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DISSERTATION ABSTRACT 
 
Akhila Krishna Nekkanti 
 
Doctor of Philosophy 
 
Department of Counseling Psychology and Human Services 
 
September 2021 
 
Title: The role of Parent-Child Interaction Therapy in Modifying Children’s Neural 
Profiles: A Resting EEG Study of Children’s Response to Experience 
 
 

The neural networks responsible for coordinating top-down self-regulatory 

processes, or executive functions, undergo intense fine-tuning and reorganization in early 

childhood. For children faced with prolonged stress (e.g., chaotic household environment, 

uncertainty) or adversity (e.g., poverty, maltreatment), these executive function processes 

are sculpted to aid in retaining information about threats to well-being, which may be 

protective short-term, but can become particularly maladaptive over time. Interventions 

that modify the caregiving environment have been shown to buffer the effects of 

adversity on children’s neural development. Parent-Child Interaction Therapy (PCIT) is 

one such intervention that has been shown to improve both parenting behavior and child 

outcomes in meta-analyses and is one of the only interventions evidenced to reduce child 

maltreatment recidivism. The present study sought to evaluate the effects of PCIT on 3-8-

year-old children’s theta/beta ratio, a neural marker of attention regulation as measured 

by electroencephalogram (EEG). Next, this study sought to examine whether individual 

differences in parenting changes across the PCIT intervention were related to children’s 

theta/beta ratio, for the PCIT group only.  

Data for this dissertation were drawn from a randomized control trial 
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investigating the biobehavioral mechanisms of change in parent and child self-regulation 

skills as a result of PCIT for child-welfare involved families (NIDA R01 036533; PIs: 

Skowron & Fisher). 204 parent-child dyads with a history of child welfare involvement 

were referred into the study by the local Lane County Department of Human Services and 

randomized to PCIT or services-as-usual control conditions. The hypothesis that 

adversity-exposed children in PCIT would show lower theta/beta ratios, indicative of 

better attention regulation, after accounting for psychosocial risk, was supported for the 

eyes-closed but not the eyes-open condition. The hypothesis that individual differences in 

parenting skill change in PCIT group would be associated with children’s post-treatment 

theta/beta ratio was not supported. Taken together, this study fills a valuable gap in 

understanding whether parenting intervention, namely PCIT, can modify children’s 

neural markers of attention regulation after accounting for early adversity exposure. 
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I. BACKGROUND AND SIGNIFICANCE 

Adversity in Early Childhood Dramatically Impacts Children’s Development 

Children’s developmental trajectories are shaped by both experience-expectant 

and experience-dependent processes in infancy and early childhood (Gabard-Durnam & 

McLaughlin, 2019). Namely, the neural networks responsible for coordinating top-down 

self-regulatory processes (orbitofrontal cortex and its relations with the amygdala and 

anterior cingulate cortex) undergo intense fine-tuning and reorganization of network 

connections in response to contextual input (Abraham et al., 2010; Diamond, 2006; 

Gilmore et al., 2018; Lyall et al., 2015). These top-down cognitive processes, commonly 

termed executive functions (EF), are implicated in working memory, inhibitory control, 

stress responsivity, and attentional flexibility (Miller & Cohen, 2001; Ochsner & Gross, 

2008; Stuss & Alexander, 2000). Adaptive development of such executive functions in 

early childhood is critical for children’s growing capacity for self-regulation, socio-

emotional competence, and academic success (Blair & Razza, 2007; Rhoades et al., 2009; 

Shonkoff & Phillips, 2000).  

Executive functioning processes allow children to 1) flexibly choose their 

behavior based on internal representations of working memory and to 2) inhibit dominant 

maladaptive behaviors in exchange for adaptive self-regulatory behaviors (Bryck & 

Fisher, 2012). Examples of such processes that are critical for success in school and other 

settings include: holding instructions in mind while completing a task, waiting for one’s 

turn, and problem-solving to achieve a goal. For children faced with prolonged stress 

(e.g., chaotic household environment, uncertainty) or adversity (e.g., poverty, 

maltreatment), these processes are sculpted to aid in retaining information about threats 
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to well-being, often resulting in greater vigilance and reactivity (Loman & Gunnar, 2010; 

Roth et al., 2009; Szyf, 2009). Though such changes in stress-responsivity may be 

protective short-term, they can become particularly maladaptive over time for other social 

situations (e.g., school, peer relationships). Long-term, children with poor executive 

function abilities are at greater risk for oppositional disorders, learning problems, and 

development of psychopathology (Cicchetti & Toth, 2005; Diamond, 2012). 

 The ways in which experiences of early adversity impact children’s development 

isn’t always straightforward. Variations in the types of enrichment provided across 

childhood (e.g., affective, cognitive) interact uniquely with the child’s genetic makeup 

and contextual experience to elicit markedly different neural profiles, executive function 

capacities, and stress response patterns (King et al., 2019; Shields et al., 2016). 

Enrichment, in the form of greater parental sensitivity has been shown to promote 

children’s neural maturation and normalize diurnal cortisol rhythms (Bernard et al., 2015; 

Bick et al., 2019). Enrichment in the form of educational input and increased resources, 

on the other hand, has been associated with greater attention regulation and adaptive 

neural profiles (Raine et al., 2001). In contrast, sustained levels of high stress and 

adversity are associated with overactivity of the amygdala and orbitofrontal cortex, and 

greater loss of neural connections in the hippocampus and medial prefrontal cortex, 

which often manifest as anxiety, impaired memory, poor mood control, and challenges 

for learning new skills (Coley et al., 2015; Deater-Deckard et al., 2010; Johnson et al., 

2016; McEwen & Gianaros, 2011; Shonkoff et al., 2012). A recent study shows that 

higher chronic maternal stress is associated with increased low-frequency brain activity 

(i.e., higher theta power) and decreased high-frequency brain activity (i.e., less alpha and 
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beta power) in children, suggestive of maturational lags in development (Troller-Renfree 

et al., 2020) As such, children raised in high-stress or low-resource environments are at 

disproportionately higher risk for developing regulatory patterns that put them at a 

disadvantage for school and settings with expectations that may differ from home. 

Learned behavior patterns that may be effective or acceptable in a high-risk home context 

can disrupt the child’s external relationships (e.g., peers, teachers; Dodge et al., 1990), 

and put them at further risk for deviant developmental trajectories well into adolescence 

and adulthood (Blair & Raver, 2012; Moylan et al., 2010). 

Developmental psychobiology models (e.g., experiential canalization model; 

ecobiodevelopmental framework) argue that early intervention targeting reductions in 

environmental chaos, threat, and inconsistency, and improvements in caregiving 

capacities can have drastic impacts on children’s physiological development and overall 

well-being by buffering the effects of early adversity (Blair & Raver, 2012; Shonkoff et 

al., 2012). Early adversity, such as poverty and environmental chaos, undoubtedly 

impacts quality of caregiving as parents are put under significantly greater parenting 

stress (Huth-Bocks & Hughes, 2008). While post-birth reductions in maternal sensitivity 

have been found to further exacerbate any adverse effects of early stress on children’s 

brain development (Wang et al., 2019) and executive functioning abilities (Evans et al., 

2005; Repetti et al., 2002), interventions that improve parent sensitivity have been shown 

to buffer the effects of early life stress on children’s stress-response physiology (Dozier 

et al., 2008; Fisher et al., 2006). In this study, I aim to build on this existing research to 

test whether an intervention that supports contingent, sensitive caregiving amidst the 

presence of chronic stressors may promote more adaptive development of children’s 
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brain activity. Intrinsic neural activity, such as what is captured by resting-state 

electroencephalogram (EEG), reflects how various parts of the brain communicate with 

each other and ultimately drive behaviors. For example, resting neural activity in the 

frontal lobe can provide an understanding of what patterns of electrical impulses in the 

brain might be driving poor inhibitory control or attention regulation. 

Children’s Intrinsic Neural Activity May be Particularly Susceptible to Early 

Experience 

Resting EEG, hereby referred to as rsEEG, captures synchronized neural 

activation patterns while an individual is at rest (i.e., not engaged in any particular task 

requiring a response). These activation patterns are highly complex and occur at multiple 

underlying base frequencies simultaneously. Each of these base frequencies, or bands, 

vary slightly based on individual and contextual factors but can be classified as follows 

from low to high: theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 

Hz). The power within each of these bands reflects the amount of energy in that band; 

higher power is reflective of more neurons firing synchronously. RsEEG studies of band 

power in children thus capture rapidly changing alterations in children’s neural activity, 

often grouped by region (e.g., frontal), with keen sensitivity to individual differences.  

Theta  

Through development in early childhood, children are expected to display 

decreases in low-frequency rhythms such as theta, and increases in higher frequency 

rhythms such as alpha and beta (Matousek et al., 1973). Of course, these expected 

trajectories have been observed primarily in children who are raised in contexts free from 

severe adversity. From infancy to age 2, high levels of theta at rest are argued to be a 
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marker of greater plasticity, or in other words, greater susceptibility to neural changes as 

a function of environmental input (Stroganova & Orekhova, 2007). In the first couple 

years of life, this enhanced/greater plasticity enables rapid reorganization of neural 

patterns in response to the presence or absence of various contextual inputs. In this way, 

plasticity promotes development in ways that enable the child to adapt to their immediate 

environment (e.g., greater vigilance in high-threat environments), but may or may not be 

adaptive long term. Over time as the brain matures, theta power, and concurrently brain 

plasticity, is expected to decrease (Matousek et al., 1973). Children who display sustained 

high levels of theta however, tend to also present with difficulties learning and regulating 

attention (Barry et al., 2003; Clarke et al., 2002; Snyder & Hall, 2006). Research has 

linked sustained high levels of theta to maturational lags in cortical development 

(Corning et al., 1982; Matsuura et al., 1993), and more recently linked difficulties in 

attention regulation with a developmental lag in the maturation of ventral fronto-

subcortical circuitry (Liechti et al., 2013; Shaw at al., 2007). Similar findings are present 

in adult samples, where theta oscillations are associated with working memory and 

decision making (Jacobs et al., 2006), such that high theta power indicates difficulties 

with executive functioning and regulation.  

Alpha 

Alpha frequency is expected to increase over the course of development (Marshall 

et al., 2002; Matousek et al., 1973; Miskovic et al., 2015; Perone et al., 2017) and is 

typically associated with active inhibition or “turning off” of brain networks that are not 

needed for task-based control or alertness in resting tasks (Coste et al., 2011). In infants, 

high frontal resting alpha has been associated with a greater ability to engage working 
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memory and inhibitory control processes as measured by the Piagetian A-not-B task (Bell 

& Fox, 1992). High alpha in early childhood has been associated with better executive 

functioning abilities in later childhood (Cuevas et al., 2012). Recall that adaptive 

development that promotes better executive functioning is marked by decreasing theta (4-

8 Hz) with increasing age and increasing alpha (8-13 Hz) with increasing age. Recent 

research has demonstrated that children with difficulties in regulating attention may also 

have slow alpha with increasing age (Arns et al., 2008; Chabot & Serfontein,1996) 

Importantly, research that uses fixed frequency ranges for alpha and theta bands may 

result in erroneous findings of high theta power related to executive functioning,  when 

actually capturing power of slow alpha frequency (Arns et al., 2008; Lansbergen et al., 

2011).  

