I conduct correlation tests between reaction times during training and 

accuracy scores at test for each condition. Finally, I conduct model comparisons to examine age 

as a fixed effect for all conditions on Posttest 1 and Posttest 2.  

4.4.2.2 Accuracy 

Figure 46 illustrates mean proportion correct scores with 95% confidence intervals for the Single 

Talker Condition, the Multi-talker Condition, and the Control Condition on Posttest 1 and 

Posttest 2. As discussed, results from participants in the Control Condition may show accuracy if 

they chose an auditory-to-visual mapping scheme that matched the predetermined scheme 

used in the experiment. We included the Control Condition in Figure 46 to see if this might be 

the case. The figure suggests that participants in all conditions, including the Control Condition, 

accurately identified the target categories above chance on Posttest 1 and on Posttest 2, and 

that participants in the Single Talker Condition performed better on Posttest 1 than participants 

in the Multi-talker Condition.  

 To test whether accuracy scores differed from chance, I examined accuracy scores 

within condition on Posttest 1 and Posttest 2. In the Single Talker Condition participants were 

able to match novel sounds to the visual locations at above-chance levels on Posttest 1, t(24) = 

4.80, p < .001, (M = 52.83, SE = 5.80) and on Posttest 2, V = 247, p < .001, (Mdn = 34.72)26. In the 

Multi-talker Condition participants were able to match novel sounds to the visual locations at 

above-chance levels on Posttest 1, t(24) = 3.20, p = .002, (M = 30.89, SE = 1.84) and on Posttest 2 

, t(24) = 2.88, p = .004, (M = 30.89, SE = 2.04). In the Control Condition participants were also 

able to match novel sounds to the visual locations at above-chance levels on Posttest 1, t(24) = 

                                                            
26 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 2 (W = .88, p = .008). 
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2.68, p = .007, (M = 30.78, SE = 2.16) and on Posttest 2 , t(24) = 2.18, p = .019, (M = 28.89, SE = 

1.79). 

  

Figure 46. Mean proportion correct for all conditions on Posttest 1 and Posttest 2. Error bars 
represent 95% confidence intervals. The dashed line represents chance at 25%. 

 To test whether accuracy scores differed across conditions on Posttest 1 and Posttest 2, 

I compared models with and without condition for each posttest. Results indicated that accuracy 

scores differ as a function of condition on Posttest 1 (X2 (2) = 20.26, p < .001) and on Posttest 2 

(X2 (2) = 6.19, p = .045). 

accuracy ~ condition + age + (1|participant) 
accuracy ~ age + (1|participant) 

However, Bonferroni corrected post-hoc comparisons did not reveal a difference between 

individual conditions. The Single Talker Condition did not differ from the Multi-talker Condition 

(β = -.051, SE = .03, t = -1.70, p = .21) or from the Control Condition (β = -.072, SE = .03, t = -2.40, 

p = .05). Further, the Multi-talker Condition did not differ from the Control Condition (β = -.021, 

SE = .03, t = -.69, p = .77). 

Overall, participants in all three conditions accurately identified the target categories 

above chance on Posttest 1 and on Posttest 2. In the Single Talker Condition and the Multi-talker 
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Condition, this indicates that participants learned to identify the tone categories and that 

learning generalized to novel tokens on Posttest 1 and novel talkers on Posttest 2. A comparison 

of conditions on Posttest 1 indicated that participants in the Single Talker Condition, more 

accurately identified the target categories than participants in the Multi-talker Condition, 

indicating that less variability in the acoustic signal during initial exposure to novel tone 

categories led to more robust generalization to novel tokens from the same talker(s). However, 

the benefit from exposure to only one talker during training did not result in more robust 

generalization to novel talkers over and above exposure to multiple talkers during training. 

Rather, there was a substantial decrease in performance across the posttests for the Single 

Talker Condition. Performance in the Multi-talker Condition, on the other hand, remained the 

same across posttests.  

As mentioned, results from participants in the Control Condition were included in these 

measurements to examine whether participants may have chosen an auditory-to-visual 

mapping scheme that matched the predetermined scheme used in the experiment. This 

possibility was unlikely. However, results indicated that some of the participants did consistently 

map the tone categories to the same visual targets predetermined by the experiment. When we 

examine individual scores, it becomes clearer that some participants in the Control Condition 

were consistent in this mapping. Figure 47 illustrates mean proportion correct scores with 95% 

confidence intervals for the Control Condition on Posttest 1 and Posttest 2. The dots represent 

individual scores, illustrating that some participants were able to accurately identify the tone 

categories. Consistently mapping the tone categories to a visual target suggests that participants 

in the Control Condition were able to reliably categorize the auditory tokens. This occurred 

despite not having learned the audio-to-visual mapping during training. These results suggest 

that passive auditory exposure to the novel tone categories during an unrelated task may be 

sufficient exposure for the perceptual formation of novel tone categories.  

During training, greater learning was measured through reaction times becoming faster 

across training blocks. At test, greater learning was measured through higher accuracy scores. It 

was expected that faster reaction times at the end of training would correlate with higher 

accuracy scores at test for the Single Talker Condition and the Multi-talker Condition. Figure 48 

illustrates the correlation between reaction times on block 4 and accuracy scores on Posttest 1, 
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suggesting a relationship between the two measures in the Single Talker Condition and possibly 

in the Multi-talker Condition, but not in the Control Condition. 

 

Figure 47. Mean proportion correct for the Control Condition on Posttest 1 and Posttest 2. Error 
bars represent 95% confidence intervals. The dashed line represents chance at 25%. The dots 
represent jittered accuracy scores from individual participants.  

  

Figure 48. Relationship between two measures assessing category learning across conditions 
with log transformed reaction times on training block 4 on the x axis and accuracy scores on 
Posttest 1 on the y axis.  
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 Pearson’s correlation coefficient was used to assess the relationship between reaction 

times on training block 4 and accuracy scores on Posttest 1. The relationship between the two 

measures was significant in the Single Talker Condition (r(23) = -.67, p < .001), but not significant 

in the Multi-talker Condition (r(23) = -.27, p = .18) or the Control Condition (r(23)= -.008, p = 

.97). The significant correlation between the two measures on the Single Talker Condition 

suggests that faster reaction times in training relates to better accuracy on the generalization 

test. The correlation in the Multi-talker Condition is confounded by age. Those that displayed 

learning on Posttest 1 were primarily older participants, whose reaction times, even if they have 

learned and are getting faster across blocks, are still likely to be slower than younger 

participants.  

 To test whether accuracy scores at test differed as a function of age for each condition, I 

compared models with and without age, and results indicated that accuracy scores did not 

significantly differ as a function of age in the Single Talker Condition on Posttest 1 (X2 (1) = .44, p 

= .51) or on Posttest 2 (X2 (1) = 3.62, p = .057). Accuracy scores did not significantly differ as a 

function of age in the Multi-talker Condition on Posttest 1 (X2 (1) = 1.22, p = .27) or on Posttest 2 

(X2 (1) = .16, p = .68). Further, accuracy scores did not significantly differ as a function of age in 

the Control Condition on Posttest 1 (X2 (1) = .002, p = .97) or on Posttest 2 (X2 (1) = 2.69, p = .10). 

accuracy ~ age + (1|participant) 
accuracy ~ (1|participant) 

Figure 49 illustrates accuracy scores on Posttest 1 and Posttest 2 as a function of age across 

conditions. The model comparison demonstrated that accuracy scores did not differ as a 

function of age.  
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Figure 49. Accuracy scores on Posttest 1 and Posttest 2 across age in the Single Talker Condition 
and the Multi-talker Condition. 

4.5 DISCUSSION 

In Experiment 2, I examined the impact of talker variability during training on the incidental 

perceptual learning of novel tone categories. I compared a Single Talker Condition with a Multi-

talker Condition that contained stimuli from three different talkers. I also compared the results 

from these conditions to a Control Condition where the incidental auditory-to-visuomotor 

correspondence that reinforces learning was not available during training. Results indicated that 

reaction times from participants in the Single Talker Condition, became faster across training 

blocks. However, reaction times from participants in the Multi-talker Condition and the Control 

Condition did not become faster. However, participants in all conditions were able to accurately 

identify the target categories above chance on Posttest 1 and on Posttest 2. Further, 

participants in the Single Talker Condition were more accurate on Posttest 1 than participants in 

the Multi-talker Condition. Below I discuss the implications of these results for categorization 

and perceptual learning.   
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4.5.1 Incidental learning and passive learning 

It was expected that participants in the Control Condition would not learn to consistently 

distinguish the tone categories. However, results indicated that some participants in the Control 

Condition were able to categorize the tone categories above chance. These results were 

somewhat surprising considering that the Control Condition did not contain the learning 

reinforcement available in the two incidental learning conditions; the Single Talker Condition 

and the Multi-talker Condition. It is likely that the ability to categorize the novel tone categories 

arose from passive exposure to the stimuli, rather than the intended incidental learning for the 

other two conditions. 

  There is a difference between incidental learning and passive exposure that led to the 

expectation that participants would not be able to form novel tone categories in the Control 

Condition. Incidental learning is not passive, nor is it without feedback. The auditory-to-

visuomotor correspondence reinforces learning by providing feedback on each trial (see Gabay 

et al., 2015). The auditory tokens provide cues that participants use to predict the location of 

the visual target. Participants receive feedback when the visual target appears and their 

prediction is proven to be correct or incorrect. As they become more confident in their 

predictions, they move the mouse cursor to the location where they think the visual target will 

appear. When it appears where they predicted, they are rewarded by being able to click on the 

visual target faster. If they are wrong in their prediction, they will have to move the cursor to 

the location of the visual target and their reaction time will be slower. This learning 

reinforcement works in part because participants are motivated to get through the experiment 

as fast as they can – they are paid the same amount whether they finish in fifty minutes or an 

hour. Further, they are instructed at the beginning to click on the visual target as fast as they 

can. That is, their learning is reinforced. 

The learning reinforcement described here is a form of reinforcement learning, which is 

goal-directed, meaning that learning is driven by the participant’s desire to achieve a goal 

(Sutton & Barto, 2005). In this case the goal is to minimize prediction errors (i.e., reward 

prediction error). Behavioral actions leading to rewards are reinforced, while behaviors leading 

to punishment become modified. Lim et al. (2014) argue that the learning reinforcement utilized 

in goal-directed learning has a neural basis that may not occur during passive exposure to 

stimuli or in explicit training paradigms. They argue that dopamine neurons in the basal ganglia 
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can serve as a teaching signal to drive reinforcement learning. Dopamine neurons have been 

shown to be sensitive to reward prediction, firing when predictions are rewarded and depressed 

when predictions fail (Schultz et al., 1993, 1997). This process can lead to modulations in 

synaptic plasticity of cortico-striatal pathways (Reynolds & Wickens, 2002). None of this 

reinforcement was available to participants in the Control Condition. 

Another aspect of the incidental paradigm used in this study that reinforces learning is 

the motor movement that occurs when the participant moves the mouse to the visual target 

and clicks on the visual target. The motor movement provides a motor response that links 

together with the auditory token and the visual target, providing an auditory-to-visuomotor 

correspondence. The motor movement included in the incidental paradigm in the present study 

may increase learning. However, the extent to which the motor response reinforces learning is 

unclear. Results from Roark et al. (2020) indicate that incidental learning is not dependent on 

motor movement. In their study, Roark and colleagues tested the effect of the motor response 

on incidental category learning by having one group respond to every trial by pushing the space 

bar rather than a key that corresponded to the audio-to-visual mapping. This kept the audio-to-

visual correspondence but removed the reinforcement from the motor response. Results did not 

differ from the baseline group. Therefore, it was clear that participants could learn from the 

auditory-to-visual mapping alone.  

 Participants in the Control Condition were not able to benefit from the reinforcement 

that occurs during our incidental learning paradigm because they were unable to make accurate 

predictions regarding the location of the visual target. By randomizing the audio-to-visual 

mapping on each trial, the auditory-to-visuomotor correspondence was unavailable to these 

participants to make predictions, thus their predictions could not be rewarded as in the other 

conditions. Slower reaction times across training blocks support the proposition that there was 

nothing that the participants could use to accurately predict the location of the visual target on 

a given trial. That is, they were not able to react faster across training blocks. The lack of any 

auditory-to-visuomotor correspondence resulted in participants only experiencing the auditory 

stimuli passively without learning reinforcement, which differs from the passive condition in 

Roark et al. (2020), which contained an audio-to-visual correspondence with no motor response. 

Roark et al. (2020) concluded that a motor response was not necessary for learning, but the 

audio-to-visual correspondence was necessary. They also stated that passive accumulation of 
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acoustic input regularities was insufficient for learning. Their conclusion primarily stems from 

the Misalignment Condition in their study, where there was an audio-to-visual correspondence, 

but the visual targets were different colors and did not match the visual target’s location. The 

participants responded by pushing a button corresponding to the color rather than to the 

location. At test, participants had to guess the location of the visual target based on the auditory 

stimuli. They were not successful. Roark et al. (2020) state this as evidence that the audio-to-

visual correspondence is necessary for learning. However, this conclusion may not be supported 

by the design and results of their study. Their results indicate that it is possible to distract 

participants from attending to the audio-to-visual correspondence, which can result in 

participants being incapable of learning the mapping. To determine whether the audio-to-visual 

correspondence is necessary or the extent to which it benefits novel sound category formation, 

the audio-to-visual correspondence needs to be removed from the paradigm, as it was in the 

Control Condition in the present study. In the present study, passive exposure without audio-to-

visual correspondence or a reinforcing motor response was sufficient for categorization to occur 

in the Control Condition. Again, categorization refers to the ability to consistently make 

decisions about an object’s type (see Palmieri & Gauthier, 2004; Holt & Lotto, 2010). 

Participants in the Control Condition did this by being consistent in their assignment of the 

auditory tokens to the visual targets. It is important to be clear here. All that can be concluded 

from the present study’s results is that it was possible for participants to develop the ability to 

consistently categorize the stimuli from passive exposure alone. We cannot make a conclusion 

regarding the extent of their learning or compare that learning to the other conditions. We do 

not know the full extent of learning in the Control Condition because the posttests only granted 

correct accuracy scores to those that chose an audio-to-visual mapping that matched the 

predetermined mapping of the experiment. Participants that chose other mappings were 

counted as incorrect even though they may have also learned the categories as well as those 

that chose the predetermined mapping. The Control Condition was primarily designed to create 

a baseline effect of age for reaction times during training. Future research should investigate the 

extent to which participants can learn from passive exposure, directly comparing passive 

learning to learning that includes reinforcement from an audio-to-visual correspondence. 

There are factors in the current study’s design that likely benefitted novel tone category 

formation in the Control Condition. The ability to form novel sound categories from passive 
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exposure may vary depending on the complexity and similarity of the sound categories (Wade & 

Holt, 2005; Emberson et al., 2013; LeBovidge, 2018). To learn from passive exposure, sound 

categories need to be perceptually distinct (Emberson et al., 2013). It is likely that the 

distinctiveness of each category in the current study aided in the formation of the novel tone 

categories in the Control Condition. As discussed in Chapter 2, the four Thai tones used in the 

current study were selected to maximize differences in each category. T45 is high and rises. 

T315 is low and rises. T241 is high and falls. T21 is low and falls. These four tones provide a 

contrast between categories, with one high rising tone category, one low rising tone category, 

one high falling tone category, and one low falling tone category. To summarize, success in 

forming novel sound categories from passive exposure alone may be moderated by the 

distinctiveness of the categories, and the distinct nature of the categories used in Experiment 2 

may have aided in the passive acquisition of the novel tone categories. 

 Another factor that may have led to successful novel tone category formation in the 

Control Condition is the use of high-variability stimuli in close temporal proximity. As discussed 

in Experiment 1, high-variability stimuli aids in generalization, particularly in the ability to 

identify the salient acoustic features of the category while learning to ignore the features that 

are not important for the category. In Experiment 1, I also discussed the conclusion from Gabay 

et al. (2015), that stated that high-variability stimuli in close temporal proximity to the audio-to-

visual correspondence was the “representational glue” that binds the category exemplars 

together during incidental training, leading to greater category development. However, results 

from the Control Condition suggest that high-variability stimuli in close temporal proximity may 

also benefit category learning in learning paradigms that do not contain audio-to-visual learning 

reinforcement. Thus, it may be that the benefit of high-variability stimuli in close temporal 

proximity is not paradigm specific. Rather, this type of high-variability training may benefit 

category learning across paradigms. Thus, the temporal proximity of acoustic variability may be 

a key factor in the ability to form novel sound categories from passive exposure alone.    

4.5.2 Correlation between measures 

In both conditions in Experiment 1 and in the Single Talker Condition in Experiment 2, reaction 

times during the final block of training were significantly correlated with accuracy scores at test, 

indicating that the two measures serve as predictors of learning. However, when participants do 

not learn, as in the Control Condition in Experiment 2, the measures are not correlated. Further, 
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in conditions where few learn, such as the Multi-talker Condition in Experiment 2, the 

correlation between the measures becomes unclear. The correlation in the Multi-talker 

Condition was further confounded by age. Those that learned in the Multi-talker Condition were 

older participants, and even though older participants learn and therefore become faster across 

training blocks, their overall reaction times still tend to remain slower than younger participants.  

 If the incidental learning paradigm is working properly without interference, we see a 

strong correlation between reaction times during training and posttest scores. However, as 

indicated by the results in Experiment 2 and in Roark et al. (2020), it is possible for the 

correlation between measures to become less clear. This occurred in the Multi-talker Condition 

due to relatively few participants learning and those that learned were older, which resulted in 

reaction times of older participants becoming faster than baseline and being more similar to 

younger participants’ reaction times. In this way the correlation between measures was 

disrupted by the impact of age on reaction times. Roark et al. (2020) did not report correlations 

between measures. However, a post-hoc interpretation of their reaction times during training 

and accuracy scores at test suggests that the correlation between reaction time and posttest 

accuracy was likely disrupted in the Irrelevant Feature Condition and in the Misalignment 

Condition in Roark et al. (2020). In the Irrelevant Feature Condition there was an additional 

distractor feature that was irrelevant to the task. This addition resulted in an impact to reaction 

times over and above their baseline condition, but it did not impact accuracy, suggesting that 

the correlation between the two measures was skewed. In the Misalignment Condition in Roark 

et al. (2020) the auditory categories were not linked to the task-relevant feature, creating an 

audio-to-visual misalignment rather than an audio-to-visual correspondence. This disruption 

resulted in reaction times that remained similar to other conditions but accuracy at posttest 

suffered completely, again suggested that the relationship between the two measures was 

skewed. Therefore, if there is not a strong correlation between the two measures, then there 

may be a factor in the experiment design or differences among participants that is resulting in 

slower reaction times or reduced accuracy. Consequently, it is likely that the degree of the 

correlation between the two measures is informative. If there is a clear linear relationship 

between the two measures, then the paradigm is functioning without additional distractors that 

are skewing the results. If the correlation is slightly skewed, then the added element in the 

paradigm is a minor complicating factor for the experiment, but if the correlation is skewed by a 
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large amount, then the added element is a larger complicating factor for the experiment. 

Therefore, it may be that the degree of correlation between measures could serve as a proxy for 

the degree of complication caused by the additional element. 

4.5.3 Talker variability 

Results from Experiment 2 indicated that participants in the Single Talker Condition and in the 

Multi-talker Condition were able to categorize the novel tone categories above chance. 

However, learning in the Single Talker Condition was more robust than in the Multi-talker 

Condition on Posttest 1, where participants generalized learning to novel tokens from the same 

talker(s). As discussed in Section 4.1, there was some expectation that the Single Talker 

Condition would indicate more robust generalization to novel tokens from the same talker(s) 

than the Multi-talker Condition. Further, it was expected that there would be a greater 

difference between Posttest 1 and Posttest 2, where participants generalized to novel talkers, in 

the Single Talker Condition than in the Multi-talker Condition. As expected, participants in the 

Single Talker Condition exhibited a sharp decline in categorization accuracy when exposed to 

multiple new talkers in Posttest 2. By contrast, accuracy scores on Posttest 2 did not differ from 

accuracy scores on Posttest 1 for participants in the Multi-talker Condition. 

 The substantial drop in accuracy on Posttest 2 for participants in the Single Talker 

Condition is likely due to the increase in variability in the acoustic signal that occurs with stimuli 

from multiple talkers. In Section 3.5.3 and Section 1.2, I discuss the task of perceptual 

categorization. To form novel sound categories with natural speech stimuli a listener must 

generalize across acoustically variant sounds to determine which features are salient for the 

category. If a listener only hears a very limited set of exemplars of a category, when faced with 

greater variation in the acoustic signal, they will not be as successful at generalizing their 

learning to the novel exemplars. In one study, for example, French participants that were 

trained on stimuli with low variability were not very successful at identifying the English /θ/ and 

/ð/ (Jamieson & Morosan, 1989). By contrast, participants that were trained on high variability 

stimuli were more successful at identifying /θ/ and /ð/ (Jamieson & Morosan, 1986). The 

conclusion was that higher stimulus variability aids in the formation of novel sound categories 

by helping learners attend to the salient differences between the categories and ignore the 

unimportant differences between stimuli of the same category. Results from Lively et al., (1993) 

support these conclusions. Training on multiple talkers resulted in improved accuracy and 
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generalization to a new talker, but training on a single talker did not result in generalization to a 

new talker.  

Results from Experiment 2 support previous findings that novel tone category formation 

training with limited variability, as in the Single Talker Condition can result in reduced 

categorization ability when generalizing to novel talkers. However, overall learning in the Single 

Talker Condition was more robust compared to the Multi-talker Condition, as illustrated by 

reaction times and accuracy scores on Posttest 1. Reaction times became faster across blocks in 

the Single Talker Condition, but remained steady in the Multi-talker Condition. Further, accuracy 

scores on Posttest 1 were significantly higher in the Single Talker Condition. Overall, fewer 

participants learned in the Multi-talker Condition than in the Single Talker Condition and those 

that learned did not achieve accuracy scores as high as the learners in the Single Talker 

Condition. There are several aspects of the Multi-talker Condition that may have resulted in 

reduced tone category formation: 1) the inherent acoustic variability stemming from the use of 

natural tokens from multiple talkers, 2) perceptual difficulties specific to the population, or 3) 

difficulties arising from the design of the experiment. It also may be that a combination of these 

factors resulted in a reduced capacity to attend to the salient features of each tone category. 

