
 

 

 

SENSITIVE PERIODS FOR SOCIAL DEVELOPMENT IN ADOLESCENCE: 

EXPLORING MECHANISMS RELATING EXPERIENCE AND TIMING  

TO NEURAL CHANGE  

 

 

 

 

 

by 

 

THERESA WENYUN CHENG 

 

 

 

 

 

A DISSERTATION 

 

Presented to the Department of Psychology  
and the Division of Graduate Studies of the University of Oregon 

in partial fulfillment of the requirements for the degree of  
Doctor of Philosophy 

 
September 2021 



 ii 

DISSERTATION APPROVAL PAGE 
 

STUDENT: Theresa Wenyun Cheng 

TITLE: Sensitive Periods for Social Development in Adolescence: Exploring 
Mechanisms Relating Experience and Timing to Neural Change 

This thesis has been accepted and approved in partial fulfillment of the requirements for 
the Doctor of Philosophy degree in the Department of Psychology by: 

Jennifer H. Pfeifer   Chair 
Nicholas B. Allen  Member 
Kathryn L. Mills  Member 
Joshua Snodgrass  Member 
 

and 

Andrew Karduna   Interim Vice Provost for Graduate Studies 

Original approval signatures are on file with the University of Oregon Division of 
Graduate Studies.  

Degree awarded September 2021. 

     

    

   

   

     

    

   

   

 

 

 

 



 iii 

 

               

    

         

 

 

 

 

 

 

© 2021 Theresa Wenyun Cheng 
This work is licensed under a Creative Commons 

Attribution-NonCommercial License (CC BY-NC). 
 

 

 

     

    

   

   

 

 

 

 

 



 iv 

ABSTRACT 

 

Theresa Wenyun Cheng 

Doctor of Philosophy 

Department of Psychology 

September 2021 

TITLE: Sensitive Periods for Social Development in Adolescence: Exploring 
Mechanisms Relating Experience and Timing to Neural Change 
 

Social relationships during adolescence have outsized effects on long-term 

physical and mental health. The theory that adolescence is a sensitive period suggests that 

adolescent experiences might profoundly shape development. Part of this dissertation 

reviewed empirical evidence in consideration of the theory that adolescence is a sensitive 

period for sociocultural development. Despite clearer knowledge about 

neurodevelopmental and social changes occurring during adolescence, we identified 

major remaining gaps in our understanding of how adolescent experiences may become 

neurally embedded in the long-term. 

 The current investigation used pediatric neuroimaging to evaluate evidence for 

such neural embedding within a frontostriatal circuit thought to undergo protracted 

development in adolescence (specifically, nucleus accumbens and ventromedial 

prefrontal cortex). We tested a long-term phasic modeling hypothesis that phasic, task-

evoked brain connectivity sculpts or influences more “intrinsic” or baseline measures of 

connectivity over long developmental times-scales. Adolescent self-disclosure was 

examined as a candidate process for long-term phasic modeling due to its ubiquity, 
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frequency, and significance in deepening peer relationships, as well as its ability to elicit 

neural signal within the target circuit. Analyses of data from a longitudinal community 

sample that recruited adolescent girls (initial N=174; initial ages 10.0-13.0 years, 18 mos. 

between waves) examined (1) developmental trajectories, (2) developmental 

mechanisms, and (3) behavioral outcomes associated with frontostriatal connectivity 

across states of task and rest.  

Results identified nonlinear puberty-related changes to functional connectivity 

during self-disclosure and found that this connectivity may be related to friendship 

quality. However, results did not identify developmental patterns consistent with long-

term phasic modeling hypothesis, an alternative (reverse) hypothesis, or with sensitive 

periods in frontostriatal connectivity. Instead, a developmental pattern consistent with the 

long-term phasic modeling hypothesis described connectivity between one of the nodes 

(the nucleus accumbens) and a control region within the primary visual cortex and further 

suggested that connectivity between these regions may be related to real world friendship 

behaviors. More work is needed to understand the robustness, specificity, and 

translational relevance of this effect. This research highlights a viable analysis strategy 

for examining developmental and sensitive period mechanisms with multiple waves of 

longitudinal data. 
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CHAPTER I 

REVISITING ADOLESCENCE AS A SENSITIVE PERIOD  

FOR SOCIOCULTURAL PROCESSING 

 

Preamble 

Social relationships during adolescence leave a profound mark on development, 

but from a mechanistic perspective, we do not know why. Sensitive period theories of 

adolescence provide a unifying and interdisciplinary framework across animal species 

and human cultures that may explain how social experiences become neurally embedded 

across development. The overarching aims of this dissertation were (a) to assess the state 

of the field of developmental cognitive neuroscience in understanding adolescence as a 

sensitive period for sociocultural development and (b) to interrogate neurodevelopmental 

patterns and mechanisms that might relate close adolescent friendships to outcomes 

including relationship quality and mental health. 

Chapter 1 of this thesis is a theoretical review intended to update and expand our 

understanding of adolescence as a sensitive period for sociocultural learning, and to 

further identify progress and gaps in this field of research. Following this review is a set 

of three interrelated and novel empirical analyses focused on frontostriatal connectivity 

during the transition into adolescence. This empirical work is integrated with Chapter 1 

because analyses are informed by and interpreted in light of developmental mechanisms 

of change, and included exploring sensitive period effects. This work aimed to 

characterize developmental trajectories of frontostriatal connectivity across states of task 

and rest (Chapter 2), to evaluate neurodevelopmental mechanisms of change within this 
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circuit, including an exploration of sensitive period mechanisms (Chapter 3), and to 

estimate effect sizes between functional connectivity and behavioral variables (Chapter 

4). Together, the theoretical and empirical work presented here (as discussed in Chapter 

5) speaks to the importance of understanding neurodevelopmental trajectories and 

explicitly testing mechanisms that may relate experience to developmental change.  

 

Introduction to the Review Paper 

In developmental cognitive neuroscience, many studies of adolescence are at least 

partly motivated by the notion that adolescence is a period of developmental opportunity. 

In an influential and expansive review, Blakemore and Mills (2014) specifically consider 

whether adolescence is a sensitive period for sociocultural processing. They integrate 

findings from psychology and neuroscience to suggest that adolescents are especially 

sensitive to social information in their environments, and yet conclude that evidence is 

still needed to establish this sensitive period, particularly in humans (Blakemore & Mills, 

2014, p. 191; reiterated in Fuhrmann et al., 2015). The present chapter updates and 

expands this prior review to identify both progress and gaps in the growing field of 

developmental cognitive neuroscience as it pertains to whether adolescence is a sensitive 

period for sociocultural processing. 

Defining Sensitive Periods 

A sensitive period is a limited window of time during development when the 

effect of experience on brain function is particularly strong and lasting (Hensch et al., 

2005). The mechanisms that facilitate sensitive periods are posited to support efficient 

learning of environmental information that is shared across members of a species 
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(Greenough et al., 1987). Sensitive periods do not preclude the possibility of further 

learning after this window of time closes. The related term “critical period” typically 

implies that learning is not possible afterward, and as this is not established for most 

social processes in adolescence, we use the term “sensitive periods” throughout.  

Sensitive period timing is flexible rather than fixed (Bavelier et al., 2010), leading 

some to argue that sensitive periods ought to be defined by unique learning mechanisms 

(or “experience-expectant” mechanisms) rather than specific developmental windows or 

ages (Gabard-Durnam & McLaughlin, 2020). However, there are at least two challenges 

to this view. First, unique and time-limited neurobiological mechanisms may not be 

needed to achieve sensitive period effects. This is because cumulative effects of the same 

general or basic learning mechanisms over time may result in early periods during which 

information from the environment has a disproportionately large impact (Arcaro et al., 

2019; Achille et al., preprint). Second, the distinction between experience-expectant 

mechanisms and ongoing learning mechanisms across the lifespan is not clear cut, 

especially across species (Frankenhuis, 2020). In some cases this distinction and its 

associated vocabulary may be a barrier to clarity and collaboration with researchers in 

related disciplines (Frankenhuis, 2020). For our purposes, I adopt a functional and 

pragmatic (rather than mechanism-based) definition of sensitive periods; under this view, 

establishing adolescence as a sensitive period for sociocultural learning requires evidence 

for impacts of adolescent experience on sociocultural development that are unique in 

their quality and extent. 

 In considering evidence for adolescence as a sensitive period, I suggest a need to 

distinguish between sensitive periods and periods of heightened sensitivity. Social 
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reorientation theory suggests that adolescence is a period in which the focus of social 

engagement shifts away from caregivers and toward peers and prospective romantic 

partners (Nelson et al., 2005; Nelson et al., 2016). Adolescents exhibit heightened 

sensitivity to peer rejection (Sebastian et al., 2010) and peer influence (e.g., O’Brien & 

Bierman, 1988; Gardner & Steinberg, 2005). Whereas studies of sensitive periods in 

sensory and language domains typically rely on concrete learning benchmarks to 

characterize learning, these benchmarks may sometimes be less sharply operationalized 

in the socioaffective domain. In some subdomains, this may have resulted in a somewhat 

greater focus in the literature on heightened sensitivity to the socioaffective stimuli 

themselves, particularly peer faces, behaviors, attitudes, etc., rather than what is learned 

from them, learned in order to decipher them, and/or generally how they are embedded in 

development over time. These and other developmental trends may provide evidence of a 

period of heightened sensitivity whereby certain stimuli demand attention and evoke 

affective reactivity/salience to a greater degree within a certain developmental period.  

Sensitive periods and heightened sensitivity conceptualizations of adolescence 

may be at times conflated because they are indeed highly complementary rather than 

orthogonal or antagonistic. Substantial literature suggests that salience enhances learning 

(Makintosh, 1975), for example, by guiding the manner in which children navigate the 

environment in order to support learning. In adolescence, heightened sensitivities to the 

social environment are thought to promote motivation, learning, and adaptation to social 

contexts (Forbes & Dahl 2010; Crone & Dahl, 2012). However, heightened sensitivities 

are not logically required to establish sensitive periods, as it is possible that information 

from the environment impacts development implicitly, and/or in the absence of overtly 
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heightened responses. For example, while the heightened relevance (bordering on 

obsession) of music preferences is a common trope of adolescence, one study found that 

music experienced during childhood (rather than preschool or adolescence) was preferred 

by adults during an acute stress manipulation and uniquely supported emotion regulation; 

this suggests a sensitive period for the role of auditory cues in safety learning about 

environments that occurs prior to adolescence (Gabard-Durnam et al., preprint). 

Additionally, some efforts to understand how heightened sensitivities promote learning 

using computational learning models have produced mixed results. For example, peaks in 

adolescent reward sensitivity do not tend to be associated with advantages in a variety of 

learning tasks, which instead tend to consistently identify better performance with age 

(Flournoy, 2018). 

Scope of the Present Review 

In this updated and expanded review, we examine and review literature on 

typically developing adolescents from the more recent part of the last decade. We cover 

domains discussed in the original review by Blakemore and Mills (2014), including 

trends in structural and functional neural development as they pertain to social cognition, 

as well as the impact of social experiences on adolescent development more broadly. 

Finding evidence for sensitive period theories of adolescence requires the identification 

of effects that are developmentally and socially-specific. To address developmental 

specificity, we prioritize studies that use large age ranges and/or longitudinal follow-up 

(Fuhrmann et al., 2015; Woodard & Pollak, 2020). Tying developmental changes to 

puberty suggests adolescent-specificity, and we expand upon the prior review by 

emphasizing potential roles of puberty in influencing adolescent social development. To 
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address social specificity, we consider that social development is not a single entity, but 

emerges from multiple and co-occurring processes with unique trajectories (like systems 

for emotional processing; Woodard & Pollack, 2020). While evidence of change in 

various non-social processes does not necessarily pose a direct challenge to sensitive 

period conceptualizations of adolescence, we note when studies make explicit 

comparisons to non-social conditions or control variables, as well as the degree to which 

studies rule out other confounds when making claims about uniquely social effects. 

Additionally, there is a need to clearly distinguish between heightened sensitivity and 

sensitive periods theories in the literature, both to better understand these phenomena 

separately and to understand how they might complement one another. Overall, we aim 

to identify progress and gaps in our understanding of adolescence as a sensitive period for 

sociocultural processing with an eye toward translational opportunities for supporting 

healthy adolescent development. 

 

Review of the Literature 

Structural Brain Development 

The brain undergoes significant structural remodeling during adolescence. While 

studies examining developmental trajectories of structural development do not directly 

test sensitive period theories, our understanding of how and when large scale neural 

changes occur contributes to our ability to consider whether sensitive periods are 

neurobiologically plausible, and by what mechanisms they might operate. In considering 

the precision with which we are able to understand developmental change, it is important 

to note that longitudinal and cross-sectional studies can reveal different patterns 
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(Pfefferbaum & Sullivan, 2015). While longitudinal studies can model inter- and intra-

individual variability, cross-sectional studies lack measures of within-person change and 

may need to exercise care to avoid such interpretations (Kraemer et al., 2000).  

Trends in Global and “Social Brain” Cortical Development 

Recent examinations of structural brain development have used team and open 

science approaches to replicate and challenge key findings demonstrating that the brain 

undergoes significant structural remodeling during adolescence. One team effort 

involving replication across four longitudinal samples identified the following major 

trends in average structural brain development: (1) whole-brain volume increases until 

ages 10-15 and then decreases into the early 20s, (2) cortical gray matter volume tends to 

be highest in childhood and decreases across adolescence, and (3) cortical white matter 

volume increases until mid-to-late adolescence (Mills et al., 2016; see also Aubert-

Broche et al., 2013; Lebel & Beaulieu, 2011; Wierenga et al. 2014). Among these, the 

decrease in cortical gray matter volume notably contrasts with earlier studies positing 

early adolescent peaks (Lenroot et al., 2007; Giedd et al., 1999) and is consistent with a 

large number of more recent longitudinal studies (reviewed in Ducharme et al., 2016). 

While these global trajectories suggest that adolescence is a period of significant 

ongoing neurodevelopment, it is relevant to this review to identify whether regions of the 

brain implicated in sociocultural processing undergo pronounced changes during 

adolescence. Social processes are very diverse and recruit an extensive set of regions 

sometimes referred to as the “social brain” (Alcalá-López, 2018). Using longitudinal 

data, Mills and colleagues (2014) identified changing trajectories of gray matter volume, 

cortical thickness, and surface area within a set of regions strongly implicated in 
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mentalizing and social cognition, including medial prefrontal cortex (mPFC; defined as 

medial Brodmann Area 10), temporoparietal junction (TPJ), posterior superior temporal 

sulcus, and the anterior temporal cortex. Gray matter volume and cortical thickness 

decreases in three of the four regions were replicated (anterior temporal cortex exhibited 

a distinct pattern and was not examined in replication analyses; Becht et al., 2020), 

providing confirmatory evidence of adolescence-specific neurodevelopmental changes 

within the social brain. 

Relating Structural Trajectories to Developmental Mechanisms of Plasticity 

Although structural trajectories of brain development are increasingly well-

characterized, metrics from current non-invasive human neuroimaging methods often 

cannot be attributed to a specific cellular process and may not capture critical cellular-

level changes during adolescence, such as synaptic plasticity (Paus et al., 2008; Mills & 

Tamnes, 2014). Methodological advancements have not fully resolved this difficulty, but 

diffusion tensor imaging and magnetization-transfer imaging provide additional clues 

about the brain’s white matter microstructure and degree of myelination, respectively. 

Two of the most common indices reported from diffusion tensor imaging studies are 

fractional anisotropy and mean diffusivity. Higher levels of fractional anisotropy may 

reflect increases in myelination but also capture changes in axonal size and/or packing, 

while higher mean diffusivity is thought to reflect lower axonal integrity (Beaulieu, 2002; 

Paus, 2010). Research using diffusion MRI has identified non-linear increases in 

fractional anisotropy and decreases in mean diffusivity across childhood and into 

adolescence, with tracts associated with fronto-temporal regions exhibiting the most 

protracted trajectories (Lebel et al., 2019). Finally, findings from magnetization-transfer 
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imaging suggest that reductions in cortical thickness across adolescence are driven by 

increases in intracortical myelination (Whitaker et al., 2016), a mechanism known for 

relating experience and phasic activity to cellular remodeling (Chang et al., 2016; Fields, 

2015). 

Puberty involves dramatic increases in hormone levels across the adrenal, 

gonadal, and growth axes, and pubertal hormones may be a significant driver of 

neurodevelopmental change. Like age, pubertal stage and testosterone levels tend to be 

associated with reduced gray matter volume in diverse regions across the cortex, and 

particularly across frontal and temporal lobes (although this may partly be because the 

prefrontal cortex is commonly the focus of studies; see Vijayakumar et al., 2018 for a 

systematic review). Beyond the cortex, gray matter volumes for some subcortical 

structures are accelerated in early or mid-puberty (Goddings et al., 2014) and are better 

explained by pubertal status as compared to age (Wierenga et al., 2018). In particular, 

converging evidence suggests that puberty is associated with sexually dimorphic changes 

in the amygdala (Goddings et al., 2014; Herting et al., 2014; Vijayakumar et al., 2018). 

While puberty has sometimes been more directly tied to heightened socio-affective 

sensitivities, its hormonal processes have been proposed to directly regulate both the 

opening and closing of sensitive periods during the transition to adolescence (Piekarski et 

al., 2017). With respect to understanding the influence of puberty on structural brain 

development, there remain a number of major challenges (notably, inconsistencies in 

pubertal modeling, particularly in models considering both age and puberty), as well as a 

limited number of longitudinal studies; these likely both contribute to inconsistencies in 

this literature (Herting & Sowell, 2017; Vijayakumar et al., 2018). 
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Summary 

Structural neuroimaging studies have identified changes in whole-brain volume, 

cortical gray/white matter volume, subcortical gray matter volume, white matter 

microstructure, and indirect measures of myelination during adolescence. Changes occur 

in regions and tracts supporting higher-level social cognitive and socio-affective 

processes, and an emerging area considers how some changes are related to pubertal 

development. Overall, studies of brain structure suggest that adolescence is a period of 

significant neural remodeling. While studies of this type typically cannot identify the 

specific cellular mechanisms driving these changes, they implicate mechanisms that may 

be sensitive to experience. Taken together, this contributes evidence toward the 

plausibility of developmentally specific neural changes occurring during adolescence.  

Animal Models of Social Isolation 

Animal research, largely carried out in social species of rodents, has identified 

potent and causal effects of social isolation occurring during animals’ juvenile and peri-

pubertal periods (Burke et al., 2017). A series of classic experiments by Einon and 

Morgan (1977) found that rats isolated during a period of peak social play (postnatal days 

25-45; a period that is analogous to early adolescence) exhibited greater anxiety-like 

behaviors. A subset of these effects were both irreversible by resocialization in adulthood 

and distinct from the effects of isolation during adulthood. Resocialization typically 

refers to returning isolated animals to group housing and experimentally identifies 

whether further experience at a later point in time can recover behavioral and neural 

changes due to social isolation (ascertaining the developmental specificity of isolation 

effects). Recent studies have found that isolating rodents during a post-weaning, pre-



 11 

adulthood period increases aggression (Toth et al., 2011), anxiety-like (Lukkes et al., 

2009a) behaviors, and preferences for drug and reward-related stimuli (Whitaker et al., 

2013; Walker et al., 2020) in a manner that is not fully ameliorated by resocialization 

during adulthood.  

Several studies have identified high quality, species-typical social experiences as 

“active ingredients” in ameliorating the effects of social isolation. A subset of behavioral 

changes resulting from social isolation did not develop if rodents who were otherwise 

housed in isolation received an hour of daily contact with a peer that engaged in social 

play during their “adolescence” (again from postnatal days 25-45; Einon et al., 1978). 

More recent work suggests that the quality of social experiences during resocialization 

influences the degree of rehabilitation following social isolation. Rodents that were 

socially isolated as juveniles and resocialized with other isolates saw fewer gains to 

myelin and mPFC activity than those resocialized with rodents that had been socially-

housed throughout development (Makinodian et al., 2017).  

Social isolation is thought to impact behavior via multiple mechanisms, including 

by altering dopaminergic (e.g., Fabricius et al., 2010; Yorgason et al., 2016) and 

serotonergic (e.g., Lukkes et al., 2009b) functioning within mesolimbic regions 

fundamentally impacting processing reward and value (the ventral tegmental area and 

nucleus accumbens), as well as decreased inhibitory activity within aspects of the 

amygdala, a key region in emotional and fear processing (Lukkes et al., 2012; for 

reviews, see Burke et al., 2017; Novick et al., 2018; Orben et al., 2020). Research has 

additionally identified altered prefrontal myelination, dendritic pruning, and 

oligodendrocyte functioning following isolation during juvenile and adolescent phases of 
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rodent development (Makinodan et al., 2012), with impacts on learning and goal-directed 

behaviors (Hinton et al., 2019).  

Summary 

The absence of species-typical social experience results in profound changes to 

behavior and neurobiology in animal models, with the bulk of studies examining rodents. 

Some studies have identified developmentally-specific effects during periods analogous 

to adolescence, but a wide range of isolation timings and durations are employed across 

this literature and often assess the effects of isolation across broader phases of 

development. Social experience via resocialization in adulthood can ameliorate some, but 

not all, effects of juvenile/adolescent isolation, and the quality of the social experiences 

and underlying plasticity may interact to support this amelioration following isolation. 

While mapping this work onto our understanding of human development is an ongoing 

challenge, this research provides insight into which behaviors and circuits may be 

impacted by social experiences in adolescent-like phases of development across species.  

Peer Influences on Adolescent Development 

Navigating and making sense of increasingly complex social environments among 

peers is an important aspect of adolescent development. As children get older, they spend 

more time with their peers, and one study of American children of European ancestry 

found that time with peers reaches a peak in adolescence (Lam et al., 2014). During this 

transition, youth also begin to characterize peer relationships as having greater 

importance; compared to preadolescents, older adolescents tend to attribute greater depth 

of meaning and value to peer groups and group identities (O’Brien & Bierman, 1988). 

Much research has sought to understand how peer interaction engages neural and 



 13 

cognitive systems during adolescence, and what implications this has for real world 

behaviors (especially those related to health risks). We touch upon this literature here, 

through the lenses of identifying evidence for heightened sensitivities and/or sensitive 

periods. 

Peer Susceptibilities 

The mere presence of peers has been found to elicit developmentally-unique 

effects in adolescents (largely in cross-sectional studies). Believing that they are being 

watched by a peer induces heightened feelings of autonomic arousal and embarrassment 

in adolescents (Somerville et al. 2013). The presence of peers tends not to impact (Smith 

et al., 2018) or can even improve (King et al., 2018)  “cold” cognitive control involving 

more emotionally neutral stimuli and outcomes. For example, peer observation and 

feedback during the Flanker task increased early adolescents’ effort (Barker et al., 2018) 

and improved task performance, with changes to medial frontal theta power and 

connectivity that were consistent with greater error monitoring and proactive control 

(Buzzell et al., preprint). However, the presence of peers can diminish “hot” cognitive 

control involving more affectively laden stimuli and outcomes (King et al., 2018). In one 

cross-sectional study, the presence of peers diminished inhibitory control (performance 

on the Go/No-Go task) in response to positive social cues in the context of potential 

monetary reward for adolescents (ages 13-17) as compared to young adults (ages 18-21) 

or adults (over 21; Breiner et al., 2018).  

Social contexts can powerfully modulate cognitive processes supporting learning 

and decision-making. Peer rejection, as compared to acceptance, can impact persistence 

on frustrating tasks and sensitivity to loss in a decision-making context (King et al., 
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2018). Compared to adults, adolescents experience stronger affective responses to 

negative social evaluations (Sebastian et al., 2010). Meta-analyses indicate that one 

region—the ventral striatum— is more reliably recruited in neuroimaging studies of 

children and/or adolescents than adults (Vijayakumar et al., 2017; developmental effect 

also seen in Cheng et al., 2020). The ventral striatum plays a role in affective processing 

(Knutson et al., 2000; Sescousse et al., 2013) and may facilitate emotion regulation 

(Wager et al., 2008) and specifically positive reappraisal (Doré et al., 2017) when faced 

with negative or aversive stimuli. In adolescents, ventral striatal responses to social 

stimuli have been associated with reduced peer susceptibility (Pfeifer et al., 2011). On the 

other hand, neural responses to social exclusion in regions associated with 

mentalizing/social cognition have been associated with greater risk-taking on subsequent 

laboratory tasks simulating driving behavior (Peake et al., 2013; Falk et al., 2014; 

Wasylyshyn et al., 2018). However, studies relating social exclusion to subsequent risk-

behaviors have typically examined adolescent-only samples, making it difficult to assess 

whether such phenomena are developmentally specific. 

