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DISSERTATION ABSTRACT

Mohammad Alaul Haque Monil

Doctor of Philosophy

Department of Computer and Information Science

December 2021

Title: Modeling the impact of memory architecture for dynamic adaptation in HPC
runtimes

From the advent of the message-passing architecture in the early 1980s to the

recent dominance of accelerator-based heterogeneous architectures, high performance

computing (HPC) hardware has gone through a series of changes. At the same time,

HPC runtime systems have also been adapted to harness this growth in computational

capabilities. Specifically, modern HPC runtime systems have transformed into active

entities capable of making dynamic decisions during the execution of an application.

These dynamic decisions improve performance, reduce energy consumption, and

increase the overall utilization of the underlying HPC hardware. However, a runtime

system needs insight into the application and the underlying hardware to make

efficient decisions. This dissertation identifies that information gained from modeling

the memory architecture is critical for efficient decision-making within the runtime

system. After outlining the research challenges associated with dynamic adaptation

in HPC runtimes, different modeling approaches are explored to gather insight into

the memory architecture of modern HPC hardware.

By studying the evolution of HPC runtime systems for the last 35 years, this

dissertation first identifies the opportunities for dynamic adaptation. Then, the

research undertaken capitalizes upon these opportunities in the form of four major

iv



projects: (1) application and machine agnostic approaches to dynamically adapt

the HPX runtime system, (2) modeling memory contention in a heterogeneous

system where processors share the same memory, (3) understanding and modeling

the handshake between memory access pattern and modern cache hierarchy to

statically predict the memory transactions between the last level cache (LLC) and

system memory of modern Intel processors, and (4) an exploration of similarities

and dissimilarities between Intel CPUs and NVIDIA and AMD GPUs to pave the

way to model LLC-device memory transactions in GPUs. This dissertation includes

previously published and co-authored material, as well as unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Since the beginning of parallel computing, the capabilities of runtime systems have

been shaped by innovations in computer architectures. From the message-passing

architecture to the latest heterogeneous architectures that include accelerators,

runtime systems have been adapted to provide higher levels of abstractions and

ensure efficient utilization of High Performance Computing (HPC) systems. Over

the years, different runtime systems have emerged to address the needs of the HPC

community. Early HPC runtimes started as bulk-synchronous Message Passing

Interfaces (MPI [1]), where heavyweight processes communicate with each other

through messages. However, the recent asynchronous multitasking runtime systems

decompose the computation into fine-grained work units. Along with addressing

both shared and distributed memory architectures, modern HPC runtime systems

employ different execution models for running work units on different processors in

heterogeneous systems. Runtime systems designed for task-based execution (e.g.,

OpenMP [2], HPX [3], and Charm++ [4]) operate by decomposing the total workload

into sub-workloads. Runtime systems designed for heterogeneous platforms (e.g.,

StarPU [5]) maintain processor-wise queues to increase overall system utilization to

meet specific user demands. There are also runtime systems designed specifically for

accelerators such as GPUs (e.g., CUDA runtime by NVIDIA [6] and HSA runtime

from ROCm software platform [7] by AMD). Runtime systems for accelerators

explicitly leverage the throughput-oriented execution available on GPUs.

Runtime systems sit between the application and hardware and provide

abstractions to applications for efficient execution on the underlying hardware. While

developing an application, a programmer expresses the computation by following a
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programming model. Then, the compiler inserts the runtime system’s functionalities

when the executable is built. So, a runtime system implements the execution

model. All the high-level programming languages have corresponding runtime systems

that provide the necessary abstractions. For example, a C compiler inserts the

stack management functionalities in the executable. However, HPC runtimes have

significantly more responsibilities. A modern HPC runtime can make dynamic

decisions for scheduling, load balancing, inter-node communication, and distributed

memory management. These dynamic decisions can improve performance and

reduce energy consumption. The main focus of this dissertation is to explore the

opportunities for dynamic decision-making in HPC runtimes. However, implementing

dynamic capabilities requires addressing several challenges that we now outline.

Challenge A - dynamic adaptation in HPC runtimes: The first and

foremost challenge is to identify dynamic adaptation opportunities in modern HPC

runtime systems. HPC runtime systems are active entities during the execution and

can be interacted with through tools and interfaces. Some runtime systems expose

interfaces to collect data; however, only a few runtime systems provide tools or

interfaces for dynamically tuning their parameters that influence dynamic decisions.

These tools and interfaces can provide critical insight about the applications and

the machines to the runtime system. This insight facilitates the runtime system in

making intelligent decisions. However, identifying the correct type of information

from applications and machines is critical to performance improvement. Further,

techniques that allow the gathering of this information need to be explored.

Challenge B - understanding the impact of memory architecture:

Memory transactions have a significant impact on performance. Thus, understanding

the implications of memory architecture can open the door for intelligent, dynamic
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decision-making. However, understanding the handshake between the complex

memory hierarchy in modern HPC hardware and applications is challenging. A

typical computing node of modern HPC systems houses a shared-memory multicore

processor along with an accelerator. In some cases, the multicore processors share the

system memory with the accelerator. Multiple processors executing memory-intensive

kernels can create memory contention, negatively impacting performance and energy

consumption.

Moreover, modern CPUs and GPUs employ a complex cache-hierarchy.

Depending on the application’s memory access pattern, cache-hierarchy could play an

essential role in determining the overall performance. Runtime systems can transfer

data between nodes and optionally provide mechanisms to transfer data between

CPUs and GPUs. These data transfers are done from one processor’s dynamic

random access memory (DRAM) to another, thereby bringing data close to the target

processors. However, a runtime system does not have visibility beyond inter-node and

host-accelerator data transfers. Therefore, providing information about the interplay

between application and memory hierarchy can enable a runtime system to perform

intelligent, dynamic decisions.

Challenge C - modeling and predicting the impact of memory

architecture: Modern HPC performance measurement and analysis tools such as

TAU [8] can generate a plethora of information about an application’s interaction with

the cache hierarchy. Insight gathered from that information can be used to to improve

performance further. However, these performance tools collect this information as

the application is executing. Runtime systems would need such information before

executing a kernel to make optimal decisions (such as kernel placement within a

heterogeneous system). Static analysis techniques provide compile-time information
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collection to tackle this problem. However, existing static analysis tools provide

instruction counts (such as load and store counts) instead of considering the impact

of the cache hierarchy. Therefore, analytical or empirical models that capture the

essence of the interaction between the application and the memory hierarchy need

to be explored to generate a static prediction. This prediction can, in turn, provide

crucial detail to a runtime system.

1.1 Working Toward Solutions - This Dissertation

This dissertation strives to investigate these challenges and answer the following

research question: How can information gathered from applications and

machines at compile time empower modern HPC runtime systems for

intelligent and dynamic decisions? This broad research question is further

decomposed into smaller, narrower questions, each corresponding to one chapter of

this dissertation. Figure 1 depicts the specific questions addressed in each chapter.

Figure 1 also depicts the “flow” of this dissertation by noting the connection between

successive chapters. Brief descriptions of each chapter and connections are presented

in the following sections.

1.2 Chapter II — Dynamic Adaptation Techniques and Opportunities in

HPC Runtimes

Chapter II addresses RQ1: What are the dynamic adaptation opportunities in

modern HPC runtimes? This study explores HPC runtimes for the last 35 years

to survey the dynamic adaptation techniques and opportunities in contemporary

runtime systems. First, the evolution of the runtime systems is studied to identify

the state-of-the-art runtime systems. Runtime systems are then categorized, and

the main features are discussed. Existing dynamic adaptation capabilities are then

summarized, followed by an exploration of the opportunities. The material in this
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Figure 1. Challenges and research questions addressed in different chapters. Research
questions are presented in green boxes. The following challenges are presented in
violet boxes.
Challenge A - Dynamic adaptation in HPC runtimes,
Challenge B - Understanding the impact of memory architecture,
Challenge C - Modeling and predicting the impact of memory architecture.
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chapter is unpublished with no co-authorship. However, revision suggestions were

given by Seyong Lee and the dissertation committee (Allen Malony, Hank Childs, and

Boyana Norris) during the area exam. This chapter is in preparation for submission

to a journal as a survey.

Connection to RQ2 and Chapter III: Chapter II answers RQ1 and finds

out the dynamic adaptation opportunities for HPC runtimes. To realize one of these

opportunities, RQ2 is explored in Chapter III which involves dynamic adaptation in

HPX runtime system.

1.3 Chapter III — Dynamic Adaptation in HPX Runtime

Chapter III addresses RQ2: Is it possible to dynamically adapt a runtime system’s

parameters to achieve better performance for different CPU architectures? This study

investigates dynamic adaptation opportunities in HPX, an asynchronous task-based

runtime system. HPX works by dividing a problem into a large number of fine-grained

tasks. However, as the number of tasks created increases, the overheads associated

with task creation, communication, and management also increase. Chapter III

generates application and machine agnostic dynamic adaptation solutions for two

problems: (1) task inlining, and (2) parcel coalescing. Task inlining, a method

where the parent thread consumes a child, enables the runtime system to balance

the parallelism and its overhead. On the other hand, parcel coalescing is related

to reducing communication overhead. Using the APEX framework [9], we design

an adaptive policy for deciding, at runtime, whether a particular task should be

inlined or not and when to coalesce parcels. We show that a baseline policy that

makes these decisions using a fixed threshold is outperformed by adaptive policies

that dynamically decide the threshold at runtime. We also evaluate and justify the

performance of these policies on different processor architectures from Intel and AMD.
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Content of this chapter is published at ICPP 2019 [10] and at ICPP 2018 [11] (poster).

These publications are co-authored by Dr. Kevin Huck and Dr. Allen Malony from

University of Oregon and Dr. Bibek Wagle, Adrian Serio, and Dr. Hartmut Kaiser

from Louisiana State University.

Connection to RQ3 and Chapter IV: This study answers RQ2 and shows the

performance improvement by dynamically adapting the runtime system’s parameter.

However, only multicore CPUs are considered for executing the tasks. Since

heterogeneous systems are now commonly found in HPC facilities, it is desirable to

investigate dynamic adaptation in a heterogeneous platform. For this reason, RQ3 is

investigated in Chapter IV, which involves placing kernels in a heterogeneous system

and addressing the challenges associated with such placements.

1.4 Chapter IV — Studying Memory Contention in a Heterogeneous

System

Chapter IV addresses RQ3: Can we model memory contention in a heterogeneous

system to design an energy-performance aware scheduling algorithm? This study

investigates integrated shared memory heterogeneous architectures with specialized

processing units (PUs) that share a unified system memory to improve performance

and energy efficiency by reducing data movement. However, they introduce

memory contention when multiple PUs access the memory. Chapter IV introduces

MEPHESTO, a novel and holistic approach for achieving energy-performance trade-

off. We characterize applications and PUs in terms of two memory contention factors

- time factors and power factors - to achieve the desired trade-off between energy

and performance for collocated kernel execution on heterogeneous systems. This

investigation combines these factors and presents a simple knob-based approach that

expresses the target trade-off. The approach is evaluated on a diverse integrated
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shared memory heterogeneous system with a CPU, GPU, and programmable vision

accelerator. Using an empirical model for memory contention that provides up to

92% accuracy, the kernel collocation approach can provide a near-optimal ordering

and placement based on the user-defined, energy-performance trade-off parameter.

Moreover, the dynamic programming-based heuristics provide up to 30% better

energy or 20% performance benefits when compared with the greedy approaches

commonly employed by previous studies. Content of this chapter is published at

PACT 2020 [12]. This publication is co-authored by Dr. Allen Malony from University

of Oregon, Mehmet Belviranly from Colorado School of Mines, and Dr. Seyong LEE

and Dr. Jeffrey Vetter from Oak Ridge National Laboratory.

Connection to RQ4 and Chapter V: This study answers RQ3. MEPHESTO

shows that intelligent scheduling algorithms can make energy-performance trade-

off-aware decisions if a runtime system is equipped with a memory contention

model. However, MEPHESTO depends on the operational intensity of the kernels

(Roofline model), which is the ratio of FLOPS and LLC-DRAM traffic. Moreover,

a MEPHESTO needs this information during scheduling (i.e., before executing the

kernels). For this reason, determining operational intensity at compile time is

desired. While the number of FLOPS can be deduced statically using the COMPASS

framework [13], statically deducing the number of LLC-DRAM traffic for modern

HPC hardware is still an open problem. To develop a performance model to

predict LLC-DRAM traffic statically, we need to understand the handshake between

applications and modern processors’ caches. For this reason, modern processors need

to be studied for different memory access patterns, which relates to RQ4, investigated

in Chapter V.
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1.5 Chapter V — Static Analysis Framework for Memory Access

Prediction in Modern CPUs

Chapter V addresses RQ4: Can we model the memory access patterns and

design a static analysis framework to predict LLC-DRAM traffic in modern CPUs

for complex HPC applications? This study explores the handshake between HPC

applications and the memory hierarchy of modern Intel CPUs to understand

and model the behavior for static prediction. Recent advancements in memory

hierarchy make it difficult to predict the traffic between LLC and DRAM statically.

Prefetching algorithms, compiler choice, and parallel execution on multicore

processors make predictions more difficult. Continuous innovation and the release

of new manufacturer-specific microarchitectures add to this complexity. Different

memory access patterns in HPC applications introduce another layer of challenges

for statically predicting the LLC-DRAM. HPC applications can have four types of

memory access patterns, 1) sequential streaming, 2) strided, 3) stencil and 4) random

memory access patterns. Moreover, multiple access patterns can co-exist in the same

kernel, which makes the prediction more difficult.

Chapter V introduces MAPredict, a static analysis-driven framework that

addresses these challenges to provide memory access prediction by gathering

application and machine properties at compile time. MAPredict depends on the

OpenARC compiler [14] for static analysis of the code and the COMPASS [13]

framework for expressing an application in the Aspen [15] domain-specific modeling

language. MAPredict defines the limit of static analysis for memory access prediction

and provides a means of overcoming those limits by capturing dynamic information.

By exploring and analyzing the behavior of modern Intel processors, MAPredict

formulates compiler and microarchitecture-aware analytical models. MAPredict
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then invokes the analytical model to predict LLC-DRAM traffic by combining the

application model, the machine model, and user-provided hints for capturing dynamic

information. Evaluation using various workloads with different memory access

patterns, input sizes, and code-base sizes on four recent Intel microarchitectures

demonstrates that MAPredict can predict the memory traffic with high accuracy

in modern CPUs. Content of this chapter is published at MCHPC 2020 workshop

at SC 2020 [16] and is under review in HPCA 2022. These publication efforts are

co-authored by Dr. Allen Malony from University of Oregon, and Dr. Seyong LEE

and Dr. Jeffrey Vetter from Oak Ridge National Laboratory.

Connection to RQ5 and Chapter VI: This study answers RQ4 and shows

MAPredict can predict LLC-DRAM for complex HPC applications by combining

static and dynamic information. MAPredict investigated different microarchitectures

of CPUs. However, it is desirable to enable MAPredict to provide a similar prediction

for GPU kernels; this relates to RQ5 which is investigated in Chapter VI.

1.6 Chapter VI — Understanding and Modeling the Impact of Memory

Access Patterns in GPUs

Chapter VI addresses RQ5: Can we capitalize the understanding of the CPUs

to explain and model the LLC-DRAM traffic for GPUs? This study explores GPUs

to understand and model the behavior of cache hierarchy by comparing them with

CPUs. Both the programming model and the execution model are significantly

different in GPUs when compared to CPUs. Even though the directive-based GPU

programming approach makes the code similar to CPUs, the compiler transforms the

source code and enables the GPU execution model. Moreover, the memory hierarchy

is also different and comparatively less studied than CPUs. While CPUs have three

levels of cache (usually), GPUs introduce new concepts, such as user manageable
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shared-memory that resides on the L1 cache and the abstract concept of thread-

local memory that resides on DRAM (global memory). These challenges and new

concepts in the memory hierarchy make it difficult to develop models for predicting

LLC-DRAM traffic in GPUs. Chapter VI strives to investigate the regular access

patterns (sequential streaming and strided patterns). Results from different NVIDIA

GPUs (A100, V100, and P100) and AMD GPUs (MI50, MI60, MI100) show striking

similarities between the traffic generated by CPUs and GPUs. Content of this chapter

is accepted in RSDHA 2021 workshop at SC 2021 workshop. This publication effort

is co-authored by Dr. Allen Malony from University of Oregon, and Dr. Seyong LEE,

and Dr. Jeffrey Vetter from Oak Ridge National Laboratory.

With Chapter VI, this dissertation concludes it’s exploration to answer the main

question (presented in in Section 1.1) to dynamically adapt HPC runtimes.

Figure 2. A unified diagram of dynamic adaption in an HPC runtime systems by
using performance models.