In Experiment 1, greater within-trial variability enhanced learning, but in Experiment 2, 

greater talker variability across trials hindered learning. High-variability training is known to 

enhance perceptual learning as it aids in the generalization necessary for categorization 

(Jamieson & Morosan, 1989; Lively et al., 1993; Bradlow et al., 1997; Wang et al., 1999; Barcroft 

& Sommers, 2005; Iverson et al., 2005; Brooks et al., 2006). However, not all variability is the 

same. In some situations, variability can hinder speech perception (Mullenix & Pisoni, 1990; 

Magnuson & Nusbaum, 2007; Perrachione et al., 2011, Bradley, 2017). While additional within-

trial stimuli variability benefitted learning in Experiment 1, across-trial multi-talker stimuli 

variability hindered learning in Experiment 2. It is possible that the amount of acoustic variability 

in the productions across the three talkers in the Multi-talker condition was sufficient to reduce 

participants’ ability to attend to the salient acoustic features of each tone category and reduce 

learning. Results from Wong et al. (2004) indicate a processing cost when listening to auditory 

tokens from multiple talkers (also see Kaganovich et al., 2006; Creel et al., 2008). Specifically, 

processing speech from multiple talkers can result in greater activation of brain regions 

associated with speech perception and slower reaction times. Results from Perrachione et al. 
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(2011) suggest that exposure to multiple talkers can reduce perceptual learning. In presenting 

their conclusions, Perrachione et al. (2011) present an interpretation rooted in Reverse-

Hierarchy Theory (RHT; Ahissar & Hochstein, 2004; Ahissar et al., 2009), which states that 

perceptual learning occurs when listeners identify the correct perceptual level (e.g., pitch 

contour) and attend to meaningful input. The difficulty that multiple talkers present is that the 

correct perceptual level for the target categories is obscured by the greater number of 

uninformative cues (see Chapter 2 for acoustic differences across talkers). Perrachione, et al. 

(2011) also demonstrate that the effect of talker variability on speech perception is modulated 

by the individual perceptual abilities of the listener. For example, individuals with higher 

pretraining pitch contour perception abilities were capable of benefitting from higher variability 

across stimuli, whereas those with lower initial perceptual abilities were hindered by high-

variability training. However, results from Experiment 2 do not support this conclusion. If they 

did, we would have expected at least some of the participants in the Multi-talker condition to 

have accuracy scores comparable to participants in the Single Talker Condition, but all scores 

from those that learned in the Multi-talker Condition were low. In this respect, incidental 

learning may differ from explicit training with feedback. Incidental learning may be modulated 

less by the individual perceptual abilities of the listener.  

Another factor potentially impacting the incidental acquisition of novel tone categories 

is the language background of the participants. Participants in the current studies were native 

English speakers with little or no experience learning other languages. Magnuson and Nusbaum 

(2007) specifically found that differences in pitch in a mixed talker condition resulted in slower 

processing of the stimuli than a blocked talker condition with native English participants. 

Further, native English listeners tend to attend to the level of the pitch over the slope of the 

pitch. Guion and Pederson (2007) found that cue weighting is different for naïve native English 

and native Japanese listeners compared to native Mandarin listeners when listening to 

Mandarin tones. Mandarin participants utilize the level of the pitch and the slope of the pitch, 

while native English and native Japanese listeners primarily attend to the level of the pitch. The 

three talkers used in the Multi-talker Condition varied in pitch range. Therefore, participants 

heard the tone category on one trial produced by a talker with a particular pitch range, and then 

on a subsequent trial heard the tone category produced in a different pitch range. It is possible 

that the differences in pitch range across trials led the participants, being native English 
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speakers, to over-attend to differences between pitch ranges on trials, distracting them from 

the pitch contours, which were necessary to attend to for tone category development. It is 

possible that this perceptual difficulty would not be problematic for listeners that have tonal 

L1s. Further, if this hypothesis is correct, native English participants would likely benefit from 

within-trial talker variability rather than across-trial talker variability. Within-trial talker 

variability should instruct native English listeners to ignore differences in pitch range of the 

talkers and attend to differences in pitch contour.  

Thus, the difficulty of the Multi-talker Condition may be due to the experiment design. If 

a population tends to attend to features that could potentially distract them from the salient 

features of the target categories, then accommodations may need to be made in the 

experiment design (see Perrachione et al., 2011). Experiment 1 found that participants 

improved substantially in novel tone acquisition when exposed to trials with variable tokens 

from the same talker compared to trials with identical tokens from the same talker. Having 

variable tokens aids in perceptual categorization by helping the learner to determine which 

features are salient to the sound category and which are unimportant to the category. In the 

Multi-talker Condition in Experiment 2, each trial consisted of variable stimuli, but they were 

from a single talker. Therefore, talker variability in the Multi-talker Condition occurred across 

trials. Barcroft and Sommers (2005) found that participants learned novel lexical targets better 

when hearing repetitions of stimuli that did not come from the same talker but from multiple 

talkers. Similarly, participants may learn the target tone categories better by hearing multiple 

talkers’ productions within trial. If native English listeners are over-attending to pitch level or 

pitch range between talkers and need to learn that the variations between talkers’ pitch levels is 

unimportant, then it is likely that talker variability within trial would train native English learners 

to ignore differences in pitch level across talkers and attend to pitch contours instead. 

Participants would hear the consistencies in the pitch contours, identify them as being salient to 

the category, and be trained to ignore differences in pitch height across talkers. When talker 

variability is only found across trials, this process is more difficult due to the temporal distance 

between the most variable exemplars of the category. If within-trial talker variability results in 

greater learning and greater ability to generalize to novel talkers, then it may indicate that the 

perceptual categorization mechanism that generalizes salient features of the category across 
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the range of exemplars is most efficient when the full range of features found in the category 

exemplars occurs in close temporal proximity during training.   

Overall results from Experiment 2 suggest that high-variability training with multiple talkers 

can both help and hinder the incidental learning of novel tone categories. Multi-talker training 

has the potential to help learners better generalize to tokens from novel talkers. However, initial 

exposure to multiple talkers may hinder the learners’ ability to attend to the salient features of 

the novel sound category (see Barcroft & Sommers, 2005). The conclusion that there is a greater 

initial cost to perceptual training on multiple talkers but also a greater potential payoff when 

generalizing to novel talkers may relate to speech perception more generally. This finding is 

consistent with other work (Lee and Baese-Berk, under review) which found that exposure to 

multiple talkers initially slows non-native English speakers’ perception of native English 

speakers, but results in greater adaptation to novel talkers.  

The initial learning deficit found in the Multi-talker Condition 1 in Experiment 2 may have 

occurred due to several factors, such as the inherent acoustic variability stemming from the use 

of natural tokens from multiple talkers, perceptual difficulties specific to the population in the 

study, or difficulties arising from the design of the experiment. To further investigate differences 

between incidental learning involving single and multiple talkers, it would be of interest to 

compare the results of Experiment 2 with an experiment examining talker variability within trial, 

rather than across trials.  

Another possibility is that training with multiple talkers requires more time to result in more 

robust learning. When hearing multiple talkers, participants indicate greater speech processing 

challenges. Goldinger (1990) found that participants selected slower word presentation rates 

when listening to multiple talkers. Further, faster presentation rates resulted in better lexical 

processing in a single talker condition compared to a multiple talker condition (Goldinger et al., 

1991). Hearing multiple talkers may simply require more time in the incidental learning 

paradigm to achieve similar results as the Single Talker Condition. This is likely due to the wider 

range of acoustic features found across productions from multiple talkers. For example, when 

productions from multiple talkers are randomized across trials, substantial differences between 

talkers in vowel space and pitch have been noted to slow processing (Magnuson & Nusbaum, 

2007). In the present study, participants only heard about one thousand tokens over the course 
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of thirty minutes. If participants in a single talker condition and a multiple talker condition were 

trained longer, it may be that accuracy on novel tokens from the same talker(s) would become 

move equivalent, and in that case, it would be expected that participants in the multiple talker 

condition would better generalize to novel talkers. If additional training led to improvements in 

the Multi-talker Condition over the Single Talker Condition, then it may suggest a more general 

rule that greater variability in the stimuli requires more time for category development to occur, 

which would suggest that the task of categorization becomes more difficult with the amount of 

variation. This hypothesis could be tested further by increasing variability through the inclusion 

of variable syllable types produced by multiple talkers. Such comparison may provide details 

regarding the time course of category learning across a wider range of variability encountered 

by those seeking to acquire the target categories during language acquisition. The time course 

of learning may have a linear relationship with the number of talkers, but there is evidence that 

the difficulty of the task plateaus. For example, Mullennix and Pisoni (1999) found that stimuli 

from four talkers and sixteen talkers resulted in the same amount of perceptual interference.  

Researchers involved in language acquisition may be interested in training programs that 

result in the greatest accuracy across potential variability in the shortest amount of time. Recent 

work investigating the application of incidental learning to real world language acquisition 

provides insight into this concern. Wiener et al. (2019) found that scaffolding learning by 

beginning with acoustically simpler categories in an implicit learning paradigm resulted in 

improved categorization and more native-like Mandarin tone productions than explicit speech 

training. We expect that further investigation of the effect of scaffolding from lower to higher 

levels of acoustic variability during incidental learning would prove beneficial for language 

acquisition pedagogy. For example, a study over several training periods that contains the Single 

Talker Condition and the Multi-talker Condition from Experiment 2, as well as a condition that 

begins with a single talker and increases the number of talkers over several days of training may 

show that increasing talker variability over time could result in a better ability to generalize to 

novel tokens from the same talkers and novel tokens from new talkers in the shortest amount of 

time.  

4.5.4 Learning differences as a function of age 

In Experiment 2 participants’ ages ranged from 18 to 62, permitting some observation of the 

effect of age on the incidental learning of novel tone categories. In the Control Condition 
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participants were not able to learn and become faster across training blocks. Thus, the Control 

Condition provided a clear effect of age on training reaction times for the task used in the 

paradigm, with older participants having slower reaction times than younger participants. As 

discussed in Section 3.5.5, this result was expected since the task involves a reaction time 

measure to a multimodal response known to be slower across the lifespan (Salthouse, 1985; 

Lima et al., 1991). The linear relationship between age and reaction times tends to hold even 

when more participants above the age of 40 learn than participants below the age of 40, as in 

the Multi-talker Condition.  

 In all three conditions, accuracy scores at test indicated that participants of all ages 

were able to learn. As discussed in Section 3.5.5, there were not enough participants across age 

groups for statistical comparison, but some general observations can be made from the data.27 

As in Experiment 1, stimuli variability across conditions disproportionately impacted different 

age groups. In Experiment 1 younger participants were substantially more accurate, compared 

to older participants, when tokens within trial were variable. That is, high-variability tokens 

within trial from the same talker helped younger participants to learn the novel tone categories. 

However, in Experiment 2, high-variability tokens across trials in the Multi-talker Condition 

seemed to disproportionately hinder learning for younger participants. Further, older 

participants seemed to benefit from the greater variability in the Multi-talker Condition. These 

results may have important implications for understanding the underlying processes of 

perceptual categorization during incidental learning and how those processes change across the 

lifespan.  

As discussed, results from the Single Talker Condition in Experiment 2 found that younger 

and older participants were able to learn the target tone categories. Maddox et al. (2013) found 

a similar result. Older participants were able to learn just as well as younger participants 

through incidental training. However, they also found that explicit training resulted in reduced 

learning for older participants. The Competition between Verbal and Implicit Systems model 

(COVIS; Ashby et al., 1998, 2011; Chandrasekaran et al., 2014) posits that there are different 

neural structures engaged during explicit and implicit category learning paradigms. It may be 

that the neural mechanisms and processes used during explicit learning may differ from those 

                                                            
27 When discussing age groups for general observations, I consider those under 40 to be younger and 
those over 40 to be older. 
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used during incidental learning. Thus, neural mechanisms and processes used during incidental 

learning may be impacted less by age related cognitive decline. However, the processes and 

mechanisms may still be subject to age related effects. The results from the Multi-talker 

Condition suggest that there may be differences in the incidental learning of novel sound 

categories across the lifespan. Specifically, older participants seemed to be less impacted by 

multi-talker variability across trials than younger participants. Older participants may have been 

impacted less by multiple talkers due to reduced sensitivity to pitch compared to younger 

participants. Clinard et al. (2010) found that the ability to discriminate frequencies becomes 

poorer as age increases. Further, they found that the neural representation of frequency, as 

measured by the frequency-following response (FFR), shows a decline for higher pitch ranges 

but are intact for lower pitch ranges (also see Skoe et al., 2015; Anderson et al. 2012). One of 

the main differences between talkers, as illustrated in Chapter 2, is pitch range. If older 

participants’ perception of the talkers’ pitch is compressed compared to younger participants, 

then differences in pitch range between talkers may not be as well perceived by older 

participants. Therefore, they may not have been as sensitive to differences in talkers’ pitch 

ranges as younger participants.    

4.6 CONCLUSION 

Experiment 2 directly tested the impact of talker variability on novel tone category formation 

and the ability to generalize learning to novel tokens from the same talker(s) and novel tokens 

from new talkers. By examining talker variability across trials, we tested the hypothesis that 

exposure to multiple talkers during training aids in the ability to generalize to novel talkers. 

Results from Experiment 2 demonstrated that participants exposed to stimuli from a single 

talker during training and participants exposed to multiple talkers across trials during training 

are able to learn novel tone categories above chance. However, talker variability during training 

impacts the ability to generalize learning to novel tokens and novel talkers in an incidental 

learning paradigm. Specifically, hearing stimuli from a single talker during training results in 

substantially more robust generalization to novel tokens from the same talker(s) than hearing 

stimuli from multiple talkers. Further, if participants hear a single talker during training, there is 

a sharp decline in accuracy when generalizing to novel talkers. By contrast, if participants are 

trained on multiple talkers during training, there is little or no difference when generalizing 
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learning to novel talkers. That is, accuracy scores were the same when generalizing to novel 

tokens from the same talkers and when generalizing to novel tokens from novel talkers for 

participants trained on multiple talkers.  

In the Control Condition in Experiment 2, we examined a condition where there was no 

audio-to-visual correspondence. Therefore, participants had no ability to predict where the 

visual target would appear during training. Thus, they did not experience reinforcement learning 

and did not respond faster across training blocks. By examining a condition that includes no 

audio-to-visual correspondence and no reinforcement learning, we were able to test the impact 

of age on the task alone and observe a baseline effect of age on the task. There was a linear 

effect of age on reaction times, with older participant having slower reaction times than 

younger participants.  

Surprisingly, results from the Control Condition demonstrated that participants in a 

passive listening condition, where there was no ability to learn the audio-to-visual 

correspondence and therefore no reinforcement learning, were also able to form novel tone 

categories. This result was surprising because research on incidental learning suggests that 

reinforcement is necessary for learning because it is the “glue” that binds the signals together 

during reinforcement learning. However, we demonstrated that participants can consistently 

categorize novel tone categories after passive exposure alone. We hypothesized that a key 

factor in the ability to form novel tone categories from passive exposure is the use of stimuli 

that contains multiple variable tokens in close temporal proximity. 
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 V. SEGMENTAL FAMILIARITY 

5.1 INTRODUCTION 

An important factor that impacts novel tone category acquisition is the ability to attend to the 

salient features of the novel tone categories. As discussed, in natural speech there are 

numerous features that may distract participants from attending to the important features. 

Some of those features may interact in different ways depending on the learner’s language 

background. For example, if a learner is already familiar with the use of a particular feature for 

determining sound category membership, they may process novel stimuli differently than 

learners that do not have the same familiarity. One example comes from novel tone category 

learning. Learners that use F0 for category membership in their first language display differences 

in processing novel tone categories (Guion & Pederson, 2007). Further, familiarity with the 

segmental or phonotactic composition of the tokens can impact perception. Thus, the current 

study examines the impact of segmental familiarity on the incidental formation of novel tone 

categories under the expectation that the presence of unfamiliar segments in the stimuli may 

negatively impact perceptual learning. 

5.1.1 The impact of segmental familiarity on sound category learning 

As discussed, an important aspect of learning novel sound categories is the ability to attend to 

the salient acoustic features between the categories. Further, it is possible to be distracted from 

attending to the salient features of the category by a number of factors. The phonotactic 

environment of the target sound, may inhibit attention to the target acoustic features (Guion & 

Pederson, 2007; Liu et al., 2011; Wright & Baese-Berk, under review). It is hypothesized that 

inhibition from complex stimuli involving unfamiliar segmental and suprasegmental features 

may occur due to increased attentional loads during perceptual learning, thereby increasing the 

difficulty of learning the novel sound categories. Liu et al. (2011) addresses the question of 

whether segments and suprasegmentals should be learned together or separately, suggesting 

that learning both components of a syllable at the same time presents an increased level of 

difficulty. They tested learners on the acquisition of novel tone categories across different levels 

of segmental difficulties and found that tone learning suffered under higher levels of segmental 

difficulty. These results suggest that learners can be distracted from learning tone categories by 
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difficulties presented by the segments. Liu et al. (2011) concluded that discrimination among 

temporally integrated features, such as segments and tones, is challenging. 

This line of thought is further supported by studies indicating differences in the neural 

processing of native and non-native segments. For example, Peltola et al. (2003) investigated 

neural response patterns, measured through mismatch negativity (MMN)28, to English vowels by 

naïve Finns, Finnish students of English, and native English speakers. They found that the 

processing of segments familiar to the native language differed from the processing of segments 

unfamiliar to the native language. Further, they found that even though Finnish students of 

English had extensive classroom exposure to English, they still did not process the segments like 

native English speakers. Therefore, Experiment 3 investigates whether processing differences of 

familiar and unfamiliar segments impacts novel tone category formation during reflexive 

learning.  

Another factor that may be impacted by segmental familiarity is attention. Due to 

experience with the L1, listeners may also be endogenously oriented to focus on different 

features in novel stimuli. For example, tone perception studies show that native English listeners 

weigh pitch cues differently than Mandarin listeners (Guion & Pederson, 2007). Also, Chen and 

Pederson (2017) found that when attention is directed to segments, learners do not improve in 

tone discrimination. It may be that native English speakers, due to lack of experience with lexical 

pitch, are endogenously oriented to direct their attention to segmental composition during 

auditory perception. If this is the case, then the unfamiliar segment in the /mɯ/ Condition in 

Experiment 3 may result in a greater attentional load, thereby distracting participants from 

attending to the tone categories. Thus, we ask whether conditions composed of tokens with 

familiar segments would permit greater endogenous orientation to f0 information, resulting in 

greater tone acquisition than conditions with unfamiliar segments. 

                                                            
28 Mismatch negativity (MMN) is an auditory event-related potential that occurs when a standard sound is 
presented repeatedly and then interrupted by a deviant sound, permitting the investigation of the extent 
to which a person hears two sounds as the same or different (see Näätänen, 1992). This is often taken as 
evidence for listeners perceiving distinctions between similar sounds, even if behaviorally they classify 
them identically. 
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5.1.2 Current experiment 

In the current experiment, we examine the impact of segmental familiarity during training on 

the incidental perceptual learning of novel tone categories by comparing three conditions that 

contain tokens produced in different syllables. Two conditions, the /ma/ Condition and the /mi/ 

Condition, are comprised of segments more familiar to the participants’ language background 

experience. One condition, the /mɯ/ Condition, contains a segment unfamiliar to the 

participants’ language background experience. We expect that results in the two familiar 

conditions will not differ from each other. However, we expect that a lack of familiarity in the 

/mɯ/ Condition will negatively impact learning. 

5.2 METHODS  

5.2.1 Participants 

As in the other experiments, participants were recruited online via Prolific. All participants self-

identified as being monolingual English speakers and identified as being native English speakers 

from America, Canada, the United Kingdom, South Africa, Australia, or New Zealand. 

Participants that reported significant language learning experience, that reported hearing 

impairments, or that did not use the right equipment (headphones and an external mouse) were 

excluded from the study. 

 In /ma/ Condition, where participants heard a single talker produce tokens using the 

syllable /ma/ during training, 29 participants were recruited29. Four participants were excluded 

for using the wrong equipment or for hearing impairments, leaving 25 participants (13 female, 

11 male, 1 non-binary). Participants spoke a variety of English dialects (6 American, 2 Australian, 

                                                            
29 The /ma/ Condition in the present experiment is the Variable Token Condition from Experiment 1 and 
the Single Talker Condition from Experiment 2. Therefore, descriptions of the /ma/ Condition in the 
present experiment are a restatement of details from Experiment 1 and Experiment 2. Primary differences 
in the description of the /ma/ Condition in the present chapter arise from the differences in the 
comparisons made across the experiments. Experiment 1 compared token variability within and across 
trials. Experiment 2 examined talker variability across trials. Experiment 3 compares segmental variability 
across conditions. 
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14 British, 1 Canadian, 1 Irish, and 1 NA)30. Ages ranged from 19 to 56 with a mean of 29.08 and 

standard deviation of 9.4531. 

In the /mi/ Condition, where participants heard a single talker produce tokens using the 

syllable /mi/ during training, 25 participants were recruited (16 female, 9 male). No participants 

were excluded. Participants spoke a variety of English dialects (3 American, 1 Australian, 18 

British, 1 Canadian, 2 Irish). Ages ranged from 20 to 54 with a mean of 33.30 and standard 

deviation of 9.72. 

In the third condition, where participants heard a single talker produce tokens using the 

syllable /mɯ/ during training, 25 participants were recruited (13 female, 10 male, 1 transman, 1 

transwoman). No participants were excluded. Participants spoke a variety of English dialects (4 

American, 4 Australian, 11 British, 3 Canadian, 1 Irish, 2 NA). Ages ranged from 19 to 57 with a 

mean of 30.00 and standard deviation of 12.78. All participants were paid for their participation. 

5.2.2 Stimuli 

Stimuli in experiment 3 had the same composition as the Variable Token Condition in 

Experiment 1. The five auditory tokens in each trial were randomly selected before the 

experiment. In Experiment 3, for the three conditions, all auditory tokens for training and for 

Posttest 1 came from Talker A. In the /ma/ Condition, participants heard tokens produced in the 

syllable /ma/. In the /mi/ Condition, participants heard tokens produced in the syllable /mi/. In 

the /mɯ/ Condition, participants heard tokens produced in the syllable /mɯ/. In each 

condition, half of the exemplars of each category from Talker A were used for training, and half 

of the exemplars were used to test generalization of learning to new exemplars on Posttest 1. 

5.3 PROCEDURE 

The procedure for Experiment 3 was the same as the procedure for the other experiments, and 

each condition in Experiment 3 was conducted identically. In the present experiment the 

primary difference regards the stimuli. In Experiment 3, three groups of participants were 

                                                            
30 It is not expected that experience with specific English dialects would aid in novel tone category 
acquisition over other dialects. English dialects do not use F0 information contrastively at the lexical level. 
Further, experience with other regional languages used in proximity to the specific dialect should not be a 
factor as participation was limited to those that identified as being monolingual English speakers. 
31 Age is considered as a covariate during analysis and is reported in the results. 
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exposed to four novel Thai tone categories through an incidental learning paradigm. Participants 

went through four training blocks with forty-eight trials in each block. Then, Posttest 1 tested 

generalization to novel tokens from the same talker(s) over thirty-six trials, and Posttest 2 tested 

generalization to novel talkers over thirty-six trials. Posttest 3 tested production of the tone 

categories over thirty-six trials. Finally, participants completed a language background 

questionnaire. 