Roles of Adolescent Social Motives and Pubertal Hormones in Organizing Behavior  

Although adolescents tend to conform to their peers’ perceptions of risk (Knoll et 

al., 2015; Knoll et al., 2017), it is not the case that peers exclusively drive adolescents 

toward impairment and risk. For example, studies have found that adolescents exhibit 

greater conformity to prosocial rather than antisocial attitudes espoused by peers (Do et 

al., 2020), as well as greater conformity to safe rather than risky peer choices compared 

to young adults on an economic decision-making task (they notably did not conform to 

computer-generated choices; Braams et al., 2019). These studies suggest that adolescents 
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adopt a wide range of both positive and negative behaviors and attitudes modeled by 

peers. It is also not the case that adolescents overwhelmingly or exclusively favor peers 

across contexts. In one study that employed a risk-taking task with emotional face 

stimuli, adolescents did not indiscriminately focus on peers over adults but were able to 

attend to social feedback in a strategic, goal-directed manner (McCormick et al., 2018). 

Furthermore, in a separate study that employed a card-based decision-making task, 

adolescents were more likely to make decisions in a manner that would result in greater 

simulated rewards for their parents over their peers (Guassi Moreira et al., 2018).  

One overarching theory focuses on understanding adolescents’ propensity for 

pursuing health-risking behaviors in terms of how such behaviors strategically align with 

their social motivations, including perceived social risks and benefits (Andrews et al., 

2020a; Blakemore, 2018; Ellis et al., 2012). In line with this theory, one study found that 

adolescents’ beliefs about the social desirability of health-risking behaviors impacted 

their anticipated involvement in such behaviors, especially for youth that had experienced 

peer victimization (Andrews et al., 2020b). Compared to young adults, adolescents 

demonstrate a greater willingness to exert physical effort in order to obtain social 

feedback, suggesting a motivation to learn about themselves from others in order to 

reduce uncertainty about the self (Bos et al,. 2021). These perspectives highlight how 

adolescents may be driven by self and/or socially-oriented motivations and perceptions in 

a manner that might rationally drive their behaviors.  

Adolescents’ shifting social motivations may be modulated by hormonal changes. 

Testosterone is related to motivation to learn about and seek social status (Eisenegger et 

al., 2011) and is associated with greater conformity to high-status behaviors across social 



 16 

contexts (Rowe et al., 2004). According to the dual hormone hypothesis (Mehta & 

Josephs, 2010), testosterone is more strongly associated with status-seeking behaviors 

when cortisol levels are low, but this research has largely been conducted in adults. 

Consistent with this theory, recent work in early adolescents found that those with high 

levels of testosterone and low levels of cortisol tended to exhibit the greatest conformity 

to prosocial behaviors espoused by peers (Duell et al., 2021). This study found that, when 

making pro-social decisions after viewing peer behavior, individuals high in testosterone 

and low in cortisol exhibited greater signal in a number of brain regions associated with 

prosocial decision-making (including posterior superior sulcus/TPJ, orbitofrontal cortex, 

insula, and caudate).  

Long-Term Influences of Loneliness and Social Connectedness in Adolescence 

One area of social relationships research that bears on sensitive period theories of 

adolescence is the degree to which such relationships have an outsized long-term impact. 

Some studies indeed find that social connectedness has a lasting influence during 

adolescence, with close friendship quality during this period being related to physical 

(Allen et al., 2015) and mental (Narr et al., 2019) health over a decade later. Loneliness, 

or perceptions of social isolation, tend to increase during adolescence (Qualter et al., 

2015) and may mediate the relationship between social connectedness and depressive 

symptoms for adolescents (Nangle et al., 2003; Witvliet et al., 2010). One three-year 

longitudinal study found that positive social support buffered against future depressive 

symptoms for adolescents with a history of childhood adversity (van Harmelen, et al., 

2016). However, there are conflicting findings as to whether supportive friendships lead 

to more resilient functioning (van Harmelen et al., 2017) or whether resilient functioning 
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and supportive friendships change together over time (van Harmelen et al., 2020; authors 

note that age differences across study samples might be related to this discrepancy). 

Adolescent friendship quality is related to individual differences in the structural 

development of the mPFC and TPJ, suggesting that neurodevelopmental trajectories 

within social cognitive regions exhibit changes relevant to the quality of social 

relationships across adolescence (Becht et al., 2020). 

Summary 

Adolescents respond uniquely to peers in a variety of ways, including, e.g., 

heightened autonomic arousal to the presence of peers, reduced cognitive control in 

affective decision-making contexts, and heightened sensitivity to peer rejection. It was 

not a goal of this article to comprehensively review advancements in the area of peer 

influence, and we highlight theories that adolescents’ social motivations and perceptions 

may strategically drive their choices and that increases in social motivation may be 

sensitive to changes in pubertal hormones. A few studies of peer susceptibilities used 

cross-sectional designs with wide age spans that point to developmentally-specific 

effects. Generally, this area has identified heightened sensitivity effects and has focused 

on predicting behavior in the short term (especially risk-taking). A greater empirical 

understanding of how such sensitivities support social learning and/or long-term 

outcomes might better inform our understanding of sensitive periods.  

Social Cognition 

Social cognition encompasses a vast number of subprocesses and subfields. This 

review selectively examines two major areas (theory of mind and face processing) with 

respect to how they relate to sensitive period theories of adolescence. 
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Theory of Mind 

Understanding associations between social experiences, neurodevelopment, and 

theory of mind may clarify debates about not only theory of mind development (Mahey et 

al., 2017), but also adolescent sensitive periods. Longitudinal research confirms previous 

cross-sectional findings that theory of mind tends to unfold in a particular sequence from 

preschool through middle childhood (Peterson & Wellman, 2018). Neuroimaging studies 

examining brain networks supporting theory of mind, including bilateral TPJ, precuneus, 

and areas of the mPFC, find evidence that these social brain regions are distinct in 

preschool aged children and exhibit protracted changes (specifically, stronger within-

network correlations and weaker between-network correlations) into adolescence 

(Richardson et al., 2018; replicated in Richardson, 2019). Additionally, cross-sectional 

lifespan research with large samples suggests that theory-of-mind performance on more 

challenging tasks does not reach ceiling until the 20s (Klindt et al., 2017). Previous 

findings that adults were better able to take the perspective of another individual into 

account for communicative purposes (compared to both children and adolescence) have 

been replicated in separate samples (Dumontheil et al., 2010; Symeonidou et al., 2016; 

Tamnes et al., 2018).  

Face Processing 

Face perception exhibits protracted development into adolescence (Fuhrmann et 

al., 2016; Rodger et al., 2015; Thomas et al., 2007). Recent research suggests that some 

of these advancements may be tied to pubertal development. Puberty is associated with a 

dip in the recognition of adult faces (across gender; Scherf et al., 2012) that is 

accompanied by an improved recognition of peer faces across adolescence (Picci & 
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Scherf, 2016). In addition to shifts in who is recognized, adolescence may be a period in 

which there are changes in what is recognized. For example, one study identified 

enhanced discrimination of facial expressions conveying complex social emotional states 

(sexual interest and contempt) but not basic emotional states (happiness, anger) with 

pubertal development (Motta-Mena & Scherf, 2017). 

The transition into adolescence may also be associated with the loss of plasticity 

in earlier-developing aspects of face perception (Pascalis, 2020). The classic “other-race” 

effect finds that children that have more experience with faces from their own race tend 

to better recognize those faces as compared to faces belonging to those from other races 

(Kelly et al., 2005). While this effect emerges early in infancy, one study suggests that it 

can be reversed with extended experience up until approximately 12 years of age 

(McKone et al., 2019), indicating the transition into adolescence as an endpoint, rather 

than a starting point, for this type of perceptual narrowing. 

Summary 

Research on social cognition in the area of theory-of-mind suggests ongoing and 

deepening specialization, with little evidence for abrupt developmental discontinuities 

during the transition to adolescence. Face processing studies suggest the possibility of an 

puberty-related transition from caregivers and toward understanding complex 

socioemotional expressions in peers, but adolescence may also be a period in which there 

is a loss of plasticity. Across both domains, the role of experience during this transition 

might be tested more explicitly to connect sensitive period theories. 
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Calibration to Social Environments 

Mathematical Modeling Approaches 

Mathematical modeling approaches that explore environmental pressures on 

sensitive period evolution may improve our understanding of what patterns of plasticity 

may be adaptive and theoretically more likely under certain conditions than others. This 

line of research considers that, from an evolutionary perspective, sensitive periods 

evolved because developmental systems with differing abilities to adapt to environmental 

change also differed in their evolutionary fitness (Frankenhuis & Fraley, 2017). One 

modeling study in this vein found that sensitivity to social information might increase 

“mid-ontogeny,” (i.e., in middle childhood or adolescence) because information with a 

greater likelihood to impact reproductive fitness may be more available and reliable in 

conveying information about mating value toward the ages of likely reproductive 

capacity (Frankenhuis & Walasek, 2020).  

Empirical Evidence for Calibration of Psychobiological Systems 

The pubertal stress recalibration hypothesis is one line of research that considers 

the possibility that psychobiological systems calibrate to the environment. This 

hypothesis suggests that the hypothalamic-pituitary adrenal (HPA) axis adapts to the 

environment during pubertal development (DePasquale et al., 2018). Recent work found 

that as children adopted following early-life institutionalization progress through puberty, 

their previously blunted cortisol stress reactivity is restored to patterns more typically 

seen in non-institutionalized youth (cross-sectional analysis in DePasquale et al., 2018; 

longitudinal analysis in Gunnar et al., 2019). A study employing a similar design found 

that as previously institutionalized children undergo adrenal development, they recover 
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hormone-coupling patterns (positive cortisol-DHEA coupling) that typically follow 

stressors in non-adopted youth (Howland et al., 2020).  

There is also evidence that the caregiving environment may sculpt the 

development of the HPA axis in non-adopted adolescents. This additional evidence is 

important because species-atypical caregiving may itself influence sensitive period 

timing and previously institutionalized youth may not be a representative population. One 

study found that parent-child synchrony in cortisol hormone levels extends into 

adolescence (Saxbe et al, 2014) and is moderated by the amount of time spent together 

(Papp et al., 2009). Another study of bicultural Mexican-American youth suggested that 

cultural orientation to either Mexican and/or Anglo cultures shape patterns of cortisol 

responsivity to acute stressors (Gonzales et al., 2018).  

Outside of the HPA axis and adolescent stress responses, caregiving and cultural 

environments may sculpt the development of cognitive systems more broadly. In one 

study of post-institutionalized youth, caregiving quality impacted reward processing, 

executive functioning, and psychopathology during adolescence (Colich et al., 2020). 

Importantly, the latter two effects of caregiving quality were stronger when assessed 

during adolescence (ages 12 and 16) than at age 8, which suggests an adolescent-specific 

effect.  

Acculturation following immigration might provide an important model for 

studying plasticity and sensitive periods (Qu et al., 2021). A previous study found that 

immigrants from Hong Kong to Canada exhibited greater acculturation at younger ages 

of immigration (Cheung et al., 2010), suggesting that childhood may be a sensitive period 

for acculturation; however, this finding was not replicated in a separate sample of 
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immigrants to the United States by the same research group (Chudek et al., 2015). There 

are few neuroscience studies of acculturation. One set of studies examined differences in 

gray matter volume between Asian-born East Asians residing in the United States who 

varied by whether they carried gene variants associated with greater sensitivity to cultural 

influences (allele variants of the dopamine-4 receptor gene). East Asians who carried 

these variants exhibited TPJ (Kitayama et al., 2020) and OFC (Yu et al., 2019) gray 

matter volumes that were more similar to Americans of European descent who had been 

raised in the United States. For the OFC only, East Asian participants’ OFC volumes only 

were related to the number of years spent in the United States (Yu et al., 2019). Although 

these studies did not specifically target adolescents, they recruited young adult East 

Asians that had spent less than a decade residing in the United States, making it possible 

that acculturation occurring during adolescence might explain the pattern of results 

(although this is a weak form of evidence for developmental specificity).  

Summary 

Mathematical modeling approaches suggest that it might be evolutionarily 

advantageous for adolescents to calibrate to their environments, and empirical studies 

point to specific psychobiological systems in which this might be the case. These 

empirical studies implicate the quality of the adolescent caregiving environment in 

biopsychosocial and cognitive development. Such studies have tended to use broad 

environmental indices such as, for example, the quality or context of caregiving, or length 

of time spent immersed in another culture. As these may be related to many aspects of the 

social environment, it may not be clear as to which aspects of the environment or culture 

are driving developmental change.  
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Discussion 

Here, we discuss how the studies reviewed contribute to our understanding of  

adolescence as a potential sensitive period for sociocultural learning. We address 

progress and gaps in terms of developmental and domain specificity, as well as in 

specifically relating experience to sociocultural development. 

Progress and Gaps in Understanding Developmental Specificity 

A majority of the studies reviewed were cross-sectional and/or used adolescent-

only samples. Although such work can be more or less consistent with sensitive period 

accounts of adolescence, it remains difficult to conclusively establish evidence for 

sensitive periods hypotheses without comparisons across wide age ranges of children, 

adolescents, and adults (Blakemore & Mills, 2014; Fuhrmann, Knoll, Blakemore, 2015).  

Despite this ongoing challenge, there have also been several promising 

developments in the field. For example, team science efforts involving large replication 

efforts with longitudinal samples across wide age ranges have paved the way toward 

deeper and more robust understandings of developmental trends (e.g., Mills et al., 2016; 

Tamnes et al., 2017). Targeted study designs with small to medium-sized samples 

optimized to capture pubertal processes in adolescence have also been informative. For 

example, face perception studies comparing children and adults to same-age adolescents 

early and late in their pubertal development strongly implicate puberty in perceptual 

specialization to peer versus adult faces (Picci & Scherf, 2016) and to understanding 

complex social emotional facial expressions (Motta-Mena & Scherf, 2017). This strategy 

circumvented common challenges in disentangling the effects of puberty and age 

(Herting & Sowell, 2017). The area of pubertal research also faces challenges pertaining 
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to interpreting effects across numerous physical and hormonal measures associated with 

puberty (see Barendse et al., preprint for an approach to resolving this difficulty). 

Beyond Heightened Sensitivities: Experience as a Driver of Developmental Change 

Relatively few studies specifically assess the role of experiences in driving 

change, which is a critical aspect of understanding sensitive periods. For example, as 

discussed above, contemporary research that rigorously characterizes adolescent-specific 

developmental trends has identified replicable patterns of global and regional changes in 

brain structure. While these studies suggest that adolescence is a period of significant 

neural remodeling, they do not identify how concurrent experience drives this change. 

Recent twin studies suggest that genetics explain sizable variation in measures of brain 

structure, including in the speed of changes in cortical thickness and grey matter density 

during adolescence (Brouwer et al., 2021), and in structural covariance indices in adults 

(reflecting correlations between structural metrics across the brain; Valk et al., 2021). 

Another study examining the spatial distribution of genetic profiles developed from post-

mortem tissue also found a substantial genetic contribution to patterns of structural 

development during adolescence (Whitaker et al., 2016). Early life experience is 

associated with changes in certain brain structures during adolescence (e.g., Hodel et al., 

2015), suggesting that cascading epigenetic, molecular, and circuit-level effects due to 

experiences earlier in life may causally impact adolescent structural brain development. 

However, a few studies have attributed regional patterns of gray matter density to 

experience in childhood (specifically, in the TPJ in development from 7-9 years of age; 

van der Meulen et al., 2020) and in early adolescence (Brouwer et al., 2015). Although 
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this example focuses on structural brain development, similar critiques apply to our 

understanding of functional neurodevelopment. 

However, evidence for sensitive periods does not require that all neural changes 

occurring during adolescence are driven by concurrent experiences. Relationships 

between genes, experience, and behavior over development are complex, particularly 

when considering that sensitive periods themselves may reflect the unfolding of genetic 

programs for acquiring experience. As just one example, a pair of studies reviewed 

earlier suggest that certain genetic variants heighten the influence of the cultural 

environment on structural brain development (Kitayama et al., 2020; Yu et al., 2019). As 

one way of resolving this tension, a translationally-relevant approach might strive to 

consider the degree to which experiences occurring during adolescence, relative to other 

factors, tend to drive neural changes in a manner that is relevant to specific aspects of 

cognition and/or behaviors for a target population and developmental context.  

Where’s the “Cultural” in “Sociocultural Processing”? 

One major limitation in our understanding of adolescence as a sensitive period for 

sociocultural processing has to do with the relative paucity of studies addressing culture. 

Notably, an estimated 99% of samples from publications in the field of adolescent 

developmental neuroscience are from Western countries, reflecting a serious blow to 

claims of representativeness (Qu et al., 2021) and quite possibly biasing estimates from 

the literature reviewed here. This reflects a broader issue whereby the majority of human 

psychology and neuroscience research has taken place among Western, educated, 

industrialized, rich and democratic (WEIRD) societies and samples (Henrich et al., 

2010). In short, it is not an understatement to say that discussions of the claim that  
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adolescence is a sensitive period for sociocultural learning within developmental 

cognitive neuroscience have often focused on the “social” and less so the “cultural.” A 

nascent area of developmental cultural neuroscience examines the processes whereby 

culture shapes adolescent neurodevelopment (for a review, see Qu et al., 2021), and 

several studies pertaining to culture and acculturation were integrated throughout, when 

appropriate. Questions regarding sensitive periods fundamentally reflect the interplay 

between the environment and developmental mechanisms, such that approaches 

integrating culture might be valuable for understanding not only generalization, but the 

nature of plasticity itself. Therefore, it is not only ethically critical but also scientifically 

rigorous to consider environmental variability from wider, cross-cultural and 

anthropological lenses. 

Conclusions 

This review identified areas of progress in understanding adolescence as a 

sensitive period for sociocultural processing, including more robust characterizations of 

behavioral and neurodevelopmental trends in some domains, as well as greater 

integration of such trends with study designs that might elucidate the roles of experience 

and timing in explaining developmental change. A number of weaknesses continue to 

impede theory-building, including a number of studies in the field that are not necessarily 

designed to assess whether effects are developmentally specific to adolescence, specific 

to the social domain, or driven by experience. Furthermore, while research identifying 

developmental trends of heightened sensitivities may suggest the plausibility of sensitive 

periods, there are ambiguities as to how heightened sensitivities specifically support the 
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development of sociocultural processing in a manner that is sensitive to developmental 

timing.  
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CHAPTER II 

DEVELOPMENTAL TRAJECTORIES OF FRONTOSTRIATAL CONNECTIVITY 

ACROSS TWO FUNCTIONAL STATES 

 

Introduction 

The quality of social relationships influences mortality to a degree comparable to 

well-established risk factors such as smoking, excessive alcohol consumption, and 

obesity (Holt-Lunstad et al., 2010). Given this comparability, it has been argued that 

improving social relationships should be a public health priority (Holt-Lunstad et al., 

2017). Social connections may be particularly important during adolescence, a phase of 

life that may be a sensitive period for sociocultural processing (Blakemore & Mills, 

2014). Consistent with this theory, aspects of close social relationships in adolescence are 

related to physical (Allen et al., 2015) and mental (Narr et al., 2019) health over a decade 

later, for reasons not entirely known. 

The research presented in these three empirical chapters is centrally engaged with 

the question as to how adolescent girls’ social relationships might become “neurally 

embedded” in a manner that influences their long-term brain functioning. In this first 

empirical chapter, we aimed to characterize developmental trajectories of functional 

connectivity within a neural circuit that may be sensitive to social experience in 

adolescence by age and pubertal development.  

Significance of the Nucleus Accumbens and Ventromedial Prefrontal Cortex 

We focus on developmental trajectories of functional connectivity between two 

critical nodes of a mesocorticolimbic circuit for reward, value, and incentive processing: 
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the nucleus accumbens (NAcc) and the ventromedial prefrontal cortex (vmPFC). 

Research in animal models suggests that these regions are among several that are 

sensitive to the effects of adolescent social experience. For example, isolating rats during 

their peri-adolescent period results in altered fear learning and increased dopaminergic 

receptor expression in both the NAcc and in medial prefrontal regions, relative to group-

reared rats (Han et al., 2012; Shao et al., 2009). Due to ethical issues, empirical research 

employing similarly extended manipulations of social isolation cannot be directly 

replicated in humans. However, observational studies can inform our understanding of 

how and when this circuitry develops, with longitudinal studies potentially informing our 

understanding of what drives its development. 

The NAcc is a ventral subregion within the ventral striatum that is functionally 

implicated in processing value and emotion across different states of valence. Studies 

suggest that the NAcc is engaged when processing rewards and in positive prediction 

error (see Secousse et al., 2013 for a meta-analysis), but also during the regulation of 

negative affect (Wager et al., 2008) and in prediction error associated with aversive 

learning (e.g., Delgado et al., 2008). Furthermore, meta-analyses suggest its involvement 

with emotion processing across valence (Lindquist et al., 2016). On the other hand, the 

vmPFC is a fairly large swath of cortex encompassing several anatomically-defined 

regions. It is broadly thought to process and integrate value in a manner that supports 

decision-making. Prior research has found that blood-oxygen-level-dependent (BOLD) 

signal from functional magnetic resonance imaging (fMRI) in both the NAcc and vmPFC 

track with reward value across social and non-social tasks (Haber & Behrens, 2014; 



 30 

Sescousse et al., 2013) and are elicited during learning from social exchanges (Jones et 

al., 2011).  

Functional coordination between the NAcc and vmPFC regions is anchored in 

both direct and indirect anatomical connections. In particular, the functionally-defined 

anterior vmPFC subregion examined in this study densely innervates a narrow portion of 

the ventral striatum including the shell of the NAcc (Haber et al., 2016). Because of its 

structural and functional connections with both limbic (e.g., NAcc) and higher-order 

social cognitive regions, the vmPFC is well-positioned to facilitate the integration of 

value-related and social cognitive information. The NAcc receives information via direct 

cortical projections from various subregions of the vmPFC, as well as other subcortical 

regions including the amygdala, hippocampus, and ventral tegmental area (Haber & 

Behrens, 2014). However, the NAcc also provides indirect feedback to ventral prefrontal 

regions via intermediaries (Haber & Knutson, 2010).  

Summary 

Changes to adolescents’ social motivations and social learning are central to 

conceptualizations of adolescence as a sensitive period for sociocultural processing. 

Evidence from animal models suggests that the NAcc and vmPFC are key nodes of 

mesocorticolimbic circuit that support social motivation and learning, and that these 

regions may be sensitive to social experience. In coordination with other brain regions, 

the vmPFC and NAcc support the integration of value-related processing and the 

processing of social information. Understanding patterns of developmental change in 

NAcc and vmPFC functioning are foundational to understanding adolescent socio-
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affective neurodevelopment and may shed insight into the nature of adolescent sensitive 

periods for social development. 

Frontostriatal Connectivity Two Ways: Resting-State and Task-Based Signal 

Resting-state and task-based functional connectivity are two different measures 

that address the degree of cross talk between neural regions. Both measures index the 

functional organization of the brain through scans taken via MRI, and are important 

complements to univariate measures of BOLD signal that primarily characterize 

functional localization/specialization rather than integration (Friston, 2011). Resting-state 

functional connectivity captures the structure of low-frequency correlations in BOLD 

signal during a scan with no stimulus presentation (Fox et al., 2005; Gordon et al., 2016; 

Greicius et al., 2003; Power et al., 2014; Spronk et al., 2018). In contrast, task-based 

functional connectivity assesses the coordination of different neural regions in a manner 

that is attuned to the nuances of task condition and context (Cisler et al., 2014). 

Intriguingly, while these two types of functional connectivity typically differ in both the 

timescales they operate on and in the mental states that they evoke, brain mapping often 

finds that they converge on the same regions spatially (Bolt et al., 2018). 

With regard to our circuit of interest, studies employing resting-state functional 

connectivity suggest that linear negative correlations during rest become stronger with 

both age and testosterone levels (Fareri et al., 2015; van Duijvenvoorde et al., 2014; Parr 

et al., preprint). Prior studies have not been conclusive in identifying whether task-based 

functional connectivity between the vmPFC and ventral striatum (of which the NAcc is a 

part of) is increasingly coordinated across adolescence; they have found increasing 

connectivity with age (Christakou et al., 2011; van den Bos et al., 2012), decreasing 
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connectivity with age (Parr et al., preprint), or no differences with age (van 

Duijvenvoorde et al., 2014). 

Summary 

Examining resting-state functional connectivity provides opportunities to consider 

how the NAcc and vmPFC change in their coordination of putatively intrinsic signal, 

while examining task-based functional connectivity provides opportunities to consider 

how these regions change in their coordination to facilitate self-disclosure. Task-based 

connectivity of this circuit has previously primarily been examined in learning and/or 

decision-making tasks. Considerations of the developmental trajectories of both types of 

functional connectivity are a contribution to the literature and lay the groundwork for 

understanding potential developmental mechanisms of change (see Chapter 3).  