Beta 

Higher gvbb beta power during rest is indicative of attentional arousal and 

concentration in children (Loo & Makeig, 2012), while excessive levels of beta power in 

the frontal region have been associated with temper tantrums and moodiness (Clarke et 

al., 2001). Similar to alpha power, beta power is expected to increase slightly as a 

function of age for adaptive development that promotes better executive functioning.  

Theta/Beta Ratio 

Overall neural profiles comprised of excess power in low-frequency bands (e.g., 

theta) and deficits in power for high-frequency bands (e.g., alpha, beta) have been 

associated with learning disorders and difficulties with attention regulation in children 

(Barry et al., 2003; Chabot et al., 2001). The theta/beta ratio is one such neural profile 

comprised of excessive theta activity and concomitant reductions in beta activity over the 
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frontocentral scalp. A high theta/beta ratio has been conceptualized to mark poor 

regulation of bottom-up processes by top down processes (e.g., executive functions; 

Putman et al., 2014) in both children and adults. Recall however, that slow alpha can 

sometimes inflate theta, resulting in an artificially higher theta/beta ratio. This 

phenomenon has led to some mixed findings on the validity of theta/beta ratio in 

capturing attention processes (Loo et al., 2016). Recent research has found that after 

accounting for individual differences in alpha frequency, the theta/beta ratio is indeed a 

reliable marker of executive function in children (Perone et al., 2018). In adults, a lower 

theta/beta ratio has similarly been associated with better executive functioning, while a 

higher theta/beta ratio has been associated with risk taking (Massar et al., 2014; Schutter 

& Van Honk, 2005), less inhibited responses to fearful faces (Putman et al., 2010), and 

ADHD diagnoses (Loo et al., 2013). In children, this profile has been validated as a 

robust diagnostic marker of ADHD (effect size = 3.08; Snyder & Hall, 2006) and shown 

to be highly stable over time (Monastra et al., 2001). Studies examining neurofeedback 

training have often focused on training individuals to lower their theta/beta ratio (Egner 

& Gruzelier, 2004; Kouijzer et al., 2009; Wangler et al., 2011) via direct feedback on 

particular aspects of their EEG signal, in order to improve self-regulation in children and 

adults. Recent work by Clarke et al. (2019) found the theta/beta ratio to be associated 

with P300 latency but not P300 amplitude (components of event-related potentials), 

solidifying previous findings that the theta/beta ratio is truly capturing cognitive 

processing capacity (i.e., executive function) rather than context-dependent arousal 

(Barry et al., 2009).  
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Consistent with research relating early adverse experiences with difficulties with 

attention and executive function (Teicher et al., 2016), higher theta/beta profiles have 

been observed in children exposed to high levels of psychosocial risk (Marshall et al., 

2004), and mediate the negative association of institutionalization on later ADHD 

diagnoses (McLaughlin et al., 2010). Though the theta/beta ratio was not measured 

outright in the Buchacrest Early Intervention Project, higher levels of theta and lower 

levels of beta have been observed in institutionalized children, relative to never 

institutionalized children (Marshall et al., 2004). On a less severe scale and similarly not 

measured outright, recent research demonstrates higher early home adversity (Bick et al., 

2019), and higher maternal stress (Troller-Renfree et al., 2020) in early childhood is 

associated with greater power in theta, and lower power in higher frequency bands such 

as alpha and beta. These findings are consistent with the neural profile described above: 

high theta, slow alpha, and low beta are each associated with poor executive function 

capacity in early childhood. 

Resting EEG methodologies are especially versatile in assessing neural activity in 

young children who may have difficulty laying still as in a functional magnetic resonance 

imaging scanner or staying focused for extended periods of time as in task-based 

methods. Despite this versatility and clear understanding of rsEEG methods’ sensitivity 

to capture individual differences in early experience, there exists a limited understanding 

of how intervention can improve children’s neural trajectories. Preventative interventions 

that alter the theta/beta ratio in children faced with early adversity may improve 

trajectories of well-being by directly altering neural markers related to executive function 

capacities during a critical developmental period.  
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Intervention in Early Childhood Can Change Frontal Neural Activity  

Burgeoning evidence shows that parenting interventions that alter the immediate 

caregiving environment during early childhood can promote adaptive neural profiles. 

Few studies have been conducted with typically developing populations. Mothers who 

showed more positive affect during parent-child interactions had children with more 

rapidly increasing frontal alpha power up to 24-months in typically developing children 

(Bernier et al., 2016). Raine and colleagues (2001) tested the effects of early educational 

and health enrichment at 3-5 years-old, on children’s attention regulation at 11 years-old. 

The intervention was delivered in a nursery school setting and included: preschool 

education, nutrition education, nutritional meals, physical exercise, health screening and 

referral, parental involvement, remediation of learning and behavior problems, and home 

visits. When children were 11 years old, those who participated in the nursery 

intervention displayed lower theta power during both rest and attention tasks, but showed 

no significant differences in alpha or beta bands (Raine et al., 2001). EEG was assessed at 

only a single time-point, so interpretation of longitudinal effects is not possible.  

Further up the risk spectrum, Bick and colleagues (2019) studied a sample of 

children who were referred to Child Protective Services for concerns of child 

maltreatment. In this study, children who participated in the Attachment and 

Biobehavioral Catchup intervention at 3 years-old displayed greater high-frequency 

power (beta, 12–20 Hz) when assessed later at 8 years old, than children assigned to the 

control intervention (Bick et al., 2019). In this study, EEG was measured at a single time 

point at the age 8 follow-up, so like the study by Raine and colleagues (2001), 
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interpretation of longitudinal effects is not possible. Further research that examines 

longitudinal neural responses to caregiving intervention is warranted. 

At the extreme end of the risk spectrum are studies of resting EEG from the 

Bucharest Early Intervention Project (BEIP), in which children were faced with extreme 

neglect and abuse during institutionalization (Marshall et al., 2004). The first resting EEG 

study with this sample was conducted with infants and young children between 5 and 31 

months, and examined power in the alpha, theta, and beta bands during an eyes-open 

resting condition (Marshall et al., 2004). Results indicated significant group effects for 

absolute power in all bands such that institutionalized children displayed greater theta 

power, lower overall alpha power, and lower beta power relative to the never-

institutionalized group. Institutionalized children displayed significantly greater relative 

theta power and lower relative alpha power, but no differences in relative beta power. 

Importantly, relative power accounts for differences in head circumference and weight 

which may have impacted findings. A follow-up study conducted in 2008 examined 

whether age of placement in a foster care intervention relative to institutionalized care 

was associated with EEG power at 42 months of age in the eyes-open condition (Marshall 

et al., 2008). Findings showed that children who were placed in foster care intervention 

before 24 months of age had higher levels of alpha power compared to those who were 

placed in the intervention after 24 months of age. Next, a longitudinal study conducted 

with the same participants with data points at baseline, 30-33 months, 42 months, and 96 

months (8 years) examined oscillation frequency, amplitude, and cross-frequency 

coupling during an eyes-closed resting condition (Stamoulis et al., 2015). Overall, 

findings reflected significant group differences in all three components of resting EEG 
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such that children placed in the foster care intervention following institutionalization 

displayed neural profiles similar to those in the never-institutionalized group reflective of 

decreased risk for neuropsychiatric disorders and better cognitive ability. Findings 

specific to trajectories of power showed that children placed into the foster care 

intervention by 2 years old displayed greater alpha and beta power until 42 months, but 

not at 8-years. A separate study examined how foster-care placement impacted band 

power at 8-years of age in the eyes-open condition (Vanderwert et al., 2010). Unlike 

Stamoulis et al., that found no differences in alpha power in the eyes-open task at 8-years, 

Vanderwert and colleagues (2010) found that children who were placed in foster-care 

before 2 years of age showed improvements in alpha power comparable to children who 

had never been institutionalized. In the latest study of the Bucharest sample, Vanderwert 

and colleagues (2016) examined relative power between the 8-year and 12-year 

assessments in the eyes-open resting condition. Overall, findings showed that children 

placed in the foster care intervention (relative to those who remained in institutions) 

displayed decreases in theta power and increases in alpha power, but no changes in beta 

power. Recall that this profile of decreased theta power and increased alpha power is 

indicative of developmentally appropriate maturation and is associated with adaptive 

executive function capacities.  

To date, our causal understanding of how caregiving environments can impact 

children’s resting neural activity following adversity depends largely on studies of 

children who are faced with immense psychosocial deprivation and atypical institutional 

rearing. Though the BEIP study provides causal evidence for the impacts of caregiving 

enrichment on children’s attachments, cognitive functioning and psychopathology 
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(Almas et al., 2016; Humphreys et al., 2015; Smyke et al., 2010), in addition to resting 

EEG profiles, there remains a large gap in understanding whether such findings 

generalize to samples with greater variation in types of adversity exposures (e.g., poverty; 

interpersonal violence; and child maltreatment). While the Bick and colleagues’ (2019) 

study examined band power in children referred to Child Protective Services, rsEEG was 

only collected at one time point following completion of the caregiving intervention. 

Further, each of the rsEEG intervention studies to date vary by resting condition. 

Recall that in previous work examining associations between the Attachment and 

Biobehavioral Catchup intervention and rsEEG in children at 8 years-old, band power 

was averaged across both eyes-open and eyes-closed tasks (Bick et al., 2019). 

Alternatively in studies of the Bucharest Early Intervention Project, rsEEG was collected 

across both eyes-closed and eyes-open tasks, but it was analyzed primarily in the eyes-

open condition (Marshall et al., 2004; Marshall et al., 2008; Vanderwert et al., 2010; 

Vanderwart et al., 2016), with one study choosing to focus primarily on the eyes-closed 

condition (Stamoulis et al., 2015). Recent research highlights significant differences in 

observed band power from 3 to 9 years of age, across eyes-closed and eyes-open 

conditions (Perone et al., 2018). Alpha and theta were found to be generally higher when 

eyes were closed, while beta was found to be higher when eyes were open. Theta/beta 

ratio after accounting for individual alpha frequency was also found to be higher in eyes-

closed conditions, relative to eyes-open conditions. Taken together, these findings 

suggest that eyes-closed and eyes-open conditions may be providing different 

information about attention regulation and top-down processes. 
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The first aim of this dissertation will address these gaps by testing the effects of 

an intensive parenting intervention (i.e., PCIT) on pre-post changes in children’s resting 

theta/beta ratio following variable exposure to early adversity, relative to a services-as-

usual control group in both eyes-closed and eyes-open resting conditions. Early adversity 

in this sample includes: child-welfare involvement, adverse early experiences, and 

socioeconomic disadvantage. My primary hypothesis is that children in the PCIT group 

will show more adaptive neural profiles (i.e., lower theta/beta ratio, anchored to 

individual alpha frequency) relative to the control group, after accounting for early 

adversity. 