5.3.1 Training 

Participants in each condition were trained with the incidental paradigm described in 

Experiment 1. On each trial participants heard five sounds and then clicked on a visual target, an 

‘X’, that appeared in one of four boxes. Participants were trained across four training blocks with 

forty-eight trials in each block. For all conditions, auditory stimuli in each trial consisted of five 

concatenated exemplars. The concatenations were randomly selected prior to subject running. 

However, the presentation of trials was randomly selected by the experiment. In each condition, 

training was composed of six different concatenations of each tone category from Talker A for a 

total of twenty-four trials (6 concatenations X 4 tones X 1 talker). These twenty-four trials were 

duplicated on each training block for a total of forty-eight trials per block.  

 For all conditions, reaction times were measured to examine learning across the four 

training blocks. It is expected that faster reaction times across training blocks will occur for 

those that learn the target tone categories and that faster reaction times will correlate with 

performance at test. Further, mouse tracking was conducted to examine changes in decision 

space over time as participants acquire the tone categories32. 

5.3.2 Testing 

The testing procedure for Experiment 3 was the same as the procedure for the other 

experiments. Participants heard five sounds and then saw four boxes appear without a visual 

target. They then chose which box the target should appear in. Posttest 1 tested generalization 

to novel tokens and Posttest 2 tested generalization to novel talkers. Posttest 1 and Posttest 2 

were the same for all conditions.  

                                                            
32 An analysis of mouse tracking data is not included in the dissertation. Future analyses and description of 
the current work will analyze and consider mouse tracking data and report results. 
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5.3.2.1 Posttest 1: Generalization to new tokens 

Posttest 1 trials for each condition were composed of three different concatenations of each 

tone category from Talker A for a total of twelve trials (3 concatenations X 4 tones X 1 talker). 

These twelve trials were repeated three times on Posttest 1 for a total of thirty-six trials.  

5.3.2.2 Posttest 2: Generalization to new talkers 

Posttest 2 trials for all conditions were composed of three different concatenations of each tone 

category from each Talker D, Talker E, and Talker F, for a total of thirty-six trials (3 

concatenations X 4 tones X 3 talkers). 

5.3.2.3 Posttest 3: Production of the tone categories 

Experiment 3 also contained a third posttest, which was conducted in the same way as 

Experiment 1. Participants saw the visual target appear in one of the four boxes and recorded 

themselves saying the target tone with the syllable /ma/. Thirty-six trials were conducted33. 

5.4 RESULTS 

5.4.1 Training reaction times 

Experiment 1 tested the impact of token variability on novel tone category learning, finding that 

token variability within trial resulted in more robust learning than token variability across trials. 

Experiment 2 tested the impact of talker variability on novel tone category learning, finding that 

a single talker during training resulted in more robust learning than multiple talkers during 

training. In each condition in Experiment 3 all trials contain variable auditory tokens, and 

auditory tokens during training are from a single talker. Experiment 3 tests the impact of 

segmental familiarity on novel tone perception. If familiarity with the segments used in the 

stimuli impact novel tone category learning, it is expected that segments familiar to the 

participants (i.e., /ma/ and /mi/) will result in learning outcomes that differ from unfamiliar 

segments (i.e., /mɯ/).  

Experiment 1 and Experiment 2 found that participants that learn the target tone 

categories have reaction times that get faster across training blocks. It is expected that 

                                                            
33 An analysis of production data is not included in the dissertation. Future analyses and description of the 
current work will analyze and consider production data and report results. 
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participants in the /mi/ Condition, will learn the tone categories and will have faster reaction 

times across training blocks. It is also expected that participants in the /mɯ/ Condition will learn 

the tone categories and will have faster reaction times across training blocks. However, it is 

expected that reaction times will be slower across training blocks for the /mɯ/ Condition, as a 

lack of familiarity with /ɯ/ adds to the attentional load during perceptual learning.  

5.4.1.1 Analysis 

As in the previous experiments, visual target detection times were measured from the end of 

the auditory stimuli to the time the participant clicked on the visual target. Reaction times 

greater than 1,500 ms were excluded from analyses. For each condition, I compare reaction 

times across training blocks by comparing a full model and a reduced model without training 

block. I then conduct contrast coded linear mixed-effects regressions to compare each training 

block to the subsequent training block to examine changes in reaction times from block to block. 

Further, I compare reaction times across training blocks across the three conditions by 

comparing a full model with an interaction between condition and training block and a reduced 

model without an interaction, followed up by post-hoc comparisons of each condition with each 

other condition. Finally, as differences in age can affect learning and hearing ability (Kiessling et 

al., 2003; Clinard et al., 2010), I conduct model comparisons to examine age as a fixed effect.  

5.4.1.2 Reaction Times 

Results indicated that reaction times from participants in all conditions became faster across 

training blocks. Figure 50 illustrates log-transformed reaction times across training blocks for the 

/ma/ Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block.  

To test whether reaction times differed as a function of training block, I compared 

models with and without training block, controlling for participant age, and results indicated 

that reaction time significantly differed as a function of training block in the /ma/ Condition (X2 

(3) = 114.05, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 
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Figure 50. Log-transformed reaction times across training blocks in the /ma/ Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.63, SD = 

.31) were significantly slower than block 2 (M = 6.56, SD = .39; β = -.065, t = -5.55, p < .001), 

reaction times in block 2 did not differ from block 3 (M = 6.54, SD = .42; β = -.022, t = -1.89, p = 

.06), and reaction times in block 3 were significantly slower than block 4 (M = 6.51, SD = .47; β = 

-.012, t = -2.98, p = .003).  

Figure 51 illustrates log-transformed reaction times across training blocks for the /mi/ 

Condition. The four boxplots in each of the three charts represent the distribution of reaction 

times for each block, and the dots in the boxes represent the mean reaction time for the specific 

block.  

As a whole, participants’ reaction times in the /mi/ Condition became faster across 

training blocks. To test whether reaction times differed as a function of training block, I 

compared models with and without training block, controlling for participant age, and results 

indicated that reaction time significantly differed as a function of training block in the /mi/ 

Condition (X2 (3) = 72.20, p < .001).  
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reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

 

Figure 51. Log-transformed reaction times across training blocks in the /mi/ Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.70, SD = 

.31) differed significantly from block 2 (M = 6.65, SD = .36; β = -.027, t = -2.15, p = .03), reaction 

times in block 2 differed significantly from block 3 (M = 6.59, SD = .44; β = .068, t = -5.44, p < 

.001), and reaction times in block 3 did not differ from block 4 (M = 6.60, SD = .43; β = .019, t = 

1.50, p = .13).  

Figure 52 illustrates log-transformed reaction times across training blocks for the /mɯ/ 

Condition. The four boxplots in each of the three charts represent the distribution of reaction 

times for each block, and the dots in the boxes represent the mean reaction time for the specific 

block.  
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Figure 52. Log-transformed reaction times across training blocks in the /mɯ/ Condition. 

As a whole, participants’ reaction times in the /mɯ/ Condition also became faster 

across training blocks. To test whether reaction times differed as a function of training block, I 

compared models with and without training block, controlling for participant age, and results 

indicated that reaction time significantly differed as a function of training block in the Multi-

talker Condition (X2 (3) = 92.40, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 with 

block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.65, SD = .32) 

differed significantly from block 2 (M = 6.56, SD = .40; β = -.087, t = -7.46, p < .001), reaction 

times in block 2 did not differ from block 3 (M = 6.55, SD = .41; β = -.005, t = -.45, p = .65), and 

reaction times in block 3 did not differ from block 4 (M = 6.55, SD = .42; β = -.005, t = -.41, p = 

.69).  

I compared reaction times across the three conditions. Figure 53 illustrates mean 

reaction times across training blocks for each condition with whiskers illustrating 95% 

confidence intervals. Table 7 provides the means and standard deviations of response times for 
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the three conditions. It was expected that reaction times would be more similar in the /ma/ and 

/mi/ conditions. It was expected that reaction times from participants in the /mɯ/ Condition 

would become faster across training blocks, but not be as fast as the other conditions. However, 

as illustrated in Figure 53 and described in Table 7, the change in reaction times across training 

blocks was very similar for all conditions.  

 

Figure 53. Log-transformed mean reaction times across training blocks for the /ma/ Condition, 
the /mi/ Condition, and the /mɯ/ Condition. Error bars represent 95% confidence intervals. 

Table 7. Summary statistics for reaction times for the /ma/ Condition, the /mi/ Condition, and 
the /mɯ/ Condition 

Condition 
Block 1  
(mean, SD) 

Block 2  
(mean, SD) 

Block 3  
(mean, SD) 

Block 4  
(mean, SD) 

/ma/ 6.63, .31 6.56, .39 6.54, .42 6.51, .47 

/mi/ 6.70, .31 6.65, .36 6.59, .44 6.60, .43 

/mɯ/ 6.65, .32 6.56, .40 6.55, .41 6.55, .42 

 

To test whether reaction times differed across conditions, I compared models with and without 

an interaction between condition and training block. Results indicated that reaction time differs 

across training blocks as a function of condition (X2 (6) = 26.71, p < .001). 
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reaction_time ~ condition * training_block + age + (1|participant) 
reaction_time ~ condition + training_block + age + (1|participant) 

However, Bonferroni corrected post-hoc comparisons revealed that reaction times in the /ma/ 

Condition did not differ from the /mi/ Condition (β = -.063, SE = .084, z = -.74, p = 1) or the /mɯ/ 

Condition (β = -.016, SE = .082, z = -.20, p = 1), and the /mi/ Condition did not differ from the 

/mɯ/ Condition (β = .047, SE = .084, z = .55, p = 1). 

By comparing reaction times across training blocks as a function of condition, I tested 

the impact of segmental familiarity on natural sound category learning. In the /ma/ Condition 

and the /mi/ Condition, stimuli across trials contained tokens composed of segments common 

to the participants’ L1. It was expected that in the /mɯ/ Condition, which contained tokens 

composed of segments unfamiliar to the participants, reactions times would differ from the 

other conditions. However, the change in reaction times across training blocks was similar in all 

three conditions.  

I also tested whether reaction times differed as a function of age in each condition by 

comparing models with and without age, controlling for training block. Results from the /ma/ 

Condition indicated that reaction times did not significantly differ as a function of age (X2 (1) = 

1.55, p = .21). 

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ training_block + (1|participant) 

Figure 54 illustrates log-transformed reaction times as a function of age in the /ma/ Condition. 

Mean reaction times across blocks for each participant are illustrated as dots with error bars 

illustrating 95% confidence intervals. If participants are learning the categories, quantified as 

faster reaction times across training blocks, then darker blocks will be lower on the y axis in 

Figure 54 and lighter blocks will be higher. In the /ma/ Condition, none of the participants over 

forty exhibited faster reaction times across blocks, which led to results being uninformative 

regarding the time course of learning across age groups in this condition. 
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Figure 54. Log-transformed reaction times across training blocks in the /ma/ Condition. 

Results from the /mi/ Condition indicated that reaction times did not significantly differ 

as a function of age (X2 (1) = .69, p = .41). Figure 55 illustrates log-transformed reaction times as 

a function of age in the /mi/ Condition. Results from the /mi/ Condition continue to support the 

trend that, out of those that learn, reaction times from older participants tend to be slower 

overall than younger participants. Further, the oldest and the third oldest participants’ results 

indicated learning and that category acquisition most likely occurred around the beginning of 

the third block. 

  

Figure 55. Log-transformed reaction times across age in the /mi/ Condition. 
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Results from the /mɯ/ Condition indicated that reaction times did not significantly 

differ as a function of age (X2 (1) = .74, p = .39). Figure 56 illustrates log-transformed reaction 

times as a function of age in the /mɯ/ Condition. As in the /mi/ Condition, results from the 

/mɯ/ Condition continue to support the trend that, out of those that learn, reaction times from 

older participants tend to be slower overall than younger participants. 

  

Figure 56. Log-transformed reaction times across age in the /mɯ/ Condition. 

In Experiment 3 I measured the reaction times of participants across training blocks in 

three conditions. In all three conditions, reaction times became faster across training blocks, 

indicating that participants learned the novel tone categories and were able to use that learning 

to predict the locations of the visual targets. Results did not indicate that the /mɯ/ Condition 

differed from the other conditions. Statistically, when accounting for all participants, including 

those that learned and those that didn’t learn, results indicated that age has no effect on 

reaction times during the experiment. Learning, then, can alter the baseline effect of age on the 

visual detection task, which was illustrated in the Control Condition in Experiment 2, and 

showed that reaction times in the task become slower among older participants. If we look only 

at those that learn in Figures (54-56), we see that the effect of age does tend to result in slower 

reaction times for older participants. 
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5.4.2 Generalization to new tokens and new talkers 

As in the other experiments, Posttest 1 tested participants’ ability to generalize to new tokens 

from the same talker, and Posttest 2 tested generalization to new talkers. The structure of both 

posttests is identical and both measure identification accuracy of the target tone category. If 

participants have learned the categories they should be able to accurately identify in which box 

the visual target should have appeared based solely on hearing the auditory stimuli, and 

therefore, their accuracy scores will be higher. Experiment 1 confirmed that participants that 

hear a single talker during training are able to accurately identify the four novel tone categories 

on Posttest 1. However, when they hear novel talkers on Posttest 2, they are less accurate. The 

Multi-talker Condition in Experiment 2 trained participants on multiple talkers, resulting in lower 

accuracy on Posttest 1, but accuracy on Posttest 1 did not differ from Posttest 2. In the present 

experiment it is expected that all conditions will result in the ability to generalize to novel 

tokens, measured in accuracy scores above chance on Posttest 1 and the ability to generalize to 

novel talkers, measured in accuracy scores above chance on Posttest 2. However, it is expected 

that, due to segmental familiarity, accuracy scores on both measures will differ for participants 

in the /mɯ/ Condition compared to the /ma/ Condition and /mi/ Condition.  

5.4.2.1 Analysis 

Accuracy scores for all conditions were measured on Posttest 1 and Posttest 2. For each 

condition, I compare accuracy scores on both posttests to chance using one sample t-tests. To 

test whether accuracy scores differ as a function of condition, I conduct model comparisons with 

and without condition for each posttest. To test whether there is a correlation between the 

learning measures, I conduct correlation tests between reaction times during training and 

accuracy scores at test for each condition. Finally, I conduct model comparisons to examine age 

as a fixed effect for all conditions on Posttest 1 and Posttest 2.  

5.4.2.2 Accuracy 

Figure 57 illustrates mean proportion correct scores with 95% confidence intervals for the /ma/ 

Condition, the /mi/ Condition, and the /mɯ/ Condition on Posttest 1 and Posttest 2. The figure 

suggests that participants in all conditions accurately identified the target categories above 

chance on Posttest 1 and on Posttest 2 and that accuracy across conditions likely did not differ.  
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Figure 57. Mean proportion correct for all conditions on Posttest 1 and Posttest 2. Error bars 
represent 95% confidence intervals. The dashed line represents chance at 25%. 

 To test whether accuracy scores differed from chance, I examined accuracy scores 

within condition on Posttest 1 and Posttest 2. In the /ma/ Condition participants were able to 

match novel sounds to the visual locations at above-chance levels on Posttest 1, t(24) = 4.80, p < 

.001, (M = 52.83, SE = 5.80) and on Posttest 2, V = 247, p < .001, (Mdn = 34.72)34. In the /mi/ 

Condition participants were able to match novel sounds to the visual locations at above-chance 

levels on Posttest 1, V = 255, p < .001, (Mdn = 57.67) and on Posttest 2, V = 229, p < .001, (Mdn = 

44.44)35. In the /mɯ/ Condition participants were also able to match novel sounds to the visual 

locations at above-chance levels on Posttest 1, V = 247, p < .001, (Mdn = 34.72)36 and on 

Posttest 2, t(24) = 4.13, p < .001, (M = 40.67, SE = 3.79). 

                                                            
34 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 2 (W = .88, p = .008). 
35 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 1 (W = .87, p = .004) and on Posttest 2 (W = .84, p = .001). 
36 On Posttest 1 a Shapiro-Wilk normality test indicated the data were not normally distributed (W = .88, p 
= .007), and therefore a Wilcoxon signed rank test was used. 
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 To test whether accuracy scores differed across conditions on Posttest 1 and Posttest 2, 

I compared models with and without condition for each posttest. Results indicated that accuracy 

scores did not differ as a function of condition on Posttest 1 (X2 (2) = .11, p = .95) or on Posttest 

2 (X2 (2) = 3.06, p = .22). 

accuracy ~ condition + age + (1|participant) 
accuracy ~ age + (1|participant) 

Overall, participants in all three conditions accurately identified the target categories 

above chance on Posttest 1 and on Posttest 2, indicating that all conditions resulted in learning 

and that learning generalized to novel tokens on Posttest 1 and novel talkers on Posttest 2. A 

comparison of conditions on Posttest 1 indicated that participants in the /ma/ and /mi/ 

conditions did not more accurately identify the target categories than participants in the /mɯ/ 

Condition, indicating that less segmental familiarity in the /mɯ/ Condition did not result in less 

robust learning or generalization. As all three conditions produced equivalent results, the 

additions of the /mi/ Condition and the /mɯ/ Condition provide two internal replications of the 

results from the /ma/ Condition, adding confidence that the results in the /ma/ condition are 

not spurious.  

 During training, greater learning was measured through reaction times becoming faster 

across training blocks. At test, greater learning was measured through higher accuracy scores. It 

was expected that faster reaction times at the end of training would correlate with higher 

accuracy scores at test for all conditions. Figure 58 illustrates the correlation between reaction 

times on block 4 and accuracy scores on Posttest 1, suggesting a relationship between the two 

measures across all conditions.  

Spearman’s rho correlation coefficient37 was used to assess the relationship between 

reaction times on training block 4 and accuracy scores on Posttest 1. The relationship between 

the two measures was significant in the /ma/ Condition (r = -.69, p < .001), the /mi/ Condition (r 

= -.67, p < .001), and in the /mɯ/ Condition (r = -.72, p < .001). The correlation between the two 

                                                            
37 A Shapiro-Wilk normality test indicated the some of the data in the /mi/ Condition (W = .86, p = .004; W 
= .93, p = .10) and in the /mɯ/ Condition (W = .88, p = .007; W = .95, p = .22) were not normally 
distributed. Therefore, we conducted the non-parametric Spearman’s test for all conditions. Although the 
data for the /ma/ Condition were normally distributed (W = .93, p = .08; W = .96, p = .37), Spearman’s test 
was used for consistency. Pearson’s correlation coefficient was also significant for the /ma/ Condition 
(r(23) = -.67, p < .001).  
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measures across conditions suggests that faster reaction times in training relates to better 

accuracy on the generalization test and that both measures reliably assess category learning. 

  

Figure 58. Relationship between two measures assessing category learning across conditions 
with log transformed reaction times on training block 4 on the x axis and accuracy scores on 
Posttest 1 on the y axis.  

 To test whether accuracy scores at test differed as a function of age for each condition, I 

compared models with and without age, and results indicated that accuracy scores did not 

significantly differ as a function of age in the /ma/ Condition on Posttest 1 (X2 (1) = .44, p = .51) 

or on Posttest 2 (X2 (1) = 3.62, p = .057). Accuracy scores did not significantly differ as a function 

of age in the /mi/ Condition on Posttest 1 (X2 (1) = .23, p = .64) or on Posttest 2 (X2 (1) = .66, p = 

.42). Further, accuracy scores did not significantly differ as a function of age in the /mɯ/ 

Condition on Posttest 1 (X2 (1) = .84, p = .36) or on Posttest 2 (X2 (1) = .51, p = .48). 

accuracy ~ age + (1|participant) 
accuracy ~ (1|participant) 

Figure 59 illustrates accuracy scores on Posttest 1 and Posttest 2 as a function of age across 

conditions. The model comparison demonstrated that accuracy scores did not differ as a 

function of age. There does appear to be a trend across conditions for younger participants to 
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have higher accuracy scores than older participants. The three conditions did not differ from 

each other. Therefore, to further investigate the relationship between age and accuracy scores, I 

aggregated scores across conditions. 

 

Figure 59. Accuracy scores on Posttest 1 and Posttest 2 across age in the /ma/ Condition, the 
/mi/ Condition, and the /mɯ/ Condition. 

Figure 60 illustrates scores from all three conditions aggregated and suggests that there 

is a trend for accuracy scores to be higher for younger participants. However, a model 

comparison with and without age indicated that accuracy scores did not significantly differ as a 

function of age in the aggregated data on Posttest 1 (X2 (1) = .55, p = .46) or on Posttest 2 (X2 (1) 

= 3.06, p = .22). 

accuracy ~ age + (1|participant) 
accuracy ~ (1|participant) 
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Figure 60. Accuracy scores on Posttest 1 and Posttest 2 across age with conditions aggregated. 

5.5 DISCUSSION 

In Experiment 3, I examined the impact of segmental familiarity during training on incidental 

perceptual learning of novel tone categories. I compared three conditions that contained tokens 

produced in different syllables. Two conditions, the /ma/ Condition and the /mi/ Condition, 

were comprised of segments more familiar to the participants’ language background 

experience. One condition, the /mɯ/ Condition, contained a segment unfamiliar to the 

participants’ language background experience. It was expected that the two familiar conditions’ 

results would not differ, but that a lack of familiarity would negatively impact learning in the 

/mɯ/ Condition. Results indicated that reaction times from participants in all conditions became 

faster across training blocks. Further, participants in all three conditions accurately identified 

the target categories above chance on Posttest 1 and on Posttest 2, indicating that all conditions 

resulted in learning and that learning generalized to novel tokens on Posttest 1 and novel talkers 

on Posttest 2. Overall, the three conditions did not differ from each other. Thus, segmental 

familiarity in the /mɯ/ Condition did not result in less robust learning or generalization than the 

familiar categories. Below I discuss the implications of these results for categorization and 

perceptual learning. 
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5.5.1 The effect of segmental familiarity on novel tone category formation 

As discussed in Section 1.2 and Section 5.1, an important aspect of learning novel sound 

categories is the ability to attend to the salient acoustic features between the categories. 

Multiple factors, such as the phonotactic environment of the target sound, may inhibit attention 

to the target acoustic features (Guion & Pederson, 2007; Liu et al., 2011). Further, complex 

stimuli involving unfamiliar segmental and suprasegmental features may increase the 

attentional load during perceptual learning, thereby increasing the difficulty of learning the 

novel sound categories (Liu et al., 2011). As discussed in section 5.1, the neural processing of 

native and non-native segments differs, and this difference occurs with naïve listeners and 

experienced learners (Peltola et al., 2003).  

