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DISSERTATION ABSTRACT

Gautam Webb

Doctor of Philosophy

Department of Mathematics

September 2021

Title: The Combinatorial PT-DT Correspondence

We resolve an open conjecture from algebraic geometry, which states that

two generating functions for plane partition-like objects (the “box-counting”

formulae for the Calabi-Yau topological vertices in Donaldson-Thomas theory and

Pandharipande-Thomas theory) are equal up to a factor of MacMahon’s generating

function for plane partitions. The main tools in our proof are a Desnanot-Jacobi-

type condensation identity, and a novel application of the tripartite double-dimer

model of Kenyon-Wilson.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

This dissertation includes previously unpublished co-authored material.

Chapters I and II were written by Ben Young, Helen Jenne, and the author.

Chapter III was mainly written by Ben Young, with contributions from Helen

Jenne and the author. Chapter III includes an application of a well-known theorem.

Chapter IV was mainly written by the author, with contributions from Helen

Jenne. Chapter IV establishes a novel correspondence and includes an application

of a theorem from [2]. Chapter V includes computations involving DT and PT

weights. Most of the computations involving DT weights were done by the author,

and some were done by Helen Jenne. All of the computations involving PT weights

were done by Helen Jenne, with contributions from the author, and Chapter V was

written by Helen Jenne.

Donaldson-Thomas (DT) theory and Pandharipande-Thomas (PT) theory

are branches of enumerative geometry closely related to mirror symmetry and

string theory (for an introduction to these theories, see [11, Sections 31
2
, 41

2
]). In

both theories, generating functions arise known as the combinatorial Calabi-Yau

topological vertices. These generating functions enumerate seemingly different plane

partition-like objects. In this paper, we prove that these generating functions

coincide up to a factor of M(q), MacMahon’s generating function for plane

partitions [4]. Our result, taken together with a substantial body of geometric

work, proves a geometric conjecture in the foundational work of Pandharipande-

Thomas theory that has been open for over 20 years.
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The generating function from Donaldson-Thomas theory is known as the DT

topological vertex. Denoted V (µ1, µ2, µ3), where each µi is a partition, it counts

plane partitions asymptotic to (µ1, µ2, µ3) (see Section 3.1). The PT topological

vertex, denoted by W (µ1, µ2, µ3), is a generating function for a certain class of

finitely generated C[x1, x2, x3]-modules (see Section 4.1).

We prove that

Theorem 1.0.1. [12, Calabi-Yau case of Conjecture 4]

V (µ1, µ2, µ3) = M(q)W (µ1, µ2, µ3), (1)

where M(q) =
∏
i≥1

(1− qi)−i.

The geometric corollary of this theorem is a proof of Theorem/Conjecture

2 of [12], which, loosely speaking, states that W (µ1, µ2, µ3) computes the local

contribution to the geometric Calabi-Yau topological vertex in Pandharipande-

Thomas theory. The proof of this corollary combines Theorem 1.0.1 with the

analogous result in DT theory [5, 6, 8], along with [7, Section 4.1.2]; it is a

consequence of the fact that both DT and PT theory give the same invariants as

a third enumerative theory, Gromov-Witten theory.1

To be specific, let ZDT (µ1, µ2, µ3) be the geometric Calabi-Yau topological

vertex in Donaldson-Thomas theory, and let ZPT (µ1, µ2, µ3) be the geometric

Calabi-Yau topological vertex in Pandharipande-Thomas theory. We have the

following system of equalities, which we have temporarily labelled G, EDT , EPT

and C (G for geometry, E for enumeration, C for combinatorics):

1In [5, 6, 12] and in general elsewhere in the geometry literature, all of the formulas have q
replaced by −q. The sign is there for geometric reasons which are immaterial for us.
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ZDT (µ1, µ2, µ3) M(q)ZPT (µ1, µ2, µ3)

V (µ1, µ2, µ3) M(q)W (µ1, µ2, µ3)

G

EDT EPT

C

In the above, Equation G is the geometric PT-DT correspondence; it says

that the two enumerative theories are equivalent at the level of the topological

vertex. The technique involves showing that both theories are in fact equivalent

to Gromov-Witten theory. On the DT side, this was done in [5, 6]. For proofs that

PT theory is equivalent to Gromov-Witten theory, we refer the reader to a series of

papers of Pandharipande and Pixton, culminating in [10].

Equation EDT is proven in [5, 6]; it says that in the Calabi-Yau case, one can

compute Donaldson-Thomas invariants by enumerating plane partitions asymptotic

to (µ1, µ2, µ3). Proving it, and various generalizations of it, has represented a

massive amount of work by many geometers over several decades.

Equation EPT was conjectured in [12, Theorem/Conjecture 2], and proven

in the “two-leg” case where µ3 is the empty partition; it says (after cancelling

the factor of M(q)) that one can compute Pandharipande-Thomas invariants by

counting labelled box configurations of shape (µ1, µ2, µ3).

Equation C is the titular combinatorial PT-DT correspondence; we prove it in

this paper. Taken together with Equations EDT and G, this establishes the general

case of Equation EPT [12, Theorem/Conjecture 2].

We now turn to a discussion of the methods that we use to show that

V (µ1, µ2, µ3) = M(q)W (µ1, µ2, µ3). The combinatorics problems which we solve are

stated in the geometry literature as “box-counting” problems; that is, the objects of

interest are plane partition-like. The following bijections are well-known:

dimer configurations on
the honeycomb graph ↔ plane partitions↔

finite-length monomial
ideals in C[x1, x2, x3]

3



The first one is a 3D version of the correspondence between partitions and their

Maya diagrams; it is stated explicitly in Section 3.2. We use essentially the same

correspondence to give a dimer model description of the DT topological vertex

V (µ1, µ2, µ3). On the PT side, the correspondences are:

tripartite double-dimer configs.
on the honeycomb graph

(1)↔ labelled box
configurations

(2)↔
C[x1, x2, x3]-modules

(M1 ⊕M2 ⊕M3)/ 〈(1, 1, 1)〉

The correspondence (1) is new, as far as we are aware. We describe labelled

box configurations, and the generating functions for them which arise in PT

theory, carefully in Chapter IV. Interestingly, though (1) is a purely combinatorial

correspondence, it is not bijective—rather, it is a weight-preserving, 1-to-many

correspondence. Here M1 ⊆ C[x1, x
−1
1 , x2, x3] is spanned by all monomials xi1x

j
2x

k
3

where i ∈ Z and (j, k) ranges over some fixed partition µ1, with M2,M3 defined

similarly; the quotient is killing the diagonal of the direct sum.

The correspondence (2) is incidental to this work and is described in [12]; nor

will we need to discuss the structure of the modules in the codomain. We expect

that our methods will be relevant in other similar situations (one such situation

arises in rank 2 DT theory [1]) and we would be eager to learn of other instances in

which our techniques may apply.

We prove Theorem 1.0.1 by observing that both V/M(q) and W are solutions

X to the following functional equation:

qKX(µ1, µ2, µ3)X(µrc1 , µ
rc
2 , µ3) = qKX(µrc1 , µ2, µ3)X(µ1, µ

rc
2 , µ3) (2)

+X(µr1, µ
c
2, µ3)X(µc1, µ

r
2, µ3).

4



This recurrence is called the condensation recurrence. We postpone the definitions

of µri , µ
c
i , and µrci to Chapter II. Here, K := 1 + (µ1)d(µ1) − d(µ1) + (µ′2)d(µ2) − d(µ2),

where d(λ) is the diagonal of λ. This constant is discussed further in Chapter V.

The partitions µri , µ
c
i , and µrci are all of smaller length than µi, and none of

the topological vertex terms are equal to zero, so we can divide both sides of the

condensation recurrence by qKX(µrc1 , µ
rc
2 , µ3). Viewed as a recurrence in µ1 and

µ2, the resulting equation uniquely characterizes V/M(q) and W . The base case is

when one of the partitions µi is equal to ∅; equation (1) is known to hold in this

situation [12].

When recast in terms of the dimer model, V/M(q) is easily seen to satisfy

equation (2) by Kuo’s graphical condensation [3]; this is essentially the content of

Chapter III.

Showing that W satisfies equation (2) is considerably more intricate, but once

we translate to the double-dimer model, the bulk of the work was done elsewhere,

in work of Jenne [2]. Essentially, [2] evaluates a certain determinant by the classical

Desnanot-Jacobi identity, and then interprets all six terms in the identity in terms

of W .

5



CHAPTER II

DEFINITIONS

This chapter was written by Ben Young, Helen Jenne, and the author.

Fix three partitions µ = (µ1, µ2, µ3). For this paper, we identify µi with

the coordinates of the boxes of its Young diagram, with the corner of the diagram

located at (0, 0) and the rows of the diagram extending in the horizontal direction.

Define the following subsets of Z3, thought of as sets of boxes:

Cyl1 = {(x, u, v) ∈ Z3 | (u, v) ∈ µ1},

Cyl2 = {(v, y, u) ∈ Z3 | (u, v) ∈ µ2},

Cyl3 = {(u, v, z) ∈ Z3 | (u, v) ∈ µ3}.

Moreover, let Z3
≥0 denote the integer points in the first octant (including the

coordinate planes and axes). Let Cyl+i = Cyli ∩ Z3
≥0 and Cyl−i = Cyli \ Z3

≥0.

Finally, let

II1̄ = Cyl2 ∩ Cyl3 \ Cyl1,

I− = Cyl−1 ∪ Cyl−2 ∪ Cyl−3 , II2̄ = Cyl3 ∩ Cyl1 \ Cyl2, III = Cyl1 ∩ Cyl2 ∩ Cyl3,

II3̄ = Cyl1 ∩ Cyl2 \ Cyl3,

II = II1̄ ∪ II2̄ ∪ II3̄,

and let

I+ =
(
Cyl+1 ∪ Cyl+2 ∪ Cyl+3

)
\ (II ∪ III) .
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When we wish to emphasize the dependence of Cyl1, Cyl2, Cyl3, I−, II, III,

or I+ on µ, we will write Cyl1(µ), Cyl2(µ), Cyl3(µ), I−(µ), II(µ), III(µ), or

I+(µ), respectively. Throughout this paper, M will denote the quantity

max{(µ1)1, `(µ1), (µ2)1, `(µ2), (µ3)1, `(µ3)}.

We will need the following standard notions of Maya diagrams.

Definition 2.0.2. If λ = (λ1, λ2, . . . , λk) is a partition with k parts, define λt = 0

for t > k. The Maya diagram of λ is the set {λt − t+ 1
2
} ⊆ Z + 1

2
.

We frequently associate a partition with its Maya diagram by drawing a Maya

diagram as a doubly infinite sequence of beads and holes, indexed by Z + 1
2
, with

the beads representing elements of the above set. For instance, the Maya diagrams

of the empty partition and of the partition λ = (4, 2, 1) are the sets {−1
2
,−3

2
, . . .}

and {7
2
, 1

2
,−3

2
,−7

2
,−9

2
, . . .}, respectively, which are drawn as

· · · ◦ ◦ ◦ | • • • · · · and · · · ◦ ◦ ◦ • ◦ ◦ • | ◦ • ◦ • • • · · · .

When convenient, we simply mark the location of 0 with a vertical line, rather than

labelling the beads with elements of Z + 1
2
.

Definition 2.0.3. Conversely, if S is a subset of Z+ 1
2
, define S+ = {x ∈ S | x > 0}

and S− =
{
x ∈ Z + 1

2
\ S | x < 0

}
. If both S+ and S− are finite, then define the

charge of S, c(S), to be |S+| − |S−|; then it is easy to check that the set {s− c(S) |

s ∈ S} is the Maya diagram of some partition λ; we say that S itself is the charge

c(S) Maya diagram of λ.

Definition 2.0.4. If λ is a partition with Maya diagram S, let λr (resp. λc) be

the partition associated to the charge −1 (resp. 1) Maya diagram S \ {minS+}

7



(resp. S ∪ {maxS−}). Let λrc be the partition associated to the Maya diagram

(S \ {minS+}) ∪ {maxS−}.

In both DT and PT, it will be convenient to divide the N×N×N honeycomb

graph H(N) into three sectors and label some of the vertices on the outer face, as

shown in Figure 1 for H(3). We remark that the divisions into sectors make sense

as N →∞. The reason for this choice of labels is that we will need to specify these

particular vertices, both in DT and PT, based on the Maya diagrams of µ1, µ2, µ3,

and various other partitions. Furthermore, if a vertex u on the outer face in sector

i is labelled by a positive (resp. negative) number, we will say that u is in sector i+

(resp. sector i−).

1 2

3
1
2

−1
23

2
−3

2

...
...

−3
2

3
2

−1
2

1
2

1
2 −1

23
2 −3

2

2 1

3

3
2

−3
2

1
2

−1
2

−1
2

1
2

−3
2

3
2

...
...

3
2 −3

21
2
−1

2

FIGURE 1. The graph H(3). Left: The division into sectors for DT. Right: The
division into sectors for PT.

We will weight the edges of H(N) following Kuo [3].

Definition 2.0.5. [3, Section 6] Weight the edges of H(N) so that the non-

horizontal edges have weight 1 and the horizontal edges are weighted by powers

of q. Specifically, the N horizontal edges along the bottom right diagonal have

weight 1. On the next diagonal, the horizontal edges have weight q. In general, the

8



q5
q5

q5

q4
q4

q4
q4

q3
q3

q3
q3

q3

q2
q2

q2
q2

q2

q
q

q
q

1
1

1

FIGURE 2. The graph H(3) with edges weighted as specified in Definition 2.0.5.

weight of the edges on a diagonal is q times the weight of the edges on the previous

diagonal. This is illustrated in Figure 2.
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CHAPTER III

DT

This chapter was mainly written by Ben Young, with contributions from

Helen Jenne and the author. This chapter includes an application of a well-known

theorem.

3.1. DT Box Configurations

We say that a plane partition asymptotic to (µ1, µ2, µ3) is an order ideal under

the product order in Z3
≥0 which contains I+ ∪ II ∪ III, together with only finitely

many other points in Z3
≥0. We let P (µ1, µ2, µ3) denote the set of plane partitions

asymptotic to (µ1, µ2, µ3).

If any of µ1, µ2, µ3 are nonzero, then every π ∈ P (µ1, µ2, µ3) is an infinite

subset of Z3
≥0. We define w(π) = |π\(I+∪II∪III)|−|II|−2|III|, the customary measure

of “size” of such a plane partition in the geometry literature (see, for instance, [5]).

Define

V (µ1, µ2, µ3) =
∑

π∈P (µ1,µ2,µ3)

qw(π).

We call V (µ1, µ2, µ3) the topological vertex in Donaldson-Thomas theory. Note that

if π ∈ P (∅, ∅, ∅) with |π| = n, then π is a plane partition of n in the conventional

sense, that is, a finite array of integers such that each row and column is a weakly

decreasing sequence of nonnegative integers. Thus MacMahon’s enumeration of

plane partitions [4] gives us V (∅, ∅, ∅) =
∏∞

i=1 (1− qi)−i.

10



In [9], there is an expansion of V (µ1, µ2, µ3) in terms of Schur functions.

However, since no similar expansion is known in PT theory, this expansion does

not help prove Theorem 1.0.1.

3.2. DT Theory and the Dimer Model

Before giving the dimer description of V (µ1, µ2, µ3), we review the

correspondence between plane partitions and dimer configurations of a honeycomb

graph. By representing each integer i in a plane partition as a stack of i unit boxes,

a plane partition can be visualized as a collection of boxes which is stacked stably

in the positive octant, with gravity pulling them in the direction (−1,−1,−1).

This collection of boxes can be viewed as a lozenge tiling of a hexagonal region

of triangles that are the faces of a finite planar graph T . This lozenge tiling is then

equivalent to a dimer configuration (also called a perfect matching) of the dual

graph of T , which is a honeycomb graph H(N).

Just as a plane partition can be visualized as a collection of boxes, a plane

partition asymptotic to (µ1, µ2, µ3) can be visualized as a collection of boxes, as

shown in Figure 3, left picture. Moreover, a version of the above correspondence

puts these box collections in bijection with dimer configurations on the honeycomb

graph H(N) with some outer vertices removed, which we call H(N ;µ). Specifically,

let Si be the Maya diagram of µi. Construct the sets S+
i , S−i for i = 1, 2, 3 and

then remove the vertices with the labels in S+
i ∪S−i from sector i of H(N) to obtain

H(N ;µ) (here, we are referring to the labelling of the boundary vertices illustrated

in Figure 1, left picture).

Assume N ≥ M . The bijection described above preserves weight up to an

overall multiplicative constant, if we choose the edge weights in the dimer model

11



FIGURE 3. Shown left is a plane partition π asymptotic to (µ1, µ2, µ3), where
µ1 = (1, 1), µ2 = µ3 = (2, 1, 1), |II| = 9, |III| = 3, and w(π) = 13 − |II| − 2|III| = −2.
We see that π is equivalent to a tiling, which is truncated in the center image so
that it corresponds to a dimer configuration of H(7) with a few vertices on the
outer face deleted.

correctly. The edge weights we use are shown in Figure 2. Let ZD(G) denote

the weighted sum of all dimer configurations on G. Let Mmin(µ) be the unique

dimer configuration on H(N ;µ) of minimal weight – equivalently, the one whose

height function is minimal. We call Mmin(µ) the minimal dimer configuration;

see Section 5.2.1. This dimer configuration corresponds to the unique plane

partition πmin(µ) asymptotic to (µ1, µ2, µ3) that has no “extra” boxes, i.e., the

one that contains only I+ ∪ II ∪ III. Observe that Mmin(µ) contributes to the

lowest-degree term of ZD(H(N ;µ)), while πmin(µ) contributes to the lowest-degree

term of V . In fact, adding a box to a plane partition asymptotic to (µ1, µ2, µ3)

increases the weight of the corresponding dimer configuration by a factor of q, and

removing a box decreases the weight by a factor of q (this is a consequence of the

particular choice of edge weights). So, if the weight of Mmin(µ) is qwmin(µ), then

q−wmin(µ)ZD(H(N ;µ)) and q|II(µ)|+2|III(µ)|V (µ1, µ2, µ3) agree, at least up to degree

N −M . In other words, if w̃min(µ) := wmin(µ) + |II(µ)|+ 2|III(µ)|,

12



Theorem 3.2.1. As N → ∞, Z̃D(H(N ;µ)) := q−w̃min(µ)ZD(H(N ;µ)) converges to

V (µ1, µ2, µ3), where the limit is taken in the sense of formal Laurent series.

When µ1 = µ2 = µ3 = ∅, the weight qwmin(µ) of Mmin(µ) is computed,

for instance in [3]. For general µ, the computation is substantially messier, and is

postponed to Section 5.2.1.

3.3. The Condensation Recurrence in DT Theory

We now show that the DT partition function satisfies the condensation

recurrence; this is a corollary of the well-known “graphical condensation” theorem

of Kuo:

Theorem 3.3.1. [3, Theorem 5.1] Let G = (V1, V2, E) be a weighted planar

bipartite graph with a given planar embedding in which |V1| = |V2|. Let vertices

a, b, c, and d appear in a cyclic order on a face of G. If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G− {a, b, c, d}) = ZD(G− {a, b})ZD(G− {c, d}) (3)

+ ZD(G− {a, d})ZD(G− {b, c}).

Take G to be H(N ;µrc1 , µ
rc
2 , µ3) for N ≥ M . Let a and b be the vertices in

sector 1 labelled by maxS−1 and minS+
1 , respectively. Similarly, we let c and d be

the vertices in sector 2 labelled by maxS−2 and minS+
2 . The resulting six dimer

model partition functions are all instances of the topological vertex, up to degree

N −M .

The graph G− {a, b, c, d} is H(N ;µ1, µ2, µ3),

G− {a, b} = H(N ;µ1, µ
rc
2 , µ3), and G− {c, d} = H(N ;µrc1 , µ2, µ3).

13



On the other hand, the graphs G − {a, d} and G − {b, c} are not equal to

H(N ;λ1, λ2, λ3) for any partitions λ1, λ2, λ3, since such partitions would have to

satisfy |S+
i | = |S−i | ± 1 for i = 1, 2, which is impossible (the Maya diagram

S of a partition λ always satisfies |S+| = |S−|). Instead, these graphs are

associated with Maya diagrams of nonzero charge: G − {a, d} is constructed from

the charge −1 Maya diagram associated to µr1 and the charge 1 Maya diagram

associated to µc2, and G − {b, c} is constructed from the charge 1 Maya diagram

associated to µc1 and the charge −1 Maya diagram associated to µr2. However, the

correspondence discussed in Section 3.2 can still be applied in these cases, with

minor modifications: plane partitions asymptotic to (µr1, µ
c
2, µ3) correspond to

dimer configurations on G − {a, d}, with the origin in Z3 corresponding to the

face directly above the central face of H(N), and plane partitions asymptotic to

(µc1, µ
r
2, µ3) correspond to dimer configurations on G − {b, c}, with the origin in Z3

corresponding to the face directly below the central face of H(N). For this reason,

we refer to the dimer configurations on G− {a, d} and G− {b, c} of minimal weight

by Mu
min and Md

min, respectively.

Example 3.3.2. Let N = 7, and let µ1 = (3, 2), µ2 = (2, 2), and µ3 = (2, 1).

Figure 4 shows a dimer configuration of G − {a, b, c, d} = H(N ;µ1, µ2, µ3) and the

vertices a, b, c, and d.

We note that µrc1 = (3, 1) and µrc2 = (2, 1). The graphs G − {a, b} =

H(N ;µ1, µ
rc
2 , µ3) and G − {c, d} = H(N ;µrc1 , µ2, µ3), along with their minimal

dimer configurations, are shown in Figure 5.

We have µr1 = (4), µc2 = (1, 1, 1), µc1 = (2, 1, 1), and µr2 = (3). The graphs

G − {a, d}, G − {b, c} and their minimal dimer configurations are also shown in

Figure 5. This figure illustrates the fact that the correspondence between plane

14



partitions asymptotic to (µr1, µ
c
2, µ3) (resp. (µc1, µ

r
2, µ3)) and dimer configurations on

G−{a, d} (resp. G−{b, c}) requires a shift; the image shows that the “floor” of the

plane partition is shifted up (resp. down).

FIGURE 4. A dimer configuration of H(7;µ1, µ2, µ3), and the vertices a, b, c, and
d, where µ1 = (3, 2), µ2 = (2, 2), and µ3 = (2, 1).

Let qw
u
min and qw

d
min be the weights of Mu

min and Md
min, respectively. Then let

w̃umin = wumin + |II(µr1, µc2, µ3)| + 2|III(µr1, µc2, µ3)|, w̃dmin = wdmin + |II(µc1, µr2, µ3)| +

2|III(µc1, µr2, µ3)|,

Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {a, d}) = q−w̃

u
minZD(H(N ;µrc1 , µ

rc
2 , µ3)− {a, d}),

and

Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {b, c}) = q−w̃

d
minZD(H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}).

Also, let

A = w̃min(µ1, µ2, µ3) + w̃min(µrc1 , µ
rc
2 , µ3),

B = w̃min(µrc1 , µ2, µ3) + w̃min(µ1, µ
rc
2 , µ3), and
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C = w̃umin + w̃dmin.

From (3) and the preceding remarks, we have

qAZ̃D(H(N ;µ1, µ2, µ3))Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)) (4)

= qBZ̃D(H(N ;µrc1 , µ2, µ3))Z̃D(H(N ;µ1, µ
rc
2 , µ3))

+ qCZ̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {a, d})Z̃D(H(N ;µrc1 , µ

rc
2 , µ3)− {b, c}).

From Lemma 5.2.1, we see that A = B, and we multiply equation (4) by

q−A. In Section 5.2.2, we show that C − A = −K, which does not depend

on the variable N . For this reason, we can take N → ∞; in this limit, all six

of the Laurent series Z̃D converge to instances of V , with different partitions

as parameters. By Theorem 3.2.1, the first four Laurent series Z̃D converge

to V (µ1, µ2, µ3), V (µrc1 , µ
rc
2 , µ3), V (µrc1 , µ2, µ3), and V (µ1, µ

rc
2 , µ3), respectively.

Similarly, Z̃D(H(N ;µrc1 , µ
rc
2 , µ3) − {a, d}) converges to V (µr1, µ

c
2, µ3), and

Z̃D(H(N ;µrc1 , µ
rc
2 , µ3)− {b, c}) converges to V (µc1, µ

r
2, µ3). Thus,

V (µ1, µ2, µ3)V (µrc1 , µ
rc
2 , µ3) = V (µrc1 , µ2, µ3)V (µ1, µ

rc
2 , µ3) (5)

+ q−KV (µr1, µ
c
2, µ3)V (µc1, µ

r
2, µ3).

Multiplying by qK

(M(q))2
, we conclude that V/M(q) satisfies the condensation

recurrence (2).
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FIGURE 5. Modifications of the graph G from Example 3.3.2, and their minimal
dimer configurations. First row: The graph G− {a, b} and its minimal dimer
configuration. Second row: The graph G− {c, d} and its minimal dimer
configuration. Third row: The graph G− {a, d} and its minimal dimer
configuration. Fourth row: The graph G− {b, c} and its minimal dimer
configuration.
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CHAPTER IV

PT

This chapter was mainly written by the author, with contributions from Helen

Jenne. This chapter establishes a novel correspondence and includes an application

of a theorem from [2].

This section is, in principle, parallel to the previous one, except our

computations are done in PT theory [12], rather than DT theory. However, the

computations in question are substantially more intricate.

The overall plan is as follows. In Section 4.1, we describe the original index

set for the generating function W (µ1, µ2, µ3) that was introduced in [12]; it consists

of certain novel plane-partition-like objects that we call PT box configurations.

These configurations come with a notion of labelling, which is needed to describe

the coefficients of the generating function W . We introduce two alternate

combinatorial models for the index set for W : namely AB configurations in

Section 4.2, and double-dimer configurations in Section 4.3. We demonstrate in

Section 4.4 that these combinatorial objects are computing the same generating

function W (µ1, µ2, µ3) by describing and analyzing algorithms, called the labelling

algorithms, which are used in recovering PT box configurations from the other

models. Finally, in Section 4.5, we review the facts we need from [2] about the

condensation identity in the double-dimer model, and explain how this identity

is applied to compute W (µ1, µ2, µ3).

4.1. Labelled PT Box Configurations

We refer to elements of Z3 as cells.
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Definition 4.1.1. If w = (w1, w2, w3) is a cell, the set of back neighbors of w,

denoted BN(w), is

{(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)} .

We now introduce labelled box configurations. Their definition is taken

from [12].

Definition 4.1.2. A set of labelled boxes is a finite subset of I− ∪ II ∪ III, whose

elements are referred to as boxes, where each type III box w may be labelled by an

element of

P1
w := P

(
C · 1w ⊕ C · 2w ⊕ C · 3w

C · (1, 1, 1)w

)
.

Definition 4.1.3. A labelled box configuration is a set of labelled boxes that

satisfies the following box-stacking rules.

Conditions 4.1.4. 1. If w ∈ I− and any cell in BN(w) is a box, then w must

be a box.

2. If w ∈ IĪi and any cell n ∈ BN(w) is a box that is not a type III box labelled

span{in + C · (1, 1, 1)n}, then w must be a box.

3. If w ∈ III and the span of subspaces of

C · 1w ⊕ C · 2w ⊕ C · 3w
C · (1, 1, 1)w

induced by boxes in BN(w) is nonzero, then w must be a box. If the

dimension of the span is 1, then w may either be labelled by the span or be

unlabelled. If the dimension of the span is 2, then w must be unlabelled.
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Remark 4.1.5. By Conditions 4.1.4.3, if w ∈ III and n ∈ BN(w) is an unlabelled

type III box, then w must be an unlabelled box. This is because unlabelled type III

boxes induce the whole 2-dimensional space C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

.

We then define

W (µ1, µ2, µ3) = q−|II|−2|III|
∑

labelled box configs. π

χtop(π)q|π|,

where |π| is the number of boxes in π plus the number of unlabelled type III boxes

in π, and χtop(π) is the topological Euler characteristic of the moduli space of

labellings of π. When we wish to emphasize the variable being used, we will write

W (µ1, µ2, µ3; q) instead of W (µ1, µ2, µ3).

We will also use the terminology introduced in the following definition.

Definition 4.1.6. We say that a type III box w of a labelled box configuration

π is freely labelled if w is labelled and for any ` ∈ P1
w, there is a labelling of π in

which w is labelled `. In this case, we also say that w is labelled by a freely chosen

element of P1.

The following example appears in [12, Section 5.4].

Example 4.1.7. Let µ1 = (1), µ2 = (2), and µ3 = (1). Then III = {(0, 0, 0)} and

II = II1̄ = {(0, 0, 1)}. We list labelled box configurations π with |π| ≤ 3.

There is a unique empty labelled box configuration. There are two labelled

box configurations π with |π| = 1:

1. a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0),

2. a box at (0, 0, 1).
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There are three labelled box configurations with |π| = 2:

1. boxes at (0,−1, 1) and (0, 0, 1),

2. a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0) and a box at

(−1, 0, 0),

3. a freely labelled box at (0, 0, 0) and a box at (0, 0, 1).

There are six labelled box configurations with |π| = 3:

1. an unlabelled box at (0, 0, 0) and a box at (0, 0, 1),

2. a freely labelled box at (0, 0, 0), and boxes at (0,−1, 1) and (0, 0, 1),

3. a box at (−1, 0, 0), a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0),

and a box at (0, 0, 1),

4. a box at (0, 0,−1), a box at (0, 0, 0) labelled with C · 3(0,0,0) + C · (1, 1, 1)(0,0,0),

and a box at (0, 0, 1),

5. a box at (0, 0, 0) labelled with C · 1(0,0,0) + C · (1, 1, 1)(0,0,0), and boxes at

(−2, 0, 0) and (−1, 0, 0),

6. boxes at (0,−2, 1), (0,−1, 1), and (0, 0, 1).

4.2. Labelled AB Configurations

Given a labelled box configuration π such that χtop(π) = 2k, our objective

is to associate to π a certain collection of 2k pairs (A,B), called labelled AB

configurations. We begin by defining AB configurations, and then describe how

to label these configurations.
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Definition 4.2.1. An AB configuration is a pair (A,B) of finite sets A ⊆ I− ∪ III

and B ⊆ II∪III, whose elements are referred to as boxes, which satisfies the following

conditions.

Conditions 4.2.2. 1. If w ∈ I− ∪ III and BN(w) ∩ A 6= ∅, then w ∈ A.

2. If w ∈ II ∪ III and BN(w) ∩B 6= ∅, then w ∈ B.

We remark that these are the familiar conditions for plane partitions, except

that gravity is pulling the boxes in the direction (1, 1, 1). Also, we call an AB

configuration (A,B) empty (resp. nonempty) if A ∪B is empty (resp. nonempty).

If there is a labelled box configuration π so that the additional conditions

below are satisfied, then we say that (A,B) is an AB configuration on π.

Conditions 4.2.3. 1. A ∪B is the set of boxes in π.

2. A ∩B is the set of unlabelled type III boxes in π.

An example of an AB configuration is shown in Figure 6.

FIGURE 6. The AB configuration (III, II ∪ III), in the case where µ1 = µ2 = µ3 =
(2).
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4.2.1. The Base AB Configuration

The set of all AB configurations on π will be denoted AB(π). There is always

at least one way to construct an AB configuration on π. This will be called the

base AB configuration, ABbase(π).

Definition 4.2.4. Construct A and B from the boxes of π as follows. Let A consist

of the type I− boxes and the type III boxes. Let B consist of the type II boxes and

the unlabelled type III boxes. Define ABbase(π) = (A,B).

Example 4.2.5. If µ1 = µ2 = µ3 = (2), then there is a labelled box configuration

π consisting of an unlabelled type III box (0, 0, 0), and type II boxes (1, 0, 0),

(0, 1, 0), and (0, 0, 1). The base AB configuration is ABbase(π) = (A,B), where

A = {(0, 0, 0)} and B = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and is illustrated in

Figure 6. In this case, A = III and B = II ∪ III.

We will now show that ABbase(π) ∈ AB(π). To establish this fact as well as

subsequent statements, the following lemmas will be needed.

Lemma 4.2.6. Suppose w ∈ Cylj and n(i) ∈ BN(w) is the back neighbor obtained

by subtracting 1 from the ith coordinate of w. Then, if i = j or the ith coordinate of

w is positive, n(i) ∈ Cylj.

Proof. Let w = (w1, w2, w3) and n(i) = (n1, n2, n3), so that ni = wi − 1 and

nl = wl for l 6= i. In what follows, all indices should be considered modulo 3. Since

w ∈ Cylj, (wj+1, wj+2) ∈ µj. Suppose i = j. Then (nj+1, nj+2) = (wj+1, wj+2) ∈ µj,

so n(i) ∈ Cylj. Suppose wi > 0. We may assume i 6= j, so i = j + 1 or i = j + 2.

In the first case, wj+1 − 1 ≥ 0, so (nj+1, nj+2) = (wj+1 − 1, wj+2) ∈ µj, while in the

second case, wj+2 − 1 ≥ 0, so (nj+1, nj+2) = (wj+1, wj+2 − 1) ∈ µj. In both cases,

n(i) ∈ Cylj.
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Lemma 4.2.7. Let i ∈ {1, 2, 3}. If w ∈ I− is adjacent to w′ ∈ IĪi, then w ∈ Cyl−j

for some j ∈ {1, 2, 3} \ {i}.

Proof. Either w ∈ BN(w′) or w′ ∈ BN(w). Since w′ ∈ II ⊆ Z3
≥0, if w′ ∈ BN(w),

then w ∈ Z3
≥0. However, w ∈ I−, so w 6∈ Z3

≥0. Thus, w ∈ BN(w′). Since w ∈ I−,

w ∈ Cyl−j for some j ∈ {1, 2, 3}, so the jth coordinate of w must be negative. Since

w′ ∈ Z3
≥0, w must be the back neighbor obtained by subtracting 1 from the jth

coordinate of w′. Since w ∈ Cylj, we find that w′ ∈ Cylj. On the other hand, since

w′ ∈ IĪi, w
′ 6∈ Cyli, so j 6= i.

Lemma 4.2.8. Let i ∈ {1, 2, 3}. If w ∈ II is adjacent to w′ ∈ IĪi, then w ∈ IĪi.

Proof. Either w ∈ BN(w′) or w′ ∈ BN(w). If w ∈ BN(w′), observe that w′ ∈ Cylj

for j 6= i, so by Lemma 4.2.6, BN(w′) ∩ Z3
≥0 ⊆ Cylj. Since w ∈ II ⊆ Z3

≥0, we

have w ∈ Cylj for j 6= i, so w ∈ IĪi. Otherwise, w′ ∈ BN(w). Then w ∈ IIj̄ for

some j ∈ {1, 2, 3}, and by the same argument, w′ ∈ IIj̄. We deduce that j = i, so

w ∈ IĪi.

Lemma 4.2.9. Suppose w ∈ III and n ∈ BN(w). Then n ∈ I− ∪ III.