Parent-Child Interaction Therapy May Impact Children’s Neural Activity 

The caregiving environment interacts with the child’s genetic make-up and 

sociocultural context to influence a transactional pattern of behavior and self-regulation 

(Skowron & Funderburk, 2021). Contingent intervention that disrupts this interaction, 

especially in the case of maladaptive caregiving processes, can directly influence the 

child’s development. Founded from social learning and developmental-organizational 

theories, Parent-Child Interaction Therapy (PCIT) has been shown to improve both 

parenting behavior and child outcomes in meta-analyses (Thomas et al., 2017), and is one 

of the only interventions evidenced to reduce child maltreatment recidivism (Chaffin et 

al., 2004; Chaffin et al., 2011; Thomas & Zimmer-Gembeck, 2011). That is, PCIT is one 

of the few interventions to prevent parents who have a history of physically abusing their 

children from re-entering the child-welfare system. Since originally being developed for 

treating disruptive child behaviors such as tantrums and externalizing behavior (e.g., 

Eyberg, 1995) PCIT has been used as an effective treatment for ADHD (Wagner & 
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McNeil, 2008), behavioral adjustment (Chaffin et al., 2004), internalizing symptoms 

(Carpenter et al., 2014), and for parents with caregiving difficulties in the absence of 

child behavior problems (Herschell & McNeil, 2005).  

A meta-analysis by Kaminski et al., (2008) identified four components of 

parenting programs that successfully reduce children’s externalizing symptoms with large 

effect sizes: 1) positive interactions with child, 2) use of time out procedures, 3) 

consistent responding, and 4) skills practice with own child. PCIT utilizes each of these 

components throughout treatment and can help parents develop new caregiving skills, 

adopt effective discipline strategies that replace negative practices, and engage in more 

consistent, sensitive interactions with their child. The live coaching component of PCIT 

in which therapists provide parents with in-the-moment coaching to redirect attention, 

regulate emotion, and implement positive PCIT skills allows for immediate disruption of 

coercive cycles (Skowron & Funderburk,2021; Nekkanti et al., 2020).  

The first phase of treatment, child-directed interaction, focuses on enhancing 

parental sensitivity and responsiveness to foster greater warmth, responsiveness and 

nurturing in the parent-child relationship (Herschell & McNeil, 2005; Urquiza & McNeil, 

1996). Parents are guided to purposefully orient their attention to children’s positive 

behavior (e.g., waiting for their turn) by narrating their actions (i.e., behavior 

descriptions), active listening (i.e., reflections), or providing enthusiastic praise (i.e., 

labelled praises). Describing children’s behavior and reflecting their verbalizations during 

play each build parent responsiveness by encouraging consistent positive interaction with 

the child’s behaviors. Use of specific, directed praise during play reinforces child 

behaviors that are positive or expected, thus encouraging behavior regulation (i.e., 
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refraining from behavior that does not elicit praise). That is, parents learn how to notice 

children’s behavior patterns and either describe or praise behaviors that are neutral or 

positive. This process of drawing the child’s attention to the task at hand through parent 

verbalizations is thought to improve children’s ability to slow distracting thoughts and 

focus on the task at hand. At the same time, parents are coached to avoid negative 

behaviors or those that interfere with children’s lead during play. Specifically, parents are 

coached to refrain from using criticism, asking questions, or making commands during 

child directed play (e.g., move the block). Previous work by Hakman and colleagues 

(2009) demonstrates that the most rapid improvements in positive parenting skills and 

reduction in negative parenting skills for parents with a history of perpetrating physical 

abuse happens during the first three sessions of this child-directed interaction phase of 

PCIT.  

The second phase of PCIT, Parent-Directed Interaction, focuses on training 

parents to use clear, consistent, and safe child management techniques. Parents are 

coached to utilize a contingent sequence of warnings, time-out, and praise for disruptive 

behavior. Such a scripted, consistent discipline protocol is thought to reduce parent stress 

and increase consistency and predictability in the child’s environment. All behaviors 

taught and coached across both child-directed and parent-directed phases of treatment are 

further reinforced by brief homework to complete between weekly sessions.   

Whether intervention such as PCIT that enhances positive parenting and reduces 

maladaptive parenting using live, remote coaching techniques can yield linked 

improvements in children’s neural development is largely unknown. The second aim of 

this project will test whether trajectories of session-by-session improvements in positive 
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skills and reductions in negative skills, assessed at study entry, during the child-directed 

phase of PCIT at mid-treatment and post-treatment,  account for differences in children’s 

neural development. Specifically, I will examine how over time change in parenting skills 

that draw children’s attention to the present moment (behavior descriptions, reflections) 

and encourage sustained positive child behavior (direct labeled praise), and harsh control 

parenting  contribute to the variation in children’s theta/beta profile change from pre- to 

post-treatment. I predict that greater growth in PCIT-driven improvements in warm, 

responsive parenting and reductions in negative parenting will account for lower 

theta/beta ratio in children’s resting brain activity, indicative better top-down attention 

regulation.   

Study Aims 

This study is designed to evaluate the effects of PCIT on adversity-exposed 

children’s resting brain activity, relative to a services-as-usual control condition. The 

primary aims of this dissertation are as follows: 

Aim 1:  Test the effects of PCIT on children’s resting theta/beta ratio, a neural 

marker of attention regulation, relative to family services-as-usual controls.  

Hypothesis: Children randomized to the PCIT intervention will show lower 

theta/beta ratios, reflective of better attention regulation, compared to the control 

group. 

Aim 2: Test whether differences in children’s resting neural profiles are predicted 

by trajectories of inter-individual change in session-by-session parenting skills in 

the PCIT group. 
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Hypothesis 1: Trajectories of growth in positive parenting skills and reduction in 

negative parenting skills predict children’s theta/beta ratio at post-treatment, such 

that steeper growth in parenting skills is predictive of better attention regulation as 

marked by theta/beta.  

A deeper understanding of how an intervention that targets parent-child interactions is 

related to changes in children’s intrinsic neural activity can help researchers further 

evaluate the extent to which deviant developmental trajectories are preventable.  
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II. METHODS 

Sample 

Data were drawn from a randomized control trial investigating the biobehavioral 

mechanisms of change in parent and child self-regulation skills as a result of PCIT for 

child-welfare involved families (NIDA R01 036533; PIs: Skowron & Fisher). Parents and 

children with a history of child welfare involvement were referred into the study by the 

local Lane County Department of Human Services. 204 participating parents and their 3 

to 8-year-old children completed baseline assessments. 120 dyads were randomized to the 

PCIT intervention (84 randomized to active control), and 167 total dyads successfully 

completed the post-intervention assessment. Information regarding child-maltreatment 

recidivism is collected for all families where possible, though that data collection is 

ongoing. Caregivers primarily include biological or adoptive mothers (nmothers = 180, 

nfathers = 24). Family inclusion criteria are: (a) the participating parent was at least 18+ 

years old at study entry, (b) children participate with their biological or custodial parent; 

(c) the participating child was between 3 and 8-years-old at study entry; (d) no parent or 

caregiver in the home was a documented child sexual abuse perpetrator per child welfare 

records (contraindicated with PCIT), (e) the child was living with their participating 

parent at least half the time, and (f) the parent provided written informed consent to 

participate. No group differences were found on children’s demographic characteristics 

(see Table 1).  
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Table 1   
Baseline Characteristics Across Conditions   

   
Services as 

Usual  
(n = 84) 

PCIT  
(n = 120) 

PCIT 
Engagers 
(n = 79) 

Race/ Ethnicity      

European American/ 
White   93% (78) 93% (112) 94% (74) 

Hispanic American / 
Latinx   13% (11) 17% (20) 18% (14) 

African American/ 
Black   8% (7) 9% (11) 5% (4) 

Asian/ Asian American   4% (3) 3% (3) 4% (3) 
Pacific Islander   2% (2) 4% (5) 6% (5) 
Native American/ 
Alaskan Aleut   21% (18) 18% (22) 19% (15) 

Other   1% (1) 1% (1) 1% (1) 
Mean Child age at 
baseline   4.75 

(1.44) 4.70 (1.36) 5.24 
(1.48) 

Family income below 
poverty   88% (63) 72% (72) 61% (48) 

Parent’s marital status      
Married or living 
together   24% (20) 36% (43) 32% (25) 

Single   76% (64) 64% (77) 68% (54) 
Child gender      

Male   60% (50) 51.7% (62) 54% 
(43) 

Female   41% (34) 48% (58) 46% 
(36) 

Note. Descriptives come from original data prior to imputation. Frequencies are displayed 

in parentheses for all variables except child age, for which standard deviation is within 

parentheses. PCIT Engagers are a subgroup of those randomized to PCIT (n = 120), and 

include those families that engaged in at least one session of PCIT.  
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Procedure 

Procedures relevant to the present study are described here. Pre-intervention and 

post-intervention assessments were conducted with all participants in the study (both 

PCIT and control groups), each wave completed in two successive laboratory visits 

scheduled one week apart. Mid-treatment assessments were conducted only with PCIT 

intervention group families, after completion of the first PCIT phase (i.e., child-directed 

interaction; CDI) and before beginning the second PCIT phase (i.e., parent-directed 

interaction; PDI). Dyadic interaction tasks are collected during pre-, mid-, and post-

intervention assessments, while children’s EEG was collected during pre- and post-

intervention assessments only. Please see Nekkanti et al., (2020) for a description of the 

full clinical trial study protocol. 

PCIT Intervention 

 Parent Child Interaction Therapy (PCIT) is an intensive, behavioral parent-

training model that uses live coaching of parent–child interactions. It is designed to 

improve child functioning by interrupting patterns of harsh, coercive interaction and 

enhancing parents’ warm, positive parenting, autonomy support, and competent child 

management skills. Parents receive live coaching from a therapist who provides 

immediate prompts via “bug-in-the-ear” technology while the parent interacts with their 

child, creating opportunities in the moment for parents to adjust their behavior and 

correct errors on the spot. With the PCIT therapist out of sight, children experience their 

parent as a critical agent of positive change (Skowron & Funderburk, 2021). Time-

limited PCIT is delivered in two sequential treatment phases following a motivational 

enhancement training tailored to improve attrition with child welfare families. Phase 1, 
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Child-Directed Interaction (CDI) aims to enhance positive parenting and interrupt 

coercive cycles by coaching parents to let the child lead and use more: labelled praises, 

behavior descriptions, and reflections, while avoiding use of: criticisms, questions, and 

commands. Phase 2, Parent-Directed Interaction (PDI) aims to coach effective parent 

commands within the context of a positive parent-child relationship and establish a 

consistent time-out protocol to replace parents’ negative or ineffective disciplining 

strategies. The skills taught in CDI are coached as-needed and reinforced in PDI to 

ensure parents maintain a warm, positive interaction even amidst employing discipline 

strategies.  

Services-as-Usual Control  

The family services-as-usual (SAU) control condition is an ethical comparison 

group in which families receive typically delivered services provided by child welfare 

agencies. These services include but are not limited to in-home family visitation, parent 

education training, food benefits (e.g., supplemental nutrition assistance program). 

Service utilization by all families (including those randomized to PCIT) are collected at 

post-treatment.  