1.7 A Unified Diagram

Figure 2, which was inspired by the problems studied in this dissertation,

presents a unified diagram of dynamic adaptation in HPC runtimes. Box 1

represents the runtime systems with different kernel queues. Box 2 represents the

dynamic adaptation engine that interacts with the runtime to facilitate scheduling,
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load balancing, and energy consumption reduction. Box 3 represents the offline

performance model generation to feed the kernels of the runtime system and the

dynamic adaption engine. Research questions and studies depicted in Figure 1

contribute to each of the boxes, thereby constituting the answer to the main research

question presented in Section 1.1.

This dissertation includes prose, figures, and tables from previously published

conferences, workshops, and journal proceedings.
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CHAPTER II

DYNAMIC ADAPTATION TECHNIQUES AND OPPORTUNITIES TO

IMPROVE HPC RUNTIMES

This chapter contains unpublished material with co-authorship. The survey

presented in this chapter was developed as part of my departmental Area Exam,

where I received the main guidance from my advisor Dr. Allen Malony. For the

survey formation, Dr. Seyong Lee provided regular guidance. While working on my

Area Exam, I received feedback and suggestions from my dissertation committee

members (Dr. Hank Childs and Dr. Boyana Norris). Dr. Jeffery Vetter also provided

high-level feedback to formulate the survey work. All the data collection and writing

was done by me while the committee members helped to proofread the Area Exam

document.

2.1 Introduction and Motivation

This chapter explores the state-of-the-art HPC runtime systems to find out the

opportunities for dynamic adaptation (corresponding to Research Question 1 — RQ1:

What are the dynamic adaptation opportunities in modern HPC runtimes?). As

mentioned in Chapter I, the evolving ecosystem of HPC runtimes continues to provide

abstractions at the cost of increasing responsibilities at different layers. With access

to the application that is running and the underlying hardware, an HPC runtime

positions itself as an active component that can make application- and hardware-

aware decisions. By providing a way to interpret the relationship between application

and hardware, runtime systems are capable of performing more dynamic decisions to

improve performance and reduce energy consumption. For this reason, the features

and dynamic decision capabilities of runtime systems need to be studied. Moreover,
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the evolution of the HPC runtimes needs to be understood to identify what drives

the change in the HPC ecosystem. For this reason, this study is organized as follows.

2.1.1 Organization. There are three components of this study: 1) runtime

systems, 2) dynamic adaptation techniques and capabilities of the runtime systems,

and 3) opportunities for dynamic adaption. Having these three goals, this study

is conducted in multiple steps. First, the definition of different terms and runtime

systems are provided. Next, in order to understand the driving force behind the

evolution of HPC runtimes, major events of the last 35 years are studied. This

evolution study also helps to identify contemporary state-of-the-art HPC runtimes.

Then, HPC runtimes are categorized. Each runtime system is then briefly studied

to understand the concepts. The main features of the runtime systems are then

compared to identify similarities and dissimilarities. Dynamic adaptation capabilities

and features of the runtime systems are then studied. Finally, based on the trend of

the runtime systems and observation acquired over the past 35 years, opportunities

that would increase the dynamic adaption capabilities of the runtime systems are

identified.

2.2 Definition of Runtime Systems

In order to properly define a runtime system, programming models, execution

models, APIs, libraries, language extensions, and languages are discussed first.

2.2.1 Programming Models and Execution models. Both the

programming model and execution model are logical concepts. The programming

model is related to how a programmer designs the source code to perform a particular

task to take advantage of the underlying runtime system and the hardware[17]. On

the other hand, the execution model decides how a program written by following a

particular programming model is executed in real time[18]. In short, the programming
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model is the style that is followed to program, and the execution model is how the

program executes. For example, the programming model of OpenMP defines how

to express parallelism using directives and parallel regions, and the execution model

refers to the multi-threaded execution of the code.

2.2.2 Parallel Programming APIs, Libraries, Language Extensions,

and Languages. Parallel programming APIs are entities designed to express the

programming and execution models in code. An API can be a new language, a

language extension, or a collection of libraries. For example, the OpenMP [19]

programming API is a language extension while the API for HPX [20] is based on

libraries. Every programming language provides an execution model to be used at

runtime.

Figure 3. Layers of a runtime system.

2.2.3 HPC Runtimes. A runtime system that defines the execution

environment is an interface between the Operating System (OS) and the application.

It abstracts the complexity of an OS and ensures portability to different OSs [21]. The

execution model of a program is written by following a programming model through
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an API and is ensured by the runtime system. For example, the runtime system of the

C language provides memory management. C compiler inserts instructions into the

executable, and when it runs, the runtime system, which is a part of the executable,

manages the stack to provide all the memory management functionalities. However,

HPC runtimes go far beyond the capabilities provided by the basic languages. An

HPC runtime system becomes an active entity that is capable of making dynamic

decisions based on the execution model and in some cases, performs communication

while the executable is running. Some programming languages in the HPC domain

host powerful runtime systems. For example, Chapel [22] is a Partitioned Global

Address Space (PGAS or GAS) language; however, its runtime system manages a

global address space. For this reason, some HPC languages are also considered in

this study.

Figure 3 shows a layer-wise diagram of a runtime system. At the top layer, the

programming model is expressed through source code by calling the API. When the

object file is created, the compiler inserts necessary codes to carry out necessary

runtime activities. In the second layer, the execution model is expressed when the

executable is built by resolving all the library calls (partially). When the program is

executed, the runtime system at layer three sits on top of the communication layer (or

the operating system) to reinforce the execution model by providing all the runtime

facilities such as scheduling, load balancing, collecting data, etc. Since most HPC

runtime systems are active components, interfaces, tools, or techniques are available

for direct interaction with the runtime layers. Using these interfaces, the activities of

runtime systems can be monitored, altered, or controlled. At level five, the operating

system sits where hardware counter data can be collected. Some runtime systems

collect the hardware counters from the operating system.
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Figure 4. Evolution of HPC runtimes for the last 35 years.

2.3 Evolution of HPC Runtimes

In this section, the evolution of HPC runtimes is discussed. The major events that

transpired and runtimes developed over the last 35 years are explored to understand

what shaped contemporary HPC runtimes. The reason behind choosing 1985 as the

starting year is because parallel computers started becoming more available around

that time. It is no secret that innovations in the field of computer architecture

majorly shape HPC runtimes. A closer look is taken at the correlation between the

ever-changing computer architectures and the evolution in runtime systems. From

1985 to the present day, the whole period is divided into four parts considering the

events in 10 years duration. After, the state-of-the-art runtimes are identified to take

a closer look.

2.3.1 Before 1985. In the 1970s, for providing the highest performance,

vector computing was the go-to solution [23] (such as single-processor machine Cray-

1 [24] and multiprocessor machine Illiac [25]). In the 1980s, multiprocessor vector

machines started becoming available in the form of Massively Parallel Processors

(MPPs) (e.g., the concept of a hypercube [25])). Such an example is Caltech’s Cosmic
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Cube [26] (fully operational in 1983) which was built using 64 nodes in point-to-

point connection without shared memory. With this configuration, message passing

between nodes was necessary. Even though the idea of messaging passing architecture

is successfully demonstrated by Cosmic Cube, the concept of message passing for

distributed memory systems already existed in other efforts, such as the Eden project

for object style programming for distributed systems [27]. After the success of Cosmic

Cube, other manufacturers started building cube machines, and the trend lasted for

a decade. At the same time, cluster computing, where compute nodes were loosely

connected through network interface cards, was also gaining popularity in the 1980s

for its simplicity in design [28]. Even though there were differences in architectures

between hypercubes and clusters, during this decade, it was established that a message

passing architecture could provide high scalability at a low cost.

2.3.2 HPC Runtimes in 1985-1995: Message Passing Architecture.

Having realized the potential of message passing architectures, vendors, national

labs, and academia started providing programming interfaces that could facilitate

message passing for distributed memory systems. Intel developed the NX/2

operating system [29] which provided messaging passing interface through system

calls. Parasoft developed the Express [30] library that made a program portable

to different machines (supported C and Fortran). Argonne National Laboratory

(ANL) introduced p4 [31]. Similarly, IBM introduced the Venus [32] communication

library for message passing. Moreover, PVM [33], a collaboration between Oak

Ridge national laboratory (ORNL), University of Tennessee, and Emory University

supported message passing for heterogeneous parallel computing. Chameleon [34]

from ANL provided interoperability between different message passing libraries.

These efforts focused on enabling message passing for parallel computing and took
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place in the late 1980s and early 1990s. However, because of different implementations

by different manufacturers, portability became an important aspect. For this reason,

in 1992, 60 people from 40 organizations started the Message Passing Interface

(MPI) standardization effort at a workshop called “Workshop on Standards for

Message Passing in a Distributed Memory Environment”. By 1993, the standard was

completed and presented at SC93. In hindsight, this probably was one of the biggest

initiatives that shaped the modern high performance computing domain. After the

standardization, MPICH [1] was released. MPICH (CH comes from Chameleon) is

still one of the popular MPI implementations today. Even in 2021, MPI is the de-facto

standard for HPC, and it will not be an overstatement to say “MPI is everywhere”.

Apart from the rise of MPI, some other events took place which did not

immediately become as successful as MPI but planted the seed for the future. One

such effort is the C language extension Split-C [35], which enabled the idea of global

address space by providing the option for declaring a distributed array. With this

configuration, one processor could reference pointers to another processor through

communication. The idea of global address space was not new at that time. Amber

systems [36] mention a similar idea about global address spaces. However, Split-

C is considered to be the precursor of UPC, a PGAS language of modern times

(SHMEM is also credited for one-sided communication, which is one of the ideas

of PGAS model [37]). Moreover, Charm++ [4], introduced in 1993, implemented a

task programming model and is a precursor to the asynchronous many tasks (AMT)

based runtimes. Another work, Active Messages [38], provided the idea of efficient

message-driven computation (opposed to message passing), which is found in modern

HPC runtimes. The idea of loose synchronization is mentioned in Midway [39], which

provided an opportunity to synchronize caches in distributed memory systems. The
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runtime system carried out the synchronization through a barrier that is specified

by the programmer. The main idea was to have loosely bound synchronization

criteria where the programmer was in charge of deciding whether a synchronization

was necessary or not.

2.3.3 HPC Runtimes in 1996-2005: Shared Memory and Distributed

Shared Memory. MPI standardization effort provided a great example of how a

community-led effort could streamline an HPC Programming model. Riding off the

success of MPI in distributed memory, a standard for shared memory programming

models was introduced in 1997. First for Fortran and then for C, the OpenMP

architecture review board (OARB) [2] released its standard to provide an alternative

to MPI for increasing parallelism in shared memory systems. The standardization

provided portability for OpenMP and was widely accepted by industry and academia.

With OpenMP and MPI standardized, the HPC community was given two means

to program both shared memory and distributed memory systems. By the end

of the 1990s, the HPC community realized the drawbacks of explicit synchronous

message passing at the front end for data transfer. For this reason, the concept of

distributed shared memory gained traction, and the concept of Partitioned Global

Addressed Spaces (PGAS) was introduced. Three PGAS languages were launched in

the late 1990s and early 2000s. UPC for C [40], Co-array Fortran for Fortran [41]

and Titanium for Java [42]. These separate languages provided options to declare

distributed arrays where the runtime systems of these languages performed one-sided

communication through communication interfaces like the GASNet communication

library [43]. The GASNet communication interface is capable of using MPI for

its one-sided communication. Later two more prominent PGAS languages were
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introduced, X10 [44] and Chapel [45], which introduced an asynchronous task model

for distributed execution while utilizing a global address space.

2.3.4 HPC Runtimes 2005-2015: Multicore, Manycore and

Heterogeneity. In the mid-2000s, processor manufacturers were hit with the

temperature barrier, which limited them from increasing processor performance by

increasing the frequency in a single core. This obstacle led to the start of the manycore

boom. Even though manycore processors existed previously, after 2005, they became

mainstream for all levels of computing. NVIDIA, a graphics processor manufacturer,

realized this opportunity, who started manufacturing their graphics processor for

general-purpose computing. This brought about the era GPGPUs. With the release

of CUDA [46] by NVIDIA in 2007, accelerator programming drew the attention of

the HPC community. As a result, runtime system providers started working towards

supporting GPUs in their programming environments. Heterogeneous systems, where

CPUs and GPUs are housed in a single node, led runtime developers to invent

new approaches to harness the computing power from such systems. Programming

standards and APIs for heterogeneous systems such as OpenCL [47], OpenACC [48]

and StarPU [49] were introduced. These two major changes (multicore CPUs and

manycore GPUs) increased in-node parallelism and exposed the disadvantages of

using synchronization-based message passing in MPI. Since explicit message passing

with bulk synchronous barriers make both sender and receiver wait, it restricts

the utilization of processor cores to reach their peak utilization (later MPI started

providing asynchronous communication). For this reason, fine-grain tasks (instead

of heavy MPI ranks or OpenMP threads) became one the most active fields in

runtime systems research. Since lightweight tasks can be easily yielded and resumed

compared to heavy-weight OS threads, the asynchronous task based execution model
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received attention for increasing utilization of multicore processors. To provide high

computation and communication overlap, many Asynchronous Many Task (AMT)

runtime systems appeared, such as HPX [3], Cilk Plus [50], TBB [51], Legion [52], etc.

Moreover, with C++11 released, highly templated code with improved asynchronous

features began to be adopted by the runtimes. The AMT execution model is

considered by the community to be a better fit for exascale computing, which is

envisioned to appear by the early 2020s.

2.3.5 HPC Runtimes during 2015-Present: Asynchronous Many

Task and Abstraction. After 2015, the HPC community started focusing more

on abstraction since multiple computing paradigms (CPU and GPU) in one node

became common. For this reason, initiatives for providing programming approaches

in a portable way (such as Kokkos [53]) started appearing. Moreover, AMD released

its open-source GPU programming capability ROCm platform (HIP) [7]. Since

there were already a considerable number of AMT runtimes introduced, the HPC

community also started realizing the need for an AMT interface. A group of

runtime system researchers from industry, national labs, and academia launched

Open Community Runtime (OCR) [54] by releasing its specification. Moreover,

Argobots [55] was introduced to work with different asynchronous many task

execution runtimes.

2.3.6 Reduction and Identification of State-of-the-art. At this point,

it is clear that there are several domains into which HPC runtimes can be divided.

Even though the MPI+X model is the commonly adopted model for scientific

applications nowadays, many modern runtime systems use MPI at a communication

level where MPI message sending and receiving is done by the runtimes rather than the

programmer. Considering the recent developments, HPC runtimes can be categorized
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Figure 5. Different state-of-the-art HPC runtime systems. White Text = Category
name and Black Text = Runtime name. Runtime systems’ color coding, Blue =
Many task runtime, Green = GAS based runtime, Red = Heterogeneous capability
enabler runtimes (Accelerator runtime included in this category), and Purple =
Shared memory runtime. Note: MPI is not here. Because it’s the top view. MPI is
now part of many of the runtime systems.

into four categories: 1. shared memory runtimes, 2. task based runtimes, 3. GAS

based runtimes (languages), and 4. heterogeneous runtimes. Figure 5 shows the

distribution of HPC runtimes. It is easy to notice that 20 runtime systems are chosen

that represent the whole HPC runtime spectrum. HPC runtime survey papers [56, 57]

are consulted to choose these runtimes. Some runtimes can provide multiple features,

but the categorization is based on the commonly known feature of the runtime.

2.4 Shared Memory Runtime Systems

In this section, shared memory runtime systems are briefly discussed.

2.4.1 Cilk Plus. Cilk [58] originated from MIT in the mid-1990s, and

later Intel acquired it when MIT licensed it to Cilk Arts [59]. Intel released Cilk
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Plus [60, 50] as a part of the ICC compiler suite. Cilk plus uses a nonblocking spawn

function to generate new tasks in a DAG that later syncs (spawn-sync), implementing

the fork-join model. Cilk plus extended C/C++ by adding three keywords cilk for,

cilk spawn, and cilk sync. Cilk Plus provides a compiler-driven approach for task-

level parallelism in shared memory machines.

2.4.2 TBB. OS thread-based solutions for programming multicore systems

are not portable. For this reason Intel TBB [61, 51] (oneTBB) is a C++ template

library for threading abstraction. TBB is mainly designed for shared memory

multicore CPUs. It expresses parallelism in terms of logical tasks (C++ objects),

which are scheduled to a pool of OS threads. In other words, it provides a wrapper

to use the OS threads to make the program portable.

2.4.3 OpenMP. OpenMP [62] is one of the most popular and widely used

names in the HPC community for its shared memory programming model. OpenMP

Architecture Review Board manages it (OARB) [63]. This board has members from

all leading manufacturers. OARB published the first specification [19] in 1997 for

Fortran, and in the following year, a C/C++ standard was released. There is one

master thread that forks multiple threads for data and task parallel computation.