Adolescent Self-Disclosure 

This study examines task-based functional connectivity while adolescents engage 

in decisions to self-disclose to a close (and ideally, best) friend. Self-disclosure is the 

sharing of personal thoughts and feelings, and reciprocity in self-disclosure plays a role in 

the formation and maintenance of close social bonds (as in the interpersonal process 

model; Reis & Shaver, 1988; Kanter et al., 2020). Studies using self-report measures 

suggest an increased tendency to self-disclosure to peers in early adolescence 

(Valkenburg et al., 2011). Changes in the targets of self-disclosure may reflect social 

reorientations toward peers and romantic partners (Vijayakumar & Pfeifer, 2020) that are 

characteristic of this developmental period (Nelson et al., 2005; Nelson et al., 2016).  

There are several parallels between the adolescent self-disclosure paradigm 

employed in this study and reward- or value-guided decision-making tasks in which 
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NAcc-vmPFC connectivity has previously been examined. First, both types of paradigms 

elicit value-related processes. Researchers have been able to quantify the intrinsic value 

of self-disclosure in adults by adapting monetary choice tasks (Tamir & Mitchell, 2012). 

Like adults, adolescents will, on average, forgo monetary incentives for opportunities to 

self-disclose to a close friend (Vijayakumar et al., 2020). Cross-sectional research with 

this paradigm suggests that the intrinsic value of self-disclosure is indeed in flux during 

adolescence, with mid-adolescents valuing opportunities to self-disclose to unfamiliar 

peers as compared to parents and friends (Mobasser et al., preprint).  

Prior research with this paradigm also suggests that self-disclosure decisions, like 

other reward- and value-guided decision-making tasks, elicit changes in univariate signal 

across the vmPFC and NAcc (Vijayakumar et al., 2020). Furthermore, neural signal 

within these regions was found to be sensitive to adolescents’ preferences to disclose on 

the task itself, as well as self-reported friendship quality and feelings of being supported. 

Adolescent self-disclosure also engages social cognitive regions, which may be because 

disclosure decisions involve weighing the value of hypothetical choices in complex social 

contexts, for example, against the risks of embarrassment, or in consideration of a 

friend’s beliefs.  

Summary  

Adolescent self-disclosure is a developmentally relevant process that, like other 

reward- and value-guided decision-making tasks, elicits signal in the NAcc and vmPFC. 

Empirical work suggests that behavioral and neural indices of self-disclosure during a 

laboratory task can capture the processing of value and social cognitive information in a 

manner that reflects tendencies toward intimacy and affiliation within close friendships. 
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Considering functional connectivity during this task captures vmPFC-NAcc coordination 

to support complex, affectively engaging, and ecologically meaningful social decision-

making in the context of a real-world friendship.  

Sex and/or Gender-Related Differences in Developmental Processes 

The present study solely recruited adolescent girls, as both sex and gender may 

influence relevant aspects of social and neurobiological maturation. With regard to 

relevant social behaviors, trajectories of increasing self-disclosure to peers tend to occur 

earlier in girls than in boys (Valkenburg et al., 2011), and adolescent girls' intrinsic 

valuation of self-disclosure tends to be higher than that of same-age boys (Mobasser et 

al., preprint). Associations between the value of self-disclosure to unfamiliar peers and 

self-reported engagement in health-risking behaviors differed by gender (with effects 

seen in boys only; Mobasser et al., preprint). Sex-related mechanisms may differentially 

drive relevant aspects of neurodevelopment, as structural measures of both nucleus 

accumbens volume (Herting et al., 2018) and the mPFC (Mills et al., 2014) show unique 

trajectories across adolescence by sex. However, pubertal sex hormones may also have 

similar effects across sex; a study by Fareri and colleagues (2015) found that levels of 

testosterone mediated negative associations between age and mPFC-ventral striatum 

functional connectivity across both males and females.  

By limiting our focus to adolescent girls, we increase our power to examine sex-

specific pubertal effects. Puberty is composed of multiple and distinct (yet temporally co-

occurring) hormonal processes—the adrenal, gonadal, and growth axes—that each propel 

specific changes in physical development. Puberty has been theorized to drive sex-

specific neurodevelopmental changes via both organizational (permanent changes to 
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neural structure) and activational (temporary changes in neural activity) effects (Sisk & 

Foster, 2004). Sex-specific changes related to the effects of gonadal hormones on 

prefrontal development (e.g., Piekarski et al., 2017; Schultz & Sisk, 2016) may impact 

vmPFC-NAcc connectivity. Measures of puberty may capture variability in maturation 

that is not detected by measures of chronological age, particularly early in adolescence.  

Summary 

While sex and gender are not strictly binary (Ainsworth, 2015), they reflect 

meaningful variation in the unfolding of neurodevelopment and social relationships in 

adolescence. To reduce sex and gender-related heterogeneity in social behaviors, 

neurodevelopment, hormones, and mental health problems (covered more extensively in 

Chapter 4), the present study targeted recruitment toward girls.  

Goals of the Current Analysis 

Changes to NAcc and vmPFC connectivity are proposed to support social 

learning during adolescence and may be sensitive to social experience. However, few 

studies have characterized changes to functional connectivity between the NAcc and 

vmPFC using longitudinal data and/or in consideration of aspects of maturation other 

than chronological age (to the best of our knowledge, the following four published 

studies have done one or both: Fareri et al., 2015; Porter et al., 2015; van Duijvenvoorde 

et al., 2014, van Duijvenvoorde et al., 2019). Presently, the field lacks a clear 

understanding of how both resting-state and task-based functional connectivity between 

the NAcc and vmPFC change across development as measured by age and pubertal 

development. Therefore, the current analyses use longitudinal data to characterize 

developmental trajectories of both resting-state and self-disclosure-elicited functional 



 36 

connectivity between the NAcc and a sub-region of the vmPFC in adolescent girls. As the 

vmPFC is a large area, we consider NAcc connectivity with a functionally-defined 

anterior subregion identified from meta-analyses as being elicited widely in task-based 

studies of social cognitive and socio-affective processes and in coordination with other 

“social brain” regions during rest (Alcalá-López et al., 2018; see next section).  

 

Methods 

Data used in these analyses were from the Transitions in Adolescent Girls Study.  

A complete description of sample details and study procedures can be found in a protocol 

paper (Barendse et al., 2020).  

Participants 

This study examined three time points of data (T1-T3) from an ongoing 

prospective longitudinal study of adolescents (initial ages 10.0-13.0 years, 18 mos. 

between time points). Study inclusion criteria at T1 were i) fluency in English, ii) no 

developmental disabilities (except attention disorders), iii) no diagnoses of psychotic 

disorders, iv) no MRI contraindications, and v) a lower age limit of 10.0 years and an 

upper age limit of 13.0 years at study entry. By including adolescents between 10-16 

years of age (i.e., covering all pubertal stages as well as the peak of pubertal change for 

females), this study was designed to support inferences about changes due to pubertal 

development. While recruitment targeted girls, 1.7% of sample identified as non-binary 

and was confirmed to have been assigned female at birth at baseline. Because of this, I 

use the term “adolescent(s)” throughout, except where referring to putatively sex or 

gender-specific processes. 
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The racial/ethnic distribution of the sample at T1 was 66.1% non-Hispanic/Latinx 

white, 8.6% white Hispanic/Latinx, 0.6% Asian and Hispanic/Latinx, 0.6% African-

American and Hispanic/Latinx, 2.9% not further specified Hispanic/Latinx, 0.6% 

American Indian/Alaskan Native, 0.6% Asian, 0.6% African American, and 19.5% 

multiracial. The sample is predominantly non-Hispanic white but also exhibits higher 

racial and ethnic diversity relative to the overall population of Lane County, Oregon. At 

T1, 1.7% of participating parents/guardians had less than high school education, 13.8% 

had completed high school or GED, 8.2% had done some college but without a degree, 

5.2% had completed trade, technical or vocational training, 18.4% had an associate's 

degree, 25.3% had a bachelor's degree, 23.0% had a master's, professional or doctoral 

degree, and 3.4% did not report their education level. 

 Recruitment 

Participants were largely recruited through letters distributed by schools, and 

letters were sent to families with children in grades 5 or 6 that were registered as female 

by the school in the greater Eugene and Springfield area of Lane County, Oregon, USA. 

We additionally recruited from secure databases of people who registered their interest in 

our lab’s or department’s research, recruitment flyers posted around the community or 

disseminated at community events, and through snow-balling efforts.  

Study Retention and Impact of Covid-19 

The second time point of the study had 93% retention. As a result of the covid-19 

pandemic, T3 data collection was suspended in March 2020 after the first 93 participants. 

Data collection resumed in November 2020, but only data from sessions prior to the 

suspension of data collection were included in these analyses. This was out of concern 
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that neurodevelopmental processes of interest might be sensitive to pandemic-related 

social deprivation and stress. 

Sample Size Across Time Points 

 The sample size of this analysis was determined by the parent grant of this study, 

which aimed to enroll 170 adolescents based on Monte Carlo simulations identifying an 

80% chance to detect standardized direct effects of >.235 and moderating effects of >.15 

with 10% attrition per wave. Data collection was terminated after slightly exceeding the 

original enrollment target due to budget and time constraints.  

Initially, 189 participants were recruited, but 7 failed to meet inclusion/exclusion 

criteria and 8 withdrew before completing assessments, leading to 174 participants at T1. 

Of these 174 participants, 10 elected not to participate in the MRI portion of the protocol. 

This left a total of 164 participants with processed MRI data at T1.  

At T2, 12 participants were withdrawn from the study (4 were unresponsive, 6 

elected to withdraw, and 2 indicated that they had moved away from the area), 17 

participants elected not to participate in the MRI portion of the study, and 1 participant 

elected not to participate in T2 but did not withdraw. Additionally, 2 participants’ MRI 

scans were excluded due to severe image quality issues (orthodontia-related artifacts). 

This left a total of 142 participants with processed MRI data at T2. 

At T3, 93 participants completed a second session prior to pausing data collection 

due to covid-19. Of these, 16 elected not to participate in the MRI portion of the protocol, 

and 1 elected not to participate in the MRI portion of the protocol after beginning the 

scan. This left a total of 76 participants with processed MRI data at T3.  
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Protocol 

Following phone screening for eligibility, participants were invited to the 

University of Oregon for two sessions spaced roughly 1 month apart. At the first session, 

a parent or guardian provided written informed consent, and children provided written 

assent. At this first session, participants completed a structured diagnostic interview, 

questionnaires, and received instructions for saliva sample collection at home. At the 

second session, participants completed an MRI scan, remaining questionnaires, a hair 

sample, a video task, and anthropometric measures.  

Measures 

Maturation 

Each participant’s chronological age at the time of the scan was calculated. To 

additionally assess pubertal development, participants completed the Pubertal 

Development Scale (Petersen et al., 1988), which consisted of text-based questions that 

assess height, body hair and skin changes, as well as breast development and menarche. 

Participants also indicated which of five line drawings best reflected their current 

development; line drawings were based on Tanner staging, with one rating for breast 

development, and a separate one for pubic development (Morris & Udry, 1980).  

Scores on the PDS were converted into a 1-5 rating that is intended to be more 

comparable with Tanner stages (as described in Shirtcliff et al., 2009) and then averaged 

with self-ratings from the line drawings, resulting in a composite pubertal development 

score ranging from 1 (prepubertal) to 5 (postpubertal). Analyses of developmental trends 

treated pubertal stage as an ordinal variable with five equally spaced levels; participants 
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were grouped into those whose composite scores were between 1-1.8 (approximate stage 

1), 1.8-2.6 (stage 2), 2.6-3.4 (stage 3), 3.4-4.2 (stage 4), and 4.2-5 (stage 5). 

Task-Based Functional Connectivity 

Self-Disclosure Task.  In each trial of the Self-Disclosure Task, adolescents were 

presented with either an intimate (e.g. “Sometimes I worry about kissing”) or superficial 

(e.g. “Sometimes I carry chapstick”) statement. Adolescents first reported whether or not 

the statement describes them. They next decided whether or not to share this information 

with a close friend chosen prior to the scan. They were encouraged to choose a best 

friend of the same sex and similar-age, when possible, but some chose to share with a 

parent, sibling, partner, or opposite-sex friend. The “keep private” or “share with friend” 

options were displayed with two to four coins worth one cent ($0.01) each. Participants 

complete 82 trials in two runs. Task presentation was optimized to maximize contrast 

detection between statement depth (intimate vs. superficial) and disclosure value. The 

self-evaluative phase lasted 4.5 s and was separated from the disclosure phase by 0.02–

0.70 s (jittered). Trials were separated by presentation of a blank screen of variable length 

(1-15 s). In total, each of the two runs lasted 8 minutes.  

To improve the task’s ecological validity, participants agreed beforehand to share 

one of the responses with their chosen friend in real life. Following the MRI scan, they 

were presented four statement options (a randomly chosen subset of items including both 

superficial and intimate items) from among the statements they chose to share within the 

task, and were asked to disclose one of the statements of their choice. Participants were 

also informed that they would receive the sum of all coins from their selections, and 

received up to a few extra dollars for completing this task. (For more details about this  
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Figure 2.1 

Self Disclosure Task Paradigm 

 

Note. Figure reproduced from publications by Barendse and colleagues (2020) and 
Vijayakumar and colleagues (2020). 

 

task, see Vijayakumar et al., 2020). 

Data Acquisition. Data were acquired on a 3T Siemens Skyra MRI scanner at the 

Lewis Center for Neuroimaging at the University of Oregon. High-resolution T1-

weighted structural images were collected with the MP-RAGE sequence (TE = 3.41 ms, 

TR = 2500 ms, flip angle = 7°, 1.0 mm slice thickness, FOV = 256 mm, 176 slices, 

duration = 5:59 min:sec). Two self-disclosure task functional runs of T2*-weighted 

BOLD-EPI images were acquired with a gradient echo sequence (TE = 25 ms, TR = 2000 

ms, flip angle = 90°, 2.0 mm slice thickness, FOV = 208mm, 72 slices, multiband 

acceleration factor = 3, in-plane factor = 2, duration = 2 x 8 mins). To correct for local 
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magnetic field inhomogeneities, a field map was also collected (TE = 4.37 ms, TR = 

639.0 ms, flip angle = 60°, 2.0 mm slice thickness, FOV = 208 mm, 72 slices). 

Data Pre-processing. To facilitate reproducibility, both task and resting-state 

data were organized into the Brain Imaging Data Structure (BIDS; 

http://bids.neuroimaging.io/), an emerging standard that facilitates the use of fully-

contained analysis pipelines called BIDS Apps (Gorgolewski et al., 2017). Data were 

processed using the fmriprep BIDS App (v20.2.1; 

https://github.com/poldracklab/fmriprep). The authors of fMRIPrep strongly recommend 

the verbatim use of the following language to describe the pre-processing pipeline 

(https://fmriprep.org/en/latest/citing.html): 

 

Results included in this manuscript come from preprocessing performed using 

FMRIPREP version latest (Esteban et al., 2018; Esteban et al., 2020, 

RRID:SCR_016216), a Nipype (Gorgolewski et al., 2011; Gorgolewski et al., 

2017, RRID:SCR_002502) based tool. Each T1w (T1-weighted) volume was 

corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 

(Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 

(using the OASIS template). Brain surfaces were reconstructed using recon-all 

from FreeSurfer v6.0.1 (Dalet et al., 1999;  RRID:SCR_001847), and the brain 

mask estimated previously was refined with a custom variation of the method to 

reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical 

gray-matter of Mindboggle (Klein et al., 2017; RRID:SCR_002438). Spatial 

normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 
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(Fonov et al., 2009; RRID:SCR_008796) was performed through nonlinear 

registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008; 

RRID:SCR_004757), using brain-extracted versions of both T1w volume and 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 

(WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

fast (Zhang et al., 2001) (FSL v5.0.9, RRID:SCR_002823). 

Functional data was motion corrected using mcflirt (FSL v5.0.9; Jenkinson et al, 

2002). Distortion correction was performed using an implementation of the 

TOPUP technique (Andersson, Skare, Ashburner, 2003) using 3dQwarp (AFNI 

v16.2.07 (Cox, 1996). This was followed by co-registration to the corresponding 

T1w using boundary-based registration (Greve et al., 2009) with six degrees of 

freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting transformations, 

field distortion correcting warp, BOLD-to-T1w transformation and T1w-to-

template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor (Behzadi et al., 

2007). Principal components were estimated for the two CompCor variants: 

temporal (tCompCor) and anatomical (aCompCor). A mask to exclude signal with 

cortical origin was obtained by eroding the brain mask, ensuring it only contained 

subcortical structures. Six tCompCor components were then calculated including 

only the top 5% variable voxels within that subcortical mask. For aCompCor, six 

components were calculated within the intersection of the subcortical mask and 

the union of CSF and WM masks calculated in T1w space, after their projection 
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to the native space of each functional run. Framewise displacement (Power et al., 

2013) was calculated for each functional run using the implementation of Nipype. 

Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014; 

RRID:SCR_001362), principally within the BOLD-processing workflow. For 

more details of the pipeline see 

https://fmriprep.readthedocs.io/en/latest/workflows.html. 

 Longitudinal images were processed separately within each time point, and 

pipeline outputs used in subsequent analyses had been normalized to the non-linear, 

asymmetrical MNI 152 2009 atlas (MNI152NLin2009cAsym).  

 Beta-Series Analysis. Task data that had been normalized to the MNI atlas were 

further smoothed using a 2 mm Gaussian kernel in Statistical Parametric Mapping 

software (SPM12). A fairly small smoothing kernel was used because results averaged 

across voxels within regions. We then used beta-series correlation methods to obtain 

estimates of task-based functional connectivity. For these analyses, each trial of the Self-

Disclosure Task (collapsed across the self-evaluation and disclosure phases) was 

convolved with a hemodynamic response function and modeled as a separate regressor.  

First-Level Models. Models also included regressors for four motion parameters 

(Euclidean distance/rotation and their first derivatives), as well as a regressor that flagged 

volumes for extreme motion (“trash volumes”, based on motion estimates and signal 

intensity; Cosme, Flournoy, & Vijayakumar, 2018). Runs with greater than 20% of 

volumes coded as trash were excluded from analyses (T1: 33 runs; T2 18 runs, T3 6 

runs). Runs with 15-20% of trash volumes (T1: 15 runs; T2: 6 runs, T3: 1 run) were 

visually inspected and trash volumes were manually identified. Following manual 
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inspection, if the percentage of trash volumes exceeded 20%, then the run was excluded 

(T1: 2 runs; T2: 1 run; T3: no runs); otherwise, the run was included and regressors for 

manually identified trash volumes were used in place of the automated ones. This 

followed procedures in Vijayakumar et al., 2020 with one major difference: here, 

thresholds and manual quality assessment were per run rather than per participant, as this 

was a trial-level analysis where participants with only a single run of available data were 

still included.  

Regions-of-Interest and Control Regions. For each trial, a spatially averaged 

beta-estimate was extracted for both the vmPFC and NAcc (Figure 2). The vmPFC was 

defined by a cluster from a meta-analysis of the social brain network identified in this 

meta-analysis was constrained to be a maximum of 200 contiguous voxels 

(https://neurovault.org/images/45339/) (Alcalá-Lopez et al., 2018). This constraint 

resulted in a small, irregular shape that was more narrow at the midline and extended 

bilaterally, yet had spatial discontinuities. Using AFNI 3dROIMaker, this region was 

inflated/padded by two voxels to maintain the overall structure of the region-of-interest 

while increasing its size and improving its continuity. The bilateral anatomical NAcc 

region-of-interest was defined using the Harvard-Oxford probabilistic atlas (set to a 75% 

probability threshold; this region was also used in Op de Macks et al., 2018).  

The left primary auditory cortex and visual cortex were selected as control 

regions, reflecting basic sensory processes that are (visual system) and are not (auditory 

system) explicitly engaged in the task; both sensory systems are thought to have largely 

reached developmental maturity. The auditory region was a sphere with a 4 mm radius  
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Figure 2.2  

Defining Regions Within Connection of Interest and Control Connections  

 

Note. Panel A and B depict sagittal (x = -10) and coronal (y = 11) views of the NAcc 
region-of-interest (in purple). Panel C depicts the vmPFC (in red) region-of-interest and a 
control region in the primary visual cortex (blue; x = -2). Panel D depicts a control region 
in the primary auditory cortex (in green; x = -56).  
 

around the MNI coordinates -56, -16, 0, and the visual region was a sphere with the same 

dimensions around the coordinates -4, -88, 4. These coordinates were visually identified 

as being among peak coordinates resulting from association tests across the literature of 

the terms “primary auditory” and “primary visual” (NeuroSynth; https://neurosynth.org/). 

Calculating Beta-Series Connectivity Estimates. Trials were excluded if 

averaged first-level beta-parameter estimates exceeded the mean +/- 3 standard deviations 

for either of the two regions forming the connection-of-interest (the vmPFC or the NAcc) 

across runs. On average, 1.2 trials (SD = 1.1; range = 0-5 volumes) were excluded per 
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participant, per time point. Next, averaged beta-parameters for the vmPFC were regressed 

on averaged beta-parameters for the NAcc in separate models to obtain second-level beta-

series connectivity estimates. This procedure was repeated to obtain estimates of NAcc 

connectivity with the primary auditory and primary visual control regions. 

Resting State Functional Connectivity 

Data Acquisition.  In addition to the scans described above, participants 

completed a resting-state scan. Prior to this scan, they were instructed to keep their eyes 

closed while a fixation cross was displayed on the screen. Additionally, two resting-state 

functional runs of T2*-weighted BOLD-EPI images were acquired with a gradient echo 

sequence (TE = 32 ms, TR=780 ms, flip angle = 55°, 2.5 mm slice thickness, FOV = 210 

mm, 60 slices, multiband acceleration factor = 6, duration = 2 x 5:16 min:sec). The 

number of volumes per run collected for the resting-state scan was increased from 270 

(duration = 2 x 3.51 min:sec) to 395 late in T1/early in T2 data collection (August 2017) 

to increase the likelihood of obtaining sufficient high-quality resting-state data.  

Data Pre-Processing. Data were processed as described above using fMRIPrep 

(v. 20.2.1). Only participants with >5 minutes of low-motion data (defined by a 

framewise displacement < 0.2 mm) were included in analyses. This pre-registered criteria 

sought to balance considerations that (a) resting-state functional connectivity estimates 

become more reliable with increasing scan length (Birn et al., 2013), and (b) that 

requiring too high of a threshold would increase the amount of missing data.  

Data were additionally denoised using an adapted version of the 36p-spkreg 

pipeline (Satterthwaite et al., 2013) using xcpEngine (Ciric et al., 2019). This pipeline 

reduces correlations between subject motion and edge strength (an index from graph 
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theory suggesting connectivity with a greater number of other regions) and further 

reduces—but does not entirely eliminate— distance-dependent effects of motion (Ciric et 

al., 2017). Both the time series and the nuisance regressors were filtered using a first 

order Butterworth filter with a pass-band ripple of 0.5 and a stop-band ripple of 2, as well 

as a bandpass filter to 0.009-0.08 Hz, prior to residualization. Denoising within this 

pipeline included confound regression with three translational and three rotational motion 

parameters, their temporal derivatives, their first power, and their quadratic expansion, as 

well as mean white matter, mean cerebrospinal fluid, and global signal. Frames with 

greater than 0.2 mm framewise displacement per second were censored from the time 

course (> 0.256 mm displacement per frame, given the 0.78 s TR). Outputs were 

smoothed using a 2 mm Gaussian kernel and normalized to the non-linear, asymmetrical 

MNI 152 2009 atlas (MNI152NLin2009cAsym).  

Deriving Indices of Resting-State Functional Connectivity. To obtain estimates 

of resting-state functional connectivity that were independent of participants’ tendencies 

toward higher motion, 5 minutes of data (385 frames) were randomly sampled from the 

denoised and censored time course. Fisher’s Z-transformed correlations between the 

averaged truncated time courses were calculated for each connection. 

Statistical Analyses 

The current analyses aimed to characterize developmental trajectories of both 

resting-state and self-disclosure-elicited functional connectivity between the NAcc and a 

sub-region of the vmPFC in adolescent girls. By using multilevel/hierarchical linear 

modeling with longitudinal data, this approach accounted for nesting within participants. 

Multilevel models were estimated using maximum likelihood methods in lme4 (v 1.1-21) 
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with complete observations only, statistical comparisons were evaluated using lmerTest 

(v. 3.1-0) with the Satterthwaite approximation for degrees of freedom with multilevel 

models), and tables were generated using sjPlot (v. 2.8.8); all of these packages are in R.  

Examining Beta-Series Estimates by Condition 

In the self-disclosure task, we manipulated statement depth such that some of the 

items adolescents were asked about in the task were superficial statements, while other 

items reflected relatively more intimate and personal information. We first predicted 

NAcc-vmPFC beta-series connectivity estimates from statement depth, while accounting 

for nesting within participants using random intercepts. These analyses did not suggest 

that beta-series connectivity estimates differed by condition (see Results), and subsequent 

analyses using beta-series estimates collapsed across statement depths.  