Measures   

Resting EEG 

Children completed measures of resting EEG at a pre-treatment assessment prior 

to randomization, and at their post-treatment assessment. All children were fitted with a 

64-channel EGI Hydrocel Geodesic Sensor Net (EGI Philips; Eugene, OR) except if the 

child’s cap was too small, whereby a high-density 256-channel net was used (n = 9). 

EEG was recorded at a sampling rate of 500 Hz with 0.1 Hz high-pass filter and Net Amp 
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300 amplifier integrated with Net Station software version 5.2.0.2 (EGI Philips; Eugene, 

OR).  

Rest Tasks. After the net was placed, impedance was measured and corrected 

where possible. Children were then asked to sit in the acquisition room with a trained 

research assistant (who had greeted them, given them stickers, and assisted in EEG cap 

placement), with the lights turned off. Research assistants used a standardized script to 

ensure all participants were provided with the same instructions. Children completed 1-

minute alternating eyes-open (EO) and eyes-closed (EC) tasks for a total of 4 minutes. 

For the eyes-open task, children were instructed to fixate on a blank screen, while the 

research assistant sat nearby. Previous work has found significant variation in amplitude 

and frequency depending on the task (Stamoulis et al., 2015; Anderson & Perone, 2018).  

Processing and Data Reduction. EEG data were processed using the EEGLAB 

toolbox (Delorme & Makeig, 2004) in Matlab 9.6.0 (The Mathworks, Inc. EEG data 

collected across both resting and cognitive tasks were processed together using the 

following pipeline. Data were filtered using low-pass (50 Hz) and high-pass filters (1 Hz) 

and resampled to a rate of 250 Hz. The EEGLAB plug-in, clean_rawdata, was used to 

remove major artifacts prior to spherical channel interpolation. Channels were then re-

referenced to the average which allows for more consistent comparisons across studies 

and samples. EEGLAB plug-in,  pop_runica, was used to conduct infomax independent 

component analysis across all 64 channels, across all tasks. Data were then epoched into 

resting eyes-open and eyes-closed tasks. To account for remaining artifacts, the IClabel 

function was used to identify and remove any artifacts sourced from eye or muscle 

movements. The pwelch function was used to calculate the power spectral density (PSD) 



 

23 
 

via a discrete Fourier Transform using 50% overlapping, 2-second Hanning window with 

a frequency bin of 250 Hz for eyes-open and eyes-closed tasks separately. 

Power in theta, alpha, and beta were computed and boundaries for frequency 

bands were defined based on individual alpha peak frequency (IAF). Anchoring 

frequency bands to IAFs more accurately captures age-related changes and minimizes the 

contribution of slow alpha activity to frequency estimates (Lansbergen et al., 2011). 

Previous research has demonstrated that IAFs are known to increase over the posterior 

region from infancy to late childhood (Marshall et al., 2002; Miskovic et al., 2015; 

Perone et al., 2017). IAFs were calculated by identifying the maximum attenuation of 

power in the 6-13 Hz range from the difference between eyes-open posterior power and 

eyes-closed posterior power (Arns et al., 2012). Posterior power was calculated from 

channels 33 to 39. Frequency bands were then anchored to IAFs (Lansbergen et al., 2011; 

Perone et al., 2017) as follows: 

Theta: 0.4*IAF – 0.8*IAF  

Beta: 1.2*IAF – 30 Hz 

Alpha: 0.8*IAF – 1.2*IAF 

Relative power was used instead of absolute power in order to account for 

developmental differences in skull thickness (Clarke et al., 2001) in our age-varying 

sample. Relative power was calculated by dividing the power in each frequency band by 

the total power for each individual. The analyses for this study focused on frontal regions 

of the brain, including channels: 11, 13, 12, 14, 9, 8, 6, 2, 3, 60, 59, 57 (see Figure 1). 
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Psychosocial Risk Factors 

Adverse Childhood Experiences. Parents reported on their child’s exposure to 

adverse childhood experiences (ACES; Adverse Childhood Experiences Scale; Felitti et 

al., 1998) at their pre-treatment assessment. Items reflect parental substance abuse, 

parental divorce, domestic violence exposure, parental incarceration, parental mental 

health, and abuse. Each item is coded 0 or 1 for the absence or presence of each risk 

Figure 1. EGI 64-channel Sensor Layout. The EGI 64-channel HydroCel 
Geodesic Sensor Net is displayed above. Channels circled in orange indicate 
frontal recording sites for theta/beta ratios. Channels circled in blue indicate 
recording sites for posterior alpha. The electrode map displayed here is used 
with written permission from Electrical Geodesics, Inc. (EGI; Eugene, OR, 
USA). 
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factor, respectively. Items were summed to create a composite risk score ranging from 0 

to 12, such that higher scores indicated a greater frequency of experienced risk factors.    

Household Chaos. Parents also completed the Confusion, Hubbub, and Order 

Scale (CHAOS; Matheny et al., 1995) at pre-treatment, a measure of environmental 

processes that are distinct from sociodemographic measures. Examples of these processes 

include noise, crowding, and overall commotion in the home setting. Each item is coded 

0 or 1 for the absence or presence of household characteristics, respectively. Scores 

ranged from 0 to 14, with higher scores indicating greater household chaos.  

Session-by-Session Behavioral Coding of Parent-Child Interaction 

In this study, trajectories of change in parenting skills were mapped only for 

families who engaged in PCIT. PCIT parents completed a 5-minute child-led play 

segment of the standard PCIT Dyadic Assessment Protocol at pre-treatment, each session 

of the first, child-directed interaction (CDI) phase of treatment, mid-treatment conducted 

immediately after the first phase, and post-treatment conducted immediately after the 

second phase. During each 5-minute data collection period, parents were instructed to let 

the child lead the play. All segments were video recorded, transcribed, and coded using 

the validated Dyadic Parent-Child Interaction Coding System (DPICS-IV; Eyberg et al., 

2014). Of note, PCIT parents completed the 5-minute child-led play segment during 

select sessions of the second PDI phase, but these data are not included in this study. 

Coding was completed by PCIT therapists on the day of each CDI session to inform their 

coaching and treatment plan. 27% of all the CDI coding segments that occurred during 

PCIT were coded for reliability. The average inter-rater agreement was 78%.  
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Parent verbalizations from each segment were coded as: labelled praises (e.g., 

Great job sitting quietly!), unlabeled praises (e.g., Great job!), behavior descriptions 

(e.g., You’re putting the blue one on top), reflections (e.g., repeating the child’s 

statement), questions, commands (e.g., Please tie your shoes), and criticisms (e.g., I don’t 

like that tower). As indicated in the PCIT protocol, behavior descriptions, labelled 

praises, and reflections were classified as positive skills, and criticisms, questions, and 

commands were classified as negative skills. Unlabeled praises and ‘other talk’ are coded 

neutrally, and not included in the present study. A positive skill score and negative skill 

score were computed for each time point by summing the positive and negative skills 

respectively.  

For this study of standard length PCIT, parents can progress from the first phase 

of treatment by either reaching mastery of skills or completing the maximum number of 

sessions (9 on average). Parents are coached to increase their positive skills so that they 

achieve 10 of each behavior descriptions, labelled praises, and reflections during the 5-

minute segment of child-led play. Simultaneously, parents are coached to use less than 

three total of criticisms, questions, or commands. In order to achieve mastery, parents 

must meet the 10-10-10 criteria for positive skills as well as the less-than-3 criteria for 

negative skills. Mastery of these skills that are taught during the child-directed interaction 

phase of treatment will hereby be referred to as CDI mastery.  

Analysis Plan for Aim 1 

Missing Data 

Missing data in resting EEG scores were evaluated using missing values analyses. 

Results show that 34.3% and 45.6% of children’s resting EEG data was missing at pre-
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treatment and post-treatment, respectively. Known reasons for missingness in EEG data 

are depicted in Figure 2.  Missingness at pre-treatment was primarily due to difficulty 

placing the EEG cap on participants or participant refusal. Missingness at post-treatment 

was primarily due to children not completing the post-treatment assessment entirely (n = 

51) or participant refusal (n = 17). Little’s missing completely at random test was 

conducted for all EEG variables and psychosocial risk factors using the ‘naniar’ package 

(Version 0.6.0.9000; Tierney et al., 2021) in R (R Core Team, 2013). Results indicated 

that I reject the null hypothesis that data are missing completely at random, χ2 (1990) = 

2452, p < .001. The missingness at random assumption was tested by examining patterns 

of missingness in EEG using t-tests and χ2 tests with demographic variables and 

psychosocial risk variables, as well as across randomization groups. Proportions of 

missingness at both pre- and post-treatment differed significantly by age, χ2 (30) = 48.97, 

p = .016, χ2 (5) = 19.01, p = .002, with younger children producing more missing data 

than older children. 67% of missing EEG data at pre-treatment and 69% of missing EEG 

data at post-treatment were in children ages 3-4 at baseline. Because the missing 

completely at random hypothesis was rejected and missingness was not significantly 

different across most other demographic variables, multiple imputation was employed 

with child age as a predictor in each imputation model (Rubin, 2004). For comparison,  

complete case analyses were also conducted.  

Incomplete variables were imputed using the ‘mice’ package in R (Version 3.3.0; 

van Buuren & Groothuis-Oudshoorn, 2011). Initially selected auxiliary variables include 

those that were theoretically correlated to children’s neural indices of executive function  
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Figure 2. Missing EEG Data. Distributions of missing EEG data for children at pre-
treatment and post-treatment are displayed.  
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and demographic variables such as: survey and behavioral measures of children’s  

inhibitory control and executive function, child gender, child age, ACES scores, CHAOS 

scores, and measures of children’s cognitive ability (Woodcock Johnson III Tests of 

Achievement; Woodcock et al., 2001). Next, the quick_pred function within the ‘mice’ 

package was used to implement a predictor selection strategy based on simple statistics. 

Child age and each of the primary aim variables were specified to serve as predictors for 

each imputation model. The mean number of predictors was equal to 22.63, which is 

within the recommended range suggested by Van Buuren (2018). Variables were imputed 

in the sequence of treatment, such that pre-treatment variables were imputed prior to 

post-treatment variables. The method of imputation was set to be predictive mean 

matching for all variables except composite theta/beta ratio scores. These scores were 

specified to be calculated and imputed following the individual imputations of theta and 

beta variables. Forty total imputations with 35 iterations each were conducted to 

maximize power and minimize bias, as suggested by Graham (2009).   

Figure 3 shows an overlay of real values atop imputed values across all 40 

imputations after removal of outliers, and provides some evidence that the imputation 

was successful. Scatter plots and density plots of imputed values across the 40 

imputations were also evaluated to diagnose whether imputed values could be real if data 

was not missing.  

Analysis parameters were estimated in each of the 40 imputed datasets and pooled 

using Rubin’s rules. For comparison, analyses were conducted on complete cases as well. 

After accounting for age in the imputation models however, the missingness at random 
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pattern can be reasonably assumed and findings from multiply imputed data should take 

precedence over complete case analyses  (Van Buuren, 2018). 