Therefore, it was hypothesized that differences in the processing of familiar and 

unfamiliar segments might differentially impact the acquisition of novel tone categories carried 

by those segments. Specifically, it was expected that conditions with familiar segments, /ma/ 

and /mi/, may result in learning that differs from a condition with an unfamiliar segment in the 

primary tone bearing unit (e.g., /mɯ/).  However, there were no significant differences between 

conditions containing familiar and unfamiliar segments. Below I discuss potential explanations 

for these results. 

 It is possible that the unfamiliar and familiar conditions resulted in the same amount of 

learning because listeners perceived and processed the unfamiliar segment, /ɯ/, as a familiar 

segment, such as /ə/. When a person learns sounds from a second language, they often attempt 

to map the sounds of the L2 onto the available acoustic spaces in their L1. Several speech 

perception models have been presented to account for this mapping. For example, the 

Perceptual Assimilation Model (PAM; e.g., Best, 1995; Best and Tyler, 2007), the Speech 

Learning Model (SLM; e.g., Flege, 1995), and the Second Language Linguistic Perception Model 

(L2LP; e.g., Escudero, 2005) all predict that L2 learners will try to map L2 sound categories to L1 

categories that are closest to them in native acoustic space. Therefore, one possibility is that 

participants heard /ɯ/ and mapped it onto the acoustic space of an English vowel and thereby 

avoided processing difficulties that may arise from the unfamiliar segment. However, this seems 

unlikely. In the following experiment, Experiment 4, participants were required to produce the 

tokens they hear on each trial and the experiment recorded their productions. If participants are 

mapping /ɯ/ onto the acoustic space of an English vowel, then they would likely produce the 
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English vowel that they map /ɯ/ onto. However, participants primarily produced vowels unlike 

English vowels in an attempt to approximate /ɯ/.38 

 It is also possible that the unfamiliar segment in the /mɯ/ Condition did not disrupt 

novel tone category formation as expected due to differences in tone perception task difficulty. 

As discussed in Chapter 2 and in Section 5.4.1, the tone categories were selected to maximize 

differences between categories, and it is likely that the distinctiveness of each category made 

the novel tone category formation task in the current study easier than tasks in other studies 

that found effects of segmental familiarity on novel tone perception tasks. During novel tone 

category acquisition with synthesized tone categories, participants perform better at learning 

tone categories that are more distinct and struggle to learn categories that have greater featural 

overlap (Liu & Holt, 2011). Further, in novel tone discrimination tasks, the difficulty of the task 

can be impacted by phonotactic structure of the tokens and by the similarity of the target tones. 

For example, when participants attempt to discriminate novel tones in tokens that contain 

different segments, they perform worse than when segments are the same across tokens (Liu et 

al., 2011). Further, when the target tones are very similar, as in the Thai mid and low tones, 

native English participants have difficulty discriminating tones (Wayland & Guion, 2004), and 

discrimination ability across tones that are already difficult to discriminate can be further 

hindered by the presence of unfamiliar onsets (Wright & Baese-Berk, under review). Therefore, 

it is possible that the impact of unfamiliar segments on novel tone perception may be 

modulated by the difficulty of the task, which could be impacted by the distinctiveness of the 

tone categories and the composition of the carrier token. Therefore, it may be that the 

incidental tone learning task used in the current study is not particularly difficult compared to 

tasks such as explicit categorization and the discrimination of novel tones. 

 An important consideration in understanding the results from the current study in light 

of previous research is that novel tone category learning may differ from novel tone 

discrimination, and factors that impact one task may not impact the other task in the same way 

(Logan et al., 1991; Wayland & Li, 2008; Liu et al., 2011). Further, the impact of factors on novel 

tone learning during explicit category learning tasks may differ from learning during incidental 

category learning tasks (Lim et al., 2014). Currently, relatively little is known about the impact of 

                                                            
38 This suggestion stems from a preliminary investigation of the acoustic data collected from participants 
in Experiment 4. Due to time constraints a deeper analysis of the data is not presented here. 
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segmental features on novel tone perception and whether results from explicit tone 

discrimination and category learning studies might be replicated during incidental learning. The 

results from Experiment 3 indicate that familiarity with the vowel in the carrier token did not 

impact incidental learning. It may be that unfamiliar onsets could impact incidental learning 

(Wright and Baese-Berk, under review) or that variable segments across tokens could impact 

incidental learning (Liu et al., 2011). Results from Experiment 2 suggest that it is likely that 

segmental or phonotactic variability across tokens would impact learning. In Experiment 2 

variability from multiple talkers reduced learning reaction times and accuracy. It may be that the 

primary factor to consider during incidental auditory learning is variability, particularly with 

natural speech tokens. Speech categories are not unidimensional (Lisker, 1986). Therefore, 

during novel sound category learning, learners must generalize across multiple acoustic cues 

stemming from talkers, segments, and suprasegmental features (Liberman et al., 1967; Lim et 

al., 2014). Factors that add to this variability may be more likely to impact learning.  

 It was expected that the inclusion of unfamiliar segments would increase cognitive load, 

which would impact perceptual learning. During auditory perception many factors can result in 

an increase in the amount of effort participants must make to attend to the salient features of 

the stimuli, which is often referred to as “effortful listening”. For example, the presence of noise 

in the signal can result in challenges for the hearing impaired (Rabbitt, 1991) or for non-native 

listeners (Miller et al., 2009). Baese-Berk and Samuel (2016) posit that impairments associated 

with effortful listening may also arise during perceptual learning. Similarly, it was hypothesized 

that the presence of the unfamiliar segment may result in increased cognitive load and 

impairment in perceptual learning. There are theoretical reasons that may explain the lack of 

impairment in the present study. The COmpetition between Verbal and Implicit Systems model 

(COVIS; Ashby et al., 1998, 2011) was extended from visual to auditory perceptual domains 

(Chandrasekaran et al., 2014). COVIS postulates two learning systems for category learning, a 

reflective learning system and a reflexive learning system. The reflective learning system is 

explicit in formulating and testing rules during the categorization process using executive 

attention and working memory and is engaged during explicit learning paradigms. The reflexive 

learning system, which is engaged during incidental learning paradigms, is implicit in associating 

stimuli with distinct regions in perceptual space using reinforcing feedback, such as the feedback 

found in current study.  The two types of learning engage different neural structures, resulting in 



136 
 

differences in cognitive load. A key difference is that reflective learning requires the use of 

working memory and executive attention. Reflexive learning does not. As mentioned above, the 

impact of a factor on novel sound category acquisition during explicit perceptual tasks may 

differ from incidental tasks. Therefore, it is possible that the inclusion of unfamiliar segments 

during novel tone category learning could result in different impacts on the two types of 

learning. Thus, one hypothesis is that the lack of familiarity may increase the processing 

challenge for the neural systems that are engaged by working memory and executive attention 

during reflective learning but not increase the challenge for the systems engaged by reflexive 

learning tasks.  

The use of the unfamiliar /ɯ/ in the /mɯ/ Condition in Experiment 3 did not increase 

variability across tokens or across trials. Therefore, due to the consistency of the acoustic 

features of the vowel, even though they were unfamiliar, it was likely that participants were still 

able to attend to the salient features of the tone categories. Overall, there are few studies that 

research the interaction between segmental and suprasegmental features during novel tone 

perception. Results from Experiment 3 add to this growing body of literature, indicating that 

during incidental learning, learners are equally capable of attending to salient tone category 

features in tokens that contain familiar and unfamiliar segments. Further, future work will 

investigate the hypothesis presented here, that phonotactic or segmental variability across 

tokens or across trials may impact novel tone category learning.    

5.5.2 Learning differences as a function of age 

In Experiment 3 participants’ ages ranged from 19 to 57, permitting further observation of the 

effect of age on the incidental learning of novel tone categories. The Control Condition in 

Experiment 2, where participants were not able to learn across training blocks, provided a clear 

linear effect of age on the incidental learning task, with older participants’ responses being 

significantly slower than younger participants’ responses. In Experiment 3, results indicated that 

age had no effect on reaction times during the experiment, which suggests that the incidental 

learning task can alter the baseline effect of age on reaction times during the incidental learning 

task. However, this result is confounded by the inclusion of those that learned and became 

faster across blocks and those that didn’t learn and remained at baseline across blocks. If we 

control for those that learned or didn’t learn, there is still a trend for older participants to have 

slower reaction times. 
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As mentioned, the /ma/ Condition in Experiment 3 was the Variable Token Condition in 

Experiment 1 and therefore had the same results regarding age. Further, results from the /mi/ 

Condition and /mɯ/ Condition in Experiment 3 did not differ from the /ma/ Condition. 

Therefore, to enable a test of a larger sample size (n=75) for an effect of age on accuracy scores 

in Experiment 3, I aggregated scores across conditions. Although there was a trend for younger 

participants to be more accurate, statistical analyses did not indicate a difference across the 

lifespan. The result that older participants can learn novel tone categories as well as younger 

participants may be surprising. It may be expected, due to age related cognitive decline, that 

older participants would perform worse than younger participants (Clinard et al., 2010; 

Anderson et al. 2012; Skoe et al., 2015). Research regarding neural plasticity across the lifespan 

suggests that we might see age related deficits in learning. Plasticity, defined as the brain’s 

ability to alter its functional and behavioral capacities by implementing lasting structural 

changes, decreases across the lifespan. The transition from childhood to adulthood is commonly 

thought to result in a suppression of plasticity in the human brain (Lindenberger & Lovden, 

2019). However, a significant decline in novel tone category learning across the lifespan was not 

supported by the results of Experiment 3. It may be that the neural processes and mechanisms 

that are engaged through incidental learning are not impacted by cognitive decline as 

extensively as processes and mechanisms engaged through other learning paradigms.  

These results build on and support findings from Maddox et al. (2013), which provided a 

first look at the effect of age on the ability to form novel speech sound categories through 

incidental learning. When learning novel sound categories, older participants’ learning ability 

suffered under reflective, rule-based learning conditions. However, under reflexive, implicit 

learning conditions, such as the incidental learning paradigm in the current study, older 

participants performed as well as younger participants. As previously mentioned, reflective 

learning requires an allocation of working memory and utilizes different neural structures from 

reflexive learning. Therefore, age-related neural decline does not seem to impact reflexive 

learning in the same way that it impacts reflective learning. This may be in part due to the 

enhancement of corticostriatal synaptic plasticity by the reinforcement learning that is a part of 

the reflexive learning used in the current study’s paradigm (see Reynolds & Wickens, 2002).  

However, I do want to point out potential differences between younger and older 

participants that may be beneficial to pursue in future research. Although statistical analyses 
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indicated that accuracy did not differ as a function of age, there was a slight trend for younger 

participants to do better on generalizing to novel tokens and novel talkers. Further, it seems 

clear that older participants struggled to do well when generalizing to novel talkers on Posttest 

2. Across the three conditions, only one participant over forty scored above fifty percent 

accuracy on Posttest 2. This may be due to the smaller numbers of participants over forty. 

However, it also might be that there are age related differences that impact the ability to 

generalize more broadly across categories. 

5.6 CONCLUSION 

In Experiment 3 we examined the impact of segmental familiarity during training on the 

incidental perceptual learning of novel tone categories by comparing three conditions that 

contained tokens produced in different syllables. Two conditions, the /ma/ Condition and the 

/mi/ Condition, were comprised of segments more familiar to the participants’ language 

background experience. One condition, the /mɯ/ Condition, contained a segment unfamiliar to 

the participants’ language background experience. By examining conditions with familiar and 

unfamiliar segments, we tested potential impacts to perceptual learning from increased 

attentional load stemming from the processing of novel segments. We demonstrated from 

identical results across three conditions that the presence of an unfamiliar vowel in the auditory 

stimuli did not impact the incidental formation of novel tone categories. That is, the additional 

complexity from processing unfamiliar segmental features did not result in reduced learning of 

the target tone categories. As the results from the three conditions in Experiment 3 did not 

differ from each other, they provide two internal replications of the study. We also combined 

results to investigate a potential linear effect of age on novel tone category learning. That is, did 

accuracy results differ as a function of age. Statistically, there was no difference across the 

lifespan, meaning that older adults learned as well as younger adults. However, we did note a 

potential trend for younger adults to be more accurate after training. 
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 VI. PRODUCTION DURING PERCEPTUAL LEARNING 

6.1 INTRODUCTION 

In Experiment 4, we examine the impact of production during training on incidental perceptual 

learning of novel tone categories. We also examine the impact of segmental familiarity in the 

learners’ productions during training on novel tone category learning. We compare three 

conditions, a Perception Only Condition that does not contain a production component and two 

production conditions where participants produce the token on each trial. The /ma/ Production 

Condition is comprised of segments more familiar to the participants’ language background 

experience. The /mɯ/ Production Condition contains a segment unfamiliar to the participants’ 

language background experience. 

We expect that results from the two production conditions will differ from the 

Perception Only Condition. That is, we predict that the additional production by learners during 

perceptual learning will result in reduced learning compared to the Perception Only Condition. 

Further, we expect that the lack of segmental familiarity in the /mɯ/ Production Condition will 

negatively impact perceptual learning compared to the /ma/ Production Condition.  

6.1.1 The effect of production on perceptual learning 

In speech perception and production, varying views have arisen regarding the effect of 

production on perceptual learning. Some studies suggest that production during perceptual 

learning improves learning. Other studies find that production during perceptual learning 

hinders learning. This area is especially important to classroom language learning situations 

where teachers must decide whether they will have students repeat words as they hear them. 

Teachers have been encouraged to have their students repeat utterances as a means of moving 

through the zone of proximal development (Vygotsky, 1978) towards an ultimately correct 

production (Duff, 2000).  

 One logical assumption about the impact of production on perceptual learning is that 

production during learning would result in improved perceptual ability (Leach & Samuel, 2007; 

Baese-Berk, 2010). This expectation arose from theories of perception, including direct realism 

and motor theory, which posit that the underlying basis of perception are the gestures used to 
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produce the sounds (Fowler, 1986; Best, 1995). Thus, perception and production were thought 

to be very closely connected and the practice of producing sounds should reinforce perceptual 

learning. In support of the idea that production enhances the learning of words, Gathercole and 

Conway (1988) found that reading and producing words improved retention beyond reading and 

hearing the words. MacLeod et al. (2010) also studied and confirmed the “production effect”, 

where producing a word aloud during study improves retention of the word. Forrin et al. (2012) 

found that the production effect was stronger for full productions. Whispered and mouthed 

productions were not as beneficial. Zamuner et al. (2016) found that production during the 

learning of non-words enhances recognition at test and conclude that production is needed 

during perceptual learning to establish a bidirectional link between the perception and 

production systems.  

Taken together, studies on the benefit of production during the learning of words seem 

to provide robust evidence for the production effect. However, when learners begin to learn 

words with phonological systems that differ from their L1, results are not the same. Dahlen and 

Caldwell-Harris (2013) tested English speaking adults’ learning of Turkish words. They found that 

listeners who rehearsed the words sub-vocally did as well or better than listeners who vocalized 

the words during learning. They concluded that overt vocalization may actually detract from 

learning as attention becomes divided between processing the sounds and performing the 

vocalizations. Results from other studies support this conclusion. Kaushanskaya and Yoo (2011) 

directly tested the production effect on learning novel words with familiar phonological 

structures (i.e. structures found in the L1) and on unfamiliar words. They found the production 

effect for phonologically familiar words, but for words with phonological features that differed 

from the L1, subvocal rehearsal lead to better recall and recognition than vocal rehearsal. They 

concluded that there appears to be distinct cognitive processes for each rehearsal type. These 

results coincide with conclusions from Feldman and Healy (1998) — novel words with L1 

phonological structures are easier to learn than novel words with novel structures. Leach and 

Samuel (2007) also found that production during perception training hindered the learning of 

words with novel segments. Baese-Berk and Samuel (2016) tested the effect of production 

hindering the perceptual learning of phonologically novel words by seeing if it was simply 

production that hindered learning or if it was a production of the target token. They concluded 

that it was the production of the target token itself, not production in general that created the 
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greatest hindrance to learning. However, producing unrelated items still creates some hindrance 

to learning. They also found that the disruption can be lessened with experience to the target 

phonological structure. Taken together these studies suggest that the effect of production 

during perceptual training differs based on the familiarity or lack of familiarity of the target 

word’s phonological structure to the L1. 

6.1.2 Current experiment 

Experiment 4 contains three conditions: Perception Only Condition, /ma/ Production Condition, 

/mɯ/ Production Condition. By comparing a Perception Only Condition with production 

conditions, we investigate the impact of production during incidental perceptual learning on the 

formation of novel tone categories. We also examine the impact of segmental familiarity on 

perceptual learning by comparing a production condition that contains familiar segments with a 

production condition that contains an unfamiliar segment. 

 It is expected that production of the tokens on each trial in the production conditions 

will hinder learning. Participants in the production conditions may still be able to learn, but it is 

expected that learning will be reduced compared to the Perception Only Condition. Further, it is 

expected that the addition of an unfamiliar segment in the /mɯ/ Production Condition will 

result in a greater inhibition to learning than the /ma/ Production Condition.  

6.2 METHODS 

6.2.1 Participants 

As in the other experiments, participants were recruited online via Prolific. All participants self-

identified as being monolingual English speakers and identified as being native English speakers 

from America, Canada, the United Kingdom, South Africa, Australia, or New Zealand. 

Participants that reported significant language learning experience, that reported hearing 

impairments, or that did not use the right equipment (headphones and an external mouse) were 

excluded from the study. 

 In Perception Only Condition, where participants heard a single talker produce tokens 

using the syllable /ma/ during training and did not produce the tokens during training, 29 
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participants were recruited39. Four participants were excluded for using the wrong equipment or 

for hearing impairments, leaving 25 participants (13 female, 11 male, 1 non-binary). Participants 

spoke a variety of English dialects (6 American, 2 Australian, 14 British, 1 Canadian, 1 Irish, and 1 

NA)40. Ages ranged from 19 to 56 with a mean of 29.08 and standard deviation of 9.4541. 

In the /ma/ Production Condition, where participants heard a single talker produce tokens 

using the syllable /ma/ and produced the tokens on each trial during training, 26 participants 

were recruited. One participant was excluded for language experience, leaving 25 participants 

(14 female, 11 male). Participants spoke a variety of English dialects (2 American, 20 British, 1 

Canadian, 2 South African). Ages ranged from 19 to 66 with a mean of 30.88 and standard 

deviation of 11.87.  

In the third condition, where participants heard a single talker produce tokens using the 

syllable /mɯ/ and produced the tokens on each trial during training, 25 participants were 

recruited (15 female, 10 male). No participants were excluded. Participants spoke a variety of 

English dialects (1 American, 20 British, 1 Canadian, 1 Irish, 1 New Zealand, 1 Scottish). Ages 

ranged from 20 to 55 with a mean of 34.64 and standard deviation of 11.13. All participants 

were paid for their participation. 

6.2.2 Stimuli 

Stimuli in experiment 4 had the same composition as the stimuli used in Experiment 3. In each 

condition in experiment 4, the set of five tokens within trial contained random tokens, 

constructed as described in experiment 1. In Experiment 4, for the three conditions, all auditory 

tokens for training and for Posttest 1 came from Talker A. In the Perception Only Condition, 

                                                            
39 The /ma/ Condition in the present experiment is the Variable Token Condition from Experiment 1, the 
Single Talker Condition from Experiment 2, and the /ma/ Condition from Experiment 3. Therefore, 
descriptions of the /ma/ Condition in the present experiment are a restatement of details from 
Experiment 1, Experiment 2, and Experiment 3. Primary differences in the description of the /ma/ 
Condition in the present chapter arise from the differences in the comparisons made across the 
experiments. Experiment 1 compared token variability within and across trials. Experiment 2 examined 
talker variability across trials. Experiment 3 compared segmental variability across conditions. Experiment 
4 examines the impact of production during training on the perceptual formation of novel tone 
categories. 
40 It is not expected that experience with specific English dialects would aid in novel tone category 
acquisition over other dialects. English dialects do not use F0 information contrastively at the lexical level. 
Further, experience with other regional languages used in proximity to the specific dialect should not be a 
factor as participation was limited to those that identified as being monolingual English speakers. 
41 Age is considered as a covariate during analysis and is reported in the results. 



143 
 

participants heard tokens produced in the syllable /ma/. In the /ma/ Production Condition, 

participants heard tokens produced in the syllable /ma/. In the /mɯ/ Production Condition, 

participants heard tokens produced in the syllable /mɯ/. In each condition, half of the 

exemplars of each category from Talker A were used for training, and half of the exemplars were 

used to test generalization of learning to new exemplars on Posttest 1. As in Experiment 3, 

stimuli used in Posttest 2 came from Talker D, Talker E, and Talker F. 

6.3 PROCEDURE 

The procedure for the Perception Only Condition in Experiment 4 is the same as the procedure 

for the other experiments. In the two production conditions participants also recorded 

themselves producing the tokens that they heard on each trial during training. Further, the two 

production conditions differ in the stimuli used, with /ma/ tokens used in the /ma/ Production 

Condition and /mɯ/ tokens used in the /mɯ/ Production Condition.  

In Experiment 4, three groups of participants were exposed to four novel Thai tone 

categories through an incidental learning paradigm. Participants went through four training 

blocks with forty-eight trials in each block. Then, Posttest 1 tested generalization to novel tokens 

from the same talker(s) over thirty-six trials, and Posttest 2 tested generalization to novel talkers 

over thirty-six trials. Posttest 3 tested production of the tone categories over thirty-six trials. 

Finally, participants completed a language background questionnaire. 

6.3.1 Training 

Participants in each condition were trained with the incidental paradigm described in 

Experiment 1. On each trial participants heard five sounds and then clicked on a visual target, an 

‘X’, that appeared in one of four boxes. Participants were trained across four training blocks with 

forty-eight trials in each block. For all conditions, auditory stimuli in each trial consisted of five 

concatenated exemplars. The concatenations were randomly selected prior to subject running. 

However, the presentation of trials was randomly selected by the experiment. In each condition, 

training was composed of six different concatenations of each tone category from Talker A for a 

total of twenty-four trials (6 concatenations X 4 tones X 1 talker). These twenty-four trials were 

duplicated on each training block for a total of forty-eight trials per block.  
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 The /ma/ Production Condition and /mɯ/ Production Condition differed from the 

Perception Only Condition in Experiment 4 and from all other conditions in the previous 

experiments. On every trial during training, participants in the two production conditions went 

through the trial exactly as all the other conditions. However, after clicking on the visual target, 

two buttons appeared. One button had a microphone icon on it and one button had a stop icon 

on it. They clicked on the microphone button to start the recording. They then produced the 

token that they had heard on the trial a single time. Then they clicked on the stop button to stop 

the recording. After clicking on the stop button the target in the middle of the screen appeared 

to prompt them to move their mouse cursor back to the center of the screen. 

 For all conditions, reaction times from the end of the auditory stimuli to the 

participant’s selection of the visual target were measured to examine learning across the four 

training blocks. It is expected that faster reaction times across training blocks will occur for 

those that learn the target tone categories and that faster reaction times will correlate with 

performance at test. Further, mouse tracking was conducted to examine changes in decision 

space over time as participants acquire the tone categories42. 