Developmental Models with Age 

To assess the effects of age on both task-based and resting-state functional 

connectivity across early adolescence, we tested both linear (Connectivityit = β0i + 

β1(Age) + eit) and quadratic (Connectivityit = β0i + β1(Age) + β2(Age2) + eit) age models. 

Models included a random intercept per participant (β0i). Model fit was assessed via both 

likelihood ratio tests and Akaike Information Criteria (AIC). Linear and quadratic age 

models were first compared to one another, and the best-fitting model of the two was 

compared to a null model containing random intercepts and residuals per participant. 

Developmental Models with Pubertal Stage  

To assess effects of puberty on both types of functional connectivity, I compared 

models including pubertal stage to null models using the same criteria above. As pubertal 

stage is an ordinal variable with five levels, models examined four polynomial contrasts 
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(the number of levels minus one; i.e., linear, quadratic, cubic, and quartic effects).  

The pubertal composite score was derived from questionnaire measures assessing 

participant’s perceptions of their own pubertal development. With measures of this type, 

it is typical for some adolescents to regress on scores of pubertal stage over time 

(Peterson et al,. 1988). Analyses were repeated for all participants and in sensitivity 

analyses that censored scores contributing to pubertal stage regression as follows: for 

participants whose T1 pubertal composite scores were higher than their T2 scores, T1 

scores were censored. For participants whose T2 pubertal composite scores were higher 

than their T3 scores, T3 scores were censored. This procedure removed scores relatively 

earlier and later in development because prior research suggests that indices of self-

perceived pubertal development are systematically biased when compared to clinician 

ratings such that relatively less advanced adolescents tend to overestimate their 

development, while more advanced adolescents tend to underestimate (Shirtcliff et al., 

2009; Schlossberger et al., 1992).  

Developmental Models with Both Age and Pubertal Stage  

To evaluate whether age and pubertal stage independently predicted neural 

connectivity, age was added to each of the puberty models (if the linear age model was 

the better fit, then a linear term was added; if the quadratic age model was the better fit, 

then linear and quadratic age terms were added). Although this permitted model 

comparisons between puberty models and models containing both puberty and age, 

separate models containing puberty and age were not compared directly as these models 

were not nested and included slightly different participants (due to missing pubertal data).  
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Post-hoc analyses 

Visual inspection of results suggested that the quartic effect of pubertal 

development on task-based beta-series connectivity was driven by a particular pubertal 

stage transition. To investigate this possibility, post-hoc statistical comparisons were 

conducted with custom contrasts using the emmeans (v 1.4) package in R. 

 

Results 

Participant Inclusion  

 See Table 2.1 for a summary of participant inclusion across task and rest 

modalities. 

Self-Disclosure Task  

The self-disclosure task has two runs. At T1, 9 participants did not complete either 

run (2 had technical issues, 2 had vision impairments that could not be corrected with 

available MRI-compatible glasses, and 5 ended the protocol early by participant or 

researcher choice). Another 11 participants completed a single run of the task (2 had 

technical issues, 1 did not complete the first run of the task correctly, and 8 ended the 

scan early by participant or researcher choice). An additional participant completed the 

second run of the task twice (for a total of three runs), but was considered as having 

completed only the first run due to a lack of documentation about which repetition to 

retain. Motion contamination is a major concern in neuroimaging analyses. Runs of the 

task were excluded from analyses if >20% of volumes exhibited motion artifacts (see 

Methods for more information on how artifacts were identified). Of the 143 participants 

with two runs of data, 11 participants were excluded because both runs exceeded the 
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motion threshold, while another 20 were included with only a single run of data that had 

not exceeded the threshold. Of the 12 participants with a single run of task data, 4 were 

excluded due to exceeding the motion threshold. This left a total of 140 of 164 

participants with task-based functional connectivity estimates: 112 whose estimates were 

calculated from both runs of data and 28 whose estimates were calculated from a single 

run only. 

At T2, 9 participants did not complete either run of the task (4 had technical issues 

and 5 ended the protocol early by participant or researcher choice). Another 7 completed 

only a single run of the task (2 did not complete the first run of the task correctly and 5 

ended the scan early due to participant or researcher choice). Of the 126 participants with 

two runs of data, 5 were excluded because both runs exceeded the motion threshold, 1 

was excluded due to reported sleepiness, and 10 were included with only a single run of 

data (of these, 9 exceeded the motion threshold and 1 was removed due to visual 

inspection revealing that the field map was not successfully applied to one of the runs 

only). Of the 7 participants who completed a single run of the task, 2 were excluded due 

to motion. This left a total of 125 of 142 participants with task-based functional 

connectivity estimates: 110 whose estimates were calculated from both runs of data and 

15 whose estimates were calculated from a single run only. 

At T3, 2 participants did not complete either run of the task (1 had technical errors 

and 1 elected to end the protocol early). Another 2 only completed a single run of the 

task. Of the 72 participants with two runs of data, 2 were excluded because both runs 

exceeded the motion threshold and 2 were included with only a single run of data that had 

not exceeded the threshold. Of the 2 participants who initially completed only a single 
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run, 1 was excluded due to exceeding the motion threshold. This left a total of 71 of 76 

participants with task-based functional connectivity estimates: 68 whose estimates were 

calculated from both runs of data and 3 whose estimates were calculated from a single 

run only. 

Resting-State Functional Connectivity. At each time point, participants with less 

than five minutes of data not exceeding a motion threshold of 0.2 mm framewise 

displacement were excluded from analyses. Substantially more resting-state scans were 

excluded from T1 in large part because the length of the run was changed from 3.51 to 

5.14 minutes per run (there were two runs in total) partway through the longitudinal study 

to increase the likelihood of obtaining sufficient high-quality data. Before implementing 

this change, 137 participants at T1 and four participants at T2 underwent the protocol 

with shorter resting-state scans. 

At T1, 3 participants only completed a single run of the two resting state scans, 

while a fourth participant had one run excluded because they fell asleep. After applying 

motion thresholding, 52 participants were excluded on the basis of not having sufficient 

resting-state data. This left 112 of 164 participants with resting state data at T1. 

At T2, neither run of resting state data was collected for 2 participants, and 2 

participants skipped a single run (one had a technical issue, and for the other the 

researcher opted to end the protocol early). After applying motion thresholding, 10 

participants were excluded. An additional participant was excluded for falling asleep 

across both runs. This left 128 of 142 participants with resting state data at T2. 
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At T3, neither run of resting state data was collected for 2 participants. After 

applying motion thresholding, 5 participants were excluded. This left 69 of 76 

participants with resting state data at T3. 

Descriptive Statistics 

Functional Connectivity 

Examining descriptive statistics (Table 2.1) for each time point suggested that 

mean task-based connectivity was higher for the NAcc-vmPFC and NAcc-primary visual 

cortex connections than for the NAcc-primary auditory cortex. Additionally, mean 

resting-state connectivity was higher for the NAcc-vmPFC than for either the NAcc-

primary auditory or NAcc-primary visual connections. 

Comparison of Task-based Functional Connectivity Across Superficial and 

Intimate Disclosures. The self-disclosure task was designed to include statements that 

differed by their depth or intimacy. Linear mixed models identified no significant fixed 

effect of statement depth on NAcc-vmPFC connectivity across waves, accounting for 

nesting by participant with a random intercept (b = 0.02, SE = 0.02, t(506.57) = 0.75, p = 

0.46). Therefore, subsequent analyses with task-based functional connectivity were 

collapsed across both superficial and intimate trials of the task. See Figure 2.3 for a 

comparison of NAcc-vmPFC connectivity by statement depth across waves. 

Maturation 

See Table 2.2 for descriptive statistics pertaining to age and pubertal stage in our 

sample. Age and pubertal stage (composite score) were moderately correlated across time 

points (T1: r = 0.50; T2: r = 0.53; T3: r = 0.36). 
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Table 2.1 

Task-Based and Resting-State Functional Connectivity Across Time Points 

Modality Connection Metric T1 T2 T3 

Task NAcc-vmPFC Mean (SD) 0.38 (0.29) 0.34 (0.28) 0.33 (0.25) 

 NAcc-auditory Mean (SD) 0.13 (0.17) 0.12 (0.19) 0.07 (0.16) 

 NAcc-visual Mean (SD) 0.3 (0.29) 0.28 (0.31) 0.2 (0.25) 

 All N missing (%) 24 (15%) 17 (12%) 5 (7%) 

Rest NAcc-vmPFC Mean (SD) 0.17 (0.24) 0.13 (0.2) 0.16 (0.17) 

 NAcc-auditory Mean (SD) 0.05 (0.17) 0.01 (0.17) 0.01 (0.15) 

 NAcc-visual Mean (SD) 0.02 (0.19) -0.02 (0.19) -0.03 (0.15) 

 All N missing (%) 52 (32%) 14 (10%) 7 (9%) 

Note. Task-based functional connectivity values are second-level beta estimates relating 
averaged signal between regions across disclosure trials. Resting-state functional 
connectivity values are Z-scored time series correlations.  
 
 
Figure 2.3 
 
Task-Based NAcc-vmPFC Connectivity Across Statement Depth and Time 

 

Note. Examination of task-based beta-series connectivity estimates did not identify 
average differences by statement depth condition.  
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Table 2.2 

Age and Pubertal Stage Composite Scores Across Time Points 

Variable Metric T1 T2 T3 

Age Range 10 - 131 11.5 - 151 13.2 - 161 

 Mean (SD) 11.62 (0.83) 13.19 (0.84) 15.02 (0.68) 

 N Missing (%) 0 (0.00) 0 (0.00) 0 (0.00) 

Puberty Composite Range 1-4.75 1.25-5 3-5 

 Mean (SD) 2.95 (0.90) 3.9 (0.78) 4.53 (0.45) 

 N Missing (%) 8 (0.05) 2 (0.01) 0 (0.00) 

Note. The percentage of missing data was calculated out of the total number of 
participants with available task and/or resting-state data at each time point. 
 

Pubertal Stage Regressions. Seven participants exhibited stage regression across 

waves, with 4 exhibiting a higher pubertal stage composite score at T1 compared to T2, 

and 3 exhibiting a higher score at T2 compared to T3. A sensitivity analysis found that 

censoring values contributing to pubertal stage regression had a minimal impact on  

results. Results presented below are from the sensitivity analysis with censored data (i.e., 

contain no stage regressions). 

Developmental Models 

Developmental Trends by Age 

Task-Based Functional Connectivity. We first identified the best-fitting age 

model of task-based NAcc-vmPFC connectivity. As including a quadratic age term in the 

linear age model did not improve model fit (!AIC = 1.86, !"!(1) = 0.14, p = 0.71), we 

preferred compared a model with just a linear effect of age to the null model, and found  
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Figure 2.4 

Task-Based and Resting-State NAcc-vmPFC Connectivity Across Development 

 

Note. This figure displays the functional connectivity of the NAcc-vmPFC by age and 
pubertal stage for task-based and resting-state functional connectivity. Solid red lines 
depict trajectories as predicted by the models. Dashed red lines reflect conservative 
estimates of uncertainty (akin to 95% confidence intervals, but calculated from the 
standard deviation rather than standard error). Gray lines reflect individual trajectories by 
participant. Solid red lines in Panels A and B reflect the best fitting or simplest age 
models, which were linear for task-based and quadratic for resting-state connectivity. 
Solid red lines in Panels C and D reflect models with polynomial effects of pubertal 
stage.
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Table 2.3 

Models Predicting Beta-Series Connectivity During Disclosure Decisions by Age and Pubertal Stage 

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.58 *** 0.33 – 0.83 <0.001 0.37 *** 0.33 – 0.41 <0.001 0.67 *** 0.33 – 1.02 <0.001 

Age -0.02  -0.04 – 0.00 0.084    -0.02  -0.05 – 0.00 0.085 

Pubertal Stage 
(Linear) 

   -0.06  -0.16 – 0.03 0.172 -0.01  -0.12 – 0.11 0.922 

Pubertal Stage 
(Quad) 

   0.06  -0.03 – 0.14 0.184 0.07  -0.01 – 0.16 0.100 

Pubertal Stage 
(Cubic) 

   -0.05  -0.13 – 0.02 0.188 -0.05  -0.13 – 0.02 0.179 

Pubertal Stage 
(Quartic) 

   -0.09 ** -0.17 – -0.02 0.009 -0.09 * -0.16 – -0.02 0.012 

Random Effects 
σ2 0.06 0.06 0.06 

τ00 0.01 participant 0.02 participant 0.01 participant 

ICC 0.15 0.22 0.20 

N 159 participant 158 participant 158 participant 

Observations 336 319 319 

Marginal R2 / 
Conditional R2 

0.009 / 0.160 0.036 / 0.245 0.044 / 0.230 

Note. Only the best-fitting or simplest age model is shown. * p<0.05   ** p<0.01   *** p<0.001 
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Table 2.4 

Models Predicting Resting-State Connectivity by Age and Pubertal Stage 

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 1.89 * 0.33 – 3.45 0.018 0.17 *** 0.14 – 0.20 <0.001 1.68  -0.02 – 3.37 0.053 

Age (Linear) -0.26 * -0.51 – -0.02 0.031    -0.24  -0.49 – 0.02 0.073 

Age (Quad) 0.01 * 0.00 – 0.02 0.033    0.01  -0.00 – 0.02 0.065 

Pubertal Stage 
(Linear) 

   -0.09 * -0.16 – -0.01 0.025 -0.08  -0.17 – 0.02 0.106 

Pubertal Stage 
(Quad) 

   0.07  -0.00 – 0.14 0.052 0.06  -0.01 – 0.13 0.116 

Pubertal Stage 
(Cubic) 

   -0.06 * -0.13 – -0.00 0.039 -0.07 * -0.14 – -0.01 0.020 

Pubertal Stage 
(Quartic) 

   0.02  -0.04 – 0.08 0.453 0.02  -0.04 – 0.08 0.424 

Random Effects 
σ2 0.04 0.04 0.04 

τ00 0.00 participant 0.00 participant 0.00 participant 

ICC 0.02 0.03 0.03 

N 159 participant 158 participant 158 participant 

Observations 309 298 298 

Marginal R2 / 
Conditional R2 

0.015 / 0.032 0.024 / 0.054 0.036 / 0.062 

Note. Only the best-fitting or simplest age model is shown. * p<0.05   ** p<0.01   *** p<0.001   
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that this only marginally improved model fit (!AIC = -0.98, !"!(1) = 2.98, p = 0.08). 

Linear age models suggested that there was a non-significant negative effect of age on 

task-based NAcc-vmPFC connectivity (b = -0.02, SE = 0.01, t(332.19) = -1.74, p = 0.08, 

Table 2.3, Model 1: Age, Figure 2.4A). 

Resting-State Functional Connectivity. When predicting resting-state NAcc-

vmPFC functional connectivity, a model including a quadratic age effect fit better than 

one with linear age only (!AIC = -2.55, !	"!(1) = 4.55, p = 0.03). In this model, both 

linear (b = -0.26, SE = 0.12, t(271.28) = -2.17, p = 0.03) and quadratic (b = 0.01, SE = 0, 

t(268.73) = 2.14, p = 0.03) age effects were significant predictors of resting-state 

connectivity (Table 2.4, Model 1: Age; Figure 2.4B). However, this quadratic model 

exhibited only marginally better fit when compared to a null model (!AIC = -0.82, 

!	"!(2) = 4.82, p = 0.09). 

Developmental Trends by Pubertal Stage  

Task-Based Functional Connectivity. There was a significant quartic effect of 

pubertal stage on task-based NAcc-vmPFC functional connectivity (b = -0.09, SE= 0.04, 

t(305.41) = -2.61, p = 0.01), and this model was better fitting when compared to the null 

model (!AIC = -4.23, Δ"!(4) = 12.23, p = 0.02; see Table 2.3, Model 2: Puberty). 

Visual inspection of Figure 2.4C suggested that the quadratic effect was driven by 

increases in beta-series connectivity between stages 3-4 of pubertal development. Greater 

beta-series connectivity for stage 4 versus stage 3 of pubertal development was confirmed 

via post-hoc statistical comparison (t(297.2) = 2.97, p = 0.003). See Appendix Figure A.1 

for a visualization of beta-series estimates and confidence intervals by pubertal stage. 
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Prior models identified a weak linear age effect on task-based connectivity. 

Adding this linear age term into a model already containing pubertal stage as a predictor 

only marginally improved model fit (!AIC = -0.88, !"!(1) = 2.88, p = 0.09; Table 2.3, 

Model 3: Puberty + Age). Examination of variance inflation factors did not suggest an 

issue with multicollinearity between age and puberty (VIF = 2.14). 

Resting-State Functional Connectivity. NAcc-vmPFC resting-state functional 

connectivity was predicted by linear (b = -0.09, SE= 0.04, t(297.95) = -2.26, p = 0.02), 

non-significant quadratic (b = 0.07, SE= 0.04, t(278.45) = 1.96, p = 0.05), and cubic (b = 

-0.09, SE= 0.04, t(297.95) = -2.26, p = 0.02) effects of pubertal stage (See Table 2.4 

Model 2: Puberty; Figure 2.4D). However, models incorporating pubertal stage did not 

improve model fit when compared to the null model (!AIC = 0.74, !"!(4) = 7.26, p = 

0.12). 

Prior models predicting NAcc-vmPFC functional connectivity identified 

significant linear and quadratic effects of age (See Table 2.4 Model 3: Puberty + Age). 

Adding these terms to the model did not improve model fit (!AIC = 0.28, !	"!(2) = 3.72, 

p = 0.16). Evidence for multicollinearity between puberty and age was low (VIF = 2.34). 

ICC values for both neural measures were fairly low (Tables 2.3 and 2.4), with ICC 

values for resting-state functional connectivity being particularly low and indeed near 

zero. Lower ICC values indicate higher within-subject and lower between-subject 

variability, and such scores reflect low within-subject homogeneity across time points in 

our sample. 
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Figure 2.5 

Task-Based and Resting-State Connectivity Across Connections 

Note. Panel A displays task-based beta-series connectivity estimates by age across three 
connections; Panel B displays resting-state connectivity estimates by age for the same 
three connections. Solid lines were generated via locally weighted scatterplot smoothing 
(lowess) and do not reflect developmental models as in Figure 2.4.  
 
Developmental Trends in Control Connections 

Developmental trajectories of control connections were not the focus of this 

investigation, but information about these models are in Appendix A. As a reference for 

research presented in future chapters, Figure 2.5 displays trajectories by age. 

 
 

Discussion 

This chapter aimed to examine how functional connectivity between the NAcc 

and vmPFC changed across adolescence in two distinct mental states: during self-
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disclosure decisions and during rest. We built and compared multilevel models 

incorporating linear and nonlinear effects of age and pubertal stage. Task-based 

connectivity was best explained by quartic effects of pubertal stage that appeared to be 

driven by increases between stages 3 and 4. Trajectories of resting-state functional 

connectivity exhibited nonlinear declines (linear and quadratic effects of age; linear, 

quadratic, and cubic effects of pubertal stage) that appeared to be driven by changes early 

in maturation. However, developmental models of resting-state functional connectivity 

did not exhibit improved model fit when compared to a null model. 

Trajectories of Task-Based Functional Connectivity during Self-Disclosure 

As there were no differences in NAcc-vmPFC connectivity across self-disclosure 

statement depths (intimate vs. superficial disclosures), all models examining task-based 

connectivity collapsed across conditions. Age models identified non-significant negative 

linear effects of age, while a puberty model identified significant negative quartic effects 

of pubertal stage. Only the pubertal stage model exhibited improved fit when compared 

to a null model, and additionally including age into the puberty model did not improve 

model fit. Overall, findings suggested that task-based NAcc-vmPFC functional 

connectivity during self-disclosure was better characterized by puberty than age. 

No other study has examined trajectories of NAcc-vmPFC connectivity during 

adolescent self-disclosure, to the best of our knowledge. However, a number of studies 

have examined developmental changes in NAcc (or ventral striatum, of which the NAcc 

is a part of) connectivity with medial and ventromedial PFC regions during reward, 

learning, and/or decision-making tasks across adolescence. One study employing a 

temporal discounting task found that greater ventral striatal connectivity with the vmPFC 
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was associated with a tendency to more heavily weigh long-term benefits (relative to 

immediate rewards) and that connectivity increased with age (in 11-32 year old males; 

Christakou et al., 2011). Another study employing a probabilistic feedback learning task 

found greater ventral striatum connectivity with the mPFC for positive as compared to 

negative feedback trials; this context-modulated connectivity difference both predicted 

learning and increased with age (across ages 8-22 years; van den Bos et al., 2012). A 

third study employing a risky decision-making task found greater NAcc-vmPFC 

connectivity for reward as compared to loss outcomes, but found that this effect did not 

vary with age (ages 10-25 years; van Duijvenvoorde et al., 2014). More recently, a 

longitudinal study employing a reward learning task identified age-related decreases in 

connectivity between the NAcc and other vmPFC subregions that did not overlap with 

the region selected in our study (ages 12-31; Parr et al., preprint).  

Overall, prior studies provide mixed evidence for developmental changes in task-

based connectivity across reward, learning, and decision-making tasks in adolescence. 

Methodological differences may be at play; while the first study used partial time series 

correlations (Christakou et al., 2011), the next two studies employed psychophysiological 

interaction approaches (McLaren et al., 2012) to examine how positive versus negative 

task contexts modulated connectivity (van den Bos et al., 2012; van Duijvenvoorde et al, 

2014), and the last study used a background connectivity approach (Salvador et al., 2005) 

to assess sustained connectivity across the scan (with a focus on removing task-evoked 

signals; Parr et al., preprint). In contrast, this analysis used a beta-series correlation 

approach, which is consistent with contemporary recommendations considering the 

timing of our event-related design (Cisler, 2014). While the use of different task designs 
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and analysis approaches makes inconsistencies less surprising, they also underscore 

needs for standardization and replication in the field.  

While the present analyses identified weak linear effects of age, trajectories of 

NAcc-vmPFC connectivity during self-disclosure were better explained by non-linear 

effects of pubertal stage than age. This trajectory exhibited a notable mid/late pubertal 

increase in connectivity between stages 3-4. Shifts in female development between 

Tanner stages 3 to 4 include a decrease in height velocity as well as substantial changes 

to breast and pubic hair development (Emmanuel & Bokor, 2020). The onset of menarche 

is typically associated with entry into stage 4. While few studies have focused on 

identifying normative shifts in peer relationships by pubertal status, one study found 

increases in social emotion understanding in a group of adolescent girls characterized as 

being late in puberty by the onset of menstruation (Burnett et al., 2011). Additionally, this 

particular stage transition has also been identified as a time when depression increases 

among girls (Angold et al., 1998, replicated in Conley & Rudolph, 2009). As a caveat, we 

note that the measures employed in the study fundamentally differ from Tanner staging 

by clinician assessment due to their focus on adolescents’ perceptions of their own 

bodies. Overall, findings point to an increase in NAcc-vmPFC connectivity during self-

disclosure in mid/late puberty that is not identified when examining development in terms 

of age only. 

Trajectories of Resting-State Functional Connectivity 

Trajectories of resting-state functional connectivity between the NAcc and 

vmPFC identified non-linear effects of age and pubertal stage, and visual inspection of 

the trajectory suggested that changes were predominantly early in development 
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(measured by either age or pubertal stage). However, resting-state functional connectivity 

appeared to be fairly stable across adolescent girls in this sample, and models including 

age and/or pubertal stage did not fit better than the null model. 

An earlier cross-sectional study identified age-related linear decreases in ventral 

striatal resting-state functional connectivity across subregions of the medial prefrontal 

cortex (across ages 4.5-23 years; Fareri et al.; 2015). A similar age-related decrease was 

observed between the NAcc and vmPFC (in a subregion extending rostrally from the 

subgenual anterior cingulate cortex) in another study (across ages 8-25; van 

Duijvenvoorde et al., 2015). Longitudinal analyses found similar age-related decreases in 

connectivity between these regions, which may be a part of a broader pattern of weaker 

subcortical-cortical connectivity across adolescence (ages 8-28 years; van Duijvenvoorde 

et al., 2019). However, one study did not identify age-related connectivity changes 

between the ventral striatum and vmPFC, except in a very caudal and dorsal region of the 

anterior cingulate cortex (ages 9-44; Porter et al., 2015). One possibility explaining 

discrepancies in our findings is that developmental changes in resting-state functional 

connectivity may be more pronounced and notable in samples with larger age ranges than 

employed in our sample.  

Limitations 

The findings of these analyses should be interpreted in light of certain limitations. 

First, there were not enough time points to fit higher-order polynomial trends with true 

separation of within- and between-subjects effects, although examining intra-class 

correlations suggested that variability in both task-based and resting-state functional 

connectivity, but especially the latter, was largely between-subjects. Furthermore, 
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interpretations of the shapes of longitudinal trajectories should be made with caution 

because they can be influenced by the age ranges included in a study (Fjell, 2010). While 

our sample included participants from all pubertal stages, there were fewer participants in 

the earliest stages of pubertal development as well as a restricted age range (by design).  