Model Specifications 

 All variables were examined for outliers and possible deviation from the 

assumption of normality using data visualization. Theta/beta ratio values were normally 

distributed for eyes-open but not eyes-closed tasks. Theta/beta ratio values in the eyes-

closed task were significantly positively skewed and thus log transformed. Outliers 

Figure 3. Imputation Estimates. Imputation estimates for each imputation model are 
presented. Blue dots represent real values with complete data and are overlayed on 
orange dots which represent imputed data. Eyec = Eyes-Closed condition. Eyeo = Eyes-
Open Condition. TBR1 = Theta/beta ratio at pre-treatment. TBR3 = Theta/beta ratio at 
post-treatment. 
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greater than 3 standard deviations from the mean were removed prior to multiple 

imputation and following multiple imputation.  

 Primary Intention-to-Treat Analyses 

Intention-to-treat (ITT) superiority analyses were conducted to test the effects of 

PCIT on children’s theta/beta ratio. ITT analysis is a stringent, unbiased analytic design 

that includes all randomized participants, regardless of their level of engagement in the 

treatment (Schulz et al., 2010). An ordinary least squares regression analysis was 

conducted to test the main effects of PCIT and rsEEG task, and the interaction effect 

between the two on children’s post-treatment theta/beta ratio, controlling for age and pre-

treatment theta/beta ratio. Next, the moderating effects of psychosocial risk were tested 

by adding both ACES and CHAOS scores to the regression model. Since relative power 

scores accounted for variations in age and skull size, age was not added as a covariate in 

order to minimize the number of predictors in the model.  

Secondary Per-Protocol Analyses 

ITT analyses treat PCIT participants who are fully compliant to the treatment 

protocol equally with those who are not at all compliant to treatment, resulting in a 

conservative treatment effect estimate. Though this can provide a highly conservative 

superiority test of PCIT and reduce selection-bias associated with excluding participants 

who do not engage with the intervention, it neglects the fact that partial compliance to 

treatment may also significantly impact the dependent variable. Per-protocol analyses 

were thus conducted on control group participants (n = 84) and PCIT group participants 

who engaged in at least one session of PCIT (i.e., CDI Teach+), n = 79. Identical 

regression models to those run for ITT analysis were conducted.  
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Complete Case Analyses 

 Following analyses with multiply imputed data (n  = 204), both ITT and per-

protocol analyses were repeated with complete cases (n = 71), for an examination of how 

findings may vary among those who provided complete and usable EEG data. Complete 

cases included all children that had usable EEG data at pre-treatment and post-treatment, 

from both control and treatment groups. Of these data, 34 children were from the control 

group, and 37 were from the PCIT group. Descriptive statistics for children’s age, 

theta/beta ratios, and psychosocial risk factors are presented in Table 2 alongside 

descriptive statistics on multiply imputed data. As noted above, 67-69% of missing data 

was from children 3-4 years old at baseline. The remaining 31 – 33% of missing EEG 

data was due to a variety of random factors including data collection error, or excessive 

artifacts, skipping resting tasks due to time constraints, or variation in net size due to lack 

of fit.  

 The distribution of cases by age was roughly even in the full multiply imputed 

sample, with 47.3% of children aged 3-4 years-old and 52.7% of children 5-8 years old. 

Alternatively in the complete-case sample, 34.8% of children were between 3-4 years old 

at baseline, and 65.5% of children were between 5-7 years old. A closer examination of 

the means for theta/beta ratios in Table 2 shows that theta/beta ratios decrease over time 

from pre-treatment to post-treatment (as expected) in multiply imputed data. However for 

complete case data, theta/beta ratios increase from pre-treatment to post-treatment for the 

control group in the eyes-open condition, and for the PCIT engager group in the eyes-

closed condition. Recall that an increasing theta/beta ratio over time is associated with 

poorer executive functioning capacity. Notably, cases did not differ by psychosocial risk 



 

33 
 

factors across both multiply imputed and complete case data, as indicated by t-tests. 

Taken together, results of complete case analyses should be interpreted with extreme 

caution for the following reasons: 1) complete cases represent only 35% of the full 

sample (n = 71, relative to n = 204), 2) distributions of cases vary by age, such that 

complete cases include a greater proportion of older children, and 3) directionality of 

change in theta/beta ratios for complete cases varies by condition and group, suggesting 

that these children are markedly different than the full sample. This reduced sample size 

and difference in distribution may contribute to reduced statistical efficiency and high 

potential for bias. 

Post-hoc Exploratory Analyses 

An exploratory examination of correlations with original, non-imputed data using 

pair-wise deletion, was conducted between theta/beta ratios and alpha power to further 

examine why PCIT effects varied by resting condition. Original data was used because 

alpha power was not included in the multiple imputation models conducted with this 

study. Correlation analyses showed significant negative associations between theta/beta 

ratios and alpha power in the eyes-closed task at both pre-treatment (r = -.31, p < .001) 

and post-treatment (r = -.32, p = .002), but not the eyes-open task. Note that these 

correlations, like other analyses with unimputed data, should be interpreted with caution. 

Analysis Plan for Aim 2 

Missing Data 

 Missing data for positive and negative parenting scores was analyzed within 

Hierarchical Linear Modelling (HLM) 7 software (Raudenbush et al., 2011) and the 
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Table 2   
Descriptive Statistics for Aim 1 Variables (n = 204)  

   
Services as 

Usual 
 

PCIT 
 

PCIT 
Engagers 

 

Multiply Imputed Data   (n = 84) (n = 120) (n = 79) 

Theta/ Beta Ratios      

Eyes-Closed Pre   8.78 (5.26) 7.70 (4.42) 7.39 (5.30) 

Eyes-Closed Post   8.46 (5.11) 6.93 (3.47) 6.67 (5.68) 

Eyes-Open Pre   7.36 (3.20) 6.61 (3.47) 6.31 (3.43) 

Eyes-Open Post   7.24 (3.10) 6.19 (3.45) 6.13 (3.42) 

Psychosocial Risk      

ACES   3.65 (1.84) 3.29 (1.97) 3.61 (1.95) 

     CHAOS   4.77 (3.35) 4.99 (3.26) 4.92 (3.43) 

Child Age   4.90 (1.44) 4.73 (1.40) 4.68 (1.38) 

Complete Case Data   (n = 34) (n = 37) (n = 28) 

Theta/ Beta Ratios      

Eyes-Closed Pre   11.10 (5.24) 10.60 (8.33) 9.56 (7.69) 

Eyes-Closed Post   10.21 (5.36) 10.26 (7.70) 10.43 (7.92) 

Eyes-Open Pre   9.30 (3.88) 8.14 (5.41) 10.43 (7.92) 

Eyes-Open Post   10.09 (4.61) 7.77 (4.19) 7.67 (3.54) 

Psychosocial Risk      

ACES   3.82 (1.59) 3.11 (1.93) 3.25 (2.08) 

CHAOS   5.09 (3.55) 5.57 (3.16) 5.36 (3.38) 

Child Age   5.30 (1.29) 4.78 (1.38) 4.67 (1.27) 

Note. Means and standard deviations on multiply imputed data were conducted on each 
of the 40 imputed datasets and pooled using Rubin’s rule.  

 

 ‘naniar’ package in R (Version 0.6.0.9000; Tierney et al., 2021). Level-1 parenting 

behaviors data were missing primarily due to variations in treatment length associated 

with drop-out from treatment or CDI mastery (leading to transition into PDI phase 

sessions). Nesting measurement observations within person-level characteristics 
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accounted for variations in the number of timepoints per individual as well as duration 

between timepoints. HLM 7 weights each case by the number of available data points 

(without using pairwise or listwise deletion), thus resulting in a consistent pattern of skill 

acquisition in relation to session. Other reasons for missing dyadic interaction data 

include video recording errors associated with equipment malfunction or therapist error, 

clinically indicated reasons to skip skill assessment. Patterns of missing data in the 

longitudinal session-by session data were examined using Little’s Missing Completely at 

Random test with the ‘naniar’ package in R (Version 0.6.0.9000; Tierney et al., 2021). 

Analyses indicated that session-by-session data at level 1 were not missing completely at 

random, χ2 (9) = 125, p < .001. There was no missing data at level 2 (intervention 

mastery). Full Information Maximum Likelihood (FIML) approaches were used for all 

hierarchical models. Unlike other approaches such as restricted maximum likelihood, 

FIML is model-specific and provides estimates that are 1) very near the true parameter 

with high probability, and 2) approximately unbiased with minimum variance 

(Raudenbusch & Bryck, 2002). The large number of measurements and sample size both 

support the use of FIML.  

Model Specifications 

Three key assumptions of hierarchical models were tested: the homogeneity of 

residual variance at level-1 and level-2 by examining Q-Q/P-P plots and using HLM 7 

hypothesis tests; multivariate normality using the Mahalanobis distance test; and linearity 

examining scatterplots of residuals against fitted values. The assumptions of normality 

and homogeneity of residual variance were not met. Both positive and negative parenting 

skills showed some positive skew, overall. While PCIT is a manualized intervention, the 
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focus of in-session coaching is individually-tailored to client families based on the 

specific parent skill levels observed at each session. For this reason, heterogeneity in skill 

levels across individuals and sessions is expected. Previous work indicates that estimation 

of fixed effects and standard errors in HLM are robust to violations of these assumptions 

(Kasim & Raudenbusch, 1998). The assumption of linearity was met. No outliers were 

identified for the positive or negative parenting skill  variables. 

Hierarchical Growth Curves 

A two-level, random effects analysis of growth curves for both positive and 

negative parenting scores was conducted using Hierarchical Linear Modelling (HLM) 7 

software (Raudenbush et al., 2011). Parenting skills as a function of time were included 

at level-1. Standard length PCIT was employed in this study, with families offered a total 

of 9 child-directed interaction sessions and 11 parent-direction interaction sessions. As 

described in the Methods above, families progress through treatment either by meeting 

CDI mastery, or by reaching the maximum number of child-directed interaction sessions 

offered. In other words, a family may have progressed from phase 1 of PCIT (child-

directed interaction) to phase 2 (parent-directed interaction) either because they (a) 

achieved mastery criteria or because (b) they completed the maximum number of 

allowable sessions. To account for variation in measurement occasions, mastery-

achievement was included as a level-2 participant-level characteristic. 

 Three consecutive HLM models were conducted for each outcome variable 

(positive parenting skills and negative parenting skills) to identify the functional form of 

skill change across sessions. First, a fully unconditional two-level random effects model 

with no predictors was specified to estimate both intercepts and slopes of growth 
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trajectories. Slope was modeled as random effects to allow change in skills to vary across 

individuals. Next, two polynomial terms (linear, quadratic) were sequentially included at 

level-1 to the unconditional model (Royston & Altman, 1994). Deviance testing was used 

to identify model fit and parsimony (Snijders & Bosker, 1999). After identifying the most 

parsimonious model for each outcome, a dichotomous mastery-achievement variable was 

added at level-2. Individual slopes and intercepts for both positive and negative parenting 

skills from the models of best fit were extracted and applied as predictors of children’s 

post-treatment theta/beta ratio level, accounting for baseline levels in an ordinary least-

squares regression analysis.  
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III. RESULTS 

Aim 1 

Intention-to-treat and per-protocol analyses were conducted with multiply 

imputed data to test the effects of PCIT on children’s post-treatment theta/beta ratio. 