When a computation finishes, all the threads are joined to the master thread. For

this reason, OpenMP is often referred to as a fork-join model.

2.4.4 OmpSs and Nanos++. OmpSs [64, 65] is an effort from Barcelona

Supercomputing Center (BSC), which made an appearance in the HPC world in 2011.

The main idea of OmpSs is to extend OpenMP and StarSs [66] for a directive-based

asynchronous task execution model that also supports accelerators such as GPUs,

FPGAs, etc. along with CPUs. OmpSs is implemented as an extension to OpenMP

that enables asynchronous task features that target newer architectures like GPU,
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FPGA, etc. Over the years, many features from OmpSs were included in OpenMP

specification [65]. For this reason, OmpSs is considered a forerunner of accelerator-

based OpenMP. OmpSs is built on top of Mercurium source to source compiler [67]

and the Nanos++ runtime system [68].

2.4.5 Qthreads. Qthreads [69, 70], an effort from Sandia lab introduced

in 2008, is a user-level library for on-node multithreading. The initial target

was to provide massive level multithreading with rich synchronisation [71]. With

Qthreads, when an application exposes parallelism (specified by the user) in a massive

number of lightweight user-level threads, the runtime system dynamically manages

the scheduling of tasks.

2.5 Task Based Runtime Systems

Task based runtime systems are discussed in this section.

2.5.1 Charm++. Charm++ [4] is one of the pioneers of modern

asynchronous task based runtimes. It originated at the University of Illinois at Urbana

Champaign (UIUC) in 1993. The Charm++ programming model and runtime

implement a message-driven paradigm where computation starts after receiving

messages. It works through parallel processes called chares which are C++ objects.

These objects have entry points that are executed when a message is received. A

program is over decomposed in terms of chares and the execution is completely non-

deterministic since chares are invoked asynchronously [72].

2.5.2 HPX. HPX [3] runtime is from Louisiana State University (LSU)

and was introduced in 2014. HPX implements the concepts of the ParalleX

execution model [73]. HPX strictly conforms to C++ standards and enables wait-

free asynchronous execution. HPX implements active messages where computation

is sent to data instead of sending data towards computation. In HPX, active
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messages are called parcels and processing elements are called localities. The runtime

system implements an Active Global Address Space (AGAS) that is capable of object

migration. AGAS generates the Global ID and GIDs that are used to locate an object

in the system.

2.5.3 Legion. Legion [74, 75] is an effort from Stanford University and Los

Alamos National Laboratory (LANL). Legion is a data-centric programming model

targeted for heterogeneous distributed systems. Legion aims to provide locality (data

close to the computation) and independence (computation on disjoint data and can

be placed on any compute component of the system). The main idea of Legion is

based on three abstractions for data partitioning: using logical regions, a tree of tasks

for using the regions, and a mapping interface for the underlying hardware. Legion

provides communication through another low-level runtime system called Realm [76]

which supports asynchronous, an event-based runtime for task based computations.

2.5.4 OCR. A comparatively new runtime system, the Open Community

Runtime (OCR) [77] is a joint work from Intel and Rice University. Currently, the

University of Vienna [78] and PNNL have implementations of OCR, which are called

OCR-Vx [78] and P-OCR [54], respectively. The main target of the runtime is to

realize the opportunity of exascale systems. In the exascale era, the authors argue

that the HPC community will look for an alternative to the MPI+X model. OCR

started with its formal specifications [79]. OCR is an asynchronous many task (AMT)

runtime system for exascale where the main idea is to express computations through

tasks, events, and data blocks.

2.5.5 Argobots. Argobots is a lightweight low-level threading API

developed at Argonne National Laboratory (ANL) as part of the project Argo

in 2016 [55, 80]. Argobots provides integrated support for MPI, OpenMP, and
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I/O services. Argobots provides richer capabilities when compared to existing

runtimes, offering more efficient interoperability than production OpenMP, a lower

synchronization cost when MPI is used, and better I/O services. In Argobots,

functions are expressed as ULT (ultra-light tasks) and tasklets. ULTs have a stack

(similar to OS threads but smaller) that provides faster context-switching.

2.5.6 Unitah. Uintah [81, 82, 83] is a set of libraries for large-scale

simulation. It provides a unified heterogeneous task scheduler and runtime originating

from the University of Utah’s Imaging institute. Originally, Uintah supported an

MPI-only approach for out-of-order execution. However, when multicore processors

became common, the MPI-only approach did not work very well because MPI ranks

need to send and receive messages to transfer data, even if the ranks are housed in

the same SMPs. For this reason, a master-slave model is adopted by Uintah runtime,

where MPI ranks have multi-threaded execution. The master thread does the data

communication with other MPI ranks, and other threads work on the computation.

Later, the design of the scheduler was changed in Uintah to support a computation

offload model where Uintah can work on heterogeneous systems to offload work for

CPUs and GPUs.

2.5.7 PaRSEC. PaRSEC [23, 84], an effort from the University of

Tennessee, Knoxville, was introduced in 2012. PaRSEC provides a dataflow

programming model. The main idea is to express a program through dataflow

between different parts of the code. When dataflow is defined, the dependencies

get exposed. This representation of the dataflow acts as a hint to the runtime system

for orchestrating the DAG execution on available hardware.

2.6 GAS Based Runtime Systems

In this section, GAS based runtimes are discussed.
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2.6.1 UPC. UPC [85] is one of the pioneers of modern PGAS languages. It

originated from LBNL in 1999. As previously mentioned, it is considered to be the

descendent of SPLIT-C [35]. It provides an option for distributed data structures for

reading from and writing to different nodes. In other words, data structures reside

in nodes but can be accessed from other nodes. UPC provides a fixed SPMD model

where parallelism is fixed from the beginning of a program. UPC can be imagined as

a collection thread executing in a globally shared address space.

2.6.2 Chapel. Chapel [22] is a programming language that emerged

from CRAY’s effort in DARPA high performance computing system program

(HPCS). Chapel [86] is a PGAS language (a separate language) similar to high-level

programming languages like C, Java, and Fortran that provides a global view of the

system it is running on and supports a block-imperative programming style. The

creators argue that the main reason for a new language is to set the users in the right

state of mind where users know that this is not a sequential program; instead, it is a

parallel program. Chapel provides all the basics of high-level programming such as

loops, conditions, types, etc.

2.6.3 X10. The X10 language [87, 44] is a member of the PGAS family.

The IBM Watson lab introduced it in 2005 as part of the DARPA High-Performance

computing program (HPCS). X10 was made available at the start of the many-core

era and targeted large shared multiprocessor (SMP) environments where processors

would have non-uniform access to memory (NUMA). X10 introduces object-oriented

facilities by having JAVA as the foundation for sequential programming languages.

X10’s goal was to provide a way for programmers to go beyond standard JAVA

constructs and provide HPC-specific constructs that do not depend on JAVA, such

as asynchronous execution and multidimensional arrays.
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2.7 Heterogeneous Runtime Systems

Heterogeneous runtime systems are discussed in this section.

2.7.1 OpenCL. The Open Computing Language (OpenCL) [47] standard is

managed by the Khronos group. The first specification for OpenCL 1.0 was released

in 2009. OpenCL is designed for heterogeneous systems with different devices from

different manufacturers. OpenCL provides queues for each device, and the CPU is

considered as host. The host can enqueue kernels for execution in a blocking and non-

blocking way. The API provides means to transfer data between the host and the

device and various synchronization functionalities. The abstraction layer provided

by OpenCL makes creating scalable code for different vendors easy. The OpenCL

execution model has different hierarchies. When a device from a specific vendor is

chosen, those hierarchical execution constructs are mapped to the underlying device

driver.

2.7.2 OpenACC. Realizing the popularity of the directive-based

programming approach, Cray, NVIDIA and PGI developed the OpenACC [88]

programming standard for accelerators in 2012. The main idea was to simplify parallel

programming for heterogeneous CPU/GPU systems. High-level abstractions through

directives hide all the detail of offloading a kernel to GPUs. Moreover, it ensures

portability to different manufacturers.

2.7.3 StarPU. The StarPU [5] runtime system was introduced in 2011

by the Inria Institute, located in France. The main idea of StarPU is to provide

a task based programming model capable of heterogeneous execution (CPU/GPU).

The primary data structure of StarPU is called a codelet. A computational kernel is

expressed as a codelet where the kernel can be executed in a CPU, CUDA device, or

in an OpenCL device.
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2.7.4 CUDA. CUDA [46] is a platform and application programming

interface developed by NVIDIA and was introduced in 2007. CUDA is the catalyst

for bringing GPGPUs to the HPC community. Because of its throughput-oriented

approach, CUDA was capable of providing significant computation power. CUDA

became popular quickly, and now, CUDA devices are found in every large computing

facility. CUDA devices have a large number of low-performance cores where CUDA

threads run. CUDA implements the host and device concept where the host CPU

can offload computation to a CUDA device through the CUDA API.

2.7.5 HIP. Similar to CUDA, AMD launched its ROCm [7] platform for

GPUs. The ROCm platform consists of different tools, compilers, and libraries. In

2016, AMD introduced the Heterogeneous Compute Interface for Portability (HIP)

API for GPUs [89]. The ROCm stack consists of user code at the top, the HIP API

that expresses the programming model, the HCC compiler that compiles HIP code,

the HSA API and runtime for AMD GPUs, and the amdkfd driver for AMD GPUs.

In this chapter, the name HIP is used to describe both the programming API and

the driver.

2.8 Runtime Feature Comparison

This section compares and contrasts runtime systems based on their programming

models, APIs, execution models, memory models, and synchronization strategies.

Later in this section, runtime systems are compared based on their communication

and distributed execution features.

2.8.1 Programming API and Model. A programming API provides a

means of expressing the programming model for a runtime system. Programming

APIs that conform to a high-level language standard come in various forms. This
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layer is typically the highest level of abstraction provided by the underlying runtime

system.

Programming APIs play a critical role in determining the usability of a runtime

system. There is a trade-off between abstraction and control. On one hand, if the

API provides a very high level of abstraction, a user may unwillingly cede control

of fine-grained optimizations to the runtime. On the other hand, if a user wants

to control fine-grained optimizations through the API, the source code can lose

readability. For example, the code explicitly expresses the memory mapping strategy

and synchronization techniques in MPI programs. Compared to modern runtime

systems such as HPX, MPI does not provide a high level of abstraction. However,

it offers the user full control over the key factors affecting performance. Modern

runtime systems carefully balance this trade-off by providing different levels of control

to empower users.

The APIs of modern HPC runtimes are written in a high-level language such as

C/C++/Fortran/Java. Table 1 shows the language and the compiler for different

programming APIs. There are similarities in how these programming models are

expressed. We describe these similarities below.

2.8.1.1 Directive-Based. Directive-based programming models are favored

by many runtimes for their capability to provide a high level of abstraction and the

ease with which they allow the user to express loop-level parallelism. The two most

common directive-based programming models are OpenMP and OpenACC. Both of

these programming models provide execution schemes for the CPU and the GPU.

To express parallelism, a user identifies a parallel region, and through a compiler

directive (pragma), notifies the runtime of the execution strategy to implement. This

simplicity has made OpenMP one of the most popular and ubiquitous programming
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Table 1. Programming model and API.

Runtime Language Compiler support

Cilk Plus C/C++ Built in Intel compiler and others
TBB C++ Built in Intel compiler and others

OpenMP C/C++/Fortran In all major compilers
Nanos++ C/C++ Mercurium for OmpSs
Qthread C/C++ Standard compilers

Charm++ C/C++ Charm has it’s compiler
HPX C++ Standard C++11, 14, 17

Legion C/C++/Regent Standard/Regent compiler
OCR C/C++/Fortran Several implementation

Argobots C/C++ OpenMP (GNU) and MPI
Uintah C/C++ MPI+X

PaRSEC C/C++ Own compiler for two stages
UPC UPC UPC compiler

Chapel Chapel Chapel compiler
X10 X10 X10-Java compiler

StarPU C Standard compilers
OpenCL C/C++/Python Standard compilers

OpenACC C/C++/Fortran Standard compilers
CUDA C/C++/Fortran nvcc compiler from CUDA

HIP C/C++ hcc compiler from ROCm

models in high-performance parallel computing. The OmpSs programming model

from Nanos++ and Bolt [90] from Argobots also provide a directive-based approach

for expressing parallelism.

2.8.1.2 Expressing Asynchronous Execution. Many runtimes offer

asynchronous execution. However, the programming model and the programming

API provide the flexibility to the user to specify which portion of the code to run

asynchronously. While some AMT runtimes such as Charm++, HPX, Cilk, and

StarPU provide implicit asynchronous execution schemes based on data-dependency

graphs and non-blocking execution, the APIs of other runtimes offer special constructs

for asynchronous execution. Chapel introduces the “cobegin” construct that instructs

the runtime system to execute the task in parallel. However, a descendent or child of
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the parallel task executes asynchronously depending on the implicit data dependencies

in the program. Similarly, OmpSs uses the “concurrent” construct to implement

relaxed data-dependency. OCR uses event-driven tasks (EDT) for asynchronous

execution. X10 uses “async” to create asynchronous tasks, while Charm++ and

HPX use futures.

2.8.1.3 GPU Programming. Programming models for enabling parallel

execution on GPUs are significantly different from those that run on CPUs. OpenMP

4.0 and OpenACC successfully hide GPU-specific support, and the runtime system

takes care of implementing those details. However, OpenCL, CUDA, and HIP provide

a low-level programming API to express the GPU programming model. Table 2 shows

the similarities in how OpenCL, CUDA, and HIP allow the user to express parallelism.

Generally, all of these programming models divide a GPU computation into a grid

of thread blocks. The runtime then maps these thread-blocks onto the streaming

multiprocessors (SM) (AMD calls these “compute units” (CU)). While the concept

is similar, the terminologies are different in OpenCL, CUDA, and HIP. OpenCL

provides separate computation queues for different heterogeneous compute elements

on the system. OpenCL supports both NVIDIA and AMD GPUs. ROCm provides

a layer for translating CUDA code into HIP code that allows CUDA code to run on

AMD GPUs.

Table 2. Similarity between CUDA, HIP and OpenCL.

Runtime Grid Thread Block Thread Warp

OpenCL NDRange work group work item sub-group
CUDA grid block thread warp

HIP grid block work item/thread wavefront

2.8.1.4 New Language with Special Compiler. Some runtime systems

offer compilers alongside their programming APIs. Chapel provides a compiler for its
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Table 3. Execution models in different HPC runtimes.

Runtime Execution model of different HPC runtimes

Cilk Plus Asynchronous task (DAG), Fork-join, SIMD
TBB Asynchronous task (DAG), Fork-join, SIMD

OpenMP Fork-join, SIMD
Nanos++ Asynchronous task (DAG), Fork-join, SIMD
Qthread Asynchronous task (DAG), Fork-join, SIMD

Charm++ Message driven asynchronous execution. DAG of tasks
HPX Message driven asynchronous execution. DAG of tasks

Legion Asynchronous execution builds a Tree of tasks
OCR Event driven Asynchronous execution. DAG of tasks

Argobots Fork-Join execution that builds a DAG of tasks
Uintah MPI + X DAG of Tasks

PaRSEC Event driven Asynchronous execution.DAG of tasks
UPC Pthreads with GAS (supports asynchronous execution)

Chapel Asynchronous execution builds a DAG of tasks
X10 Asynchronous execution builds a DAG of tasks

StarPU Asynchronous execution builds a DAG of tasks
OpenCL Heterogeneous execution: different execution scheme

OpenACC Heterogeneous execution: different execution scheme
CUDA Data parallel execution

HIP Data parallel execution

language. X10’s compiler translates X10 code to Java or C++ code. Charm++

uses its compiler wrapper for Charm++ codes. PaRSEC also provides a pre-

compiler to translate its data-flow representation of the task-graphs into C code.

The programming APIs that are implemented as library and language extensions can

be compiled through standard compilers. Some APIs use recent features of high-level

programming languages. For example, HPX uses constructs from C++11, C++14,

and C++17.

2.8.2 Execution Model. The execution model refers to the actual

execution scheme a program follows while executing. After the program is compiled,

the binary has all the instructions for the runtime to shape its execution. Similar-

looking code can behave differently depending on the underlying runtime system.
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Some HPC runtime systems support distributed execution, usually through the

SPMD execution model. However, the detail of the execution model varies. Table 3

provides an overview of the execution models supported by different HPC runtime

systems. The commonly found characteristics are described below.

2.8.2.1 Task Parallel vs Data Parallel. In the task-parallel model,

distinct tasks execute in parallel. This is in contrast to the data-parallel model,

which extracts parallelism from SIMD instructions. Historically OpenMP followed a

data-parallel execution model before OpenMP 3.0, which introduced task parallelism.