Proof. Let n(i) ∈ BN(w) be the neighbor obtained by subtracting 1 from the

ith coordinate of w. If n(i) 6∈ III, then n(i) 6∈ Cylj for some j ∈ {1, 2, 3}, so by

Lemma 4.2.6, the ith coordinate of w is not positive. Since w ∈ III ⊆ Z3
≥0, it follows

that the ith coordinate of w is 0, so the ith coordinate of n(i) is −1. Therefore, by

the same lemma, n(i) ∈ Cyli \ Z3
≥0 = Cyl−i ⊆ I−.

Lemma 4.2.10. If π is a labelled box configuration, then ABbase(π) satisfies

Conditions 4.2.2 and Conditions 4.2.3, i.e., ABbase(π) ∈ AB(π).
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Proof. Let (A,B) = ABbase(π). Conditions 4.2.3 are immediate. To check

Conditions 4.2.2.1, suppose that w ∈ I− ∪ III and n ∈ BN(w) ∩ A. We must show

that w ∈ A. Since n ∈ A, n is a box of π in I− ∪ III. If w ∈ I−, the claim follows

from Conditions 4.1.4.1. If w ∈ III, the claim follows from Conditions 4.1.4.3.

Similarly, to check Conditions 4.2.2.2, suppose that w ∈ II ∪ III and

n ∈ BN(w) ∩ B. We must show that w ∈ B. Since n ∈ B, n is a type II box

of π or an unlabelled type III box of π. If w ∈ II, then the claim follows from

Conditions 4.1.4.2. If w ∈ III, then w is a box of π, by Conditions 4.1.4.3, but

we need to check that w is unlabelled. Since w ∈ III and n ∈ BN(w), Lemma 4.2.9

shows that n cannot be in II, so it must be an unlabelled type III box. Since n is

unlabelled, w must be unlabelled as well by Remark 4.1.5.

We will also need the following definitions.

Definition 4.2.11. Let PT-box be the set of all labelled box configurations, and

let ABall be the set of all AB configurations.

Let φbase : PT-box → ABall be the map that sends π to ABbase(π), and let

ABbase = φbase(PT-box). Observe that

ABbase =
⋃

π∈PT-box

{ABbase(π)} .

4.2.2. The Labelling Algorithm for AB Configurations

Thus far, we have described a method for constructing an AB configuration

from a labelled box configuration. We now describe an algorithm that labels AB

configurations. When successful, its output can be used to construct a labelled box
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configuration from an AB configuration. Note that the algorithm assigns labels to

cells, not boxes.

Definition 4.2.12. Let (A,B) ∈ ABall. We call the set

L(A,B) := (I− ∩ A) ∪ (II \B) ∪ (III ∩ (A4B))

the labelling set of (A,B).

We label cells by assigning labels to connected components of L(A,B) using

the following algorithm.

Algorithm 4.2.13. 1. If a connected component of L(A,B) contains a cell in

Cyl−i ∪ IĪi and a cell in Cyl−j ∪ IIj̄, where i 6= j, terminate with failure.

2. For each connected component C of L(A,B) that contains a cell in Cyl−i ∪ IĪi,

label each element of C by i.

3. For each remaining connected component C of L(A,B), label each element of

C by the same freely chosen element of P
(

C·1⊕C·2⊕C·3
C·(1,1,1)

)
.

Remark 4.2.14. When the context is clear, we will denote P
(

C·1⊕C·2⊕C·3
C·(1,1,1)

)
by P1.

We will also use 〈z1, z2, z3〉w to denote span {z11w + z22w + z33w + C · (1, 1, 1)w} ∈

P
(

C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

)
and 〈z1, z2, z3〉 to denote span {z11 + z22 + z33 + C · (1, 1, 1)} ∈

P
(

C·1⊕C·2⊕C·3
C·(1,1,1)

)
.

Definition 4.2.15. For i ∈ {1, 2, 3}, if w ∈ Cyl−i ∪ IĪi, set `(w) := i.

Lemma 4.2.16. If w ∈ I− ∪ II is labelled at any point in Algorithm 4.2.13, then it

is labelled by `(w).
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Proof. Let w ∈ I− ∪ II. Suppose w is labelled at some point in Algorithm 4.2.13.

Then w is an element of some connected component C of L(A,B). If w ∈ I−, then

w ∈ Cyl−i for some i ∈ {1, 2, 3}, so w is labelled by i in step 2 of Algorithm 4.2.13,

and `(w) = i. Otherwise, w ∈ II, so w ∈ IĪi for some i ∈ {1, 2, 3}. In this case, w is

labelled by i in step 2 of Algorithm 4.2.13 and `(w) = i.

Definition 4.2.17. Given (A,B) ∈ ABall and a connected component C of

L(A,B), let

N (C) =
∣∣{` (w) | w ∈ C ∩

(
I− ∪ II

)}∣∣ .
Remark 4.2.18. Let (A,B) ∈ ABall. Algorithm 4.2.13 terminates if and only if

there is a connected component C of L(A,B) such that N (C) > 1. Moreover, if

Algorithm 4.2.13 does not terminate, then a connected component C of L(A,B) is

labelled in step 2 if and only if N (C) = 1, and C is labelled in step 3 if and only if

N (C) = 0. Finally, if w is labelled in step 3 of Algorithm 4.2.13, then w ∈ C, where

C is a connected component of L(A,B) that does not contain any cells in Cyl−i ∪ IĪi

for any i ∈ {1, 2, 3}, so

w ∈ C ⊆ L(A,B) \

(
3⋃
i=1

Cyl−i ∪ IĪi

)
= L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B).

Because Algorithm 4.2.13 may fail in step 1, there are AB configurations that

cannot be labelled.

Definition 4.2.19. A labelled AB configuration is an AB configuration for which

Algorithm 4.2.13 succeeds.

Example 4.2.20. As in Example 4.1.7, let µ1 = (1), µ2 = (2), and µ3 = (1),

so III = {(0, 0, 0)} and II = II1̄ = {(0, 0, 1)}. In Figure 7, we illustrate four AB
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FIGURE 7. The AB configurations from Example 4.2.20.

configurations, three of which are labelled AB configurations. The first three of

these configurations appear in Example 4.1.7 as the configuration (1) with |π| = 1,

the configuration (4) with |π| = 3, and the configuration (3) with |π| = 2.

1. A consists of a single box at (0, 0, 0) and B = ∅. Step 2 of Algorithm 4.2.13

gives the connected component consisting of cells (0, 0, 0) and (0, 0, 1) the

label 1, which is indicated by the color purple. The cell (0, 0, 0) is opaque

because it is a box; the cell (0, 0, 1) is not.

2. A = {(0, 0, 0), (0, 0,−1)} and B = {(0, 0, 1)}. The box in B is not in the

labelling set. Step 2 labels the cells in A by 3, which we illustrate by coloring

the two boxes cyan. The box at (0, 0, 1) is colored gray because it does not

get a label.

3. A = ∅ and B = {(0, 0, 0), (0, 0, 1)}. Again, the box at (0, 0, 1) is not in the

labelling set. The box at (0, 0, 0) has a freely chosen label in P1.

4. B = ∅ and A = {(0, 0, 0), (0, 0,−1)}. The algorithm terminates with failure

in step 1 because (0, 0,−1) ∈ Cyl−3 and (0, 0, 1) ∈ II1̄, and these cells are in

the same connected component. In the figure, (0, 0, 0) is colored both cyan,

required by the box at (0, 0,−1), and purple, required by the cell at (0, 0, 1).
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Example 4.2.21. Figure 8 shows a labelled AB configuration with µ1 = (3, 3, 1),

µ2 = (3, 2, 2, 1), and µ3 = (5, 3, 3, 1). The left image shows the configuration.

The boxes belonging to A are marked; all other boxes are in B. The right image

includes surrounding cells in II. In both images, yellow cells are labelled 2 and

purple cells are labelled 1. Opaque cells are boxes in the configuration and

transparent cells are not. The two connected components of L(A,B) labelled by

freely chosen elements of P1 are colored black and orange, respectively.

FIGURE 8. The AB configuration from Example 4.2.21.

4.2.3. Projection to the Base AB Configuration

Given a labelled AB configuration (A,B), we can define a set of labelled

boxes π(A,B) as follows.

Definition 4.2.22. Take A ∪ B to be the set of boxes of π(A,B) and label type

III boxes using the labels specified by Algorithm 4.2.13. More precisely, given a

connected component C of L(A,B), if Algorithm 4.2.13 labels C by i ∈ {1, 2, 3},

let the label of w ∈ III ∩ C in π(A,B) be span {iw + C · (1, 1, 1)w}, while if

Algorithm 4.2.13 labels C by a freely chosen element 〈z1, z2, z3〉 of P1, let the label

of w ∈ III ∩ C in π(A,B) be the same freely chosen element 〈z1, z2, z3〉w of P1
w.
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Define a map P : ABall → ABall by letting P (A,B) be the AB configuration

obtained by moving all multiplicity 1 type III boxes into A. That is, let

P (A,B) = (A ∪ (III ∩ (B \ A)), B \ (III ∩ (B \ A))).

Lemma 4.2.23. This map is well-defined. In fact, P takes every element of AB(π)

to ABbase(π).

Proof. Given (A,B) ∈ ABall, let (A′, B′) = (A ∪ (III ∩ (B \ A)), B \ (III ∩ (B \ A))).

We need to see that (A′, B′) ∈ ABall.

First, A′ ⊆ A∪III ⊆ I−∪III and B′ ⊆ B ⊆ II∪III are finite, since A′ ⊆ A∪B and

since A and B are both finite. Also, note that A ⊆ A′. To check Conditions 4.2.2.1,

suppose w ∈ I− ∪ III and n ∈ BN(w) ∩ A′. If n ∈ A, then w ∈ A ⊆ A′, by

Conditions 4.2.2.1 and the fact that (A,B) is an AB configuration. Otherwise,

n ∈ A′ \A, i.e., n ∈ III∩ (B \A). Then n ∈ III ⊆ Z3
≥0, so w ∈ Z3

≥0. Since w ∈ I−∪ III,

it follows that w ∈ III, so by Conditions 4.2.2.2 and the fact that (A,B) is an AB

configuration, w ∈ III ∩B ⊆ III ∩ (A ∪B) ⊆ A′.

Similarly, to check Conditions 4.2.2.2, suppose w ∈ II∪III and n ∈ BN(w)∩B′.

Since B′ ⊆ B, w ∈ B, by Conditions 4.2.2.2 and the fact that (A,B) is an AB

configuration. If w ∈ II, then w ∈ B′. Otherwise, w ∈ III. By Lemma 4.2.9,

n ∈ I− ∪ III. However, n ∈ B′ ⊆ II ∪ III. Thus, n ∈ III. Since n ∈ B′, n ∈ III ∩ B′ ⊆

III∩B \ (B \A) ⊆ A∩B. In particular, n ∈ A, so by Conditions 4.2.2.1 and the fact

that (A,B) is an AB configuration, w ∈ A, i.e., w ∈ A ∩B ⊆ B′.

Finally, suppose (A,B) ∈ AB(π). The fact that (A′, B′) ∈ AB(π) is a

consequence of the equalities A′ ∪ B′ = A ∪ B, and A′ ∩ B′ = A ∩ B, which

are both clear. We claim that (A′, B′) = ABbase(π). To see this, we must show

30



that A′ consists of the type I− and type III boxes of π, while B′ consists of the

type II and unlabelled type III boxes of π. Since (A′, B′) is an AB configuration

on π, we have A′ ⊆ I− ∪ III and B′ ⊆ II ∪ III, and by Conditions 4.2.3.1, A′

must contain all type I− boxes of π, while B′ must contain all type II boxes of π.

Also, by Conditions 4.2.3.2, we know that A′ and B′ contain all unlabelled type III

boxes of π. So, by Conditions 4.2.3.1 and since A′ ⊆ I− ∪ III and B′ ⊆ II ∪ III,

(A′, B′) = ABbase(π) if A′ contains all labelled type III boxes of π and any box

w ∈ B′ ∩ III is unlabelled. For the first statement, if w is a labelled type III box of

π, then by Conditions 4.2.3, w ∈ III∩ ((A∪B)\ (A∩B)) = III∩ ((A\B)∪ (B \A)) ⊆

(A \ B) ∪ (III ∩ (B \ A)) ⊆ A′. For the second statement, if w ∈ B′ ∩ III is a

labelled box of π, then by Conditions 4.2.3, w ∈ B′ ∩ ((A′ ∪ B′) \ (A′ ∩ B′)) =

B′ ∩ ((A′ \ B′) ∪ (B′ \ A′)) ⊆ B′ \ A′, so w 6∈ A′ ⊇ A. This in turn implies that

w ∈ III ∩ (B′ \ A) ⊆ III ∩ (B \ A) ⊆ A′, a contradiction.

Let AB = P−1(ABbase). Clearly,

ABbase ⊆
⋃

π∈PT-box

AB(π) ⊆ AB ⊆ ABall.

In fact, the following lemma shows that
⋃

π∈PT-box

AB(π) = AB. Moreover, as

defined, P |AB is a surjection from AB onto ABbase.

Lemma 4.2.24. We have

AB =
⋃

π∈PT-box

AB(π).

More precisely, P−1(ABbase(π)) = AB(π).

Proof. By Lemma 4.2.23, AB(π) ⊆ P−1(ABbase(π)). Conversely, suppose

(A,B) ∈ P−1(ABbase(π)), that is, (A,B) is an AB configuration such that
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(A′, B′) := P (A,B) = ABbase(π). To show that (A,B) ∈ AB(π), we just need

to check that Conditions 4.2.3 hold. Since (A′, B′) = ABbase(π) ∈ AB(π), we have

that A ∪ B = A′ ∪ B′ is the set of boxes in π and A ∩ B = A′ ∩ B′ is the set of

unlabelled type III boxes in π, as desired. Thus, P−1(ABbase(π)) ⊆ AB(π). Finally,

AB = P−1(ABbase) = P−1

( ⋃
π∈PT-box

{ABbase(π)}

)

=
⋃

π∈PT-box

P−1(ABbase(π)) =
⋃

π∈PT-box

AB(π).

Lemma 4.2.25. Suppose π is a labelled box configuration, (A,B) ∈ AB(π), and

w ∈ III ∩ (A4B) is a box that is adjacent to a cell n ∈ L(A,B). If n ∈ Cyl−l ∪ IIl̄

for some l ∈ {1, 2, 3}, then the label of w in π is span{lw + C · (1, 1, 1)w}. If n ∈

III∩(A4B)∩BN(w), then n is a labelled type III box of π, and if the label of n in π

is span {z11n + z22n + z33n + C · (1, 1, 1)n}, then the label of w in π is 〈z1, z2, z3〉w.

Proof. By Conditions 4.2.3, w is a labelled type III box of π. Suppose n ∈ Cyl−l for

some l ∈ {1, 2, 3}. Then n ∈ I− ∩ A and n 6∈ Z3
≥0. Since w ∈ III ⊆ Z3

≥0, n ∈ BN(w).

Since (A,B) ∈ AB(π), n is a box of π, by Conditions 4.2.3.1. Then, note that

the span S of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes in BN(w) contains the

subspace span{lw + C · (1, 1, 1)w}, so S is that subspace or S is 2-dimensional. By

Conditions 4.1.4.3, it follows that the label of w in π is span{lw + C · (1, 1, 1)w} or

w is an unlabelled box of π. In the latter case, by Conditions 4.2.3.2, w ∈ A ∩ B,

contradicting the fact that w ∈ A4B. So, the former statement must hold.

Suppose n ∈ IIl̄ for some l ∈ {1, 2, 3}. Then n ∈ II \ B. By Lemma 4.2.9,

n 6∈ BN(w), so w ∈ BN(n). Since A ⊆ I− ∪ III, n 6∈ A, so n 6∈ A ∪ B. Since
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(A,B) ∈ AB(π), n is not a box of π, by Conditions 4.2.3.1. By Conditions 4.1.4.2,

the label of w in π must be span{lw + C · (1, 1, 1)w}.

Finally, suppose n ∈ III ∩ (A4B) ∩ BN(w). Then, by Conditions 4.2.3,

n is a labelled type III box of π. Let `w denote the label of w in π and

span {z11n + z22n + z33n + C · (1, 1, 1)n} be the label of n in π. Since n ∈ BN(w),

the span S of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes in BN(w) contains the

subspace 〈z1, z2, z3〉w induced by n. By Conditions 4.1.4.3, S is 1-dimensional and

`w = S. Thus, `w = S = 〈z1, z2, z3〉w.

Theorem 4.2.26. Given an AB configuration (A,B), Algorithm 4.2.13 succeeds if

and only if (A,B) ∈ AB.

Proof. Let (A,B) ∈ ABall. Suppose Algorithm 4.2.13 succeeds. By Lemma 4.2.24,

to show that (A,B) ∈ AB, it suffices to find a labelled box configuration π

such that (A,B) ∈ AB(π). To achieve this, we will show that π(A,B) satisfies

Conditions 4.1.4, and then show that Conditions 4.2.3 hold.

Conditions 4.1.4. Suppose w ∈ I− and n ∈ BN(w) ∩ (A ∪ B). Since w 6∈ Z3
≥0,

n 6∈ Z3
≥0, so n 6∈ II ∪ III, implying that n ∈ A. Then, by Conditions 4.2.2.1,

w ∈ A ⊆ A ∪B.

Next, suppose w ∈ IĪi and n ∈ BN(w) ∩ (A ∪ B) is not a type III box labelled

span{in + C · (1, 1, 1)n}. If n ∈ B, then by Conditions 4.2.2.2, w ∈ B ⊆ A ∪ B.

Otherwise, n 6∈ B, so n ∈ A \ B. Then n ∈ I− ∪ III. If n ∈ I−, by Lemma 4.2.7, n ∈

Cyl−j for some j ∈ {1, 2, 3} \ {i}. Since n ∈ I− ∩ A ⊆ L(A,B) and Algorithm 4.2.13

does not terminate at step 1, w ∈ II \ L(A,B) ⊆ B ⊆ A ∪ B. Otherwise, n ∈ III. In

this case, suppose w 6∈ A ∪ B. Then w ∈ II \ B ⊆ L(A,B) and n ∈ III ∩ (A \ B) ⊆

III ∩ (A4B) ⊆ L(A,B), so Algorithm 4.2.13 assigns a label of i to n at step 2.
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However, by Definition 4.2.22, the label of n in π(A,B) is span{in + C · (1, 1, 1)n},

contradicting our assumption, so w ∈ A ∪B.

Now, suppose w ∈ III and the span S of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced

by boxes in BN(w) ∩ (A ∪B) is nonzero. In this case, BN(w) ∩ (A ∪B) 6= ∅, so by

Conditions 4.2.2.2, w ∈ A ∪B. By Lemma 4.2.9, BN(w) ⊆ I− ∪ III, so

BN(w) ∩ (A ∪B) ⊆ (I− ∪ III) ∩ (A ∪B) = (I− ∩ (A ∪B)) ∪ (III ∩ (A ∪B))

⊆ (I− ∩ A) ∪ (III ∩ (A ∪B)).

Suppose the dimension of S is 1. Then no cell in BN(w) ∩ (A ∪ B) is left

unlabelled by Algorithm 4.2.13, for any such cell must be an unlabelled type III box

in π(A,B), and such boxes induce the whole 2-dimensional space C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

.

As a result, BN(w) ∩ (A ∪ B) ⊆ L(A,B). We must show that the label of w in

π(A,B) is S or w is unlabelled in π(A,B). Suppose w is not unlabelled in π(A,B).

Then Algorithm 4.2.13 must assign a label to w, so w ∈ L(A,B). Thus, since w is

adjacent to each cell in BN(w) ∩ (A ∪B), {w} ∪ (BN(w) ∩ (A ∪B)) is contained in

a single connected component C of L(A,B), so Algorithm 4.2.13 assigns the same

label ` to each element of {w} ∪ (BN(w) ∩ (A ∪B)).

Let n ∈ BN(w)∩ (A∪B). Since BN(w)∩ (A∪B) ⊆ (I− ∩A)∪ (III∩ (A∪B)),

either n ∈ I− ∩ A, so n ∈ Cyl−i for some i ∈ {1, 2, 3} and ` = i, or n ∈ III ∩ (A ∪ B).

In the first case, n induces the subspace span{iw+C ·(1, 1, 1)w} of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

, so

span{iw+C·(1, 1, 1)w} ⊆ S, but since S is 1-dimensional, span{iw+C·(1, 1, 1)w} = S.

Then, since w ∈ III ∩ (A ∪B) and Algorithm 4.2.13 labels w by ` = i ∈ {1, 2, 3}, the

label of w in π(A,B) is span{iw + C · (1, 1, 1)w} = S, according to Definition 4.2.22.

In the second case, since n,w ∈ III ∩ (A ∪ B) and Algorithm 4.2.13 labels n,w ∈
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{w} ∪ (BN(w) ∩ (A ∪ B)) by `, either ` ∈ {1, 2, 3} and the labels of n and w

in π(A,B) are span{`n + C · (1, 1, 1)n} and span{`w + C · (1, 1, 1)w}, or ` is a

freely chosen element 〈z1, z2, z3〉 of P1 and the labels of n and w in π(A,B) are

the same freely chosen elements `n := span {z11n + z22n + z33n + C · (1, 1, 1)n}

and `w := 〈z1, z2, z3〉w. Then n induces the subspace span{`w + C · (1, 1, 1)w} or

`w, respectively, of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

, so span{`w + C · (1, 1, 1)w} ⊆ S or `w ⊆ S,

respectively. Since S is 1-dimensional, span{`w + C · (1, 1, 1)w} = S or `w = S,

respectively. That is, the label of w in π(A,B) is S.

Suppose the dimension of S is 2. We must show that w is an unlabelled box

of π(A,B). In other words, we must show that w 6∈ L(A,B). If BN(w)∩A∩B 6= ∅,

then by Conditions 4.2.2, w ∈ III∩A∩B, so w 6∈ L(A,B). Otherwise, BN(w)∩A∩

B = ∅. In this case, since BN(w) ∩ (A ∪ B) ⊆ (I− ∩ A) ∪ (III ∩ (A ∪ B)), we have

BN(w) ∩ (A ∪ B) ⊆ (I− ∩ A) ∪ (III ∩ (A4B)) ⊆ L(A,B). Suppose w ∈ L(A,B).

Then, since w is adjacent to each cell in BN(w)∩ (A∪B), {w}∪ (BN(w)∩ (A∪B))

is contained in a single connected component C of L(A,B), so Algorithm 4.2.13

assigns the same label ` to each element of {w} ∪ (BN(w) ∩ (A ∪ B)). Either

` ∈ {1, 2, 3} or ` is a freely chosen element 〈z1, z2, z3〉 of P1. By the arguments

given in the previous paragraph, in the first case, each element of BN(w) ∩ (A ∪ B)

induces the subspace span{`w + C · (1, 1, 1)w} of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

, and in the second

case, each element of BN(w) ∩ (A ∪ B) induces the same freely chosen element

`w := 〈z1, z2, z3〉w of P1
w. In the first case, S = span{`w + C · (1, 1, 1)w}, and

in the second case, S = `w. In either case, S is 1-dimensional. By contradiction,

w 6∈ L(A,B).

Conditions 4.2.3. Conditions 4.2.3.1 holds by construction. For Conditions 4.2.3.2,

suppose w ∈ A ∩ B. Then, since A ⊆ I− ∪ III and B ⊆ II ∪ III, w ∈ (I− ∪ III) ∩
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(II ∪ III) ⊆ III, which means that w 6∈ L(A,B). Therefore, w is an unlabelled box

of π(A,B). Conversely, suppose w is an unlabelled type III box of π(A,B). Then

w ∈ III ∩ (A ∪B) \ L(A,B) ⊆ A ∩B.

For the converse, suppose (A,B) ∈ AB. Then, by Lemma 4.2.24, (A,B) ∈

AB(π) for some π ∈ PT-box. We must show that Algorithm 4.2.13 succeeds, i.e.,

we must show that it passes step 1. Suppose not. Then a connected component C

of L(A,B) contains a cell wi ∈ Cyl−i ∪ IĪi and a cell wj ∈ Cyl−j ∪ IIj̄, where i 6= j.

Suppose wi is adjacent to wj. Without loss of generality, assume wi ∈

BN(wj). Observe that Cyl−i is not adjacent to Cyl−j , because Cyl−i and Cyl−j are

subsets of non-adjacent octants of Z3, so at least one of wi and wj is a type II cell.

In fact, if wi ∈ II ⊆ Z3
≥0, since wi ∈ BN(wj), we have wj ∈ Z3

≥0. Then wj 6∈ I−, in

which case, wj ∈ II. In any case, we deduce that wj ∈ II, so wj ∈ IIj̄. Suppose

wi ∈ II. Then, by Lemma 4.2.8, wi ∈ IIj̄. Since wi ∈ Cyl−i ∪ IĪi and i 6= j,

this is a contradiction. Consequently, wi 6∈ II, so wi ∈ Cyl−i ⊆ I−. Furthermore,

wi, wj ∈ L(A,B), so wi ∈ A ⊆ A ∪ B, while wj 6∈ I− ∪ III ∪ B, implying that

wj 6∈ A ∪ B. By Conditions 4.2.3.1, wi is a box of π, while wj is not. On the other

hand, by Conditions 4.1.4.2, wj is a box of π. By contradiction, wi is not adjacent

to wj. In fact, since wi and wj were arbitrary, this argument shows that C cannot

contain two adjacent cells w,w′ ∈ I− ∪ II such that `(w) 6= `(w′).

Since wi, wj ∈ C and C is a connected subset of L(A,B), there is a sequence

of adjacent cells wi := p0, p1, . . . , pr := wj, each of which is an element of C ⊆

L(A,B). Let 0 ≤ t ≤ r be the index such that pt is the last cell in this sequence

that is an element of Cyl−i ∪ IĪi. Then pt, wj ∈ C and pt, pt+1, . . . , pr = wj is a

sequence of adjacent cells, each of which is an element of C. So, without loss of

generality, assume that wi is the only cell in the sequence wi = p0, p1, . . . , pr = wj
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that is an element of Cyl−i ∪IĪi. Then, let 0 < t′ ≤ r be the index such that pt′ is the

first cell in the sequence p1, p2, . . . , pr = wj that is an element of I− ∪ II. Since wi is

the only cell in the sequence wi = p0, p1, . . . , pr = wj that is an element of Cyl−i ∪ IĪi,

pt′ ∈ (I− ∪ II) \ (Cyl−i ∪ IĪi), so pt′ ∈ Cyl−l ∪ IIl̄ for some l ∈ {1, 2, 3} \ {i}. Also,

wi, pt′ ∈ C and wi = p0, p1, . . . , pt′ is a sequence of adjacent cells, each of which is an

element of C. So, without loss of generality, assume that ps 6∈ I− ∪ II for 0 < s < r.

Then, for 0 < s < r, ps ∈ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Moreover, since wi is

not adjacent to wj, 1 < r, so 1 ≤ r − 1. In particular, p1, . . . , pr−1 ∈ III ∩ (A4B).

Since p1 ∈ III ∩ (A4B) is adjacent to p0 = wi ∈ L(A,B) ∩ (Cyl−i ∪ IĪi),

Lemma 4.2.25 shows that the label of p1 in π is span{ip1 + C · (1, 1, 1)p1}. Similarly,

pr−1 ∈ III ∩ (A4B) is adjacent to pr = wj ∈ L(A,B) ∩ (Cyl−j ∪ IIj̄), so the label

of pr−1 in π is span{jpr−1 + C · (1, 1, 1)pr−1}. Since i 6= j, 1 < r − 1. However, by

Lemma 4.2.25, we then find that the label of p2 in π is span{ip2 + C · (1, 1, 1)p2},

since p1 ∈ BN(p2) or p2 ∈ BN(p1). Then, since i 6= j, 2 < r − 1. By repeating

this argument finitely many times, we eventually see that the label of pr−1 in π is

span{ipr−1 + C · (1, 1, 1)pr−1}, contradicting the fact that i 6= j. This completes the

proof.

Corollary 4.2.27. Given (A,B) ∈ AB, π(A,B) is a labelled box configuration.

Proof. According to the theorem, Algorithm 1 succeeds. So, as established by the

first half of the proof, π(A,B) is a labelled box configuration.

Define ψbase : ABbase → PT-box by letting ψbase(A,B) = π(A,B).

Lemma 4.2.28.

φbaseψbase = 1ABbase
;
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ψbaseφbase = 1PT-box.

Proof. For the second equation, we must show for all π ∈ PT-box, that

ψbase(φbase(π)) = π. However, φbase(π) = ABbase(π), so we just need to show that

ψbase(ABbase(π)) = π. And, given this equation, we have

φbase(ψbase(ABbase(π))) = φbase(π) = ABbase(π)

for all π ∈ PT-box, thereby also establishing the first equation. In other words, it

suffices to show for all π ∈ PT-box, that if (A,B) := ABbase(π), then π(A,B) = π.

So, let π ∈ PT-box and (A,B) = ABbase(π). First, since (A,B) = ABbase(π) ∈

AB(π), A ∪ B is the set of boxes in π, and A ∩ B is the set of unlabelled type

III boxes in π. Furthermore, from Definition 4.2.22, A ∪ B is the set of boxes of

π(A,B). Since A ∩ B ⊆ (I− ∪ III) ∩ (II ∪ III) ⊆ III, we have A ∩ B ⊆ III \ L(A,B) ⊆

III \ (A4B), so by Definition 4.2.22, A ∩ B is the set of unlabelled type III boxes of

π(A,B). Therefore, the set of labelled type III boxes in π coincides with the set of

labelled type III boxes of π(A,B), and both are equal to III ∩ (A ∪ B) \ (A ∩ B) =

III ∩ (A4B). We need only show that π and π(A,B) associate the same labels to

each of these boxes. More precisely, given w ∈ III ∩ (A4B), we must show that the

label `w of w in π is equal to the label of w in π(A,B).

Suppose w ∈ III ∩ (A4B), C is the connected component of L(A,B)

containing w, and Algorithm 4.2.13 labels C by i ∈ {1, 2, 3}. Then the label of

w in π(A,B) is span{iw + C · (1, 1, 1)w}, and C contains a cell p0 ∈ Cyl−i ∪ IĪi.

Since C is connected, there is a sequence of adjacent cells p0, p1, . . . , pr := w,

each of which is an element of C ⊆ L(A,B). Without loss of generality, assume
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that p0 is the only cell in the sequence in Cyl−i ∪ IĪi. Since (A,B) is a labelled

AB configuration, C contains no cells in Cyl−j ∪ IIj̄, for j 6= i, so for 0 < s ≤ r,

ps ∈ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Since p1 ∈ III ∩ (A4B) is adjacent

to p0 ∈ L(A,B) ∩ (Cyl−i ∪ IĪi), Lemma 4.2.25 shows that the label of p1 in π is

span{ip1 + C · (1, 1, 1)p1}. Then, if 1 < r, by Lemma 4.2.25, we find that the label

of p2 in π is span{ip2 + C · (1, 1, 1)p2}, since p1 ∈ BN(p2) or p2 ∈ BN(p1). By

repeating this argument finitely many times, we eventually see that the label of pr

in π is span{ipr + C · (1, 1, 1)pr}, i.e., `w = span{iw + C · (1, 1, 1)w}.

Now consider the connected components of L(A,B) that Algorithm 4.2.13

labels by freely chosen elements of P1. Since L(A,B) ⊆ A∪ II∪ III ⊆ A∪ [0,M − 1]3,

L(A,B) is finite, so there are finitely many such components, which we will denote

C1, C2, . . . , Ck. Consider one such component Cm. Since Cm does not contain any

cells in Cyl−i ∪ IĪi for any i ∈ {1, 2, 3}, Cm ⊆ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B).

Suppose w and w′ are adjacent cells in Cm. Then w,w′ ∈ III ∩ (A4B) are labelled

type III boxes in π, and by Lemma 4.2.25, since w ∈ BN(w′) or w′ ∈ BN(w), the

labels of w and w′ in π must match: if the label of w in π is `w = 〈z1, z2, z3〉w, then

the label of w′ in π must be span {z11w′ + z22w′ + z33w′ + C · (1, 1, 1)w′}. By the

connectedness of Cm, this implies that Cm consists of labelled type III boxes in π,

all of whose labels in π match. That is, there exists `m := 〈z1, z2, z3〉 ∈ P1 such

that, for all w ∈ Cm, w is a labelled type III box in π and the label of w in π is

`w = 〈z1, z2, z3〉w. Since Algorithm 4.2.13 labels Cm by a freely chosen element of

P1, the label of each w ∈ Cm in π(A,B) is the same freely chosen element. So, it

just remains to show that `m can be freely chosen for 1 ≤ m ≤ k, i.e., regardless of

the values of `1, `2, . . . , `k, π satisfies Conditions 4.1.4.
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Suppose there is a choice L1, L2, . . . , Lk of the labels `1, `2, . . . , `k for which

π does not satisfy Conditions 4.1.4, i.e., for which the corresponding labelling π′

of π is not a labelled box configuration. Since π satisfies Conditions 4.1.4 and

Conditions 4.1.4.1 does not refer to labels, π′ also satisfies Conditions 4.1.4.1.

Suppose π′ does not satisfy Conditions 4.1.4.2. Then there is a cell w ∈ IĪi \ (A∪B)

and a cell n ∈ BN(w) ∩ (A ∪ B) that is not a type III box whose label in π′ is

span{in +C · (1, 1, 1)n}. In particular, Algorithm 4.2.13 assigns w ∈ II\B ⊆ L(A,B)

the label i in step 2. Furthermore, since π satisfies Conditions 4.1.4.2, it must be

the case that n is a type III box whose label in π is span{in+C·(1, 1, 1)n}. However,

labels in π and π′ may only differ for boxes in
⋃k
j=1Cj, so from this it follows that

n ∈ Cm for some 1 ≤ m ≤ k. Then, since n and w are adjacent, w ∈ Cm, which

is a contradiction. We conclude that π′ satisfies Conditions 4.1.4.2, so π′ does not

satisfy Conditions 4.1.4.3.

Thus, there exists a cell w ∈ III such that (i) the span S ′ of subspaces of

C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes of π′ in BN(w) is 1-dimensional, and w is neither

a box whose label in π′ is S ′ nor an unlabelled box in π′, or (ii) S ′ is 2-dimensional,

and w is not an unlabelled box in π′. In either case, BN(w) ∩ (A ∪ B) 6= ∅, so

by Conditions 4.2.2, w ∈ A ∪ B. As a result, w is a labelled box in π′. Let the

label of w in π′ be `′. In case (i), `′ 6= S ′. Since the set of labelled type III boxes

in π is equal to the set of labelled type III boxes in π′, w is a labelled box in π.

Let the label of w in π be ` and let S be the span of subspaces of C·1w⊕C·2w⊕C·3w
C·(1,1,1)w

induced by boxes of π in BN(w). Since BN(w) ∩ (A ∪B) 6= ∅, S is nonzero. Then,

since π satisfies Conditions 4.1.4.3, S is 1-dimensional and ` = S. So, in case (i),

` 6= `′ or S 6= S ′, and in case (ii), S 6= S ′. In all cases, for some 1 ≤ m ≤ k,

({w} ∪BN(w)) ∩ Cm 6= ∅, since labels in π and π′ may only differ for boxes in
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⋃k
j=1Cj. Suppose w 6∈ Cm. Then there exists n ∈ BN(w) ∩ Cm. Since w is a

labelled box in π, w ∈ III ∩ (A4B) ⊆ L(A,B), so because Cm is a connected

component of L(A,B) and w is adjacent to n ∈ Cm, w ∈ Cm. By contradiction,

w ∈ Cm.