Task-based metrics presented here were calculated from beta-series analyses 

across the entire trial of a self-disclosure task, which included both self-evaluation and 

self-disclosure decision phases. Because of the task timing, it was not possible to fully 

disentangle signals from both task phases. Additionally, from a psychological process 

perspective, it was quite possible that adolescents were anticipating their disclosure 

decisions from the trial onset, rather than only once the disclosure prompt appeared on 

screen. However, prior research with this paradigm in the first wave of this sample 

identified differing neural responses to the self-evaluation and self-disclosure phases, 

including in NAcc and vmPFC (Vijayakumar et al., 2020). When modeled separately, 

differing effects for superficial and intimate statement depths also emerge. Future 

analyses might consider developmental effects of all aspects (task phase: self-evaluation 

and self-disclosure; statement depth: intimate and superficial) of the task design. 

Another limitation of this study is related to the presence of substantial missing 

data across waves. The majority of data excluded from T1 can be attributed to 

insufficient high quality resting-state data that was remedied by collecting a greater 

volume of data at later time points. A number of participants also did not have three 

waves of data because the final wave was interrupted by the covid-19 pandemic. While 

these were the two main sources of missing data, a number of other factors, including 

difficulty comfortably staying still enough for the full length of the scan, contributed to 
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missing data in both task and rest modalities. Because of the difficulty in collecting 

reliable data from high-motion participants, it is challenging to ascertain whether the data 

were missing not at random (i.e., if the ask or resting-state functional connectivity values 

themselves differed between those from whom data could and could not be collected); if 

so, estimates may be biased.  

Conclusions 

Analyses identified a non-linear effect of pubertal stage on task-based NAcc-

vmPFC connectivity during self-disclosure that was not captured in trajectories that used 

age as the sole measure of maturation. This effect was driven by increases in task-based 

functional connectivity occurring around stages 3-4. Analyses identified non-linear 

decreases in NAcc-vmPFC resting-state connectivity with age and pubertal stage, but 

models containing these predictors did not exhibit significantly improved model fit when 

compared to the null model. The identification of stronger effects of puberty on task-

based but not resting-state functional connectivity may be more consistent with 

activational rather than organizational effects of puberty on neurodevelopment, and the 

next chapter specifically considers potential developmental mechanisms relating task and 

rest modalities over time. 
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CHAPTER III 

DEVELOPMENTAL MECHANISMS RELATING  

SOCIAL RELATIONSHIPS TO NEURAL CHANGE 

 

Introduction 

Close friendships play a significant role in shaping thoughts and behaviors during 

adolescence, and aspects of friendship quality during this period play an outsized role in 

health and well-being that lasts until decades later (Allen et al., 2015; Narr et al., 2019). 

The empirical chapter centrally engages with the questions as to how and when close 

friendships might exert this influence via changes to NAcc and vmPFC connectivity. By 

becoming “neurally embedded”, these experiences might influence the long-term 

functioning of neural circuits for processing value and social cognition. As in the 

previous chapter, I consider both chronological age and pubertal development as indices 

of maturation that may influence the degree of this putative embedding.  

Long-term Phasic Modeling as a Neurodevelopmental Mechanism of Change 

Long-term phasic modeling posits that, for developing circuits, transient or phasic 

connectivity will predict resting-state functional connectivity over time. Resting-state 

functional connectivity indexes the brain’s functional architecture while participants are 

exposed to minimal stimuli (e.g., Fox et al., 2005; Grecius et al., 2003). Although nascent 

organization is present from infancy (Fransson et al., 2007), little is known about the 

remodeling that results in stable (Gratton et al., 2018) and individually distinct (Finn et 

al., 2015; Miranda-Dominguez et al., 2014) features within adult architecture that are 

associated with psychopathology (e.g., Xia et al., 2017).  
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Very few empirical studies have examined longitudinal task- and resting-state 

associations in the human developmental cognitive neuroscience literature. In a two-wave 

longitudinal study of children ages 4 to 18, evidence for the long-term phasic modeling 

hypothesis was found in an amygdala-mPFC circuit (Gabard-Durnam et al., 2016). 

Specifically, amygdala-mPFC connectivity elicited by emotional face stimuli was 

associated with resting-state connectivity two years later, but not vice versa. This 

association (task predicts rest) suggests that phasic patterns of connectivity elicited over 

the course of development may shape resting-state connectivity, and that this can be 

measured despite differences in the signal timescales captured by task-based and resting-

state connectivity measures. Additionally, the magnitude of this effect declined across 

childhood and was no longer present after early adolescence, providing a rough timing 

estimate for the potential conclusion of a sensitive period for sculpting this circuit.  

In contrast, a second study found that resting-state signal (as measured by source-

localized EEG alpha current density) within the dorsal mPFC at age 4 predicted 

selectivity of these same regions to mental state reasoning (as measured by fMRI) during 

a theory of mind task at ages 7 and 8. This association (rest predicts task) suggests that 

early, task-independent maturation of the brain may provide foundational scaffolding 

supporting functional specialization (Bowman et al., 2019). This preliminary work was 

carried out in a fairly small sample (N=12), and researchers were unable to test or rule 

out the long-term phasic modeling hypothesis because task-based functional connectivity 

measures were not available at the earlier wave of data collection (age 4), and resting-

state functional connectivity measures were not available at the later wave (ages 7-8). 
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Summary 

The long-term phasic modeling hypothesis suggests that phasic patterns in 

functional connectivity during earlier experiences sculpt the brain’s emerging functional 

architecture. Preliminary evidence for long-term phasic modeling has been identified in 

one circuit, suggesting that this mechanism may be at play in developing circuitry 

supporting socio-affective processing. Examining longitudinal relationships between 

task-based and resting-state functional connectivity across development can help us to 

understand the neural embedding of experience and/or the nature of functional 

specialization across development, although very few studies have done so.  

Adolescent Self-disclosure as a Potential Driver of Phasic Modeling 

Psychological science can advance candidate processes that might be sufficiently 

frequent, socio-emotionally salient, and developmentally significant as to be drivers of 

phasic modeling. Self disclosure, or the sharing of personal thoughts and feelings, may be 

one such driver. With respect to the criteria of frequency, self-disclosure is a normative 

behavior that reflects a large proportion of speech in the real world (Dunbar et al., 1997) 

and online (Naaman et al., 2010). Reciprocal and deepening self-disclosures are socio-

emotionally salient as a primary means of developing intimacy in friendships (Berndt, 

2002). As reviewed in the previous chapter, studies using self-report measures identify 

greater self-disclosure to peers during early adolescence (Valkenburg et al., 2011) and 

behavioral task paradigms suggest changes to the intrinsic value of peer disclosures in 

adolescence (Mobasser et al., preprint). These behavioral changes in the targets of self-

disclosure may reflect changes that are consistent with social reorientation (Vijayakumar 
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& Pfeifer, 2020), a major theory of adolescent development (Nelson et al., 2005; Nelson 

et al., 2016).  

Additionally, candidate processes for driving phasic modeling critically must also 

elicit neural signal within circuits of interest. Prior research with this paradigm finds that 

adolescent self-disclosure engages key nodes within a fronto-striatal circuit in a manner 

that tracks with preference to disclose, friendship quality, and feelings of being supported 

(Vijayakumar et al., 2020). However, task-based connectivity metrics are not a direct 

indicator of close friendship experiences, and the degree to which they are related to 

friendship quality is empirically investigated in Chapter 4. 

Summary 

An examination of the features of self-disclosure from the perspectives of 

developmental psychology and neurobiology suggests that this process may be a 

candidate for driving phasic modeling.  

Puberty May Regulate Sensitive Periods in the Transition into Adolescence 

The transition into adolescence is a particularly formative period of cognitive, 

affective, and physical change. In the social domain, this transition is accompanied by 

increased motivation for peer acceptance (O’Brien & Bierman, 1988) and sensitivity to 

social exclusion (Sebastian et al., 2010). Furthermore, the heightened salience of social 

experiences may be adaptive for learning from and about complex social environments, 

ultimately supporting a species-typical transition into sexual maturity (Crone & Dahl, 

2012). In part because of these transitions, adolescents have been theorized to undergo a 

sensitive period for sociocultural learning (although see Chapter 1 for a more nuanced 

discussion of the relationships between heightened sensitivities and sensitive periods).  
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Developmental timing mechanisms are likely to vary across adolescence, as it is a 

prolonged period potentially spanning beyond a decade. The onset and conclusion of 

adolescence are not sharply defined. Biological perspectives on adolescence have marked 

its onset with puberty, but puberty itself is multi-faceted and unfolds over time. 

Meanwhile, sociocultural perspectives find that entry into adolescence in most societies is 

defined partly by puberty but also via initiation ceremonies (Worthman & Trang, 2018). 

Aspects of puberty, especially increases in pubertal sex hormones, organize the brain and 

behavior (Schultz & Sisk, 2016) and have been theorized to play regulatory roles in 

sensitive period timing, including both opening and closing sensitive periods during the 

transition to adolescence (Byrne et al., 2017; Piekarski et al., 2017).  

Summary 

 The transition into adolescence may reflect the onset of a sensitive period for 

sociocultural development. This sensitive period may also be related to increases in 

pubertal hormones, as puberty is accompanied by tremendous hormonal, physical, neural, 

and social developmental change.  

Goals of the Current Analysis 

The core aim of the current chapter is to evaluate long-term phasic modeling as a 

neurobiological mechanism by which close friendship experiences may influence the 

development of brain systems for processing value and social cognition. Although 

evidence suggests that this process occurs in other circuits during development, it is not 

known whether this is the case for vmPFC-NAcc circuitry, which may play roles in 

integrating value-related and social cognitive processes. In a circuit undergoing long-term 

phasic modeling, phasic task-based connectivity would predict later resting-state 
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connectivity; i.e., resting-state connectivity between regions reflects their history of 

coactivation. Consistent with this hypothesis, I predict that earlier phasic NAcc and 

vmPFC connectivity during self-disclosure will predict later connectivity at rest. The 

reverse pattern (rest predicts task) would suggest that connectivity is predominantly 

driven by the unfolding of cumulative antecedent effects, e.g. early adversity or pubertal 

hormones directly organize a circuit in a manner that influences its functioning during 

specific social processes. 

The secondary aim of this chapter is to explore whether maturation moderates 

associations across states of functional connectivity. Pubertal development is of particular 

interest in the context of theories positing pubertal processes as drivers of sensitive 

periods. If identified, moderating effects of maturation, defined in terms of chronological 

age or as pubertal development, would provide evidence for timing windows in which 

aspects of how adolescents process their relationships with their close and/or best friends 

more strongly influence neurodevelopment.  

 

Methods 

 For the core aim of this chapter, structural equation modeling was used to 

evaluate the long-term phasic modeling (LTPM) hypothesis and an alternative hypothesis 

as mechanisms of developing NAcc-vmPFC connectivity. For the secondary aim of this 

chapter, the structural equation modeling was extended to test whether time-lagged 

effects varied across time points. Hierarchical generalized additive models were 

additionally used to explore moderating effects of maturation with more precision (i.e., at 

the level of age and pubertal stage, rather than by study time point). The same 
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participants and measures were used as described in Chapter 2. Because this chapter 

focuses on relationships between neural measures across time, matrices of Pearson 

correlation coefficients were provided to better characterize bivariate associations among 

these measures. 

Statistical Approach 

Testing Long-Term Phasic Modeling and Alternative Neurodevelopmental 

Mechanisms 

Developmental hypotheses were examined using structural equation modeling. In 

the model testing the LTPM hypothesis, time-lagged task-based and resting-state 

connectivity predicted later resting-state connectivity (Figure 1A). In the model testing an 

alternative hypothesis, time-lagged task-based and resting-state connectivity predicted 

later task-based connectivity (Figure 1B). These models are not mutually exclusive and it 

is not a fundamental aim of this work to pit them against one another. Constructing two 

separate models (as compared to using a cross-lagged panel model) allowed for 

investigating the dependence of time-lagged x on y and time-lagged y on x using a less 

restricted model specification, which can simplify estimation difficulties and reduce 

misspecification issues (Allison et al., 2017).  

Across models specified to test the LTPM and alternative hypotheses, alpha was 

included as a latent variable to capture unmeasured individual differences causing 

endogenous variables. Here, endogenous variables are somewhat akin to outcomes and 

are modeled as being caused by other variables in the model, while exogenous variables 

are somewhat akin to predictors and are modeled as causes. In the model testing the 

LTPM hypothesis, resting-state connectivities at T2 and T3 were endogenous while other 
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variables were exogenous; in the model testing the alternative hypothesis, task-based 

connectivities at T2 and T3 were endogenous while other variables were exogenous.  

A structural equation modeling approach was chosen over a multilevel modeling 

approach. Within a structural equation modeling framework, alpha can co-vary with 

exogenous variables (fixed effects model; Allison et al., 2017) in a model that separates 

between and within-person effects (Hamaker & Muthén, 2020). In contrast, alpha is 

commonly modeled as a random intercept when using multilevel modeling (random 

effects model), and in such regression models alpha and all other predictors are assumed 

to be independent. Separation of between and within-person effects in multilevel models 

requires the use of difference scores, centering, and/or the addition of other parameters.  

When models faced estimation difficulties (indicated by impossible solutions such 

as negative estimated variances) and when examination of estimated model parameters 

suggested that it was appropriate, models were simplified by moving from fixed to 

random effects models (i.e., no longer freely estimating covariances between alpha and 

other exogenous variables). If problems persisted and when examination of estimated 

model parameters suggested it was appropriate, models were further simplified by 

removing alpha altogether, resulting in a path model with no latent variables (Figure 3.1).  

All structural equation models were constructed and estimated using the sem 

function within the lavaan package (v. 0.6-5) for R. Models were estimated using 

maximum likelihood estimation, and full information maximum likelihood estimation 

was used to handle missing data. Models examined both the connection-of-interest 

(NAcc-vmPFC) and two control connections (NAcc-primary auditory cortex and NAcc-

primary visual cortex). 
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Figure 3.1 

Structural Equation Models for Long-Term Phasic Modeling and Alternative Hypotheses

 

Note. Full (fixed effects) structural equation models testing the long-term phasic 
modeling (LTPM) and alternative (ALT) hypotheses. Task = beta-series connectivity 
estimated during self-disclosure decisions; Rest = resting-state functional connectivity. 
Some models were simplified due to estimation issues. In the random effects model, gray 
dotted lines representing covariances between α and exogenous variables were removed. 
In the path model, α and its associated paths were removed.  
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Metrics of Interest. Models were evaluated based on the χ2 test, Root Mean 

Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and 

Standardized Root Mean Square Residual (SRMR) as global fit indices (following 

recommendations from Klein, 2016). The χ2 test evaluates a null “exact-fit” hypothesis 

that the model predicts the data such that rejecting the null hypothesis (p < 0.05) leads the 

researcher to reject the model. The RMSEA is an absolute, one-sided badness-of-fit 

statistic typically reported with its 90% confidence interval; zero is the best result. The 

CFI is an incremental goodness-of-fit statistic comparing the model to the null model, 

where 1.0 is the best result. The SRMR is an absolute badness-of-fit statistic where larger 

values suggest greater discrepancies between observed and predicted correlations, and 

values >0.1 suggest poor model fit. Overall, global fit indices provide information about 

average model fit, but cannot determine whether models are correct, as models may still 

be misspecified. 

To evaluate the LTPM hypothesis, the estimated effect of time-lagged task-based 

connectivity on resting-state connectivity was presented alongside its standard error. To 

evaluate the alternative hypothesis, the estimated effect of time-lagged resting-state 

connectivity on task-based connectivity was also presented. Effects were evaluated with a 

null-hypothesis significance testing approach at an uncorrected threshold of alpha = 0.05. 

Assessing Effects of Developmental Timing 

The secondary aim of this chapter was to examine evidence for sensitive periods. 

Specifically, we evaluated whether time-lagged effects across task-based and resting-state 

functional connectivity varied by adolescent maturation via both structural equation 

modeling and hierarchical generalized additive modeling.  
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 Extending the Structural Equation Model to Assess Effects of Study Time 

Point.  The structural equation models presented in the prior section were extended to 

test whether time-lagged effects across states of task and rest varied by time point. 

Because adolescents become older across time points, this tests the possibility that time-

lagged effects might be stronger relatively earlier or later in development across the 

sample. The model testing the LTPM hypothesis was altered by estimating unique 

parameters for the effect of time-lagged task-based connectivity on resting-state 

connectivity between T1-T2 and T2-T3, rather than constraining these paths to be equal. 

Relative model fit was examined using likelihood ratio tests and Akaike Information 

Criterion (AIC). This procedure was repeated for the model testing the alternative 

hypothesis such that the effect of time-lagged resting-state connectivity on task-based 

connectivity was specified as varying between T1-T2 and T2-T3 rather than being 

constrained to be equal; this procedure was further repeated across not only the 

connection of interest (NAcc-vmPFC) but also the control connections (NAcc-primary 

auditory cortex and NAcc-primary visual cortex).  

  Using Hierarchical Generalized Additive Models to Assess Effects of Age 

and/or Pubertal Stage. Due to the study’s semi-accelerated longitudinal design, the ages 

of participants at different time points overlapped (e.g., ages 10, 11, 12 at the first session 

of T1, ages 11, 12, 13, and 14 at the first session of T2). Considering whether effects 

varied by time point therefore only coarsely tested the possibility that effects varied 

depending on participants’ degree of maturation. Hierarchical generalized additive 

modeling was used to explore possible effects of more fine-grained measures of 

maturation. Advantages to this approach are that it can estimate smooth functional 
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nonlinear relationships while accounting for nesting. Structural equation modeling was 

not used because adding additional variables with interactions would have dramatically 

increased model complexity to a degree that could not be estimated with the available 

sample size. Furthermore, it is not straightforward to account for non-linear trajectories 

within a structural equation modeling framework, and evidence from analyses of 

developmental trajectories in the previous chapter suggests that non-linear changes might 

be at play.  

 Hierarchical generalized additive models took the form of#!" = %# + %$#!"%$ +

'()!"%$)+!"%$ + ,! 	+ .!"	. In the LTPM formulation of this model, # was resting-state 

connectivity, x was task-based connectivity, $ was the participant, % was time point, 

%0was the intercept, %1was the lagged effect of the dependent variable, ,"was a smoothed 

random intercept, and."#was the residual. Maturation (m) was examined in separate 

models both in terms of chronological age and as composite pubertal stage scores. The 

term &(() was a smoothed function of maturation m (tensor product smooth using te 

within the mgcv package (v. 1.8-28) for R). In the alternative formulation of this model, 

task-based connectivity was examined as the outcome variable and time-lagged resting-

state connectivity was the predictor.  

 Hierarchical generalized additive models were constructed and estimated using 

the gam function within the mgcv package (v. 1.8-28) for R. The number of basis 

functions (k) was set to 5; model parameters and residuals were also inspected with larger 

k, and doing so did not suggest that using a larger set of basis functions would alter the 

pattern of statistical findings. Models were estimated using maximum-likelihood with 

complete observations only. Models examined both the connection-of-interest (NAcc-



 81 

vmPFC) and two control connections (NAcc-primary auditory cortex and NAcc-primary 

visual cortex). 

 

Results 

Bivariate Correlations Among Neural Measures 

Examination of bivariate correlations among measures of NAcc-vmPFC 

functional connectivity suggested that task-based beta-series connectivity values were 

typically positively correlated across consecutive time points, while resting-state 

functional connectivity values were not (Figure 2). However, both task-based and resting-

state functional connectivity values were negatively correlated with themselves across T1 

and T3. For additional descriptive statistics of the variables used in these analyses, please 

refer to Chapter 2.  

Time-Lagged Effects Across Modalities 

Structural Equation Modeling 

Long-Term Phasic Modeling Hypothesis of NAcc-vmPFC Connectivity. We 

first examined evidence for the long-term phasic modeling hypothesis for NAcc-vmPFC 

connectivity using a structural equation modeling approach. When examining the model 

as pre-specified, some estimated variances were negative, which is often a sign of model 

misspecification. Inspection of the estimated parameters suggested that negative 

variances were between / and exogenous variables. We therefore re-specified the model 

as a random effects model, which assumed that / and the exogenous variables did not 

covary. This resulted in a model whereby all estimated variances were positive. 

Examination of possible modifications to the model did not suggest that reintroducing the  
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Figure 3.2 

Correlations Between Neural Measures Across Time Points 

 

Note. Beta = Task-based beta-series connectivity, Rest = Resting-state connectivity 

 

removed covariance specifications would improve model fit. Therefore, parameters 

presented here are from random effects models; in such models / is included but does not 

covary with the exogenous variables (Hamaker & Muthén, 2020). 
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Examination of the random effects model testing the long-term phasic modeling 

hypothesis identified adequate global fit (see Figure 3.3 LTPM-C; "!(4) = 1.48, p = 0.83; 

SRMR = 0.04, RMSEA = 0, 90% CI [0, 0.07], CFI = 1).1 This model did not identify 

significant time-lagged relationships of task-based functional connectivity on resting state 

functional connectivity (standardized effects are presented throughout; task at T1 

predicting rest at T2: b = 0.07, SE = 0.07, 95% CI = [-0.08, 0.21], Z = 0.92, p = 0.36; task 

at T2 predicting rest at T3: 0.08, SE = 0.09, 95% CI = [-0.09, 0.25], Z = 0.92, p = 0.36). 

(Note that while unstandardized estimates were constrained to be equal, standardized 

values presented both in the text and figures appear to vary slightly across waves because 

standard errors varied.) 

Allowing Time-Lagged Estimates to Vary by Time Point. The random effects 

version of the model describing the long-term phasic modeling hypothesis specified the 

effect of task-based connectivity on resting-state connectivity to be equal for the time 

lagged paths between both T1 to T2 and T2 to T3. To test a sensitive periods hypothesis, 

we allowed time-lagged effects between states of task and rest to vary across waves 

(Figure 3.3 LTPM-U). Comparative fit indices suggested that a model where time-lagged 

effects varied across waves did not better fit the data (!AIC = 1.91, !"!(1) = 0.09, p = 

0.77). Therefore, the simpler model where time-lagged, cross-modal effects were 

constrained to be equal was retained. 

Alternative Model of NAcc-vmPFC Connectivity. A model was estimated for 

the alternative hypothesis of NAcc-vmPFC connectivity with time-lagged effects of 

 
1 The Tucker-Lewis Index was -80.93, and this is unusual because the typical range of TLI values is from 0 
to 1. While this can be truncated to zero (and a zero value would indicate poor model fit), this index can be 
unreliable when sample size/degrees of freedom are small and is not interpreted further in this report.  
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resting-state connectivity predicting task-based connectivity (Figure 3.3 ALT-C). The 

original specification of the alternative model resulted in the same challenges with model 

estimation that were described above regarding the long-term phasic hypothesis model; 

estimated variances were negative until covariances between / and the exogenous 

variables were constrained (to zero) rather than freely estimated, and examination of 

modification indices did not suggest that allowing those variables to covary would 

improve model fit. The random effects model is therefore presented for the alternative 

hypothesis, as well. 

Examination of the random effects model testing the alternative hypothesis 

(Figure 3.3 ALT-C) indicated adequate global fit ("!(4) = 4.05, p = 0.40; SRMR = 0.06, 

RMSEA = 0.01, 90% CI [0, 0.12], CFI = 0.99), but these metrics were generally slightly 

worse than those for the model of the long-term phasic modeling hypothesis. The 

alternative model did not identify time-lagged effects of resting-state functional 

connectivity on task-based functional connectivity (rest at T1 predicting task at T2: b = 

0.00, SE = 0.08, 95% CI = [-0.17, 0.16], Z = -0.02, p = 0.99; rest at T2 predicting task at 

T3: b = 0.00, SE = 0.08, 95% CI = [-0.16, 0.16], Z = -0.02, p = 0.99). Task-based 

functional connectivity positively predicted itself over time (from T1 to T2: b = 0.21, SE 

= 0.08, 95% CI = [0.05, 0.37], Z = 2.59, p = 0.01; from T2 to T3: b = 0.23, SE = 0.10, 

95% CI = [0.04, 0.42], Z = 2.42, p = 0.02). 

Allowing Time-Lagged Estimates to Vary by Time Point. A separate model was 

estimated where time-lagged effects between states of task and rest were allowed to vary 

across waves (Figure 3.3 ALT-U). Comparative fit indices suggested that a model of the 

alternative hypothesis where time-lagged effects varied across waves did not better fit the  
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Figure 3.3 

Structural Equation Models of NAcc-vmPFC Connectivity 

 
Note. LTPM = model of the long-term phasic modeling hypothesis, ALT =  model of the alternative hypothesis. 
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data (!AIC = 1.84, !"!(1) = 0.16, p = 0.69); the simpler model where time-lagged, cross-

modal effects were constrained to be equal was retained. 