Task-parallel execution provides more flexibility for the user to extract parallelism

from situations where data-parallelism does not apply. However, OpenMP tasks

are heavy-weight OS threads which make context switching slow. Thus, OpenMP

provides tasking at a coarse-grained level. The same is true when MPI + X

applications employ OpenMP. OpenMP follows a fork-join model. Even though

OmpSs and Nanos++ are considered forerunners of OpenMP, they do not support

the fork-join model. However, Cilk, TBB, and Argobots follow the fork-join model.

2.8.2.2 Asynchronous Many Task Parallel. Because OS threads are

bulky and creating and destroying them incur a prohibitively high overhead, it is

not feasible to use them within many task runtimes. For this reason, many task

runtimes use lightweight tasks. These tasks can be a simple function call or a group

of instructions within a function. These tasks are easy to create and destroy, and

they also yield quickly. Asynchronous execution runtimes which employ lightweight

tasks take advantage of the fact that these tasks leave a small memory footprint to

reduce context-switching latency. The asynchronous many task model of execution

has become popular in modern runtime systems. Such execution models create a

graph of tasks with and without dependency among the nodes. In such a model,
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the number of tasks can be in the range of millions (some distributed memory

runtimes report handling up to 100 million tasks). Cilk, TBB, and Qthreads are

examples of such many task runtimes. As they employ a shared memory model, the

number of tasks is significantly smaller when compared to the distributed memory

model. Runtime systems that can work with distributed memory architectures such

as HPX, Charm++, and Legion can spawn a very high number of tasks to provide

parallelism. OCR, Argobots, PaRSEC, Chapel, X10, and StarPU also follow the

many task execution model.

2.8.2.3 Message Driven vs. Message Passing. The message-passing

model expresses code in an SPMD model. Messages allow the transfer of data between

two processes. In such a model, computation is in the driving seat. For example,

the MPI + X model follows the message-passing paradigm. Runtime systems such as

Uintah and Argobots follow the message-passing model. In the message-driven model,

the data dependency dominates program execution, and messages coordinate the

execution flow. HPX and Charm++ follow the message-driven execution model. Data

or a message is sent to different chares in Charm++, while HPX sends computation

towards the data. Moreover, there is another model called event-driven execution

that is similar to the message-driven paradigm. OCR and PaRSEC belong to this

category.

2.8.2.4 GPU Execution. The GPU execution model follows a single-

instruction, multiple-thread (SIMT) model. As shown in Table 2, the runtime

scheduler assigns thread blocks to different streaming processors. The runtime then

divides the threads into a set of warps (32 threads form a warp on an NVIDIA

GPU and 64 threads in AMD GPUs) [91]. These warps or wavefronts execute in

SIMD fashion. OpenACC and OpenCL provide a high-level construct to utilize the
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heterogeneous platform. Both OpenCL and OpenACC employ device-wise queues to

enqueue different kernel executions.

2.8.3 Memory Model and Synchronization. Memory handling is one

of the main bottlenecks of achieving high performance since synchronization is

needed when multiple compute entities try to access the same memory. Moreover,

synchronization is necessary for both the application developer to express the

computation in a well-coordinated manner, and also for the runtime system to

coordinate with different computing entities. Early runtime systems provided

synchronization constructs where the entire program synchronized both in distributed

memory and shared memory systems. This is referred to as the bulk synchronous

model. Bulk synchronous models are easy to implement and understand. However,

they suffer from performance penalties and also reduces the utilization of the system.

For this reason, asynchronous models are now popular in the runtime community, as

they provide fine-grained synchronization to improve utilization. Table 4 shows the

memory model and synchronization in runtime. The memory model is discussed first,

followed by a discussion of synchronization in the runtime systems.

2.8.3.1 Memory Model. In the shared memory model, all the processors

share the same cache-coherent memory space. Every compute element can access

any memory location through the memory channel without communicating through

the network interface. Cilk, TBB, OpenMP, OmpSs, and Qthreads are examples

of runtime systems that run on shared memory. Threads can access shared data

structures where they can read and write. However, individual threads have their own

memory space and private data. In a distributed memory model, network interfaces

connect different nodes. OCR, Argobots, Uintah, and PaRSEC have distributed

memory runtimes. In distributed memory runtimes, over-the-network communication
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Table 4. Memory models and synchronization techniques in different HPC runtimes.

Runtime Memory model Synchronization

Cilk Plus Shared memory Cilk join
TBB Shared memory Mutex

OpenMP Shared memory Directives
Nanos++ Shared memory Directives
Qthreads Shared memory Mutex and FEB
Charm++ Distributed shared memory Message, Futures

HPX Distributed shared memory LCOs
Legion Distributed shared memory Custom locks
OCR Distributed memory Events, Data-Block

Argobots Distributed memory Mutex, futures
Uintah Distributed memory Mutex, MPI

PaRSEC Distributed memory Dependency based
UPC Distributed shared memory Locks, barriers

Chapel Distributed shared memory Sync, single
X10 Distributed shared memory Clocks

StarPU Heterogeneous memory Locks, barriers
OpenCL Heterogeneous memory Barriers

OpenACC Heterogeneous memory Directives
CUDA GPU memory Library call

HIP GPU memory Library call

is necessary to access remote memory. However, this communication is not explicitly

visible to the user, and the runtime system performs the communication underneath

the hood. Charm++, HPX, Legion, UPC, Chapel, and X10 provide a distributed

shared memory space programming model. Within a compute node consisting of

GPUs, the PCIe bus connects the GPU and CPU memories. Data transfers between

the CPU and GPU memories are required to share memory between the two devices.

StarPU, OpenACC, and OpenCL operate through this type of GPU-CPU shared

memory model. CUDA and HIP operate within a GPU memory structure that hosts

a global memory, a local memory, and a shared memory. Both global memory and

local memory are slow. Global memory is accessible by all the threads, whereas
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local memory is local to every thread. Shared memory resides on a streaming

multiprocessor (SM), and the threads of the thread block share this memory.

2.8.3.2 Synchronisation. As described in the previous section on execution

models, many runtime systems support asynchronous execution where the sequence of

execution is non-deterministic. In such execution scenarios, synchronization happens

at the task level based on the DAG of dependencies. On the one hand, Cilk,

TBB, OmpSs, and Qthreads provide fine-grained synchronization since asynchronous

execution is allowed in these runtimes. Cilk provides join [50], TBB provides atomic

locks and mutexes [92], OmpSs provides data dependencies and directives [65] and

Qthreads provides mutex and FEB for synchronizing the tasks [70]. On the other

hand, OpenMP synchronizations are not fine-grained. OpenMP provides directive-

based barriers [19]. HPX also uses local control objects such as futures, dataflow

objects, etc., that implement the synchronization in a way that ensures that the tasks

can keep working without being completely blocked [20]. Charm++ uses messages

for data synchronisation [72] and uses futures for task synchronization.

For data access, Legion provides an option for relaxed synchronization. There

are two types of coherence: exclusive coherence and relaxed coherence. In

exclusive coherence, the synchronization is strict, where Legion follows an order.

However, in relaxed coherence, the synchronization order is not maintained. Rather,

Legion ensures access. Atomic coherence serializes the access without ordering,

and as the name suggests, simultaneous coherence lets two threads partially

execute simultaneously. Legion provides reservation (small scope) and phase

barriers (user-defined larger scope) for synchronization [74]. In OCR, events are

the main synchronization point since OCR uses an event-driven paradigm. For

data synchronization between tasks, OCR uses data blocks where access priority
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determines the serialization of data accesses [54]. PaRSEC provides dependency-

based synchronisation [93]. UPC uses locks and barriers for synchronisations [94].

Chapel uses full or empty syntax for synchronization. It supports two types of

synchronization variables: sync and single [22]. The sync variable switches state

from full to empty for access control, and the single variable indicates that it can

only be read once. X10 uses clocks for synchronisation [44]. Clocks ensure deadlock-

free operation by waiting for some time and then releasing. StarPU provides locks,

nested locks, critical sections, and barriers for synchronization [49]. OpenCL provides

three types of barriers. The first kind is to ensure that OpenCL executes all the

items in the queue. The second kind synchronizes all the work-items in a work-group

on a device. The third kind ensures the synchronization among sub-groups [47].

OpenACC provides directive-based synchronisation through barriers [88]. CUDA

and HIP provide synchronization for devices, streams, and threads [46, 89].

2.8.4 Communication, Distributed Support, and GPU Support

in HPC runtimes. Communication is necessary to provide distributed support.

Table 5 shows communication mechanisms and distributed execution options for

runtime systems. It also shows the time when a runtime system first reported support

for GPUs.

Efficient communication is a prerequisite for ensuring high performance in

runtimes. Runtime systems either use their own communication framework or use

already existing, optimized libraries. Charm++ uses messages for communication. It

supports different communication libraries such as MPI and UDP. Charm++ also

provides the option for one-sided communication in an RDMA-enabled network.

Through the communication interface, Charm++ provides a global address space

for supporting distributed execution [95]. HPX consists of a Parcel subsystem that
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Table 5. Communication, distributed support, and GPU support.

Runtime Communication Distributed support GPU support

Cilk Plus None No (through MPI+X) NA
TBB None No (through MPI+X) NA

OpenMP None No (through MPI+X) 2013
Nanos++ None No (through MPI+X) 2011
Qthread None No (through MPI+X) NA

Charm++ RDMA Yes (through GAS) 2016
HPX Parcel Yes (through GAS) 2014

Legion GASNet Yes (through GAS) 2012
OCR MPI messages Yes (through MPI) NA

Argobots MPI Messages yes (MPI + X) 2016
Uintah MPI Messages yes (MPI + X) 2013

PaRSEC MPI messages yes (Through MPI) 2012
UPC GASNet Yes (through GAS) 2014

Chapel GASNet Yes (through GAS) 2019
X10 MPI Messages Yes (through MPI) NA

StarPU None No (through MPI+X) 2011
OpenCL None No (through MPI+X) 2011

OpenACC None No (through MPI+X) 2012
CUDA None No (through MPI+X) 2009

HIP None No (through MPI+X) 2016

carries out communication across nodes. The Parcel subsystem can communicate

using TCP ports or MPI. By using active messages through the Parcel subsystem,

HPX enables a global address space for distributed execution [20]. Legion, UPC,

and Chapel use the GASNet [43] one-sided communication library for distributed

execution. PaRSEC and X10 use MPI messages for communication. The shared

memory and accelerator runtimes do not use communication across nodes. However,

they can be a part of the MPI + X execution model to support distributed execution.

Most of the modern runtimes support GPUs. Runtime systems use a CUDA, HIP,

or OpenCL runtime to provide GPU support in their ecosystem. Cilk Plus, TBB,

Qthread, OCR, and X10 do not report support for GPUs.
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2.8.5 Opportunities. Two trends are visible in the runtime system

domain. The first trend is the adoption of an asynchronous task based approach for

improving overall resource utilization. The second trend is including heterogeneous

capabilities in runtime systems. The first trend shows the direction where the runtime

system community is heading, whereas the second trend results from the evolution

of computer architectures. These two trends unveil two opportunities, which are

discussed below.

2.8.5.1 Opportunity - 1 : Standardization of Task based Runtime

Systems. The HPC community is yet to agree upon a standard for task based

runtimes. While some features are similar, every task based runtime system has its

methodologies for implementing the asynchronous task based approach. Initiatives

such as OCR showcase attempts from the HPC community to design a specification for

task based systems. Argobots is another research effort to bring a variety of runtime

systems under one umbrella. It is high time for the runtime system community to

come together and standardize task based runtime systems.

2.8.5.2 Opportunity - 2 : Addressing Heterogeneity. The trend of

heterogeneous systems is likely to be continued. As of now, the majority of the

runtime systems include support for GPUs. Runtime systems such as OpenCL

also include support for FPGAs. However, managing how the processors will be

used during execution is mostly the programmer’s responsibility. Moreover, newer

architectures are also being released (such as deep learning accelerators). For these

reasons, efficiently addressing heterogeneity under the umbrella of a runtime system

is still an opportunity.
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2.9 Dynamic Adaptation in Runtimes

This section explores the dynamic features of modern HPC runtime systems.

Specifically, we consider the features that are primarily responsible for providing

better performance and energy consumption.

Table 6. Scheduling and load balancing strategies in HPC runtimes.

Runtime Scheduling Load balancing

Cilk Plus Tasks on Worker thread pool Yes (work-stealing)
TBB Tasks on Worker thread pool Yes (work-stealing)

OpenMP Heavy OS threads Yes (work-stealing)
Nanos++ Tasks on Worker thread pool Yes (work-stealing)
Qthread Tasks on Worker thread pool Yes (work-stealing)

Charm++ Tasks on Worker thread pool Yes (through migration)
HPX Tasks on Worker thread pool Yes (through migration)

Legion Tasks on Worker thread pool Yes (work-stealing)
OCR Tasks on Worker thread pool Yes (work-stealing)

Argobots Stacked custom scheduling Yes (work-stealing)
Uintah Tasks on Worker thread pool Yes (Dynamic adaptive)

PaRSEC Tasks on Worker thread pool Yes (work-stealing)
UPC None None

Chapel Future plan Future plan
X10 Tasks on Worker thread pool Yes (work-stealing)

StarPU Multiple Yes (work-stealing)
OpenCL Heterogeneous queues Dependent

OpenACC Heterogeneous queues Dependent
CUDA GPU scheduling Yes

HIP GPU scheduling Yes

2.9.1 Scheduling and Load Balancing. Scheduling is one of the most

critical tasks that an HPC runtime performs. In early parallel programming models,

scheduling used to be mostly static. The mapping between work and resource did

not change during execution after expressing the parallelism through programming

APIs in early MPI or OpenMP applications. However, in modern HPC runtimes,

the scheduling scenario is highly dynamic. It is almost impossible to determine the

optimal mapping between work and resources since the optimal fine-grained mapping
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keeps changing. The main idea behind this non-deterministic mapping is to increase

the utilization of underlying hardware. As a result, scheduling is one of the areas

where dynamic adaptation plays an important role. Dynamic scheduling enables

better load-balancing that, in turn, results in better system utilization. We discuss

the scheduling and load balancing strategies of different runtime systems below.

Table 6 shows the scheduling approaches adopted by different runtime systems.

Each category presented in the table is further elaborated in the following sections.

2.9.1.1 Scheduling Using OS Threads. OpenMP uses direct task

mapping on OS threads. Every time OpenMP creates a task, OpenMP assigns the

task to an OS thread. This OS thread is created at the beginning of the parallel

region and joins with the master thread when the parallel region ends. However,

OpenMP is unaware of the task-to-thread mapping strategy to implement in advance

(it can be specified). OpenMP standard provides five types of scheduling: 1) static,

2) dynamic, 3) guided, 4) auto, and 5) runtime [19]. It also provides the option to

change the chunk size. The number of loop iterations each OS thread gets assigned

depends on the chunk size. Static scheduling distributes the number of iterations

equally if the chunk size is not specified. If the chunk size is specified, OpenMP

allocates chunks to different threads in a round-robin fashion. In dynamic scheduling,

each thread works on an initial chunk and requests more chunks as required. Guided

scheduling works like dynamic scheduling, except that the chunk size keeps decreasing.

When the user specifies auto as the scheduling option, the compiler decides the data

distribution. When the runtime scheduling is selected, OpenMP determines the chunk

sizes at runtime. Using dynamic scheduling, OpenMP can achieve work-stealing load-

balancing. OmpSs [65] also implements the same strategies.
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2.9.1.2 Worker Thread Pool. The most common strategy for scheduling

in many task runtime systems is to have a pool of worker threads. The runtime

system has task queues that contain ready-to-be-executed tasks. Like the producer-

consumer approach, when a task’s dependencies are resolved, they are placed on

the ready queue. The pool of worker threads keeps pulling tasks from the ready

queue. A majority of the many task runtimes implement this strategy. Cilk Plus,

TBB, Nanos++, Qthread, Charm++, HPX, Legion, OCR, Uintah, PaRSEC, and

X10 all implement some variant of this strategy. The main benefit is the increased

utilization of the resources. However, the queue structure and the number of queues

differ in different runtime systems. Uintah implements a unified schedular where

MPI, Pthread, and CUDA can work together in an out-of-order fashion where the

pthreads are the worker pool that consumes work from the CPU queues. It has a

scheduling option for MPI processes as well. The load balancer in Uintah can provide

dynamic adaptation in runtime by changing how much computation each processor

performs [83]. Nanos++ holds a ready task queue where all the tasks have their

dependencies resolved (supports yielding) [65]. Qthread employs a similar strategy

where the worker pool is called a ”collection of a shepherd” (uses chunk size) [69].