Then, if n is a box of π′ in BN(w), i.e., n ∈ BN(w) ∩ (A ∪ B), Lemma 4.2.9

implies that n ∈ I− ∪ III. Suppose n ∈ I−. Then n ∈ I− ∩ A ⊆ L(A,B), since

B ⊆ II ∪ III, so because Cm is a connected component of L(A,B) and n is adjacent

to w ∈ Cm, n ∈ Cm ⊆ III ∩ (A4B), a contradiction. It follows that n 6∈ I−, so

n ∈ III. Additionally, suppose n ∈ A ∩ B. Then, by Conditions 4.2.2, w ∈ A ∩ B,

contradicting the fact that w ∈ Cm ⊆ III ∩ (A4B), so n ∈ III ∩ (A4B) ⊆ L(A,B).

Therefore, since Cm is a connected component of L(A,B) and n is adjacent to w ∈

Cm, n ∈ Cm. We deduce that, if Lm = 〈z1, z2, z3〉, then `′ = 〈z1, z2, z3〉w, and

all boxes n of π′ in BN(w) are labelled span {z11n + z22n + z33n + C · (1, 1, 1)n},

so S ′ = `′. Then S ′ is 1-dimensional, ruling out case (ii), and in case (i), we have

`′ 6= S ′ = `′. By contradiction, π satisfies Conditions 4.1.4, regardless of the values

of `1, `2, . . . , `k. This completes the proof that π(A,B) = π.

Lemma 4.2.29. Let π ∈ PT-box. For any (A,B), (A′, B′) ∈ AB(π), L(A,B) =

L(A′, B′). Thus, the output of Algorithm 4.2.13 is the same for all elements of

AB(π).

Proof. Suppose (A,B), (A′, B′) ∈ AB(π). Then A ∪ B = A′ ∪ B′ is the set of

boxes of π and A ∩B = A′ ∩B′ is the set of unlabelled type III boxes of π. Suppose

w ∈ I− ∩ A. Then, since B′ ⊆ II ∪ III, w ∈ A ∪ B = A′ ∪ B′ and w 6∈ B′, so

w ∈ I− ∩A′. So I− ∩A ⊆ I− ∩A′, and by the analogous argument, I− ∩A′ ⊆ I− ∩A,

so I−∩A = I−∩A′. Suppose w ∈ II\B. Then, since A ⊆ I−∪III, w 6∈ A∪B = A′∪B′,

so w ∈ II \ B′. So II \ B ⊆ II \ B′, and by the analogous argument, II \ B′ ⊆ II \ B,
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so II \B = II \B′. Finally,

III∩ (A4B) = III∩ ((A∪B) \ (A∩B)) = III∩ ((A′ ∪B′) \ (A′ ∩B′)) = III∩ (A′4B′),

so L(A,B) = L(A′, B′). Since Algorithm 4.2.13 only depends on the connected

components of the labelling set, we conclude that the output of Algorithm 4.2.13 is

the same for all elements of AB(π).

Corollary 4.2.30. Given (A,B) ∈ AB(π), π(A,B) = π.

Proof. Let (A′, B′) = ABbase(π). By Definition 4.2.22, Conditions 4.2.3.1, and the

lemma, π(A,B) = π(A′, B′). Then, by Lemma 4.2.28, we have

π(A,B) = π(A′, B′) = ψbase(A
′, B′) = ψbase (ABbase(π)) = ψbase (φbase(π)) = π,

as desired.

Corollary 4.2.31. The sets AB(π), for π ∈ PT-box, are disjoint.

Proof. Suppose π1 and π2 are labelled box configurations such that (A,B) ∈

AB (π1) ∩AB (π2). Then, by Corollary 4.2.30, we have π1 = π(A,B) = π2.

Lemma 4.2.32. Let π ∈ PT-box. If there are k connected components of freely

labelled type III boxes in π, then χtop(π) = 2k.

Proof. Let (A,B) = ABbase(π). By Corollary 4.2.30, π = π(A,B). Suppose

there are k connected components of freely labelled type III boxes in π. Then

there are k connected components of freely labelled type III boxes in π(A,B). By

Definition 4.2.22, the set of freely labelled type III boxes in π(A,B) is III ∩ (C1 ∪

C2 ∪ · · · ∪ CK), where C1, C2, . . . , CK are the connected components of L(A,B)
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that Algorithm 4.2.13 labels by freely chosen elements of P1. For 1 ≤ m ≤ K,

since Algorithm 4.2.13 labels Cm by a freely chosen element of P1, Cm must contain

no cells in I− ∪ II, so Cm ⊆ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B) ⊆ III. Thus,

III∩ (C1∪C2∪ · · · ∪CK) = C1∪C2∪ · · · ∪CK , so the connected components of freely

labelled type III boxes in π(A,B) are the connected components of C1∪C2∪· · ·∪CK ,

which are precisely C1, C2, . . . , CK . In particular, by Definition 4.2.22, there are

K = k independent, freely chosen labels in π(A,B), one for each component

C1, C2, . . . , CK = Ck. In other words, the moduli space of labellings of π(A,B)

is P1 × P1 × · · · × P1︸ ︷︷ ︸
k times

. The topological Euler characteristic of this space is χ(P1)k =

2k, i.e., χtop(π) = χtop(π(A,B)) = 2k.

Lemma 4.2.33. Let π ∈ PT-box and (A,B) = ABbase(π). Also, let the connected

components of freely labelled type III boxes in π be denoted C1, C2, . . . , Ck, and let

C(π) = {Cj1 ∪ · · · ∪ Cjm | 1 ≤ j1 < · · · < jm ≤ k} .

Then

AB(π) = {(A′, B′) ∈ ABall | A′ = A \ S,B′ = B ∪ S for some S ∈ C(π)} .

Proof. Let

AB(π) = {(A′, B′) ∈ ABall | A′ = A \ S,B′ = B ∪ S for some S ∈ C(π)} .

Suppose (A′, B′) ∈ AB(π). Then A′ = A \ S and B′ = B ∪ S for some S ∈ C(π).

Note that S is a set of labelled type III boxes in π, so S ⊆ A \ B. Then, to show
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that (A′, B′) ∈ AB(π), we just observe that

A′ ∪B′ = (A \ S) ∪ (B ∪ S) = A ∪B

is the set of boxes in π, and

A′ ∩B′ = (A \ S) ∩ (B ∪ S) = A ∩B

is the set of unlabelled type III boxes in π.

Conversely, suppose (A′, B′) ∈ AB(π). To show that (A′, B′) ∈ AB(π), we

must find a set S ∈ C(π) such that A′ = A \ S and B′ = B ∪ S. By Lemma 4.2.24,

AB(π) = P−1(ABbase(π)), so P (A′, B′) = (A,B), i.e., (A,B) is obtained from

(A′, B′) by moving all multiplicity 1 type III boxes into A′. In other words, A =

A′ ∪ S and B = B′ \ S, where S = III ∩ (B′ \ A′). Then A′ = A \ S and B′ = B ∪ S,

so it just remains to show that S ∈ C(π).

Given w ∈ S, since (A′, B′) ∈ AB(π) and S ⊆ III ∩ (A′4B′) ⊆ L(A′, B′), w ∈

L(A′, B′) is a labelled type III box in π. We claim that w ∈ C1 ∪ C2 ∪ · · · ∪ Ck. For

this, we must show that w is freely labelled. Let ` denote the label of w in π, and

let C(w) be the connected component of L(A′, B′) containing w. By Lemma 4.2.29,

L(A′, B′) = L(ABbase(π)) = L(A,B), so C(w) is the connected component of

L(A,B) containing w, and the output of Algorithm 4.2.13 is the same for (A′, B′)

and ABbase(π) = (A,B). By Lemma 4.2.28, π = π(ABbase(π)) = π(A,B). So,

either Algorithm 4.2.13 labels C(w) by i ∈ {1, 2, 3} and the label of w in π is

` = span{iw + C · (1, 1, 1)w}, or Algorithm 4.2.13 labels C(w) by a freely chosen

element 〈z1, z2, z3〉 of P1 and the label of w in π is the same freely chosen element

` = 〈z1, z2, z3〉w of P1
w.
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Suppose Algorithm 4.2.13 labels C(w) by i ∈ {1, 2, 3}. Then there is a cell

n ∈ C(w)∩(Cyl−i ∪IĪi). Since C(w) is connected, there is a sequence of adjacent cells

w := p0, p1, . . . , pr := n, each of which is an element of C(w) ⊆ L(A,B). Without

loss of generality, assume that n is the only cell in the sequence in Cyl−i ∪ IĪi. Then,

since (A,B) is a labelled AB configuration, C(w) contains no cells in Cyl−j ∪ IIj̄,

for j 6= i, so for 0 ≤ s < r, ps ∈ L(A,B) \ (I− ∪ II) ⊆ III ∩ (A4B). Since

(A,B) = ABbase(π) ∈ AB(π) and (A′, B′) ∈ AB(π),

III∩ (A4B) = III∩ ((A∪B) \ (A∩B)) = III∩ ((A′ ∪B′) \ (A′ ∩B′)) = III∩ (A′4B′),

so for 0 ≤ s < r, ps ∈ III ∩ (A′4B′).

Suppose n ∈ Cyl−i . Then n ∈ I− ∩ L(A,B) ⊆ I− ∩ A, so n ∈ A ∪ B = A′ ∪ B′.

However, B′ ⊆ II ∪ III, so pr = n ∈ A′ \ B′. Since w ∈ S, w ∈ B′ \ A′. Therefore,

there exists 0 ≤ s < r such that ps ∈ B′ \ A′ and ps+1 ∈ A′ \ B′. Then ps ∈ III is

adjacent to ps+1 ∈ I− ∪ III, so ps ∈ BN (ps+1) or ps+1 ∈ BN (ps). In the first case,

since ps ∈ III ⊆ Z3
≥0, ps+1 ∈ Z3

≥0 ∩
(
I− ∪ III

)
⊆ III ⊆ II ∪ III. It is easy to see that

these statements contradict Conditions 4.2.2 in both cases.

Otherwise, n ∈ IĪi. Then n ∈ II ∩ L(A,B) ⊆ II \ B, and since A ⊆ I− ∪ III,

n 6∈ A ∪ B = A′ ∪ B′. By Lemma 4.2.9, n 6∈ BN (pr−1), but pr−1 and n are

adjacent, so we must have pr−1 ∈ BN (n). Then, by Conditions 4.2.2, we deduce

that pr−1 6∈ B′, so pr−1 ∈ A′ \ B′. Since w ∈ B′ \ A′, there exists 0 ≤ s < r − 1

such that ps ∈ B′ \ A′ and ps+1 ∈ A′ \ B′. Then ps ∈ III is adjacent to ps+1 ∈ III,

so ps ∈ BN (ps+1) or ps+1 ∈ BN (ps). Again, it is easy to see that these statements

contradict Conditions 4.2.2 in both cases.

In all cases, we arrived at a contradiction. We conclude that ` is freely chosen

and, as a result, w ∈ C1 ∪ C2 ∪ · · · ∪ Ck. So, S ⊆ C1 ∪ C2 ∪ · · · ∪ Ck. Moreover,
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w is in exactly one of the connected components Cw of freely labelled type III boxes

in π. We claim that Cw ⊆ S. Since Cw is connected and w ∈ Cw ∩ S, it suffices

to show that if w′, w′′ ∈ Cw are adjacent and w′ ∈ S, then w′′ ∈ S. Suppose

w′, w′′ ∈ Cw are adjacent and w′ ∈ S. Then w′, w′′ are freely labelled type III boxes

in π. Furthermore, since w′ ∈ S, w′ ∈ B′ \ A′. Since w′ and w′′ are adjacent,

w′ ∈ BN (w′′) or w′′ ∈ BN (w′). Additionally, since w′′ ∈ A′ ∪ B′ is labelled,

w′′ 6∈ A′ ∩ B′, so w′′ ∈ A′4B′. However, by Conditions 4.2.2, w′ ∈ BN (w′′) implies

that w′′ ∈ B′, while w′′ ∈ BN (w′) implies that w′′ 6∈ A′, so in either case, we must

have w′′ 6∈ A′ \ B′. It follows that w′′ ∈ B′ \ A′, so w′′ ∈ III ∩ (B′ \ A′) = S, as

desired. Consequently, Cw ⊆ S, so

S =
⋃
w∈S

Cw ∈ C(π).

This completes the proof.

Corollary 4.2.34. Let N(π) be the number of connected components of freely

labelled type III boxes in π. Then |AB(π)| = 2N(π) = χtop(π).

Proof. Suppose S ∈ C(π). Let (A′, B′) = (A \ S,B ∪ S). We claim that (A′, B′) ∈

ABall. As we observed in the proof of the lemma, S ⊆ III and S ⊆ A \B. Since A is

a finite subset of I−∪III, so is A′. Since S ⊆ III and B ⊆ II∪III, B′ = B∪S ⊆ II∪III.

Also, II ∪ III ⊆ [0,M − 1]3, so II ∪ III is finite and, thus, B′ is finite.

Next, suppose w ∈ I−∪ III and n ∈ BN(w)∩A′. Since A′ ⊆ A and (A,B) is an

AB configuration, w ∈ A. Suppose w ∈ S. Then w ∈ Cj ⊆ S for some 1 ≤ j ≤ k,

and w ∈ III ∩ (A \ B) ⊆ III ∩ (A4B) ⊆ L(A,B). Then, by Conditions 4.2.2, n 6∈ B.
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By Lemma 4.2.9, n ∈ I− ∪ III, and since n ∈ A′ ⊆ A, we have

n ∈ (I− ∩ A) ∪ (III ∩ (A \B)) ⊆ (I− ∩ A) ∪ (III ∩ (A4B)) ⊆ L(A,B).

As shown in the proof of Lemma 4.2.32, C1, C2, . . . , Ck are connected components

of L(A,B). So, since w and n are adjacent, n ∈ Cj ⊆ S, contradicting the fact that

n ∈ A′ = A \ S. We deduce that w 6∈ S, so w ∈ A \ S = A′.

Now, suppose w ∈ II ∪ III and n ∈ BN(w) ∩ B′ = BN(w) ∩ (B ∪ S). If

n ∈ B, then w ∈ B ⊆ B′, since (A,B) is an AB configuration. Otherwise, n ∈ S, so

n ∈ Cj ⊆ S for some 1 ≤ j ≤ k, and n ∈ III ∩ (A \ B) ⊆ III ∩ (A4B) ⊆ L(A,B). If

w ∈ B, then w ∈ B′. Otherwise, w 6∈ B. Then w ∈ II \ B or w ∈ III, in which case,

by Conditions 4.2.2, since n ∈ S ⊆ A \B, w ∈ III ∩ (A \B). That is,

w ∈ (II \B) ∪ (III ∩ (A \B)) ⊆ (II \B) ∪ (III ∩ (A4B)) ⊆ L(A,B).

As discussed above, C1, C2, . . . , Ck are connected components of L(A,B). So, since

w and n are adjacent, w ∈ Cj ⊆ S ⊆ B′. In all cases, w ∈ B′.

These arguments show that (A′, B′) is an AB configuration, or in other words,

(A′, B′) ∈ ABall. Then, by the lemma, (A′, B′) ∈ AB(π), so there is a well-defined

surjective map f : C(π)→ AB(π) given by

f(S) = (A \ S,B ∪ S).
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We claim that f is also injective. Suppose that f(S1) = f(S2) for some S1, S2 ∈

C(π). Then B ∪ S1 = B ∪ S2, and as discussed above, S1 ⊆ A \B, S2 ⊆ A \B, so

S1 = (B ∪ S1) \B = (B ∪ S2) \B = S2,

as desired. Thus, |C(π)| = |AB(π)|. Since C1, C2, . . . , Ck are disjoint, C(π) is in

bijection with the power set of {1, 2, . . . , k}, so

|AB(π)| = |C(π)| = 2k = 2N(π) = χtop(π),

the last equality holding by Lemma 4.2.32.

Definition 4.2.35. Let

ZAB = ZAB(q) = q−|II|−2|III|
∑

(A,B)∈AB

q|A|+|B|.

Theorem 4.2.36.

ZAB = W (µ1, µ2, µ3)

Proof. By Lemma 4.2.24, Corollary 4.2.31, Conditions 4.2.3, and Corollary 4.2.34,

we have

ZAB = q−|II|−2|III|
∑

(A,B)∈AB

q|A|+|B| = q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|A|+|B|

= q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|A∪B|+|A∩B|

= q−|II|−2|III|
∑

π∈PT-box

∑
(A,B)∈AB(π)

q|π|

= q−|II|−2|III|
∑

π∈PT-box

|AB(π)|q|π|

48



= q−|II|−2|III|
∑

π∈PT-box

χtop(π)q|π| = W (µ1, µ2, µ3).

4.3. PT Theory and the Labelled Double-Dimer Model

The advantage of working with AB configurations is that they are unlabelled,

plane partition-like objects. In addition, there is a relationship between AB and

the tripartite double-dimer model, which we will now explain. On an infinite graph,

a double-dimer configuration is the union of two dimer configurations.

Let (A,B) be an AB configuration. We consider A and B separately. Let

R1 (resp. R2) denote the subset of Z3 consisting of the cells that have at least one

negative coordinate (resp. at least two negative coordinates). For A, we view the

surface A := R2 ∪ (I− ∪ III) \ A as a lozenge tiling of the plane. In other words, we

take the surface R2 ∪ I− ∪ III, remove the boxes in A, and view the resulting surface

as a lozenge tiling. Similarly, for B, we view the surface B := R1 ∪ (II ∪ III) \ B as

a lozenge tiling of the plane. The fact that these surfaces can be viewed as lozenge

tilings of the plane follows from Lemma 4.3.3 below. The resulting lozenge tilings

are then equivalent to dimer configurations of the infinite honeycomb graph H.

Example 4.3.1. Recall the AB configuration from Example 4.2.21. The

rightmost image of Figure 9 shows the lozenge tiling corresponding to A =

{(3,−1, 0), (3, 0, 0)}, i.e., corresponding to the surface R2 ∪ (I− ∪ III) \

{(3,−1, 0), (3, 0, 0)}.

Let MA (resp. MB) denote the dimer configuration of H corresponding to the

tiling obtained from A (resp. B). Superimposing MA and MB so that the origin in
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FIGURE 9. Converting an AB configuration to lozenge tilings of the plane. Left
two pictures: tilings corresponding to R1 and R2, respectively. Right two pictures:
an example of the surface (I− ∪ III) \ A and the surface R2 ∪ (I− ∪ III) \ A.

Z3 corresponds to the same face of H produces a double-dimer configuration D(A,B)

on H.

Example 4.3.2. For the AB configuration from Example 4.2.21, the dimer

configurations MA and MB are shown in Figure 10. Their superposition, shown

immediately to their right, is a double-dimer configuration D(A,B) on H.

Just as we label certain AB configurations, we label certain double-dimer

configurations. Note that each double-dimer configuration on H consists of doubled

edges, loops, and infinite paths. Before describing a labelling algorithm for the

double-dimer configurations D(A,B), we need the following lemmas.

Let ei be the ith standard unit vector.

Lemma 4.3.3. Let S ∈ {A,B} and q ∈ Z3
≥0. If p 6∈ S, then p+q 6∈ S. Conversely,

if p ∈ S, then p− q ∈ S.

Proof. It suffices to establish this result for q = ei. Suppose p + ei ∈ S. Then

p + ei ∈ (I− ∪ III) \ A or p + ei has at least two negative coordinates if S =

A, and p + ei ∈ (II ∪ III) \ B or p + ei has at least one negative coordinate if

S = B. We will show that p ∈ S. In the first case, if p has at least two negative
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FIGURE 10. Top left: The dimer configuration MA. Top right: The dimer
configuration MB. Bottom left: The superposition of MA and MB, a double-dimer
configuration on H. Bottom right: The labelled double-dimer configuration.

coordinates, p ∈ R2 ⊆ S. Otherwise, since p + ei having at least two negative

coordinates implies that p has at least two negative coordinates, we deduce from

Lemmas 4.2.6 and 4.2.9 that p ∈ I− ∪ III, and by Conditions 4.2.2.1, p 6∈ A. Thus,

p ∈ (I− ∪ III) \ A, so p ∈ S, as desired. In the second case, if p has at least one

negative coordinate, p ∈ R1 ⊆ S. Otherwise, p ∈ Z3
≥0, and since p + ei having at

least one negative coordinate implies that p has at least one negative coordinate, we

deduce from Lemma 4.2.6 that p ∈ II ∪ III. Then, by Conditions 4.2.2.2, p 6∈ B, so

p ∈ (II ∪ III) \ B, and p ∈ S. These arguments establish the first statement of the
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lemma. The second statement can be established from the first by replacing p with

p− q and taking the contrapositive of the result.

Remark 4.3.4. In what follows, we often consider H(N) as a subgraph of H.

When doing so and some face f of H corresponds to the origin in Z3, H(N) always

denotes the N ×N ×N honeycomb graph centered at f .

Lemma 4.3.5. Let (A,B) ∈ ABall. If a dimer in D(A,B) covers vertices in two

different sectors,2 then those vertices must lie in the subgraph H(M) ⊆ H.

Proof. Suppose a dimer e in D(A,B) covers vertices in two different sectors. Either

e ∈ MA or e ∈ MB. If e ∈ MA, let S = A, and otherwise, let S = B. Then e

must correspond to a facet f of a cell w ∈ S having coordinates (a, a, a) + hei for

some a ∈ Z, h ∈ Z≥0, i ∈ {1, 2, 3}, such that w + ei 6∈ S. From this, we see that

if w ∈ R2, then w + ei ∈ R2, and if w ∈ R1, then w + ei ∈ R1, so considering the

definitions of A and B, we must have w ∈ (I− ∪ III) \ A or w ∈ (II ∪ III) \ B. In

particular, w ∈ I− ∪ II ∪ III, so a ≥ 0. Then w ∈ II ∪ III, and II ∪ III is contained in

the cube [0,M ]3. Projecting this cube onto the plane x1 + x2 + x3 = 0 produces an

M ×M ×M hexagonal region that must contain f , so e must be an edge of H(M).

The result follows.

Corollary 4.3.6. Let (A,B) ∈ ABall. Every path in D(A,B) moves between sectors

finitely many times.

Definition 4.3.7. Given an end E of a path in D(A,B), we say that sector i

contains E if, when moving along the path toward E , there is a point after which

every dimer in the path is contained in sector i.

2When we refer to “sectors” in this section, we mean the sectors defined in the right-hand side
of Figure 1.
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Remark 4.3.8. Corollary 4.3.6 implies that each end E of every path in D(A,B) is

contained in sector i for some i.

We also recall some facts about height functions.

Definition 4.3.9. Given any dimer cover M0 of H and a face f0 of H, we can

associate to M0 a height function hM0 , called the absolute height function of M0,

that assigns to each face of H a real number as follows. Let hM0(f0) = 0. Then, for

any other face f of H, take a path f0, f1, f2, . . . , fr = f in the dual graph H∨ of H

from f0 to f , and let hM0(f) be the sum of the following contributions from each of

the corresponding edges e1, e2, . . . , er of H: assuming the left vertex of es is white

(resp. black), if es ∈ M0, its contribution is 2/3 (resp. −2/3), and otherwise, its

contribution is −1/3 (resp. 1/3). (Here, left and right should be interpreted from

the perspective of one traversing the path from f0 to f .)

The fact that hM0 is well-defined follows from the observation that such

contributions sum to 0 around any face of H∨.

Given two dimer covers M1 and M2 of H, we call the difference hM1 − hM2

the relative height function of M1 relative to M2. Actually, when considering the

lozenge tiling that corresponds to M0 as a surface, hM0 gives the height above

the plane x1 + x2 + x3 = 0, divided by
√

3, up to a constant. Thus, hM1 − hM2

gives the height difference, divided by
√

3, up to a constant, between the surfaces

corresponding to M1 and M2.

Given an AB configuration (A,B), let hA = hMA
and hB = hMB

. In

what follows, we consider the relative height function h(A,B) := hB − hA, where

both absolute height functions are based on the face f0 corresponding to the cell

(0, 0,M). Note that II ∪ III ⊆ [0,M − 1]3, so A and B have the same height
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above the plane x1 + x2 + x3 = 0 at f0. Therefore, h(A,B) is precisely the height

difference, divided by
√

3, between A and B. This difference remains constant,

except upon crossing an edge e ∈ MA4MB, when it must increase or decrease by

2/3 − (−1/3) = 1/3 − (−2/3) = 1. In other words, the loops and paths in D(A,B)

are the contour lines for h(A,B). Moreover, orienting the edges in MB from white

to black and those in MA from black to white produces orientations on the loops

and paths so that crossing a loop or path oriented from left to right causes h(A,B) to

increase by 1, while crossing a loop or path oriented from right to left causes h(A,B)

to decrease by 1.

Lemma 4.3.10. If p ∈ L(A,B), and p corresponds to f ∈ F , then p ∈ A4B and

h(A,B)(f) 6= 0.

Proof. Suppose p ∈ L(A,B), and p corresponds to f ∈ F . If p ∈ I− ∩ A, then

p 6∈ (I−∪III)\A and p does not have at least two negative coordinates (it has exactly

one negative coordinate), so p 6∈ A. Since p has at least one negative coordinate,

p ∈ B. It follows that h(A,B)(f) > 0. If p ∈ II\B, then p 6∈ (I−∪ III)\A and p ∈ Z3
≥0

does not have at least two negative coordinates, so p 6∈ A. Since p ∈ (II ∪ III) \ B,

p ∈ B. It follows that h(A,B)(f) > 0. Otherwise, p ∈ III∩ (A4B). If p ∈ III∩ (A\B),

then p 6∈ (I− ∪ III) \ A and p ∈ Z3
≥0 does not have at least two negative coordinates,

so p 6∈ A. Additionally, p ∈ (II ∪ III) \ B, so p ∈ B, implying that h(A,B)(f) > 0.

Finally, if p ∈ III ∩ (B \ A), then p ∈ (I− ∪ III) \ A, so p ∈ A. On the other hand,

p 6∈ (II ∪ III) \ B and p ∈ Z3
≥0 does not have at least one negative coordinate, so

p 6∈ B, and we find that h(A,B)(f) < 0. This completes the proof.

Let F be the set of faces of H, and let U(A,B) = h−1
(A,B)(0) ⊆ F . Consider

the subgraph H∨(A,B) of H∨ induced by F \ U(A,B). Then, given f ∈ F such that
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h(A,B)(f) 6= 0, denote by C(A,B)(f) the connected component of H∨(A,B) containing

f . Also, we say that a face f ∈ F is contained in sector i if the vertices of H

incident to f are all in sector i. Finally, we say that a connected component of

H∨(A,B) is almost contained in sector i if it contains only finitely many faces that are

not contained in sector i. Note that any infinite connected component of H∨(A,B) is

almost contained in at most one sector.

We can now describe the labelling algorithm for the double-dimer

configurations D(A,B). Fix an AB configuration (A,B).

Algorithm 4.3.11. 1. If there is a connected component C of H∨(A,B) so that,

given any i, C is not almost contained in sector i, terminate with failure.

2. For each infinite connected component of H∨(A,B), there must be exactly one

sector i almost containing it. Label the faces it contains by i.

3. Label each finite connected component of H∨(A,B) by a single freely chosen

element of P1.

Example 4.3.12. If we label the double-dimer configuration from Figure 10, we

obtain the labelled double-dimer configuration shown in Figure 10. Observe that

the paths in the double-dimer configuration from Figure 10 are “rainbow-like.” In

other words, the paths are nested and start and end in the same sector.

We will first prove that this algorithm is, in some sense, equivalent to

Algorithm 4.2.13, and then we will describe the connection between this algorithm

and the double-dimer configuration D(A,B).
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4.4. Proofs of the Equivalence of the Labelling Algorithms

Lemma 4.4.1. Suppose f and f ′ are faces that belong to the same connected

component of H∨(A,B). Then there is a sequence of adjacent faces in F \ U(A,B),

beginning at f and ending at f ′, such that no pair of consecutive faces are separated

by an edge in MA ∩MB.

Proof. Since f and f ′ belong to the same connected component of H∨(A,B), there is

a sequence of adjacent faces f := f0, f1, . . . , fr := f ′ in F \ U(A,B). Suppose the

edge separating fs and fs+1 is in MA ∩ MB. Then, since MA and MB are dimer

configurations, the two faces adjacent to both fs and fs+1 are separated from fs

and fs+1 by edges that are not in MA ∪MB. Therefore, for either such face g, we

have h(A,B)(fs) = h(A,B)(g) = h(A,B)(fs+1), and we may insert g into the sequence

f0, f1, . . . , fr between fs and fs+1 to produce a new sequence of adjacent faces in

F \U(A,B). We may continue in this way until we obtain a sequence with the desired

properties.

Lemma 4.4.2. Suppose f0, f1, . . . , fr is a sequence of adjacent faces in F \ U(A,B)

such that no pair of consecutive faces are separated by an edge in MA∩MB. Suppose

p0 ∈ A4B is a cell that corresponds to f0. Then there exist integers ks and cells

ps+1 for 0 ≤ s < r so that for any i, j, k such that {i, j, k} = {1, 2, 3}, the following

is a sequence of adjacent cells in A4B, such that ps corresponds to fs for 0 ≤ s ≤

r:

p0, p0 + sgn(k0)ei, p0 + sgn(k0)(ei + ej), p0 + sgn(k0)(ei + ej + ek),

p0 + sgn(k0)(2ei + ej + ek), . . . , p0 + (k0ei + k0ej + k0ek),

p1, p1 + sgn(k1)ei, p1 + sgn(k1)(ei + ej), p1 + sgn(k1)(ei + ej + ek), . . . , pr.
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Here, sgn(ks) = 1 if ks > 0, sgn(ks) = 0 if ks = 0, and sgn(ks) = −1 if ks < 0.

Proof. Assume that we have specified the desired sequence up to ps for some

0 ≤ s < r. Each pair of consecutive faces fs, fs+1 determines a direction in

Z3. More precisely, there exist unique ε ∈ {±1} and i ∈ {1, 2, 3} such that

ps + εei corresponds to fs+1. Since h(A,B)(fs+1) 6= 0, there exists an integer ks

such that ps + εei + (ks, ks, ks) ∈ A4B. If ε = −1, assume that ks is the least

such integer, and if ε = 1, assume that ks is the greatest such integer. Define

ps+1 := ps + εei + (ks, ks, ks).

We claim that ps + (ks, ks, ks) ∈ A4B. Suppose not. Of A and B, let L be

the one such that ps + εei + (ks, ks, ks) 6∈ L and let U be the other (i.e., the one such

that ps + εei + (ks, ks, ks) ∈ U). Let ML and MU , respectively, be the corresponding

dimer configurations. By Lemma 4.3.3, if ε = −1, then ps + (ks, ks, ks) 6∈ L, so

ps + (ks, ks, ks) 6∈ U, and if ε = 1, then ps + (ks, ks, ks) ∈ U, so ps + (ks, ks, ks) ∈ L.

In the first case, U separates ps + (ks, ks, ks) from ps + εei + (ks, ks, ks), and in

the second case, L separates those two cells. In the first case, the edge e separating

fs and fs+1 must be in MU , and in the second case, e must be in ML. The sequence

f0, f1, . . . , fr is such that e 6∈MA∩MB = ML∩MU , so in either case, e ∈ML4MU =

MA4MB. As a result, h(A,B) differs by ±1 at fs and fs+1. If ε = −1, U must lie at

ps + εei + (ks + 1, ks + 1, ks + 1), while ks is the least integer such that ps + εei +

(ks, ks, ks) ∈ L4U, so L lies at ps + εei + (ks, ks, ks). It follows that h(A,B)(fs+1) =

±1. Similarly, if ε = 1, L must lie at ps + εei + (ks, ks, ks), while ks is the greatest

integer such that ps + εei + (ks, ks, ks) ∈ L4U, so U lies at ps + εei + (ks +

1, ks + 1, ks + 1). So, in this case, too, h(A,B)(fs+1) = ±1. Then h(A,B)(fs) =

h(A,B)(fs+1) ± 1 = ±2, since h(A,B)(fs) 6= 0. Additionally, this shows that h(A,B) has

the same sign at fs and fs+1, so L lies below U at fs. Consequently, if ε = −1, U
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must lie at ps + (ks, ks, ks) and L must lie at ps + (ks − 2, ks − 2, ks − 2). On the

other hand, if ε = 1, L must lie at ps + (ks + 1, ks + 1, ks + 1) and U must lie at

ps + (ks + 3, ks + 3, ks + 3). Then, by Lemma 4.3.3, in the first case,

ps + εei + (ks − 1, ks − 1, ks − 1) = ps + (ks − 2, ks − 2, ks − 2) + εei + (1, 1, 1) 6∈ L,

contradicting the fact that L lies at ps + εei + (ks, ks, ks). In the second case,

ps + εei + (ks + 1, ks + 1, ks + 1) = ps + (ks + 2, ks + 2, ks + 2) + εei − (1, 1, 1) ∈ U,

contradicting the fact that U lies at ps+εei+(ks+1, ks+1, ks+1). By contradiction,

ps + (ks, ks, ks) ∈ A4B. Since ps ∈ A4B, by Lemma 4.3.3, we conclude that

ps + sgn(ks)(m1,m2,m3) ∈ A4B for any m1,m2,m3 such that 0 ≤ m1,m2,m3 ≤

|ks|. This completes the proof.

Lemma 4.4.3. Suppose a cell w corresponds to f0 ∈ F . If w ∈ (Cyl−` ∩A)∪ (II¯̀\B)

for some integer `, or Algorithm 4.2.13 labels w by an integer `, then C(A,B)(f0)

contains infinitely many faces contained in sector `. If Algorithm 4.2.13 labels w by

`, and ` is not an integer, then C(A,B)(f0) is finite.

Proof. We consider first case (i): w ∈ (Cyl−` ∩ A) ∪ (II¯̀ \ B) for some integer `,

or Algorithm 4.2.13 labels w by an integer `, and then case (ii): Algorithm 4.2.13

labels w by `, and ` is not an integer.

Case (i): Observe that w must be an element of a connected component C of

L(A,B) containing a cell n ∈ Cyl−` ∪ II¯̀. Then there is a sequence of adjacent cells

w := p0, p1, . . . , pr := n, each of which is an element of C ⊆ L(A,B). Furthermore,

pr = n ∈ L(A,B) ∩ (I− ∪ II) ⊆ (I− ∩ A) ∪ (II \ B). By Lemma 4.3.10, assuming

the cells p1, p2, . . . , pr correspond to the faces f1, f2, . . . , fr of H, we can deduce
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that h(A,B)(fs) 6= 0 for 0 ≤ s ≤ r. Since ps is adjacent to ps+1, fs is adjacent

to fs+1 in H∨ for 0 ≤ s < r. Moreover, since h(A,B)(fs) 6= 0 for 0 ≤ s ≤ r,

C(A,B)(f0) = C(A,B)(fr).