Means and standard deviations for all variables used in Aim 1 are presented in Table 2. 

The average number of ACEs experienced by children 3-7 at pre-treatment was 3.45 (SD 

= 1.93), while the average level of chaos in the home environment was 4.93 (SD = 3.32). 

Eyes-closed theta/beta ratio was significantly correlated with eyes-open theta/beta ratio at 

pre-treatment (r = 0.64, p < .001) and post-treatment (r = 0.60, p < .001). Findings with 

multiply imputed data and complete-case data are reported. As noted in the Analysis Plan 

for Aim 1 above, findings from complete case analyses should be interpreted with 

caution. 

Primary Intention-to-Treat Analyses 

Separate ordinary least squares, multiple regression analyses were employed in R 

to predict children’s post-treatment eyes-closed and eyes-open theta/beta ratio, as shown 

in Table 3. Results from analyses conducted with all randomized participants on multiply 

imputed data are presented in this section. 

 Eyes-Closed. First, children’s pre-treatment ACES scores, CHAOS scores, and 

eyes-closed theta/beta ratio were entered as predictors of post-treatment eyes-closed 

theta/beta ratio. This model accounted for 4.43% of the total variance in post-treatment 

theta/beta ratio. Next, randomization group (PCIT or services-as-usual control) was 

added to this model to test the effects of PCIT after accounting for psychosocial risk 

scores. The full model accounted for an additional 4.64% of the variance in post-
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treatment eyes-closed theta/beta ratio, F(1, 120.90) = 3.87, p = .05. Children in the PCIT 

group were predicted to have eyes-closed theta/beta ratio 0.28 units lower than the 

services-as-usual control group after accounting for psychosocial risk, t(50.53) = -1.97, p 

= .05. The difference in post-treatment eyes-closed theta/beta ratio between PCIT and 

control groups was significant, and the hypothesis that those in the PCIT group would 

show lower theta/beta ratios at post-treatment was supported. 

 Eyes-Open. Children’s pre-treatment ACES scores, CHAOS scores, and eyes-

open theta/beta ratio accounted for 2.41% of the total variance in post-treatment eyes-

open theta/beta ratio. The full model including randomization group, accounted for an 

additional 3.03% of the total variance at post-treatment, though this difference in variance 

was not statistically different, F(1, 94.10) = 1.80, p > .05. The effect of PCIT on eyes-

open theta/beta ratio after controlling for psychosocial risk was not statistically 

significant, t(40.38) = -1.34, p = .19. 

Secondary Per-protocol Analyses 

 Per-protocol analyses were conducted in a similar manner to ITT analyses, after 

excluding participants in the PCIT group who did not engage with at least one session of 

PCIT. Findings from multiply imputed data are reported here and included in Table 4.  

 Eyes-Closed. Children’s pre-treatment ACES scores, CHAOS scores, and eyes-

closed theta/beta ratio accounted for 3.58% of the total variance in post-treatment eyes-

closed theta/beta ratio. The full model including randomization group, accounted for an 

additional 5.70% of the total variance at post-treatment, resulting in a  statistically 

significant difference in model fit, F(1, 130.39) = 4.02, p < .05. The effect of PCIT on 

eyes-closed theta/beta ratio after controlling for psychosocial risk was marginally 
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significant, t(46) = -2.00,  p = .05. Children in the PCIT group were predicted to have 

theta/beta ratios 0.32 units lower than the services-as-usual control group.  

 Eyes-Open. Children’s pre-treatment ACES scores, CHAOS scores, and eyes-

open theta/beta ratio accounted for 1.66% of the total variance in post-treatment eyes-

open theta/beta ratio. The full model including randomization group, accounted for an 

additional 3.69% of the total variance at post-treatment, though this difference in addition 

variance was not statistically significant, F(1, 105.22) = 1.96, p = .16. The effect of PCIT 

on eyes-closed theta/beta ratio after controlling for psychosocial risk was not significant, 

t(38.20) = -1.40,  p = .17.  

Complete-Case Analyses 

 Complete-case analyses were conducted with a subsample of children who had 

complete rsEEG data at both pre-treatment and post-treatment (nPCIT = 37, ncontrol = 34; 

ntotal = 71). Similar to analyses reported above on multiply imputed data, both ITT and 

per-protocol analyses were conducted with complete cases. ITT analysis included all 

children in the control and PCIT groups, as randomized. Per-protocol analysis included 

all individuals in the control group, and only those who engaged in at least one session of 

PCIT in the treatment group.  

 Eyes-Closed, Complete Case ITT Analysis. Pre-treatment theta/beta ratio and 

psychosocial risk variables accounted for 13.1% of the total variance in post-treatment 

eyes-closed theta/beta ratios, F(2, 67) = 4.52, SE = 0.59, p < 0.01. The full model with 

the randomization group was not significantly different from the psychosocial risk model,  
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Table 3  

Intention-to-treat Analyses of PCIT effects on Children’s Theta/Beta Ratio  

 Multiple Imputation  Complete Cases 
 b SE t-ratio d.f.  b SE t-ratio 95% CI 
Eyes Open          
    Intercept  7.18^ 1.26 5.70 53.88  7.21^ 1.70 4.25 (3.82, 10.60) 
     Pre-treatment TBR 0.04 0.11 0.40 51.35  0.39^ 0.10 3.74 (0.18, 10.60) 

 CHAOS 0.07 0.10 0.79 74.92  -0.27 0.15 -1.77 (-0.57, 0.03) 
 ACES -0.17 0.19 -0.88 49.77  0.17 0.29 0.57 (-0.41, 0.75) 
 PCIT -1.09 0.81 -1.34 40.38  -1.61 1.00 -1.61 (-3.61, 0.38) 

 Eyes Closed          
Intercept  1.91^ 0.33 5.86 52.48  1.68^ 0.35 4.84 (0.99, 2.38) 
 Pre-treatment TBR  0.13 0.14 0.94 38.73  0.37** 0.12 3.16 (0.14, 0.62) 
 CHAOS 0.01 0.02 0.63 51.26  -0.02 0.02 -1.28 (-0.07, 0.02) 
 ACES -0.04 0.04 -1.07 51.38  -0.03 0.04 -0.76 (-0.12, 0.05) 
 PCIT -0.29* 0.15 -1.96 50.52  -0.08 0.15 -0.56 (-038, 0.21) 

Note. Separate regression analyses were conducted for ‘Eyes Open’ and ‘Eyes Closed’ tasks, with all children randomized to 
PCIT or services-as-usual control. The full models conducted on multiply imputed data are reported here. CHAOS = Chaos, 
Hubbub and Order Scale. ACES = Adverse Childhood Experiences. TBR = Theta/beta ratio. 
*p < .05  **p < .01  ^p < .001 
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Table 4. 

Per-protocol Analyses of PCIT effects on Children’s Theta/Beta Ratio  

 Multiple Imputation  Complete Cases 
 b SE t-ratio d.f.  b SE t-ratio 95% CI 
Eyes Open          
    Intercept  7.29** 1.30 5.61 50.78  7.19^ 1.78 4.05 (3.63, 10.75) 
    Pre-treatment TBR 0.004 0.11 0.03 54.26  0.33** 0.12 2.75 (0.09, 0.57) 

 CHAOS 0.06 0.10 0.56 70.62  -0.33* 0.15 -2.15 (-0.64, -0.02) 
 ACES -0.09 0.20 -0.47 53.39  0.39 0.29 1.34 (-0.19, 0.98) 
 PCIT -1.19 0.85 -1.40 38.20  -1.36 1.05 -1.30 (-3.46, 0.74) 

 Eyes Closed          
Intercept  1.97^ 0.33 5.98 55.10  1.65 0.36 4.56 (0.93, 2.38) 
 Pre-treatment TBR  0.08 0.14 0.61 41.85  0.37 0.13 2.85 (0.11, 0.62) 
 CHAOS 0.01 0.02 0.62 51.63  -0.03 0.02 -1.41 (-0.08, 0.01) 
 ACES -0.03 0.04 -0.81 57.94  -0.01 0.04 -0.26 (-0.09, 0.08) 
 PCIT -0.32* 0.16 -2.00 46.00  -0.03 0.15 -0.20 (-0.34, 0.28) 

Note. Separate regression analyses were conducted for ‘Eyes Open’ and ‘Eyes Closed’ tasks, with all children randomized to 
services-as-usual control, and only those in the PCIT group who engaged in at least one session of PCIT. The full models 
conducted on multiply imputed data are reported here. CHAOS = Chaos, Hubbub and Order Scale. ACES = Adverse 
Childhood Experiences.  

*p < .05  **p < .01  ^p < .001 
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F(1, 67) = 0.34, p = 0.56 The hypothesis that children in PCIT would show lower 

theta/beta ratios was not supported in these complete case analyses for the eyes-closed 

task, t(66) = -0.59, SE = 0.15, p = 0.56.  

Eyes-Open, Complete Case ITT Analysis. Pre-treatment theta/beta ratio and 

psychosocial risk variables accounted for 18.44% of the total variance in post-treatment 

eyes-open theta/beta ratios, F(3, 67) = 6.27, p < 0.001. The full model including the 

randomization group was not significantly different from the psychosocial risk model, 

F(1, 67) = 2.60, p = 0.11. The hypothesis that children in PCIT would show lower 

theta/beta ratios was not supported win these complete case analyses for the eyes-open 

task, t(66) = -1.61, SE = 1.00, p = 0.11.  

 Eyes-Closed, Complete Case Per-protocol Analysis. Pre-treatment theta/beta 

ratio and psychosocial risk variables accounted for 12.23% of the total variance in post-

treatment eyes-closed theta/beta ratio, F(3,58) = 3.83, SE = 0.57, p = 0.01. The full model 

including intervention group status accounted for 1.45% less variance, and was not 

significantly different overall, F(1,57) = 0.04, p = 0.84. The effect of PCIT after 

accounting for psychosocial risk was not significant, t(57) = -0.20, SE = 0.15, p = 0.84.  

 Eyes-Open, Complete Case Per-protocol Analysis. Pre-treatment theta/beta 

ratio and psychosocial risk variables accounted for 17.64% of the total variance in post-

treatment eyes-open theta/beta ratios, F(3,58) = 5.36, SE = 3.91, p < .001. The full model 

with PCIT group accounted for an addition 1% of variance, but was not statistically 

different overall, F(1, 57) = 1.68,  p = .20. In the full model, household chaos had a 

significant negative weight, suggesting that higher household chaos is associated with 
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lower theta/beta ratios at post-treatment, independent of participation in PCIT, t(57) = -

2.15, SE = 0.15, p < 0.05.  