In Charm++, each PE (worker thread) has its pool of messages and a collection

of chares. As Charm++ employs a message-driven paradigm, each PE selects a

message from the pool and executes the method of a chare for which the message

is meant for. Charm++ provides an advanced load balancing strategy through

migration. It can provide load balancing in a centralized or distributed way. It

also employs a measurement-based load balancing strategy. Charm++ creates a

database of information that facilitates periodical load balancing using the prediction

of the imbalance. It also provides different algorithms for load balancing (Greedy,
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Refine, Rotate, etc.) [95]. Like Charm++, HPX also keeps queue(s) of tasks for

each OS thread. HPX also provides multiple priority queues where HPX executes

high priority queues first. HPX provides different scheduling options (Priority local

scheduling, Priority ABP scheduling, etc.). Through the Priority ABP scheduling,

HPX can provide NUMA sensitive scheduling where HPX assigns the highest priority

to the same NUMA domain [20]. HPX provides a load balancing option for in-node

through work-stealing among the worker threads and also distributed load balancing

through task migration [96]. In Legion, the underlying Realm runtime manages the

worker thread pool. This pool creates a queue for each thread and asynchronously

executes them [76]. The mapping interface of legion runtime provides a mechanism

for distributed task-stealing for load balancing [97]. OCR also uses a worker thread

concept where the load balancing is supported through work-stealing using a work-

first or help-first mechanism. The Habanero runtime (an upgrade of X10) [98, 99] is

the inspiration for OCR’s load balancing strategy. Argobots uses a stacked scheduler

concept where multiple schedulers can be applied for different software modules during

execution [55]. While using a set of worker threads, it also uses work-stealing load

balancing. Like HPX, PaRSEC and Nanos++ also provide NUMA-aware scheduling

for better performance [84, 65]. PaRSEC also supports inter-node and intra-node load

balancing using work-stealing [84]. X10 provides load balancing custom work-stealing

method through GLB library [100].

2.9.1.3 GPU Scheduling. Both CUDA and HIP provide streams for

devices. Streams execute the kernels sequentially in a first-come, first-served

manner [101]. However, at a lower level, each streaming processor (SM) schedules

warps (a set of threads) from the assigned thread blocks [91]. Each streaming

processor has multiple warp schedulers that pull ready warps to execute from the

46



queue to increase utilization. When a kernel starts executing on the GPUs, the

scheduler assigns thread blocks to SMs. Much detail of the scheduling at the SM

level is not revealed [101].

2.9.1.4 Heterogeneous Scheduling. Scheduling in StarPU also follows

a group of workers where the workers can be accelerators as well [5]. The default

schedular in StarPU is a work-stealing scheduler. However, StarPU has different

options for scheduling. StarPU can implement performance models to find out the

appropriate target for specific tasks. Moreover, when declaring “codelets” in StarPU,

the user can specify a priority for tasks that acts as a hint to the runtime. Based

on these hints, StarPU schedulers can provide greedy scheduling [49]. The gang,

worker, and vector constructs define the scheduling in OpenACC [102]. Based on the

specified size of these variables underlying heterogeneous processors is used. Further,

the underlying driver for the device implements the scheduling decision. OpenCL

provides device-wise queues for heterogeneous systems [103]. When scheduled to the

device queues, the device uses its internal scheduling at the execution time.

2.9.1.5 Opportunity - 3 : Task Placement in Heterogeneous

Systems. Only the StarPU runtime system provides scheduling mechanisms for task

placements on CPUs and GPUs. Other runtime systems do not do so. However, the

capability to operate on heterogeneous systems has become common in almost all

modern runtime systems. For this reason, a heterogeneous task placement scheduler

would be a fruitful addition to them. There are ad-hoc studies that implement task

placement scheduling algorithms on the OpenCL runtime system [104, 105], which

provide the validation of this opportunity.

2.9.2 Energy Aware Features and Studies. Energy consumption is one

of the biggest concerns surrounding the operation of exascale systems [106]. For this
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reason, new processors (both CPU and GPU) come with predefined TDP levels and

frequency sets. These new technologies enable the processors to adjust their clock

frequencies dynamically to ensure that they adhere to the power budget. Moreover,

CPU and GPU vendors provide interfaces to monitor and allow changing these states

through those interfaces. For example, Intel provides running average power limit

(RAPL) [107] and NVIDIA provides NVIDIA management library (NVML) [108]

to monitor and control power-related attributes. These interfaces enable runtime

systems (or OS) to select certain settings to limit energy consumption by sacrificing

processing power. This “soft” control enables the runtime system to dynamically

select the energy consumption mode depending on the priority, need, or hardware

status. Such control has proved beneficial as it provides an extra layer of control

to make energy-aware decisions. This section discusses energy-aware capabilities in

runtimes and methods. At first, we discuss the most common energy-aware techniques

suitable for runtime systems. Later, we present a discussion of the energy-aware

decision capability that exists in current runtimes.

2.9.2.1 Dynamic Voltage and Frequency Scaling (DVFS). Dynamic

voltage and frequency scaling (DVFS) is one of the oldest methods to achieve dynamic

power behavior. Many of the current processors have DVFS capability. In a DVFS

capable system, processors and memory have a set of frequencies in which they can

operate. In most of the devices, the frequency is selected by the operating system

when DVFS is enabled. Usually, the frequency selection depends on the utilization of

the unit. There has been a considerable amount of research done in the area of DVFS.

Ma et al. [109] designed a GreenGPU that dynamically throttles the frequency of the

GPU and the memory. Komoda et al. [110] also studied power capping using DVFS

to find near-optimal frequency settings for CPU-GPU. Liu et al. [111] designed an
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energy-aware kernel mapping strategy that assigns different frequencies to PUs in a

heterogeneous system using DVFS.

2.9.2.2 Power Capping. Power capping is a technique that restricts the

instant power consumption of a device. The main components of a system are the

processors and the memory. Each processor has a certain number of frequencies that

it can operate in, and the same is true for the system memory. Selecting a higher

frequency guarantees a higher speed for the processor or memory but also consumes

more power. For this reason, by opting for a lower frequency, the runtime can limit

the maximum power consumption of a device instantly. A modern integrated device

such as the NVIDIA Xavier has a predefined power cap. For example, Xavier has

five predefined power caps that the runtime software can dynamically invoke. For

example, Zhu et al. [112] dynamically finds the appropriate frequency to keep the

application execution under a power cap for a heterogeneous system consisting of a

CPU and a GPU. Using a machine learning technique, the strategy proposed by the

authors can select a frequency that is capable of keeping a device under a power cap.

2.9.2.3 Energy-aware Features in Runtimes. Some runtimes include

energy-aware features in their design. Charm++ provides the capability to change

the CPU core frequency using DVFS [72]. Charm++ provides a load balancer

that monitors the average temperature of the chip and changes the core frequency

when the temperature crosses a threshold. These thresholds are application-specific,

and the user can set them. When the frequency is lowered for a set of cores, the

runtime calculates the load of the processor cores and identifies under-utilized and

overloaded cores. After identification, the runtime load balancer migrates tasks from

the overloaded to underloaded cores. The runtime repeats this process many times

during the application’s execution. This approach provided energy savings without
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much performance penalty [113]. HPX does not provide energy-aware features, but

they claim to improve overall energy efficiency by increasing the utilization of the

resources through over decomposition of tasks [3]. The same argument is made by

OCR [78]. PaRSEC provides integration with PAPI [114] for power measurement

at the task level. However, the runtime does not dynamically adapt itself using

the power measurements [115]. StarPU provides energy-aware scheduling where the

runtime system turns off the CPU cores to save energy. A “codelet” can be specified

with an energy model, and based on that model, the runtime system adjusts the task

distribution [49]. Other runtime systems do not provide energy-aware capabilities.

2.9.2.4 Opportunity - 4 : Energy-aware Decision Making

Capability. Studies suggest that runtime systems can provide efficient energy-aware

decisions and offer a good trade-off between energy and performance. At the same

time, it is also evident that not many runtime systems provide energy-aware features.

For this reason, an energy-aware runtime that works well with hardware from different

processor architectures would be a critical feature for the runtimes targeted for future

exascale systems.

2.9.3 Dynamic Adaptation Tools and Interfaces. The runtime system

is an active component that can interact with external entities. Such interaction

can impose control on the decisions taken by the runtime. However, proper APIs

need to be exposed by the runtimes for external systems to interact and influence

their behavior. Table 7 provides a summary of the different tools and interfaces for

dynamic adaptation of the runtime systems. We discuss these in detail below.

2.9.3.1 Interfaces for Runtimes. Some runtime systems reveal interfaces

for the sake of collecting performance data during execution. Runtimes allow an

external entity to register callback functions to provide the status or value of different
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Table 7. Tools and interface for dynamic adaptation for HPC runtimes.

Runtime Interface and online tools Adaptation capability

Cilk Plus No No
TBB No No

OpenMP OMPT interface Exists
Nanos++ Event collection No
Qthread RCRdaemon tool Exists

Charm++ PICs tool Exists
HPX APEX tool Exists

Legion Profiling Interface No
OCR No No

Argobots No No
Uintah No No

PaRSEC No No
UPC GASP interface No

Chapel No No
X10 No No

StarPU Profiling Interface No
OpenCL Profiling Interface No

OpenACC Profiling Interface No
CUDA CUPTI (profiling) No

HIP roc-profiler library No

runtime variables through these interfaces. Having such a generic interface defined

enables tuning runtime variables during execution. MPI 3.0 specification included

MPI T interface that allowed the community to design runtime introspection tools

to change different parameters for efficient communication [116, 117]. Similarly,

OpenMP 5.0 included OMPT, which is a tool interface for OpenMP. Similar to

MPI T, OMPT provides the ability to register callbacks to get the status of various

runtime system parameters and timers [118, 106]. UPC provides the GASP [119]

interface for registering callbacks. However, GASP does not provide the flexibility to

change any runtime variables. Rather, GASP provides the facility for other tools to

collect data (similar to the PMPI profiling interface in MPI). CUDA also provides

the CUPTI profiling interface, but it does not provide an option for changing runtime
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variables [120]. The roc-profiler [121] of ROCm collects GPU performance data from

AMD’s HSA runtime [122]. StarPU also provides an online profiling interface and does

not provide the option to change runtime variables [49]. Both OpenACC and OpenCL

also provide a profiling interface designed only to enable querying and collecting

runtime events [47, 88]. Similarly, Legion provides a profiling interface where the

status of memory and tasks, execution time, and current load of the system can be

obtained [97]. The Nanos++ and OmpSs ecosystems also provide an instrumentation

option that can provide runtime events [65].

2.9.3.2 Dynamic Adaptation Tools for Runtimes. APEX [9] is an

autonomic performance measurement and analysis tool designed for task based

runtimes. It has support for HPX and OpenMP runtimes. APEX hosts a policy

engine that can monitor runtime events and activate a policy based on that. Moreover,

APEX can also implement a periodic policy. The APEX policy engine uses the Active

harmony library [123] to change runtime parameters and observe their impact on

performance. If APEX finds that performance improves, the policy engine continues

modifying the runtime knob until it finds a near-optimal solution. Charm++ provides

PICS [124] which can optimize application performance based on a control-point

centric mechanism. Similar to APEX, PICS also collects information from the runtime

system about the overall status. Unlike APEX, PICS employs control points both

in the application and the runtime. Using a decision tree, PICS can tune different

applications and runtime knobs based on the observed data. The RCRdaemon [125]

can work with the Qthreads runtime. RCRdaemon continuously monitors the

memory and utilization status from the OS. When the Qthreads scheduler starts

execution with its worker thread pools (Pthreads), the adaptive scheduler in Qthreads

communicates with RCRdaemon to find the optimal number of threads.
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2.9.3.3 Opportunity - 5 : Dynamic Adaptation Tools and

Interfaces. While most runtime systems provide profiling interfaces, only a few

provide tools or expose an API to enable dynamic adaptation. Therefore, developing

tools capable of dynamically adapting runtime systems is desired. Even though many

runtime systems are open-sourced, building a custom tool for dynamic adaptation ties

that tool to that particular runtime. For this reason, modern many-task runtimes

need a general tool or interface specification solution such as MPI T or OMPT.

Table 8. Opportunities addressed in this dissertation.

Opportunities Chapter Contribution
Standardization of Task
based Runtime Systems

N/A This dissertation does not address it

Addressing
Heterogeneity

Chapter IV Considers a heterogeneous system with
a CPU, GPU and vision processor

Task Placement in
Heterogeneous System

Chapter IV Develops a scheduling algorithm for
task placement

Energy-aware Decision
Making Capability

Chapter IV Considers energy-performance trade-
off

Dynamic Adaptation
Tools and Interfaces

Chapter III Develops policies in a dynamic
adaptation tool

2.10 Summary

This chapter investigates the evolution of HPC runtimes to identify the dynamic

adaptation techniques and opportunities. Since the beginning of parallel computing,

HPC runtimes have gone through major changes. These changes are caused by new

architectures, increasing compute capabilities, upgrades in interconnect technologies,

and the introduction of heterogeneity. Moreover, continuous innovation by the

community and the decision to come together to standardize popular programming

models had a major impact in shaping today’s runtimes. Additional layers of

abstraction are observed which helps the modular design of the runtime systems.

These abstractions are compounding the role of the runtime system during execution.

53



Runtime systems now perform complex scheduling and load balancing, orchestrate

communication, drive accelerators, and asynchronously execute graphs with billions

of tasks. In order for the runtime systems to perform as an active entity during

execution, dynamic decision making and adaptation have become crucial. Even

though the current features of runtime systems provide some dynamic adaptation

capabilities, this study identifies that there are dynamic adaptation opportunities in

this area.

Table 8 shows the identified opportunities and contribution from this dissertation.

Since Opportunity — 1 has a broader scope, this dissertation does not address it.

However, Opportunities 2-5 are addressed in Chapters III and IV. Later chapters

(Chapters V and VI) address the unsolved sub-problems of Chapters III and IV,

therefore contributing to the opportunities listed in Table 8.
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CHAPTER III

DYNAMIC ADAPTATION IN HPX RUNTIME

This chapter contains previously published material with co-authorship. All of

the presented research in this chapter was conducted as a collaboration between the

University of Oregon and Louisiana State University. The parcel coalescing policy

(Section 3.3) was presented at ICPP 2018 [11] (poster). The task inlining policy

was presented at ICPP 2019 [10]. I was the first author of the ICPP 2018 poster,

whereas, for the ICPP 2019 paper, I was a joint first author with equal contribution.

For both publications, Dr. Bibek Wagle implemented the baseline static policy in

the HPX runtime system, whereas I implemented the dynamic policies. Dr. Kevin

Huck was instrumental in conceptualizing dynamic adaptive policies in HPX Runtime

by developing APEX tool. Dr. Huck implemented the initial version of the parcel

coalescing policy, which I carried forward; however, the task inlining policy was solely

developed by me. In both of these publications, Dr. Wagle wrote sections for the

baseline policies; I wrote the sections for the dynamic policies. All the co-authors

helped in proofreading. This chapter is formulated by gathering all my contributions

from these two publications. I listed the contributions from the co-authors in the

background section to formulate a coherent story.

3.1 Introduction: Two Problems

This chapter explores the dynamic adaptation opportunity in the HPX [126]

asynchronous task based runtime system for CPU architectures (corresponding to the

Research Question 2 — RQ2: Is it possible to dynamically adapt a runtime system’s

parameters to achieve better performance for different CPU architectures?). The HPX

runtime system decomposes an algorithm into fine-grained units of work and executes

them asynchronously. While fine-grained units provide more parallelism, over-
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decomposition results in higher task overhead and can negatively impact performance.

So, there must be a balance between available parallelism and tasking overhead. To

ensure this balance, a strategy called task inlining [127] is applied. The task inlining

strategy decides whether a parent task would consume the work assigned to a child

task in addition to its own, thereby reducing the amount of parallelism. For this

reason, the task inlining threshold should be defined in such a way that a proper

balance between parallelism and task overhead is achieved.

Tasks in the HPX runtime system communicate using a type of message called a

parcel. When a task graph is scheduled in a distributed environment, tasks need to

send parcels across nodes. Since the number of tasks in the HPX runtime system can

be high, a large number of parcels need to be sent between nodes. Large numbers

of parcel messages create communication overhead and can negatively impact the

overall performance. To reduce the communication overhead, the HPX runtime

system implements a strategy called parcel coalescing [128]. The parcel coalescing

strategy combines a certain number of messages and periodically sends them to the

destination. In doing so, it reduces the communication overhead — however, parcels

are also delayed. Thus, there is a trade-off between the communication delay and

the communication overhead. For this reason, a proper balance is needed so that the

selected parameters of parcel coalescing improve performance.