Now, if pr ∈ I− ∩A, let p be any cell obtained by translating pr by k > 0 units

in the xi-directions, for each i 6= `. Let f(k) be the corresponding face of H. Note

that pr ∈ Cyl−` , so the `th coordinate of p is negative, and the other coordinates

of p are nonnegative. Suppose h(A,B)(f(k)) = 0. Considering the definitions of A

and B, this implies that either f(k) lies along one of the nonnegative coordinate

axes, f(k) corresponds to a cell p′ ∈ I− \ A whose single negative coordinate has the

value −1, or f(k) corresponds to a cell p′ ∈ III \ A. Since the `th coordinate of p

is negative, while the other coordinates of p are nonnegative, f(k) cannot lie along

any of the nonnegative coordinate axes, so one of the latter cases must hold. Then,

in either case, every cell above p′ is in Z3
≥0, so we conclude that p = p′ or p is below

p′. Thus, the only coordinate of p′ that may be negative is the `th coordinate, so if

p′ ∈ I−, then p′ ∈ Cyl−` . Additionally, if p 6∈ Cyl−` , then p′ 6∈ Cyl`. However, in this

case, p′ 6∈ I− ∪ III, which is a contradiction, so we must have p′ ∈ Cyl` and p ∈ Cyl−` .

By Lemmas 4.2.6 and 4.2.9, there is a sequence of back neighbors in I− ∪ III leading

from p′ to p to pr. By repeatedly applying Conditions 4.2.2.1, since pr ∈ A, it

follows that p′ ∈ A. By contradiction, h(A,B)(f(k)) 6= 0. Finally, observe that f(k) is

also the face corresponding to the cell obtained by translating pr by −k units in the

x`-direction. Therefore, since k > 0 was arbitrary, h(A,B) must be nonzero at any

face f(k) obtained from fr by translating in the negative x`-direction. This shows

that C(A,B)(f0) = C(A,B)(fr) contains infinitely many faces contained in sector `,

since for large enough k, f(k) is contained in sector `.
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On the other hand, if pr ∈ II \ B, let p be any cell obtained by translating pr

by k < 0 units in the x`-direction. Let f(k) be the corresponding face of H. Note

that pr ∈ II¯̀, so pr 6∈ Cyl` and p 6∈ Cyl`. By Lemma 4.2.6, though, if p ∈ Z3
≥0,

then p ∈ II¯̀. In fact, in this case, there is a sequence of back neighbors in II¯̀ leading

from pr to p, so by repeatedly applying Conditions 4.2.2.2, we find that p 6∈ B.

Then p ∈ II \ B ⊆ R1 ∪ (II ∪ III) \ B = B and p 6∈ R2 ∪ (I− ∪ III) \ A = A,

so h(A,B)(f(k)) > 0. Otherwise, the `th coordinate of p is negative, while the other

coordinates of p are nonnegative. Since p 6∈ Cyl`, p 6∈ A. Furthermore, p ∈ R1, so

p ∈ B. Thus, in this case, too, h(A,B)(f(k)) > 0. Consequently, since k < 0 was

arbitrary, h(A,B) must be nonzero at any face f(k) obtained from fr by translating

in the negative x`-direction. Again, this shows that C(A,B)(f0) = C(A,B)(fr) contains

infinitely many faces contained in sector `.

Case (ii): Let w := p0. Since ` is not an integer, w must be labelled in step 3

of Algorithm 4.2.13, so w ∈ III ∩ (A4B). If w ∈ III ∩ A \ B, then w 6∈ A, while

w ∈ B. Otherwise, w ∈ III ∩ B \ A, in which case, w 6∈ B, while w ∈ A. In either

case, h(A,B)(f0) 6= 0.

So, consider C(A,B)(f0). Suppose this connected component is infinite. Then,

since L(A,B) is finite, there must be a face f ∈ C(A,B)(f0) that doesn’t correspond

to any cell in L(A,B). By Lemma 4.4.1, there is a sequence f0, f1, . . . , fr := f of

adjacent faces in F \ U(A,B) such that no pair of consecutive faces are separated

by an edge in MA ∩MB. The height function h(A,B) can only differ by 0 or ±1 at

adjacent faces, and h(A,B) is nonzero at each face in the sequence f0, f1, . . . , fr, so

h(A,B) has the same sign at all of these faces.
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By Lemma 4.4.2, there is a sequence of adjacent cells

p0, p0 + sgn(k0)(1, 0, 0), p0 + sgn(k0)(1, 1, 0), p0 + sgn(k0)(1, 1, 1),

p0 + sgn(k0)(2, 1, 1), . . . , p0 + (k0, k0, k0), p1, p1 + sgn(k1)(1, 0, 0), . . . , pr,

all of which are in A4B, such that ps corresponds to fs for 0 ≤ s ≤ r. Recall that

fr = f does not correspond to any cell in L(A,B), so pr 6∈ L(A,B). However, p0 =

w ∈ III ∩ (A4B) ⊆ L(A,B). So, consider the first cell p′ in the above sequence that

is not an element of the labelling set, and let p be the previous cell in the sequence.

We claim that p ∈ I− ∪ II. Suppose not. Then p ∈ L(A,B) \ (I− ∪ II) = III∩ (A4B).

Furthermore, p is adjacent to p′, so p ∈ BN(p′) or p′ ∈ BN(p). If p ∈ BN(p′),

then since p ∈ III, we have p′ ∈ Cyl1 ∪ Cyl2 ∪ Cyl3, and since p ∈ III ⊆ Z3
≥0,

p′ ∈ Z3
≥0, implying that p′ ∈ I+ ∪ II ∪ III. But elements of I+ are not in I− ∪ II ∪ III,

nor do they have any negative coordinates, so such elements are not in A ∪ B.

Since p′ ∈ A4B, it must be the case that p′ ∈ II ∪ III. If p′ ∈ BN(p), then by

Lemma 4.2.9, p′ ∈ I− ∪ III. So, in either case, p′ ∈ I− ∪ II ∪ III. If p′ ∈ I−, then

p′ ∈ B, so p′ 6∈ A, in which case, p′ ∈ A. But this means that p′ ∈ I−∩A ⊆ L(A,B).

So, p′ 6∈ I−. Similarly, if p′ ∈ II, then p′ 6∈ A, so p′ ∈ B, in which case, p′ 6∈ B.

This means that p′ ∈ II \ B ⊆ L(A,B), so p′ 6∈ II. Thus, p′ ∈ III. If p′ 6∈ A and

p′ ∈ B, then p′ ∈ III ∩ A \ B ⊆ III ∩ (A4B) ⊆ L(A,B). Otherwise, if p′ 6∈ B

and p′ ∈ A, then p′ ∈ III ∩ B \ A ⊆ III ∩ (A4B) ⊆ L(A,B). By contradiction,

p ∈ I− ∪ II. Let q be the first cell preceding p′ in the above sequence that is in

I− ∪ II. Since p′ is the first cell in the sequence that’s not in L(A,B), q ∈ L(A,B),

so q ∈ (I− ∩ A) ∪ (II \ B). Therefore, q is labelled by an integer `(q) in step 2 of

Algorithm 4.2.13. All of the cells w = p0 := q0, q1, . . . , qt preceding q in the above
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sequence (written here in the same order as written in the above sequence) also

precede p′, so they are elements of the labelling set and not in I− ∪ II, i.e., they are

all elements of III ∩ (A4B). Since q0, q1, . . . , qt, q is a sequence of adjacent cells, we

see that {q0, q1, . . . , qt, q} is contained in a single connected component of L(A,B),

which is labelled in step 2 of Algorithm 4.2.13 by `(q). In particular, w = q0 is

labelled in step 2 of Algorithm 4.2.13 by an integer `(q), contradicting the fact that

` is not an integer. As a result, C(A,B)(f0) is finite.

Lemma 4.4.4. If f ∈ F \ U(A,B) lies along one of the nonnegative coordinate axes,

then f corresponds to a cell p ∈ L(A,B) and all cells corresponding to f that are in

A4B must be in L(A,B).

Proof. Since f ∈ F \ U(A,B), there exists a cell p ∈ A4B corresponding to f .

The result will follow if we can show that any cell q ∈ A4B corresponding to

f is in L(A,B). Since f lies along one of the nonnegative coordinate axes, q =

k1ei + (k2, k2, k2) for some i ∈ {1, 2, 3}, k1 ∈ Z≥0, and k2 ∈ Z. If k2 < 0, then

q has at least two negative coordinates, so q ∈ A ∩ B, which is a contradiction.

Thus, k2 ≥ 0, so q ∈ Z3
≥0, and since q is an element of exactly one of A and B, we

conclude that q ∈ ((I−∪ III)\A)4((II∪ III)\B). If q ∈ ((I−∪ III)\A)\ ((II∪ III)\B),

then q 6∈ I−, since q ∈ Z3
≥0, so we have q ∈ III ∩ B \ A ⊆ L(A,B). Otherwise,

q ∈ ((II ∪ III) \B) \ ((I− ∪ III) \ A), so q ∈ (II \B) ∪ (III ∩ A \B) ⊆ L(A,B).

Lemma 4.4.5. If a cell p ∈ L(A,B) is adjacent to a cell p′ 6∈ L(A,B), and p′ ∈

A4B, then p′ 6∈ Z3
≥0 ∪ I− ∪ II ∪ III and p ∈ (I− ∩ A) ∪ (II \B).

Proof. Suppose p′ ∈ Z3
≥0. Then, by the argument given in the proof of

Lemma 4.4.4, p′ ∈ L(A,B). So, by contradiction, p′ has at least one negative

coordinate, which means that p′ ∈ B. Then we must have p′ 6∈ A, so the other
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coordinates of p′ must be nonnegative. Furthermore, suppose p′ ∈ I−. Then, since

p′ 6∈ L(A,B), p′ 6∈ A, so p′ ∈ (I− ∪ III) \ A, contradicting the fact that p′ 6∈ A. By

contradiction, p′ 6∈ I−. Since p′ 6∈ Z3
≥0, p′ 6∈ II ∪ III.

Either p ∈ BN(p′) or p′ ∈ BN(p). If p ∈ BN(p′), then since p′ 6∈ Z3
≥0, p has

a negative coordinate, so p ∈ I− ∩ A. Otherwise, p′ ∈ BN(p), so by Lemma 4.2.9,

p 6∈ III, since p′ 6∈ I− ∪ III. Then p ∈ (I− ∩ A) ∪ (II \ B). In either case, p ∈

(I− ∩ A) ∪ (II \B).

Lemma 4.4.6. Given any i ∈ {1, 2, 3}, there exists N ∈ Z≥0 such that each face

contained in sector i that isn’t a face of the subgraph H(N) ⊆ H is in F \ U(A,B).

Proof. As noted in the proof of Lemma 4.4.3, if f ∈ U(A,B), then either f lies

along one of the nonnegative coordinate axes, f corresponds to a cell p ∈ I− \ A

whose single negative coordinate has the value −1, or f corresponds to a cell

p ∈ III \ A. Since the set of cells in I− whose single negative coordinate has the

value −1 is finite, and III is finite, the corresponding faces form a finite set. In other

words, U(A,B) is contained in the union of faces lying along one of the nonnegative

coordinate axes with finitely many other faces. In particular, since faces lying along

one of the nonnegative coordinate axes are not contained in any of the sectors,

finitely many faces in U(A,B) are contained in sector i. This implies the result.

Lemma 4.4.7. Suppose C is a connected component of H∨(A,B) that contains

infinitely many faces contained in sector i. If p ∈ L(A,B) corresponds to f ∈ C,

then there exists p′ ∈ (Cyl−i ∩ A) ∪ (IĪi \B) corresponding to f ′ ∈ C.

Proof. Suppose p ∈ L(A,B) corresponds to f ∈ C. By Lemma 4.4.6, there exists

N1 ∈ Z≥0 such that each face contained in sector i that isn’t a face of the subgraph

H(N1) ⊆ H is in F \ U(A,B).
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Consider a face g contained in sector i such that the face g′ obtained from g

by translating 1 unit in the negative xi-direction is separated from g by an edge e ∈

MA. Since g is contained in sector i, if q is a cell corresponding to g, then its ith

coordinate qi is strictly less than each of its other coordinates. Since g′ is obtained

from g by translating 1 unit in the negative xi-direction, when crossing e ∈ MA

from g to g′, the left vertex of e is white, so hA increases by 2/3. That is, if q is the

cell corresponding to g such that A lies at q, then A lies at the cell q − ei + (1, 1, 1),

which corresponds to g′. So, q 6∈ (I− ∪ III) \ A and q has fewer than two negative

coordinates, but q − ei ∈ A, so q − ei ∈ (I− ∪ III) \ A or q − ei has at least two

negative coordinates. However, the ith coordinate of q is less than each of its other

coordinates, so if q − ei has at least two negative coordinates, then so does q, which

is a contradiction. Consequently, q−ei ∈ (I−∪III)\A. Then, since the ith coordinate

of q is its least coordinate, the same is true of q − ei, so q − ei ∈ Cyli. This means

that q ∈ Cyli. Additionally, if q has one negative coordinate, it must be qi, in which

case q ∈ Cyl−i ⊆ I−, implying that q ∈ A. Otherwise, each of the coordinates of q

is nonnegative and less than M , since q ∈ Cyli. Therefore, since A is finite, there

are finitely many possibilities for q, so there are finitely many possibilities for g. So,

there exists N2 ∈ Z≥0 such that each face g contained in sector i that isn’t a face of

the subgraph H(N2) ⊆ H is separated by an edge e 6∈ MA from the face g′ obtained

from g by translating 1 unit in the negative xi-direction.

Let N = max{N1, N2}. Since C contains infinitely many faces contained in

sector i, it must contain a face f0 contained in sector i that isn’t a face of H(N).

Consider the sequence of faces f0, f1, f2, . . ., where fs+1 is obtained from fs by

translating 1 unit in the negative xi-direction. Since f0 is contained in sector i

and not a face of H(N), so is fs, for 0 ≤ s. Then, from the above discussions,
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we know that fs ∈ F \ U(A,B) and fs is separated by an edge e 6∈ MA from fs+1

for 0 ≤ s. In addition, by Lemma 4.4.1, there is a sequence of adjacent faces

f := f ′0, f
′
1, . . . , f

′
r := f0 in F \ U(A,B) such that no pair of consecutive faces

are separated by an edge in MA ∩ MB. So, we have a sequence of adjacent faces

f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . in F \ U(A,B) such that no pair of consecutive faces are

separated by an edge in MA ∩MB.

Since fs is contained in sector i for 0 ≤ s, either (i): every face in the

sequence f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . is contained in sector i or (ii): there exists 0 ≤

t < r such that f ′t is not contained in sector i and f ′s is contained in sector i for all

t < s ≤ r. In case (i), let t = 0, and let p′0 = p. In case (ii), since f ′t is adjacent

to f ′t+1, which is contained in sector i, f ′t must lie along one of the nonnegative

coordinate axes. Since f ′t ∈ F \ U(A,B), by Lemma 4.4.4, there is a cell p′t ∈ L(A,B)

corresponding to f ′t .

In both case (i) and case (ii), p′t ∈ L(A,B) corresponds to f ′t . Also, since

L(A,B) ⊆ A ∪ II ∪ III is finite and the faces f1, f2, . . . are all distinct, there must be

a face in the sequence f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . that does not correspond to any cell

in L(A,B) and that is preceded by f ′t . Let g′′ be the first such face in the sequence

and let g′ be the previous face. Either g′ corresponds to a cell q′ ∈ L(A,B) or g′ is

not preceded by f ′t , in which case, g′ = f ′t corresponds to q′ := p′t ∈ L(A,B). Then,

by Lemmas 4.3.10 and 4.4.2, there exist an integer k′ and a cell q′′ so that for any

j, k such that {j, k} = {1, 2, 3} \ {i}, the following are sequences of adjacent cells in

A4B, such that q′′ corresponds to g′′:

q′, q′ + sgn(k′)ei, q
′ + sgn(k′)(ei + ej), q

′ + sgn(k′)(ei + ej + ek),

q′ + sgn(k′)(2ei + ej + ek), . . . , q
′ + (k′ei + k′ej + k′ek), q

′′,
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q′, q′ + sgn(k′)ek, q
′ + sgn(k′)(ek + ej), q

′ + sgn(k′)(ek + ej + ei),

q′ + sgn(k′)(2ek + ej + ei), . . . , q
′ + (k′ek + k′ej + k′ei), q

′′.

If k′ < 0, we will consider the first sequence, and if k′ ≥ 0, we will consider the

second sequence. Since g′′ does not correspond to any cell in L(A,B), q′′ 6∈ L(A,B).

On the other hand, q′ ∈ L(A,B), so let p′′ be the first cell in the sequence that is

not in L(A,B) and let p′ be the previous cell. Then p′ ∈ L(A,B). Let f ′ be the

face corresponding to p′ and let f ′′ be the face corresponding to p′′. We must show

that p′ ∈ (Cyl−i ∩ A) ∪ (IĪi \B) and f ′ ∈ C.

Since p′′ ∈ (A4B) \ L(A,B), we have f ′′ ∈ F \U(A,B) and by Lemma 4.4.4, f ′′

does not lie along one of the nonnegative coordinate axes. However, g′ is adjacent

to g′′, which is preceded by f ′t in the sequence f ′0, f
′
1, . . . , f

′
r, f1, f2, . . . and, thus,

is contained in sector i. As a result, g′ is contained in sector i or g′ lies along one

of the nonnegative coordinate axes. More precisely, g′ corresponds to a cell whose

ith coordinate is zero and whose other coordinates are nonnegative, or to put it

another way, the ith coordinate of q′ is less than or equal to its other coordinates.

If k′ < 0, let g1 be the face corresponding to q′ + sgn(k′)ei and let g2 be the face

corresponding to q′ + sgn(k′)(ei + ej). If k′ ≥ 0, let g1 be the face corresponding to

q′+sgn(k′)ek and let g2 be the face corresponding to q′+sgn(k′)(ek +ej). Note that

every cell in the sequence corresponds to one of the faces g′, g1, g2, or g′′. We claim

that g1 is contained in sector i or g1 lies along one of the nonnegative coordinate

axes, and the same holds for g2. If k′ < 0, then g1 corresponds to q′ − ei and g2

corresponds to q′ − ei − ej. Since the ith coordinate of q′ is less than or equal to its

other coordinates, the same is true of q′ − ei and q′ − ei − ej, so the claim holds for

both g1 and g2. Otherwise, if k′ ≥ 0, then g1 corresponds to q′ or q′ + ek, while g2
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corresponds to q′ or q′ + ek + ej. Again, since the ith coordinate of q′ is less than or

equal to its other coordinates, the same is true of q′+ek and q′+ek+ej, so the claim

holds for both g1 and g2. In fact, we saw above that the claim also holds for both g′

and g′′, and since every cell in the sequence, including p′′, corresponds to one of the

faces g′, g1, g2, or g′′, the claim holds for f ′′. Since f ′′ does not lie along one of the

nonnegative coordinate axes, we conclude that f ′′ is contained in sector i. It follows

that the ith coordinate p′′i of p′′ is strictly less than its other coordinates.

Recall that p′ ∈ L(A,B) is adjacent to p′′ 6∈ L(A,B), but p′′ ∈ A4B. By

Lemma 4.4.5, p′′ 6∈ Z3
≥0 ∪ I− ∪ II ∪ III and p′ ∈ (I− ∩ A) ∪ (II \ B). Since the

ith coordinate of p′′ is less than its other coordinates, p′′i < 0. This implies that

p′′ 6∈ Cyli. If p′ ∈ I− ∩ A, suppose the ith coordinate p′i of p′ is nonnegative. Then,

since the ith coordinate of p′′ is negative, while the others are nonnegative, we must

have p′ = p′′ + ei. Therefore, the other coordinates of p′ are the same as those

of p′′, so they are also nonnegative and p′ ∈ Z3
≥0. By contradiction, p′i < 0, so

p′ ∈ Cyl−i ∩ A. On the other hand, if p′ ∈ II \ B, then p′ ∈ Z3
≥0, so p′ = p′′ + ei.

Suppose p′ ∈ Cyli. Then p′′ = p′ − ei ∈ Cyli, so p′′ ∈ Cyl−i ⊆ I−. By contradiction,

p′ 6∈ Cyli, so p′ ∈ IĪi \B. Consequently, p′ ∈ (Cyl−i ∩ A) ∪ (IĪi \B).

It remains to show that f ′ ∈ C. Since f ′ corresponds to p′, f ′ is equal to

g′, g1, g2, or g′′, so it suffices to show that g′, g1, g2, g
′′ ∈ C. Since g′ and g′′ are

faces in the sequence f ′0, f
′
1, . . . , f

′
r, f1, f2, . . ., which is a sequence of adjacent faces

in F \ U(A,B), we have g′, g′′ ∈ C(A,B)(f
′
0) = C(A,B)(f) = C. To see that g1, g2 ∈

C, observe that g1 and g2 are adjacent to g′ or equal to g′, and according to their

definitions, they correspond to cells in A4B. So g1, g2 ∈ F \ U(A,B), and we have

g1, g2 ∈ C(A,B)(g
′) = C. This completes the proof.
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Lemma 4.4.8. If p and p′ are cells in A4B, corresponding to faces f and f ′,

respectively, which belong to the same connected component of H∨(A,B), then there is

a sequence of adjacent cells in A4B, beginning at p and ending at p′.

Proof. By Lemmas 4.4.1 and 4.4.2, there is a sequence of adjacent cells in A4B,

beginning at p and ending at a cell p′′ that corresponds to f ′. Since p′ and p′′ both

correspond to f ′, p′′ = p′ + (k′, k′, k′) for some k′ ∈ Z. By Lemma 4.3.3, p′ +

sgn(k′)(m1,m2,m3) ∈ A4B for any m1,m2,m3 such that 0 ≤ m1,m2,m3 ≤ |k′|.

That is,

p′′ = p′ + (k′, k′, k′), p′ + sgn(k′)(|k′| − 1, |k′|, |k′|),

p′ + sgn(k′)(|k′| − 1, |k′| − 1, |k′|), . . . , p′

is a sequence of adjacent cells in A4B. Therefore, by concatenating the

aforementioned sequences, we get a sequence of adjacent cells in A4B, beginning

at p and ending at p′.

Lemma 4.4.9. Suppose C is a connected component of H∨(A,B) so that, given any i,

C is not almost contained in sector i. Then there exist distinct i and j such that C

contains infinitely many faces contained in sector i and C contains infinitely many

faces contained in sector j.

Proof. By assumption, given any i, C contains infinitely many faces that are not

contained in sector i. Observe that, for N ≥ M , the cell Nei ∈ Z3
≥0 cannot be in

Cylj, for each j 6= i. Thus Nei has no negative coordinates, Nei 6∈ (I−∪ III) \A, and

Nei 6∈ (II∪III)\B, so Nei 6∈ A∪B. Moreover, Nei−(1, 1, 1) has at least two negative

coordinates, so Nei − (1, 1, 1) ∈ A ∩B, which shows that A and B both lie at Nei.

So, if fi(N) ∈ F is the face corresponding to Nei, then h(A,B)(fi(N)) = 0. Since
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this holds for all i and all N ≥ M , there are finitely many faces in F \ U(A,B) that

lie along one of the nonnegative coordinate axes. Since C ⊆ F \U(A,B) and since any

face either lies along one of the nonnegative coordinate axes or is contained in one

of the sectors, we deduce that, for some distinct i and j, C contains infinitely many

faces contained in sector i and C contains infinitely many faces contained in sector

j.

Theorem 4.4.10. Algorithm 4.3.11 succeeds if and only if (A,B) ∈ AB.

Proof. Suppose (A,B) 6∈ AB. By Theorem 4.2.26 and Remark 4.2.18, there is

a connected component C of L(A,B) such that N (C) > 1. So, there exist w,w′ ∈

C∩(I−∪II) such that `(w) 6= `(w′). Then w ∈ Cyl−`(w)∪II`(w) and w′ ∈ Cyl−`(w′)∪II`(w′),

and since w,w′ ∈ C ∩ (I− ∪ II) ⊆ L(A,B) ∩ (I− ∪ II) = (I− ∩ A) ∪ (II \ B), we have

w ∈ (Cyl−`(w) ∩ A) ∪ (II`(w) \ B) and w′ ∈ (Cyl−`(w′) ∩ A) ∪ (II`(w′) \ B). Let f ∈ F

and f ′ ∈ F be the faces corresponding to w and w′, respectively. By Lemma 4.4.3,

C(A,B)(f) contains infinitely many faces contained in sector `(w), and C(A,B)(f
′)

contains infinitely many faces contained in sector `(w′). Since w,w′ ∈ C and C

is a connected component of L(A,B), there is a sequence of adjacent cells w :=

p0, p1, . . . , pr := w′ in L(A,B). Then, assuming ps corresponds to the face fs ∈ F ,

we obtain a sequence of adjacent faces f = f0, f1, . . . , fr = f ′. By Lemma 4.3.10,

h(A,B)(fs) 6= 0, so C(A,B)(f) = C(A,B)(f
′). Since `(w) 6= `(w′), this means that a

connected component of H∨(A,B) contains infinitely many faces contained in distinct

sectors. It is impossible for such a connected component to be almost contained in

any sector, so Algorithm 4.3.11 fails.

Conversely, suppose Algorithm 4.3.11 fails. Then there must be a connected

component C of H∨(A,B) so that, given any i, C is not almost contained in sector
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i. By Lemma 4.4.9, for some distinct i and j, C contains infinitely many faces

contained in sector i and C contains infinitely many faces contained in sector j.

Let f ∈ C be a face contained in sector i and f ′ ∈ C be a face contained

in sector j. Since C is a connected component of H∨(A,B), there is a sequence of

adjacent faces f := f0, f1, . . . , fr := f ′ in F \ U(A,B). Since f is contained in sector

i, while f ′ is contained in sector j, there must exist 0 < t < r such that ft lies along

one of the nonnegative coordinate axes. Then, by Lemma 4.4.4, ft corresponds to a

cell pt ∈ L(A,B). Since ft ∈ C, by Lemma 4.4.7, there exist p ∈ (Cyl−i ∩A)∪(IĪi\B)

corresponding to g ∈ C and p′ ∈ (Cyl−j ∩ A) ∪ (IIj̄ \ B) corresponding to g′ ∈ C.

Then, by Lemmas 4.3.10 and 4.4.8, there is a sequence of adjacent cells in A4B,

beginning at p and ending at p′. Let q be the last cell in this sequence that is in

(Cyl−i ∩ A) ∪ (IĪi \ B), and let q′ be the first cell in this sequence that is preceded

by q and in (Cyl−k ∩ A) ∪ (IIk̄ \ B) for some k ∈ {1, 2, 3} \ {i}. Consider the part

of the sequence beginning at q and ending at q′, denoted q := q0, q1, . . . , qr′ := q′.

Each of these cells is an element of A4B, and according to the definitions of q and

q′, qs 6∈
⋃
l∈{1,2,3}(Cyl−l ∩ A) ∪ (IIl̄ \B) = (I− ∩ A) ∪ (II \B) for 0 < s < r′.

We claim that qs ∈ L(A,B) for 0 ≤ s ≤ r′. Suppose qt′ 6∈ L(A,B) for some

0 ≤ t′ ≤ r′. Since q, q′ ∈ (I− ∩ A) ∪ (II \ B) ⊆ L(A,B), 0 < t′ < r′. Then, by

Lemma 4.4.5, t′ − 1 = 0 or qt′−1 6∈ L(A,B), and t′ + 1 = r′ or qt′+1 6∈ L(A,B).

In fact, by repeating this argument, we see that qs 6∈ L(A,B) for 0 < s < r′. By

the same lemma, q1, qr′−1 6∈ Z3
≥0 ∪ I− ∪ II ∪ III, so q1, qr′−1 6∈ Cyl1 ∪ Cyl2 ∪ Cyl3.

Since q1, qr′−1 ∈ A4B, neither q1 nor qr′−1 has at least two negative coordinates,

but q1, qr′−1 6∈ Z3
≥0, so q1 and qr′−1 each have exactly one negative coordinate.

Furthermore, q ∈ Cyl−i ∪ IĪi is adjacent to q1, and q′ ∈ Cyl−k ∪ IIk̄ is adjacent to

qr′−1. If q ∈ Cyl−i , then since q1 6∈ Cyli, q1 6= q ± ei, so the ith coordinate of q1 is
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the same as that of q. In particular, the ith coordinate of q1 is negative. Otherwise,

q ∈ IĪi ⊆ Z3
≥0. Since q1 6∈ Z3

≥0, this implies that q 6∈ BN(q1), so q1 ∈ BN(q). Since

q1 6∈ Cyl1 ∪ Cyl2 ∪ Cyl3 and q ∈ Cyll for l ∈ {1, 2, 3} \ {i}, q1 6= q − el ∈ Cyll for

l ∈ {1, 2, 3} \ {i}. It follows that q1 = q − ei, and since q1 6∈ Z3
≥0, while q ∈ Z3

≥0,

the ith coordinate of q1 must be negative. In both cases, the ith coordinate of q1 is

negative, and since q1 has exactly one negative coordinate, the other coordinates of

q1 must be nonnegative. A similar argument shows that the kth coordinate of qr′−1

is negative, while the other coordinates of qr′−1 are nonnegative. Thus, denoting by

gs the face corresponding to the cell qs, for 0 ≤ s ≤ r′, we conclude that g1 and

gr′−1 are contained in sector i and contained in sector k, respectively.

Since qs is adjacent to qs+1, gs is adjacent to gs+1, for 0 ≤ s < r′. As a

result, since k 6= i, there must exist 1 < t′′ < r′ − 1 such that gt′′ lies along

one of the nonnegative coordinate axes. Consequently, since qt′′ ∈ A4B, we have

gt′′ ∈ F \ U(A,B), and by Lemma 4.4.4, qt′′ ∈ L(A,B). This contradicts our previous

conclusion that qs 6∈ L(A,B) for 0 < s < r′. By contradiction, qs ∈ L(A,B) for

0 ≤ s ≤ r′. So, there is a connected component C ′ of L(A,B) such that qs ∈ C ′ for

0 ≤ s ≤ r′, and we have N (C ′) ≥ |{`(q), `(q′)}| = |{i, k}| = 2. By Remark 4.2.18

and Theorem 4.2.26, (A,B) 6∈ AB.

Theorem 4.4.11. If (A,B) ∈ AB, and Algorithm 4.2.13 labels some cell by `, then

Algorithm 4.3.11 labels the corresponding face by `.

Proof. Suppose (A,B) ∈ AB (so, by Theorem 4.4.10, Algorithm 4.3.11 succeeds),

and Algorithm 4.2.13 labels a cell w by `. Let f ∈ F be the corresponding face.

By Lemma 4.4.3, if ` is an integer, then C(A,B)(f) contains infinitely many faces

contained in sector `, and otherwise, C(A,B)(f) is finite. In the first case, there must

be exactly one sector i almost containing C(A,B)(f), and Algorithm 4.3.11 labels the

71



faces in C(A,B)(f) by i. Then C(A,B)(f) contains only finitely many faces that are

not contained in sector i, and since faces contained in sector k are not contained

in sector i if k 6= i, we must have ` = i. So Algorithm 4.3.11 labels the faces in

C(A,B)(f), including f , by `. In the second case, Algorithm 4.3.11 labels the faces

in C(A,B)(f), including f , by a single freely chosen element of P1. In this case, we

must establish two statements: (i) each cell given the label ` by Algorithm 4.2.13

corresponds to a face in C(A,B)(f) and (ii) each cell given a freely chosen label `′ 6=

` by Algorithm 4.2.13 corresponds to a face not in C(A,B)(f).

Suppose w′ is a cell given the label ` by Algorithm 4.2.13 and f ′ ∈ F is

the corresponding face. Since ` is not an integer, w and w′ must be in a single

connected component of L(A,B) labelled in step 3 of Algorithm 4.2.13. So, there

must be a sequence of adjacent cells in L(A,B), beginning at w and ending at

w′. Then, by Lemma 4.3.10, the corresponding faces form a sequence of adjacent

faces, each of which is in F \ U(A,B). This sequence begins at f and ends at f ′, so

f ′ ∈ C(A,B)(f).

Suppose w′ is a cell given a freely chosen label `′ by Algorithm 4.2.13 and

f ′ ∈ F is the corresponding face. We will show that if f ′ ∈ C(A,B)(f), then `′ = `.

Suppose f ′ ∈ C(A,B)(f). Then, by Lemmas 4.3.10 and 4.4.8, w,w′ ∈ L(A,B) and

there is a sequence of adjacent cells w := w0, w1, . . . , wr := w′ in A4B. We claim

that ws ∈ L(A,B) for 0 ≤ s ≤ r. Suppose not. Let 0 ≤ t ≤ r be such that

wt is the first cell in the sequence that is not in L(A,B). Then ws ∈ L(A,B) for

0 ≤ s < t and, by Lemma 4.4.5, wt−1 ∈ (I− ∩ A) ∪ (II \ B). Note that wt−1 gets

labelled by an integer j in step 2 of Algorithm 4.2.13. Since w0, w1, . . . , wt−1 is a

sequence of adjacent cells, we see that {w0, w1, . . . , wt−1} is contained in a single

connected component of L(A,B), which is labelled in step 2 of Algorithm 4.2.13 by
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j. In particular, w = w0 is labelled in step 2 of Algorithm 4.2.13 by an integer j,

contradicting the fact that ` is not an integer. By contradiction, ws ∈ L(A,B) for

0 ≤ s ≤ r. It follows that w and w′ belong to a single connected component of

L(A,B), so ` = `′, as desired.

As promised, we will now describe the connection between Algorithm 4.3.11

and the double-dimer configuration D(A,B).

Theorem 4.4.12. (A,B) ∈ AB if and only if for each path in D(A,B), there exists

i ∈ {1, 2, 3} such that both ends of the path are contained in sector i.

Proof. Suppose there exists a path in D(A,B) whose ends are not contained in the

same sector. Then, by Remark 4.3.8, one end Ei is contained in sector i, the other

end Ej is contained in sector j, and i 6= j. Let e be any edge in the path, and

consider a face f ∈ F \ U(A,B) incident to e, which exists because h(A,B) must

increase or decrease upon crossing e from one side of the path to the other.

The following argument now holds for k ∈ {i, j}. Consider the sequence of

edges e := e0, e1, e2, . . . obtained by beginning at e and moving along the path

toward Ek. Each edge es in this sequence is incident to a unique face fs on the same

side of the path as f . In particular, f0 = f . In fact, since es is adjacent to es+1, fs

is equal to or adjacent to fs+1 for 0 ≤ s. Moreover, if fs and fs+1 are adjacent, then

since es, es+1 ∈ MA ∪MB, fs and fs+1 are separated by an edge that is in neither

MA nor MB. Thus, we have a sequence of equal or adjacent faces f = f0, f1, f2, . . .,

and h(A,B)(fs) = h(A,B)(f) 6= 0 for 0 ≤ s. It follows that fs ∈ C(A,B)(f) for 0 ≤ s.