Aim 2 

Hierarchical Growth Curves 

In order to test whether trajectories of change in parenting behaviors predicted 

children’s post-treatment theta/beta ratios, hierarchical growth modeling was utilized first 

to estimate the longitudinal curvilinear form of changes in both positive and negative 

parenting skills. As noted earlier, linear time was centered at CDI session 4 to estimate 

parents’ average rate of growth across the CDI phase of treatment. Without centering, 

linear slope would provide an estimate of parents’ rate of growth at pre-treatment, which 

is unreliable with the present data. Chi-squared deviance tests were used to determine the 

best-fitting model (Snijder & Bosker, 1999), and are detailed in Table 5. Results from 

deviance testing indicated that the quadratic model was best fitting for both the trajectory 

of positive parenting skills, χ2 (4) = 550.28, p < .001, and the negative parenting skills, 

χ2 (4) = 286.85, p < .001. Finally, a dummy coded variable indicating whether parents 

met CDI mastery was added at level-2 to the best fitting model for both positive and 

negative skills outcomes, to account for variation in parenting skills progression across 

sessions. 

Positive Parenting Skills. 

 Level-1 Model 

    POSti = π0i + π1i*(LINEARti) + π2i*(QUADti) + eti  

Level-2 Model 
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    π0i = β00 + β01*(METCDIMAi) + r0i 

    π1i = β10 + β11*(METCDIMAi) + r1i 

    π2i = β20 + β21*(METCDIMAi) + r2i  

 

The positive parenting skills model examined trajectories of DPICS-coded 

positive parent verbalizations across pre-treatment, each session in the first CDI phase 

PCIT, mid-treatment, and post-treatment assessments (see Table 6). The average 

estimated positive parenting skills frequency at CDI session 4 for parents who did not 

achieve mastery in PCIT  was 15.41, t(77) = 18.17, SE = 0.85, p < 0.001. Parents who 

achieved mastery in the CDI phase of treatment were predicted to have 24.20 positive 

skills at CDI 4,  t(77) = 5.23, SE = 1.68, p < 0.001.  

 

Table 5 

Deviance Testing for Functional Form of Parenting Skill Trajectories 

Model Deviance χ2 Pseudo-R2 p 

Positive Parenting     
Linear 5252.03    
Quadratic 4701.76 550.28 0.31 <0.001 

Negative 
Parenting 

    

Linear 4861.61    
Quadratic 4574.77 286.85 1.67 <0.001 

Note. Linear and quadratic terms were tested at level 1 to determine the curvilinear 
change across pre-treatment, CDI sessions, mid-treatment, and post-treatment. For both 
the positive and negative skill models, the quadratic form was determined to be best-
fitting, based on outlines for deviance testing provided by Snijder & Bosker (1999). 
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The average rate of linear change in positive skills at CDI 4 was 2.93 for those who did 

not achieve mastery, t(77) = 14.80, SE = 0.20, p < 0.001, and 5.04 for those who did 

achieve mastery, t(77) = 6.23, SE = 0.33, p < 0.001. In other words, parents who achieved 

CDI mastery in the CDI phase of treatment had a greater frequency of positive skills at 

CDI 4, but also improved their use positive parenting skills at a significantly faster rate.  

The quadratic growth rate across treatment was predicted to be -0.34 for the non-mastery 

group, and -0.55 for the mastery group t(77) = -4.85, SE = 0.04, p < .001, suggesting a 

more rapid negative curvilinear change in positive skills for those who achieved mastery 

during CDI. That is, all PCIT parents tend to increase in positive skills and gradually 

decrease in positive skills over time, but parents who achieve CDI mastery tend to 

display narrower trajectories that indicate a faster increase and decrease in skill change. 

Figure 4 shows change in positive skills across sessions for parents who achieved CDI 

skills mastery and those who did not. Average linear change and growth rate estimates 

for each person were then used as predictors in testing the effect of positive parenting 

skill change on children’s theta/beta ratios, as described below. Greater rates of gains in 

positive skills were expected to predict lower theta/beta ratios at post-treatment. 

Negative Parenting Skills. 

Level-1 Model 

    NEGti = π0i + π1i*(LINEARti) + π2i*(QUADti) + eti  

Level-2 Model 

    π0i = β00 + β01*(METCDIMAi) + r0i 

    π1i = β10 + β11*(METCDIMAi) + r1i 

    π2i = β20 + β21*(METCDIMAi) + r2i 
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The negative parenting  skills model examined trajectories of DPICS-coded 

negative parent verbalizations observed across pre-treatment, each session of the CDI 

phase of PCIT,  mid-treatment, and post-treatment assessments (see Table 6). The 

average estimated frequency of negative parenting skills at CDI 4 for parents who did not 

achieve mastery in PCIT was 12.12, t(77) = 16.12, SE = 0.75, p < 0.001. Parents who 

achieved CDI mastery were predicted to have  3.71 fewer negative skills at CDI 4, t(77) = 

-4.02, SE = 0.92, p < 0.001. The average rate of linear change in negative skills at CDI 4 

was -2.31 for those who did not achieve mastery, t(77) = -11.43, SE = 0.20, p < 0.001, 

and -2.86 for those who did achieve mastery, t(77) = -1.27, SE = 0.43, p < 0.208. In other 

Figure 4. Trajectories of Positive Parenting Skill Change. Hierarchical models were 
centered at CDI session 4.   
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words, while parents who achieved CDI mastery showed fewer negative parenting 

behaviors at CDI 4, the average rate of decline in their negative behaviors was no 

different from those who didn’t achieve mastery.  

The quadratic growth rate across treatment was predicted to be 0.23 for the non-

mastery group, and 0.29 for the mastery group, indicating that parents who achieved CDI 

mastery displayed slightly narrower trajectories with a faster decrease and subsequent 

increase in negative skills over time. However, this difference in quadratic growth rates 

between CDI-mastery and no-mastery groups was not statistically significant. Figure 5 

shows the average change in negative skills across sessions for both groups. Average 

linear change and growth rate estimates for each person were later used as predictors in 

testing the effect of change in negative parenting skills on children’s theta/beta ratios, as 

described below. Greater reductions in negative parenting skills were expected to predict 

lower theta/beta ratios at post-treatment.  

Main Effects of Parenting  

 Linear and quadratic slope estimates for parents who engaged in the PCIT group 

(n = 79) were extracted from the positive and  negative parenting hierarchical models and 

used as predictors of children’s post-treatment theta/beta ratio in linear regression 

analyses. Linear and quadratic slope estimates for both positive and negative parenting 

skills were normally distributed. Results from multiple regression analyses are presented 

in Table 7. Individual gains in parents’ positive parenting and reductions in negative 

parenting skills assessed from pre-treatment, across the first CDI phase of PCIT, mid-

treatment, and post-treatment  were not significantly associated with children’s theta/beta 

ratio at post-treatment, assessed during both eyes-open and eyes-closed tasks. Taken 
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together, findings did not support the hypothesis that greater rates of parenting skill 

change would be associated with reductions in children’s theta/beta ratio at post-

treatment.  

  

Figure 5. Trajectories of Negative Parenting Skill Change. Hierarchical models 
were centered at CDI session 4.   
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Table 6 

Changes in Parenting Skills Across Treatment 

Fixed Effect  Coefficient  Standard 
error 

 t-ratio 

Positive Skills 
Intercept, π0  
    No Mastery, β00  *15.41 0.85 18.18 
    Met Mastery, β01  *8.78 1.68 5.23 
For LINEAR slope, π1  
    No Mastery, β10  *2.93 0.20 14.80 
   Met Mastery, β11  *2.11 0.34 6.23 
For QUAD slope, π2  
    No Mastery, β20  *-0.35 0.02 -14.72 
    Met Mastery, β21  *-0.21 0.04 -4.85 

Negative Skills 
Intercept, π0  
    No Mastery, β00  *12.12 0.75 16.12 
    Met Mastery, β01  -3.71 0.92 -4.02 
For LINEAR slope, π1  
    No Mastery, β10  *-2.31 0.20 -11.43 
    Met Mastery, β11  -0.55 0.43 -1.27 
For QUAD slope, π2  
    No Mastery, β20  *0.24 0.02 10.95 
    Met Mastery, β21  0.05 0.04 1.19 

Note. CDI mastery level was dummy coded, with ‘No Mastery’ serving as the reference 
group. Coefficients for the ‘Met Mastery’ group should be interpreted in relation to the 
‘No Mastery’ group. Intercepts represent skill level estimates at CDI session 4. Linear 
slope estimates represent the average rates of growth across phase 1 of PCIT. Quadratic 
slope estimates represent the rate of acceleration across PCIT.  

*p < .001 
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Table 7  

Regression Analyses of the Effects of Session-by-Session Change in PCIT on Children’s Theta/Beta Ratio  

 Positive Parenting Skills  Negative Parenting Skills 

 b SE t-ratio d.f. p  b SE t-ratio d.f. p 

Eyes Open            

    Intercept  6.90^ 2.00 3.45 28.40 0.002  7.01^ 1.59 4.42 35.66 < .001 

    Pre-treatment TBR  -0.03 0.17 -0.19 26.22 0.85  -0.01 0.17 -0.11 26.50 0.91 

     Linear change 0.68 1.63 0.42 35.99 0.68  -0.81 2.15 -0.28 39.07 0.71 

 Quadratic change 6.24 15.10 0.41 36.38 0.68  -9.22 22.67 -0.41 40.55 0.69 

 Eyes Closed            

Intercept  1.81 0.52 3.50 32.54 0.001  1.79 0.44 4.08 37.96 <.001 

Pre-treatment TBR 0.05 0.18 0.25 35.46 0.80  0.02 0.19 0.13 34.47 0.89 

 Linear change 0.18 0.37 0.49 38.44 0.63  -0.50 0.52 -0.96 32.96 0.34 

 Quadratic change 1.57 3.34 0.47 40.00 0.64  -4.69 5.42 -0.86 34.70 0.39 

Note. Separate regression analyses were conducted for ‘Eyes Open’ and ‘Eyes Closed’ tasks, with families who engaged in 
treatment for at least one session. The full models conducted on multiply imputed data are reported here.  
*p < .05  **p < .01  ^p < .001 
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IV. DISCUSSION 

PCIT Impacts Children’s Theta/Beta Ratio the Eyes-Closed Condition 

First, this study examined changes in patterns of resting-state neural activity in 

children who were involved with child-welfare, and randomized to PCIT relative to a 

services-as-usual control condition. The hypothesis that adversity-exposed children in 

PCIT would show lower theta/beta ratios, indicative of better attention regulation, after 

accounting for psychosocial risk, was supported for the eyes-closed but not the eyes-open 

condition in ITT and per-protocol analyses alike. Interpretations of why the effects of 

PCIT vary by resting state EEG condition should be made with the understanding that 

differences may be due to a lack of sufficient power to detect small effect sizes.   

Consistent with prior intervention work with institutionally neglected children 

(Stamoulis et al., 2015; Vanderwert et al., 2010) and children involved with child 

protective services (Bick et al., 2019), this study demonstrates that an early caregiving 

intervention is associated with more adaptive cognitive processing capacities, as 

evidenced by resting EEG in children from families involved with child-welfare. This 

study extends our understanding of this association by demonstrating that a well-

validated neural marker of attention regulation, the theta/beta ratio, decreases over time 

for those who participate in PCIT relative to those who do not. Further, while Bick and 

colleagues demonstrate associations between caregiving intervention and neural activity 

5-7 years following participation, this study shows that improvements in neural activity 

can be observed immediately after completion of PCIT. Researchers have long posited 

that PCIT may be an effective treatment for children with attention deficit hyperactivity 

disorder (Wagner & McNeil, 2008). A culturally adapted version of PCIT has been 
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associated with improvements in children’s parent-reported ADHD for a small sample of 

children (Matos et al., 2009), while older research has demonstrated  that PCIT improves 

children’s attentional skills as measured by self-report measures (Eyberg et al., 2001; 

Funderburk et al., 1998). No studies to date to my knowledge have examined pre- to post-

treatment changes in physiological markers of children’s attention regulation capacity.  