Control connections. Connectivity between the NAcc and both control regions 

was first examined using random effects models (for comparability with the models of 

NAcc-vmPFC connectivity). In both of these models, some estimated variances were 

negative, and inspection of the models suggested that negative variances were attributed 

to #. When # was removed entirely, leaving a path model only, all model variance 

estimates were positive. Parameters presented here are from path models with no latent 

variables (see Limitations for a discussion of how this affected parameter estimates). 

Connectivity Between the NAcc and Primary Auditory Cortex. Global fit 

statistics of a model testing the long-term phasic modeling hypothesis (Figure 3.4A) in 

explaining connectivity between the NAcc and the primary auditory cortex suggest 

acceptable average fit between the model and the data ("!(5) = 5.86, p = 0.32; SRMR = 

0.06, RMSEA = 0.03, 90% CI [0, 0.12], CFI = 0.74), but global fit indices were generally 

slightly worse than in the equivalent model of NAcc-vmPFC connectivity. There were no 

significant time-lagged relationships of task-based functional connectivity on resting-

state functional connectivity (task at T1 predicting rest at T2: b = -0.01, SE = 0.07, 95% 

CI = [-0.15, 0.13], Z = -0.13, p = 0.89; task at T2 predicting rest at T3: b = -0.01, SE = 

0.09, 95% CI = [-0.20, 0.17], Z = -0.13, p = 0.89). A model allowing time-lagged cross-

modal associations to vary by time point did not better fit the data (!AIC = 1.84, !"!(1) 

= 0.23, p = 0.63), and a simpler model with constrained paths was retained. 

Global fit statistics of a model testing the alternative hypothesis for NAcc-primary 

auditory cortex connectivity identified slightly worse fit between the model and the data 
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("!(5) = 6.53, p = 0.26; SRMR = 0.06, RMSEA = 0.04, 90% CI [0, 0.12], CFI = 0.52) as 

compared to the LTPM model. There were no significant time-lagged relationships of 

resting-state functional connectivity on task-based functional connectivity (rest at T1 

predicting task at T2: b = -0.04, SE = 0.10, 95% CI = [-0.23, 0.15], Z = -0.43, p = 0.67; 

rest at T2 predicting task at T3: b = 0.04, SE = 0.09, 95% CI = [-0.15, 0.22], Z = 0.39, p = 

0.70). Unlike when modeling NAcc-vmPFC connectivity, task-based functional 

connectivity did not positively predict itself over time (from T1 to T2: b = 0.03, SE = 

0.07, 95% CI = [-0.11, 0.17], Z = 0.43, p = 0.66; from T2 to T3: b = 0.04, SE = 0.10, 95% 

CI = [-0.14, 0.23], Z = 0.44, p = 0.66). A model allowing time-lagged cross-modal 

associations to vary by time point were only a marginally better fit to the data (!AIC = 

1.80, !"!(1) = 0.20, p = 0.65), and a simpler model with constrained paths was retained.  

Connectivity Between the NAcc and Primary Visual Cortex. Global fit statistics 

of a model testing the long-term phasic modeling hypothesis (Figure 3.4B) in explaining 

connectivity between the NAcc and the primary visual cortex suggested adequate fit 

between the model and the data ("!(5) = 4.15, p = 0.53; SRMR = 0.06, RMSEA = 0, 90% 

CI [0, 0.10], CFI = 1). This model identified time-lagged relationships of task-based 

functional connectivity on resting-state functional connectivity (task at T1 predicting rest 

at T2: b = 0.17, SE = 0.07, 95% CI = [0.04, 0.31], Z = 2.47, p = 0.01; task at T2 

predicting rest at T3: b = 0.22, SE = 0.09, 95% CI = [0.05, 0.39], Z = 2.49, p = 0.01). A 

model allowing time-lagged cross-modal associations to vary across waves not better fit 

(!AIC = 2.00, !"!(1) = 0.00, p = 0.99). 

Global fit statistics of a model testing the alternative hypothesis for NAcc-primary 

visual cortex connectivity also suggested adequate fit between the model and the data 



 88 

("!(5) = 1.32, p = 0.93; SRMR = 0.03, RMSEA = 0, 90% CI [0, 0.03], CFI = 1). This 

model did not identify significant time-lagged relationships of resting-state functional 

connectivity on task-based functional connectivity (rest at T1 predicting task at T2: b = 

0.01, SE = 0.08, 95% CI = [-0.14, 0.16], Z = 0.13, p = 0.90; rest at T2 predicting task at 

T3: b = 0.01, SE = 0.09, 95% CI = [-0.17, 0.19], Z = 0.13, p = 0.90). As with the NAcc-

vmPFC, task-based functional connectivity positively predicted itself over time (from T1 

to T2: b = 0.17, SE = 0.07, 95% CI = [0.04, 0.30], Z = 2.50, p = 0.01; from T2 to T3: b = 

0.21, SE = 0.09, 95% CI = [0.04, 0.38], Z = 2.48, p = 0.01). A model allowing time-

lagged cross-modal paths to vary across waves did not better fit the data (!AIC = 1.41, 

!"!(1) = 0.59, p = 0.44), and a simpler model with constrained paths was retained. 

Hierarchical Generalized Linear Modeling Approach 

Augmented Long-Term Phasic Modeling Hypothesis for NAcc-vmPFC 

Connectivity. To test sensitive period theories, hierarchical generalized additive models 

augmented models of the LTPM hypothesis to investigate whether time-lagged and cross-

modal effects might vary with maturation. This modeling approach was used to examine 

nonlinear interactions between time-lagged beta-series connectivity and time-lagged 

maturation (age or pubertal stage in separate models) in predicting resting-state 

functional connectivity within the NAcc-vmPFC (Table 1, LTPM-Age and LTPM-

Puberty models). Examination of omnibus statistics for the joined spline terms did not 

identify significant interactions between beta-series connectivity and age (F(2) = 0.69, p 

= 0.50) or puberty (F(2) = 0.62, p = 0.54) that predicted resting-state connectivity. 

Augmented Alternative Hypothesis for NAcc-vmPFC Connectivity. A similar 

approach was employed to examine how maturation might augment effects specified by  



 89 

Figure 3.4 

Structural Equation Models of NAcc Connectivity with Primary Sensory Regions 

 

Note. All models reflect the long-term phasic modeling hypothesis.  
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the alternative hypothesis. We examined nonlinear interactions between time-lagged 

resting-state connectivity and time-lagged maturation (Table 1, ALT-Age and ALT-

Puberty) on task-based connectivity. Omnibus test statistics for the joined spline terms 

did not identify significant interactions between resting-state connectivity and age (F(2) = 

0.13, p = 0.88) or puberty (F(2) = 1.46, p = 0.24) predicting connectivity during self-

disclosure in the NAcc-vmPFC. 

Control Connections. Hierarchical generalized additive models similarly 

augmented models of the LTPM and alternative hypotheses for control connections. 

Omnibus test statistics for the joined spine terms did not identify significant interactions 

predicting connectivity between the NAcc and primary auditory or visual cortices (see 

Appendix B). The LTPM was supported for NAcc-visual cortex only, so we visualized 

the following effects on resting-state NAcc-visual cortex connectivity: (A) linear effects 

of time-lagged age and time-lagged beta-series connectivity, (B) the non-linear 

interaction between time-lagged age and time-lagged beta-series connectivity, and (C) the 

non-linear interaction between time-lagged pubertal stage and time-lagged beta-series 

connectivity (Figure 3.5). Visual inspection suggested that time-lagged cross-modal 

effects might be driven by older, more pubertally mature adolescents (although not 

statistically significant).  

 

Discussion 

 This chapter primarily aimed to evaluate LTPM and alternative neurobiological 

mechanisms of frontostriatal development and secondarily aimed to explore evidence for 

sensitive period effects of such mechanisms. Using structural equation modeling, we  
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Table 3.1 

Hierarchical Generalized Additive Models Examining Neural Predictor by Maturation Interactions for NAcc-vmPFC Connectivity 

  LTPM - Age LTPM - Puberty ALT - Age ALT - Puberty 

Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.10 ** 0.04 – 0.16 0.002 0.09 ** 0.03 – 0.15 0.005 0.30 *** 0.22 – 0.39 <0.001 0.28 *** 0.20 – 0.37 <0.001 

RSFC 
 

0.07  -0.08 – 0.22 0.342 0.08  -0.08 – 0.23 0.328       

Beta       0.10  -0.07 – 0.28 0.242 0.18  -0.00 – 0.35 0.054 

 F(2) p  F(2) p  F(2) p  F(2) p 

Beta by age   0.691 0.503          

Beta by 
puberty 

    0.618  

0.541 
 

      

RSFC by age         0.129 0.879    

RSFC by 
puberty 

          1.463 0.236 
 

Observations 130 124 137 130 

R2 0.017 0.017 0.028 0.052 

Note. * p<0.05   ** p<0.01   *** p<0.001; RSFC = resting-state functional connectivity; Beta = beta-series, task-based connectivity; LTPM = Long-
Term Phasic Model; in LTPM models, the interaction between task-based beta-series connectivity and maturation predicted resting-state functional 
connectivity; ALT = Alternative model; in ATL models, the interaction between resting-state connectivity and maturation predicted task-based functional 
connectivity. All predictor variables were time-lagged by one time point. Omnibus tests evaluated the null hypothesis for the joined spline terms.  
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Figure 3.5 

Resting-State NAcc-Visual Cortex Connectivity Predicted by Time-Lagged Maturation, Beta-Series Connectivity, and Their 

Interaction 

 

Note. Models predicted resting-state connectivity of the NAcc-visual cortex. Panel A visualizes additive linear effects of time-lagged 
age and time-lagged beta-series connectivity and are presented for comparison/context only. Panel B visualizes the non-significant 
interaction between time-lagged age and time-lagged beta-series connectivity afforded by the hierarchical generalized additive 
modeling approach (Model LTPM - Age). Panel C visualizes the non-significant interaction between time-lagged pubertal stage and 
time-lagged beta-series connectivity using the same approach (Model LTPM - Puberty). Plots were created using the vis.gam function 
of the mgcv package in R.
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identified patterns consistent with the LTPM hypothesis in NAcc connectivity with the 

primary visual cortex rather than with the vmPFC (or with primary auditory cortex). 

Across structural equation modeling and hierarchical generalized additive modeling 

approaches, we did not identify evidence of sensitive period effects.  

Evaluating Models of the Long-Term Phasic Modeling and Alternative Hypotheses 

Global model fit indices (chi squared, RMSEA, SRMR, and CFI) suggested 

moderate to good fit across structural equation models of both the LTPM and alternative 

hypotheses following model adjustments to facilitate estimation. Across the connection-

of-interest and control connections, indices generally suggested better global fit in models 

of the LTPM hypothesis as compared to models of the alternative hypothesis. However, 

there were no significant time-lagged cross-modal paths in models of the LTPM or 

alternative hypotheses describing NAcc-vmPFC connectivity such that there is not good 

evidence that the inclusion of core hypothesized paths were centrally responsible for 

improved global fit. If both the LTPM and alternative hypotheses are not true for this 

circuit, it might be that resting-state and task-based connectivity develop independently 

of one another and/or are more substantively driven by factors including genetic 

programming, early life experience, and/or aspects of concurrent experience that are not 

well-captured by the self-disclosure task.  

One important consideration in interpreting these findings is that the vmPFC is a 

functionally-defined region that lacks strict and agreed-upon anatomical boundaries and 

thereby includes a large swath of cortex encompassing multiple subregions. The fairly 

small subregion of the vmPFC examined in this study was also functionally rather than 

anatomically defined; it was chosen for being strongly implicated in socio-affective 
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processing networks in meta-analyses considering findings from both the task-based and 

resting-state literature (Alcalá-Lopez et al., 2018). In addition to anatomical connections 

with this subregion of the vmPFC, the NAcc also has connections with more caudal (e.g., 

anterior cingulate cortex) and ventral regions (e.g., orbitofrontal cortex) of the vmPFC. 

Prior longitudinal studies have identified heterogeneous effects of NAcc connectivity 

across the extent of the vmPFC. One study systematically examined parcels across the 

extent of the vmPFC and identified connectivity decreases across three other vmPFC 

subregions (ventral anterior cingulate cortex, subgenual anterior cingulate cortex, and 

posterior medial orbitofrontal cortex), but not in an anterior vmPFC region more similar 

to the one that was the focus of this investigation (Parr et al., 2021). Another longitudinal 

study of only resting-state connectivity identified age-related decreases in a region of 

fronto-medial cortex that partly overlapped the vmPFC region that we examined, as well 

as in a subcallosal subregion of the vmPFC (van Duijvenvoorde et al., 2019). These 

studies examined developmental trajectories and not the LTPM or alternative hypotheses; 

however, they highlight the heterogeneity of the vmPFC and suggest that additional 

exploratory research across the extent of this region may be warranted.   

Within a modality, task-based NAcc-vmPFC connectivity predicted itself over 

time. This is notable in light of the fact that (as detailed in the next chapter), the majority 

of participants chose a different friend to disclose to at each wave. It suggests that NAcc-

vmPFC connectivity during self-disclosure at least partly reflects a stable individual 

difference across adolescence. However, we identified low stability of resting-state 

connectivity between the NAcc and our vmPFC subregion across adolescence. Some 

studies suggest that resting-state connectivity is stable in adulthood (Gratton et al., 2018), 
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and prior studies examining resting-state connectivity between NAcc and vmPFC 

subregions during adolescence have also identified greater stability than in this study 

(ICC values of 0.21-0.31 in van Duijvenvoorde et al., 2019, compared to values close to 

zero in these analyses). Low within-person stability suggests that the NAcc’s resting-state 

connectivity with the target region may be particularly sensitive to factors that vary by 

session, such as what participants are thinking about, and/or because individual factors 

dominate more when samples are drawn from a limited age span. 

The LTPM hypothesis was supported in NAcc connectivity with the primary 

visual cortex. For this circuit, task-based connectivity unexpectedly predicted resting-

state connectivity 18 months later, even when visual stimuli were absent (as participants’ 

eyes are closed during the resting-state scans). We identified better global fit of models of 

the LTPM hypothesis as compared to the alternative hypothesis, as well as statistically 

significant time-lagged cross-modal paths suggesting that task-related connectivity during 

self-disclosure predicted resting-state connectivity across waves (Figure 3.4B). This 

association was observed in the raw correlations, suggesting that it is not an artifact of the 

model (Figure 3.2C). This pattern was not observed in NAcc connectivity with the 

primary auditory cortex, which suggests that it is not a feature of NAcc connectivity with 

primary sensory regions in general, but with task-relevant modalities. Connectivity 

between the NAcc and primary visual cortex during self-disclosure trials may reflect 

basic affective salience of the stimuli themselves. Previous studies have identified that 

reward value modulates neuronal activity in the primary visual cortex of non-human 

primates (Stănişor et al., 2013), as well as within an extended ventral visual pathway in 

humans (Hickey & Peelen, 2017). While there may be some afferent connections from 
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visual and somatosensory regions to the striatum (Salgado & Kaplitt, 2015), the NAcc 

and primary visual cortex are not part of a major circuit and their coordinated signal may 

be a result of indirect anatomical connections, as is the case for other regions that exhibit 

correlated signal at rest. 

The unexpected finding of evidence for the LTPM hypothesis in NAcc 

connectivity with the primary visual cortex raises a new set of questions. First, the visual 

system has a well-understood hierarchical structure, and additional analyses might 

consider how “high up” and along what visual system pathway(s) this effect is seen. 

Understanding the degree to which this developmental pattern extends to regions 

involved in reading, semantic understanding, and/or social cognition might implicate 

higher-order cognitive processes, whereas greater specificity of this developmental 

pattern to primary visual cortex might suggest that the finding is grounded in a more 

basic sensory responses to the stimuli themselves. Second, analyses separately examining 

the two phases of self-disclosure trials (self-evaluation and self-disclosure decision 

phases) might additionally identify whether this pattern is driven by the self- and/or 

other-oriented aspects of the task, as both may be salient. However, it would be important 

to acknowledge that the two phases of the task do have overlapping time courses such 

that their signal can only be partly disentangled. Finally, follow-up analyses might seek 

to understand the extent to which task-based shifts in NAcc-primary visual connectivity 

reflect the unfolding of processes such as normative increases in reward approach during 

adolescence that tend to be associated with pubertal development (e.g., Igenogle et al., 

2017), or whether they might be driven by experience. Compared to a few decades ago, 

adolescents’ self-disclosure decisions are increasingly mediated by digital technologies 



 97 

involving greater engagement of visual and text-based modalities when interacting with 

friends outside of the laboratory. Future analyses might consider whether changes 

between NAcc and visual system connectivity during self-disclosure are related to 

changes in technology use, particularly regarding technology that mediates social 

interactions.  

Evaluating Sensitive Period Hypotheses 

Results did not identify support for sensitive period hypotheses. Structural 

equation models in which time-lagged cross-modal effects were constrained to be equal 

tended to fit the data better than those that estimated different paths for T1 to T2 and T2 

to T3. Additionally, hierarchical generalized additive models did not identify significant 

interactions between time-lagged predictors and maturation as measured by either age or 

pubertal stage. These findings suggest that null effects in models testing LTPM and 

alternative hypotheses were not the result of varying effects over time that cancelled one 

another out. Furthermore, we did not identify statistical evidence that the effect of task-

based connectivity on resting-state connectivity identified in one control connection 

(NAcc-primary visual cortex) varied by maturation. Visual inspection of the interaction 

plots suggests that this effect might be stronger at later ages and pubertal stages (Figure 

3.5), which might be explored with later waves of data from the Transitions in 

Adolescent Girls Study. If sensitive period hypotheses are not true for this circuit, it 

might be that its development is cumulatively informed by genetics and experience across 

childhood and into adulthood. Additionally, changes seen in adolescence may be 

transient, such as those reflecting, activational effects of puberty. 
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Limitations 

First, a major limitation is that analyses can only speak to a form of causality 

grounded in temporal precedence that is typical of observational studies. Experimental 

manipulations that provide more certainty regarding causal mechanisms, such as those 

involving social deprivation in animal models, are unlikely to be feasible or ethical in 

children and adolescents. However, randomized intervention studies geared toward 

improving adolescent social connections may be one future avenue for experimental 

research. Second, resting-state functional connectivity scans were collected after separate 

runs of a self-evaluative task, and it is not possible with these data to rule out the 

possibility that effects may be related to carry-over of cognitive processes and/or thought 

patterns from those scans (Grigg & Grady, 2010). Third, we encountered estimation 

difficulties requiring the use of simpler models that either did not account for correlations 

between exogenous variables and a latent factor α (representing unmeasured causes of 

endogenous variables; this was the case in models of NAcc-vmPFC connectivity) or that 

eliminated α altogether (this was the case in models of NAcc-auditory and NAcc-visual 

connectivity). Eliminating α in models for the control connections tended to impact 

estimates of the within modality time-lagged effect, but minimally impacted the cross 

modality time-lagged effects that were of central interest in evaluating the LTPM and 

alternative hypotheses. Finally, robust missing data methods have not yet been developed 

for hierarchical generalized additive models (including those that would facilitate pooling 

parameters from multiple imputation), and these estimates may have been biased if the 

data were not missing completely at random. However, structural equation models 
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incorporated full-information maximum likelihood methods for producing unbiased 

estimates and standard errors when data are missing at random or completely at random.  

Conclusions 

 We did not identify evidence for the LTPM or alternative hypotheses as 

developmental models of NAcc-vmPFC connectivity. Instead, we identified evidence for 

the LTPM hypothesis in NAcc connectivity with the primary visual cortex only. While 

follow-up analyses are needed to understand the specificity and extent of this effect, this 

finding complements prior work suggesting that LTPM effects can be identified despite 

differences in the timescales and analytic approaches employed across modalities 

(Gabard-Durnam et al., 2016). Exploratory analyses found that time-lagged cross-modal 

effects were not stronger at certain time points, ages, or pubertal stages, providing no 

evidence of sensitive period effects in the connections examined.  
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CHAPTER IV 

IMPLICATIONS FOR SOCIAL RELATIONSHIPS AND 

MENTAL HEALTH IN ADOLESCENT GIRLS 

 

Introduction 

Despite epidemiological links between puberty and adolescent mental health, 

relatively little is known about how neural and social changes explain or mediate this 

association (Pfeifer & Allen, 2021). This chapter examined associations between neural 

connectivity and behavioral measures related to the self-disclosure task, as well as 

measures of adolescent friendship quality and mental health (with a focus on internalizing 

symptoms and especially depression). In doing so, we aimed to guide interpretations of 

our prior models of developmental change (Chapters 2 and 3) and to inform future 

research linking biopsychosocial processes during adolescent development to mental 

health. 

Symptoms of psychopathology begin to increase at puberty across genders, and 

gender discrepancies in the prevalence of internalizing disorders emerge with the onset of 

puberty (Mendle, 2014). Meta-analyses suggest that early pubertal timing is linked to 

internalizing symptoms (Ullsperger & Nikolas, 2017), and in the same sample of girls 

analyzed in this study, the link between early timing and internalizing problems was more 

pronounced when measured by physical maturation rather than hormone levels (Barendse 

et al., preprint). A recent large-scale meta-analysis identified developmental differences 

in the median age of disorder onset, with fear/anxiety disorders typically emerging in 

childhood/adolescence and mood disorders more typically being diagnosed later in 
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adolescence and in adulthood (Solmi et al., 2021). However, a sizeable prior body of 

work has suggested that rates of depressive symptoms emerging in mid-adolescent girls 

tended to be associated with early puberty, and to persist into adulthood (Mendle et al., 

2017), implicating potential sex- and/or gender-specific biopsychosocial mechanisms of 

developmental psychopathology (Ge & Natsuaki, 2009). These factors ultimately 

contribute to a sizable gender discrepancy in the prevalence of depression (1.5-3 times 

greater in women than men) and other internalizing problems worldwide (Mojtabai et al., 

2016; World Health Organization, 2017). 

A key protective factor that is associated with a reduced likelihood of major 

depressive disorder is self-disclosure (Santini et al., 2015). One large longitudinal study 

employing a quasi-causal design identified opportunities for self-disclosure as a robust 

predictor of depression in adults, even among a wide range of lifestyle factors (e.g., 

exercise and sleep; Choi et al., 2020). Self-disclosure processes may facilitate 

opportunities for social connectedness, and Although self-disclosure is normative and in 

many cases protective, patterns of self-disclosure involving extensive discussion of 

problems (known as co-rumination) are associated with increases in internalizing 

psychopathology and may be more pronounced in friendships among adolescent girls 

(Rose, 2002). When examining the neural processes supporting self-disclosure decisions 

to a close friend, NAcc and vmPFC engagement has been found to be sensitive to 

characteristics of that friendship (Vijayakumar et al., 2020). Both regions are part of a 

mesocorticolimbic system for processing value and reward that has been theorized to 

change with puberty and to play a central role in adolescent-emergent depression (Forbes 

& Dahl, 2005). 
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Goals of the Current Analysis 

Considerations of neurodevelopmental processes as potential mediators between 

pubertal development and mental health is a relatively nascent area (Pfeifer & Allen, 

2021). In such emerging areas of research, establishing effect sizes of pairwise 

relationships via exploratory research emphasizing effect sizes may be an important step 

toward long-term model- and theory-building (Flournoy et al., 2020). This chapter 

therefore examined effect sizes of associations between neural measures of functional 

connectivity and behavioral indices pertaining to aspects of adolescents’ friendships and 

mental health. Between participants, greater NAcc-vmPFC task-based connectivity 

during self-disclosure was hypothesized to be associated with greater valuation of self-

disclosure, as well as intimacy, support, and stability in adolescents’ close friendships 

across time points. Greater NAcc-vmPFC connectivity during both self-disclosure and 

rest was hypothesized to be associated with fewer depressive symptoms, anxious 

symptoms, and better well-being (specifically, a connectedness facet of well-being) 

across time points. Task-based and resting-state connectivity between two additional 

regions (regions within the primary auditory and primary visual cortices) were also 

examined to evaluate the specificity of any effects.  

 

Methods 

 The goal of the present analyses was to estimate the magnitude of effects between 

neural and behavioral measures across all time points. Three types of behavioral 

measures were examined: (1) indices related to the Self-Disclosure Task, (2) 

questionnaire measures related to the adolescents’ friendships, and (3) questionnaire 
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measures related to mental health and well-being. Neural measures of task-based and 

resting-state connectivity were cleaned and processed as described in Chapter 2.  