Also, since Ek is contained in sector k, there exists t ≥ 0 such that es is contained

in sector k for s > t. Then, if l ∈ {1, 2, 3} \ {k}, fs is not contained in sector l for

s > t. Finally, since every face is incident to six edges and each edge appears in
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the sequence e0, e1, e2, . . . at most once, any given face can appear in the sequence

f0, f1, f2, . . . at most six times. In other words, {ft+1, ft+2, ft+3, . . .} ⊆ C(A,B)(f)

is an infinite set, so if l ∈ {1, 2, 3} \ {k}, C(A,B)(f) contains infinitely many faces

that are not contained in sector l. As a result, if l ∈ {1, 2, 3} \ {k}, C(A,B)(f) is

not almost contained in sector l. Since this argument holds for k ∈ {i, j}, and

({1, 2, 3} \ {i})∪ ({1, 2, 3} \ {j}) = {1, 2, 3}, C(A,B)(f) is not almost contained in any

sector. Consequently, Algorithm 4.3.11 fails, so by Theorem 4.4.10, (A,B) 6∈ AB.

Conversely, suppose (A,B) 6∈ AB. By Theorem 4.4.10, Algorithm 4.3.11 fails,

so there is a connected component C of H∨(A,B) that is not almost contained in any

sector. Then, by Lemmas 4.4.9 and 4.4.6, there exist distinct i and j such that C

contains infinitely many faces contained in sector i and C contains infinitely many

faces contained in sector j, there exists Ni ∈ Z≥0 such that each face contained in

sector i that isn’t a face of the subgraph H(Ni) ⊆ H is in F \ U(A,B), and there

exists Nj ∈ Z≥0 such that each face contained in sector j that isn’t a face of the

subgraph H(Nj) ⊆ H is in F \ U(A,B). So, C contains a face fi contained in sector i

that isn’t a face of H(Ni), and C contains a face fj contained in sector j that isn’t

a face of H(Nj).

The following holds for l ∈ {i, j}. Let k ∈ {1, 2, 3} satisfy {k} = {1, 2, 3} \

{i, j}. Observe that the set Fl of faces contained in sector l that are not faces of

H(Nl) induces a connected subgraph of H∨. In addition, Fl ⊆ F \ U(A,B), so Fl

actually induces a connected subgraph of H∨(A,B). Since C is a connected component

of H∨(A,B) and fl ∈ C ∩ Fl, we have Fl ⊆ C. For 0 < s, let fl(Nl + s) be the face

corresponding to the cell (Nl + s)ek + em, where m ∈ {1, 2, 3} satisfies {m} =

{i, j} \ {l}. Since the lth coordinate of (Nl + s)ek + em is strictly less than its other

coordinates, fl(Nl + s) ∈ Fl ⊆ C for 0 < s.
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Since C is a connected component of H∨(A,B), there is a sequence fi(Ni + 1) :=

g0, g1, . . . , gr := fj(Nj + 1) of adjacent faces in C. Let N = max{Ni, Nj,M}. As

discussed in the proof of Lemma 4.4.9, if 0 ≤ s, then h(A,B)(fk(N + s)) = 0, where

fk(N+s) is the face corresponding to the cell (N+s)ek. Also, for 0 < s, fk(N+s) is

adjacent to fl(N+s) and to fl(N+s+1). Let el(s) be the edge separating fk(N+s)

and fl(N + s), and let e′l(s) be the edge separating fk(N + s) and fl(N + s + 1).

Since fl(N + s) ∈ C ⊆ F \ U(A,B), h(A,B)(fl(N + s)) 6= 0 for 0 < s, implying that

el(s), e
′
l(s) ∈MA4MB. So, the sequence of adjacent edges ei(1), e′i(1), ei(2), e′i(2), . . .

constitutes one end Ei of a path γ in D(A,B), and Ei is contained in sector i.

Consider the other end E of γ. Note that γ separates U(A,B) from F \ U(A,B),

so γ cannot separate two adjacent faces in the sequence

. . . , fi(Ni + 2), fi(Ni + 1), g1, g2, . . . , gr−1, fj(Nj + 1), fj(Nj + 2), . . . ,

since each of them is in C and, thus, in F \ U(A,B). On the other hand, this

is a sequence of adjacent faces, so we conclude that γ must be contained in

{el(s), e′l(s) | l ∈ {i, j}, 0 < s} ∪ E0 for some finite set E0. Therefore, since ej(s)

and e′j(s) are contained in sector j, E must be contained in sector j. That is, γ is

a path in D(A,B) whose ends are contained in distinct sectors. This completes the

proof.

Next, in order to apply the double-dimer analogue of Kuo’s graphical

condensation (see Theorem 4.5.1), we must truncate double-dimer configurations

on H to obtain double-dimer configurations with nodes on H(N).

Definition 4.4.13. Let G = (V1, V2, E) be a finite, edge-weighted, bipartite

planar graph embedded in the plane with |V1| = |V2|. Let N denote a set of special
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vertices called nodes on the outer face of G. A double-dimer configuration on (G,N)

is a multiset of the edges of G with the property that each internal vertex is the

endpoint of exactly two edges, and each vertex in N is the endpoint of exactly one

edge.

The edge-weight of a double-dimer configuration with nodes is the product

of its edge-weights. The weight of such a configuration is its edge-weight times 2k,

where k is the number of loops in the configuration.

Lemma 4.4.14. For any N ≥ M , no edge in MB is incident to a vertex in H(N)

and a vertex not in H(N).

Proof. Suppose N ≥ M , an edge e ∈ MB is incident to vertices u and v of H,

and u is not in H(N). We will show that v is not in H(N). Consider the two faces

f, f ′ ∈ F that are incident to e. Since e ∈ MB, hB increases or decreases by 2/3

between f and f ′. Without loss of generality, hB(f) = hB(f ′) + 2/3, so when

crossing e from f ′ to f , the left vertex of e is white, implying that f is obtained

from f ′ by translating 1 unit in the negative xi-direction for some i ∈ {1, 2, 3}. Let

p (resp. p′) be the cell corresponding to f (resp. f ′) such that B lies at p (resp. p′).

Then p = p′ − ei + (k, k, k) for some k ∈ Z, and since hB(f) = hB(f ′) + 2/3,

k = 1. Note that p′ − ei = p − (1, 1, 1) ∈ B, so p − (1, 1, 1) ∈ (II ∪ III) \ B

or p′ − ei has at least one negative coordinate. In the first case, p − (1, 1, 1) ∈

II ∪ III ⊆ [0,M − 1]3, so f is a face of H(M) and, thus, of H(N), contradicting the

fact that u is not in H(N). In the second case, since B lies at p′, p′ has no negative

coordinates, so the ith coordinate of p′ must be 0, while the other coordinates of p′

are nonnegative. It follows that the ith coordinate of p = p′−ei+(1, 1, 1) is 0, while

the other coordinates of p are positive, so f is contained in sector i. Furthermore,

since f is obtained from f ′ by translating in the negative xi-direction, e must be
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perpendicular to the xi-axis. Any edge contained in sector i and perpendicular to

the xi-axis is incident to vertices that are both in H(N) or both not in H(N), so

since u is not in H(N), v is not in H(N).

The significance of this lemma is that, if N ≥ M , MB can be truncated to

a perfect matching MB(N) of H(N). On the other hand, MA can be truncated

to a partial matching MA(N) of H(N). So, D(A,B) can be truncated to a double-

dimer configuration with nodes, denoted by D(A,B)(N), on H(N). In this case,

the nodes are the vertices of H(N) covered by dimers in MA that are not edges

of H(N). Such vertices must not only be on the outer face of H(N), but they must

be labelled by half integers, as in Figure 1, so they must be in sector i+ or sector i−

for some i ∈ {1, 2, 3}.

Each double-dimer configuration with nodes is associated with a planar

pairing of the nodes. On a finite graph, the notion that the paths are “rainbow-

like” means that the pairing is tripartite.

Definition 4.4.15. A planar pairing σ is tripartite if the nodes can be divided into

three circularly contiguous sets R, G, and B so that no node is paired with a node

in the same set. We often color the nodes in the sets red, green, and blue, in which

case σ is the unique planar pairing in which like colors are not paired.

Example 4.4.16. Truncating the double-dimer configuration from Figure 10

to a double-dimer configuration on H(5) produces the tripartite double-dimer

configuration shown in Figure 11.

We now show that if (A,B) ∈ AB and N ≥ M , then D(A,B)(N) is a tripartite

double-dimer configuration.
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FIGURE 11. A double-dimer configuration with nodes on H(5), obtained by
truncating the double-dimer configuration from Figure 10.

Theorem 4.4.17. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if

and only if, for all N ≥ M , each path in D(A,B)(N) begins and ends in the same

sector.

Proof. Suppose N ≥ M . Consider a node u of D(A,B)(N) in sector i, so u is

a vertex of H(N) covered by a dimer e ∈ MA that is not an edge of H(N).

Then e must be incident to another vertex v that is not a vertex of H(N). By

Lemma 4.4.14, e ∈ MA \MB ⊆ MA4MB. In other words, e is a dimer in a loop or

path γ in D(A,B).

Consider the sequence of vertices u, v := v0, v1, v2, . . . obtained by moving

along γ, beginning at u, moving to v, and then continuing along γ. We claim that

this sequence never returns to a vertex of H(N) (i.e., vs is not a vertex of H(N)

for s ≥ 0) and never leaves sector i. By Lemma 4.3.5, v is in sector i, and if the

sequence leaves sector i thereafter, it must first return to a vertex of H(N), so it

suffices to show that the sequence never returns to a vertex of H(N).

Suppose vs is a vertex of H(N) for some s ≥ 0. Let r ≥ 0 be the least

index such that vr is a vertex of H(N). Note that r > 0, since v is not a vertex
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of H(N). Also, vr−1 is not a vertex of H(N), so by Lemma 4.4.14, {vr−1, vr} 6∈ MB,

so {vr−1, vr} ∈ MA. Since e ∈ MA and γ must alternate between MA and MB,

we deduce that r is even. Therefore, r > 1, and if u is white, then vr is black,

and vice versa. As a result, the projection of the xi-axis lies between u and vr.

However, if 0 ≤ s < r − 1 is even, then {vs, vs+1} ∈ MB, so by Lemma 4.4.14,

since neither vs nor vs+1 is a vertex of H(N), vs and vs+1 must both be vertices

of H(N ′) and not vertices of H(N ′ − 1) for some N ′ > N . In fact, as discussed

in the proof of Lemma 4.4.14, each such dimer {vs, vs+1} must be perpendicular

to the xi-axis. Since consecutive dimers in any loop or path in D(A,B) cannot both

be perpendicular to the xi-axis, this implies that the dimers {u, v} and {vs, vs+1},

where 0 < s < r is odd, cannot be perpendicular to the xi-axis. Since the projection

of the xi-axis lies between u and vr, some dimer in γ between u and vr must cross

the projection of the xi-axis from the side on which u lies to the side on which vr

lies. Such a dimer must be perpendicular to the xi-axis, so it must be of the form

{vt, vt+1}, where 0 ≤ t < r − 1 is even. Then vt lies on the same side of the

projection of the xi-axis as u, so u and vt are vertices of the same color. Since t

is even, this means that u and v0 = v are vertices of the same color, which is a

contradiction. This completes the proof of the claim. We conclude that γ is a path

in D(A,B), and one end of γ is contained in sector i. That is, if N ≥ M , then each

node of D(A,B)(N) in sector i must be covered by a path in D(A,B), one of whose

ends is contained in sector i.

Suppose for some N ≥ M , there is a path γ′ in D(A,B)(N) that begins and

ends in two different sectors. Then the above discussion shows that there is a path

γ in D(A,B) whose ends are contained in two different sectors. By Theorem 4.4.12,

(A,B) 6∈ AB. Conversely, suppose (A,B) 6∈ AB. By Theorem 4.4.12, there is a
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path γ in D(A,B), one of whose ends is contained in sector i and the other of whose

ends is contained in sector j, where i 6= j. Then γ consists of a sequence of dimers

. . . , e−2, e−1, e0, e1, e2, . . ., and there exist r, t ∈ Z such that e−s is contained in

sector i for s > r and es is contained in sector j for s > t. Since consecutive dimers

cannot be contained in different sectors, −r ≤ t. Let N ′ ∈ Z≥0 be such that all of

the dimers e−r, e−r+1, . . . , et−1, et are edges of H(N ′), and let N = max{N ′,M}.

Then N ≥ M and all of the dimers e−r, e−r+1, . . . , et−1, et are edges of H(N), so

they form part of a path γ′ in D(A,B)(N). More precisely, γ′ must consist of the

sequence of dimers e−r′ , e−r′+1, . . . , et′−1, et′ for some r′ ≥ r and some t′ ≥ t. Let u

be the node covered by e−r′ and let v be the node covered by et′ . Since r′+1 > r′ ≥

r and t′ + 1 > t′ ≥ t, e−r′−1 is contained in sector i and et′+1 is contained in sector

j. But e−r′−1 also covers u and et′+1 also covers v, so u is contained in sector i and

v is contained in sector j. Thus, there exists N ≥ M so that there is a path γ′ in

D(A,B)(N) that begins and ends in two different sectors.

Corollary 4.4.18. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if

and only if, for some N ≥ M , each path in D(A,B)(N) begins and ends in the same

sector.

Proof. Suppose N ≥ M and there is a path γ in D(A,B)(M) that begins in sector

i and ends in sector j, where i 6= j. Then, by the claim established in the first

three paragraphs of the proof of the theorem, γ must be a subpath of a path γ′ in

D(A,B)(N) that begins in sector i and ends in sector j. So, if there exists N ≥ M

such that each path in D(A,B)(N) begins and ends in the same sector, then each

path in D(A,B)(M) begins and ends in the same sector.

Now suppose N ′ ≥ M and each path in D(A,B)(M) begins and ends in the

same sector. Consider a path γ in D(A,B)(N
′) that begins in sector i. If γ leaves
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sector i, then by Lemma 4.3.5, it must first enter H(M). Since γ enters H(M) in

sector i and each path in D(A,B)(M) begins and ends in the same sector, γ must

exit H(M) in sector i. In other words, if γ leaves sector i, it must first enter H(M)

and must return to sector i before exiting H(M). As a result, γ must end in sector

i. So, by the theorem, (A,B) ∈ AB. This completes the proof.

We can be even more precise about the pairing of the nodes N. Suppose there

are 2r nodes in sector i. The nodes in sector i are vertices on the outer face of

H(N), and we can number them consecutively in clockwise order. If r > 0, we

then refer to the pairing

((1, 2r), (2, 2r − 1), . . . , (r, r + 1))

as the rainbow pairing of the nodes in sector i. If r = 0, we refer to the empty

pairing as the rainbow pairing of the nodes in sector i. Furthermore, if the nodes

in sector i are paired according to the rainbow pairing in sector i, for each i ∈

{1, 2, 3}, then we call the resulting pairing of N the rainbow pairing of N.

Theorem 4.4.19. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB

if and only if, for all N ≥ M , the nodes of D(A,B)(N) are paired according to the

rainbow pairing.

Proof. By Theorem 4.4.17, it suffices to show, for N ≥ M , that each path in

D(A,B)(N) begins and ends in the same sector if and only if the nodes of D(A,B)(N)

are paired according to the rainbow pairing. So, assume N ≥ M , and let σ denote

the pairing of the nodes N of D(A,B)(N).

Suppose each path in D(A,B)(N) begins and ends in the same sector. Consider

the nodes in sector i. Each must be paired with exactly one other node in sector
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i, so there are 2r such nodes, for some r ∈ Z≥0. Number them consecutively in

clockwise order. Then, considering the structure of H(N) and the fact that each

node must be incident to an edge of H that is not an edge of H(N), we see that

the white nodes precede the black nodes. That is, given a white node numbered mw

and a black node numbered mb, we have mw < mb. For 1 ≤ j ≤ 2r, let γj be the

path in D(A,B)(N) beginning at node j. To show that σ is the rainbow pairing, we

must show that γj = γ2r−j+1. First, since each node in sector i must be paired with

exactly one other such node, γj = γk for some 1 ≤ k ≤ 2r such that j 6= k. Also,

since MB(N) is a perfect matching of H(N), each path in D(A,B)(N) must begin

and end with dimers in MB(N), so γj = γk consists of an odd number of dimers.

Consequently, if node j is white, then node k must be black, and vice versa. This

implies that there are equally many white and black nodes in sector i, so nodes 1

through r are white and nodes r + 1 through 2r are black. Therefore, if j ≤ r,

then k > r, and if j > r, then k ≤ r. Moreover, since σ is planar, there can be

no crossings, i.e., no four nodes m1 < m2 < m3 < m4 such that γm1 = γm3 and

γm2 = γm4 . In particular, if γ1 = γk, where k < 2r, then k > r and γ2r = γl, where

1 < l ≤ r, so we have a crossing. So, γ1 = γ2r. By similar arguments, we then find

that γ2 = γ2r−1, and so on, until we find that γr = γr+1.

Conversely, suppose σ is the rainbow pairing, and consider a path γ in

D(A,B)(N). Since the rainbow pairing only pairs nodes in the same sector, and γ

is a path between two nodes u and σ(u), γ begins and ends in the same sector.

Corollary 4.4.20. Suppose (A,B) is an AB configuration. Then (A,B) ∈ AB if

and only if, for some N ≥ M , the nodes of D(A,B)(N) are paired according to the

rainbow pairing.

Proof. This is a direct consequence of Corollary 4.4.18.
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Finally, we can explicitly describe the nodes of D(A,B)(N). The set of nodes

N and the coloring of these nodes is determined by the partitions µ1, µ2, and

µ3. Let Si be the Maya diagram of µi. We refer to the labelling of the graph

H(N) shown in the right-hand side of Figure 1. Given N ∈ Z≥0, let N+
i (N)

(resp. N−i (N)) be the set of vertices on the outer face of H(N), in sector i+

(resp. sector i−), that are not labelled by any of the elements of S+
i (resp. S−i ).

Then let Nµ(N) =
3⋃
i=1

N+
i (N) ∪N−i (N).

Lemma 4.4.21. Suppose (A,B) is an AB configuration and N ≥ M is such

that each box in A ∪ B corresponds to a face of H(N). Then the set of nodes N

of D(A,B)(N) is Nµ(N).

Proof. Consider a node u of D(A,B)(N) in sector i+ (resp. sector i−). Then u is

a vertex of H(N) covered by a dimer e ∈ MA that is not an edge of H(N). We

must show that u ∈ N+
i (N) (resp. u ∈ N−i (N)). That is, we must show that

u is not labelled by any of the elements of S+
i (resp. S−i ). Let m(u) denote the

label associated to u, and let v be the vertex in sector i labelled by m(u) − 1

(resp. m(u) + 1). There is a unique face f ∈ F such that e and v are both incident

to f . Note that f is contained in sector i. Also, since e is not an edge of H(N), f

is not a face of H(N). Let w be the cell corresponding to f such that A lies at w.

Then the ith coordinate of w is strictly less than the other coordinates of w, and by

assumption, f does not correspond to any box in A ∪ B, so w 6∈ A ∪ B. Since A lies

at w, w has at most one negative coordinate and w 6∈ (I− ∪ III) \ A. It follows that

w 6∈ I− ∪ III.

Suppose w ∈ Cyli. Then, since w 6∈ I− ∪ III, we have w ∈ Cyl+i . Since the ith

coordinate of w is the least coordinate of w, we deduce that w ∈ [0,M − 1]3. Then

f must be a face of H(M) ⊆ H(N). By contradiction, w 6∈ Cyli.
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Now consider the cell w − ej, where j ∈ {1, 2, 3} and j ≡ i − 1 (mod 3)

(resp. j ≡ i + 1 (mod 3)). Let f ′ ∈ F be the face corresponding to w − ej. Observe

that f ′ is the other face of H to which e is incident, and when crossing e from f

to f ′, the left vertex of e is white. Since e ∈ MA, we see that hA increases by 2/3

between f and f ′, i.e., hA(f ′) = hA(f) + 2/3. Thus, A must lie at w − ej + (1, 1, 1).

In particular, w − ej ∈ A, so w − ej has at least two negative coordinates, or

w − ej ∈ (I− ∪ III) \ A. In the first case, since the ith coordinate wi of w is its

least coordinate and w has at most one negative coordinate, the other coordinates

of w must be nonnegative, so wi < 0 and the jth coordinate wj of w must be 0.

In this case, we conclude that (µ′i)wk+1 = 0, where k ∈ {1, 2, 3} is such that {k} =

{1, 2, 3}\{i, j}, so wk+1 > (µi)1 = (µi)wj+1 (resp. (µi)wk+1 = 0 = wj). In the second

case, w − ej ∈ I− ∪ III, and the ith coordinate of w is strictly less than the other

coordinates of w, so the ith coordinate of w−ej is the least coordinate of w−ej. In

this case, we conclude that w − ej ∈ Cyli. Since w 6∈ Cyli, we once again determine

that (µ′i)wk+1 = wj, and wj > 0, so (µi)wj ≥ wk + 1 > (µi)wj+1 (resp. (µi)wk+1 = wj).

As a consequence of our choices made in defining w, u is labelled by m(u) =

1/2 + wk − wj (resp. m(u) = −1/2 + wj − wk). Therefore, we have

(µi)wj+1 − (wj + 1) + 1/2 = (µi)wj+1 − 1− wj + 1/2 < wk − wj + 1/2 = m(u)

and (in the case that wj 6= 0)

m(u) = wk − wj + 1/2 ≤ (µi)wj − 1− wj + 1/2 < (µi)wj − wj + 1/2

(resp. m(u) = −1/2 + wj − wk = −1/2 + (µi)wk+1 − wk = (µi)wk+1 − (wk +

1) + 1/2). Since the sequence (µi)t − t + 1/2 is a strictly decreasing sequence,
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m(u) 6= (µi)t − t + 1/2 for any t > 0, i.e., m(u) 6∈ Si (resp. m(u) ∈ Si). So,

m(u) 6∈ S+
i (resp. m(u) 6∈ S−i ), as desired.

Conversely, consider u ∈ N+
i (N) (resp. u ∈ N−i (N)). Then u is a vertex

on the outer face of H(N), in sector i+ (resp. sector i−), and it is not labelled by

any of the elements of S+
i (resp. S−i ). We must show that u is a node of D(A,B)(N),

i.e., that u is covered by a dimer in MA that is not an edge of H(N). As above, let

m(u) denote the label associated to u, and let v be the vertex in sector i labelled

by m(u) − 1 (resp. m(u) + 1). There is a unique edge e of H that covers u and is

not an edge of H(N), and there is a unique face f ∈ F such that e and v are both

incident to f . Note that f is contained in sector i and is not a face of H(N). We

will show that e ∈ MA. Let w be the cell corresponding to f such that A lies at

w. In addition, let j ∈ {1, 2, 3} such that j ≡ i − 1 (mod 3) (resp. j ≡ i + 1

(mod 3)), let k ∈ {1, 2, 3} such that {k} = {1, 2, 3} \ {i, j}, and let f ′ ∈ F be

the face corresponding to w − ej. Then the ith coordinate of w is strictly less than

the other coordinates of w, and by assumption, f does not correspond to any box

in A ∪ B, so w 6∈ A ∪ B. Since A lies at w, w has at most one negative coordinate

and w 6∈ (I− ∪ III) \ A. It follows that w 6∈ I− ∪ III and wj, wk ≥ 0. Furthermore,

w − (1, 1, 1) ∈ A, so (i) w − (1, 1, 1) has at least two negative coordinates or (ii)

w − (1, 1, 1) ∈ (I− ∪ III) \ A. In case (i), wj and wk cannot both be positive, so

wj = 0 or wk = 0. In case (ii), the ith coordinate of w − (1, 1, 1) is strictly less than

the other coordinates of w − (1, 1, 1), so if w − (1, 1, 1) ∈ I−, then w − (1, 1, 1) ∈

Cyl−i ⊆ Cyli. Thus, w − (1, 1, 1) ∈ Cyli, so (µi)wj ≥ wk (resp. (µi)wk ≥ wj).

As discussed above, m(u) = 1/2 + wk − wj (resp. m(u) = −1/2 + wj − wk).

By assumption, 0 < m(u) 6∈ S+
i (resp. 0 > m(u) 6∈ S−i ). Consequently, m(u) 6∈

Si (resp. m(u) ∈ Si), so m(u) 6= (µi)t − t + 1/2 for any t > 0 (resp. m(u) =
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(µi)t0 − t0 + 1/2 for some t0 > 0). Then 0 ≤ wk − wj 6= (µi)t − t for any t > 0

(resp. 0 > wj − wk − 1 = (µi)t0 − t0).

Suppose wj 6= 0 and w − ej 6∈ Cyli. Then (µ′i)wk+1 < wj, implying that

(µi)wj ≤ wk (resp. (µi)wk+1 < wj). We have (µi)wj − wj ≤ wk − wj 6= (µi)t − t for

any t > 0, so (µi)wj −wj < wk −wj, which means that (µi)wj < wk (resp. (µi)wk+1−

(wk + 1) < wj − (wk + 1) = (µi)t0 − t0, so t0 < wk + 1, since the sequence (µi)t − t

is strictly decreasing). In case (i), since wj 6= 0, wk = 0, so (µi)wj < 0, which is

a contradiction (resp. t0 < 1, so t0 ≤ 0, which is a contradiction). In case (ii), we

have (µi)wj ≥ wk > (µi)wj , a contradiction (resp. (µi)wk − wk > (µi)wk − wk − 1 ≥

wj − wk − 1 = (µi)t0 − t0, so because the sequence (µi)t − t is strictly decreasing,

wk < t0 < wk + 1, a contradiction). We conclude that wj = 0 or w − ej ∈ Cyli.

If wj = 0, then since wi < wj, w − ej has at least two negative coordinates,

so w − ej ∈ A. Otherwise, w − ej ∈ Cyli. Observe that f ′ is the other face of H

to which e is incident and is not a face of H(N). Suppose w − ej ∈ Cyl+i . Since

the ith coordinate of w is less than the other coordinates of w, the ith coordinate

of w − ej is the least coordinate of w − ej. We deduce that w − ej ∈ [0,M − 1]3,

so f ′ must be a face of H(M) ⊆ H(N). By contradiction, w − ej 6∈ Cyl+i , so

w − ej ∈ Cyl−i ⊆ I− ∪ III. Moreover, by assumption, f ′ does not correspond to any

box in A∪B, so w−ej 6∈ A∪B. So, w−ej ∈ (I−∪ III)\A, showing that w−ej ∈ A.

In either case, w − ej ∈ A, so A lies at or above w + ei + ek, which corresponds

to f ′. Since A lies at w, which corresponds to f , hA must increase by at least 2/3

between f and f ′, i.e., hA(f ′) ≥ hA(f) + 2/3. According to the definition of hA,

since e separates f and f ′, e ∈MA, as desired.

Corollary 4.4.22. The set of nodes of D(A,B)(N) in sector i is Ni := N+
i (N) ∪

N−i (N).
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We color the nodes as follows. Recall that when given a Maya diagram, by

holes, we mean elements of Z + 1
2
\ S, and by beads, we mean elements of S.

• In sector 1, the blue nodes are the holes of S1 with positive coordinates and

the red nodes are the beads of S1 with negative coordinates.

• In sector 2, the red nodes are the holes of S2 with positive coordinates and

the green nodes are the beads of S2 with negative coordinates.

• In sector 3, the green nodes are the holes of S3 with positive coordinates and

the blue nodes are the beads of S3 with negative coordinates.

Since |S+
i | = |S−i | for i ∈ {1, 2, 3}, there are an equal number of nodes in

sector i with positive coordinates and negative coordinates. So, the rainbow pairing

of Nµ(N) pairs blue nodes in sector 1 with red nodes in sector 1, red nodes in

sector 2 with green nodes in sector 2, and green nodes in sector 3 with blue nodes

in sector 3. This shows that the rainbow pairing is tripartite.

Let Dσ(G,N) be the set of all double-dimer configurations on G with nodes

N paired according to σ, and let ZDD
σ (G,N) denote the weighted sum of the

double-dimer configurations in Dσ(G,N). We can now explain the relationship

between ZAB and ZDD
σ (H(N),Nµ(N)), where σ is the rainbow pairing. Note that∣∣N+

i (N)
∣∣ =

∣∣N−i (N)
∣∣, since

∣∣S+
i

∣∣ =
∣∣S−i ∣∣, so it makes sense to consider the rainbow

pairing of Nµ(N).

Given a nonempty AB configuration, removing a box whose back neighbors

are not boxes produces another AB configuration, so between any two AB

configurations (A,B) and (A′, B′), there always exists at least one sequence

(A,B) := (A1, B1), (A2, B2), . . . , (Ar, Br) := (A′, B′) of AB configurations such

that consecutive AB configurations differ by the removal or addition of a single
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box. Furthermore, if (As+1, Bs+1) is obtained from (As, Bs) by removing a box

from As or Bs, then MAs+1 or MBs+1 is obtained from MAs or MBs , respectively,

by performing a local move as shown in Figure 12. Similarly, if (As+1, Bs+1) is

−→

FIGURE 12. A local move corresponding to the removal of a box.

obtained from (As, Bs) by adding a box to As or Bs, then MAs+1 or MBs+1 is

obtained from MAs or MBs , respectively, by performing a local move as shown in

Figure 13.

−→

FIGURE 13. A local move corresponding to the addition of a box.

Recall the edge weights specified in Definition 2.0.5. Assuming that all of

the boxes in A ∪ B and all of the boxes in A′ ∪ B′ correspond to faces of H(N),

the above discussion applies just as well to MAs(N) and MBs(N). Then, one

consequence of the chosen edge weights is that removing a box increases the edge-

weight by a factor of q, and adding a box decreases the edge-weight by a factor of

q. Therefore, the edge-weight qw(A,B)(N) of D(A,B)(N) is related to the edge-weight

qw(A′,B′)(N) of D(A′,B′)(N) by the following equation:

q|A|+|B|+w(A,B)(N) = q|A
′|+|B′|+w(A′,B′)(N).
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In particular, if (A′, B′) = (III, II ∪ III) and N ≥M , then we have

|A|+ |B|+ w(A,B)(N) = |II|+ 2|III|+ w(III,II∪III)(N).

Observe that (III, II ∪ III) ∈ AB(π) ⊆ AB, where π is the labelled box configuration

consisting of the boxes II ∪ III, all of which are unlabelled. So, by Theorem 4.4.19

and Lemma 4.4.21, if N ≥M , D(III,II∪III)(N) ∈ Dσ(H(N),Nµ(N)).

Definition 4.4.23. The double-dimer configuration D(III,II∪III)(N) on

(H(N),Nµ(N)) will be called the baseµ double-dimer configuration and its edge-

weight will be denoted qwbase(µ).

In other words, wbase(µ) = w(III,II∪III)(N). Also, if |A| + |B| ≤ N −M , and

w ∈ A ∪ B, then w ∈ Cyl−i for some i ∈ {1, 2, 3} or w ∈ II ∪ III. In the first case,

w ∈ A, so by Conditions 4.2.2, w + sei ∈ A for 0 ≤ s < −wi. It follows that

−wi ≤ |A| ≤ |A| + |B| ≤ N −M . Since the coordinates of w other than the ith

coordinate are in [0,M − 1], we must have w − wi(1, 1, 1) ∈ [0,M − 1 + N −M ]3 =

[0, N − 1]3, so w−wi(1, 1, 1) corresponds to a face of H(N) and, thus, so does w. In

the second case, w ∈ II ∪ III ⊆ [0,M − 1]3 ⊆ [0, N − 1]3, so w corresponds to a face

of H(N). If, in addition, (A,B) ∈ AB, then by Theorem 4.4.19 and Lemma 4.4.21,

D(A,B)(N) ∈ Dσ(H(N),Nµ(N)).

Consequently, assuming N ≥M , by Definition 4.2.35, we have

ZAB(q−1) = q|II|+2|III|
∑

(A,B)∈AB

q−|A|−|B|

= q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|≤N−M

q−|A|−|B| + q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|>N−M

q−|A|−|B|
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= q−wbase(µ)
∑

(A,B)∈AB
|A|+|B|≤N−M

qw(A,B)(N) + q|II|+2|III|
∑

(A,B)∈AB
|A|+|B|>N−M

q−|A|−|B|.

Let D ∈ Dσ(H(N),Nµ(N)). Since the nodes Nµ(N) are paired according

to the rainbow pairing and
∣∣N+

i (N)
∣∣ =

∣∣N−i (N)
∣∣, each path in D pairs a black

node in N+
i (N) with a white node in N−i (N), for some i ∈ {1, 2, 3}. Thus, each

path has odd length. If there are k(D) loops in D, this implies that there are 2k(D)

ways to decompose D into a perfect matching M1 of H(N) \Nµ(N) and a perfect

matching M2 of H(N). These matchings then correspond to lozenge tilings, and

since the nodes Nµ(N) are paired according to the rainbow pairing, these tilings

extend uniquely to tilings of the plane that can be interpreted as surfaces A =

R2∪ (I−∪ III)\A and B = R1∪ (II∪ III)\B, respectively, for some AB configuration

(A,B). Then MA(N) = M1 and MB(N) = M2, so D(A,B)(N) = D.

To be more precise, we must check that the penultimate statement from

the previous paragraph holds for an AB configuration (A,B) associated with

the partitions µ and not some other partitions. The fact that the nodes of D

are Nµ(N) ensures that the tiling corresponding to M1 can be extended so that

A = R2 ∪ (I−(ν) ∪ III(ν)) \ A, where A ⊆ I−(ν) ∪ III(ν), for any partitions

ν such that µi ⊆ νi for i ∈ {1, 2, 3}. It’s not clear, though, that the tiling

corresponding to M2 can be extended so that B = R1 ∪ (II(µ) ∪ III(µ)) \ B,

where B ⊆ II(µ) ∪ III(µ). All we can say is that it can be extended so that

B = R1 ∪ (II(ν) ∪ III(ν)) \ B, where B ⊆ II(ν) ∪ III(ν), for some partitions ν such

that µi ⊆ νi for i ∈ {1, 2, 3}. Suppose this statement does not hold for ν = µ. Then

there exists a cell w ∈ B \ (R1 ∪ II(µ)∪ III(µ)) ⊆ (II(ν)∪ III(ν)) \ (B ∪ II(µ)∪ III(µ)).