There are several potential explanations for why improvements in theta/beta ratios 

were observed in the eyes-closed condition, but not the eyes-open condition. First, recall 

that previous work examining the effects of a caregiving intervention on children’s 

rsEEG focused on power averaged across eyes-closed and eyes-open tasks (Bick et al., 

2019), or only on eyes-open tasks (Marshall et al., 2004; Marshall et al., 2008; 

Vanderwert et al., 2010; Vanderwert et al., 2016), or only on eyes-closed tasks 

(Stamoulis et al., 2015). However, several studies have established that rsEEG activity 

varies across eyes-closed and eyes-open conditions (Barry et al., 2007; Barry et al., 2009; 

Johnstone et al., 2020), thus impacting how findings are interpreted. Specifically, 

previous work with children 8 to 12 years-old demonstrates that alpha is higher during 

eyes-closed tasks and has been theorized to mark active suppression of distracting stimuli 

(Barry et al., 2009). The lower alpha in eyes-open tasks on the other hand, has been 

theorized to reflect focused attention (Barry et al., 2009; Klimesch, 2012). More recent 

work with younger children shows that children 3-9 years-old, whose alpha may not be 

fully developed, also tend to display greater alpha during eyes-closed conditions relative 

to the eyes-open condition (Perone et al., 2018). This same study also found that 

theta/beta ratios were higher during the eyes-closed condition, compared to the eyes-open 

condition. 
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Children in the present study demonstrate similarly higher theta/beta ratios when 

eyes were closed relative to when eyes were open, at both pre- and post-treatment 

assessments. While differences in alpha power that reflect levels of suppression or 

focused attention were not examined in the present study, digging a bit deeper into this 

work may provide some insights for our condition-varied findings. Suppression is 

observed by greater alpha in eyes-closed conditions, and reflects the ability to suppress 

distracting task-irrelevant stimuli. Enhancement is reflected by lower alpha in eyes-open 

conditions, and reflects the ability to focus attention on a particular target. Suppression 

and enhancement are known to independently contribute to attention regulation processes 

(Chan & Egeth, 2019). In high-risk environments, the ability to pay attention to many 

stimuli at once (that is, to not suppress) allows children to quickly notice and react to 

threat signals (e.g., angry faces or angry voices) that may predict danger. A strong body 

of evidence shows that children who have experienced physical abuse tend to develop 

broader perceptual boundaries for categorizing visual and audible anger cues (Pollak & 

Kistler, 2002; Shackman et al., 2007). Further, prolonged early life adversity has been 

shown to modify neurophysiological systems in ways that aid in retaining information 

about threats to well-being, often resulting in greater vigilance and reactivity (Roth et al., 

2009; Szyf, 2009; Loman & Gunnar, 2010). The characteristics of our sample fall well 

within this adverse context: most children live below the poverty line and have 

experienced an average of 3 adverse childhood experiences. Taken together, this finding 

that children in the PCIT group have better attention regulation (i.e., lower theta/beta 

ratios) as measured in the eyes-closed task, might indicate that PCIT improves attention 

regulation processes by way of improving children’s ability to suppress distractors. Given 
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that PCIT is effective in reducing rates of maltreatment recidivism in families with a 

history of physical abuse Chaffin et al., 2004; Kennedy et al., 2016), future work can 

build on the present study to examine mechanisms of action. Specifically, an examination 

of whether reductions in harsh, aversive parenting are uniquely associated with children’s 

theta/beta ratios in the eyes-closed task, relative to the eyes-open task, can explicitly test 

whether improvements in attention regulation are associated with children’s ability to 

suppress distractors. 

Indeed, an exploratory examination of correlations with our original, non-imputed 

data showed significant negative associations between theta/beta ratios and alpha power 

in the eyes-closed task, but not the eyes-open task. That is, children with lower theta/beta 

ratios (better top-down attention regulation) in this study were likely to be better at 

suppressing distractors (high alpha in eyes-closed), but not better at focusing specific 

attention (low alpha in eyes-open). This provides some preliminary support that future 

work should examine how theta/beta ratios vary by differences in alpha power across 

resting conditions. 

Trajectories of Parenting Skills Unrelated to Theta/Beta Ratios 

The second aim of this study was to examine the association between children’s 

post-treatment theta/beta ratios and trajectories of individual changes in parenting 

behaviors from pre-treatment, across the first phase of PCIT, mid-treatment, and 

posttreatment. The hypothesis that steeper gains in positive parenting skills and declines 

in negative parenting skills would be associated with lower post-treatment theta/beta 

ratios was not supported. Trajectories of positive skill change took a negative quadratic 

form and differed by parents’ mastery achievement such that parents who achieved CDI 
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mastery displayed more rapid improvements in positive skills and faster relative decline 

in negative parenting across treatment. Trajectories of change in negative parenting took 

a positive quadratic form, such that negative gradually decreased across the first phase of 

treatment before increasing towards the end of treatment, and did not differ by parents’ 

mastery achievement.   

One possible interpretation for this null finding, given that PCIT group effects 

were observed in ITT and per-protocol analyses in Aim 1, is that PCIT may be working 

to improve children’s theta/beta ratios through alternate processes. Previous work on 

PCIT has shown dramatic decreases in parent-reported stress (Timmer et al., 2005) and 

use of physical discipline (Chaffin et al., 2011). In contexts where parenting stress is 

especially high, or the risk for child maltreatment is higher than average as in our sample, 

reductions in these areas may lead to marked changes in the child’s caregiving 

environment. Similarly, it may not be the rates of change but rather the level of change in 

skills that account for variation in children’s theta/beta ratio. Other work by our team 

demonstrates significant improvements in positive skills and reductions in negative skills 

from pre-treatment to post-treatment. A second possible interpretation for this null 

finding may be that the processes accounting for change in children’s theta/beta ratios 

actually take place in the second phase of treatment, parent-directed interaction. During 

this phase, parents are coached to develop safe, effective child management skills, 

including use of  consistent, contingent discipline techniques. While the first phase of 

treatment accounts for rapid growth in parent verbalizations that are hypothesized to 

improve children’s attention regulation, it may be the maintenance of these skills through 

the second phase of treatment that actually contributes to theta/beta ratios. Future work 
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should extend the current findings across the second phase of treatment via piecewise 

growth models to clearly identify whether changes in the first or second phases are 

related to changes in child characteristics.  

The Impact of Missingness in Interpretation of Findings 

Large amounts of EEG data were missing at both pre- and post-treatment (34 - 

46%) in this study. As noted previously, 67 - 69% of this missing data was in children 

aged 3 to 4 at pre-treatment. Further, 57% of missingness in 3 to 4 year-olds at pre-

treatment was due to participant refusal to wear the EEG cap. 3 to 4 year-olds who 

refused the EEG cap were not significantly different from 3 to 4 year-olds who were 

successfully capped in key behavioral measures of inhibitory control, cognitive ability, 

psychosocial risk, or demographic characteristics. To account for age-related missing 

data in our sample, child age and age-dependent indices of executive function were 

included in the multiple imputation model to improve estimation. Guidance provided by 

Van Buuren (2018) suggests that if the missing at random assumption is plausible after 

accounting for potential reasons for missingness (e.g., age), then findings from multiple 

imputation analyses should take precedence.  

Complete case analyses for this study were conducted with children who had 

usable rsEEG data at both pre- and post-treatment. Findings from multiply imputed data 

were different from complete-case data, across both ITT and per-protocol analyses. 

Given that the mechanism for missingness is related to age and data are not missing 

completely at random, findings from complete case analyses are expected to be 

underestimated and contain high bias. As such, complete case analyses are not interpreted 

here.  
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Limitations and Future Directions 

 Findings from the present study should be interpreted in the context of several 

limitations. As noted above, the adversity experienced by this sample is multi-fold. 

Though our measures of adverse childhood experiences and chaotic home environment 

have been associated with poor executive function, they do not capture the wide array of 

risk factors experienced by the families in this study. Comprehensive measures of 

maltreatment experience, parental mental health, and resource availability could provide 

a deeper understanding of how PCIT impacts neurodevelopmental profiles in children 

who experience varying levels of cumulative risk.  

 A second limitation is related to the sample characteristics of the study. Although 

the racial and ethnic categories of this sample are representative of the pacific northwest 

region from which they are drawn, White participants are significantly overrepresented, 

with only 35% of participating children identified as holding a non-White identity (see 

Table 1). Across the U.S. however, Black and Indigenous children are significantly 

overrepresented in the child welfare system (Skowron & Woehrle, 2012), and experience 

additional risk factors associated with structural racism and discrimination. A lack of 

sufficient representation of these groups in empirical studies of intervention effectiveness 

is a significant barrier to developing a true understanding of how and for whom 

interventions work.  

 A third limitation is limited statistical power. While multiple imputation methods 

improved our ability to capture changes in band power across all children who were 

randomized, the pre-post design of Aim 1 and addition of psychosocial risk covariates 
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limited statistical power to detect small effect sizes. It is possible that with greater power, 

that effects may either become stronger for the eyes-open condition or remain the same.  

 Future work can build on this study in a few ways. First, an examination of the 

link between theta/beta ratios across resting conditions and behavioral measures of 

selective attention processes can further tease apart how PCIT might be working to 

improve children’s self-regulation. Further, an examination of how PCIT is associated 

with individual frequency bands can provide a broader understanding of changes in 

children’s neural capacity. For example, beta frequency has been independently 

associated with specific aspects of cognitive control such as working memory and 

language processing (Engel et al., 2010), while theta frequency has been associated with 

stimulus-driven changes in attention (Orekhova et al., 2006).  

Conclusions 

The findings from this study contribute to the extant literature in several 

meaningful ways. First, this is the first study to my knowledge that mapped changes in 

children’s theta/beta ratios across a critical developmental period for children that 

participated in an intensive early parenting intervention, relative to controls. I extended 

the existing literature in this area by uniquely testing the effects of PCIT on a known 

marker of top-down attention regulation (i.e., theta/beta ratio), as opposed to several 

rhythms individually. I calculated theta/beta ratios accounting for individual variations in 

alpha frequencies to minimize bias and allow for more accurate comparison across 

children of varying ages (e.g., 3-8 years; Lansbergen et al., 2011; Perone et al., 2017). 

Further, while resting EEG studies in adults tend to be collected with similar methods, 

resting EEG in children is far more variable (e.g., eyes-open fixation on a cross, eyes-
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open passive task, eyes-closed). To account for variations in these methods in the existing 

literature and improve generalizability of the current findings, I measured changes in 

theta/beta ratios across both eyes-closed and eyes-open fixation tasks. 
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