Additional Measures 

Indices Related to the Self-Disclosure Task 

Chosen Friend Stability. When completing the self-disclosure task, adolescents 

made a disclosure decision at every trial about whether to keep information about 

themselves private, or whether to share this information with a friend. Participants were 

interviewed prior to the scan to identify this friend and to verify that this was a close, 

ideally best friend that they would typically share at least some superficial and intimate 

information with. When possible, participants were encouraged to select a best friend of 

the same gender, but participants also chose male friends and/or relatives. Participants 

were informed that they would be asked to share one of their responses with their friend 

in real life, following the scan. Stability in their chosen friend on the self-disclosure task 

was coded as a “1” for participants who had listed the same friend across time points for 

which they had available neural task data, and as a “0” for participants who listed a 

different friend at any time points for which they had available neural task data. We note 

that further validation is needed to understand how this relates to the stability of 

adolescents’ friendships in general, and that measuring chosen friend stability by 

examining friend’s names is not an ideal measure, as adolescents’ friends (particularly 

non-binary and/or transgender youth) may change their names over time.  

Points of Subjective Equivalence. When choosing to keep information private or 

to self-disclose, each choice was associated with two to four pennies that translated to 

real monetary rewards that participants could earn on the task. Points of subjective 
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equivalence, or PSE values, were identified from cumulative normal curves fit to 

disclosure data on each increment of difference between the value of the two disclosure 

options (for more details, see Vijayakumar et al., 2020). Impossible estimates of PSE 

were calculated when participants had highly skewed behavior (i.e., always or almost 

always choosing to disclose or not to disclose), and these values were winsorized to a 

meaningful range based on the study design (e.g., -$0.02 or +$0.02 cents, which was the 

maximum discrepancy. Negative PSEs indicated a willingness to forfeit monetary reward 

to share information, reflecting a high intrinsic value of disclosure. 

Questionnaire Measures of Adolescent Friendships 

 Across all questionnaire measures, mean response values were used; adolescents 

who missed one or more items were included in analyses. 

Friendship Quality. The Intimate Friendship Scale (IFS) measured friendship 

quality via 32 items rated on a 7-point Likert scale, with higher scores reflecting higher 

friendship quality (Sharabany, 1994). This questionnaire assesses eight dimensions: 

disclosure, sensitivity, attachment, exclusiveness, giving, imposition, common activities, 

and trust, and these subscales had previously been found to exhibit adequate internal 

reliability (Sharabany et al., 1994). This scale was completed in reference to the same 

close peer chosen for disclosure in the self-disclosure task.  

Perceived Support. The Multidimensional Scale of Perceived Social Support 

(MSPSS) measured perceptions of social support via 12 items rated on a 7-point Likert 

scale, with higher scores reflecting greater perceived support (Zimet, Dahlem, Zimet, & 

Farley, 1988). Separate items assessed support from family, friends, and significant 
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others. As we were interested in peer relationships and as the self-disclosure task focused 

on a close friendship, analyses here focused on the subscale related to friends. 

Co-Rumination. Co-rumination refers to extensive focus and elaboration on 

negative feelings and problems within the context of a close friendship. Text preceding 

the questionnaire instructed participants to describe the way that they usually are with 

their best or closest same-sex friends. The Co-Rumination Questionnaire (CRQ) assessed 

co-rumination behaviors via 27 items rated on a 5-point Likert scale, with higher scores 

indicating greater co-rumination (Rose, 2002). These behaviors included the frequency of 

discussing problems, discussing problems in lieu of engaging in other activities, mutual 

encouragement of discussing problems, discussing the same problem repeatedly, 

speculation about the causes, consequences, and poorly understood aspects of problems, 

and focusing on negative feelings. 

Questionnaire Measures  of Mental Health 

Depressive Symptoms. Depressive symptoms were assessed on the Center for 

Epidemiologic Studies Depression Scale for Children (CES-DC), a continuous measure 

developed by the NIMH that emphasizes depressed mood over the past week (Faulstich 

et al., 1986). The scale contains 20 items rated on a 4-point Likert scale, with higher 

scores indicating higher levels of depression. 

Anxiety Symptoms. The Screen for Child Anxiety Related Emotional Disorders 

Brief Assessment of Anxiety and Post Traumatic Stress Symptoms was administered to 

participants to assess their anxiety and post traumatic stress symptoms at the time of 

assessment (Muris et al., 2000). Designed for children ages 7-18, the questionnaire 
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includes 10-items each rated on a 3-point Likert scale. As we were interested in general 

internalizing problems rather than trauma, analyses focused on the anxiety subscale only.  

 Connectedness as a Facet of Well Being. The Engagement, Perseverance, 

Optimism, Connectedness, and Happiness (EPOCH) measure of adolescent well-being 

was adapted from an adult model of well-being to be more developmentally appropriate 

for youth (Kern et al., 2016). The measure includes 20 items each rated on a 5-point 

Likert scale. As we were interested in social and especially peer relationships, analyses 

here focused on the connectedness subscale, which emphasized subjective feelings of 

closeness, support, and being valued by others. This measure was administered at T3 

only.  

Statistical Analyses 

The current analyses aimed to identify effect sizes of relationships between neural 

resting-state and self-disclosure-elicited functional connectivity between the NAcc and a 

sub-region of the vmPFC (as well as two control regions) and behavioral measures in a 

sample that recruited adolescent girls. By using multilevel/hierarchical linear models, 

first-level models took the form of Connectivityit = β0i + β1(Behaviorit -!"ℎ#$%&'i) + eit, 

whereas second-level models took the form of β0i = γ00 + γ01(!"ℎ#$%&'i) + u0i. Including 

mean-centered behavioral variables as first-level predictors and within-person means as 

second-level predictors allowed for estimation of both within- (β1) and between- (γ01) 

person effects. Two of the variables that we examined were time-invariant—there was 

only one variable assessing chosen friend stability over time, and connectedness as a 

facet of well-being was measured at T3 only. Time-invariant variables were included as 

second-level predictors, such that first-level models only estimated the effect of the 
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random intercept. Multilevel models were estimated using maximum likelihood methods 

and were specified in lme4 (v 1.1-21) with complete observations only in R. Standardized 

fixed-effects estimates and their 95% confidence intervals were reported as indicators of 

effect size. 

 

Results 

Bivariate Correlations Between Behavioral Measures 

Examination of the Pearson correlation coefficients of disclosure task indices, 

friendship questionnaire, and mental health variables across waves revealed that the 

strongest correlations were between symptoms of anxiety and depression (r = 0.49), 

followed by correlations between friendship support, friendship quality, and social 

connectedness measures (r = 0.37-0.40). Also notable were negative correlations between 

social connectedness and symptoms of both depression and anxiety (r=0.26–0.22). Co-

rumination was modestly correlated with friendship quality, friendship support, and 

social connectedness (r=0.15-0.27), but was also positively correlated with depressive 

symptoms (r=0.21). Finally, PSE only exhibited weak correlations with all other 

variables, except for friendship quality (r = -0.2); this suggested that adolescents with 

better friendship quality tended to place greater value on self-disclosure. (See Figure 4.1.) 

Associations Between Self-Disclosure Task Indices and Neural Connectivity 

Across measures of behavioral variables on neural connectivity, we characterize 

effects for which estimates with standardized effect sizes of greater than 0.1 whose 

confidence intervals did not include zero; however, some effects below that threshold are 

discussed when part of a broader pattern of effects. 
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Figure 4.1 

Correlations Between Behavioral Measures, Collapsed Across Time Points 

 
Note. PSE = Point of subjective equivalence 

 

Table 4.1 

Descriptive Statistics of Self-Disclosure Task Variables Across Time Points 

Variable Metric T1 T2 T3 

Friend Named N 147 136 72 

 N missing (%) 1 (1%) 1 (1%) 1 (5%) 

Same Friend as the Wave Prior N  28 17 

Same Friend as Two Waves Prior N   11 

PSE Mean (SD) -0.85 (1.46) -0.46 (1.35) -0.26 (1.36) 

 N missing (%) 1 (1%) 15 (11%) 13 (17%) 

Note. PSE = Point of subjective equivalence 
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Figure 4.2 

Effect Sizes of Self-Disclosure Task Variables on Neural Connectivity 

 
Note. PSE = Point of subjective equivalence; W = Within-person effect, B = Between-
person effect.  
 

Friendship Stability 

An examination of effect sizes from multi-level models did not suggest that 

stability in the friend selected on the self-disclosure task was strongly related to task-

based or resting-state connectivity between the NAcc and vmPFC or any of the control 

regions (Figure 4.2) 

Intrinsic Value of Self-Disclosure 

Similarly, examination of effect sizes did not suggest that the intrinsic value of 

disclosure (quantified as the PSE) that adolescents exhibited in the self-disclosure task  
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Table 4.2 

Descriptive Statistics of Friendship Variables Across Time Points 

Variable Metric T1 T2 T3 

Friendship Quality Mean (SD) 5.52 (0.77) 5.62 (0.66) 5.52 (0.65) 

 N missing (%) 6 (4%) 2 (1%) 2 (0%) 

Perceived Support from Friends  Mean (SD) 5.61 (1.16) 5.8 (1.05) 5.68 (1.2) 

 N missing (%) 2 (0.01) 2 (0.01) 0 (0) 

Co-Rumination Mean (SD) 2.29 (0.86) 2.54 (0.77) 2.71 (0.81) 

 N missing (%) 18 (0.12) 2 (0.01) 0 (0) 

 

was strongly related to task-based or resting-state connectivity between the NAcc and 

vmPFC or any of the control regions (Figure 4.2) 

Associations Between Friendship Questionnaire Measures and Neural Connectivity 

Friendship Quality 

Within-person changes in friendship quality were negatively associated with task-

based NAcc connectivity with the vmPFC (b = -0.11, 95% CI [-0.21, -0.01]). 

Perceived Social Support from Friends 

Within-person changes in perceived social support from friends were negatively 

associated with resting-state NAcc-auditory cortex connectivity (b = -0.12, 95% CI [-

0.22, -0.01]). 

Co-Rumination  

Within-person changes in co-rumination were negatively associated with resting-

state NAcc-visual cortex connectivity (b = -0.14 95% CI [-0.25, -0.03]). 
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Figure 4.3 

Effect Sizes of Friendship Variables on Neural Connectivity 

 

Note. W = Within-person effect, B = Between-person effect. 

 

Associations Between Mental Health, Well-Being, and Neural Connectivity 

Depressive Symptoms 

Examination of effect sizes did not suggest that the depressive symptoms were 

strongly related to task-based or resting-state connectivity between the NAcc and vmPFC 

or any of the control regions (Figure 4.4). 



 112 

Table 4.3 

Descriptive Statistics of Mental Health Variables Across Time Points 

Variable Metric T1 T2 T3 

Depressive Symptoms Mean (SD) 0.64 (0.51) 0.76 (0.59) 0.96 (0.64) 

 N missing (%) 6 (4%) 2 (1%) 2 (0%) 

Anxiety Symptoms Mean (SD) 0.36 (0.36) 0.37 (0.37) 0.42 (0.34) 

 N missing (%) 11 (0.07) 2 (0.01) 0 (0) 

Connectedness Mean (SD)   3.27 (0.72) 

 N missing (%)   17 (0.22) 

 

Anxiety Symptoms  

Examination of effect sizes did not suggest that the anxiety symptoms were 

strongly related to task-based or resting-state connectivity between the NAcc and vmPFC 

(Figure 4.4). However, anxiety symptoms were negatively related to within-person 

resting-state connectivity between the NAcc and primary auditory cortex (b = -0.13 , 95% 

CI [-0.23, -0.02]). 

Social Connectedness as a Facet of Well-Being 

Examination of effect sizes did not suggest that the connectedness facet of well-

being was strongly related to task-based or resting-state connectivity between the NAcc 

and vmPFC or any of the control regions (Figure 4.4). 

 

Discussion 

This chapter aimed to examine associations between neural measures of NAcc-

vmPFC connectivity and behavioral indices related to the self-disclosure task, adolescent  
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Figure 4.4 

Effect Sizes of Mental Health Variables on Neural Connectivity 

Note. W = Within-person effect, B = Between-person effect. 

 

friendships, and mental health. For brevity, we focused on interpreting associations with 

standardized effect sizes of greater than 0.1 whose confidence intervals did not include  

zero, although the broader pattern of effect sizes is presented for context (Figures 4.1-4.3, 

see Appendix C for a table of all values). 
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Associations with NAcc-vmPFC Connectivity  

Examination of standardized effects across multilevel models did not suggest 

sizable associations between behavioral measures and NAcc-vmPFC connectivity at 

either task or rest, as effects were largely close to zero/rarely exceeded 0.1 and commonly 

exhibited wide confidence intervals. One association between a behavioral variable and 

NAcc-vmPFC connectivity was notable, but was in the opposite direction as 

hypothesized. This within-person effect suggested that higher levels of friendship quality 

were associated with lower-levels of task-based connectivity in our circuit of interest. 

The magnitude of the effect was such that one standard deviation of change in friendship 

quality (equivalent to roughly ⅔ of a point on averaged responses to a 7-point Likert 

scale from “Always disagree” to “Always agree” on the IFS) was associated with a tenth 

of a standard-deviation of change in neural connectivity.  

Previous findings from the first wave of data found that univariate signal within 

the vmPFC and NAcc during disclosure decisions was predicted by the interaction of task 

condition (superficial versus intimate friendship depth) and friendship quality 

(Vijayakumar et al., 2020). This suggested that the relationship between NAcc-vmPFC 

connectivity and friendship quality might be sensitive to the specific types of information 

shared and in what contexts; additional analyses might clarify this relationship by 

examining differences between task conditions. 

Associations with NAcc Connectivity to Control Regions 

Examination of standardized effects across models did not suggest sizable effects 

between behavioral measures and task-based connectivity between the NAcc and control 

regions. However, results suggested within-person effects of behavioral variables on 
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NAcc resting-state connectivity with control regions. Specifically, perceived social 

support from friends and anxiety symptoms were both related to lower NAcc-auditory 

cortex resting-state connectivity, while co-rumination was also related to lower NAcc-

visual cortex resting-state connectivity. Effect sizes were small; one standard deviation of 

change in perceived social support (roughly 1 point on averaged responses to a 7-point 

Likert scale ranging from “Very strongly disagree” to “Very strongly agree” on the 

MSPSS) or anxiety symptoms (⅓ of a point on averaged responses to a 3-point Likert 

scale ranging from “Not true or hardly ever true” to “Very often or often true” on the 

SCARED inventory) was associated with approximately a tenth of a standard-deviation 

of change in neural connectivity.  

Effects involving connectivity with the auditory system suggest that, although 

participants were putatively “at rest”, they were still navigating a unique environment 

created by the scanner that included MRI sounds commonly regarded as unpleasant. As 

NAcc signal has been associated with regulating responses to aversive stimuli (Wager et 

al., 2008; Doré et al., 2017), greater coordination between the NAcc and primary auditory 

cortex in the presence of these stimuli may reflect greater regulatory capacities or 

tendencies during exposure to noxious stimuli that appeared to be related to lower anxiety 

symptoms outside of the scanner. (This pattern would not be observed in task-based 

connectivity, as such sounds were present both during trials and at baseline and were 

therefore subtracted out from the signal.)  

However, this interpretation does not help to explain why the same pattern of 

findings was identified for perceived social support from friends, in which greater 

perceptions of support from friends were also related to lower NAcc-auditory resting-
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state connectivity; nor does it help to explain the association between greater co-

rumination and lower NAcc-visual resting-state connectivity. Future analyses might 

systematically examine other voxels or parcels to assess the specificity and strength of 

these effects in light of broader developmental patterns. The present analyses do not rule 

out the possibility that negative within-person brain-behavior effects identified here 

might be due to coinciding with broader developmental trends, such as a tendency for 

NAcc and other subcortical structures to exhibit increasingly segregated resting-state 

connectivity with cortical regions across development (van Duijvenvoorde et al., 2019).  

Limitations 

These analyses should be interpreted in light of limitations discussed in previous 

chapters, including issues with missing data and collapsing across task conditions 

(Chapter 2), as well as the possibility of a different pattern of effects in other aspects of 

the vmPFC (Chapter 3). Associations between behavioral variables and task-based 

connectivity might be particularly obscured by collapsing across statement depths 

(superficial and intimate disclosures). However, the aim of the analyses in this chapter 

was not to verify a specific model of friendship development or psychopathology, but 

rather to identify effect sizes for future models and to aid in the interpretation of earlier 

developmental effects or trends (reflected in our decision to examine task-related signal 

at the same level of granularity employed when examining developmental trends and 

mechanisms).  

Conclusions 

 Our hypotheses that NAcc-vmPFC task-based connectivity during self-disclosure 

and resting-state connectivity would be associated with behavioral variables reflecting 
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self-disclosure task behavior, aspects of friendship quality, and mental health were not 

supported. Overall, the strongest brain-behavior associations exhibited standardized 

estimates of around 0.10-0.15), with notable effects tending to be within- rather than 

between-subjects. These included the finding that within-person increases in friendship 

quality were associated with lower levels of NAcc-vmPFC task-based connectivity, a 

result that was in the opposite direction than hypothesized. When examining control 

regions, we found that NAcc resting-state connectivity with primary sensory regions was 

associated with anxiety symptoms and perceived social support from friends (auditory 

cortex), as well as co-rumination (visual cortex). While some of these findings might be 

interpreted in terms of the presence of unpleasant sensory stimuli (MRI sounds) during 

the resting-state scan, others are not straightforward and may be artifacts of other 

developmental processes. 
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CHAPTER V 

DISCUSSION 

 

  Sensitive period theories posit that experiences during adolescence may sculpt the 

development of sociocultural processing by way of neurobiology. From an evolutionary 

lifespan perspective, the ability to tailor psychobiological systems to the sociocultural 

environment during adolescence might be adaptive in promoting reproductive success. 

This dissertation examines the theory that adolescence is a sensitive period and presents 

empirical work focused on identifying evidence for sensitive periods via a specific 

mechanism of change. 

The first chapter of this dissertation updated and extended a prior review that had 

both articulated a framework for understanding adolescence as a sensitive period for 

sociocultural processing and identified significant gaps in the evidence base for this 

theory (Blakemore & Mills, 2014). As the last decade saw major advances in the field of 

developmental cognitive neuroscience, this chapter surveyed the literature with a focus 

on understanding changes to sociocultural processing and its neural underpinnings during 

adolescence, and how these changes might be driven by experience. Overall, while 

greater attention has been paid in some domains to the identification of robust 

developmental trends, an integrated and thorough understanding of experience-driven, 

developmentally-specific, and domain-specific effects has not yet emerged in most areas.  

Sensitive Periods Theories from a Translational Science Lens 

Major goals of elucidating developmental theory are not only to understand 

constructs for their own sake, but to predict behavior and to support or intervene on 
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systems in a way that can foster healthy youth development. Academic interests in 

elucidating theory, considering all possible alternative explanations, and generating high-

profile findings may be tangential to or at odds with translational aims of policy-makers 

and youth-serving professionals who seek guidance on how to act within more immediate 

time frames. Is further research geared toward understanding adolescence as a sensitive 

period of true practical significance? Despite articulating limitations and gaps in our 

understanding of adolescence as a sensitive period for sociocultural processing, I suggest 

that many translational inferences may be adequately supported by heuristic 

conceptualizations of adolescence as such. For example, social isolation in the form of 

solitary confinement is detrimental across the lifespan, and may be particularly harmful 

for adolescents. Such isolation has been noted for inducing symptoms of psychosis as far 

back as the 19th century (Smith, 2006), and isolating youths in juvenile detention is 

associated with suicide (Cloud et al., 2014). The social isolation endured as a part of the 

coronavirus pandemic is thought to be detrimental to adolescent development, on average 

(Orben et al., 2020). In these cases, a heuristic conceptualization of adolescence as a 

period that expects rich social experiences to support typical development is well-

founded. Significant barriers to adequate mental health care globally include stigma, 

access, and little preventative care (Wainberg et al., 2017). This heuristic may be useful 

in countering narratives that only experiences in early childhood are worthy of public 

focus, thereby highlighting the need for investment in treatment and prevention during 

adolescence. 

Pushing beyond heuristic uses of sensitive periods conceptualizations of 

adolescence may support additional possibilities for translation. Conceptualizing 
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adolescence as a period of heightened sensitivity requires less stringent evidence than 

sensitive period theories, and may also inform useful translational approaches. Knowing 

that adolescents may be more likely to take certain kinds of risks in the presence of peers, 

or when motivated by social acceptance may be relevant for public policy aimed toward 

reducing health-risking behaviors. One framework suggests that harnessing adolescents’ 

desire for status and respect can improve adolescent interventions, especially those 

targeting risky or antisocial behaviors (Yeager et al., 2018), for example by increasing the 

status associated with desirable behaviors such as healthy eating (Bryan, et al., 2016) and 

rejecting cigarettes (Farrelly et al., 2002). An additional possibility is to capitalize on the 

heightened relevance of highly connected peers to shape values and behavior. In one 

intervention study, schools were randomly assigned to receive an anti-conflict 

intervention that invited randomly-selected students to take a more active and public role 

in opposing school conflict (Paluck et al., 2016). Schools in which more of the randomly-

selected students were highly connected “social referents” saw the greatest declines in 

disciplinary reports of peer conflict.  

Another area within the study of sensitive periods seeks to understand their limits 

and flexibility in a way that may support recovery of plasticity later in development. For 

example, following social isolation in the juvenile period, resocialization in combination 

with administration of the antidepressant fluoxetine, but not alone, reduced aggressive 

behaviors in rodents (Mikics et al., 2018). This effect was dependent on the signaling of 

brain-derived neurotrophic factor, a widely expressed neural growth factor that supports 

long-term memory that is up-regulated in response to both antidepressants and exercise 

(Russo-Neustadt et al., 2001). The authors suggest that behavioral interventions for 
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childhood adversity (specifically neglect) later in development might have enhanced 

efficacy when administered in concert with interventions that target plasticity itself 

(Miskolczi et al., 2019).  

Overview of Results 

The empirical portion of this dissertation examined functional connectivity within 

a specific neural circuit, with a focus on its developmental trajectories (Chapter 2), 

developmental mechanisms (including sensitive period mechanisms; Chapter 3), and 

relationships with behavioral variables (Chapter 4). We focused on two key nodes of a 

mesocorticolimbic circuit (the nucleus accumbens (NAcc) and the ventromedial 

prefrontal cortex (vmPFC). Measures of functional connectivity assessed the degree of 

putative coordination between these regions across states of rest and task. Resting-state 

connectivity is commonly thought to reflect the brain’s intrinsic connectivity, while task-

based connectivity is a window into neural functioning during a specific psychological 

process. In this case, frontostriatal connectivity during self-disclosure to a close friend 

was considered as a window into the integration of value-related and social cognitive 

processes within the context of adolescents’ close friendships. However, it is important to 

note that this measure is not a direct measure of social experiences and environments of 

adolescents, as suggested by the weak correlations with behavioral variables identified in 

Chapter 4. 

When examining developmental trajectories in Chapter 2, we found that pubertal 

development, but not age, was associated with non-linear changes in connectivity elicited 

by self-disclosure decisions. This trend was driven by task-based connectivity increases 

between pubertal stages 3 and 4 on a scale that is akin to, but not a precise mapping to, 
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Tanner staging. When examining trajectories of resting-state functional connectivity, 

models incorporating age and/or pubertal stage did not exhibit improved fit compared to 

null models; however, a visual inspection of the data suggested possible connectivity 

decreases occurring at the earliest ages and pubertal stages. 

In Chapter 3, we evaluated the long-term phasic modeling hypothesis that in 

developing circuits, phasic connectivity sculpts resting-state connectivity over long time-

scales. Structural equation models of the long-term phasic modeling hypothesis and an 

alternative hypothesis (that resting-state connectivity predicts task-based connectivity) 

did not suggest that either process characterized longitudinal changes in connectivity of 

the NAcc-vmPFC. Evidence consistent with the long-term phasic modeling hypothesis 

was unexpectedly identified for NAcc connectivity with the primary visual cortex, which 

was examined as one of two sensory control connections. Additional analyses considered 

sensitive periods hypotheses by examining whether time-lagged cross-modal effects 

central to either the long-term phasic modeling hypothesis or its alternative varied by 

maturation. No evidence for sensitive periods hypotheses was identified across 

connections when maturation was measured in terms of wave, pubertal stage, or age. 

 In Chapter 4, we explored brain-behavior associations. Results across task and 

rest found that, of numerous behavioral variables, NAcc-vmPFC connectivity during task 

was only weakly negatively associated with friendship quality (within-person effect). 