6.3.2 Testing 

The testing procedure for Experiment 4 was the same as the procedure for the other 

experiments. Participants heard five sounds and then saw four boxes appear without a visual 

target. They then chose which box the target should appear in. Posttest 1 tested generalization 

to novel tokens and Posttest 2 tested generalization to novel talkers. Posttest 1 and Posttest 2 

were the same for all conditions.  

6.3.2.1 Posttest 1: Generalization to new tokens 

Posttest 1 trials for each condition were composed of three different concatenations of each 

tone category from Talker A for a total of twelve trials (3 concatenations X 4 tones X 1 talker). 

These twelve trials were repeated three times on Posttest 1 for a total of thirty-six trials.  

                                                            
42 An analysis of mouse tracking data is not included in the dissertation. Future analyses and description of 
the current work will analyze and consider mouse tracking data and report results. 
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6.3.2.2 Posttest 2: Generalization to new talkers 

Posttest 2 trials for all conditions were composed of three different concatenations of each tone 

category from each Talker D, Talker E, and Talker F, for a total of thirty-six trials (3 

concatenations X 4 tones X 3 talkers). 

6.3.2.3 Posttest 3: Production of the tone categories 

Experiment 4 also contained a third posttest, which was conducted in the same way as 

Experiment 1. Participants saw the visual target appear in one of the four boxes and recorded 

themselves saying the target tone with the syllable /ma/. Thirty-six trials were conducted43. 

6.4 RESULTS 

6.4.1 Training reaction times 

Experiment 1 tested the impact of token variability on novel tone category learning, finding that 

token variability within trial resulted in more robust learning than token variability across trials. 

Experiment 2 tested the impact of talker variability on novel tone category learning, finding that 

a single talker during training resulted in more robust learning than multiple talkers during 

training. Experiment 3 tested the impact of segmental familiarity on novel tone perception, 

finding that the lack of familiarity with the tone bearing segment did not impact novel tone 

category learning. In each condition in Experiment 4 all trials contain variable auditory tokens, 

and auditory tokens during training are from a single talker. In the present experiment I examine 

the impact of production during perceptual learning on novel tone category learning and test 

whether that impact is modulated by familiarity with the tone bearing segment. 

Experiment 1, Experiment 2, and Experiment 3 found that participants that learn the 

target tone categories have reaction times that get faster across training blocks. It is expected 

that participants in the Perception Only Condition, will learn the tone categories and will have 

faster reaction times across training blocks. It is also expected that production during perceptual 

learning in the two production conditions will negatively impact perceptual learning, resulting in 

reaction times that are slower across training blocks than the reaction times in the Perception 

                                                            
43 An analysis of production data is not included in the dissertation. Future analyses and description of the 
current work will analyze and consider production data and report results. 
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Only Condition. Further, it is expected that reaction times will be slower across training blocks 

for the /mɯ/ Production Condition than the /ma/ Production Condition.  

6.4.1.1 Analysis 

As in the previous experiments, visual target detection times were measured from the end of 

the auditory stimuli to the time the participant clicked on the visual target. Reaction times 

greater than 1,500 ms were excluded from analyses. For each condition, I compare reaction 

times across training blocks by comparing a full model and a reduced model without training 

block. I then conduct contrast coded linear mixed-effects regressions to compare each training 

block to the subsequent training block to examine changes in reaction times from block to block. 

Further, I compare reaction times across training blocks across the three conditions by 

comparing a full model with an interaction between condition and training block and a reduced 

model without an interaction, followed up by post-hoc comparisons of each condition with each 

other condition. Finally, as differences in age can affect learning and hearing ability (Kiessling et 

al., 2003; Clinard et al., 2010), I conduct model comparisons to examine age as a fixed effect.  

6.4.1.2 Reaction Times 

Results indicated that reaction times from participants in the Perception Only Condition and the 

/ma/ Production Condition became faster across training blocks, but reaction times from 

participants in the /mɯ/ Production Condition did not become faster across training blocks. 

Figure 61 illustrates log-transformed reaction times across training blocks for the Perception 

Only Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block.  

To test whether reaction times differed as a function of training block, I compared 

models with and without training block, controlling for participant age, and results indicated 

that reaction time significantly differed as a function of training block in the Perception Only 

Condition (X2 (3) = 114.05, p < .001).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 



147 
 

 

Figure 61. Log-transformed reaction times across training blocks in the Perception Only 
Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.63, SD = 

.31) were significantly slower than block 2 (M = 6.56, SD = .39; β = -.065, t = -5.55, p < .001), 

reaction times in block 2 did not differ from block 3 (M = 6.54, SD = .42; β = -.022, t = -1.89, p = 

.06), and reaction times in block 3 were significantly slower than block 4 (M = 6.51, SD = .47; β = 

-.012, t = -2.98, p = .003).  

Figure 62 illustrates log-transformed reaction times across training blocks for the /ma/ 

Production Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block. Figure 62 suggests that, as a whole, participants’ reaction times in the /ma/ 

Production Condition may have become faster across training blocks. To test whether reaction 

times differed as a function of training block, I compared models with and without training 

block, controlling for participant age, and results indicated that reaction time significantly 

differed as a function of training block in the /ma/ Production Condition (X2 (3) = 120.94, p < 

.001).  
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reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

 

Figure 62. Log-transformed reaction times across training blocks in the /ma/ Production 
Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.77, SD = 

.26) differed significantly from block 2 (M = 6.72, SD = .28; β = -.042, t = -4.70, p < .001), reaction 

times in block 2 differed significantly from block 3 (M = 6.66, SD = .30; β = -.051, t = -5.80, p < 

.001), and reaction times in block 3 differed significantly from block 4 (M = 6.69, SD = .29; β = 

.023, t = 2.60, p = .009).  

Figure 63 illustrates log-transformed reaction times across training blocks for the /mɯ/ 

Production Condition. The four boxplots in each of the three charts represent the distribution of 

reaction times for each block, and the dots in the boxes represent the mean reaction time for 

the specific block. Figure 63 suggests that as a whole, participants’ reaction times in the /mɯ/ 

Production Condition may not have become faster across training blocks. To test whether 

reaction times differed as a function of training block, I compared models with and without 

training block, controlling for participant age, and results indicated that reaction time did not 
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significantly differ as a function of training block in the Multi-talker Condition (X2 (3) = 2.82, p = 

.42).  

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ age + (1|participant) 

 

Figure 63. Log-transformed reaction times across training blocks in the /mɯ/ Production 
Condition. 

A contrast coded linear mixed-effects regression comparing block 1 with block 2, block 2 

with block 3, and block 3 with block 4 indicated that reaction times in block 1 (M = 6.79, SD = 

.27) did not differ from block 2 (M = 6.78, SD = .27; β = -.004, t = -.48, p = .63), reaction times in 

block 2 did not differ from block 3 (M = 6.79, SD = .31; β = .014, t = 1.54, p = .12), and reaction 

times in block 3 did not differ from block 4 (M = 6.77, SD = .35; β = -.012, t = -1.34, p = .18).  

I compared reaction times across the three conditions. Figure 64 illustrates mean 

reaction times across training blocks for each condition with whiskers illustrating 95% 

confidence intervals. Table 8 provides the means and standard deviations of response times for 

the three conditions. It was expected that reaction times would be the fastest in the Perception 

Only Condition and that reaction times in the /ma/ Production Condition and the /mɯ/ 

production condition would be slower. Further, it was expected that reaction times from 
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participants in the /mɯ/ Production Condition would be slower than reaction times from 

participants in the /ma/ Production Condition. As illustrated in Figure 64 and described in Table 

8, the change in reaction times across training blocks differed according to our expectations. 

Reaction times in the Perception Only Condition were the fastest, followed by the /ma/ 

Production Condition, and the /mɯ/ Production Condition was the slowest.  

 

Figure 64. Log-transformed mean reaction times across training blocks for the Perception Only 
Condition, the /ma/ Production Condition, and the /mɯ/ Production Condition. Error bars 
represent 95% confidence intervals. 

Table 8. Summary statistics for reaction times for the Perception Only Condition, the /ma/ 
Production Condition, and the /mɯ/ Production Condition 

Condition 
Block 1  
(mean, SD) 

Block 2  
(mean, SD) 

Block 3  
(mean, SD) 

Block 4  
(mean, SD) 

Perception Only 6.63, .31 6.56, .39 6.54, .42 6.51, .47 

/ma/ Production 6.77, .26 6.72, .28 6.66, .30 6.69, .29 

/mɯ/ Production 6.79, .27 6.78, .27 6.79, .31 6.77, .35 

 

To test whether reaction times differed across conditions, I compared models with and without 

an interaction between condition and training block. Results indicated that reaction time differs 

across training blocks as a function of condition (X2 (6) = 106.17, p < .001). 
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reaction_time ~ condition * training_block + age + (1|participant) 
reaction_time ~ condition + training_block + age + (1|participant) 

Bonferroni corrected post-hoc comparisons revealed that reaction times in the Perception Only 

Condition did not differ from the /ma/ Production Condition (β = -.148, SE = .067, z = -2.22, p = 

.08), but they did differ from the /mɯ/ Production Condition (β = -.173, SE = .068, z = -2.55, p = 

.03). The /ma/ Production Condition did not differ from the /mɯ/ Production Condition (β = -

.026, SE = .067, z = -.38, p = 1). 

By comparing reaction times across training blocks as a function of condition, I tested 

the impact of production during perceptual learning on novel tone category formation. In the 

Perception Only Condition, reaction times from participants became faster across training 

blocks, indicating tone category formation occurred. Reaction times in the /ma/ Production 

condition were not as fast as those in the Perception Only Condition, but they did get faster 

across training blocks, indicating some learning of the tone categories likely occurred. By 

contrast, reaction times in the /mɯ/ Production Condition did not get faster across training 

blocks, suggesting a potential impact of segmental familiarity, with the production of unfamiliar 

segments negatively impacting the perceptual formation of novel suprasegmental categories.  

I also tested whether reaction times differed as a function of age in each condition by 

comparing models with and without age, controlling for training block. Results from the 

Perception Only Condition indicated that reaction times did not significantly differ as a function 

of age (X2 (1) = 1.55, p = .21). 

reaction_time ~ training_block + age + (1|participant) 
reaction_time ~ training_block + (1|participant) 

Figure 65 illustrates log-transformed reaction times as a function of age in the Perception Only 

Condition. Mean reaction times across blocks for each participant are illustrated as dots with 

error bars illustrating 95% confidence intervals. If participants are learning the categories, 

quantified as faster reaction times across training blocks, then darker blocks will be lower on the 

y axis in Figure 65 and lighter blocks will be higher. In the /ma/ Condition, none of the 

participants over forty exhibited faster reaction times across blocks, which led to results being 

uninformative regarding the time course of learning across age groups in this condition. 
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Figure 65. Log-transformed reaction times across training blocks in the Perception Only 
Condition. 

Results from the /ma/ Production Condition indicated that reaction times did not 

significantly differ as a function of age (X2 (1) = 2.92, p = .09). Figure 66 illustrates log-

transformed reaction times as a function of age in the /ma/ Production Condition. Results from 

the /ma/ Production Condition continue to support the trend that, out of those that learn, 

reaction times from older participants tend to be slower overall than younger participants. 

Further, Figure 66 suggests that the two oldest participants and some of the younger 

participants’ results indicated learning and that category acquisition most likely occurred around 

the beginning of the third block. Figure 66 also suggests that, for those that learned, the third 

and fourth blocks tend to differ, with the fourth block having slower reaction times than the 

third block. Having to produce the tokens on each trial resulted in a study that was longer, 

overall, than the previous experiments. It is possible that slower reaction times on block four are 

indicative of fatigue. It is also possible that once participants are able to reliably predict the 

location of the visual target on each trial, they relax and slow down some.  
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Figure 66. Log-transformed reaction times across age in the /ma/ Production Condition. 

Figure 67 illustrates log-transformed reaction times as a function of age in the /mɯ/ 

Production Condition. Results from the /mɯ/ Production Condition indicated that reaction 

times differed as a function of age (X2 (1) = 9.86, p = .002). Since few participants showed signs 

of learning in the /mɯ/ Production Condition, results more closely resembled the Control 

Condition from Experiment 2, indicating a correlation between age and reaction times across 

training blocks.  

  

Figure 67. Log-transformed reaction times across age in the /mɯ/ Production Condition. 
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In Experiment 4 I measured the reaction times of participants across training blocks in 

three conditions. In two of the conditions, reaction times became faster across training blocks, 

indicating that participants learned the novel tone categories and were able to use that learning 

to predict the locations of the visual targets. Reaction times in the Perception Only Condition 

were the fastest across blocks. Reaction times in the /ma/ Production Condition also got faster 

across block two and block three but then got slower in block four. Reaction times in the /mɯ/ 

Production Condition did not get faster across blocks. The effect of age on reaction times 

differed across conditions in a similar way. In the Perception Only Condition and the /ma/ 

Production Condition, reaction times did not differ as a function of age. In the /mɯ/ Production 

Condition, however, age reaction times did differ as a function of age, with older participants 

being slower than younger participants. The results in the /mɯ/ Production Condition more 

closely resembled the Control Condition from Experiment 2. The similarity is most likely due to 

very few participants in this condition showing signs of learning the tone categories.  

6.4.2 Generalization to new tokens and new talkers 

As in the other experiments, Posttest 1 tested participants’ ability to generalize to new tokens 

from the same talker, and Posttest 2 tested generalization to new talkers. The structure of both 

posttests is identical and both measure identification accuracy of the target tone category. If 

participants have learned the categories they should be able to accurately identify in which box 

the visual target should have appeared based solely on hearing the auditory stimuli, and 

therefore, their accuracy scores will be higher. Experiment 1 confirmed that participants that 

hear a single talker during training are able to accurately identify the four novel tone categories 

on Posttest 1. However, when they hear novel talkers on Posttest 2, they are less accurate. The 

Multi-talker Condition in Experiment 2 trained participants on multiple talkers, resulting in lower 

accuracy on Posttest 1, but accuracy on Posttest 1 did not differ from Posttest 2. Experiment 3 

indicated that familiarity with the tone bearing segment did not impact perceptual learning. An 

impact was expected due to increased attentional load from the unfamiliar segment. In 

Experiment 4, in two conditions, participants produced the tokens that they heard during 

training. Posttest 1 and Posttest 2, however, were identical to previous experiments. It is 

expected that production during perceptual learning will result in less learning and lower 

accuracy scores at test. Of the two production conditions, it is expected that the effort to 
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produce unfamiliar segments during training will result in an increased planning load and will 

have a negative effect on learning, compared with the production of familiar segments. 

6.4.2.1 Analysis 

Accuracy scores for all conditions were measured on Posttest 1 and Posttest 2. For each 

condition, I compare accuracy scores on both posttests to chance using one sample t-tests. To 

test whether accuracy scores differ as a function of condition, I conduct model comparisons with 

and without condition for each posttest. To test whether there is a correlation between the 

learning measures, I conduct correlation tests between reaction times during training and 

accuracy scores at test for each condition. Finally, I conduct model comparisons to examine age 

as a fixed effect for all conditions on Posttest 1 and Posttest 2.  

6.4.2.2 Accuracy 

Figure 68 illustrates mean proportion correct scores with 95% confidence intervals for the 

Perception Only Condition, the /ma/ Production Condition, and the /mɯ/ Production Condition 

on Posttest 1 and Posttest 2. The figure suggests that participants in all conditions accurately 

identified the target categories above chance on Posttest 1 and perhaps on Posttest 2 as well 

and that participants in the Perception Only Condition were more accurate on Posttest 1 than 

participants in the other conditions.   

 

Figure 68. Mean proportion correct for all conditions on Posttest 1 and Posttest 2. Error bars 
represent 95% confidence intervals. The dashed line represents chance at 25%. 
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 To test whether accuracy scores differed from chance, I examined accuracy scores 

across participants within condition on Posttest 1 and Posttest 2. In the Perception Only 

Condition participants were able to match novel sounds to the visual locations at above-chance 

levels on Posttest 1, t(24) = 4.80, p < .001, (M = 52.83, SE = 5.80) and on Posttest 2, V = 247, p < 

.001, (Mdn = 34.72)44. In the /ma/ Production Condition participants were not able to match 

novel sounds to the visual locations at above-chance levels on Posttest 1, V = 158, p = .07, (Mdn 

= 31.94) or on Posttest 2, V = 132, p = .29, (Mdn = 26.39)45. In the /mɯ/ Production Condition 

participants were able to match novel sounds to the visual locations at above-chance levels on 

Posttest 1, V = 200, p = .009, (Mdn = 33.33) and on Posttest 2, V = 143, p = .03, (Mdn = 31.94) 46. 

 To test whether accuracy scores differed across conditions on Posttest 1 and Posttest 2, 

I compared models with and without condition for each posttest. Results indicated that accuracy 

scores differed as a function of condition on Posttest 1 (X2 (2) = 7.30, p = .03) but did not differ 

on Posttest 2 (X2 (2) = 4.76, p = .09). 

accuracy ~ condition + age + (1|participant) 
accuracy ~ age + (1|participant) 

Bonferroni corrected post-hoc comparisons revealed that on Posttest 1, the Perception Only 

Condition was more accurate than the /ma/ Production Condition (β = .193, SE = .07, t = 2.72, p 

= .03) and was more accurate than the /mɯ/ Production Condition (β = .193, SE = .07, t = 2.71, p 

= .03). Further, the /ma/ Production Condition did not differ from the /mɯ/ Production 

Condition (β < .001, SE = .02, t = .02, p = 1). 

 The accuracy results were difficult to interpret considering that the two production 

conditions did not differ from each other on Posttest 1, but the /ma/ Production Condition was 

not above chance, while the /mɯ/ Production Condition was above chance. A visual inspection 

of the individual accuracy scores aids in understanding the results. Figure 69 is a replication of 

Figure 68 illustrated with individual participants’ data points. Figure 69 suggests that the two 

production conditions had similar numbers of participants that displayed learning on Posttest 1. 

                                                            
44 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 2 (W = .88, p = .008).  
45 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 1 (W = .87, p = .003) and on Posttest 2 (W = .87, p = .004). 
46 A Wilcoxon signed rank test was used as a Shapiro-Wilk normality test indicated the data were not 
normally distributed on Posttest 1 (W = .79, p < .001) and on Posttest 2 (W = .91, p = .02). 
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The /mɯ/ Production Condition ended up having a higher median than the /ma/ Production 

Condition due to the difference between the highest achieving participants in each condition.  

 

Figure 69. Mean proportion correct for all conditions on Posttest 1 and Posttest 2. Error bars 
represent 95% confidence intervals. The dashed line represents chance at 25%. The dots 
represent individual participants’ proportion correct scores. 

Overall, some participants in each of the three conditions displayed novel tone category 

acquisition on Posttest 1 and on Posttest 2, indicating that all conditions resulted in learning and 

that learning generalized to novel tokens on Posttest 1 and novel talkers on Posttest 2. 

However, a significantly larger proportion of participants learned in the Perception Only 

Condition compared to the two production conditions. Results from the /ma/ Production 

Condition and /mɯ/ Production Condition did not indicate distinct differences between the two 

conditions. It is clear that the /ma/ Production Condition did not result in learning above and 

beyond the /mɯ/ Production Condition, which contained the unfamiliar segment, /ɯ/. As the 

two production conditions produced equivalent results, the addition of the /mɯ/ Production 

Condition provides an internal replication of the results from the /ma/ Production Condition.  

 During training, greater learning was measured through reaction times becoming faster 

across training blocks. At test, greater learning was measured through higher accuracy scores. It 
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was expected that faster reaction times at the end of training would correlate with higher 

accuracy scores at test for all conditions. Figure 70 illustrates the correlation between reaction 

times on block 4 and accuracy scores on Posttest 1, suggesting that the relationship between 

the two measures may be present in the production conditions.  

  

Figure 70. Relationship between two measures assessing category learning across conditions 
with log transformed reaction times on training block 4 on the x axis and accuracy scores on 
Posttest 1 on the y axis.  

Spearman’s rho correlation coefficient47 was used to assess the relationship between 

reaction times on training block 4 and accuracy scores on Posttest 1. The relationship between 

the two measures was significant in the Perception Only Condition (r = -.69, p < .001). However, 

the relationship was not significant in the /ma/ Production Condition (r = -.13, p = .55) or in the 

/mɯ/ Production Condition (r = -.33, p = .11). The correlation between the two measures in the 

Perception Only Condition suggests that faster reaction times in training relates to better 

                                                            
47 A Shapiro-Wilk normality test indicated the some of the data in the /ma/ Production Condition (W = .87, 
p = .003; W = .92, p = .06) and in the /mɯ/ Production Condition (W = .79, p < .001; W = .90, p = .02) were 
not normally distributed. Therefore, we conducted the non-parametric Spearman’s test for all conditions. 
Although the data for the Perception Only Condition were normally distributed (W = .93, p = .08; W = .96, 
p = .37), Spearman’s test was used for consistency. Pearson’s correlation coefficient was also significant 
for the Perception Only Condition (r(23) = -.67, p < .001).  
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accuracy on the generalization test and that both measures reliably assess category learning 

when there is only a perception component during training and the data are more evenly 

distributed among those that learned and those that didn’t learn. In the production conditions, 

few participants showed signs of learning. However, almost all of those that scored above 50% 

accuracy were among the proportion of the participants that had the fastest reaction times. I 

hypothesize that if the number of participants that learned and didn’t learn were more even, 

then there would be a correlation between reaction times during training and accuracy scores at 

test.  

 To test whether accuracy scores at test differed as a function of age for each condition, I 

compared models with and without age, and results indicated that accuracy scores did not 

significantly differ as a function of age in the Perception Only Condition on Posttest 1 (X2 (1) = 

.44, p = .51) or on Posttest 2 (X2 (1) = 3.62, p = .057). Accuracy scores did not significantly differ 

as a function of age in the /ma/ Production Condition on Posttest 1 (X2 (1) = 1.70, p = .19), but 

accuracy scores did differ as a function of age on Posttest 2 (X2 (1) = 5.15, p = .02). Further, 

accuracy scores did not significantly differ as a function of age in the /mɯ/ Production Condition 

on Posttest 1 (X2 (1) = .52, p = .47) or on Posttest 2 (X2 (1) = .28, p = .60). 

accuracy ~ age + (1|participant) 
accuracy ~ (1|participant) 

Figure 71 illustrates accuracy scores on Posttest 1 and Posttest 2 as a function of age across 

conditions. The model comparison demonstrated that accuracy scores mostly did not differ as a 

function of age. Figure 71 suggests that the differences across age in the /ma/ Production 

Condition were largely driven by the oldest participants learning and very few younger 

participants learning. Overall, with few participants displaying learning in the production 

conditions, results are not as informative regarding the correlation between age and accuracy 

scores. 
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Figure 71. Accuracy scores on Posttest 1 and Posttest 2 across age in the Perception Only 
Condition, the /ma/ Production Condition, and the /mɯ/ Production Condition. 