If w ∈ II(ν), then since w 6∈ II(µ) ∪ III(µ), there exist i, j ∈ {1, 2, 3} such that

i 6= j and w 6∈ Cylj(µ) ∪ Cyli(ν). Since w ∈ B, by Lemma 4.3.3, w − sej ∈ B

90



for 0 ≤ s ≤ wj + 1. On the other hand, since w 6∈ Cylj(µ), w − sej 6∈ Cylj(µ) for

0 ≤ s ≤ wj+1. Moreover, the jth coordinate of w−(wj+1)ej is −1, while the other

coordinates are nonnegative, so w − (wj + 1)ej ∈ Cyl−j (ν) \ I−(µ). This implies that

w−sej 6∈ R2∪(I−(µ)∪III(µ)) and, thus, w−sej 6∈ A for 0 ≤ s ≤ wj+1. Consequently,

{w − sej | 0 ≤ s ≤ wj + 1} ⊆ L(A,B) is a connected set of cells containing

w ∈ IĪi(ν) and w − (wj + 1)ej ∈ Cyl−j (ν). By Theorem 4.2.26, (A,B) 6∈ AB, so

by Corollary 4.4.20, the nodes of D(A,B)(N) are not paired according to the rainbow

pairing. This contradicts the fact that D(A,B)(N) = D ∈ Dσ(H(N),Nµ(N)).

Otherwise, w ∈ III(ν), and since w 6∈ II(µ) ∪ III(µ), there exist i, j ∈ {1, 2, 3}

such that i 6= j and w 6∈ Cyli(µ) ∪ Cylj(µ). Since w ∈ B, by Lemma 4.3.3,

w − sei ∈ B for 0 ≤ s ≤ wi + 1 and w − tej ∈ B for 0 ≤ t ≤ wj + 1. On the

other hand, since w 6∈ Cyli(µ), w − sei 6∈ Cyli(µ) for 0 ≤ s ≤ wi + 1. Similarly,

since w 6∈ Cylj(µ), w − tej 6∈ Cylj(µ) for 0 ≤ t ≤ wj + 1. Also, the ith coordinate of

w−(wi+1)ei is −1, while the other coordinates are nonnegative, so w−(wi+1)ei ∈

Cyl−i (ν) \ I−(µ). Similarly, the jth coordinate of w − (wj + 1)ej is −1, while the

other coordinates are nonnegative, so w − (wj + 1)ej ∈ Cyl−j (ν) \ I−(µ). Therefore,

w − sei 6∈ R2 ∪ (I−(µ) ∪ III(µ)) and, thus, w − sei 6∈ A for 0 ≤ s ≤ wi + 1. Similarly,

w−tej 6∈ R2∪(I−(µ)∪III(µ)) and, thus, w−tej 6∈ A for 0 ≤ t ≤ wj+1. Consequently,

{w − sei | 0 ≤ s ≤ wi + 1} ∪ {w − tej | 0 ≤ t ≤ wj + 1} ⊆ L(A,B) is a connected

set of cells containing w − (wi + 1)ei ∈ Cyl−i (ν) and w − (wj + 1)ej ∈ Cyl−j (ν).

By Theorem 4.2.26, (A,B) 6∈ AB, so by Corollary 4.4.20, the nodes of D(A,B)(N)

are not paired according to the rainbow pairing. Again, this contradicts the fact

that D(A,B)(N) = D ∈ Dσ(H(N),Nµ(N)). So we can, in fact, extend the tiling

corresponding to M2 so that B = R1 ∪ (II(µ) ∪ III(µ)) \B, where B ⊆ II(µ) ∪ III(µ).
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Now, if D(H(N)) denotes the set of all double-dimer configurations with

nodes on H(N), and τ : ABall → D(H(N)) is the map (A,B) 7→ D(A,B)(N),

then (A,B) ∈ τ−1(D). We conclude that |τ−1(D)| = 2k(D). Finally, given

any (A,B) ∈ τ−1(Dσ(H(N),Nµ(N))), the nodes of D(A,B)(N) are Nµ(N),

so all boxes in A ∪ B must correspond to faces of H(N), and we deduce that

|A| + |B| + w(A,B)(N) = |II| + 2|III| + wbase(µ). Also, by Corollary 4.4.20,

τ−1(Dσ(H(N),Nµ(N))) ⊆ AB.

As a result,

q−wbase(µ)ZDD
σ (H(N),Nµ(N))

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

w(D)

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

∑
(A,B)∈τ−1(D)

w(D)

2k(D)

= q−wbase(µ)
∑

D∈Dσ(H(N),Nµ(N))

∑
(A,B)∈τ−1(D)

qw(A,B)(N)

= q−wbase(µ)
∑

(A,B)∈τ−1(Dσ(H(N),Nµ(N)))

qw(A,B)(N)

= q−wbase(µ)
∑

(A,B)∈AB
|A|+|B|≤N−M

qw(A,B)(N) + q|II|+2|III|
∑

(A,B)∈τ−1(Dσ(H(N),Nµ(N)))
|A|+|B|>N−M

q−|A|−|B|.

This discussion, along with Theorem 4.2.36, leads to the following result.

Theorem 4.4.24. As N →∞,

Z̃DD
σ (H(N),Nµ(N)) := q−wbase(µ)ZDD

σ (H(N),Nµ(N))

converges to ZAB(q−1) = W (µ1, µ2, µ3; q−1).
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4.5. The Condensation Recurrence in PT Theory

In [2], the first author showed that when σ is tripartite, ZDD
σ (G,N) satisfies

the condensation recurrence.

Theorem 4.5.1. [2, Theorem 2.1.1] Let G = (V1, V2, E) be a finite edge-

weighted planar bipartite graph with a set of nodes N. Divide the nodes into three

circularly contiguous sets R, G, and B such that |R|, |G| and |B| satisfy the

triangle inequality and let σ be the corresponding tripartite pairing.3 Let a, b, c, d

be nodes appearing in a cyclic order such that a, c ∈ V1 and b, d ∈ V2.4 Then

ZDDσ (G,N)ZDDσabcd(G,N− {a, b, c, d}) = ZDDσab (G,N− {a, b})ZDDσcd (G,N− {c, d}) (6)

+ ZDDσad (G,N− {a, d})ZDDσbc (G,N− {b, c})

where σabcd is the unique planar pairing on N− {a, b, c, d} in which like RGB colors

are not paired together, and for i, j ∈ {a, b, c, d}, σij is the unique planar pairing on

N− {i, j} in which like RGB colors are not paired together.

We apply this recurrence with G = H(N), N = Nµrc1 ,µ
rc
2 ,µ3

(N), and the

RGB coloring defined in Section 4.4. We choose the four nodes a, b, c, and d as

follows: Let Si be the Maya diagram of µi, and let a and b be the nodes in sector 1

labelled by maxS−1 and minS+
1 , respectively. Similarly, we let c and d be the nodes

in sector 2 labelled by maxS−2 and minS+
2 . Note that these nodes have the same

coordinates as the vertices specified in Section 3.3 but the coordinate system is

different (see Figure 1). We remark that a is a red node in sector 1, b is a blue node

3If |R|, |G|, and |B| do not satisfy the triangle inequality, there is no corresponding tripartite
pairing σ.

4Additionally, {a, b, c, d} must contain at least one node of each RGB color. In our applications
of this theorem, this assumption is always satisfied.
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in sector 1, c is a green node in sector 2, and d is a red node in sector 2. So a, b, c,

and d appear in cyclic order, alternating black and white.

As in DT theory (see Section 3.3),

• the set of nodes N− {a, b, c, d} corresponds to the partitions µ1, µ2, µ3,

• the set of nodes N corresponds to the partitions µrc1 , µrc2 , µ3,

• the set of nodes N− {a, b} corresponds to the partitions µ1, µrc2 , µ3,

• the set of nodes N− {c, d} corresponds to the partitions µrc1 , µ2, µ3,

• the set of nodes N− {a, d} corresponds to the partitions µr1, µc2, µ3, and

• the set of nodes N− {b, c} corresponds to the partitions µc1, µr2, µ3.

In Lemma 5.3.1, we compute the edge-weight of the baseµ double-dimer

configuration on (H(N),Nµ(N)) = (H(N),Nµrc1 ,µ
rc
2 ,µ3

(N) − {a, b, c, d}). We

can also apply Lemma 5.3.1 to obtain the edge-weights of the base double-dimer

configurations on (H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)), (H(N),Nµrc1 ,µ
rc
2 ,µ3

(N) − {a, b}) =

(H(N),Nµ1,µrc2 ,µ3
(N)), and (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)− {c, d}) = (H(N),Nµrc1 ,µ2,µ3
(N)).

To do so, we simply modify the partitions in the lemma statement appropriately.

For double-dimer configurations on H(N) with nodes N−{a, d} or N−{b, c},

more care is required. This is because N − {a, d} 6= Nµr1,µ
c
2,µ3

(N) and N − {b, c} 6=

Nµc1,µ
r
2,µ3

(N). In the first case, N− {a, d} = Nµ(N)∪ {b, c}, so we have added b and

c (a blue node in sector 1 and a green node in sector 2) to the node set Nµ(N). So,

the unique planar pairing σad on N − {a, d} has one more blue-green path (going

from a blue node in sector 1 to a green node in sector 2) than σabcd. We remark

that it is no longer the case that all blue-green paths begin and end in sector 3.

94



Similarly, the pairing σbc has one more red-green and one more red-blue path than

σabcd, and one fewer blue-green path. We illustrate this with an example.

Example 4.5.2. Let N = 5 and let µ1 = (3, 2), µ2 = (2, 2), and µ3 = ∅. Then the

node sets N− {a, b, c, d}, N− {a, d}, and N− {b, c} are as shown in Figures 14, 15,

and 16. When we add b and c, we have µr1 = (4) and µc2 = (1, 1, 1), as shown in

FIGURE 14. The baseµ double-dimer configuration on (H(N),Nµ(N)).

Figure 15. Note that the double-dimer configuration shown has a blue-green path

from sector 1 to sector 2. Finally, when we add a and d, we have µc1 = (2, 1, 1) and

FIGURE 15. The baseup double-dimer configuration.

µr2 = (3), as shown in Figure 16.
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FIGURE 16. The basedown double-dimer configuration.

As illustrated in the example, when the node set is N − {a, d}, the base

double-dimer configuration arises from an AB configuration (A,B) (associated

with partitions µr1, µc2, and µ3). But, as we can see from the presence of a blue-

green path from sector 1 to sector 2, this double-dimer configuration is not the

result of the truncation procedure described in Section 4.3, i.e., it is not equal to

D(A,B)(N). Instead, the tilings and corresponding dimer configurations are shifted

up by one unit prior to truncation. We will refer to this double-dimer configuration

as the baseup double-dimer configuration. We use the notation baseup rather than

baseµr1,µc2,µ3 , because baseµr1,µc2,µ3 refers to a double-dimer configuration described in

Definition 4.4.23, which is truncated in the usual way.

Similarly, when the node set is N−{b, c}, the base double-dimer configuration

arises from an AB configuration (associated with partitions µc1, µ
r
2, and µ3).

However, the tilings and corresponding dimer configurations are shifted down by

one unit prior to truncation. We will refer to this double-dimer configuration as the

basedown double-dimer configuration.

Let qwup be the edge-weight of the baseup double-dimer configuration, and let

qwdown be the edge-weight of the basedown double-dimer configuration. We compute
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both of these quantities in Section 5.3.1 (see Lemmas 5.3.3 and 5.3.4). Then let

Z̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)) = q−wbase(µ
rc
1 ,µ

rc
2 ,µ3)ZDD

σ (H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)),

Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N)) = q−wbase(µ1,µ2,µ3)ZDD
σabcd

(H(N),Nµ1,µ2,µ3(N)),

Z̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N)) = q−wbase(µ1,µ

rc
2 ,µ3)ZDD

σab
(H(N),Nµ1,µrc2 ,µ3

(N)),

Z̃DD
σcd

(H(N),Nµrc1 ,µ2,µ3
(N)) = q−wbase(µ

rc
1 ,µ2,µ3)ZDD

σcd
(H(N),Nµrc1 ,µ2,µ3

(N)),

Z̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d}) = q−wupZDD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d}),

and

Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}) = q−wdownZDD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}).

Let

A = wbase(µ
rc
1 , µ

rc
2 , µ3) + wbase(µ1, µ2, µ3),

B = wbase(µ1, µ
rc
2 , µ3) + wbase(µ

rc
1 , µ2, µ3), and

C = wup + wdown.

From the condensation recurrence (6) and the preceding remarks, we have

qAZ̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N))Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N)) (7)

= qBZ̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N))Z̃DD

σcd
(H(N),Nµrc1 ,µ2,µ3

(N))

+ qCZ̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {a, d})Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N)− {b, c}).
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From Lemma 5.3.1, we see that A = B, and we multiply equation (7) by

q−A. In Section 5.3.2, we show that C − A = K, which does not depend

on N . So, we can take N → ∞, and each of the Laurent series Z̃DD

converges to an instance of W , with different partitions as parameters. The

convergence of Z̃DD
σ (H(N),Nµrc1 ,µ

rc
2 ,µ3

(N)) to W (µrc1 , µ
rc
2 , µ3; q−1) follows from

Theorem 4.4.24. By the same theorem, Z̃DD
σabcd

(H(N),Nµ1,µ2,µ3(N)) converges to

W (µ1, µ2, µ3; q−1), Z̃DD
σab

(H(N),Nµ1,µrc2 ,µ3
(N)) converges to W (µ1, µ

rc
2 , µ3; q−1),

and Z̃DD
σcd

(H(N),Nµrc1 ,µ2,µ3
(N)) converges to W (µrc1 , µ2, µ3; q−1). For the term

Z̃DD
σad

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N) − {a, d}), we remark that since we take N → ∞, the

fact that the tilings and corresponding dimer configurations are shifted before

truncation does not matter, and we get convergence to W (µr1, µ
c
2, µ3; q−1). A

similar argument implies convergence of Z̃DD
σbc

(H(N),Nµrc1 ,µ
rc
2 ,µ3

(N) − {b, c}) to

W (µc1, µ
r
2, µ3; q−1). So, we get

W (µrc1 , µ
rc
2 , µ3; q−1)W (µ1, µ2, µ3; q−1) = W (µ1, µ

rc
2 , µ3; q−1)W (µrc1 , µ2, µ3; q−1)

+ qKW (µr1, µ
c
2, µ3; q−1)W (µc1, µ

r
2, µ3; q−1).

Substituting q for q−1 and multiplying by qK , we conclude that W satisfies

equation (2), as desired.

4.6. Example

We list all of the double-dimer configurations that correspond, via our maps,

to the examples in Example 4.1.7 (the same example as that in [12, Section 5.4],

with the same numbering). The double-dimer configurations corresponding to these

configurations appear in Figure 17.
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Length 0 1 2 3

(i)

(ii)

(iii)

(iv)

(v)

(vi)

FIGURE 17. Double-dimer configurations corresponding to the labelled box
configurations in [12, Section 5.4].
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CHAPTER V

WEIGHTS

This chapter includes computations involving DT and PT weights. Most of

the computations involving DT weights were done by the author, and some were

done by Helen Jenne. All of the computations involving PT weights were done by

Helen Jenne, with contributions from the author, and this chapter was written by

Helen Jenne.

5.1. Modifying the Partition µ

In this section, we collect facts about partitions that we will need to compute

the DT and PT weights.

5.1.1. The Diagonal of µ

Remark 5.1.1. Let d(µ) denote the length of the diagonal of µ. Then d(µ) is the

largest integer i such that µi ≥ i. This is immediate from the observation that

µi ≥ i if and only if (i, i) is a cell in the Young diagram of µ.

Remark 5.1.2. It is immediate from Remark 5.1.1 that µd(µ)+1 ≤ d(µ). For if

µd(µ)+1 > d(µ), then µd(µ)+1 ≥ d(µ) + 1, contradicting that d(µ) is the length of the

diagonal.

In many of the computations we will make use of the fact that d(µ) is the

largest integer i with µi ≥ i. We will sometimes also need to know the largest

integer i with µi ≥ i− 1.
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Example 5.1.3. • If µ = (4, 4, 4, 3, 1), then d(µ) = 3 and the largest integer i

with µi ≥ i− 1 is 4, as µ4 = 3 ≥ 4− 1 and for i > 4, µi ≤ µ4 = 3 < 4 ≤ i− 1.

• If µ = (8, 8, 7, 5, 3, 2, 1, 1, 1), then d(µ) = 4 and 4 is the largest integer i with

µi ≥ i− 1, since µ4 = 5 ≥ 4− 1 and for i > 4, µi ≤ µ5 = 3 < 4 ≤ i− 1.

The preceding example illustrates the following facts.

Lemma 5.1.4. Let ds(µ) be the largest integer i such that µi ≥ i− 1. There are two

possibilities: either ds(µ) = d(µ) or ds(µ) = d(µ) + 1.

Proof. Since µ is a partition, µi − i + 1 is a strictly decreasing sequence, so ds(µ) is

equivalently the unique integer i such that µi ≥ i − 1 and µi+1 < i. If µi ≥ i, then

µi ≥ i− 1, so ds(µ) ≥ d(µ). And since

d(µ) + 1 > d(µ) ≥ µd(µ)+1 ≥ µd(µ)+2 = µd(µ)+1+1,

so ds(µ) ≤ d(µ) + 1.

Lemma 5.1.5. Let µ be a partition. Then

ds(µ) = d(µ) + 1⇔ µd(µ)+1 = d(µ).

Proof. If µd(µ)+1 = d(µ) = (d(µ) + 1)− 1, then ds(µ) = d(µ) + 1. If ds(µ) = d(µ) + 1,

then µd(µ)+1 ≥ d(µ). Since µd(µ)+1 < d(µ) + 1, we are done.

Remark 5.1.6. By Lemmas 5.1.4 and 5.1.5,

ds(µ) = d(µ)⇔ µd(µ)+1 < d(µ).
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5.1.2. The Partitions µr and µc

To compute the weights in DT and PT, we will find it useful to have explicit

descriptions of µr and µc, where

• µr is the partition associated to the charge −1 Maya diagram S(µ) \

{minS+(µ)}, and

• µc is the partition associated to the charge 1 Maya diagram S(µ) ∪

{maxS−(µ)}.

Additionally, µrc denotes the partition associated to the Maya diagram (S(µ) ∪

{maxS−(µ)})\{minS+(µ)}. Note that none of the partitions µr, µc, µrc are defined

if µ = ∅, so in what follows, when we refer to any of these partitions, we implicitly

assume that µ 6= ∅.

Remark 5.1.7. We will use the following expressions for the charge 0 Maya

diagrams of µr and µc.

• µr has charge 0 Maya diagram S(µr) = {s+ 1 : s ∈ S(µ) \ {minS+(µ)}}

• µc has charge 0 Maya diagram S(µc) = {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}}

Example 5.1.8. Let µ = (4, 4, 4, 3, 1). Then

S(µ) =

{
7

2
,
5

2
,
3

2
,−1

2
,−7

2
,−11

2
,−13

2
, . . .

}
.

• Since minS+(µ) = 3
2
, µr has charge −1 Maya diagram

{
7

2
,
5

2
,−1

2
,−7

2
,−11

2
,−13

2
, . . .

}
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and charge 0 Maya diagram

{
9

2
,
7

2
,
1

2
,−5

2
,−9

2
,−11

2
, . . .

}
.

• Since maxS−(µ) = −3
2
, µc has charge 1 Maya diagram

{
7

2
,
5

2
,
3

2
,−1

2
,−3

2
,−7

2
,−11

2
,−13

2
, . . .

}

and charge 0 Maya diagram

{
5

2
,
3

2
,
1

2
,−3

2
,−5

2
,−9

2
,−13

2
,−15

2
, . . .

}
.

We begin with an explicit description of µr and a few facts that follow from

this description.

Lemma 5.1.9. Let µ be a partition. Then

µri =


µi + 1 if i < d(µ)

µi+1 if i ≥ d(µ).

That is, we obtain µr from µ by removing µd(µ) and adding 1 to the jth part of the

partition for all j < d(µ).

Proof. For convenience, we write S := S(µ). By definition, µr is the partition

associated to the charge −1 Maya diagram S \ {minS+}, i.e., S(µr) = {s + 1 : s ∈

S \ {minS+}}. Observe that minS+ is the least half integer µt − t + 1
2

such that

µt − t + 1
2
> 0. Equivalently, it is the least half integer µt − t + 1

2
such that µt ≥ t,

103



i.e., minS+ = µd(µ) − d(µ) + 1
2
. So,

S \ {minS+} =

{
µt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt − t+

1

2
: d(µ) < t

}
=

{
µt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt+1 − t− 1 +

1

2
: d(µ) ≤ t

}

and

S(µr) =

{
µt + 1− t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µt+1 − t+

1

2
: d(µ) ≤ t

}
=

{
µrt − t+

1

2
: 1 ≤ t < d(µ)

}
∪
{
µrt − t+

1

2
: d(µ) ≤ t

}
.

This shows that µrt = µt + 1 for t < d(µ) and µrt = µt+1 for t ≥ d(µ).

Example 5.1.10.

• Let µ = (4, 4, 4, 3, 1). Then d(µ) = 3 and µd(µ) = 4. So µr = (5, 5, 3, 1).

• Let µ = (8, 8, 7, 5, 3, 2, 1, 1, 1). Then d(µ) = 4 and µd(µ) = 5. So

µr = (9, 9, 8, 3, 2, 1, 1, 1).

Remark 5.1.11. The following observations are immediate consequences of

Lemma 5.1.9.

• |µr| = |µ|+ d(µ)− 1− µd(µ) ≤ |µ|+ d(µ)− 1− d(µ) = |µ| − 1

• d(µ)− 1 ≤ d(µr) ≤ d(µ), since by the construction of µr, if (i, i) is a cell in the

Young diagram of µ and i < d(µ), it is a cell in the Young diagram of µr.

• µd(µ)+1 = µrd(µ), and therefore µd(µ)+1 = d(µ) if and only if µrd(µ) = d(µ). Also,

µd(µ)+1 < d(µ) if and only if µrd(µ) < d(µ).

Remark 5.1.12. `(µr) = `(µ)− 1
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Lemma 5.1.13. For any partition µ, d(µr) = d(µ) if and only if µd(µ)+1 = d(µ).

Proof. First assume that d(µr) = d(µ). We see that

µd(µ)+1 = µrd(µ) = µrd(µr) ≥ d(µr) = d(µ)

and since µd(µ)+1 ≤ d(µ), µd(µ)+1 = d(µ).

Now suppose µd(µ)+1 = d(µ). This means that µrd(µ) = d(µ), so (d(µ), d(µ))

is a cell in the Young diagram of µr, so d(µr) ≥ d(µ). By Remark 5.1.11, d(µr) =

d(µ).

Lemma 5.1.14. For any partition µ, d(µr) = d(µ)− 1 if and only if µd(µ)+1 < d(µ).

Proof. If d(µr) = d(µ) − 1, (d(µ), d(µ)) is not a cell in the Young diagram of µr,

so µrd(µ) < d(µ). Since µrd(µ) = µd(µ)+1 by Remark 5.1.11, this shows that µd(µ)+1 <

d(µ).

If µd(µ)+1 < d(µ), (d(µ), d(µ)) is not a cell in the Young diagram of µr.

However, (d(µ) − 1, d(µ) − 1) is a cell in the Young diagram of µr, by construction.

So d(µr) = d(µ)− 1.

Example 5.1.15. Continuing Example 5.1.10, when µ = (4, 4, 4, 3, 1), d(µ) = 3,

and µd(µ)+1 = d(µ). As expected, µr = (5, 5, 3, 1) has d(µr) = 3.

When µ = (8, 8, 7, 5, 3, 2, 1, 1, 1), d(µ) = 4 and µd(µ)+1 < d(µ). As expected,

µr = (9, 9, 8, 3, 2, 1, 1, 1) has d(µr) = 3.

Lemma 5.1.16. If there exists a positive integer i such that µri > i + 1, then

the largest such integer is d(µ) − 1. In other words, the set of positive integers i

satisfying µri > i+ 1 is equal to the set of positive integers i satisfying i ≤ d(µ)− 1.
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Proof. Since µr is a partition, the sequence µri − i − 1 is strictly decreasing, so it

suffices to show that d(µ) − 1 > 0, µrd(µ)−1 > d(µ) and µrd(µ) ≤ d(µ) + 1. Assuming

there exists a positive integer i such that µri > i + 1, we must have µr1 > 1 + 1 = 2.

Thus, by Lemma 5.1.9, if d(µ) = 1, then µ2 > 2, so d(µ) ≥ 2. By contradiction,

d(µ) > 1. Also, by Lemma 5.1.9, µrd(µ)−1 = µd(µ)−1 + 1 ≥ d(µ) + 1 > d(µ). And

µrd(µ) = µd(µ)+1 ≤ d(µ) < d(µ) + 1.

Next we will give an explicit description of µc.

Lemma 5.1.17. Let µ be a partition. Let id be the largest integer i with µi ≥ d(µ).

Then

µci =



µi − 1 if i ≤ id

d(µ)− 1 if i = id + 1

µi−1 if i > id + 1.

That is, to construct µc we first add a part of size d(µ) − 1 to µ to obtain µ̃. Then

µc is the partition obtained from µ̃ by subtracting 1 from each part µ̃j such that

µj ≥ d(µ).

Proof. Let S be the Maya diagram of µ. By definition, µc is the partition

associated to the charge 1 Maya diagram S ∪ {maxS−}, i.e., S(µc) = {s − 1 :

s ∈ S ∪ {maxS−}}. Note that maxS− is the greatest half integer h < 0 such that

h 6= µt − t+ 1
2

for all t ≥ 1. We claim that

maxS− = d(µ)− id −
1

2
.
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In the case that id = d(µ), suppose −1
2

= µt − t + 1
2

for some t ≥ 1. Then

µt = t− 1, so t > d(µ) = id, which means that d(µ) > µt = t− 1 > id− 1 = d(µ)− 1.

This is a contradiction. Therefore, maxS− = −1
2

= d(µ)− id − 1
2
, as claimed.

Otherwise, id > d(µ). In this case, for all d(µ) < t ≤ id, we have d(µ) ≤

µid ≤ µt ≤ µd(µ)+1 < d(µ) + 1, so µt = d(µ). Then µt − t + 1
2

= d(µ) − t + 1
2
, so

−1
2
,−3

2
, . . . , d(µ) − id + 1

2
∈ S and we deduce that maxS− ≤ d(µ) − id − 1

2
< 0.

On the other hand, µid+1 − (id + 1) + 1
2

= µid+1 − id − 1
2
< d(µ) − id − 1

2
. Since

the sequence µt − t + 1
2

is strictly decreasing, this implies that d(µ)− id − 1
2
6∈ S, so

maxS− ≥ d(µ)− id − 1
2
. Then maxS− = d(µ)− id − 1

2
, proving the claim.

So,

S ∪ {maxS−} =

{
µt − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− (id + 1) +

1

2

}
∪
{
µt − t+

1

2
: id < t

}
=

{
µt − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− (id + 1) +

1

2

}
∪
{
µt−1 − t+

3

2
: id + 1 < t

}

and

S(µc) =

{
µt − 1− t+

1

2
: 1 ≤ t ≤ id

}
∪
{
d(µ)− 1− (id + 1) +

1

2

}
∪
{
µt−1 − t+

1

2
: id + 1 < t

}
=

{
µct − t+

1

2
: 1 ≤ t ≤ id

}
∪
{
µcid+1 − (id + 1) +

1

2

}
∪
{
µct − t+

1

2
: id + 1 < t

}
.
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This shows that µct = µt − 1 for t ≤ id, µ
c
id+1 = d(µ) − 1, and µct = µt−1 for

t > id + 1.

Example 5.1.18. • If µ = (1), then d(µ) = 1 and id = 1, so µc = ∅.

• If µ = (2), d(µ) = 1 and id = 1, so µc = (1).

• If µ = (4, 4, 3, 2), d(µ) = 3 and id = 3, so µc = (3, 3, 2, 2, 2).

• If µ = (4, 4, 4, 3, 1), d(µ) = 3 and id = 4. We get µc = (3, 3, 3, 2, 2, 1).

• If µ = (7, 7, 6, 1), d(µ) = 3 and id = 3, so µc = (6, 6, 5, 2, 1).
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Remark 5.1.19.

• If d(µ) > 1, then `(µc) = `(µ) + 1.

• If d(µ) = 1 and µ1 > 1, `(µc) = 1.

• If d(µ) = 1 and µ1 = 1, `(µc) = 0.

Remark 5.1.20. Let id be the largest integer with µi ≥ d(µ). Then id = µ′d(µ).

Remark 5.1.21. By Lemma 5.1.17, µcd(µ)+1 = d(µ) − 1. Because if id = d(µ),

then µcd(µ)+1 = µcid+1 = d(µ) − 1. And if id > d(µ), then µd(µ)+1 = d(µ), so

µcd(µ)+1 = d(µ)− 1.

Remark 5.1.22. We note that µcd(µ) = d(µ) − 1 if and only if µd(µ) = d(µ). Also,

d(µc) = d(µ) if and only if µd(µ) > d(µ), and d(µc) = d(µ) − 1 if and only if

µd(µ) = d(µ).

Lemma 5.1.23. Let ds(µ
c) be the maximum positive integer i such that µci ≥ i− 1.

Then ds(µ
c) = d(µ). In other words, the set of positive integers i satisfying µci ≥

i− 1 is equal to the set of positive integers i satisfying i ≤ d(µ).

Proof. Since µc is a partition, the sequence µci − i + 1 is strictly decreasing, so it

suffices to show that µcd(µ) ≥ d(µ) − 1 and µcd(µ)+1 < d(µ). By Lemma 5.1.17,

µcd(µ) = µd(µ) − 1 ≥ d(µ)− 1 and µcd(µ)+1 = d(µ)− 1 < d(µ).

We will also take advantage of the following relationship between µc and µr.

Lemma 5.1.24. Let µ be a partition.

(1) (µc)′ = (µ′)r, and

(2) (µr)′ = (µ′)c.
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The expression (2) follows from (1) by substituting µ′ for µ. Before we

proceed to the proof, we make a useful observation.

Lemma 5.1.25. Let µ be a partition.

(1) S+(µ′) = −S−(µ), and

(2) S−(µ′) = −S+(µ).

Proof. Let Lµ be the contour of µ, which is obtained from the Maya diagram of

µ by placing a line segment of slope −1 where there is a hole and a line segment

of slope 1 where there is a bead (this is standard, see for instance [13]). Then the

claim follows from the observation that we obtain µ′ from µ by reflecting Lµ across

the line x = 0.

Example 5.1.26. Let µ = (6, 6, 5, 5, 5, 3, 1). Then

• S(µ) = {11
2
, 9

2
, 5

2
, 3

2
, 1

2
,−5

2
,−11

2
,−15

2
,−17

2
, . . .},

• S+(µ) = {11
2
, 9

2
, 5

2
, 3

2
, 1

2
}, and

• S−(µ) = {−1
2
,−3

2
,−7

2
,−9

2
,−13

2
}.

We see that maxS−(µ) = −1
2
. Noting that µc = (5, 5, 4, 4, 4, 4, 3, 1), we see that

S(µc) =

{
9

2
,
7

2
,
3

2
,
1

2
,−1

2
,−3

2
,−7

2
,−13

2
,−17

2
,−19

2
, . . .

}
= {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}}.

So

S+(µc) =

{
9

2
,
7

2
,
3

2
,
1

2

}
=

{
s− 1 : s ∈ S+(µ) \

{
1

2

}}
, and

S−(µc) =

{
−5

2
,−9

2
,−11

2
,−15

2

}
= {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}}.
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We next note that (µc)′ = (8, 7, 7, 6, 2),

S+((µc)′) =

{
15

2
,
11

2
,
9

2
,
5

2

}
= −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}, and

S−((µc)′) =

{
−1

2
,−3

2
,−7

2
,−9

2

}
= −S+(µc) =

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
.

Since µ = (6, 6, 5, 5, 5, 3, 1), µ′ = (7, 6, 6, 5, 5, 2). So

S+(µ′) =

{
13

2
,
9

2
,
7

2
,
3

2
,
1

2

}
= −S−(µ) and

S−(µ′) =

{
−1

2
,−3

2
,−5

2
,−9

2
,−11

2

}
= −S+(µ).

Then

S+((µ′)r) =

{
15

2
,
11

2
,
9

2
,
5

2

}
= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}}

= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}}

= {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}

and

S−((µ′)r) =

{
−1

2
,−3

2
,−7

2
,−9

2

}
=

{
s+ 1 : s ∈ S−(µ′) \

{
−1

2

}}
=

{
s+ 1 : s ∈ −S+(µ) \

{
−1

2

}}
=

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
.

Proof of Lemma 5.1.24. We break into cases based on whether 1
2
∈ S.
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First suppose 1
2
∈ S. By Remark 5.1.7,

S+(µc) =

{
s− 1 : s ∈ S+(µ) \

{
1

2

}}
, and

S−(µc) = {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}}.

Note that in the expression for S−(µc) we used the fact that 1
2
∈ S, so −1

2
is in

S(µc) = {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}} and therefore not in S−(µc). Now we see

that

S+((µc)′) = −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}}

= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}}

= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}} = S+((µ′)r).

Similarly,

S−((µc)′) = −S+(µc) =

{
−s+ 1 : s ∈ S+(µ) \

{
1

2

}}
=

{
s+ 1 : s ∈ −S+(µ) \

{
−1

2

}}
=

{
s+ 1 : s ∈ S−(µ′) \

{
−1

2

}}
= S−((µ′)r).

Next we assume 1
2
/∈ S. As in the first case, we start by noting that

S+(µc) =
{
s− 1 : s ∈ S+(µ)

}
, and

S−(µc) = {s− 1 : s ∈ S−(µ) \ {maxS−(µ)}} ∪
{
−1

2

}
.
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Note that in the expression for S−(µc) we used the fact that 1
2
/∈ S, so −1

2
is not in

S(µc) = {s− 1 : s ∈ S(µ) ∪ {maxS−(µ)}} and therefore is in S−(µc). As in the first

case, we proceed by observing that

S+((µc)′) = −S−(µc) = {−s+ 1 : s ∈ S−(µ) \ {maxS−(µ)}} ∪
{

1

2

}
= {s+ 1 : s ∈ −S−(µ) \ {min(−S−(µ))}} ∪

{
1

2

}
= {s+ 1 : s ∈ S+(µ′) \ {minS+(µ′)}} ∪

{
1

2

}
= S+((µ′)r).

Similarly,

S−((µc)′) = −S+(µc) = {−s+ 1 : s ∈ S+(µ)}

= {s+ 1 : s ∈ −S+(µ)} = {s+ 1 : s ∈ S−(µ′)} = S−((µ′)r).

Remark 5.1.27. By Remark 5.1.11, |µr| = |µ|−µd(µ) +d(µ)−1. By Lemma 5.1.24,

|µc| = |((µ′)r)′| = |(µ′)r| = |µ′| − µ′d(µ′) + d(µ′)− 1 = |µ| − µ′d(µ) + d(µ)− 1.

5.1.3. The Partition µrc

Remark 5.1.28. Let µ be a partition. Then µrc is the partition obtained by

removing the hook of (d(µ), d(µ)) from µ.

Lemma 5.1.29.

|µr| − |µ|+ |µc| − |µrc| = −1
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Proof. By Remark 5.1.27,

|µc| − |µrc| = |µ| − µ′d(µ) + d(µ)− 1− |µ|+ hµ(d(µ), d(µ)) = µd(µ) − d(µ),

where the last equality follows from the fact that

µd(µ) + µ′d(µ) − 1 = hµ(d(µ), d(µ)) + 2(d(µ)− 1).