Examination of resting-state NAcc connectivity with control regions identified similar 

negative and within-person associations with co-rumination (visual cortex), as well as 

anxiety symptoms and perceived social support from friends (auditory cortex). 
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Summary 

 Empirical analyses suggested that task-based frontostriatal connectivity (between 

the NAcc and vmPFC) during self-disclosure exhibits a period of flux around pubertal 

stages 3-4 (Chapter 2), and within-person increases in connectivity were associated with 

poorer friendship quality (Chapter 4). Evidence that phasic modeling drives resting-state 

connectivity in this circuit and/or that sensitive periods sculpt this circuit’s development 

was lacking. Evidence consistent with the long-term phasic modeling hypothesis was 

instead identified for connectivity between the NAcc and primary visual cortex (Chapter 

3), which was unexpected given the relatively early-developing nature of the visual 

system relative to higher-order cognitive systems. Exploratory analyses suggest resting-

state connectivity between these regions was associated with lower self-reported co-

rumination (Chapter 4) such that phasic sculpting might be adaptive, although 

longitudinal mediation models are needed to explore this further. 

Limitations 

The empirical portion of this dissertation centrally investigated the idea that 

adolescent girls’ social relationships become neurally embedded via NAcc-vmPFC 

circuitry in a manner that may be relevant to behavior and psychopathology, particularly 

symptoms of depression. Ultimately, the evidence did not support this framework. This 

section explores reasons that this might be the case. 

Inferences about developmental trajectories are influenced by the age range of 

participants recruited into a study. There are two possibilities related to not having 

examined the appropriate age range that would have led us to miss effects consistent with 

one or more of the developmental models: First, it is possible that we looked too early, 
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and that the proposed developmental mechanism might be observed later in development. 

While changes to task-based NAcc-vmPFC functional connectivity occurred fairly late in 

development (between pubertal stages 3-4), the average pubertal stages at each time point 

were approximately 3, 4, and 5. This suggests that there was likely adequate sampling of 

participants at later stages of development in order to identify downstream effects of 

changes occurring around stages 3-4. Second, it is possible that we looked too late, and 

that the proposed mechanism might be observed earlier in development. This possibility 

is consistent with indications that resting-state NAcc-vmPFC functional connectivity was 

already fairly stable across time points, and that non-linear decreases in NAcc-vmPFC 

connectivity were present very early in maturation only. As it would not be the case that 

these early changes to resting-state connectivity were driven by later puberty-related 

increases in NAcc-vmPFC connectivity, this would thus only have influenced our ability 

to detect the alternative hypothesis. 

Another possibility is that these developmental patterns might be identified in 

other regions of the vmPFC, a heterogeneous and functionally-defined region (see the 

discussion in Chapter 3) and indeed in other neural systems entirely. Identification of 

evidence consistent with the long-term phasic modeling hypothesis in NAcc connectivity 

with a region in the primary visual cortex suggests that this developmental mechanism 

may be implicated in more basic processing, and that null findings in the vmPFC may not 

be entirely attributed to differences, for example, in the time-scales examined across task-

based and resting-state connectivity analyses. In these analyses, we focused on overall 

effects of self-disclosure, collapsed across trial phases (self-evaluative and disclosure) 

and types (superficial and intimate disclosures). The identification of a finding related to 
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NAcc connectivity with the visual system, as well as small brain-behavior effects, may be 

because comparisons of overall self-disclosure trials to baseline/blank screens is more of 

a “hammer” approach that is not as informative with respect to the nuances of social 

processing. 

The field is lacking in standard analytic formulas for power calculations with 

multilevel models that account for temporal dependencies (Lafit et al., 2021), and 

simulations would be needed to account for the type of models used here. While a lack of 

power can never be ruled out as reasons for null findings, the sample size of the current 

study was comparable to previous developmental studies of frontostriatal connectivity 

(particularly when accounting for the focus on girls only in this study) and much larger 

than previous studies of time-lagged effects across task-based and resting-state 

modalities. 

Finally, effect sizes relating neural measures to behavioral measures identified in 

Chapter 4 were small. Although the limitations above suggest the possibility of additional 

exploratory analyses, the immediate practical consequences of this research, based on the 

present findings, are unclear. Analyses relating human neuroimaging measures to real 

world behavioral measures have often found such effects to be small and/or difficult to 

replicate (Masouleh et al., 2020). Furthermore, interpreting the practical relevance and 

significance of variables based on their effect sizes is an important and evolving issue 

with newly emerging standards in the psychological sciences (Anvari et al., 2021).  

Future Directions 

First, additional analyses might explore the unexpected finding of evidence for the 

long-term phasic modeling hypothesis in the NAcc-primary visual cortex. Follow-up 
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analyses might consider the extent of this effect along hierarchical pathways of visual 

processing, and whether the effect varies by trial phase or condition within the self-

disclosure task, as well as across different tasks entirely. These analyses might facilitate 

interpretations of this finding, particularly to parse whether this effect is associated with 

developmental changes to the intrinsic salience of the self- and/or other related visual 

stimuli, and/or whether experience with text-based, visual experience with self-disclosure 

and in digital social environments play a role in this observed developmental shift.  

Limitations of the current analyses might be mitigated in future studies examining 

cross-lagged effects across states of task and rest via a multi-stage strategy employing 

preliminary data-driven approaches to select connections-of-interest meeting certain 

criteria. Connections of interest between voxels or parcels might be selected for being 

developmentally plausible based on trajectories suggesting fluctuations in task-based 

and/or resting-state connectivity in the earlier time points of a longitudinal studies. They 

might also be selected for exhibiting sizable associations with behavioral variables of 

interest, which might improve both utility and interpretability. 

Analyses here have focused on functional connectivity across different states of 

task and rest, specifically testing hypotheses that are aligned with conceptions of resting-

state functional connectivity as potentially reflecting histories of co-activation. There is 

substantial debate, however, as to what “resting-state” truly reflects. Bolt and colleagues 

(2018) argue that division between evoked (task-based) and intrinsic (resting-state) 

activity is a false dichotomy, and that large-scale activity patterns observed across states 

may be better characterized as the brain’s way of supporting specific functions within a 

set of constraints across time. Another challenge to this view comes from recent analyses 
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suggesting that latent patterns of functional connectivity across a wide range of tasks is 

more “intrinsic”—stable and predictive of other brain states—than resting-state 

functional connectivity (McCormick et al., preprint). There are at least two ways of 

potentially improving tests of long-term phasic modeling hypotheses under this view: (1) 

by understanding mappings from prior task states to a variety of future task and “rest” 

states, and (2) by incorporating measures of structural connectivity, at least for 

connections with clear anatomically-defined direct or indirect paths. Multimodal analyses 

may shed further light into the role of white matter development in facilitating e.g., long-

term phasic modeling or other neurodevelopmental mechanisms. Pubertal sex hormones 

are another biological measure that, in tandem with knowledge about hormone receptor 

density, might be informative with respect to understanding what drives developmental 

change. Gonadal steroids may be of particular interest for future inquiry, as estrogen has 

been hypothesized to play a role in regulating sensitive periods of prefrontal plasticity in 

the transition to adolescence (Piekarski et al., 2017), and testosterone levels have been 

shown to mediate the effects of age on ventral striatal connectivity with ventromedial 

prefrontal regions during rest (Fareri et al., 2015).  

Conclusions 

This dissertation reviewed existing evidence for adolescence as a sensitive period 

for sociocultural development and identified progress and gaps in this literature within 

the field of developmental cognitive neuroscience. Overall, empirical analyses did not 

find evidence consistent with a developmental mechanism whereby phasic task-based 

frontostriatal connectivity during self-disclosure becomes neurally-embedded in a manner 

that is relevant for behavior and psychopathology. Instead, support for a long-term phasic 
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modeling mechanism was identified in connectivity between the nucleus accumbens and 

the primary visual cortex, suggesting extended development of the visual system in a 

manner that integrates affective information. No effects consistent with sensitive periods 

were identified, and effects relating neural to behavioral measures were small. Important 

future directions include elaborating on the specificity (both spatially and in terms of task 

condition) and translational relevance of these putative developmental mechanisms.  

The empirical research described here additionally highlights an analysis strategy 

that capitalizes on the relative strengths and weaknesses of two major modeling 

approaches (structural equation modeling and generalized additive modeling) to 

understand the temporal precedence of changes in variables and to assess how those 

changes may vary with maturation. This strategy might be applied to examinations of 

developmental and sensitive period mechanisms across longitudinal studies with more 

than two waves of data in studies of the brain and/or behavior. 
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APPENDIX A 

Table A.1 

Models Predicting NAcc-Auditory Cortex Beta-Series Connectivity During Disclosure Decisions by Age and Pubertal Stage  

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.34 *** 0.18 – 0.50 <0.001 0.13 *** 0.11 – 0.16 <0.001 0.37 ** 0.14 – 0.60 0.001 

Age -0.02 ** -0.03 – -0.01 0.006    -0.02 * -0.04 – -0.00 0.038 

Pubertal Stage 
(Linear) 

   -0.06 * -0.12 – -0.00 0.048 -0.02 -0.09 – 0.06 0.624 

Pubertal Stage 
(Quad) 

   0.02 -0.04 – 0.08 0.450 0.04 -0.02 – 0.09 0.241 

Pubertal Stage 
(Cubic) 

   -0.02 -0.07 – 0.04 0.550 -0.02 -0.07 – 0.03 0.488 

Pubertal Stage 
(Quartic) 

   -0.02 -0.06 – 0.03 0.493 -0.01 -0.06 – 0.03 0.554 

Random Effects 
σ2 0.03 0.03 0.03 

τ00 0.00 participant 0.00 participant 0.00 participant 

ICC 0.03 0.04 0.04 

N 159 participant 158 participant 158 participant 

Observations 336 319 319 

Marginal R2 / 
Conditional R2 

0.022 / 0.055 0.016 / 0.053 0.029 / 0.072 

Note. Only the best-fitting or simplest age model is shown. * p<0.05   ** p<0.01   *** p<0.001 
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 Table A.2 

Models Predicting NAcc-Auditory Cortex Resting-State Connectivity by Age and Pubertal Stage 

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.19 * 0.03 – 0.36 0.020 0.04 ** 0.01 – 0.07 0.002 0.23 * 0.01 – 0.46 0.044 

Age -0.01 * -0.03 – -0.00 0.040    -0.02 -0.03 – 0.00 0.093 

Pubertal Stage 
(Linear) 

   -0.06 * -0.12 – -0.00 0.048 -0.02 -0.10 – 0.05 0.516 

Pubertal Stage 
(Quad) 

   0.03 -0.02 – 0.09 0.236 0.04 -0.01 – 0.10 0.143 

Pubertal Stage 
(Cubic) 

   -0.05 -0.10 – 0.00 0.058 -0.05 -0.10 – 0.00 0.058 

Pubertal Stage 
(Quartic) 

   0.01 -0.04 – 0.06 0.624 0.01 -0.03 – 0.06 0.545 

Random Effects 
σ2 0.02 0.02 0.02 

τ00 0.00 participant 0.00 participant 0.00 participant 

ICC 0.12 0.17 0.17 

N 159 participant 158 participant 158 participant 

Observations 309 298 298 

Marginal R2 / 
Conditional R2 

0.013 / 0.129 0.020 / 0.185 0.029 / 0.190 

Note. Only the best-fitting or simplest age model is shown. * p<0.05   ** p<0.01   *** p<0.001 
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Table A.3 

Models Predicting NAcc-Visual Cortex Beta-Series Connectivity During Disclosure Decisions by Age and Pubertal Stage 

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.48 *** 0.21 – 0.74 <0.001 0.27 *** 0.23 – 0.32 <0.001 0.54 ** 0.16 – 0.91 0.005 

Age -0.02 -0.04 – 0.00 0.125    -0.02 -0.05 – 0.01 0.172 

Pubertal Stage 
(Linear) 

   -0.02 -0.12 – 0.08 0.735 0.03 -0.09 – 0.15 0.616 

Pubertal Stage 
(Quad) 

   -0.03 -0.12 – 0.06 0.538 -0.02 -0.11 – 0.08 0.744 

Pubertal Stage 
(Cubic) 

   0.06 -0.02 – 0.15 0.130 0.06 -0.02 – 0.14 0.139 

Pubertal Stage 
(Quartic) 

   0.02 -0.06 – 0.10 0.584 0.02 -0.05 – 0.10 0.544 

Random Effects 
σ2 0.07 0.07 0.07 

τ00 0.01 participant 0.01 participant 0.01 participant 

ICC 0.16 0.14 0.14 

N 159 participant 158 participant 158 participant 

Observations 336 319 319 

Marginal R2 / 
Conditional R2 

0.007 / 0.161 0.012 / 0.147 0.018 / 0.160 

Note. Only the best-fitting or simplest age model is shown (trends were consistent with a quadratic age model, but this model 
did not meet thresholds for being considered “best-fitting”) * p<0.05   ** p<0.01   *** p<0.001 
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Table A.4 
Models Predicting NAcc- Visual Cortex Resting-State Connectivity by Age and Pubertal Stage 

  Model 1: Age Model 2: Puberty Model 3: Puberty + Age 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.09 -0.09 – 0.26 0.348 0.00 -0.02 – 0.03 0.792 0.05 -0.19 – 0.29 0.687 

Age -0.01 -0.02 – 0.01 0.292    -0.00 -0.02 – 0.02 0.707 

Pubertal Stage 
(Linear) 

   -0.04 -0.10 – 0.03 0.256 -0.03 -0.11 – 0.05 0.468 

Pubertal Stage 
(Quad) 

   0.00 -0.06 – 0.07 0.905 0.01 -0.06 – 0.07 0.853 

Pubertal Stage 
(Cubic) 

   -0.02 -0.08 – 0.03 0.400 -0.02 -0.08 – 0.03 0.397 

Pubertal Stage 
(Quartic) 

   0.01 -0.04 – 0.06 0.755 0.01 -0.04 – 0.06 0.733 

Random Effects 
σ2 0.03 0.03 0.03 

τ00 0.00 participant 0.00 participant 0.00 participant 

ICC 0.09 0.10 0.10 

N 159 participant 158 participant 158 participant 

Observations 309 298 298 

Marginal R2 / 
Conditional R2 

0.004 / 0.093 0.009 / 0.104 0.009 / 0.106 

Note. Only the best-fitting or simplest age model is shown. * p<0.05   ** p<0.01   ***p<0.001 
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Figure A.1 

Estimated beta-series connectivity values by pubertal stage 

 
 
Note. Bars indicate 95% confidence intervals. Ranges of pubertal stage composite score ranges shown here were used to 
approximate pubertal stages 1-5.  
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APPENDIX B  

Table B.1 

Hierarchical Generalized Additive Models Examining Neural Predictor by Maturation Interactions for NAcc-Auditory Cortex 
Connectivity 
 

  LTPM – Age LTPM – Puberty ALT – Age ALT – Puberty 

Lagged 
Predictors 

Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 0.01 -0.02 – 0.04 0.607 0.01 -0.03 – 0.04 0.641 0.08 *** 0.04 – 0.11 <0.001 0.08 *** 0.04 – 0.11 <0.001 

RSFC 0.11 -0.06 – 0.27 0.201 0.14 -0.03 – 0.30 0.104       

Beta             0.04 -0.13 – 0.21 0.643 0.05 -0.13 – 0.22 0.602 

    F(2) p   F(2) p   F(2) p   F(2) p 

Beta by age   0.771 0.464          

Beta by 
puberty 

    1.083 0.342       

RSFC by age         0.258 0.773    

RSFC by 
puberty 

          0.129 0.879 

Observations 130 124 137 130 

R2 0.023 0.032 0.005 0.004 

Note. * p<0.05   ** p<0.01   *** p<0.001; RSFC = resting-state functional connectivity; Beta = beta-series, task-based connectivity; 
LTPM = Long-Term Phasic Model; in LTPM models, the interaction between task-based beta-series connectivity and maturation predicted 
resting-state functional connectivity; ALT = Alternative model; in ATL models, the interaction between resting-state connectivity and maturation 
predicted task-based functional connectivity. All predictor variables were time-lagged by one time point. Omnibus tests evaluated the null 
hypothesis for the joined spline terms. 
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Table B.2 

Hierarchical Generalized Additive Models Examining Neural Predictor by Maturation Interactions for NAcc-Visual Cortex 
Connectivity 
 

 LTPM - Age LTPM - Puberty ALT - Age ALT - Puberty 

Lagged 
Predictors 

Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

(Intercept) -0.04 * -0.08 – -0.00 0.030 -0.05 * -0.09 – -0.01 0.023 0.19 *** 0.12 – 0.25 <0.001 0.18 *** 0.11 – 0.24 <0.001 

RSFC 0.12 -0.02 – 0.26 0.101 0.09 -0.06 – 0.23 0.252       

Beta             0.19 * 0.03 – 0.35 0.020 0.21 ** 0.05 – 0.37 0.009 

    F(2) p   F(2) p   F(2) p   F(2) p 

Beta by age   1.416 0.246          

Beta by 
puberty 

    1.371 0.258       

RSFC by age         0.615 0.543    

RSFC by 
puberty 

          0.85 0.430 

Observations 130 124 137 130 

R2 0.043 0.033 0.044 0.061 

Note. * p<0.05   ** p<0.01   *** p<0.001; RSFC = resting-state functional connectivity; Beta = beta-series, task-based connectivity; 
LTPM = Long-Term Phasic Model; in LTPM models, the interaction between task-based beta-series connectivity and maturation predicted 
resting-state functional connectivity; ALT = Alternative model; in ATL models, the interaction between resting-state connectivity and maturation 
predicted task-based functional connectivity. All predictor variables were time-lagged by one time point. Omnibus tests evaluated the null 
hypothesis for the joined spline terms.
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APPENDIX C  

Table C.1 

Effects of Behavioral Measures on Neural Measures Across Time Points  

Connection Effect Standard Estimate & 95% CI 

Beta-Series Connectivity 

NAcc-vmPFC Friend Stability (B) 0.02 [-0.11, 0.15] 

NAcc-vmPFC PSE (W) -0.04 [-0.14, 0.06] 

NAcc-vmPFC PSE (B) 0.01 [-0.11, 0.13] 

NAcc-vmPFC Friendship Quality (W) -0.11 [-0.21, -0.01] 

NAcc-vmPFC Friendship Quality (B) -0.04 [-0.16, 0.07] 

NAcc-vmPFC Perceived Support from Friends (W) 0.06 [-0.04, 0.16] 

NAcc-vmPFC Perceived Support from Friends (B) 0 [-0.11, 0.12] 

NAcc-vmPFC Co-Rumination (W) 0.07 [-0.03, 0.17] 

NAcc-vmPFC Co-Rumination (B) 0.04 [-0.08, 0.16] 

NAcc-vmPFC Depressive Symptoms (W) 0.05 [-0.05, 0.15] 

NAcc-vmPFC Depressive Symptoms (B) -0.01 [-0.13, 0.11] 

NAcc-vmPFC Anxiety Symptoms (W) -0.04 [-0.14, 0.06] 

NAcc-vmPFC Anxiety Symptoms (B) -0.06 [-0.18, 0.06] 

NAcc-vmPFC Connectedness (B) -0.03 [-0.2, 0.13] 

NAcc-auditory Friend Stability (B) 0.11 [-0.01, 0.22] 

NAcc-auditory PSE (W) 0.02 [-0.09, 0.12] 

NAcc-auditory PSE (B) 0.02 [-0.09, 0.14] 

NAcc-auditory Friendship Quality (W) -0.08 [-0.18, 0.02] 

NAcc-auditory Friendship Quality (B) -0.01 [-0.12, 0.1] 

NAcc-auditory Perceived Support from Friends (W) 0.02 [-0.08, 0.13] 

NAcc-auditory Perceived Support from Friends (B) 0.02 [-0.09, 0.13] 

NAcc-auditory Co-Rumination (W) 0.07 [-0.03, 0.18] 

NAcc-auditory Co-Rumination (B) 0.1 [-0.01, 0.22] 

NAcc-auditory Depressive Symptoms (W) -0.09 [-0.2, 0.01] 
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NAcc-auditory Depressive Symptoms (B) -0.02 [-0.13, 0.1] 

NAcc-auditory Anxiety Symptoms (W) -0.04 [-0.15, 0.06] 

NAcc-auditory Anxiety Symptoms (B) -0.04 [-0.15, 0.07] 

NAcc-auditory Connectedness (B) 0 [-0.16, 0.16] 

NAcc-visual Friend Stability (B) 0.03 [-0.09, 0.16] 

NAcc-visual PSE (W) -0.06 [-0.16, 0.05] 

NAcc-visual PSE (B) 0.04 [-0.07, 0.16] 

NAcc-visual Friendship Quality (W) 0.08 [-0.01, 0.18] 

NAcc-visual Friendship Quality (B) -0.02 [-0.14, 0.09] 

NAcc-visual Perceived Support from Friends (W) 0.01 [-0.09, 0.11] 

NAcc-visual Perceived Support from Friends (B) 0.04 [-0.08, 0.15] 

NAcc-visual Co-Rumination (W) -0.07 [-0.17, 0.03] 

NAcc-visual Co-Rumination (B) 0.06 [-0.06, 0.18] 

NAcc-visual Depressive Symptoms (W) -0.07 [-0.16, 0.03] 

NAcc-visual Depressive Symptoms (B) 0.04 [-0.08, 0.15] 

NAcc-visual Anxiety Symptoms (W) 0 [-0.1, 0.1] 

NAcc-visual Anxiety Symptoms (B) -0.1 [-0.22, 0.02] 

NAcc-visual Connectedness (B) -0.01 [-0.17, 0.16] 

Resting-State Functional Connectivity 

NAcc-vmPFC Friend Stability (B) 0.03 [-0.07, 0.14] 

NAcc-vmPFC PSE (W) -0.01 [-0.13, 0.1] 

NAcc-vmPFC PSE (B) 0 [-0.12, 0.11] 

NAcc-vmPFC Friendship Quality (W) -0.02 [-0.13, 0.09] 

NAcc-vmPFC Friendship Quality (B) -0.06 [-0.18, 0.05] 

NAcc-vmPFC Perceived Support from Friends (W) -0.08 [-0.19, 0.03] 

NAcc-vmPFC Perceived Support from Friends (B) 0 [-0.11, 0.12] 

NAcc-vmPFC Co-Rumination (W) -0.04 [-0.15, 0.07] 

NAcc-vmPFC Co-Rumination (B) -0.02 [-0.13, 0.1] 

NAcc-vmPFC Depressive Symptoms (W) 0.05 [-0.07, 0.16] 

NAcc-vmPFC Depressive Symptoms (B) -0.04 [-0.15, 0.07] 
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NAcc-vmPFC Anxiety Symptoms (W) -0.02 [-0.13, 0.1] 

NAcc-vmPFC Anxiety Symptoms (B) 0 [-0.12, 0.11] 

NAcc-vmPFC Connectedness (B) 0.11 [-0.05, 0.28] 

NAcc-auditory Friend Stability (B) 0.07 [-0.04, 0.18] 

NAcc-auditory PSE (W) -0.05 [-0.15, 0.06] 

NAcc-auditory PSE (B) -0.02 [-0.14, 0.11] 

NAcc-auditory Friendship Quality (W) -0.1 [-0.21, 0] 

NAcc-auditory Friendship Quality (B) 0.08 [-0.04, 0.19] 

NAcc-auditory Perceived Support from Friends (W) -0.12 [-0.22, -0.01] 

NAcc-auditory Perceived Support from Friends (B) 0.03 [-0.09, 0.15] 

NAcc-auditory Co-Rumination (W) -0.05 [-0.15, 0.06] 

NAcc-auditory Co-Rumination (B) -0.01 [-0.13, 0.11] 

NAcc-auditory Depressive Symptoms (W) -0.05 [-0.16, 0.05] 

NAcc-auditory Depressive Symptoms (B) 0.04 [-0.08, 0.16] 

NAcc-auditory Anxiety Symptoms (W) -0.13 [-0.23, -0.02] 

NAcc-auditory Anxiety Symptoms (B) -0.01 [-0.13, 0.11] 

NAcc-auditory Connectedness (B) -0.14 [-0.32, 0.03] 

NAcc-visual Friend Stability (B) -0.02 [-0.13, 0.09] 

NAcc-visual PSE (W) -0.07 [-0.18, 0.04] 

NAcc-visual PSE (B) -0.07 [-0.19, 0.05] 

NAcc-visual Friendship Quality (W) -0.04 [-0.15, 0.06] 

NAcc-visual Friendship Quality (B) -0.08 [-0.2, 0.03] 

NAcc-visual Perceived Support from Friends (W) -0.03 [-0.14, 0.08] 

NAcc-visual Perceived Support from Friends (B) -0.04 [-0.16, 0.08] 

NAcc-visual Co-Rumination (W) -0.14 [-0.25, -0.03] 

NAcc-visual Co-Rumination (B) -0.09 [-0.2, 0.03] 

NAcc-visual Depressive Symptoms (W) -0.08 [-0.19, 0.03] 

NAcc-visual Depressive Symptoms (B) -0.09 [-0.21, 0.02] 

NAcc-visual Anxiety Symptoms (W) -0.08 [-0.19, 0.03] 

NAcc-visual Anxiety Symptoms (B) -0.02 [-0.13, 0.1] 
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NAcc-visual Connectedness (B) 0.07 [-0.1, 0.25] 
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