6.5 DISCUSSION 

In Experiment 4, I examined the impact of production during training on incidental perceptual 

learning of novel tone categories. I also examined the impact of segmental familiarity in the 

learners’ productions during training. I compared three conditions. One condition was a 

Perception Only Condition that did not contain a production component. Two conditions 

contained tokens produced in different syllables. The /ma/ Production Condition was comprised 

of segments more familiar to the participants’ language background experience. The /mɯ/ 

Production Condition contained a segment unfamiliar to the participants’ language background 

experience.  

It was expected that the two production conditions’ results would differ from the 

Perception Only Condition. That is, the additional production by learners during perceptual 

learning would result in reduced learning compared to the Perception Only Condition. Further, it 

was expected that the lack of familiarity would negatively impact perceptual learning in the 

/mɯ/ Production Condition compared to the /ma/ Production Condition.  
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Results from training indicated that reaction times from participants in the Perception 

Only Condition became faster across training blocks. Participants in the /ma/ Production 

Condition also became faster across training blocks, but not as fast as participants in the 

Perception Only Condition. Participants in the /mɯ/ Production Condition did not become faster 

across training blocks.  

Results from Posttest 1 indicated that participants in the Perception Only Condition 

were more accurate than the two production conditions. Further, as a whole, participants in the 

/ma/ Production Condition did not accurately identify the target categories above chance. 

Participants in the /mɯ/ Production Condition barely identified the target categories above 

chance. It is important to note that these results do not mean that the /ma/ Production 

Condition cannot result in perceptual learning. Some participants did show signs of learning. 

Instead, these results indicate that the two production conditions result in fewer participants 

successfully acquiring the novel tone categories than the Perception Only Condition.  

Results from Posttest 2 indicated that generalizing to novel talkers was difficult for 

participants in all conditions. Specifically, the Perception Only Condition did not result in better 

generalization to novel talkers than the two production conditions.  

Overall, the Perception Only Condition resulted in better perceptual learning than the 

production conditions, and the lack of segmental familiarity in the /mɯ/ Production Condition 

did not result in worse learning than the /ma/ Production Condition. However, it did result in 

slower reaction times than the /ma/ Production Condition. Below I discuss the implications of 

these results for categorization and perceptual learning. 

6.5.1 The effect of production on perceptual learning 

Production during perceptual learning hindered the formation of novel sound categories, 

replicating a finding from several previous studies (e.g., Baese-Berk, 2019; Baese-Berk & Samuel, 

2016; Leach & Samuel, 2007, Baese-Berk & Samuel, under review). The production conditions 

contained elements that were not in the perception only condition. In the production conditions 

the participants produced the sound that they heard on each trial. They were also prompted to 

record themselves producing the sounds. As there were differences between the Perception 

Only Condition and the production conditions, it is important to consider whether differences 

between conditions might have resulted in decreased perceptual learning in the production 
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conditions. To understand the potential differences between the conditions, it is important to 

take a closer look at what is occurring in the incidental learning paradigm. 

Participants in incidental auditory learning paradigms (see Gabay et al., 2015) make little 

effort on each trial. They typically see the visual target on the screen and then they respond 

with the keyboard or mouse. They are not consciously trying to learn. Therefore, it may seem 

that learning in incidental paradigms is passive learning. However, learning is not passive. There 

is a feedback mechanism incorporated in the incidental learning paradigm (Schultz et al., 1993, 

1997; Gabay et al. 2015; Ashby & Casale, 2003; Sutton & Barto, 2005; Lim et al., 2014, Reynolds 

& Wickens, 2002). In the incidental paradigm, learning occurs when the participant begins to use 

the auditory tokens as clues that predict the location of the visual targets. On a trial they hear 

the sounds and predict where the target will be when it appears. This provides implicit feedback 

telling them if they were right or wrong in their prediction. In this way the auditory-to-

visuomotor correspondence reinforces learning by providing feedback on each trial. They use 

that feedback to refine their categorical judgments of the following auditory stimuli. As they 

become more confident in their predictions, they move the mouse cursor to the location where 

they think the visual target will appear. When it appears where they predicted, they are 

rewarded by being able to click on the visual target faster. If they are wrong in their prediction, 

they will have to move the cursor to the location of the visual target and their reaction time will 

be slower. 

The learning reinforcement described here is a form of reinforcement learning, which is 

goal-directed, meaning that learning is driven by the participant’s desire to achieve a goal 

(Sutton & Barto, 2005). In this case the goal is to minimize prediction errors (i.e., reward 

prediction error). Behavioral actions leading to rewards are reinforced, while behaviors leading 

to punishment become modified. Lim et al. (2014) argue that the learning reinforcement utilized 

in goal-directed learning has a neural basis that may not occur during passive exposure to 

stimuli or in explicit training paradigms. They argue that dopamine neurons in the basal ganglia 

can serve as a teaching signal to drive reinforcement learning. Dopamine neurons have been 

shown to be sensitive to reward prediction, firing when predictions are rewarded and depressed 

when predictions fail (Schultz et al., 1993, 1997). This process can lead to modulations in 

synaptic plasticity of cortico-striatal pathways (Reynolds & Wickens, 2002). However, this 

process may be time sensitive. Distractions during or immediately after the occurrence of the 
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reinforcement learning mechanic may lead to disruptions in the process. Specifically, the 

process can be fragile, meaning that reinforcement signals must get to the right synapses at the 

right time to be effective (see Houk & Adams, 1995; Yagishita, 2014).  

Thus, a key consideration in paradigms that implement reinforcement learning is the 

proximity of the stimuli to the learning reinforcement that occurs when the visual target 

appears and the participant responds to it (see Gabay et al., 2015 for discussion). If participants 

experience a disruption or delay between hearing the stimuli and seeing the visual target, 

reinforcement learning may be disrupted. There is a narrow window available for dopamine 

release to occur in order to strengthen synapses. Thus, it would be problematic for production 

to occur after exposure to the auditory stimuli and before the motor response due to the 

disruption to the striatal strengthening process. However, in the two production conditions, the 

proximity of the stimuli and visual target did not differ from the other conditions in the current 

study. Participants responded by producing the auditory target only after their motor response 

to the visual target. Therefore, temporally speaking, participants had a chance for striatal 

strengthening to occur.  

A primary difference then between the production conditions and the Perception Only 

Condition could be that during the reinforcement period of the trial, participants in the 

production conditions were anticipating and perhaps preparing for the following production. 

This anticipation and preparation for producing the auditory target may have been a key factor 

in the disruption of the reinforcement learning. Thus, one possible explanation for the 

disruption of perceptual learning in the production condition was that participants were 

distracted by the need to produce the target during the window where the audio-to-visual 

reinforcement should have happened. 

 Results from previous studies indicate that participants can be distracted from the 

reinforcement learning found in the audio-to-visual correspondence. For example, Roark et al. 

(2020) also used an incidental paradigm to test multiple factors that might inhibit novel sound 

category acquisition and one of their conditions distracted participants from attending to the 

audio-to-video correspondence. In their Misalignment Condition, there was an audio-to-visual 

correspondence where the location of each visual target was predicted by the auditory tokens. 

However, the visual targets were different colors. The participants did not respond by pushing a 
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button to select the location. Rather, they responded by pushing a button corresponding to the 

color and the auditory tokens did not predict which color was going to appear. Therefore, the 

task examined whether participants could still attend to the auditory-to-visual correspondence 

in the face of the distractor task. At test, participants were not successful at guessing the 

location of the visual targets. They were distracted from the salient cues that they needed to 

attend to. Thus, certain factors may distract participants from attending to the learning 

reinforcement used in incidental learning paradigms.  

Research on category learning from cognitive psychology and neurobiology aid in the 

formation of hypotheses regarding the nature of the disruption of production to perceptual 

learning in the current experiments. Until the 1990s category learning research in cognitive 

psychology focused on single-system models of category learning. A single-system model 

postulates that there is a single structure or set of structures in the brain that is active during 

category learning. Initial single-system models included prototype, exemplar, and decision-

bound models. Prototype models suggested that during category learning, category prototypes 

are developed and novel stimuli are compared to category prototypes during the categorization 

process (e.g., Reed, 1972; Homa et al., 1981; Posner & Petersen, 1990). Exemplar models 

proposed that unique instances of each category are stored for reference (e.g., Medin & 

Schaffer, 1978; Estes, 1986; Pierrehumbert, 2001), creating a cloud of stored perceptions (see 

Todd et al., 2019). When novel instances of that category are perceived, they are taken and 

merged with stored instances that are not noticeably different, forming exemplars. As more 

tokens are heard, they become integrated into existing exemplars as the existing exemplar is 

activated. Exemplars that are frequently activated increase in strength, exerting more force over 

new tokens (also see Goldinger, 1998). Decision-bound models propose that a stimulus is 

perceived as a point in multidimensional space. Category judgments are made by comparing the 

amount of perceptual distribution overlap of the stimuli. The greater degree of overlap in 

multidimensional space determines the degree of similarity and likelihood of the stimuli being 

judged to be in the same category (e.g., Ashby & Townsend, 1986; Ashby & Perrin, 1988). 

The underlying hypothesis behind single-system models is that there is a single category 

learning system in the brain. The implication being that there is a single resulting impact on 

category learning should something happen to the neural structure that is activated during 

category learning. For example, if the structure is damaged, then category learning in general 
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will be impacted, or if age-related plasticity degradation impacts the structure, then all category 

learning will be impacted. However, studies in the 1990s began to question this assumption 

(e.g., Maddox & Ashby, 1993; Nosofsky et al., 1994; Smith et al., 1996; Knowlton, 1999). 

Studies examining participants with brain damage revealed that some types of 

categorization knowledge could be retained but other types of knowledge could not be 

retained. Amnesic patients that could not develop declarative memories could develop 

procedural memories (Hamann & Squire, 1997; Reed et al., 1997)). They had developed an 

implicit knowledge of categories even though they could not recall having seen the stimuli 

before or even the researcher (also see Squire & Knowlton, 1995; Knowlton, 1999).  The 

conclusion from these studies was that categories could be developed implicitly even when 

there was no declarative knowledge of the individual exemplars or memory of learning at all. 

Other evidence emerged supporting the idea that more than one category learning 

system may exist in the brain. Results from categorization studies indicated that category 

learning involving simple unidimensional rules qualitatively differed from category learning 

involving multidimensional rules (Maddox & Ashby, 1993; Ashby et al., 1998). When categories 

are presented to participants and the rules for category membership are clear and distinct, once 

the rule is learned, participants can easily categorize the stimuli and can state the rule for 

categorization. However, when the criteria for category membership are multidimensional and 

the features of categories overlap, participants demonstrate gradual learning and unable to 

state what the rules are for categorization, but rather categorize the stimuli based on a feeling 

of which category the stimuli should be in (also see Chandrasekaran, 2014a, 2014b). 

Corresponding research resulted in the proposal of multiple-system models with separate rule-

based and exemplar-based category learning systems (Brooks, 1978; Allen & Brooks, 1991; 

Regehr & Brooks, 1993), followed by similar cognitive models (e.g., Squire, 1992; Nosofsky, 

1994; Erickson & Kruschke, 1998). Later, insights developed by cognitive models were 

strengthened through findings from neurobiological research (Poldrack & Packard, 2003; 

Nomura et al., 2007).  

One model that incorporated neural findings was the Competition between Verbal and 

Implicit Systems model (COVIS; Ashby et al., 1998, 2011; Chandrasekaran et al., 2014). The 

COVIS model proposes two learning systems, a reflective system and a reflexive system. These 
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learning systems respond to two types of category information structures, rule-based structures 

and information integration structures (see Nomura et al., 2007 for review). The reflective 

learning system is activated during explicit category learning with rule-based category 

structures. The reflective system is rule-based in that rules are explicitly learnable and when 

learned are then applied to the categorization task. For example, we may have a visual 

classification task where all stimuli with a circle belong to one category and all stimuli with a 

square belong to another category. In this example, once the rule is understood, categorization 

will immediately become easier for the participant. Reflective learning engages executive 

attention and working memory, activating regions in the prefrontal cortex, anterior cingulate, 

and anterior caudate nucleus (e.g., Nomura et al., 2007; Chandrasekaran et al., 2014).  

The reflexive learning system is activated during implicit category learning, which is 

typically used to learn information integration structures, which refers to category structures 

that contain two or more stimulus dimensions and cannot be described by simple rules. Rather, 

stimuli must be observed more holistically and categorization responses are selected based on 

the wider range of perceptual information (see Ashby & Gott, 1988; Ashby et al., 1998). 

Reflexive learning does not engage working memory or executive attention and activates the 

posterior caudate, putamen, basal ganglia, and the supplementary motor area (see 

Chandrasekaran et al., 2014; Lim et al., 2014 for review).  

Most research investigating novel tone category acquisition has done so via reflective 

learning methodologies, where participants receive explicit instructions regarding the target 

tone categories and feedback on each trial. Evidence suggests that the reflective learning system 

is not the optimal system for speech category learning due to the multidimensional nature of 

speech sounds (Chandrasekaran et al., 2014). Results comparing category learning across 

reflective and reflexive learning systems suggest that speech categories are optimally learned 

through the reflexive learning system. Thus, in the current study we use a reflexive learning 

paradigm, incidental learning, to investigate factors known to impact novel speech category 

acquisition during reflective learning. However, it may be that producing the tokens during 

perceptual learning in the current experiments activates the reflective learning system, 

hindering the reflexive learning system engaged by the incidental learning paradigm. Evidence 

suggests that the two learning systems are distinct and competitive in visual and auditory 

domains (Ashby et al., 1998; Ashby & Ell, 2001; Ashby & Maddox, 2005; Lim et al., 2014).  
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A corresponding difference between the two systems is that reflective learning utilizes 

executive function and working memory and reflexive learning does not. This is a vital 

distinction between the two systems. The information learned through the reflexive learning 

system is not easily verbalizable. There are multiple dimensions that assign members to 

categories, making it impossible or extremely difficult to specify a single dimension necessary 

for category membership. For this reason, it is suggested that reflexive learning is optimal for 

learning speech sound categories (Chandrasekaran et al., 2014; Lim et al., 2014). Further, the 

effort to explicitly rationalize rules for category membership can be detrimental for reflexive 

learning (Ashby & Gott, 1988). Therefore, one possibility is that the need to produce the tokens 

leads participants to attempt to understand the rules for category membership and thus 

activates working memory and executive function, which hinders the reflexive learning system. 

When production or even sub-vocal rehearsal of production occurs with perception, an 

auditory-motor interface system that relies on working memory is activated (Hickok & Poeppel, 

2000; Hickok et al., 2003). 

 Another potential explanation of the disruption that occurs from production comes 

from cognitive exemplar theory. Exemplar theory was initially incorporated into a single-system 

model of category learning, and later applied to multiple-systems models of category learning. 

More recently, exemplar theory has been reinterpreted in light of findings from neurobiological 

studies (Ashby & Rosedahl, 2017). The evolution of concepts around exemplar theory provide 

insight into the category learning process and potential hypotheses regarding the potential 

results of the current study, especially regarding the potential disruption to perceptual learning 

from producing the target speech sounds during learning.  

Exemplar theory was originally introduced as a model of visual categorization in 

psychology and later extended to the auditory domain and the acquisition of speech sound 

categories (e.g., Johnson, 1997; Lacerda, 1997; Pierrehumbert, 2001). Exemplar theory posits 

that unique instances of each category are stored for reference, creating a cloud of stored 

perceptions, and when novel instances of that category are perceived, they are taken and 

merged with stored instances that are not noticeably different, forming exemplars. As more 

tokens are heard, they become integrated into existing exemplars as the existing exemplar is 

activated. Exemplars that are frequently activated by new exemplars increase in strength, 

exerting more force over new tokens.  
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Initial applications of exemplar theory to speech category learning incorporated 

concepts from usage-based phonology (Bybee, 2001), which proposes that sound categories are 

built up through experience with the language and exposure to sounds from the category over 

time and across contexts. During first language acquisition, as a child hears sounds in their 

language, they will store the individual instances of the input. The distribution around features 

such as voice onset time (VOT) will create an exemplar cloud that comprises the phonemic 

category (also see Todd et al., 2019). As the child hears tokens of that category, they will take 

them and merge them with other tokens that are not noticeably different, forming exemplars. 

As more tokens are heard, they become integrated into existing exemplars, activating that 

exemplar. Exemplars that are frequently activated increase in strength, exerting more force over 

new tokens (also see Goldinger, 1998). 

During the acquisition of other languages, when a person hears sounds from novel 

categories, if the target categories are similar to sound categories in their L1, the strongest 

exemplars in their L1 categories will integrate the new token. This idea is reflected in Best’s 

Perceptual Assimilation Model (Best et al., 1988; Best, 1995). PAM predicts that individual non-

native sounds that are similar to established L1 sound categories are likely to be perceptually 

assimilated by naïve listeners to the most articulatorily-similar L1 category. Flege’s Speech 

Learning Model (SLM) is similar, but it goes on to say that a new sound category can be 

established if the learner can discern enough acoustic differences between their closest L1 

sound category and the novel sound (Flege, 1995). Similarly, if there are no L1 sound categories, 

new categories can be developed. However, the process of novel sound category formation can 

be disrupted.  

From a cognitive perspective, the application of exemplar theory to disruptions during 

novel speech sound formation may lie in the interface between the phonological loop and the 

long-term memory system (Kaushanskaya and Yoo, 2011; Baddeley, 1986; 2000). Working 

memory is said to delineate the necessary processing and storage of auditory input for language 

comprehension and acquisition. The phonological loop is assumed to have two components, a 

phonological store and an articulatory control process. The phonological store holds the acoustic 

details of the input in short-term memory for one to two seconds before processing into long-

term memory. Baddeley states that several things can affect this process, one of which is 

phonological familiarity, which strongly influences foreign language word learning (Baddeley, 
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1986; 2000). Production during perceptual learning may also disrupt the phonological loop if it 

occurs within the first one to two seconds after perception (also see Darwin et al., 1972; Baese-

Berk & Samuel, 2016; Baese-Berk & Samuel, in press). Exemplar theory provides us with a 

hypothesis of what this disruption might look like. Upon initial exposure to an L2, L1 exemplars 

are very strong and are likely to incorporate L2 tokens into L1 categories. In order to create L2 

sound categories that are similar to but differ from L1 phonemes, there would need to be a 

sufficient number of auditory tokens to create a new statistical distribution and create sufficient 

exemplar strength to incorporate L2 tokens into the new exemplar cloud. Thus, one hypothesis 

based on cognitive research is that production occurring immediately after exposure to auditory 

stimuli disrupts the phonological loop, keeping new tokens from being stored and a new cloud 

from being created. On the production side, exemplar theory states that a target is randomly 

selected from the existing exemplar cloud based on activation strength. So, the listener turned 

speaker extracts an exemplar from the L1 sound category to produce as the target, since the L2 

sound category has not yet been created or does not yet have sufficient strength to stand as an 

exemplar. This causes the L1 sound category to be strengthened even further, and perceptual 

learning of the novel sound category does not occur.       

 This hypothesis could be tested by briefly delaying production after perception to see if 

that provides the needed time to store the auditory token (again see Darwin et al., 1972; Baese-

Berk & Samuel, 2016; Baese-Berk & Samuel, under review). The expectation would be that 

perceptual learning would be higher for participants with a delayed production response than 

for participants that produce the token immediately after hearing it. However, there may still be 

interference from the activation of the L1 sound categories when they produce the targets. 

Therefore, initially it may be expected that they would not perform as well as those receiving 

perception only training (see Baese-Berk & Samuel, under review).  

 The neural interpretation of exemplar theory extends exemplar theory on the basis of 

findings from neurobiological studies on categorization and proposes that category learning 

occurs as synaptic connectivity between striatal neurons and neurons in sensory association 

cortex are altered (Ashby & Rosedahl, 2017). Rather than adding nodes to the exemplar network 

(see Kruschke, 1992; Nosofsky & Palmeri, 1997), learning occurs as the presentation of the 

stimuli strengthens existing cortical-striatal synapses or creates a new synapse. The neural 

exemplar model assumes that synaptic strengthening occurs in relation to the level of 
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presynaptic activation, the resulting level of postsynaptic activation, and the level of dopamine 

present (see Ashby & Rosedahl, 2017). Neural exemplar theory aids in the understanding of 

reinforcement learning and by extension, incidental learning. It presents an understanding of 

the reflexive learning process and factors that inhibit or benefit the learning process.  

As discussed above, dopamine neurons have been shown to be sensitive to reward 

prediction, firing when predictions are rewarded and depressed when predictions fail (Schultz et 

al., 1993, 1997). This process can lead to modulations in synaptic plasticity of cortico-striatal 

pathways (Reynolds & Wickens, 2002) and is thought to drive incidental learning through the 

reinforcement mechanism incorporated in the design of the learning paradigm (see Lim et al., 

2014 for review). As participants make predictions based on the auditory stimuli and those 

predictions are validated upon appearance of the visual target, dopamine levels are increased 

resulting in synaptic plasticity at cortical-striatal synapses (Houk et al., 1995; Doya, 2000). This 

process provides a foundation for neural-based hypotheses regarding expected results for 

incidental learning. For example, it is expected that there is a narrow window of 0.3 to 2 

seconds for reinforcement of predictions to occur (Yagishita, 2014). Further, the process can be 

fragile, meaning that reinforcement signals must get to the right synapses at the right time to be 

effective (Houk & Adams, 1995). Switching to production during this narrow window may inhibit 

the synaptic strengthening process.    

 A remaining issue is that some participants in the production conditions did learn the 

tone categories. Further, as illustrated in Figure 69, the few that learned had accuracy scores as 

high as those that learned in the Perception Only Condition. However, in the production 

conditions there is a clearer distinction between those that learned and those that didn’t learn. 

In the Perception Only Condition the results are less categorical. Therefore, we may conclude 

that due to the need to produce the tokens on each trial, participants that did not learn either 

did not attempt to make predictions regarding the location of the visual target or they tried to 

make predictions but were not very successful and ended up abandoning the effort to make 

predictions. In the first case we may conclude that participants were simply too distracted by 

producing the targets to attend to the primary requirement for learning in the task. In the 

second case, a lack of consistent reward may have resulted in dopamine depression and 

therefore a lack of synaptic strengthening and abandonment of the task. Conversely, 

participants that learned in the paradigm were able to make predictions regarding the location 
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of the visual target and were successful enough that they received sufficient dopamine reward 

to continue making predictions. Thus, consistent strengthening of the synapses resulted in 

synaptic plasticity and acquisition of the categories.  