Combining this with Remark 5.1.11, we have

|µr| − |µ|+ |µc| − |µrc| = −1.

Remark 5.1.30. Since the hook of (d(µ), d(µ)) in µ is the same as the hook of

(d(µ′), d(µ′)) in µ′, (µ′)rc = (µrc)′.

Remark 5.1.31. Let id be the largest integer i with µi ≥ d(µ). Then it follows

from Remark 5.1.28 that

µrci =



µi if i < d(µ)

d(µ)− 1 if d(µ) ≤ i ≤ id

µi if i > id.

Remark 5.1.32. It is immediate from Remark 5.1.28 that d(µrc) = d(µ) − 1.

Therefore by Remark 5.1.22, d(µrc) = d(µc) if and only if µd(µ) = d(µ) and d(µrc) =

d(µc)− 1 if and only if µd(µ) > d(µ).
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Lemma 5.1.33.

µrci =


µci + 1 if i ≤ d(µrc)

µci+1 if i > d(µrc)

Proof. If i ≤ d(µrc) = d(µ)− 1, then µrci = µi and µci = µi − 1, since i ≤ id.

If i > d(µrc) = d(µ) − 1, then we consider two cases. If d(µ) ≤ i ≤ id, then

µrci = d(µ)− 1 = µci+1. If i > id, then i+ 1 > id + 1, so µrci = µi = µci+1.

Lemma 5.1.34. • d(µ) > 1 if and only if `(µrc) = `(µ), and

• d(µ) = 1 if and only if `(µrc) = 0.

Proof. This is immediate by the construction of µrc from µ.

Corollary 5.1.35. If d(µ) > 1 or d(µ) = 1 and µ1 > 1, then `(µrc) = `(µc) − 1. If

d(µ) = 1 and µ1 = 1, `(µrc) = `(µc) = 0.

5.2. DT Weights

In this section we compute the constants A, B, and C from equation (4) in

Section 3.3. To that end, in Section 5.2.1 we compute the weights of the minimal

dimer configurations of the graphs

G = H(N ;µrc1 , µ
rc
2 , µ3),

G− {a, b, c, d} = H(N ;µ1, µ2, µ3),

G− {a, b} = H(N ;µ1, µ
rc
2 , µ3),

G− {c, d} = H(N ;µrc1 , µ2, µ3),

G− {a, d} = H(N ;µrc1 , µ
rc
2 , µ3)− {a, d},

G− {b, c} = H(N ;µrc1 , µ
rc
2 , µ3)− {b, c}.
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As in previous sections, we assume N ≥ M . The remaining work is to compute

C − A; this is done in Section 5.2.2.

5.2.1. Weight of Minimal Configuration

We weight the edges of H(N) so that the weight of the horizontal edges on

a diagonal is q times the weight of the horizontal edges on the previous diagonal,

moving from right to left (see Definition 2.0.5). Recall the correspondence between

dimer configurations of H(N) and plane partitions described in Section 3.2. With

the chosen edge weights, when a box is added to a plane partition, the weight of

the corresponding dimer configuration increases by a factor of q. So, the minimal

dimer configuration of H(N) corresponds to the empty plane partition and has

weight qN
2(N−1)/2. This expression is simply the product of the weights of the N2

horizontal dimers that make up the “floor” of the empty plane partition.

Now observe that the minimal dimer configuration of H(N ;µ1, µ2, µ3) differs

from the dimer configuration corresponding to a plane partition π(µ1, µ2, µ3) (with

N(|µ1| + |µ2| + |µ3|) − |II| − 2|III| boxes) only near the boundary of H(N). The

minimal dimer configuration of H(N ;µ1, µ2, µ3) has extra horizontal dimers in

sector 1 and sector 2, and has fewer horizontal dimers in sector 3.

Specifically, in sector 1, if (µ′1)i ≥ i, the ith part of µ′1 contributes i − 1

horizontal dimers of weight qN+(µ′1)i−i. If (µ′1)i < i, the ith part of µ′1 contributes

(µ′1)i horizontal dimers of weight qN+(µ′1)i−i. Therefore, in sector 1 the weight of

the minimal dimer configuration of H(N ;µ1, µ2, µ3) differs from that of the dimer

configuration corresponding to π(µ1, µ2, µ3) by a factor of

∏
i:(µ′1)i≥i≥1

q(i−1)(N+(µ′1)i−i)
∏

i:(µ′1)i<i≤`(µ′1)

q(µ′1)i(N+(µ1)′i−i).
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In sector 2, if (µ2)i ≥ i, the ith part of µ2 contributes i − 1 horizontal dimers

with weights q(µ2)i−i+1, q(µ2)i−i+2, . . . , q(µ2)i−1. The total weight of these dimers is

∏
i:(µ2)i≥i≥1

i−1∏
j=1

q(µ2)i−i+j =
∏

i:(µ2)i≥i≥1

q(i−1)((µ2)i−i)q(i−1)i/2 =
∏

i:(µ2)i≥i≥1

q(i−1)((µ2)i−i/2).

If (µ2)i < i, the ith part of µ2 contributes (µ2)i horizontal dimers with weights

q0, q1, . . . , q(µ2)i−1. The total weight of these dimers is

∏
i:(µ2)i<i≤`(µ2)

(µ2)i−1∏
j=0

qj =
∏

i:(µ2)i<i≤`(µ2)

q((µ2)i−1)(µ2)i/2.

In sector 3, the dimers in the dimer configuration corresponding to

π(µ1, µ2, µ3) that are not in the minimal dimer configuration of H(N ;µ1, µ2, µ3)

have weight
`(µ3)∏
i=1

q(2N−i)(µ3)i .

Since the dimer configuration corresponding to the plane partition

π(µ1, µ2, µ3) has weight qN
2(N−1)/2+N(|µ1|+|µ2|+|µ3|)−|II|−2|III|, we combine these

remarks to arrive at the following.

Lemma 5.2.1. The weight of the minimal dimer configuration of H(N ;µ1, µ2, µ3)

is qwmin(µ1,µ2,µ3) = qw̃min(µ1,µ2,µ3)−|II(µ1,µ2,µ3)|−2|III(µ1,µ2,µ3)|, where

w̃min(µ1, µ2, µ3) =
N2(N − 1)

2
+N(|µ1|+ |µ2|+ |µ3|) +

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µ′1)i

(i− 1)(N + (µ′1)i − i)

+
∑

i:(µ′1)i<i≤`((µ′1))

(µ′1)i(N + (µ′1)i − i)
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+
∑

i:1≤i≤(µ2)i

(i− 1)

(
(µ2)i −

i

2

)
+

∑
i:(µ2)i<i≤`(µ2)

((µ2)i − 1)
(µ2)i

2
.

Lemma 5.2.1 is sufficient to analyze the first four factors in the condensation

recurrence (3). For the remaining two factors, more work is needed, since they are

associated with Maya diagrams of nonzero charge. However, we omit the proofs of

the necessary lemmas, because they are very similar to that of Lemma 5.2.1.

Lemma 5.2.2. The weight of the minimal dimer configuration of

H(N ;µrc1 , µ
rc
2 , µ3)− {a, d} is qw

u
min = qw̃

u
min−|II(µ

r
1,µ

c
2,µ3)|−2|III(µr1,µc2,µ3)|, where

w̃umin =
N(N2 + 2N − 1)

2
+ (N + 1) (|µr1|+ |µc2|) +N + (N − 1) |µ3|

+

`(µ3)∑
i=1

(−2N + i)(µ3)i +
∑

i:1≤i≤(µr1)′i+1

(i− 2)(N + (µr1)′i − (i− 1))

+
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i(N + (µr1)′i − (i− 1))

+
∑

i:1≤i≤(µc2)i+1

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
i:(µc2)i+1<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.

Lemma 5.2.3. The weight of the minimal dimer configuration of

H(N ;µrc1 , µ
rc
2 , µ3)− {b, c} is qw

d
min = qw̃

d
min−|II(µ

c
1,µ

r
2,µ3)|−2|III(µc1,µr2,µ3)|, where

w̃dmin =
(N − 1)2(N − 2)

2
+ (N − 1) (|µc1|+ |µr2|) + (N + 1) |µ3|

+

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µc1)′i

i(N + (µc1)′i − i− 1) +
∑

i:(µc1)′i<i≤`((µc1)′)

(µc1)′i(N + (µc1)′i − i− 1)

+
∑

i:1≤i≤(µr2)i

i

(
(µr2)i −

i+ 1

2

)
+

∑
i:(µr2)i<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
.

118



5.2.2. Algebraic Simplification

Since A = w̃min(µ1, µ2, µ3) + w̃min(µrc1 , µ
rc
2 , µ3) and B = w̃min(µrc1 , µ2, µ3) +

w̃min(µ1, µ
rc
2 , µ3), we see that A = B. In addition, C = w̃umin + w̃dmin.

To compute C − A, we split the algebra into two pieces: we first simplify the

summands involving N , and next simplify the summands that do not involve N .

By Lemma 5.2.1, the terms in A that involve N are

N2(N − 1) +N(|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|) + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µ1)′i

N(i− 1) +
∑

i:(µ1)′i<i≤`((µ1)′)

N(µ1)′i +
∑

i:1≤i≤(µrc1 )′i

N(i− 1)

+
∑

i:(µrc1 )′i<i≤`((µrc1 )′)

N(µrc1 )′i.

Since λi ≥ i precisely when i ≤ d(λ), we can write

∑
i:1≤i≤λi

N(i− 1) =
Nd(λ)(d(λ)− 1)

2
.

So, the above can be written as

N2(N − 1) +N(|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|) + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i (8)

+
Nd(µ′1)(d(µ′1)− 1)

2
+N

∑
i:d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +
Nd((µrc1 )′)(d((µrc1 )′)− 1)

2

+N
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i.
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Now we consider the terms in C that involve N . By Lemmas 5.2.2 and 5.2.3,

those terms are

N(N2 + 2N − 1)

2
+N (|µr1|+ |µc2|+ |µ3|) +N + 2

`(µ3)∑
i=1

(−2N + i)(µ3)i

+
∑

i:1≤i≤(µr1)′i+1

N(i− 2) +
∑

i:(µr1)′i+1<i≤`((µr1)′)

N(µr1)′i +
(N − 1)2(N − 2)

2

+N (|µc1|+ |µr2|+ |µ3|) +
∑

i:1≤i≤(µc1)′i

Ni+
∑

i:(µc1)′i<i≤`((µc1)′)

N(µc1)′i.

As above, we can write

∑
i:1≤i≤(µc1)′i

Ni = N

d((µc1)′)∑
i=1

i =
Nd((µc1)′)(d((µc1)′) + 1)

2
.

Recall from Lemma 5.1.4 that ds((µ
r
1)′) denotes the largest integer i such that

i ≤ (µr1)′i + 1. There are two possibilities, either ds := ds((µ
r
1)′) is equal to d :=

d((µr1)′), or ds = d+ 1. First assume that ds = d. Then we have

• N
∑

i:1≤i≤(µr1)′i+1

(i− 2) = N
∑

i:1≤i≤d((µr1)′)

(i− 2) = N
(

(d((µr1)′)−2)(d((µr1)′)−1)

2
− 1
)

, and

• N
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i = N
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i.

If instead ds = d+ 1, then

N
∑

1≤i≤(µr1)′i+1

(i− 2) = N

 ∑
1≤i≤d((µr1)′)

(i− 2) + d((µr1)′)− 1

 .

Since (µr1)′d(µr1)+1 = d((µr1)′) by Lemma 5.1.5,

N

 ∑
i:1≤i≤(µr1)′i+1

(i− 2) +
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i
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= N

 ∑
i:1≤i≤d((µr1)′)

(i− 2) + d((µr1)′)− 1 +
∑

i:d((µr1)′)+1<i≤`((µr1)′)

(µr1)′i


= N

 ∑
i:1≤i≤d((µr1)′)

(i− 2)− 1 +
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i

 .

So the terms in C that involve N can be written as

N2(N − 1) + 3N − 1 +N (|µr1|+ |µc1|+ |µr2|+ |µc2|+ 2 |µ3|) (9)

+ 2

`(µ3)∑
i=1

(−2N + i)(µ3)i

+N

−2 + 1ds=d +
(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i


+
Nd((µc1)′)(d((µc1)′) + 1)

2
+N

∑
i:(µc1)′i<i≤`((µc1)′)

(µc1)′i.

Before we subtract the terms in A that involve N from the terms in C that

involve N , we make some remarks which will help us simplify the following sums:

N
∑

i:(µc1)′i<i≤`((µc1)′)

(µc1)′i, N
∑

i:d((µr1)′)<i≤`((µr1)′)

(µr1)′i,

N
∑

i:d(µ′1)+1≤i≤`(µ′1)

(µ′1)i, and N
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i.

Remark 5.2.4. Let

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µr)<i≤`(µr)

µri .
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There are two cases to consider. If d(µ) = d(µr), then by Lemma 5.1.13, µd(µ)+1 =

d(µ). So, applying Lemma 5.1.9,

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)<i≤`(µr)

µi+1

=
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)+1<i≤`(µr)+1

µi = µd(µ)+1 = d(µ).

If instead d(µr) = d(µ)− 1, then

er(µ) =
∑

i:d(µ)<i≤`(µ)

µi −
∑

i:d(µ)−1<i≤`(µr)

µi+1 = 0.

We have shown

er(µ) =


d(µ) if d(µ) = d(µr)

0 otherwise.

Remark 5.2.5. Let

erc(µ) =
∑

i:d(µc)<i≤`(µc)

µci −
∑

i:d(µrc)<i≤`(µrc)

µrci .

As in the previous remark, we split into cases based on whether d(µc) = d(µrc) or

d(µc) = d(µrc) + 1. Applying Lemma 5.1.33, we get

erc(µ) =


µcd(µc)+1 if d(µc) = d(µrc)

0 otherwise.
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By Remarks 5.1.32 and 5.1.22, if d(µc) = d(µrc), then µcd(µc)+1 = d(µ)− 1, so

erc(µ) =


d(µ)− 1 if d(µc) = d(µrc)

0 otherwise.

Remark 5.2.6. We note that

d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
=


d(µ′1) if d((µc1)′) = d(µ′1)

0 otherwise.

So, applying Remark 5.2.4 and using the fact that (µc1)′ = (µ′1)r, we have

d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
− er(µ′1) = 0.

Remark 5.2.7. Note that

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2

=


−(d((µr1)′)− 1) if d((µr1)′) = d((µrc1 )′)

0 otherwise.

When d((µr1)′) = d((µrc1 )′), −(d((µr1)′) − 1) = −(d(µ′1) − 2). Also, the condition

d((µr1)′) = d((µrc1 )′) is equivalent to ds((µ
r
1)′) = d((µr1)′) + 1. This is because

ds((µ
r
1)′) = d((µr1)′) + 1 if and only if d(µ′1) = d((µr1)′) + 1 (by Lemma 5.1.23) which

holds if and only if d(µ′1) − 1 = d((µr1)′), which is equivalent to d((µ′1)rc) = d((µr1)′).
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So, by Remark 5.2.5, if ds := ds((µ
r
1)′) and d := d((µr1)′), then

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2
+ erc(µ′1) = 1ds 6=d.

Now we subtract the terms in A that involve N (see equation (8)) from the

terms in C that involve N (see equation (9)). Each term that cancels with another

term is marked with c. Each term that is modified between one side of an equation

and the other is underlined and the relevant lemma or remark is indicated.

N2(N − 1)︸ ︷︷ ︸
c

+3N − 1 +N

(
|µr1|+ |µc1|+ |µr2|+ |µc2|+ 2 |µ3|︸ ︷︷ ︸

c

)

+ 2

`(µ3)∑
i=1

(−2N + i)(µ3)i︸ ︷︷ ︸
c

+N

(
− 1− 1ds 6=d +

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
d((µr1)′)<i≤`((µr1)′)

(µr1)′i︸ ︷︷ ︸
Lemma 5.1.24

+
d((µc1)′)(d((µc1)′) + 1)

2
+

∑
(µc1)′i<i≤`((µc1)′)

(µc1)′i︸ ︷︷ ︸
Lemma 5.1.24

)

−

(
N2(N − 1)︸ ︷︷ ︸

c

+N

(
|µ1|+ |µrc1 |+ |µ2|+ |µrc2 |+ 2|µ3|︸︷︷︸

c

)

+ 2

`(µ3)∑
i=1

(−2N + i)(µ3)i︸ ︷︷ ︸
c

+N

(
d(µ′1)(d(µ′1)− 1)

2
+

∑
i:d(µ′1)+1≤i≤`(µ′1)

(µ1)′i +
d((µrc1 )′)(d((µrc1 )′)− 1)

2

+
∑

i:d((µrc1 )′)+1≤i≤`((µrc1 )′)

(µrc1 )′i

))
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= 3N − 1 +N

(
|µr1| − |µ1|+ |µc1| − |µrc1 |+ |µr2| − |µ2|+ |µc2| − |µrc2 |︸ ︷︷ ︸

Lemma 5.1.29

)

+N

(
− 1− 1ds 6=d +

(d((µr1)′)− 2)(d((µr1)′)− 1)

2
+

∑
d((µ′1)c)<i≤`((µ′1)c)

(µ′1)ci︸ ︷︷ ︸
Remark 5.2.5

+
d((µc1)′)(d((µc1)′) + 1)

2
+

∑
d((µ′1)r)<i≤`((µ′1)r)

(µ′1)ri︸ ︷︷ ︸
Remark 5.2.4

−d(µ′1)(d(µ′1)− 1)

2

−
∑

i:d(µ′1)<i≤`(µ′1)

(µ′1)i︸ ︷︷ ︸
Remark 5.2.4

−d((µrc1 )′)(d((µrc1 )′)− 1)

2

−
∑

i:d((µ′1)rc)<i≤`((µ′1)rc)

(µ′1)rci︸ ︷︷ ︸
Remark 5.2.5

)

= 3N − 1− 2N −N −N · 1d 6=ds

+N

(
d((µc1)′)(d((µc1)′) + 1)

2
− d(µ′1)(d(µ′1)− 1)

2
− er(µ′1)︸ ︷︷ ︸

Remark 5.2.6

+ erc(µ′1) +
(d((µr1)′)− 2)(d((µr1)′)− 1)

2
− d((µrc1 )′)(d((µrc1 )′)− 1)

2︸ ︷︷ ︸
Remark 5.2.7

)
= −1.

We have thus shown that the terms involving N simplify to −1.

Now we consider the terms that do not involve N . In A, we have

∑
1≤i≤d(µ1)

(i− 1)((µ′1)i − i) +
∑

d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)

+
∑

1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
+

∑
d(µ2)<i≤`(µ2)

((µ2)i − 1)
(µ2)i

2

+
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i) +
∑

d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i)
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+
∑

1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)
+

∑
d(µrc2 )<i≤`(µrc2 )

((µrc2 )i − 1)
(µrc2 )i

2
.

We remark that in Lemma 5.2.1, the first sum is over i such that 1 ≤ i ≤ (µ′1)i, but

this is equivalent to writing 1 ≤ i ≤ d(µ1). We have made similar replacements in

the other sums.

In C, we have

|µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3| (10)

+
∑

i:1≤i≤(µr1)′i+1

(i− 2)((µr1)′i − (i− 1)) +
∑

i:(µr1)′i+1<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

i:1≤i≤(µc2)i+1

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
i:(µc2)i+1<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2

+
∑

1≤i≤d(µc1)

i((µc1)′i − i− 1) +
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)

+
∑

1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
+

∑
d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
.

Like we did for A, we replaced i : 1 ≤ i ≤ (µc1)′i in the fifth sum with 1 ≤ i ≤ d(µc1),

and similarly for the sixth, seventh, and eighth sums.

Remark 5.2.8. As in Remark 5.1.4, we let ds(µ) be the maximum positive integer

i such that i ≤ µi + 1. Then we can write the first four sums in equation (10) as

∑
1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

ds((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
ds(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.

Recall from Lemma 5.1.4 that for any partition µ, either ds(µ) = d(µ) or

ds(µ) = d(µ) + 1. If ds((µ
r
1)′) = d((µr1)′) (resp. ds(µ

c
2) = d(µc2)), then we can replace
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every instance of ds((µ
r
1)′) (resp. ds(µ

c
2)) in the sums above with d(µr1) (resp. d(µc2)).

Otherwise, we can use the fact that by Lemma 5.1.5, ds(µ) = d(µ) + 1 if and only if

µd(µ)+1 = d(µ) to see that when ds((µ
r
1)′) = d((µr1)′) + 1,

∑
1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1))

=
∑

1≤i≤d((µr1)′)+1

(i− 2)((µr1)′i − (i− 1))

=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) + (d((µr1)′)− 1) (d((µr1)′)− d((µr1)′))

=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1))

+ (µr1)′d((µr1)′)+1((µr1)′d((µr1)′)+1 − (d((µr1)′) + 1− 1))

and when ds(µ
c
2) = d(µc2) + 1,

∑
1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)

=
∑

1≤i≤d(µc2)+1

(i− 2)

(
(µc2)i −

i− 1

2

)

=
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+ (d(µc2)− 1)

(
d(µc2)

2

)

=
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

(µc2)d(µc2)+1((µc2)d(µc2)+1 − 1)

2
.

Therefore, we can write

∑
1≤i≤ds((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

ds((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤ds(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
ds(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
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=
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
.

When we subtract the sums in A from the sums in C, we will pair each sum

in A with a sum in C. Many terms cancel, but this is not obvious and requires the

following lemmas.

Lemma 5.2.9.

∑
d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))−

∑
d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i) = 0

Proof. Recall from Lemma 5.1.24 that (µr1)′ = (µ′1)c. Then we can rewrite the

difference of sums as

∑
d((µ′1)c)<i≤`((µ′1)c)

(µ′1)ci((µ
′
1)ci − (i− 1))−

∑
d((µ′1)rc)<i≤`((µ′1)rc)

(µ′1)rci ((µ′1)rci − i).

There are two cases to consider. For readability, we put λ := µ′1. First assume that

d(λrc) = d(λc). Then by Lemma 5.1.33, we have

∑
d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λrc)<i≤`(λrc)

λrci (λrci − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)<i≤`(λrc)

λci+1(λci+1 − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)+1<i≤`(λrc)+1

λci(λ
c
i − (i− 1)) = 0.
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In the final step we used Corollary 5.1.35 and the fact that

λcd(λc)+1 = λcd(λrc)+1 = λcd(λ) = λd(λ) − 1 = d(λ)− 1 = d(λrc) = d(λc),

which follows from Lemma 5.1.17 and Remark 5.1.32. Next assume that d(λrc) =

d(λc)− 1. Then

∑
d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λrc)<i≤`(λrc)

λrci (λrci − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)−1<i≤`(λrc)

λci+1(λci+1 − i)

=
∑

d(λc)<i≤`(λc)

λci(λ
c
i − (i− 1))−

∑
d(λc)<i≤`(λrc)+1

λci(λ
c
i − (i− 1)) = 0.

Lemma 5.2.10.

∑
1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1))−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)

= −
∑

1≤i≤d(µrc1 )

(µr1)′i + 1− i

+


0 if (µ′1)d(µ1) = d(µ1)

(d(µr1)− 2)((µr1)′d(µr1) + 1− d(µr1)) otherwise

Proof. To prove the claim we begin similarly to Lemma 5.2.9, using the fact that

(µr1)′ = (µ′1)c. Letting λ = µ′1, we split into cases based on whether d(λrc) = d(λc),

or d(λrc) = d(λc)− 1, and apply Lemma 5.1.33. In the case where d(λrc) = d(λc),

∑
1≤i≤d(λc)

(i− 2)(λci − (i− 1))−
∑

1≤i≤d(λrc)

(i− 1)(λrci − i)
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=
∑

1≤i≤d(λc)

(i− 1)(λci − (i− 1))−
∑

1≤i≤d(λc)

(i− 1)(λci + 1− i)

−
∑

1≤i≤d(λc)

(λci − (i− 1))

= −
∑

1≤i≤d(λc)

(λci − (i− 1)).

The case where d(λrc) = d(λc)−1 is similar. Finally, we note that d(λrc) = d(λc)−1

if and only if λd(λ) > d(λ) by Remark 5.1.32.

Lemma 5.2.11.

∑
1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i<d(µ1)

((µ′1)i − i)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1))

−


d(µ1) if (µ′1)d(µ1)+1 = d(µ1)

0 otherwise

Proof. We use the fact that (µc1)′ = (µ′1)r, and then we split into cases based on

whether d((µ′1)r) = d(µ′1) or d((µ′1)r) = d(µ′1) − 1. If d((µ′1)r) = d(µ′1), then by

Lemma 5.1.9, we have

∑
1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i≤d(µ1)

i((µ′1)ri − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i<d(µ1)

i((µ′1)i − i) + d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1)

−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)

=
∑

1≤i<d(µ1)

((µ′1)i − i) + d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1)
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− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)).

By Lemma 5.1.13, since d((µ′1)r) = d(µ′1), (µ′1)d(µ1)+1 = d(µ′1), so

d(µ1)((µ′1)d(µ1)+1 − d(µ1)− 1) = −d(µ1).

The computation in the case where d((µ′1)r) = d(µ′1)− 1 is very similar.

Lemma 5.2.12.

∑
d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)−

∑
d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)

=


d(µ1) if (µ′1)d(µ1)+1 = d(µ1)

0 otherwise

Proof. We begin by using the fact that (µc1)′ = (µ′1)r. Then we split into cases

based on whether d((µ′1)r) = d(µ′1) or d((µ′1)r) = d(µ′1) − 1. To get the

final expression we make use of the fact that d((µ′1)r) = d(µ′1) if and only if

(µ′1)d(µ1)+1 = d(µ1).

Remark 5.2.13. By combining Lemmas 5.2.11 and 5.2.12, we get that the sums

involved result in

∑
1≤i<d(µ1)

((µ′1)i − i)− (d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1))
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in all cases. If we then include the sums from Lemma 5.2.10, we split into two

cases. If (µ′1)d(µ1) = d(µ′1), then by Lemma 5.1.17, we get

−(d(µ′1)− 1)((µ′1)d(µ1) − d(µ′1)) = 0.

If (µ′1)d(µ1) > d(µ′1), then by Remark 5.1.22, d(µr1) = d(µ1), and by Lemma 5.1.17,

we get

−(d(µ′1)− 1)((µ′1)d(µ1)−d(µ′1)) + (d(µr1)− 2)((µr1)′d(µr1) + 1−d(µr1)) = d(µ1)− (µ′1)d(µ1).

So in all cases, the sums from Lemmas 5.2.9, 5.2.10, 5.2.11, and 5.2.12 combine to

produce

d(µ1)− (µ′1)d(µ1).

Lemma 5.2.14.

∑
d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2

=


−d(µ2)(d(µ2)− 1)

2
if (µ2)d(µ2)+1 = d(µ2)

0 otherwise

Proof. We split into cases based on whether d(µr2) = d(µ2) or d(µr2) = d(µ2)− 1, and

then we use the fact that d(µr2) = d(µ2) if and only if (µ2)d(µ2)+1 = d(µ2).

Lemma 5.2.15.

∑
1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
−

∑
1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
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=
∑

1≤i≤d(µ2)−1

(µ2)i − (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)

+


d(µ2)(d(µ2)− 1)

2
if (µ2)d(µ2)+1 = d(µ2)

0 otherwise

Proof. As in the case of Lemma 5.2.14, we split into cases based on whether

d(µr2) = d(µ2) or d(µr2) = d(µ2) − 1. We omit the details as they are similar to

the details of other proofs in this section.

Lemma 5.2.16.

∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)

=


−

∑
1≤i≤d(µrc2 )

(µc2)i if (µ2)d(µ2) = d(µ2)

−
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
otherwise

Proof. If d(µrc2 ) = d(µc2)− 1, the difference of sums becomes

∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µrc2 )i −

i

2

)

−
∑

1≤i≤d(µc2)−1

(
(µrc2 )i −

i

2

)
.

Then, using Lemma 5.1.33, we get

∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µc2)i + 1− i

2

)

−
∑

1≤i≤d(µc2)−1

(
(µc2)i + 1− i

2

)
.
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We can write this as

∑
1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µc2)−1

(i− 2)

(
(µc2)i −

i− 1

2

)

−
∑

1≤i≤d(µc2)−1

i− 2

2
−

∑
1≤i≤d(µc2)−1

(
(µc2)i −

i− 2

2

)
.

So, by Remark 5.1.22 and Lemma 5.1.17, the final result is

−
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µc2)− 2)

(
(µc2)d(µc2) −

d(µc2)− 1

2

)

= −
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) − 1− d(µ2)− 1

2

)

= −
∑

1≤i≤d(µrc2 )

(µc2)i + (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
.

If instead d(µrc2 ) = d(µc2), the proof is similar.

Lemma 5.2.17.

∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2

=


(d(µ2)− 1)(d(µ2)− 2)

2
if (µ2)d(µ2) = d(µ2)

0 otherwise

Proof. The proof is similar to the proof of Lemma 5.2.10. We split into cases based

on whether d(µrc2 ) = d(µc2) or d(µrc2 ) = d(µc2)− 1.
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Remark 5.2.18. By combining Lemmas 5.2.14 and 5.2.15, we find that the sums

involved result in

∑
1≤i≤d(µ2)−1

(µ2)i − (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)

in all cases. By Lemma 5.1.17,

∑
1≤i≤d(µ2)−1

(µ2)i −
∑

1≤i≤d(µrc2 )

(µc2)i = d(µrc2 ).

So, when we combine the sums from Lemmas 5.2.14, 5.2.15, and 5.2.16, there are

two cases. If (µ2)d(µ2) = d(µ2), then we get

d(µrc2 )− (d(µ2)− 1)

(
d(µ2)

2

)
=

(d(µ2)− 1)(2− d(µ2))

2
.

Otherwise, we get

d(µrc2 )− (d(µ2)− 1)

(
(µ2)d(µ2) −

d(µ2)

2

)
+ (d(µ2)− 2)

(
(µ2)d(µ2) −

d(µ2) + 1

2

)
= d(µrc2 )− (µ2)d(µ2) + 1 = d(µ2)− (µ2)d(µ2).

So when we include the sums from Lemma 5.2.17, we get


0 if (µ2)d(µ2) = d(µ2)

d(µ2)− (µ2)d(µ2) otherwise.
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So in all cases, the sums from Lemmas 5.2.14, 5.2.15, 5.2.16, and 5.2.17 combine to

produce

d(µ2)− (µ2)d(µ2).

Now we subtract the terms in A that do not involve N from the terms in C

that do not involve N , and include the difference −1 of the terms involving N :

C − A

= −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|

+
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1)) +
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
+

∑
d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2

+
∑

1≤i≤d(µc1)

i((µc1)′i − i− 1) +
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)

+
∑

1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
+

∑
d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2

−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)−
∑

d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)

−
∑

1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2

−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)−
∑

d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i)

−
∑

1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2

= −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|

+
∑

d((µr1)′)<i≤`((µr1)′)

(µr1)′i((µ
r
1)′i − (i− 1))−

∑
d(µrc1 )<i≤`((µrc1 )′)

(µrc1 )′i((µ
rc
1 )′i − i)︸ ︷︷ ︸

Remark 5.2.13
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+
∑

1≤i≤d((µr1)′)

(i− 2)((µr1)′i − (i− 1))−
∑

1≤i≤d(µrc1 )

(i− 1)((µrc1 )′i − i)︸ ︷︷ ︸
Remark 5.2.13

+
∑

1≤i≤d(µc1)

i((µc1)′i − i− 1)−
∑

1≤i≤d(µ1)

(i− 1)((µ′1)i − i)︸ ︷︷ ︸
Remark 5.2.13

+
∑

d(µc1)<i≤`((µc1)′)

(µc1)′i((µ
c
1)′i − i− 1)−

∑
d(µ1)<i≤`(µ′1)

(µ′1)i((µ
′
1)i − i)︸ ︷︷ ︸

Remark 5.2.13

+
∑

d(µr2)<i≤`(µr2)

(µr2)i((µ
r
2)i − 1)

2
−

∑
d(µ2)<i≤`(µ2)

(µ2)i((µ2)i − 1)

2︸ ︷︷ ︸
Remark 5.2.18

+
∑

1≤i≤d(µr2)

i

(
(µr2)i −

i+ 1

2

)
−

∑
1≤i≤d(µ2)

(i− 1)

(
(µ2)i −

i

2

)
︸ ︷︷ ︸

Remark 5.2.18

+
∑

1≤i≤d(µc2)

(i− 2)

(
(µc2)i −

i− 1

2

)
−

∑
1≤i≤d(µrc2 )

(i− 1)

(
(µrc2 )i −

i

2

)
︸ ︷︷ ︸

Remark 5.2.18

+
∑

d(µc2)<i≤`(µc2)

(µc2)i((µ
c
2)i − 1)

2
−

∑
d(µrc2 )<i≤`(µrc2 )

(µrc2 )i((µ
rc
2 )i − 1)

2︸ ︷︷ ︸
Remark 5.2.18

= −1 + |µr1|+ |µc2| − |µ3| − |µc1| − |µr2|+ |µ3|

+ d(µ1)− (µ′1)d(µ1) + d(µ2)− (µ2)d(µ2)

= −1 + d(µ1)− (µ1)d(µ1) + d(µ2)− (µ′2)d(µ2) = −K.

In the last step we used the fact that |µr| − |µc| = µ′d(µ) − µd(µ) (see Remark 5.1.27).

5.3. PT Weights

In this section we compute the constants A, B, and C from equation (7)

in Section 4.5. To that end, in Section 5.3.1 we compute the edge-weights of the

baseµ, baseup, and basedown double-dimer configurations. As in previous sections,
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we assume N ≥ M . The remaining work is to compute C − A; this is done in

Section 5.3.2.

5.3.1. Edge-Weight of Base Double-Dimer Configuration

In this section we compute the edge-weights of the baseµ double-dimer

configuration and the baseup and basedown configurations. We prove our formula

for the baseµ configuration, but omit the proofs for the baseup and basedown

configurations because they are essentially the same, as the baseup and basedown

configurations only differ from baseµ configurations by shifts.

The edge-weight of the baseµ double-dimer configuration is given by the

following lemma.

Lemma 5.3.1. The edge-weight of the baseµ double-dimer configuration is qwbase(µ),

where

wbase(µ) =
N2(N − 1)

2
+

N−`(µ′1)−1∑
i=1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (i− 1)i

2

+
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i)

+
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)(N + (µ′1)i − i)

+

N−1−`(µ2)∑
i=1

(N + i− 1)(N − i− `(µ2))

+
∑

i:(µ2)i≥i≥1

((µ2)i +N)(−(µ2)i +N) +
(N − (µ2)i − 1)(N − (µ2)i)

2

+
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

+

`(µ3)∑
i=1

(N − i)(µ3)i.
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We start by showing that the formula holds for µ1 = µ2 = µ3 = ∅. While

this is not necessary to prove Lemma 5.3.1, this special case will make the proof of

Lemma 5.3.1 easier to understand.

Lemma 5.3.2. The edge-weight of the base∅,∅,∅ double-dimer configuration is

qwbase(∅,∅,∅), where

wbase(∅, ∅, ∅) =
N2(N − 1)

2
+

N−1∑
i=1

(N + i− 1)(N − i) +
N−1∑
i=1

(N − 1)N

2
− (i− 1)i

2
.