While task inlining is related to computation, parcel coalescing is related to

communication. This chapter delves into these two problems and devises dynamic

adaptive solutions to improve performance. At first, a proof of concept for adaptive

policy is shown for parcel coalescing. Then, a detailed study of the task inlining

policy is presented.
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Figure 6. The architecture of HPX and Phylanx along with APEX. HPX consists of
a Threading Subsystem responsible for scheduling HPX threads (lightweight tasks), a
Parcel Transport Layer for handling message passing and remote method invocations,
Local Control Objects (LCOs) for synchronization among tasks and an Active Global
Address Space (AGAS) for addressing object across nodes. Phylanx, developed on top
of HPX, transforms Python code into a task dependency tree which HPX executes.
APEX provides performance monitoring facilities as well as a policy engine that
enables runtime adaptive capabilities.
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3.2 Background

3.2.1 HPX. HPX is an asynchronous task based runtime system with a

C++ standards-compliant API. The architecture of HPX, along with its various

subsystems, is shown in Figure 6. Detailed information about HPX in [129]. In this

section, we highlight the relevant information about HPX vital to the comprehension

of this chapter.

HPX exploits parallelism by executing lightweight tasks which are scheduled on

top of the kernel threads. By default, HPX creates one kernel thread per core.

The HPX scheduler schedules the lightweight tasks on top of these kernel threads.

HPX can execute a newly created task either as a new thread asynchronously or

synchronously in the parent thread, which we will refer to as inlined execution.

Asynchrony in HPX is managed via futures [130, 129]. A future is a placeholder

for the result of some computation that is not yet ready. A task requesting the result

of a future is suspended if the result is unavailable. When the future becomes ready,

wherein the results of the computation are available, the suspended tasks are resumed.

Another important feature of HPX is the dataflow [131, 132] utility. HPX makes

use of dataflow objects for managing data dependencies. A dataflow waits until

a provided set of futures have become ready before executing a predefined callable,

which relies on the results referenced by the futures. In this work, we use the dataflow

objects as an injection point for our threading policies.

Finally, HPX provides system-wide support for gathering performance information,

known as the performance counter framework. Users can employ this feature to

extract information about the state of the application and runtime. If the predefined

performance counters do not provide the user with needed functionality, one can easily

create a new counter which will report the requested information. This tool is useful
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for instrumentation and debugging purposes. In addition, HPX and the performance

counter framework integrate with APEX, described in Section 3.2.3, which provides

additional measurements and runtime adaptive capabilities.

3.2.2 PHYLANX. Phylanx is a task based, asynchronous array computing

toolkit designed to support machine learning applications. User code, written in

Python, is transformed into a tree of Phylanx primitives known as an execution tree.

A primitive is an object which can take input, such as the result of a previously

executed primitive, and exposes a method named eval which operates on the object’s

inputs. Instead of returning the value computed by the primitive, however, the eval

function will return a future to the computed value. An execution tree is a collection

of these objects which describe the dependencies between all the operations in an

application. In this formulation, the nodes of the tree are the primitives while the

edges of the tree represent dependencies between them. The architecture of Phylanx

is shown in Figure 6.

During execution, Phylanx starts to evaluate the execution tree by calling the eval

function on the root node. Each dependency of this primitive calls the eval function

on each of its dependencies. This operation traverses the tree until a leaf node, or a

node with no dependencies, is reached. It is important to note that as the execution

tree is being traversed, the actual execution of the tasks has not yet begun. Instead,

a task graph of futures is being created where each future represents a dependency

on a previous operation. Once the leaf nodes have been reached, the task graph then

begins to execute, as the execution of a leaf primitive does not depend on the results

of another calculation. The task graph is then summarily executed as the results

of dependencies are met, eventually returning the result of the entire tree. As the

evaluation of a child node is completed, the result of its execution is passed to the
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Figure 7. Partial code for the while loop in the Alternating Least Squares algorithm.

parent node. The result of the entire tree is ready after the root node has finished its

execution.

Because eval uses HPX dataflow to launch a primitive’s operations, we have a

runtime injection point where we can decide whether to execute a primitive’s children

asynchronously in a new task or synchronously by inlining the execution. We have

added Phylanx specific performance counters that report the amount of time spent

executing each subtree of the execution tree and a counter that reports the number of

times a node was executed. Using these tools, we can take measurements of executing

primitives and apply this information to future scheduling decisions.

3.2.2.1 Alternating Least Squares (ALS) Benchmark. To analyze

the effects of overheads of scheduling and executing tasks on Phylanx, We used a

reference implementation of Alternating Least Squares [133]. Figure 7 is a while loop

taken of the reference implementation of the Alternating Least Squares in Phylanx.

In Figure 8, this loop is visualized using the Phylanx visualization tool [134] where

every node is a particular instance of a primitive. The full code for the benchmark

can be found in the Phylanx Github repository [135].
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Figure 8. Visualization of the while loop in the Alternating Least Squares algorithm.

Figure 9. Interaction of APEX with the HPX runtime.

3.2.3 APEX. APEX [136] (Autonomic Performance Environment for

Exascale) is a performance measurement library for distributed, asynchronous task

based runtime systems such as HPX. It provides lightweight measurement (task ¡ 1ms)

and high concurrency. To support performance measurement in systems that employ

user-level threading, APEX uses a dependency chain rather than the call stack to

produce traces. APEX supports both synchronous and asynchronous introspection.

As depicted in Figure 9, APEX collects data through inspectors. The synchronous

module of APEX uses an event API and event listeners. APEX decides to start,

stop, yield, or resume timers for correct measurements whenever an event occurs.
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However, the asynchronous module does not rely on events; instead, it executes

desired functionality periodically.

The policy engine of APEX provides a lightweight API to engineer policies that

can improve the application’s performance, execute a desired functionality on the

runtime or select important runtime and application parameters. There are two

ways to register a policy: 1. Triggered, and 2. Periodic. A triggered policy can be

initiated by a specific event within the HPX runtime. Several of these events are

available by default to the user. Additionally, it is also possible to provide a user-

defined event, known as a custom trigger. The second class of policies, the periodic

policy, operates without any event. Rather, this policy uses a defined timer that is

specified during the policy’s registration. All policies are stored in a policy queue and

executed as instructed. The policy engine is integrated with Active Harmony [137],

an online tuning library. Defined policies can use this library to converge on a set of

optimum parameters by observing the wall time of the application or by looking at

the introspection data gathered by APEX.

3.2.4 Static Baseline Policies. HPX and PHYLANX are equipped with

static baseline policies for task inlining and parcel coalescing. Both of these baseline

policies are implemented by Bibek Wagle of Louisiana State University. In these static

policies, parameters are statically defined and do not change during the execution of

an application. The two baseline policies are outlined below.

3.2.4.1 Baseline Policy for Parcel Coalescing. The baseline parcel

coalescing policy is implemented in the HPX runtime system. The parcel coalescing

policy has two parameters: 1) the number of messages to coalesce, and, 2) coalescing

interval. These two parameters are provided as static values and they act as

thresholds. The HPX runtime system sets a timer (coalescing interval) and counts
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the number of messages to send. When the timer reaches the coalescing interval,

the gathered messages are coalesced and sent. However, if the number of messages

reaches the maximum threshold, HPX performs parcel coalescing without waiting for

the timer to reach its maximum.

3.2.4.2 Baseline Policy for Task inlining. The baseline policy for

task inlining is implemented in Phylanx. As described earlier in section 3.2.2, each

primitive in Phylanx has a method called eval which evaluates the work defined by

that primitive. HPX can decide whether to execute the eval method asynchronously

as a new task or synchronously by inlining the work in the parent task. The baseline

policy depends on three parameters: 1) count threshold (set to 5), 2) lower threshold

(set to 350 µs), and 3) upper threshold (set to 500 µs).

Given an iterative application, the execution time for each primitive instance

is evaluated count threshold times to obtain the average execution time of the

primitive instance. During execution, if count threshold measurements are not

obtained for a primitive, no decision will be made regarding the inlining of the

task. If the previous primitive was executed asynchronously, the next execution

would be executed asynchronously. Conversely, the execution will be synchronous if

the previous execution was synchronous. On the other hand, if measurements are

obtained and the average execution time is below the lower threshold, future tasks

created for that primitive instance will be executed synchronously. If the average

execution time is above the upper threshold, future tasks created for that primitive

instance will be executed asynchronously. When the average execution time of the

primitive instance lies between the thresholds, the task will be executed with its

previous mode of execution until more measurements for the execution time are

gathered.
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3.2.4.3 Limitation of Static Policy. The drawback of the baseline policy

lies in the fact that the optimal threshold values vary with different applications and

architectures. Moreover, the number of threads used for an application also impacts

these thresholds, thereby changing the optimal threshold. For these reasons, the

static definition of such thresholds often leads to non-optimal performance.

3.3 Dynamic Policy for Parcel Coalescing: A Proof of Concept

This section shows a proof of concept for dynamic adaptation in the HPX runtime

system for parcel coalescing.

3.3.1 Motivation Behind Adaptive Policy. Adaptive policies are proven

techniques used to tune parameters that depend on the architecture, the degree of

parallelism, and the communication pattern exhibited by the application. Runtime

adaptivity can be applied to runtime systems (such as HPX) or the framework

(Phylanx). The motivation for using adaptive policies emerges from the limitations

exhibited by the baseline policy. A fixed threshold might work for a given architecture

and known application characteristics, but setting a generic threshold for all nodes is

not practical for a truly heterogeneous system where different nodes are participating

in a distributed environment. One way to solve this problem would be to determine

the threshold at compile time. However, applications are often compiled on a login

node and then executed on different nodes. Therefore, it is sensible to determine the

thresholds at runtime instead.

3.3.2 What to Tune and Which Metrics Indicate Better

Performance. As described in Section 3.2.4.1, there are two parameters in parcel

coalescing: 1) the number of messages to coalesce, and 2) coalescing interval.

The dynamic policy should find the values for these parameters, thereby reducing

communication overhead. However, communication overhead should be related to
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the execution time. A previous study by Wagle et al. [128] showed a correlation

between the network overhead counter in HPX and execution time (here, network

overhead corresponds to communication overhead). Therefore, the selected parcel

coalescing parameters should reduce the network overhead.

3.3.3 Granularity of the Adaptive Policy. For parcel coalescing, one

policy instance is designed for a single node. When the application starts executing,

the policy is triggered to determine the parcel coalescing parameters.

3.3.4 How the Adaptive Policy Works. The adaptive policy is

implemented in the APEX policy engine. In the policy, a set of possible values for

the parameters are assigned to each parameter. APEX policy invokes active harmony

to use a different combination of the parcel coalescing parameters to reduce network

overhead counter. When no more reduction is possible, the policy converges (more

detail on how policy works is given in Section 3.4.3).

3.3.5 Results. Figure 10 demonstrates the results based on a ping-

pong application [2] that sends millions of messages between two nodes. We have

conducted these experiments on Talapas, an HPC cluster at the University of Oregon

(each Talapas compute node has dual E5-2690v4 processors from Intel Broadwell

microarchitecture). For this application, the parcel coalescing policy is triggered

once every 5000 messages. The first two graphs show how optimal parameters are

searched. With every change in the number of messages and intervals, the network

overhead is sent to Active harmony to evaluate and change the parameters’ values

in a particular direction. By observing the overhead counter, the policy reaches a

point where no more improvement is possible. The third graph shows how network

overhead is reduced and reaches convergence.
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(a) Tuning of number of messages.

(b) Tuning the coalescing interval.

(c) Reduction of network overhead.

Figure 10. Dynamic parcel coalescing policy determines the value of the parameters
at runtime to reduce network overhead.
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3.3.6 Discussion. The parcel coalescing policy demonstrates that APEX

policies can find the runtime parameters that reduce network overhead, thereby

providing a proof of concept of an adaptive approach. However, only one instance

of a policy is used per node. In the next section, a more complex problem — task

inlining is studied.

3.4 Dynamic Policy for Task Inlining

To decide which tasks we want to inline during execution, a dynamic policy is

implemented in APEX. Unlike the baseline policy, this policy is fully automated,

wherein the runtime system handles all the decision making.

3.4.1 What to Tune and Which Metrics Indicate Better

Performance. In the baseline policy, the decision regarding task inlining is made

based on a fixed threshold. However, the two thresholds (the upper and the lower)

provide a gap that acts as a hysteresis so that the decision does not fluctuate when

there is a small change in the execution time. Thus, tuning one threshold with a

fixed hysteresis is logical and helps reduce the policy’s search space and overhead.

The threshold can be tuned based on the observed average execution time for the

primitive instances for a pre-defined window.

3.4.2 Granularity of the Adaptive Policy. An important question arises

about the granularity of the adaptive policy. Should there be one threshold for

each type of primitive for the entire application or is a more granular control of the

threshold desired? To answer this question, we look at the structure of the Phylanx

framework. As described in the previous sections, Phylanx translates Python-like

user code into an execution tree made up of Phylanx primitives. Each instance of

each type of primitive exhibits different behavior as the inputs to each primitive may

be different. For this reason, tuning a class of primitives to a common threshold does
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not make much sense. Rather, adapting the threshold for each instance of a primitive

is expedient.

As mentioned in the description of the Alternating Least Squares benchmark

in section 3.2.2.1, the Phylanx framework creates a different number of HPX tasks

depending on the inputs to the algorithm. We define the threshold for each instance

and tune the threshold based on its average execution time for an observed period

to decide on a threshold that improves performance (reduction in execution time)

for that instance only. There are two challenges that come with this approach. The

first challenge stems from creating an APEX policy instance for each primitive that

we need to tune. The second challenge is to manage the overhead associated with

the creation of these policies. APEX itself addresses the first challenge as it can

handle more than a thousand policies to tune parameters. For the second challenge,

an overhead study is given in the experimental result section.

3.4.3 How the Adaptive Policy works. The pseudocode of the adaptive

APEX policy is shown in Algorithm 1. In the beginning, all primitive instances are

set to use a default threshold and hysteresis value. It is important to note that a

policy is not required for every primitive instance. A policy should only be created

when the instance is executed many times (such as a primitive within a for loop).

Only then does the policy have the opportunity to converge. A new policy must be

registered to the APEX policy engine. We define a custom policy which is triggered

when eval or exec count is called more than count threshold 1 times (at least 5 times).

During registration, several properties of the policy are defined, including the search

space, the search strategy, and the tuning parameter. The search space defines the

number of values needed to be explored to find an optimum value. The search strategy

refers to the algorithms used to determine the optimum values. APEX uses search
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strategies provided by Active Harmony to find these values in a given search space.

Active Harmony provides strategies such as EXHAUSTIVE, which tests every possible

combination and determines the most efficient one, and PARALLEL RANK ORDER,

which attempts to find suboptimal local minima in the search space. Each of these

strategies works best when combined with an “appropriately sized” search space.

Finally, the tuning parameter is the metric that determines the effectiveness of

different parameter settings. In our case, we use the average execution time of the

primitive to tune our policy. Due to the overheads associated with measuring tuning

parameters and executing policies, it is important to cease triggering the policy. We

do this by monitoring the convergence of our policy parameters. Once we have

determined that a policy has converged, it is de-registered and will no longer be

triggered.

Algorithm 1 Adaptive APEX Policy for Task Inlining

for <For Every Primitive Instances in Parallel>

Threshold⇐ 425000
Hysteresis⇐ 75000
if exec count ≥ count threshold 1

RegisterAPEXPolicy

if exec count ≥ count threshold 2 && PolicyNotConverged
LaunchAPEXPolicy
SendCounterV aluesToActiveHarmony
RecieveNewThresholdFromAPEX
ConfigureThresholdToHPX
ResetCounter

if exec count ≥ count threshold 1
avg exec time⇐ exec time

exec count

if avg exec time ≥ Threshold + Hysteresis
inline task = false

else if avg exec time ≤ Threshold − Hysteresis
inline task = true

else
inline task = undecided
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When a primitive instance reaches the defined number of executions, the custom

policy is called, and APEX launches the policy. APEX reads the metric and a

threshold from the search space and sends them to Active Harmony. Active Harmony

stores the metric and the threshold and uses the defined search strategy to propose the

next threshold to APEX. APEX sets this threshold in HPX and observes the impact of

the decision at the next policy invocation. After the policy is successfully invoked, the

counters are reset to start a new observation window. Every time the policy executes

the search for optimal threshold progress. Based on the search strategy, when the

impact of all (or a subset of) possible thresholds are tried, Active Harmony sends a

signal to APEX about convergence, and the policy is de-registered after setting the

optimal threshold in HPX. This threshold is used to make the task inlining decision

for the rest of the application’s execution.

After the policy is invoked or checked for convergence, the average execution time

is calculated. Similar to the baseline policy, a new task is created if the average

execution time is bigger than the threshold plus hysteresis. If the average execution

is smaller, the work will be attached to the current task. The next section provides

results from our investigation of measuring task scheduling and execution overheads.

3.5 Experimental Results for the Task Inlining Policy

In this section, we compare the APEX policy with the baseline policy on different

CPU microarchitectures.

3.5.1 Experimental Testbed. For the experiments, we used the Marvin

and Trillian nodes of the ROSTAM [138] cluster located at LSU running the 64 bit

Centos GNU/Linux kernel version 3.10.0. The specifications for the nodes are listed

in Table 9.
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Table 9. Specifications of Nodes used.