The question remains though regarding how participants who learned were able to 

continue making predictions. The answer may have to do with attention and timing. Attention 

would first have to be given to the audio-to-visual correspondence. If all of the attention was on 

producing the tokens accurately, then they would not have been able to make predictions 

regarding the location of the visual target. Attention could be further investigated in future 

experiments by explicitly increasing attention to producing the targets. For example, 

participants could be instructed to produce the target as accurately as possible. It may be that 

exogenously orienting attention to producing targets in this way would further result in 

participants overlooking the audio-to-visual correspondence.  

Regarding timing in the production conditions, participants that learned the tone 

categories may have initially directed their attention to making predictions on each trial. The 

supposition here is that only after making the predictions and clicking on the visual targets, they 

shifted their attention to preparation and execution of the productions. This hypothesis comes 

from the expectation that there is a narrow window of 0.3 to 2 seconds for reinforcement of 

predictions to occur (Yagishita, 2014). This could be tested by investigating the time it takes for 

successful learners to shift from clicking on the visual target to recording their production. If 

attention is only directed to production after the reflexive learning period occurs, then the 

duration of this period should be longer than those that do not learn the categories. Similarly, it 

is expected that if there is a longer delay between the perceptual reinforcement learning 

mechanism and production, perceptual learning would improve due to the separation of 

auditory, visual, and motor processes (see Baese-Berk & Samuel, under review). It is expected 

that distinct, non-overlapping processes will support learning (Forrin et al., 2012). 

We might conclude that the distraction in the current experiments from producing the 

tokens is specific to incidental learning as it specifically disrupts the reinforcement learning 

mechanism, and that perhaps, producing tokens during perceptual learning may not impact 

explicit learning paradigms. However, there is growing evidence that the disruption of 

perceptual learning by efforts to produce the auditory targets extends beyond incidental 
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paradigms. Production during perceptual learning of novel sound categories also impacts 

reflective learning (Baese-Berk & Samuel, 2016). However, when production is delayed for two 

or four seconds, perceptual learning is not hindered (Baese-Berk & Samuel, under review). 

Initially, the results from these experiments may seem to go against conventional understanding 

of the relationship between perception and production. Studies examining word learning found 

that production during word learning enhanced perceptual abilities (Gathercole & Conway; 

1988). This led to the concept of the “production effect”, where producing a word aloud during 

study improves retention of the word (MacLeod et al., 2010; Forrin et al., 2012), and resulted in 

the conclusion that production is needed during perceptual learning to establish a bidirectional 

link between the perception and production systems (Zamuner et al., 2016). However, studies 

that tested the impact of production during perceptual learning using novel words with 

unfamiliar segments or structures resulted in worse perceptual learning of the novel words 

(Leach and Samuel, 2007; Kaushanskaya and Yoo, 2011; Dahlen and Caldwell-Harris, 2013). The 

results from the current experiments support the conclusion that production during the 

perceptual formation of novel categories that are not familiar to the learner can hinder 

perceptual learning. The finding that a lack of familiarity can hinder perceptual learning, led to 

the expectation that a greater degree of unfamiliarity with the segments in the tokens may 

result in greater inhibition during perceptual learning.   

6.5.2 Segmental familiarity and production during perceptual learning 

It was expected that the lack of segmental familiarity in the /mɯ/ Production Condition would 

result in greater disruption of perceptual learning than the /ma/ Production Condition. The 

/mɯ/ Production Condition did result in slower reaction times during training than the /ma/ 

Production Condition, but there was little difference between conditions at test. Both conditions 

resulted in very few participants learning the novel tone categories. Combined accuracy scores 

for each condition were close to chance. This result from the current experiment is similar to the 

results from Experiment 3, where perceptual learning was equivalent in conditions with familiar 

segments and unfamiliar segments. An initial explanation for the results in Experiment 3 was 

that participants in the /mɯ/ Production Condition simply processed the unfamiliar segment as 

a familiar segment, such as /ə/. If they mapped /ɯ/ onto the acoustic space of an English vowel, 

they might avoid processing difficulties that may arise from the unfamiliar segment. However, 
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the recordings from Experiment 4 indicate that participants regularly produced vowels unlike 

English vowels in an attempt to approximate /ɯ/.48 

 An expectation that the production of unfamiliar segments might result in a greater 

disruption to perceptual learning comes from findings indicative of processing differences when 

producing familiar and unfamiliar speech (Moser et al., 2009). The structures involved in speech 

motor control do not appear to differ when producing familiar and unfamiliar phonotactics. 

However, there is greater activation of the structures, both in extent and intensity, during the 

production of words with unfamiliar segments. Specifically, greater activity occurs bilaterally 

across the left anterior insula (aIns) and inferior frontal gyrus (IFG). Moser et al. (2009) suggest 

that these results indicate greater engagement across the entire motor speech system when 

producing unfamiliar segments. Thus, there are several potential explanations for the null 

results in Experiment 4. It may have been that the single unfamiliar vowel was not sufficient for 

greater activation of the motor speech system. In Moser et al. (2009) participants produced tri-

syllabic non-words with various non-native consonants, a condition with much greater variability 

than the /mɯ/ Production Condition in Experiment 4. It may be that with a larger number of 

unfamiliar segments there would be greater disruption to perceptual learning. Another 

possibility is that the level of learning was too low to distinguish between the categories. That is, 

not enough participants learned the categories in the production conditions. To observe 

contrastive results, it may be necessary to increase the amount of learning, which may be 

possible to achieve by delaying production.  

6.5.3 Learning differences as a function of age 

In Experiment 4 participants’ ages ranged from 19 to 66. In the Perception Only Condition and 

the /ma/ Production Condition, reaction times did not differ as a function of age. In the /mɯ/ 

Production Condition reaction times differed as a function of age, with older participants being 

slower than younger participants. These results more closely resembled the absence of learning 

in the Control Condition from Experiment 2. Accuracy scores in the two production conditions 

did not differ as a function of age. Overall, in the production conditions few participants learned. 

One observation that can be made is that a greater percentage of older participants in the 

                                                            
48 This suggestion stems from a preliminary investigation of the acoustic data collected from participants 
in Experiment 4. Due to time constraints a deeper analysis of the data is not presented here. 
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production conditions learned compared to younger participants. This includes the 66-year-old 

participant, who had one of the highest scores in the /ma/ Production Condition. These results 

present an interesting hypothesis that arises from previous observations and hypotheses made. 

It is clear that older participants are slower at the task. Moving through the trial takes longer the 

older the person is. We hypothesized in Section 6.5.1 that a greater delay between the audio-to-

visual correspondence and production would likely result in greater learning in a production 

condition. The longer reaction times by older participants indicate that older participants 

experienced a greater delay between the audio-to-visual correspondence and the productions. 

Therefore, it is possible that the effect of age resulted in greater distinctiveness between the 

processes engaged in the task and this resulted in higher perceptual learning (see Forrin et al., 

2012). 

6.6 CONCLUSION 

In Experiment 4 we compared learning in a Perception Only Condition to learning in two 

production conditions to investigate the impact of production during perceptual learning. By 

examining production by participants immediately after perception and the corresponding 

motor response on each trial, we tested the impact that the anticipation of production during 

the audio-to-visual reinforcement had on perceptual learning. By including two production 

conditions, the /ma/ Production Condition and the /mɯ/ Production Condition, we also tested 

the additional impact that the lack of segmental familiarity during motor planning had on 

perceptual learning. 

Experiment 4 demonstrated that production during the perceptual learning of speech 

sound categories in an incidental learning paradigm severely hinders perceptual learning. 

Specifically, if participants produce the token they hear on each trial during training, very few 

participants are able to acquire the novel tone categories compared to participants that do not 

produce the tokens. These results suggest that producing targets during incidental learning 

interrupts the learning that occurs in an incidental learning paradigm. A specific consideration is 

the timing of the production, which occurs directly after the learning reinforcement mechanism 

in the paradigm. We hypothesized that delaying production might reduce the inhibitory effect of 

production during incidental perceptual learning.  
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Experiment 4 also demonstrated that the inclusion of an unfamiliar segment in the 

stimuli did not result in greater interruption to perceptual learning than stimuli with familiar 

tokens. This result is similar to Experiment 3. However, in Experiment 4, participants were also 

producing the tokens on each trial. It was expected that the need to produce an unfamiliar 

segment would increase cognitive load due to higher levels of activation in motor planning 

structures, resulting in reduced learning compared to producing familiar segments. However, 

there was little difference between the conditions. Therefore, these results demonstrate that 

during incidental learning, learners are equally capable of attending to salient tone category 

features in tokens that contain familiar and unfamiliar segments.  
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 VII. CONCLUSION 

This dissertation sought to examine the perceptual formation of novel tone categories with 

natural tokens through an incidental learning paradigm, where learning is driven by a 

reinforcement learning mechanism.  Further, we used incidental learning to investigate a 

number of factors known to impact the perceptual formation of novel sound categories during 

learning via explicit learning paradigms. In this chapter, we provide a summary of the main 

findings from the four experiments conducted in this study and illustrate the novel contributions 

of the study. We discuss future directions of the research focused on areas studied in the 

dissertation, and we present implications of the current study for second language pedagogy.  

7.1 SUMMARY OF THE CURRENT RESEARCH 

In Chapter 1 we provided an overview of the four experiments in the current study and the 

background of the research. Specifically, we discussed research on novel tone perception, 

including tone discrimination and novel tone category learning. We also discussed auditory 

perceptual learning of novel sound categories. In Chapter 2 we presented a characterization of 

the stimuli used in the four experiments, describing differences regarding duration and F0. We 

illustrated that the use of natural tokens from multiple talkers resulted in variability among the 

tokens that may have impacted perceptual learning in the four experiments. In Chapter 3 

through Chapter 6 we presented four experimental studies performed to analyze different 

factors that impact the incidental formation of novel tone categories. Below, we summarize the 

main findings of the four experimental studies and the novel contributions of this work. 

7.1.1 Main findings of the four studies 

We found that native English participants from 19 years old to 66 years old with no prior 

experience with the target tone categories can use an incidental learning paradigm with natural 

tokens to form four novel tone categories after 30 minutes of training with very high, even 

perfect, accuracy. These findings extend the investigation of factors impacting incidental 

learning into natural speech sound categories, confirming hypotheses suggesting that incidental 

learning is an effective means of learning natural speech sound categories. Taken together, our 

results suggest that reflexive learning through an incidental paradigm is an effective and 
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efficient means of category learning and provides an experimental foundation well suited for 

the examination of factors impacting novel sound category formation with natural tokens.  

In the first experiment, we found that presenting five different tokens on each trial 

resulted in greater learning than presenting five identical tokens on each trial, indicating that 

high variability in close temporal proximity resulted in greater learning than when the variability 

was spread out across trials. In Experiment 2 we demonstrated that training on a single talker 

results in higher learning accuracy than training on multiple talkers. However, when trained on a 

single talker, accuracy was substantially reduced when generalizing to novel talkers. By contrast, 

when trained on multiple talkers, accuracy did not differ when generalizing to tokens from the 

same talkers and tokens from novel talkers.  Further, in Experiment 2 we also demonstrated 

that participants can learn to categorize novel tone categories from passive exposure alone. In 

Experiment 3 we demonstrated that the presence of an unfamiliar vowel in the auditory stimuli 

did not impact the incidental formation of novel tone categories. That is, the additional 

complexity from processing unfamiliar segmental features did not result in reduced learning of 

the target tone categories. In Experiment 4 we demonstrated that production during the 

perceptual learning of speech sound categories in an incidental learning paradigm severely 

hinders perceptual learning. Specifically, if participants produce the token they hear on each 

trial during training, very few participants are able to acquire the novel tone categories 

compared to participants that do not produce the tokens. In Experiment 4 we also 

demonstrated that the inclusion of an unfamiliar segment in the stimuli did not result in greater 

interruption to perceptual learning than stimuli with familiar tokens.  

In each experiment we considered age as a factor impacting learning. We demonstrated 

that age impacted reaction times during training. We also demonstrated that this was due to 

age affecting the visuomotor responses during the task rather. Age did not impact learning. That 

is, individuals across all ages were able to learn from the incidental paradigm and form the novel 

tone categories. However, it is important to note that the age of participants in the current 

study only went to 66. Studies investigating the impact of age on learning often have 

participants in their 70s and 80s. Further, there were not equal sample sizes across the range of 

ages. There were more younger participants than older participants. With equal sample sizes 

and a direct comparison of age groups, differences in category formation during incidental 

learning may be found. 
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7.1.2 Novel contributions of the current research 

The four experiments provide novel contributions, informing novel tone category acquisition 

and auditory perceptual learning more broadly. 

7.1.2.1 Novel tone category acquisition 

The current study provides novel contributions that inform research investigating factors 

impacting the acquisition of novel tone categories. Specifically, we demonstrated that incidental 

learning provides an effective and efficient means of investigating the acquisition of novel tone 

categories by adults. The results from the current study add to our understanding of novel tone 

acquisition during incidental learning, permitting comparisons with research using explicit 

learning paradigms. It is important to note that we do not directly compare incidental learning 

to explicit learning in the current study. Comparisons are made to situate the current study in 

the wider literature and highlight differences such as the time course of learning.  

 A major contribution the current study provides to the conversation around novel tone 

category acquisition is that learning novel tone categories is not necessarily difficult. We 

demonstrate that adults with no experience with lexical tone, no significant language learning 

experience, and no specific motivation to learn can, indeed, quickly and easily learn novel tone 

categories. They do so without conscious effort through incidental learning. Further, we 

demonstrate that this learning ability is maintained across the lifespan. These results differ from 

the majority of the research on novel tone category learning that suggests otherwise (Kiriloff, 

1969; Bluhme & Burr, 1971; Shen, 1989; Sun, 1998; Wang et al. 1999; Wayland & Guion, 2004; 

Reid et al., 2015). It may be that novel tone category learning has been difficult because of the 

learning paradigms typically used during training. My goal in stating this so explicitly is that 

future research will not cite the difficulty of learning novel tone categories without specifying 

the learning paradigm the difficulty occurs in, because as we demonstrate, learning novel tone 

categories is not difficult during incidental learning. The assumption that learning novel tone 

categories is difficult continues to permeate research that uses novel tone categories, but we 

demonstrate that this is not accurate and the ongoing assumption of difficulty may distract the 

field from studying differences that are meaningful.  

The current research adds to the suggestion that the meaningful issues regarding novel 

tone category learning are the learning system used to acquire the categories, differences 
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between the processes and mechanisms engaged through the learning systems, and how those 

processes and mechanisms change across the lifespan. As discussed in Section 6.5.1, there is 

evidence of multiple category learning systems and that different learning paradigms engage 

different learning systems. The reflexive/reflective distinction in the COVIS model is particularly 

applicable (Ashby et al., 1998, 2011; Chandrasekaran et al., 2014a). It is important to note that 

we do not directly test differences between learning systems in the current study and results 

from the current study are not evidence for learning systems. Further, we do not directly test 

differences between explicit learning paradigms and incidental learning paradigms. However, by 

discussing results from the current experiments in light of results from explicit learning studies 

and the wider discussion on cognitive and neural models, we situate our findings in the 

literature, which informs our understanding of our results. 

In the current work we highlight similarities and differences between studies that use 

explicit learning paradigms that engage the reflective learning system and the current 

experiments, which use an incidental learning paradigm that engages the reflexive learning 

system. One difference we can note between the two systems is the time course of learning. 

Reflective tone category learning can take multiple sessions over the course of several weeks 

(Wang et al., 1999; Wong & Perrachione, 2007). By contrast, learning novel tone categories via 

reflexive learning may be much faster, with many participants achieving high levels of accurate 

categorization in a single session. One hypothesis regarding the difference in the time course of 

learning between the two systems is that reflexive learning is better suited for novel tone 

category acquisition due to the multidimensional nature of speech sound categories. Reflexive 

learning engages neural structures suited for the categorization of multidimensional stimuli, 

while reflective learning engages structures suited for unidimensional rule-based learning (see 

Chandrasekaran et al., 2014a, 2014b). Explicit training with explicit feedback may actually slow 

the sound category formation process.  

As we compare novel tone category learning across the two systems, we discuss 

differences in learning between the two systems. For example, the current study illustrated that 

older adults can learn novel tone categories as well as younger adults during an incidental 

paradigm that engages the reflexive learning system. If older adults are worse than younger 

adults at learning novel tone categories through explicit learning paradigms, then older adults 

may learn novel tone categories better during reflexive learning than during reflective learning. 
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If so, it may be that age-related decline in working memory and the functioning of prefrontal 

structures impacts the reflexive learning system less than the reflective learning system 

(Daigneault & Braun, 1993; West, 1996; Clapp et al., 2011; Maddox et al., 2013; Chandrasekaran 

et al., 2014). Further research between age groups across the learning systems will provide 

insight into changes in neural plasticity across the lifespan (see Chandrasekaran & Kraus, 2010).    

Although we do not directly compare learning paradigms and learning systems in the 

current work, we do discuss similarities in novel tone acquisition across learning paradigms. For 

example, token variability and talker variability appear to benefit learning in explicit learning 

paradigms and incidental learning paradigms. In the current study we demonstrated that token 

variability within trial aided in category formation during incidental learning (see Gabay et al., 

2015). That is, learners that heard variable productions from the same talker learned better 

than those that heard identical tokens on each trial. Further, those that heard multiple talkers 

across trials were able to generalize learning to novel talkers at the same accuracy as 

generalization to novel tokens from the same talkers. When trained on only one talker, accuracy 

during generalization to novel talkers decreased drastically. This finding is similar to results from 

explicit learning paradigms for novel tone category learning (Wang et al., 1999) and novel 

segmental category learning (Logan et al., 1991). However, studies that use explicit learning 

paradigms tend to only include a single auditory token during categorization training. They play 

the sound and the participants respond with the category they think the sound belongs to. The 

results from the current study add to growing methodological considerations (see Gabay et al., 

2015) by testing the impact of the composition of multiple tokens on a single trial, suggesting 

the possibility that explicit learning paradigms may also benefit from the inclusion of multiple 

tokens with high variability on each trial. Further, we examined talker variability across trials and 

concluded that learning in an incidental paradigm would also likely benefit from the inclusion of 

tokens from multiple talkers within trial, rather than across trials. 

The current study also provides a novel contribution to tone category learning research by 

demonstrating that tone categories can be formed through passive exposure alone. In the 

Control Condition in Experiment 2 participants received no explicit instructions regarding the 

target categories and no feedback from the reinforcement mechanic in the incidental learning 

paradigm. It was expected that participants would not be able to consistently categorize the 

auditory stimuli in this condition, but they showed signs that they were able to form the tone 
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categories. These results recommend a line of research investigating the extent to which 

participants can learn from passive exposure, directly comparing passive learning to learning 

that includes reinforcement from an audio-to-visual correspondence. Further, we note potential 

factors that resulted in successful category development during passive exposure to the stimuli. 

It is likely that the perceptual distinctiveness of each tone category in the current study aided in 

the passive formation of the novel tone categories (see Emberson et al., 2013). Therefore, 

success in forming novel sound categories from passive exposure alone may be moderated by 

the distinctiveness of the categories. Another factor that may benefit the formation of novel 

tone categories from passive exposure is the use of high-variability stimuli in close temporal 

proximity, which aids in the ability to identify the salient acoustic features of the category while 

learning to ignore the features that are not important for the category. Further, we present the 

hypothesis that the benefit of high-variability stimuli in close temporal proximity is not paradigm 

specific. Rather, this type of high-variability training may benefit category learning across 

paradigms, and it may be a key factor in the ability to form novel sound categories from passive 

exposure alone. 

The current study demonstrates that an incidental learning paradigm can be used to 

study factors that also impact novel tone category formation during studies that use explicit 

learning paradigms. However, learning through incidental paradigms such as the one used in the 

current study can provide results in a single session, rather than over the course of weeks. 

Further, we demonstrate that incidental learning experiments can be run online rather than 

having to bring participants to a lab. Overall, we demonstrate the potential that incidental 

learning paradigms have for increasing our knowledge of factors impacting novel tone category 

acquisition.  

7.1.2.2 Auditory perceptual learning 

In the current study we demonstrated that naïve learners with no lexical tone experience were 

capable of learning four novel tone categories in a single session through an incidental learning 

paradigm. These results may provide support for the argument that natural sound categories 

are optimally learned through the reflexive learning system (Chandrasekaran et al., 2014a, 

Chandrasekaran et al., 2014b). Specifically, it is hypothesized that the multidimensionality of 

natural sound categories is best learned through reflexive learning paradigms such as the 

incidental paradigm used in the current study and in previous studies (Wade & Holt, 2005; 
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Chandrasekaran et al., 2014a; Lim Gabay et al., 2015; Roark et al., 2020). The results from the 

current study add to the growing body of research suggesting that there are differences in the 

processing of natural sound categories depending on the learning system engaged by the task. 

Therefore, we suggest that future work directed at natural sound category learning take into 

consideration the learning system being targeted by the training paradigm employed to study 

learning. 

 Results from the current study also provide novel contributions to research investigating 

factors that impact the acquisition of novel sound categories through the reflexive learning 

system. One factor considered that might impact reflexive learning was age. Participation in the 

current study was not limited by age. We found that age impacted the speed at which 

participants completed the task, but learning in each condition did not differ as a function of 

age. These results inform research on the extent to which age impacts novel sound category 

acquisition during reflexive learning. Some results from previous research indicate that age does 

impact category acquisition during reflexive learning (Maddox et al., 2013). Further, there is an 

expectation that auditory category learning should decline with age. The processing of 

nonlexical items is negatively impacted by age (Lima et al., 1991), and the neural processing of 

sounds decreases with age (Skoe et al., 2015). Results from the current study suggest that age 

may not always hinder auditory category learning. Further investigations of the effect of age on 

reflexive learning may aid in the understanding of the extent to which age might hinder 

learning. 

Throughout the experiments in the current study, we noted potential differences 

between older and younger adults. It appeared that stimuli variability disproportionately 

impacted older and younger adults. Specifically, high-variability tokens within trial from the 

same talker seemed to help younger participants to learn the novel tone categories. However, 

high-variability tokens from multiple talkers across trials seemed to disproportionately hinder 

learning for younger participants, while older participants seemed to benefit from the greater 

variability of multiple talkers across trials. It is important to note that the current study did not 

directly test different groups of equal sample sizes at different ages. Rather, there was a range 

of ages from 19 to 66 and there were fewer older participants in the study than younger 

participants. Further study on the effects of talker variability across age groups during incidental 

learning may have important implications for understanding the underlying processes of 
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perceptual categorization during incidental learning and how those processes change across the 

lifespan. 