Proof. By Definition 4.4.23, the base∅,∅,∅ double-dimer configuration is

D(III,II∪III)(N) = D(∅,∅)(N), i.e., it corresponds to the AB configuration (∅,∅). So,

we have the tilings and double-dimer configuration shown in Figure 18 for N = 5:

FIGURE 18. The AB configuration (∅,∅), in the case where µ1 = µ2 = µ3 = ∅.
Left: The tiling corresponding to A. Right: The tiling corresponding to B. Center:
The corresponding double-dimer configuration.

Referring to Figure 18, we see that the only horizontal dimers from the B

configuration are in sector 3, and these horizontal dimers contribute weight

(q0)N(q1)N · · · (qN−1)N = qN
2(N−1)/2.
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The horizontal dimers from the A configuration in sector 2 contribute weight

(qN)N−1(qN+1)N−2 · · · (q2N−2)1 =
N−1∏
i=1

(qN+i−1)N−i.

The horizontal dimers from the A configuration in sector 1 contribute weight

(q · q2 · · · qN−1)(q2 · · · qN−1)(q3 · · · qN−1) · · · qN−1 =
N−1∏
i=1

q
(N−1)N

2
− (i−1)i

2 .

There are no horizontal dimers from the A configuration in sector 3.

Proof of Lemma 5.3.1. This proof has three parts. We first show that the

horizontal dimers in sector 1 have weight

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

(q(µ′1)iqN−i)N−(µ′1)i

·
∏

i:(µ′1)i<i≤`(µ′1)

(q(µ′1)iqN−i)N−i

=

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

q(N−(µ′1)i)(N+(µ′1)i−i)

·
∏

i:(µ′1)i<i≤`(µ′1)

q(N−i)(N+(µ′1)i−i).

Note that when `(µ′1) = 0, this formula agrees with the third term in Lemma 5.3.2.

We will next show that the horizontal dimers in sector 2 have weight

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

(q(µ2)i)N−(µ2)i

N−(µ2)i∏
j=1

qN+j−1


·

∏
i:(µ2)i<i≤`(µ2)

(
(q(µ2)i)N−i

N−i∏
j=1

qN+j−1

)
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=

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

q((µ2)i+N)(N−(µ2)i)q
(N−(µ2)i−1)(N−(µ2)i)

2

·
∏

i:(µ2)i<i≤`(µ2)

q((µ2)i+N)(N−i)q
(N−i−1)(N−i)

2 .

Again, when `(µ2) = 0, this formula agrees with the second term in Lemma 5.3.2.

Finally, we will show that the horizontal dimers in sector 3 have weight

qN
2(N−1)/2

`(µ3)∏
i=1

(qN−i)(µ3)i .

We remark that since the baseµ double-dimer configuration is D(III,II∪III)(N),

the horizontal dimers from MA(N) in sector i can be completely explained by the

partition µi. Also, as in the proof of Lemma 5.3.2, the only horizontal dimers from

MB(N) are in sector 3.

Sector 1. In the case where µ1 = ∅, we can partition the horizontal dimers from

MA(N) in sector 1 (see Figure 18) into N − 1 groups:

(1) The group of horizontal dimers that consists of the topmost horizontal dimer

in each column of hexagons in sector 1. This is a group of N − 1 dimers that

each have weight qN−1.

(2) The group of horizontal dimers that consists of the horizontal dimers directly

below the dimers in group 1. Since the leftmost dimer in group 1 does not

have a horizontal dimer directly below it, this is a group of N − 2 dimers that

each have weight qN−2.

(3) Etc.

In general, group i consists of the N − i horizontal dimers directly below the dimers

in group i − 1 (with the exception of the leftmost dimer in group i − 1, which
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does not have a horizontal dimer directly below it). The dimers in group i all have

weight qN−i.

Now that we have partitioned the dimers in this way, we are ready to discuss

the case where µ1 6= ∅. Consider (µ′1)1. When (µ′1)1 > 0 (compared to (µ′1)1 = 0),

the dimers in group 1 (i.e. the N − 1 dimers with weight qN−1) shift up (µ′1)1 units.

However, some of the dimers in group 1 shift outside H(N). Specifically, the ith

dimer from the leftmost dimer (so the leftmost dimer corresponds to i = 0) is still

in H(N) if and only if i ≤ N − (µ′1)1− 1. In total, there are N − (µ′1)1 dimers inside

H(N) after this shift and these dimers each have weight q(µ′1)1qN−1.

In general, the ith part of µ′1 affects the weight of group i. For i > `(µ′1),

the weight of group i is unaffected, and the product of all such weights is
N−`(µ′1)−1∏

i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2 . To determine the effect of the ith part of µ′1 on

the weight of group i, we break into cases. If (µ′1)i ≥ i, then as in the case where

i = 1, after the dimers in group i shift up, there are N − (µ′1)i dimers still in H(N),

each with weight q(µ′1)iqN−i. If (µ′1)i < i, then after the dimers in group i shift up,

there are N − i dimers still in H(N), each with weight q(µ′1)iqN−i. Therefore, the

total weight of the dimers in sector 1 is

N−`(µ′1)−1∏
i=1

q
(N−`(µ′1)−1)(N−`(µ′1))

2
− (i−1)i

2

∏
i:(µ′1)i≥i≥1

(q(µ′1)iqN−i)N−(µ′1)i

·
∏

i:(µ′1)i<i≤`(µ′1)

(q(µ′1)iqN−i)N−i.

Sector 2. As we did in sector 1, we partition the horizontal dimers from MA(N) in

sector 2 into N − 1 groups:
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(1) The group of horizontal dimers that consists of the topmost horizontal

dimer in each column. This is a group of N − 1 dimers with weights

qN , qN+1, . . . , q2N−2.

(2) The group of horizontal dimers that consists of the horizontal dimers directly

below the dimers in group 1. Since the rightmost dimer in group 1 does not

have a horizontal dimer directly below it, this is a group of N − 2 dimers with

weights qN , qN+1, . . . , q2N−3.

(3) Etc.

In general, group i consists of the N − i horizontal dimers directly below the dimers

in group i− 1 and these dimers have weights qN , qN+1, . . . , q2N−1−i.

As in sector 1, the ith part of µ2 affects the weight of group i, because the

dimers in group i shift up (µ2)i units. For i > `(µ2), the weight of group i is

unaffected, and the product of all such weights is
N−1−`(µ2)∏

i=1

(qN+i−1)N−i−`(µ2). To

determine the effect of the ith part of µ2 on the weight of group i, we break into

cases. If (µ2)i ≥ i, then the dimer in group i with weight qN+j is still in H(N) after

being shifted if and only if N + j + (µ2)i ≤ 2N − 1, that is, if and only if j ≤ N −

(µ2)i − 1. So after the dimers in group i are shifted, there are N − (µ2)i dimers still

in H(N), and these dimers have weights q(µ2)iqN , q(µ2)iqN+1, . . . , q(µ2)iq2N−1−(µ2)i . If

(µ2)i < i, then after the dimers in group i are shifted, there are N − i dimers still

in H(N), and these dimers also have weights q(µ2)iqN , q(µ2)iqN+1, . . . , q(µ2)iq2N−1−i.

Therefore, the total weight of the dimers in sector 2 is

N−1−`(µ2)∏
i=1

(qN+i−1)N−i−`(µ2)
∏

i:(µ2)i≥i≥1

(q(µ2)i)N−(µ2)i

N−(µ2)i∏
j=1

qN+j−1



143



·
∏

i:(µ2)i<i≤`(µ2)

(
(q(µ2)i)N−i

N−i∏
j=1

qN+j−1

)
.

Sector 3. Recall from the proof of Lemma 5.3.2 that the horizontal dimers from

MB(N) in sector 3 have weight q
N2(N−1)

2 . In the case where µ3 = ∅, there are no

horizontal dimers from MA(N) in sector 3. When µ3 6= ∅, there are (µ3)i horizontal

dimers from MA(N) in sector 3, each of weight qN−i. This gives us the desired

formula.

We conclude this section with expressions for the edge-weights of the baseup

and basedown configurations.

Lemma 5.3.3. The edge-weight of the baseup double-dimer configuration is qwup,

where

wup =
(N + 1)N(N − 1)

2
+N2

+

N−`((µr1)′)−1∑
i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2

+


0 if (µr1)′ = ∅∑
i:(µr1)′i≥i−1≥0

(N − (µr1)′i − 1)((µr1)′i +N − i+ 1) otherwise

+
∑

i:((µr1)′)i<i−1≤`((µr1)′)−1

(N − i)((µr1)′i +N − i+ 1)

+

N−1−`(µc2)∑
i=1

(N + i)(N − i− `(µc2))

+


0 if µc2 = ∅∑
i:(µc2)i≥i−1≥0

((µc2)i +N)(−(µc2)i +N − 1) +
(N−(µc2)i−1)(N−(µc2)i)

2 otherwise

+
∑

i:(µc2)i<i−1≤`(µc2)−1

(N − i)((µc2)i +N) +
(N − i+ 1)(N − i)

2
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+

`(µ3)∑
i=1

(N + 1− i)(µ3)i.

Lemma 5.3.4. The edge-weight of the basedown double-dimer configuration is

qwdown, where

wdown =
(N − 1)2(N − 2)

2
+

(N − `((µc1)′)− 2)(N − `((µc1)′)− 1)

2

+

N−`((µc1)′)−2∑
i=1

(N − `((µc1)′)− 1)(N − `((µc1)′)− 2)

2
− (i− 1)i

2

+
∑

i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)((µc1)′i +N − i− 1)

+
∑

i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)((µc1)′i +N − i− 1)

+

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2))

+
∑

i:(µr2)i>i+1>1

((µr2)i +N − 1)(−(µr2)i +N + 1) +
(N − (µr2)i + 1)(N − (µr2)i)

2

+
∑

i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

+

`(µ3)∑
i=1

(N − 1− i)(µ3)i.

5.3.2. Algebraic Simplification

Since A = wbase(µ1, µ2, µ3) + wbase(µ
rc
1 , µ

rc
2 , µ3) and B = wbase(µ

rc
1 , µ2, µ3) +

wbase(µ1, µ
rc
2 , µ3), we see that A = B. In addition, C = wup + wdown.

To compute C − A, we split the algebra into two pieces: we first simplify the

sums that have index set going from 1 to a fixed ending point that does not depend

on µ, and then we simplify the remaining summands.
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Remark 5.3.5. Since

`(µ3)∑
i=1

(N + 1− i)(µ3)i +

`(µ3)∑
i=1

(N − 1− i)(µ3)i − 2

`(µ3)∑
i=1

(N − i)(µ3)i = 0,

the terms involving µ3 cancel.

Lemma 5.3.6.

N−`((µr1)′)−1∑
i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2

−
N−`((µrc1 )′)−1∑

i=1

(N − `((µrc1 )′)− 1)(N − `((µrc1 )′))

2
− (i− 1)i

2

=


−(N − `((µ′1)c))(N − `((µ′1)c) + 1)

2
if d(µ′1) > 1 or (d(µ′1) = 1 and (µ′1)1 > 1)

N(N − 1)

2
if d(µ′1) = 1 and (µ′1)1 = 1

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. Recall that (µrc1 )′ = (µ′1)rc, and (µr1)′ = (µ′1)c. For convenience, we write

λ := µ′1. There are two cases to consider. The first is when `(λrc) = `(λc) − 1. This

occurs precisely when d(λ) > 1 or d(λ) = 1 and λ1 > 1. In this case, we can write

the second sum as

N−`(λc)∑
i=1

(N − `(λc))(N − `(λc) + 1)

2
− (i− 1)i

2
.

Now we see that

N−`(λc)−1∑
i=1

(N − `(λc) + 1)(N − `(λc))
2

−
N−`(λc)∑
i=1

(N − `(λc))(N − `(λc) + 1)

2

= −(N − `(λc))(N − `(λc) + 1)

2
.
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We have

N−`(λc)−1∑
i=1

−i(i+ 1)

2
−
N−`(λc)∑
i=1

−(i− 1)i

2
=

N−`(λc)−1∑
i=1

−i(i+ 1)

2
−
N−`(λc)−1∑

i=0

−i(i+ 1)

2
= 0.

So, if `(λrc) = `(λc) − 1, we have − (N−`(λc))(N−`(λc)+1)
2

. Otherwise, `(λrc) =

`(λc) = 0, and we are left with

N−1∑
i=1

(N + 1)N

2
− i(i+ 1)

2
−

N−1∑
i=1

(N − 1)N

2
− (i− 1)i

2
=
N(N − 1)

2
.

Lemma 5.3.7.

(N − `((µc1)′)− 2)(N − `((µc1)′)− 1)

2

+

N−`((µc1)′)−2∑
i=1

(N − `((µc1)′)− 1)(N − `((µc1)′)− 2)

2
− (i− 1)i

2

+

N−`((µr1)′)−1∑
i=1

(N − `((µr1)′) + 1)(N − `((µr1)′))

2
− i(i+ 1)

2

−
N−`(µ′1)−1∑

i=1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (i− 1)i

2

−
N−`((µrc1 )′)−1∑

i=1

(N − `((µrc1 )′)− 1)(N − `((µrc1 )′))

2
− (i− 1)i

2

=



0 if d(µ′1) > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
if d(µ′1) = 1 and (µ′1)1 > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
otherwise
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The terms in the lemma are from wdown, wup, wbase(µ1, µ2, µ3) and

wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. We use the fact that `((µc1)′) = `((µ′1)r) and then we apply Lemma 5.1.12 to

write the first two lines as

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

N−`((µ′1)−1∑
i=1

(N − `(µ′1))(N − `(µ′1)− 1)

2
− (i− 1)i

2
.

So, when we subtract the sum from the fourth line of the lemma statement, we are

left with

(N − `(µ′1)− 1)(N − `(µ′1))

2
.

Applying Lemma 5.3.6, if d(µ′1) > 1, then `((µ′1)c) = `(µ′1) + 1 (see

Remark 5.1.19), and so the contributions from all of the terms cancel. If d(µ′1) = 1

and (µ′1)1 > 1, then `((µ′1)c) = 1. So, we get

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
.

Finally, if d(µ′1) = 1 and (µ′1)1 = 1, we get

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
.

Lemma 5.3.8.

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2)) +

N−1−`(µc2)∑
i=1

(N + i)(N − i− `(µc2))

−
N−1−`(µ2)∑

i=1

(N + i− 1)(N − i− `(µ2))−
N−1−`(µrc2 )∑

i=1

(N + i− 1)(N − i− `(µrc2 ))
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=



`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1

(N − 1)(N − `(µ2)) +
N(N − 1)

2
otherwise

The terms in the lemma are from wdown, wup, wbase(µ1, µ2, µ3) and

wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. Using the fact that `(µr2) = `(µ2)− 1, we write

N−1−`(µr2)∑
i=1

(N + i− 2)(N − i− `(µr2)) =

N−`(µ2)∑
i=1

(N + i− 2)(N − i− `(µ2) + 1)

=

N−`(µ2)−1∑
i=0

(N + i− 1)(N − i− `(µ2)).

So when we subtract the third sum from the lemma statement, we get

(N − 1)(N − `(µ2)).

In the case where `(µrc2 ) = `(µc2)− 1, we can write

N−1−`(µrc2 )∑
i=1

(N + i− 1)(N − i− `(µrc2 )) =

N−`(µc2)∑
i=1

(N + i− 1)(N − i− `(µc2) + 1)

=

N−`(µc2)−1∑
i=0

(N + i)(N − i− `(µc2)).

So, in this case when we subtract this from the second sum in the lemma statement

we have

−N(N − `(µc2)).
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So, if `(µrc2 ) = `(µc2)− 1, the contribution from all four terms is

−N − `(µ2)N + `(µ2) + `(µc2)N.

There are two ways for `(µrc2 ) = `(µc2) − 1. We could have d(µ2) > 1, in which

case `(µc2) = `(µ2) + 1. Or we could have d(µ2) = 1 and (µ2)1 > 1, in which case

`(µc2) = 1. Therefore we have


`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1,

as desired.

In the case where `(µrc2 ) = `(µc2) = 0, when we subtract the fourth sum in the

lemma statement from the second sum we have

N−1−`(µc2)∑
i=1

(N + i)(N − i)−
N−1−`(µrc2 )∑

i=1

(N + i− 1)(N − i) =
N(N − 1)

2
.

So, if `(µrc2 ) = `(µc2) = 0, the contribution from all four terms is

(N − 1)(N − `(µ2)) +
N(N − 1)

2
.

Remark 5.3.9. Note that

(N − 1)2(N − 2)

2
+

(N + 1)N(N − 1)

2
+N2 − 2 · N

2(N − 1)

2
= 2N − 1.
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These terms are from wdown, wup, wbase(µ1, µ2, µ3) and wbase(µ
rc
1 , µ

rc
2 , µ3),

respectively.

We now proceed to simplifying the terms whose index sets depend on µ. As in

Section 5.2.2, our strategy is to pair summands that contribute to the constant C

with summands that contribute to the constant A.

Lemma 5.3.10.

∑
i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)(µc1)′i +N − i− 1)

−
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i)

= −(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1))

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. We use the fact that (µc1)′ = (µ′1)r and Lemma 5.1.16 to write

∑
i:(µc1)′i>i+1>1

(N − (µc1)′i + 1)(µc1)′i +N − i− 1)

−
∑

i:(µ′1)i≥i≥1

(N − (µ′1)i)(N + (µ′1)i − i)

=
∑

1≤i<d(µ′1)

(N − (µ′1)ri + 1)(µ′1)ri +N − i− 1)

−
∑

1≤i≤d(µ′1)

(N − (µ′1)i)(N + (µ′1)i − i)

=
∑

1≤i<d(µ′1)

(N − (µ′1)i)((µ
′
1)i +N − i)−

∑
1≤i≤d(µ′1)

(N − (µ′1)i)(N + (µ′1)i − i)

= −(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1)).
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Lemma 5.3.11.

∑
i:(µr2)i>i+1>1

((µr2)i +N − 1)(−(µr2)i +N + 1) +
(N − (µr2)i + 1)(N − (µr2)i)

2

−
∑

i:(µ2)i≥i≥1

((µ2)i +N)(−(µ2)i +N) +
(N − (µ2)i − 1)(N − (µ2)i)

2

= ((µ2)d(µ2))
2 −N2 −

(N − (µ2)d(µ2) − 1)(N − (µ2)d(µ2))

2

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. The details of the proof are omitted as it is similar to the proof of

Lemma 5.3.10. We use Lemma 5.1.16 and the fact that when i < d(µ2), (µr2)i =

(µ2)i + 1. Then all terms cancel except the i = d(µ2) term of the second sum.

Lemma 5.3.12.

∑
i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)((µc1)′i +N − i− 1)

−
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=


0 if `(µ′1) = d(µ′1)∑
d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i otherwise

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. We use the fact that (µc1)′ = (µ′1)r and Lemma 5.1.16. We get

∑
i:(µc1)′i≤i+1≤`((µc1)′)+1

(N − i)(µc1)′i +N − i− 1)

−
∑

i:(µ′1)i<i≤`(µ′1)

(N − i)((µ′1)i +N − i)
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=
∑

d(µ′1)≤i≤`((µ′1)r)

(N − i)(µ′1)ri +N − i− 1)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)≤i≤`(µ′1)−1

(N − i)((µ′1)i+1 +N − i− 1)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)<i≤`(µ′1)

(N − i+ 1)((µ′1)i +N − i)−
∑

d(µ′1)<i≤`(µ′1)

(N − i)((µ′1)i +N − i)

=
∑

d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i.

Note that we have used the fact that since i ≥ d(µ′1), (µ′1)ri = (µ′1)i+1. In the case

where `(µ′1) = d(µ′1), both sums are empty.

Lemma 5.3.13.

∑
i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

−
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=


0 if `(µ2) = d(µ2)∑
d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1) otherwise

The terms in the lemma are from wdown and wbase(µ1, µ2, µ3), respectively.

Proof. Similar to the proof of Lemma 5.3.12, we see that

∑
i:(µr2)i≤i+1≤`(µr2)+1

(N − i)((µr2)i +N − 1) +
(N − i− 1)(N − i)

2

−
∑

i:(µ2)i<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)≤i≤`(µr2)

(N − i)((µ2)i+1 +N − 1) +
(N − i− 1)(N − i)

2
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−
∑

d(µ2)<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)<i≤`(µ2)

(N − i+ 1)((µ2)i +N − 1) +
(N − i+ 1)(N − i)

2

−
∑

d(µ2)<i≤`(µ2)

(N − i)((µ2)i +N) +
(N − i− 1)(N − i)

2

=
∑

d(µ2)<i≤`(µ2)

(N − i+ 1)

(
(µ2)i +N − 1 +

N − i
2

)

−
∑

d(µ2)<i≤`(µ2)

(N − i)
(

(µ2)i +N +
N − i− 1

2

)
=

∑
d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1).

Lemma 5.3.14.
0 if (µr1)′ = ∅∑
i:(µr1)′i≥i−1≥0

(N − (µr1)′i − 1)((µr1)′i +N − i+ 1) otherwise

−
∑

i:(µrc1 )′i≥i≥1

(N − (µrc1 )′i)(N + (µrc1 )′i − i)

=


0 if (µr1)′ = ∅

(N − (µr1)′d(µ′1) − 1)((µr1)′d(µ′1) +N − d(µ′1) + 1) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. If (µr1)′ = ∅, then `(µr1) = 0, so by Remark 5.1.12, `(µ1) = 1, in which case

d(µ1) = 1 and we get

−
∑

1≤i<d(µ1)

(N − (µrc1 )′i)(N + (µrc1 )′i − i) = 0.
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Otherwise, using the fact that (µr1)′ = (µ′1)c, we write the first sum as

∑
i:(µ′1)ci≥i−1≥0

(N − (µ′1)ci − 1)((µ′1)ci +N − i+ 1).

Applying Lemma 5.1.23, we can write this sum as

∑
i:1≤i≤d(µ′1)

(N − (µ′1)ci − 1)((µ′1)ci +N − i+ 1).

Noting that (µrc1 )′ = (µ′1)rc and applying Lemma 5.1.33 to the second sum, we get

∑
i:(µrc1 )′i≥i≥1

(N − (µ′1)ci − 1)(N + (µ′1)ci + 1− i).

Since the second sum runs over i such that 1 ≤ i ≤ d(µrc1 ), and d(µrc1 ) = d(µ1) − 1,

this completes the proof.

Lemma 5.3.15.

∑
i:(µr1)′i<i−1≤`((µr1)′)−1

(N − i)((µr1)′i +N − i+ 1)

−
∑

i:(µrc1 )′i<i≤`((µ′1)rc)

(N − i)((µ′1)rci +N − i)

=


0 if `((µr1)′) ≤ d(µ1)∑
i:d(µ1)<i≤`((µ′1)c)

− ((µ′1)ci +N − i+ 1) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.
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Proof. We apply many of the same arguments as in Lemma 5.3.14. Namely, we use

the facts that (µr1)′ = (µ′1)c and Lemma 5.1.23 to write the first sum as

∑
i:d(µ1)<i≤`((µ′1)c)

(N − i)((µ′1)ci +N − i+ 1).

Now, applying Lemma 5.1.33, we have

∑
i:d(µrc1 )<i≤`((µ′1)rc)

(N − i)((µ′1)rci +N − i)

=
∑

i:d(µrc1 )<i≤`((µ′1)c)−1

(N − i)((µ′1)ci+1 +N − i)

=
∑

i:d(µrc1 )+1<i≤`((µ′1)c)

(N − i+ 1)((µ′1)ci +N − i+ 1).

So, subtracting this from the first sum, we get

∑
i:d(µ1)<i≤`((µ′1)c)

− ((µ′1)ci +N − i+ 1) .

Lemma 5.3.16.
0 if µc2 = ∅∑
i:(µc2)i≥i−1≥0

((µc2)i +N)(−(µc2)i +N − 1) +
(N−(µc2)i−1)(N−(µc2)i)

2
otherwise

−
∑

i:(µrc2 )i≥i≥1

((µrc2 )i +N)(−(µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2

=


0 if µc2 = ∅

(N − (µc2)d(µ2) − 1)

(
(µc2)d(µ2)

2
+

3N

2

)
otherwise

156



The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. If µc2 = ∅, then `(µc2) = 0, so by Remark 5.1.19, d(µ2) = 1 and (µ2)1 = 1, in

which case µrc2 = ∅ and we get

−
∑

i:(µrc2 )i≥i≥1

((µrc2 )i +N)(−(µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2
= 0.

Otherwise, using Lemma 5.1.33, we see that

∑
i:1≤i≤d(µrc2 )

(−(µrc2 )i +N)((µrc2 )i +N) +
(N − (µrc2 )i − 1)(N − (µrc2 )i)

2

=
∑

i:1≤i≤d(µrc2 )

(−(µc2)i − 1 +N)((µc2)i + 1 +N) +
(N − (µc2)i − 2)(N − (µc2)i − 1)

2
.

We see that

∑
i:1≤i≤d(µrc2 )

((µc2)i +N)(−(µc2)i +N − 1) +
(N − (µc2)i − 1)(N − (µc2)i)

2

−
∑

i:1≤i≤d(µrc2 )

(−(µc2)i − 1 +N)((µc2)i + 1 +N)

+
(N − (µc2)i − 2)(N − (µc2)i − 1)

2

=
∑

i:1≤i≤d(µrc2 )

(−(µc2)i +N − 1)((µc2)i +N − (µc2)i − 1−N)

+
(N − (µc2)i − 1)

2
(N − (µc2)i − (N − (µc2)i − 2)) = 0.

So, all that remains is the i = d(µ2) term of the first sum:

((µc2)d(µ2) +N)(−(µc2)d(µ2) +N − 1) +
(N − (µc2)d(µ2) − 1)(N − (µc2)d(µ2))

2

= (N − (µc2)d(µ2) − 1)

(
(µc2)d(µ2)

2
+

3N

2

)
.
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Lemma 5.3.17.

∑
i:(µc2)i<i−1≤`(µc2)−1

(N − i)((µc2)i +N) +
(N − i+ 1)(N − i)

2

−
∑

i:(µrc2 )i<i≤`(µrc2 )

(N − i)((µrc2 )i +N) +
(N − i− 1)(N − i)

2

=


0 if `(µc2) < d(µ2)∑
i:d(µ2)<i≤`(µc2)

−((µc2)i +N) otherwise

The terms in the lemma are from wup and wbase(µ
rc
1 , µ

rc
2 , µ3), respectively.

Proof. Applying Lemma 5.1.33, we have

∑
i:d(µrc2 )<i≤`(µrc2 )

(N − i)((µrc2 )i +N) +
(N − i− 1)(N − i)

2

=
∑

i:d(µrc2 )<i≤`(µc2)−1

(N − i)((µc2)i+1 +N) +
(N − i− 1)(N − i)

2

=
∑

i:d(µrc2 )+1<i≤`(µc2)

(N − i+ 1)((µc2)i +N) +
(N − i)(N − i+ 1)

2
.

So, subtracting this from the first sum, we’re left with

∑
i:d(µ2)<i≤`(µc2)

−((µc2)i +N).

If `(µc2) < d(µ2), both sums are empty.
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Now that we have paired all of the sums, we simplify the results from

Lemmas 5.3.10 through 5.3.17.

Lemma 5.3.18. The terms from Lemmas 5.3.10 and 5.3.14 cancel, unless (µr1)′ =

∅, in which case we are left with −N(N − 1).

Proof. Lemma 5.1.17 states that (µ′1)cd(µ′1) = (µ′1)d(µ′1) − 1. Applying this to

Lemma 5.3.14 completes the proof in the case that (µr1)′ 6= ∅. If (µr1)′ = ∅, then

µr1 = ∅, so `(µr1) = 0 and by Remark 5.1.12, `(µ1) = 1, implying that d(µ1) = 1 and

(µ′1)1 = 1. Then the term from Lemma 5.3.10 is

−(N − (µ′1)d(µ1))(N + (µ′1)d(µ1) − d(µ1)) = −(N − 1)(N + 1− 1) = −N(N − 1).

Lemma 5.3.19. The terms from Lemmas 5.3.16 and 5.3.11 sum to


0 if µc2 6= ∅

1−N2 − (N − 2)(N − 1)

2
if µc2 = ∅.

Proof. To get the expression when µc2 = ∅, we use the fact that if µc2 = ∅, then it

must be the case that (µ2)1 = 1.

Lemma 5.3.20. When we add the terms from Lemmas 5.3.12 and 5.3.15, we get


`(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
if d(µ′1) = 1

−(d(µ′1) +N − ((µ1)d(µ1) + 1)) otherwise.

Proof. First we deal with the case that d(µ′1) = 1. In this case, (µ′1)i ≤ 1 for all

i ≥ 2 and (µ′1)ci = 0 for all i ≥ 2. So, the contribution from Lemma 5.3.15 is 0 and
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the sum from Lemma 5.3.12 becomes

∑
d(µ′1)+1≤i≤`(µ′1)

(µ′1)i +N − i =

`(µ′1)∑
i=2

1 +N − i

= (`(µ′1)− 1)(1 +N)− `(µ′1)(`(µ′1) + 1)− 2

2

= `(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
.

In the case where d(µ′1) > 1, let id be the largest integer i with (µ′1)i ≥ d(µ′1).

Then applying Lemma 5.1.17, we see that the sum from Lemma 5.3.15 becomes

−
∑

i:d(µ1)<i≤`((µ′1)c)

((µ′1)ci +N − i+ 1)

= −
∑

i:d(µ1)+1≤i≤id

((µ′1)i +N − i)

− (d(µ′1) +N − (id + 1))−
∑

i:id+1<i≤`((µ′1)c)

((µ′1)i−1 +N − i+ 1)

= −
∑

i:d(µ1)+1≤i≤id

((µ′1)i +N − i)

−
∑

i:id<i≤`((µ′1)c)−1

((µ′1)i +N − i)− (d(µ′1) +N − (id + 1)).

Since the first two sums cancel with the sum from Lemma 5.3.12, we are left with

−(d(µ′1) +N − (id + 1)) = −(d(µ′1) +N − ((µ1)d(µ1) + 1))

by Remark 5.1.20.
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Lemma 5.3.21. When we combine the terms from Lemmas 5.3.13 and 5.3.17, we

get 
(`(µ2)− 1)N if d(µ2) = 1

−d(µ2)−N + 1− `(µ2) + (µ′2)d(µ2) otherwise.

Proof. As in the previous lemma, we begin with the case where d(µ2) = 1. In

this case, the sum from Lemma 5.3.17 is empty and the sum from Lemma 5.3.13

becomes

∑
i:d(µ2)+1≤i≤`(µ2)

((µ2)i +N − 1) =
∑

i:2≤i≤`(µ2)

N = (`(µ2)− 1)N.

In the case where d(µ2) > 1, let id be the largest integer with (µ2)i ≥ d(µ2).

Then we can write the sum from Lemma 5.3.17 as

−
∑

i:d(µ2)<i≤`(µc2)

((µc2)i +N)

= −
∑

i:d(µ2)+1≤i≤id

((µ2)i − 1 +N)− (d(µ2)− 1 +N)−
∑

i:id+1<i≤`(µ2)+1

((µ2)i−1 +N)

= −
∑

i:d(µ2)+1≤i≤id

((µ2)i +N − 1)−
∑

i:id<i≤`(µ2)

((µ2)i +N)− (d(µ2)− 1 +N).

Writing the sum from Lemma 5.3.13 as

∑
i:d(µ2)+1≤i≤`(µ2)

((µ2)i+N−1) =
∑

i:d(µ2)+1≤i≤id

((µ2)i+N−1)+
∑

i:id<i≤`(µ2)

((µ2)i+N−1),

we see that the first sum cancels with the first sum from Lemma 5.3.17. Combining

the second sum with the second sum from Lemma 5.3.17 we get −(`(µ2) − id) =

−(`(µ2)− (µ′2)d(µ2)).
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We conclude the computation of C − A by adding the results from Lemmas

5.3.7 and 5.3.8, Remark 5.3.9, and Lemmas 5.3.18 through 5.3.21.

Terms involving µ1 From Lemma 5.3.7 we have



0 if d(µ′1) > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
− (N − 1)N

2
if d(µ′1) = 1 and (µ′1)1 > 1

(N − `(µ′1)− 1)(N − `(µ′1))

2
+

(N − 1)N

2
otherwise.

From Lemmas 5.3.18 and 5.3.20 we have
−(d(µ′1) +N − ((µ1)d(µ1) + 1)) if d(µ′1) > 1

`(µ′1) +N`(µ′1)−N − `(µ′1)(`(µ′1) + 1)

2
if d(µ′1) = 1

+


0 if (µr1)′ 6= ∅

−N(N − 1) otherwise.

Note that, by Remark 5.1.12, (µr1)′ = ∅ if and only if µr1 = ∅ if and only if `(µr1) = 0

if and only if `(µ1) = 1 if and only if d(µ′1) = 1 and (µ′1)1 = 1.

So there are three cases to consider. If d(µ′1) > 1, we have

(µ1)d(µ1) − d(µ1)−N + 1.

When d(µ′1) = 1 and (µ′1)1 > 1, we get

`(µ′1)−N = (µ1)d(µ1) −N − d(µ1) + 1.
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When d(µ′1) = 1 and (µ′1)1 = 1, we get

`(µ′1)−N + (N − 1)N −N(N − 1) = `(µ′1)−N = (µ1)d(µ1) −N − d(µ1) + 1.

Terms involving µ2 Recall from Lemma 5.3.8 that the terms involving µ2 are



`(µ2) if d(µ2) > 1

−`(µ2)N + `(µ2) if d(µ2) = 1 and (µ2)1 > 1

(N − 1)(N − `(µ2)) +
N(N − 1)

2
otherwise.

The terms involving µ2 from Lemmas 5.3.19 and 5.3.21 are


−d(µ2)−N + 1− `(µ2) + (µ′2)d(µ2) if d(µ2) > 1

(`(µ2)− 1)N if d(µ2) = 1

+


0 if d(µ2) > 1 or (d(µ2) = 1 and (µ2)1 > 1)

1−N2 − (N − 2)(N − 1)

2
if d(µ2) = 1 and (µ2)1 = 1.

So there are three cases. If d(µ2) > 1, then we are left with

−d(µ2)−N + 1 + (µ′2)d(µ2).

If d(µ2) = 1 and (µ2)1 > 1 then we have

`(µ2)−N = −d(µ2) + 1 + (µ′2)d(µ2) −N.
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Finally, in the case where d(µ2) = 1 and (µ2)1 = 1, we have

`(µ2)−N = −d(µ2) + 1 + (µ′2)d(µ2) −N.

Combining all terms In all cases, we have

(µ1)d(µ1) − 2N − d(µ1) + 2− d(µ2) + (µ′2)d(µ2).

By Remark 5.3.9, we must add 2N − 1 to this sum, so we conclude that

C − A = (µ1)d(µ1) − d(µ1) + (µ′2)d(µ2) − d(µ2) + 1 = K.
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