Node Marvin Trillian
Microarchitecture Sandy Bridge Bulldozer
Processor Number E5-2450 6272
Number of CPUs 2 4
Cores per CPU 8 16
Total Cores 16 64
Frequency 2.1GHz 2.1GHZ
Memory 48 GB 128GB
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Figure 11. Comparison of the Adaptive APEX and Baseline policies on AMD Opteron
(Node — Trillian) node for the Alternating Least Squares benchmark for an input
size of 10 x 5 elements running for various iterations and number of threads.

3.5.2 AMD processors. To observe the impact of the APEX policy, we ran

the Alternating Least Squares benchmark on an AMD processor (Node — Trillian)

with a different number of threads and a varying number of iterations. We ran

each experiment five times, and then the results were averaged. At first, we ran the

application using the baseline policy, and then we ran the same experiments with the

APEX policy turned on. The result is depicted in Figure 11.

We observed a considerable improvement while using the APEX policy for each

experiment. The APEX policy improved upon the baseline policy by up to 74%.

For various numbers of threads, the APEX policy provides consistent behavior. The
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Figure 12. Comparison of the Adaptive APEX and Baseline policies on AMD node
(Node — Trillian) for the Alternating Least Squares benchmark for an input size of
100 x 5000, 500 x 2000 and 500 x 5000 elements and various number of threads.

experiment demonstrates that the APEX policy can set the threshold to a value that

reduces the tasking overhead by eliminating unnecessary task creation and scheduling.

Additionally, our experiments do not exhibit any scaling. This observation tells us

that there is not enough parallelism in the application itself and suggests running

the policy with larger problem sizes. Nevertheless, the available parallelism of the

application does not impact the APEX policy — it enables Phylanx users to run

applications without worrying about the number of threads.

We use the Phylanx ALS algorithm with a bigger data set to create enough

parallelism in the application. This application takes the data set from a CSV file

instead of using a default dataset. We varied the data size (in rows and columns) for

these experiments and the number of threads. The result is portrayed in Figure 12.

We observe that the baseline policy does scale as we use more threads. This finding

supports our previous conjecture that our previous experiments would benefit from

more parallelism. However, even these larger data sets provide the algorithm with a

limited amount of parallelism. After several threads have been added to the execution,

the execution time increases. For example, if we select the data set with 500 rows

and 5000 columns, the benchmark takes 1119 seconds to execute using the baseline
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policy. As we increase the number of threads to 8 and 16, we see the execution time

decrease to 831 seconds and 805 seconds, respectively. However, when the number of

threads goes higher than 16, we can see the execution time begins to increase.

We observe the benefit of the APEX policy from Figure 12. For 18 cases depicted

in this figure, we can find improvement in 16 cases, while two cases show that the

baseline policy performs better with a margin of 1%. However, the 16 instances

where APEX policy shows improvement vary in a range of 0.4% - 16%. The average

improvement for all the improving cases is 5% (standard deviation is 4%). So, we

can expect 1% - 9% improvement for most cases. Even though large improvements in

the application’s execution time were not seen as opposed to the previous case with

small data sizes, APEX policy still provides a considerable improvement margin for

an application with a large data set and enough parallelism.

3.5.3 Intel Xeon processors. We repeated these experiments on an Intel

Xeon processor. We ran our experiments on the Marvin nodes of the ROSTAM [138]

cluster. The results are depicted in Figure 13. A similar trend as Figure 11 is found

in this experiment. However, there is not much improvement visible from the APEX

policy. We observe almost identical execution times with the baseline and APEX

policy. Out of 20 experiments, we found improvement in 7 cases and performance

degradation for the remaining cases. The average improvement for the 7 cases is 1.8%,

while for the 13 cases where the baseline policy performed better, the average stands

at 2%. On average, there is no improvement found from using the APEX policy.

The APEX policy determines the optimal threshold for each primitive instance,

and the baseline policy defines the static threshold. If the baseline policy defined

threshold is already optimal or close to the optimal, we will not find a visible difference

between the baseline and APEX policy. The baseline policy sets the upper and the
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Figure 13. Comparison of the Adaptive APEX and Baseline policies on Intel Xeon
node (Node — Marvin) for the Alternating Least Squares benchmark for an input
size of 10 x 5 elements running for 2000, 3000, 4000 and 5000 iterations.

lower threshold to 350 and 500 µs, respectively. We find that as long as the lower

threshold is more than 300 µs almost all the threshold configurations provide similar

results. Furthermore, the lower threshold of the baseline policy is 350 µs the baseline

policy is providing a close to the optimal result. For this reason, we do not observe

any visible improvement from the APEX policy. Moreover, APEX policy contributes

a small overhead which negates the small improvement observed.

3.5.4 Overhead of the APEX policy. Theoretically, the overhead of the

APEX policy is constant for an algorithm and does not change with the data size.

Every algorithm has a fixed number of primitive instances that call an APEX policy a

fixed number of times. We have compared 100 runs of the Alternating Least Squares

benchmark, each using different data sizes to measure the overhead. We found that

the APEX policy introduces a total of 5 seconds, on average, to the execution time for

this algorithm. For a larger data set, where the Alternating Least Squares benchmark

takes 30 minutes to execute, 5 seconds is a negligible amount of overhead.

3.6 Related Work for Task Inlining

A lazy task creation strategy was proposed in [127] where task creation was avoided

until processing resources were free. With regards to OpenMP tasks, Duran [139]
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proposed a cutoff technique to improve performance. The cutoff was based on the

max number of tasks in the system or max recursion level. ATC (Adaptive Task

Cutoff) was proposed in [140], where the cutoff decision was based on the profiling

data obtained from the application at runtime and assumed that all tasks at a given

level have similar behavior. Adaptive Task granularity(ATG) was proposed in [141]

for irregular task-parallel programs. ATG switches between help first and serialization

policy depending upon the number of tasks created in the system. However, the study

did not consider the effects of processor architectures. With regards to compiler-based

approaches, a multi-versioning approach was proposed in [142], where a combination

of compiler and runtime approaches were used. Here, multiple versions of tasks

with varying granularity were generated at compile-time, and one was then selected

at runtime by tracking task demand. A compiler-based static cutoff along with

two optimizations, namely code-bloat-free inlining, and loopification was proposed

in [143]. An auto-tuning framework for divide and conquer task-parallel programs

was proposed in [144] which was implemented as an optimization pass in LLVM.

In the context of asynchronous multitasking runtime systems, Sun [145] developed

the ParSSSE (Parallel State Space Search Engine) Framework for Charm++ and

looked at adaptive grain size control in the context of parallel state search methods.

Grubel [146] used performance counters in HPX for dynamically tuning grain size of

1d-stencil application. Our proposed method is application-agnostic, and no change

in application source code is required. Furthermore, our proposed method relies on

the actual execution time of the tasks to make decisions regarding task inlining for

future executions of the tasks.
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3.7 Summary

This chapter investigates adaptive techniques for task inlining and parcel

coalescing in the HPX runtime system by using APEX. The experimental results

suggest that dynamic adaptive policies are capable of showing significantly improved

performance. The method outlined in this chapter only considered CPU architectures.

Moreover, adaptive policies are designed based on the response of the runtime system

without considering the interaction of the application and the platform. Since

dynamic adaptive policies are influenced by different CPU architectures, it is desired

to enable runtime decisions that consider application and platform factors. More

recently this diversity in computing architectures is being found in heterogeneous

systems, forcing us to consider the problem of dynamic adaptation in such an

environment. For this reason, the next chapter explores the energy-performance

trade-off in a heterogeneous environment where dynamic decisions are being made

at the level of individual kernels assigned to different processing units.
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CHAPTER IV

MEPHESTO: MODELING ENERGY-PERFORMANCE IN HETEROGENEOUS

SOCS AND THEIR TRADE-OFFS

This chapter contains previously published material with co-authorship. All of

the presented research in this chapter was conducted as a collaboration between the

University of Oregon and Oak Ridge National Laboratory (ORNL). The research

included in this chapter was presented at PACT 2020 [12]. While working on

MEPHESTO, I received regular guidance from Dr. Mehment Belviranli during my

internship at ORNL. Dr. Seyong Lee also provided advice. I received high-level

guidance from Dr. Allen Malony and Dr. Jeffrey Vetter. I did all the experiments,

writing, and data collection. Dr. Belviranly helped by thoroughly proofreading and

added his words when necessary. Other co-authors also helped with proofreading.

4.1 Introduction

This chapter investigates the dynamic kernel placement problem in a

heterogeneous system (corresponding to Research Question 3 — RQ3: Can we model

memory contention in a heterogeneous system to design an energy-performance aware

scheduling algorithm?). As pointed out in Chapter II, heterogeneous systems are now

the go-to solution for overcoming the temperature barrier when designing processing

units (PUs) with high computation capabilities [147, 148]. Following this trend

of heterogeneity, special-purpose hardware for emerging domains—such as tensor

PUs, bionic processors, and vision accelerators—have become a commodity in data

centers, mobile devices, and autonomous platforms. Moreover, chip manufacturers

are embedding a variety of PUs that serve different types of computing needs

on a single die in the form of integrated shared memory heterogeneous systems

(iSMHS) [112]. Although Intel’s Ivy Bridge [149] and AMD’s Fusion [150, 151]
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architectures were among the early systems that combined two compute capable

PUs (i.e., CPUs and GPUs) under the same memory subsystem, later generations

of integrated heterogeneous systems—such as NVIDIA’s Tegra Xavier, Apple’s A12

Bionic chip, and Qualcomm’s Snapdragon 855 system on chip (SoC)—have brought

the degree of heterogeneity within the same chip to a new extreme. In such systems,

dozens of PUs with diverse instruction set architectures work together to accelerate

kernels that belong to emerging application domains.

One of the most prominent features of iSMHS is that all PUs can directly access

the system memory, alleviating additional data transfer costs between the CPU

and device memory [152]. The optimal use of these systems heavily relies on

collocating tasks simultaneously in different PUs while using the system memory as an

intermediate medium for inter-PU data communication. For example, an iSMHS for

an autonomous car must simultaneously run image and video processing, inference for

object detection, and other decision-making continuously in a pipeline-like execution

scheme.

Collocated kernel execution on an iSMHS will likely cause contention on the

shared memory bus, and the resulting interference could negatively affect perceived

bandwidth (BW) on collocated kernels. Several studies [152, 112, 153, 154] focused

on identifying the memory access patterns of collocated kernels in CPU+GPU iSMHS

and suggested smart scheduling mechanisms to minimize contention effects, mostly via

ad hoc approaches. However, these approaches do not provide a systematic solution

for systems with different heterogeneity characteristics and an arbitrary number of

PUs.

Apart from performance, memory contention also has a considerable impact on

chip-level power consumption. Several studies [155, 109, 156, 111, 147, 104, 157]
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focused on iSMHS energy characteristics and relied on greedy algorithms or machine

learning-based approaches to control the power consumption via dynamic voltage

and frequency scaling (DVFS) and thermal design power (TDP) based power caps.

However, the impact of contention on energy usage of PU and the chip is not

addressed, and these studies do not build an analytical approach that establishes

a direct relationship between energy and memory contention.

The ubiquitous deployment of iSMHS in environments in which the use-

case priorities can dramatically vary makes the kernel collocation problem more

challenging. Since the objectives are dynamic and constrained by the throughput

and power budget needs, meeting them is crucial for optimizing overall utilization of

iSMHS. For example, in an autonomous driving scenario, the system software should

collocate kernels in the most performance-maximized manner when approaching an

intersection with multiple objects to track. On the other hand, while cruising on a

highway at a stable speed for which processing throughput needs are lower, kernels

can be scheduled to minimize total energy usage. Ideally, such an objective-aware

kernel collocation could be achieved with a simple parameter that controls the energy-

performance trade-off (EPTO).

This chapter presents MEPHESTO, which proposes a holistic approach for

controlling the EPTO in the collocated kernel execution on iSMHS. A per-PU kernel

operational intensity [158, 159] was used to approximate the effects of contention on

performance and energy along with the kernel collocation algorithm to intelligently

find near-optimal collocation that satisfies the provided EPTO objective. We believe

that this is the first effort to propose a generic formulation for memory contention

in iSMHS that considers factors that directly correlate to energy and performance

during kernel collocation.
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The chapter makes the following contributions:

• Integrated performance and energy behavior representation are introduced based on

time factors and power factors, which are nonlinear functions of the ratios between

standalone and collocated execution measurements of a PU in a given iSMHS.

• A novel empirical model was built to estimate the energy and performance of a set

of collocated kernels on an arbitrary number of PUs while considering the variation

caused by memory contention.

• A collocation algorithm was designed that takes the target EPTO as a user-defined

input parameter and employs a novel heuristic to reach a near-optimal ordering and

placement (O&P) of a given set of kernels on a target set of PUs.

• The feasibility of MEPHESTO was empirically evaluated by collocating a collection

of scientific kernels across three heterogeneous PUs of NVIDIA’s Tegra Xavier

platform: CPU, GPU, and programmable vision accelerator (PVA). The proposed

scheduling algorithm was demonstrated to be able to find near-optimal O&P with

a reasonable (on an average 10%) modeling error rate. It also provides up to 30%

improvement over a greedy approach.

4.2 Understanding the Effects of Collocated Execution on iSMHS

This section explores the energy and performance implications of collocated kernel

execution on an iSMHS similar to that portrayed in Figure 14. In this example, the

CPU and GPU are connected to a shared memory, and the GPU does not have

a private memory. There could also be other heterogeneous PUs, such as PVAs

and deep learning accelerators (DLAs), connected to the same memory subsystem;

however, they are excluded in this specific case for simplicity. In this system, the

collocation of five ready-to-execute kernels with the O&P configuration of 123 |45, in
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Figure 14. A logical representation of iSMHS with CPU and GPU.
A logical representation of iSMHS with CPU and GPU and kernel queues for O&P:

123|45.

which kernels 1, 2, and 3 will be orderly executed on the GPU and kernels 4 and 5

will be placed for CPU execution. Kernels placed on different queues could execute

in a collocated manner and result in contention on the memory bus.

4.2.1 Contention vs. Energy and Performance. To observe the effects

of the collocated execution of two maximum memory BW-demanding kernels on

performance and energy, we ran the STREAM benchmark [160] on the ARM Carmel

CPU and Volta GPU of NVIDIA’s Xavier platform concurrently. The amount of

data that the CPU and GPU were able to process during execution was recorded,

Table 10. Roofline kernels used to understand the outcomes of different O&P
variations.

Kernel name 1 2 3 4 5
Flop per array index 1 6 12 20 48
DRAM R/W byte 16 16 16 16 16

Operational intensity 0.0625 0.375 0.75 1.25 3.0
Total flop 273.8 G 273.8 G 273.8 G 273.8 G 273.8 G

GPU Flop/s 7.2 G 40.3 G 41. 9G 42.7 G 43.3 G
GPU Avg. power (Watt) 6.9 7.3 7.0 6.8 6.5

CPU Flop/s 6.2 G 36.9 G 72.6 G 99.8 G 115.9 G
CPU Avg. power (Watt) 13.3 12.8 12.4 12.1 10.3
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(a) Effect of memory contention
on time, energy, and power for
collocated/standalone execution of
STREAM benchmark on CPU and GPU.

(b) Per-flop energy consumption
when kernels with different operational
intensities are run in a standalone mode.

(c) Per-flop execution time when kernels
with different operational intensities are
run in a standalone mode.

Figure 15. Energy and performance behavior under different scenarios in an iSMHS.
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and the total execution time and power consumed by the CPU and GPU were

measured at 50 ms intervals. The runs are repeated for the same amount of data

in standalone mode, and the execution time, total energy consumption, and average

power consumption are reported in Figure 15a. Significant increases in execution time

and energy consumption were observed for both kernels while running simultaneously

on the CPU and GPU. On the other hand, average power consumption decreased for

collocation, particularly from the GPU perspective. Although the we ensured that

CPU and GPU utilization was 100% all the time and that the system did not throttle

CPU, GPU, or memory frequencies, the BW utilization dropped to almost half of

the standalone value during collocated execution. This observation resulted in the

realization that the impact of contention on time and energy is different for CPUs

and GPUs and further motivated the establishment of a PU-centric contention model

for energy and performance (i.e., execution time).

4.2.2 Need for Characterizing Kernels and PUs. Since contention

depends on the amount of memory access requests generated by the kernel, the kernels

running on each PU must be characterized in terms of their memory access requests

to identify the level of contention they might incur. Also, contention only occurs when

the processor cannot find the requested data in the cache and data must be brought

from the system memory. For this reason, this work identified kernels based on their

frequency of system memory accesses by using an operational intensity metric, which

is the ratio of the total number of flops and total bytes read/write (R/W) between

last-level cache (LLC) and system memory, as defined by the Roofline model [158].