 The current study also demonstrated that novel sound categories could be formed from 

passive exposure alone with no learning reinforcement. That is, Experiment 2 demonstrated 

that passive exposure without an audio-to-visual correspondence or a reinforcing motor 

response was sufficient for the formation of novel tone categories. These results present a 

contradiction to hypotheses made in the COVIS model regarding reflexive learning, which states 

that immediate feedback via the audio-to visual correspondence is critical to learning due to the 

reliance of the reflexive learning system on dopamine generated as participants make 

predictions and receive feedback (Chandrasekaran et al., 2014b). It is hypothesized that learning 

occurs due to the proximity of the token variability to the visuomotor association (Gabay et al., 

2015) and that the audio-to-visual correspondence was necessary for reflexive learning to occur 

(Roark et al., 2020). Some previous research states that passive accumulation of acoustic input 

regularities is insufficient for learning (Roark et al., 2020), while others maintain that it may be 

possible but that reflexive learning would be much more effective with feedback (McClelland et 

al., 2002; Goudbeek et al., 2008; Chandrasekaran et al., 2014b). We suggest an investigation into 

the extent to which participants can learn from passive exposure, directly comparing category 

formation via passive exposure to learning that includes reinforcement from an audio-to-visual 

correspondence. We also hypothesize that the role of repeated variable tokens is important to 

category formation through passive exposure. It is likely that high-variability stimuli in close 

temporal proximity will benefit category learning in learning paradigms that do not contain 

audio-to-visual learning reinforcement. Further, we hypothesize that the benefit of high-

variability stimuli in close temporal proximity is not paradigm specific. Rather, this type of high-

variability training may benefit category learning across paradigms, and it may be a key factor in 

the ability to form novel sound categories from passive exposure alone.  

 The current study also demonstrated that token variability impacted learning results. 

We demonstrated that variable tokens from the same speaker within trial resulted in more 

robust learning than identical tokens within trial. These results replicate findings from Gabay et 

al. (2015), extending this finding from synthesized tokens to naturally produced tone categories. 

These findings suggest that close temporal proximity of variability is highly beneficial for 

categorization. Experiencing a full range of dimensional variability within trial is more effective 
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than exposure to the full range of variability spread out across trials. We propose that these 

results also relate to talker variability.  

We also demonstrated that talker variability impacts auditory sound category learning 

via reflexive learning. Exposure to a single talker during training resulted in a sharp decline in 

categorization accuracy when exposed to multiple new talkers. By contrast, training on multiple 

talkers resulted in the same ability to generalize to novel tokens from the same talkers and 

novel tokens from novel talkers. These results are similar to auditory category formation during 

reflective learning results suggesting that exposure to the full range of acoustic variability during 

training best prepares participants for generalization. However, we also demonstrated that 

fewer participants learned in the Multi-talker Condition than in the Single Talker Condition and 

those that learned did not achieve accuracy scores as high as the learners in the Single Talker 

Condition. Results from previous studies indicate that there can be a processing cost when 

listening to auditory tokens from multiple talkers (Wong et al., 2004); Kaganovich et al., 2006; 

Creel et al., 2008; Perrachione et al., 2011). When considering these results, we suggest an 

important consideration. In our Multi-talker Condition, each trial contained tokens from the 

same talker. Therefore, variability from talkers was spread out across trials. As pointed out in 

Perrachione et al. (2011), Reverse-Hierarchy Theory (RHT; Ahissar & Hochstein, 2004; Ahissar et 

al., 2009) posits that perceptual learning occurs when listeners identify the correct perceptual 

level (e.g., pitch contour) and attend to meaningful input. It may be that learners were not able 

to identify the correct perceptual level due to the exposure to various talkers being spread 

across trials. Therefore, participants may learn the target tone categories better by hearing 

multiple talkers’ productions within trial (see Barcroft & Sommers, 2005). It is likely that talker 

variability within trial would train native English learners to ignore differences in pitch level 

across talkers and attend to pitch contours instead. Participants would hear the consistencies in 

the pitch contours, identify them as being salient to the category, and be trained to ignore 

differences in pitch height across talkers. When talker variability is only found across trials, this 

process is more difficult due to the temporal distance between the most variable exemplars of 

the category. If within-trial talker variability results in greater learning and greater ability to 

generalize to novel talkers, then it may indicate that the perceptual categorization mechanism 

that generalizes salient features of the category across the range of exemplars is most efficient 
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when the full range of features found in the category exemplars occurs in close temporal 

proximity during training.   

The current study also demonstrated that a lack of segmental familiarity did not 

negatively impact novel sound category learning during reflexive learning. Specifically, 

participants in were equally able to form novel sound categories when tokens were produced 

using familiar segments and unfamiliar segments. These results have implications for factors 

that contribute to effortful listening during novel sound category acquisition. It was expected 

that the segmental environment or the phonotactic environment of the target sound may 

inhibit attention to the target acoustic features (Guion & Pederson, 2007; Liu et al., 2011; 

Wright & Baese-Berk, under review). One hypothesis we present is that a lack of familiarity with 

the segmental or phonotactic structure may differentially increase the processing challenge 

depending on the learning paradigm and the learning system engaged by the task. 

The current study also demonstrated that production during perceptual learning 

severely hindered the formation of novel sound categories during incidental learning. These 

results add to findings from several previous studies that suggest a disruption to perceptual 

learning can occur if the learners produce tokens on each trial (e.g., Baese-Berk, 2019; Baese-

Berk & Samuel, 2016; Leach & Samuel, 2007, Baese-Berk & Samuel, under review). We 

presented several hypotheses that may account for the disruption of production to perceptual 

learning during the incidental acquisition of novel tone categories.  

7.2 FUTURE DIRECTIONS 

7.2.1 Reflective learning, reflexive learning, and passive learning 

In the current work, we situate discussions of the results in a wider understanding of auditory 

category learning. Specifically, we discuss differences between results from the current study 

and previous novel tone category studies in light of the multiple systems of learning presented 

in the COVIS model (Ashby et al., 1998, 2011; Chandrasekaran et al., 2014a). It is important to 

note that we do not directly test reflective and reflexive learning. A major difference between 

the current study and previous studies that use reflective learning methodologies is the time 

course of learning. Reflective methodologies typically require multiple sessions over the course 

of week to develop novel sound categories. In the current study participants were able to learn 
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four new tone categories in a single session. Therefore, it may be, as suggested by the COVIS 

model (Ashby et al., 1998, 2011; Chandrasekaran et al., 2014a), that reflexive learning is better 

suited for learning natural sound categories. However, the time course of learning is only one 

measure of learning. There are other comparisons that could be made to test learning across 

systems. For example, besides behavioral mastery, retention is also an important measure of 

category learning. Further, sensory plasticity is a neural measure of category learning for tone 

categories. We suggest that studies examine novel tone category formation across reflexive, 

reflective, and passive learning systems. Participants could be trained to the point of behavioral 

mastery and the time course of learning could be measured (Wang et al., 1999), as well as 

retention after a set period of time past behavioral mastery (Reetzke et al., 2018). Also, learning 

could be measured across systems by examining the development of sensory plasticity, which is 

measured through the frequency-following response, a neurophonic potential encoding acoustic 

details along the early auditory pathway (see Reetzke et al., 2018). A study could measure the 

time course of the development of sensory plasticity across learning paradigms and investigate 

differences in retention after a set period of time. 

7.2.2 Token variability 

In the current study we demonstrated that token variability within trial aided in category 

formation during incidental learning. Participants that hear multiple variable productions learn 

better than those that hear identical tokens on each trial. The benefit of token variability within 

trial during incidental learning was first demonstrated in Gabay et al. (2015) and incidental 

learning studies that followed incorporated the idea into their methodology (Roark et al., 2020). 

However, there has not been much discussion on token variability within trial. The results from 

our Control Condition, which contained passive exposure to the stimuli and no learning 

reinforcement, lead us to hypothesize that token variability within trial may be very important 

to learning. We hypothesized that having variable tokens in close temporal proximity was 

particularly beneficial for participants in the Control Condition. By contrast, studies that use 

explicit learning paradigms tend to only include a single auditory token on each trial during 

categorization training. They play the sound and the participants respond with the category they 

think the sound belongs to. The results from the current study add to growing methodological 

considerations by testing the impact of the composition of multiple tokens on a single trial, 
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suggesting the possibility that the benefit from the inclusion of multiple tokens with high 

variability on each trial may extend beyond the incidental learning paradigm.  

7.2.3 Talker variability 

The current research examined the effect of talker variability on the incidental acquisition of 

novel tone categories and found that training on multiple talkers hindered and benefited 

learning. Accuracy scores were lower for participants trained on multiple talkers. That is, 

participants trained on multiple talkers learned the novel categories much less accurately than 

participants trained on a single talker. However, scores for participants trained on multiple 

talkers did not decrease when generalizing to novel tokens from novel talkers, but there was a 

dramatic decrease for participants trained on a single talker. By demonstrating the difference 

between training on a single talker and on multiple talkers, we present a need for further 

investigation into the incidental acquisition of novel tone categories with multiple talkers. We 

suggest a line of research investigating the initial learning deficit found when trained on multiple 

talkers. We may expect to find an initial deficit when trained on multiple talkers due to the 

greater amount of variation in features across stimuli. However, there may be ways to moderate 

the impact the variability from multiple talkers has on learning. For example, it is likely that 

talker variability occurring within trials, rather than across trials would result in more robust 

learning because it would train the learner to ignore differences in pitch level across talkers and 

attend to pitch contours instead. Our hypothesis is that when talker variability is only found 

across trials, the categorization process is more difficult due to the temporal distance between 

the most variable exemplars of the category. If within-trial talker variability results in greater 

learning and greater ability to generalize to novel talkers, then it may indicate that the 

perceptual categorization mechanism that generalizes salient features of the category across 

the range of exemplars is most efficient when the full range of features found in the category 

exemplars occurs in close temporal proximity during training.   

Another factor to consider with training on multiple talkers is that higher amounts of 

variability across the stimuli may requires more time to result in more robust learning 

(Goldinger, 1990; Goldinger et al., 1991; Magnuson & Nusbaum, 2007). In the present study, 

participants only heard about one thousand tokens over the course of thirty minutes. If 

participants in a single talker condition and a multiple talker condition were trained longer, it 

may be that accuracy on novel tokens from the same talker(s) would become move equivalent, 
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and in that case, it would be expected that participants in the multiple talker condition would 

better generalize to novel talkers. If additional training led to improvements in the Multi-talker 

Condition over the Single Talker Condition, then it may suggest a more general rule that greater 

variability in the stimuli requires more time for category development to occur, which would 

suggest that the task of categorization becomes more difficult with the amount of variation. This 

is an area that the COVIS model does not fully clarify (Ashby et al., 1998, 2011; Chandrasekaran 

et al., 2014a). The COVIS model specifies that reflective learning is suited for learning 

unidimensional rule-based categories and that reflexive learning is suited for multidimensional 

information integration categories. However, the model simply posits a categorical learning 

model without specifying predictions regarding a range of dimensionality. Will multidimensional 

categories with less variability be acquired in the same way as multidimensional categories with 

higher amounts of variability? Questions regarding the time course of reflexive learning could be 

addressed in several ways. Participants in single talker and multiple talker conditions could be 

trained to behavioral mastery or there could be a set number of training sessions. Having a set 

number of training sessions would also permit an investigation into other training methods, 

such as increasing talker variability over the course of several training sessions.  

7.2.4 Segmental familiarity and variability 

The current work demonstrated that incidental learning was not hindered by a lack of segmental 

familiarity, indicating a potential robustness of resistance to distractors during incidental 

learning. We hypothesize that novel sound category formation in learning paradigms that 

engage the reflexive learning system may not be hindered in the same ways that learning is 

hindered in paradigms that engage the reflective learning system. Therefore, it is possible that 

the inclusion of unfamiliar segments during novel tone category learning could result in different 

impacts on the two types of learning. The lack of familiarity may increase the processing 

challenge for the neural systems that are engaged by working memory and executive attention 

during reflective learning but not increase the challenge for the systems engaged by reflexive 

learning tasks. However, in the current experiments only a single unfamiliar segment was used. 

The language acquisition process typically requires learners to attend to target features across 

multiple syllables containing familiar and unfamiliar segments and phonotactic structures. A 

greater range of segmental and phonotactic familiarity may impact reflexive and reflective 

learning systems to varying extents.  
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 One area that we did not address in the current study is segmental and phonotactic 

variability. Only a single syllable structure was used across all experiments and segments did not 

vary within experiments. When learning languages, learners must attend to target features 

across a range of segments and phonotactic structures. Further, by increasing variability through 

the inclusion of variable phonotactic structures and segments produced by multiple talkers we 

could investigate details regarding the time course of category learning across the range of 

variability encountered by those seeking to acquire the target categories during language 

acquisition (Mullennix & Pisoni, 1999).  

7.2.5 Production and perceptual learning 

The current study demonstrated that producing the auditory token on each trial resulted in a 

disruption of perceptual learning. We hypothesized that during the reinforcement period of the 

trial, participants in the production conditions were anticipating and perhaps preparing for the 

following production. Further, this anticipation and preparation for producing the auditory 

target may have been a key factor in the disruption of the reinforcement learning. However, 

some participants learned regardless of the requirement to produce the tokens. Therefore, they 

were able to continue making predictions during the reinforcement learning section of each 

trial. Therefore, we hypothesized further that participants that learned were able to direct their 

attention appropriately. Attention would first have to be given to the audio-to-visual 

correspondence. If all of the attention was on producing the tokens accurately, then they would 

not have been able to make predictions regarding the location of the visual target. Therefore, 

we suggest that attention could be further investigated in future experiments by explicitly 

increasing attention to producing the targets. Participants could be instructed to produce the 

target as accurately as possible. It may be that exogenously orienting attention to producing 

targets in this way would further result in participants overlooking the audio-to-visual 

correspondence.  

 Attention that is directed towards production and is potentially disrupting perceptual 

learning could also be reduced in the learning paradigm. It might be expected that if there is a 

delay of two to four seconds between the perceptual reinforcement learning mechanism and 

production, perceptual learning would improve due to the separation of auditory, visual, and 

motor processes (see Baese-Berk & Samuel, under review). It is expected that distinct, non-

overlapping processes will support learning (Forrin et al., 2012). However, if creating a delay 
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between the motor response and the production of the auditory target improves learning, it 

may be difficult to determine what process benefits from the delay. We also hypothesized that if 

production is delayed for two to four seconds after perception, the learner may better acquire 

the perceptual categories due to the need to access the perceptual representation again before 

producing it. Under this hypothesis the perceptual representation of the word or sound is 

activated again. From a neural perspective this could suggest that further synaptic strengthening 

may occur with delayed production of the target. However, it may also simply provide time for 

the reinforcement learning process to occur. As discussed, there is a narrow window of 0.3 to 2 

seconds for reinforcement of predictions to occur (Yagishita, 2014). Investigating differences in 

response time between successful learners and unsuccessful learners may help address this 

question.  

7.2.6 Age and reflexive learning 

As discussed 7.1.2, older participants learned as well as younger participants. However, there 

appeared to be differences in the impact of variability on older and younger participants. 

Specifically, high-variability tokens within trial from the same talker seemed to help younger 

participants to learn the novel tone categories. However, high-variability tokens from multiple 

talkers across trials seemed to disproportionately hinder learning for younger participants, while 

older participants seemed to benefit from the greater variability of multiple talkers across trials. 

However, results from the current study are limited by age range and sample size. Ages ranged 

from 19 to 66 and there were relatively few participants in their 50s and 60s compared with 

participants in their 20s. Further, many studies that test age as a factor in cognitive processing 

and learning include participants in their 70s and 80s. Thus, we propose that further study on 

the effects of talker variability across age groups during incidental learning may have important 

implications for understanding the underlying processes of perceptual categorization during 

incidental learning and how those processes change across the lifespan. 

7.2.7 Further data analysis 

Future analysis is also planned for the data collected in the current study. We intend to analyze 

participants responses at test to create a confusion matrix, which will provide insight into the 

tone categories that participants confused with each other. This analysis can provide details 

regarding tonal features that participants found to be salient. Further, we can compare results 
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with reflective learning studies that measured tonal confusions to investigate confusions across 

learning systems (Francis et al., 2008; So & Best, 2010; Hao, 2012).  

A primary reason for altering the methodology from Gabay et al. (2015), as described in 

Section 3.3.1, was to collect mouse tracking data. An analysis of the mouse tracking data will 

allow us to examine changes in the participant’s decision space over the course of learning. Such 

analysis, which has not been done before, will provide precise details regarding the time course 

of learning. It also allows us to develop a dynamic confusion matrix, where we can see which 

sounds the participants confuse and the time course of the resolution of that confusion across 

training. 

7.3 IMPLICATIONS FOR SECOND LANGUAGE ACQUISITION 

Researchers involved in language acquisition may be interested in training programs that result 

in the greatest accuracy across potential variability in the shortest amount of time. Recent work 

investigating the application of incidental learning to real world language acquisition provides 

insight into this concern. Wiener et al. (2019) found that scaffolding learning by beginning with 

acoustically simpler categories in an incidental learning paradigm resulted in improved 

categorization and more native-like Mandarin tone productions than explicit speech training. 

We expect that further investigation of the effect of scaffolding from lower to higher levels of 

acoustic variability during incidental learning would prove beneficial for language acquisition 

pedagogy. For example, a study over several training periods that contains the Single Talker 

Condition and the Multi-talker Condition from Experiment 2, as well as a condition that begins 

with a single talker and increases the number of talkers over several days of training may show 

that increasing talker variability over time could result in a better ability to generalize to novel 

tokens from the same talkers and novel tokens from new talkers in the shortest amount of time. 

Further, we demonstrated that segmental familiarity in the tone bearing unit did not impact 

novel tone learning. However, we hypothesized that increasing the number of unfamiliar 

features may impact learning. For example, increasing the variability and lack of familiarity 

among segmental and phonotactic features may result in a slower time course of learning. 

These are features that can be examined in future research. It may prove beneficial for language 

acquisition researchers to have a more complete understanding of the time course of learning 

that includes a wider range of variability in both reflexive and reflective learning systems. 
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 In Experiment 1 we demonstrated that variable tokens in close temporal proximity 

resulted in better novel tone category acquisition than hearing identical tokens. We 

hypothesized that hearing a range of acoustic variability in close temporal proximity helps the 

learner to extract the salient acoustic features of each tone category and ignore features that 

are unimportant. Further, we hypothesized that this benefit might extend beyond the incidental 

learning paradigm and benefit learning in other learning systems as well. For example, we 

hypothesized that this feature was likely what allowed learners that learned passively in the 

Control Condition to acquire the tone categories. This hypothesis can be tested in a variety of 

paradigms and should be easy to implement in language acquisition settings.  

 We also demonstrated that production during perceptual learning kept participants 

from learning the categories. Although it is likely that production is especially detrimental to 

reflexive learning due to the disruption to the reinforcement mechanic, the disruption that 

production causes to perceptual learning is also attested in other learning systems. Due to the 

speed at which learners can acquire novel sound categories in the incidental paradigm, it may 

be beneficial for those involved in language acquisition to seek to develop reflexive learning 

tools that will enable learners to perceptually form novel sound categories outside of settings 

where they will need to produce the categories. We hypothesize that initial perceptual training 

will allow learners to experience reduced inhibition from producing the target categories.  

 In the current study we do not directly test learning differences that occur between 

explicit and implicit learning methodologies. However, as the majority of previous research has 

focused on explicit learning methodologies, we situate our results in light of the similarities and 

differences between the implicit learning that occurred in our incidental paradigm with previous 

explicit learning. Further, we have attempted to discuss how efforts to learn language may differ 

depending on the type of learning, whether implicit or explicit, and the learning systems 

engaged by the learning paradigm49. Differences between implicit and explicit learning extend 

beyond novel sound category formation. For example, differences between the two types of 

learning are observed during the acquisition of grammar as well. Starting with Reber (1967), 

there has been a long history of the examination of the implicit learning of artificial grammar 

                                                            
49 Throughout the paper, following the COVIS model, we refer to reflective and reflexive learning for 
explicit and implicit learning. However, research on grammar learning tends to use the terms, explicit and 
implicit. 
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(see Shanks, 2005 for review), with results suggesting that humans are able to abstract 

grammatical rules without conscious awareness and use those rules in making grammatical 

judgments. Further, evidence from studies comparing implicit and explicit grammar learning 

suggest, like the COVIS model, that different neural areas are activated during implicit and 

explicit grammar processing (Seger et al., 2000) and the areas activated during implicit 

processing coincide with the processing of abstract patterns, while the areas activated during 

explicit processing coincide with the processing of specific stimuli (Goldberg & Costa, 1981). 

Thus, similar to the learning that occurred in the current study, implicit learning procedures can 

result in the development of abstract rules that are not easily verbalized and these rules can 

then be applied to new stimuli. An area of interest for future study that will be meaningful for 

language acquisition research is the intersection of sound category learning and grammar 

learning. Specifically, does the formation of novel sound categories through implicit learning 

benefit grammar learning over the formation of novel sound categories through explicit 

learning? 

7.4 CONCLUSION 

In the four experiments in this dissertation, we assessed the acquisition of novel tone categories 

using natural tokens and an incidental learning paradigm that engages the reflexive learning 

system. Throughout the experiments we demonstrated that native English participants with no 

prior experience with the target tone categories, from 18 to 66 years old, can use an incidental 

learning paradigm with natural tokens to form four novel tone categories after 30 minutes of 

training with very high, even perfect, accuracy. These findings confirm hypotheses suggesting 

that incidental learning that engages the reflexive learning system is an effective means of 

learning sound categories, and we extend the investigation of factors impacting incidental 

learning into natural speech sound categories.  

Across the four experiments we examined factors known to impact novel sound 

category acquisition. We demonstrated that high variability of tokens within trials resulted in 

greater learning than when the variability was spread out across trials. We also demonstrated 

that training on a single talker results in robust learning to novel tokens but a sharp decline 

when generalizing to novel talkers. By contrast, if participants are trained on multiple talkers 

during training, there is less learning, but there is little or no difference when generalizing 
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learning to novel talkers. We also demonstrated that the presence of an unfamiliar vowel in the 

auditory stimuli did not impact the incidental formation of novel tone categories during 

perception only training. Further, we demonstrated that producing the tokens on each trial 

destroyed perceptual learning, and we presented multiple hypotheses regarding the nature of 

the disruption for future investigation. We also demonstrated that the presence of an unfamiliar 

vowel did not further disrupt perceptual learning over training with familiar segments. Thus, as a 

whole, this dissertation illustrated that learning paradigms that engage the reflexive learning 

system are effective and efficient means for learning novel tone categories. These paradigms 

can be used to investigate multiple factors known to impact novel sound category acquisition. 

Going forward, we propose that future research on novel speech perception consider the 

learning system engaged by the paradigm used in the study and interpret their findings 

accordingly. For example, when using a learning paradigm that engages the reflective learning 

system and findings suggest that learning novel tone categories is extremely difficult, one could 

state that learning tone categories is very difficult when attempting to learn the categories by 

engaging a learning system that is not well suited for the task. For, as we demonstrated, learning 

novel tone categories does not need to be difficult.   
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