The lesser the operational intensity, the more likely it is to have contention. Moreover,

contention also depends on the physical BW of the system and the amount of cache

attached to the processors. For this reason, PU behavior must also be characterized

83



by cross-running different kernels with different operational intensities in both PUs

simultaneously to observe the level of contention.

4.2.2.1 Justification for Using Operational Intensity. Operational

intensity depends on traffic between LLC and memory, which represents the common

contention point for different PUs in iSMHS. Other factors affect the performance

of collocation, such as the memory access patterns of the kernels and caching

optimizations, but operational intensity can indirectly include those effects since

traffic between LLC and memory reflects those effects. In this way, operational

intensity provides a simplified and unified metric that presents a fair trade-off between

modeling complexity and prediction accuracy.

4.2.3 Ordering and Placement. Figure 15a shows that collocating kernels

can significantly impact energy and performance. As a result, kernel ordering is

important for energy and performance. The example given in Figure 14 implies that

kernel 1 will be collocated with kernel 4 and that kernel 2 will be collocated with

kernel 5. This work strives to determine the best O&P for a given set of kernels.

One systematic way to approach this problem is to start by running synthetic kernels

standalone on the CPU and GPU with different operational intensities to observe how

much time and energy is spent for each flop. The Empirical Roofline Toolkit [161] was

modified to produce various intensities, and the energy and performance behaviors

are shown in Figs. 15b and 15c, respectively. The results show that with greater

operational intensity, the CPU becomes more favorable than the GPU since it spends

less energy and time per flop.

Another observation at the intersection point of the CPU and GPU curve is that

if the operational intensity that identifies a specific kernel falls to the left of the

intersection, it is more suited for GPU, and vice versa. Thus, if the operational
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intensity of a kernel being run is known, an accurate placement decision can be

made as to where the kernel should run. However, the intersection points might

be different for energy and performance behavior, making the placement decision

more complicated. More importantly, Figs. 15b and 15c do not consider collocation

or contention. Therefore, a combined solution is needed that will incorporate the

outcomes of Figs. 15a, 15b, and 15c together. The confluence of O&P for a given set

of kernels must be considered.

4.2.4 Kernel Collocation for Varying Energy and Performance.

To demonstrate how various O&P configurations affect energy consumption and

performance differently, the Empirical Roofline Toolkit was used to generate five

kernels, whose details are given in Table 10, with varying operational intensity ratios.

These kernels operate in a read-compute-write fashion. The first 8 bytes of data

(i.e., double-precision floating point) are read from an array, a series of additions

and multiplications is performed, and the data are written back to the same memory

location. In this way, data are ensured to be fully read from and written back to the

DRAM. The second and third columns of Table 10 show the number of floating-point

operations and the total amount of bytes R/W from DRAM for every array index the

kernels process, respectively. Based on these values, the operational intensities per

kernel were calculated. Through profiling, flops per second and the average power

data for each kernel in the standalone mode were generated for CPU and GPU.

Four different O&P configurations were used, and the execution time and

energy consumption are shown in Figure 16. The results show that different O&P

configurations lead to different time/energy profiles. Although the common strategy

in the related literature is to collocate compute-intensive kernels with memory-

intensive kernels to improve overall performance, the optimal O&P strategy might
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Figure 16. Different total energy and performance behaviors for various collocation
combinations for the same kernels.

vary when a trade-off is being sought between energy and performance. This situation

raises a few questions: How can the cut-off point for the compute-memory intensity

be defined? What happens if the number of memory-intensive kernels is more

than the compute-intensive kernels, or vice versa? How can trade-off control be

established between energy and performance? As shown in the following sections,

greedy algorithms commonly employed by the related studies are not sufficient to

address all these considerations.

This research revolves around addressing the four motivations presented in this

section. The remainder of this chapter presents an empirical model for defining

memory contention by considering the kernel and processors, defines optimal O&P,

and presents the kernel collocation algorithm for obtaining a desired EPTO.

4.3 An Empirical Model for Memory Contention

This section presents a core component of MEPHESTO, an empirical model that

characterizes kernels and PUs with respect to memory contention. The impact of

memory contention is defined in terms of energy consumption and performance (i.e.,
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execution time). For a given O&P of kernels, this model predicts the execution time

and energy consumption.

Table 11. The notations used by the model.

Notation Explanation
Ki ith kernel from n kernels K =

{K1, K2, ..., Kn}
Pj jth PU from m PUs P =

{P1, P2, ..., Pm}
FKi

Number of flops in kernel Ki

TKi
Pj

Standalone execution time of Ki on
PU Pj

PwKi
Pj

Standalone power of PU Pj for Ki

OIPj
Operational intensity of the kernel on
Pj

TFPj
Time factor of Pj

PFPj
Power factor of Pj

TCKi
Pj

Collocated execution time of Ki on
PU Pj

EKi
Pj

Energy consumption of Ki on PU Pj
C Total number of possible O&P
ρ PU wise queues (i.e., O&P)
τc Execution time of current O&P
εc Energy consumption of current O&P

S(V ) Resultant kernel collocation of V
kernels

ω Weight for a given O&P

4.3.1 Definitions. All symbols and terms used in this model are introduced

in this section and are also presented in Table 11. An O&P is a set of n kernels

K = {K1, K2, ..., Kn} in which a kernel is an uninterrupted computation that is

ready to be executed on any of the available PUs in the system. The kernel collocator

finds the placement of every Ki on a set of m heterogeneous PUs, which is represented

by P = {P1, P2, ..., Pm}.
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Ki = [FKi
, OIKi

,∀PjεP{T
Ki
Pj
, PwKi

Pj
}]. (4.1)

A kernel Ki is represented by using three terms, as shown in Eq. (4.1). The first

term, FKi
, is the number of floating point operations of that kernel. The second term,

OIKi
, is the operational intensity. When a kernel, Ki, is placed on a processor, Pj, the

standalone execution time and average power consumption are represented by TKi
Pj

and PwKi
Pj

, respectively. So, the third term represents the pair of standalone execution

time and average power consumption for each PU. The objective is to determine these

values at compile time and also by partially profiling the kernels at run time. However,

when collocated, each Ki exhibits different slowdown in execution time and consumes

different average power based on their compute and memory intensity. As suggested

previously, in Figure 15, there is a factor for execution time, TFPj
, and a factor for

average power, PFPj
, for a given PU Pj. These factors are the ratio of their collocated

to standalone values. Thus, PU is represented as Pj = [TFPj
, PFPj

].

4.3.2 Characterization of Memory Contention. To define and

characterize memory contention, three factors must be determined: (1) how kernels,

K, are characterized; (2) how PUs, P , are characterized, and (3) how time factor,

TFPj
, and power factor, PFPj

, are formulated. To determine the first factor,

operational intensity must be considered as a measure to characterize a kernel’s

compute or memory intensity. The Empirical Roofline Toolkit [158, 161] was modified

to generate kernels with different operational intensities, and their execution was

observed. Roofline kernels are designed in a read-compute-write fashion. For this

reason, a fixed number of bytes are exchanged between the cache and system memory;

as a result, the operational intensities of those kernels do not vary across different PUs

with different cache hierarchy. To determine the second factor, a range of kernels was

88



(a) GPU time factor. (b) GPU power factor.

(c) GPU energy factor. (d) CPU time factor.

(e) CPU power factor. (f) CPU energy factor.

Figure 17. Collocation factors: collocated/standalone values of time, power, and
energy for different operational intensities.
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collocated with different operational intensities in PUs of iSMHS. A kernel was kept

running in one processor, and the impact on another was observed. While doing this,

execution time and power consumption were recorded. From these values, energy

consumption was calculated. To capture the impact in a structured way, a ratio of

collocated to standalone time and power was made, which are termed time factor and

power factor, respectively. This addresses the third concern.

This PU characterization is a one-time effort for any new system. In this case, we

were interested in NVIDIA Xavier’s CPU and GPU. Figure 17 plots the results. In

these heat maps, the x -axis is the operational intensity of kernels that are running on

the CPU, and the y-axis is for the GPU. Time and power are captured for both the

CPU and GPU, from which energy consumption was calculated. When operational

intensity is low (i.e., high memory intensity), the impact of contention is visible in

both the CPU and GPU. The time factor goes up to 2.2x for the GPU (Figure 17a)

and 1.8x for the CPU when contention is present (Figure 17d). Similar behavior is

observed for energy consumption (Figure 17c). The opposite is observed for the power

factor; 0.6x is observed for the GPU (Figure 17b), and 0.8x is observed for the CPU

(Figure 17b). Interestingly, after a certain operational intensity occurs, the impact of

contention vanishes because the available system BW is enough for the request, and

there is no bus contention.

After capturing the impact of different kernels, the time factor, TFPj
, and power

factor, PFPj
, can be represented as a function of the operational intensity of the

kernel of the current PU, OIPj
, and collocated PU, OIPcol

, as in Eq. (4.2). A fifth order

multivariate polynomial regression curve was generated by using the CxxPolyFit [162]

tool that supports up to the ninth order for TFPj
, and PFPj

, in which the independent

variables are OIPj
and OIPcol

. Using a lower order provides faster evaluation with low
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accuracy, whereas higher order (e.g., fifth order or higher) provides more accuracy

but takes more time to evaluate. Fifth order was used due to a reasonable balance

between the evaluation time and accuracy, as recommended by CxxPolyFit [162].

TFPj
orPFPj

= f(OIPj
, OIPcol

) (4.2)

4.3.3 Collocation Estimator Algorithm. The objective of the collocation

estimator algorithm is to take an O&P of variable length kernels and predict the

execution time and energy consumption while considering memory contention. To

calculate the total execution time, τc, for the current O&P, c, the collocated execution

time must be estimated from time factor and standalone execution time. For the total

energy consumption, εc, collocated average power must be estimated from collocated

power factor and standalone average power. Moreover, the length (i.e., the time span

of execution) of a kernel must be considered since one kernel can be collocated with

multiple shorter kernels during its lifetime.

Algorithm 2 Collocation Estimator

1: Input: PU wise kernel queue ρ = {ρ1, ρ2...ρm}
2: Output: Execution time, τc, and energy consumption, εc
3: Initialize: τc ← 0&εc ← 0
4: while ∃ρjερSize(ρj) > 0
5: for each ρjερ where Size(ρj) > 0
6: KPj = ρj .POP ()

7: for each KPj 6= NULL
8: TFPj = time factor(OIPj , OIPcol

)
9: PFPj = power factor(OIPj , OIPcol

)

10: TCPj = TKi
Pj
∗ TFPj

11: Pmin = min∀Pj
[TCPj ]

12: τc += TCPmin

13: εc += Σ∀Pj
[PwKi

Pj
∗ PFPj ∗ TCPmin ]

14: for each TCPj > TCmin
15: TCremainingPj = [TCPj − TCmin]/TFPj

16: ρj .PUSH(TCremainingPj )
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The collocation estimator algorithm given in Algorithm 2 was designed by

considering the aforementioned objectives. This algorithm takes an O&P of kernels,

c, scheduled on PUs, P . Every PU has its own queue ρ = {ρ1, ρ2, ..., ρm} in which

kernels are stored in such an order so that the kernel in the head of the queue will

be scheduled first to the corresponding PU. The algorithm determines the overall

execution time, τc, and total energy, εc, incrementally. In the beginning, at [Line

3], τc, and εc are initialized. Then, at [Line 4], a loop is started, which continues

until all queues are empty or all kernels are scheduled. In [Lines 5–7], the queue

item at the head is popped from each ρj and stored as KPj
. At [Lines 9–10], the

time factor, TFPj
, and power factor, PFPj

, are calculated by using Eq. (4.2) for

all nonempty KPj
. Collocated time, TCPj

, is then calculated by multiplying the

standalone execution time and collocation time factor at [Line 11]. At [Line 13], the

processor with the smallest kernel, Pmin, is determined, and at [Line 14], the minimum

time is added to the total time, τc. The minimum execution time was taken because

the other kernels in other processors will now have a different kernel as collocated

since the minimum one has finished its execution. At [Line 15], energy is calculated

by considering the minimum time and collocated average power. Collocated average

power is determined by multiplying standalone average power, PwKi
Pj

, with the power

factor, PFPj
. Since one kernel has finished its execution, the remaining part of the

longer kernels must be calculated. For this reason, at [Lines 16–18], the remaining

part of collocated time, TCPj
, is factored back to standalone time, TCremainingPj

,

and pushed to the corresponding queue, ρj. These leftover kernels are considered to

be just like a new kernel in the next iterations, and this occurs until every queue is

empty. The total execution time, τc, and energy, εc, are determined when every queue
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is empty. Algorithm 2 finds τc and εc in O(nm) time, where n is the number kernels,

and m is the number of processors.

4.4 Defining Optimal Ordering and Placement

This section discusses the cost function design to define an optimal O&P based

on a given trade-off target. For this reason, all possible combinations of O&P must

be considered for all kernels, K = {K1, K2, ..., Kn} in all PUs, P = {P1, P2, ..., Pm}.

Let C represent all the possible ways that n kernels can be ordered and placed on m

processors. The execution time of all possible O&P is denoted as τ = {τ1, τ2, ..., τc},

and energy is denoted as ε = {ε1, ε2, ..., εc}, where minimum and maximum execution

times are represented by τmin and τmax, respectively. The minimum and the maximum

energy consumption for all O&P are represented by εmin and εmax. For example, for

five jobs in two processors, there are 482 possible O&P and thus 482 pairs of energy

and time. Since there are two parameters—energy and performance—a reference

point is needed to define the optimal O&P. This reference point is called the EPTO

parameter.

The EPTO parameter is represented as a pair of energy performance in the

following format—(performance, energy)—where the value of performance or energy

can be 0–100. If EPTO is set to (0,100), then minimizing execution time is given the

highest priority. If EPTO is set to (100,0), then minimizing energy consumption is

given the highest priority. If EPTO is set to (30,70), then 70% priority is given to

minimize execution time and 30% priority is given to minimize energy consumption.

To achieve this functionality, energy and time pairs of every O&P were converted

to a range from 0 to 100. Then, every O&P becomes a point at which energy and

time can vary from 0 to 100, where 0 represents the minimum time or energy and

100 represents the maximum. In this way, the energy-time pair of all O&P can be

93



plotted in a 100 × 100 plot in which EPTO also becomes another point. Then, the

distance from EPTO to every O&P is measured. The lower the distance, the higher

the weight assigned, and at the end, the O&P with the highest weight is selected. This

is achieved by a cost function expressed in Eq. (4.3). Based on the value of EPTO,

τc, and εc, the weight of every O&P is calculated. A set of C weight is expressed as

ω = {ω1, ω2, ..., ωc}. The O&P of kernels, S(J), were selected where the weight is the

highest, and this is the optimal O&P for the kernels and defined EPTO.

ωc = 1/dist

[{
τc − τmin
τmax − τmin

∗ 100,
εc − εmin
εmax − εmin

∗ 100

}
, {EPTO}

]
. (4.3)

4.5 Kernel Collocation Strategy

This section formulates a heuristics based on dynamic programming (DP) for

MEPHESTO. By using the DP-based heuristics, a kernel collocation algorithm is

designed, followed by a discussion of the complexity analysis of the approach.

4.5.1 Dynamic Programming Formulation. An exhaustive search

throughout all the kernel O&Ps guarantees an optimal solution but is computationally

expensive. For this reason, a DP approach was formulated to reach a near-optimal

solution and reduce the complexity [163]. The solution is built from a smaller set and

recursively builds the bigger ones by selecting maximum weighted subsolutions. At

each step, a new placement for one kernel, Kj, is found, which maximizes the weight

for the current O&P. V is considered a varying set of kernels, where V ⊆ K. Kernel

O&P is represented as S(V), which provides the processor wise queue information

ρ = {ρ1, ρ2, ..., ρm}. In Eq. (4.4), S(V) is built recursively.
S({K1,K2}) = Max[Collocate({∅}, {K1,K2}, ρj)], if |V | = 2

S(V ) = Max[Collocate(S(V − {Ki}), {Ki}, ρj)], if |V | > 2

(4.4)
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Here, the function Collocate(S(V ), Ki, ρj) represents the collocation estimator

algorithm given at Algorithm 2. As the collocation estimator algorithm takes a

specific O&P as an input, the parameters constitute the processor wise queue ρ (i.e.,

the O&P). The parameters are given as follows:

S(V ) is the current O&P.

Ki is a new kernel that will be added to S(V ).

ρj is the processor queue into which Ki will be added.

The Collocate function provides the execution time and energy consumption for

that O&P. The MAX operation then considers the placement of Ki in all processors,

P, and selects the placement where the weight is the maximum based on the cost

function and EPTO. The base case of Eq. (4.4) determines the placement with

maximum weight for two kernels since it takes (at least) two kernels to collocate.

For example, there are four O&Ps in a scenario with two kernels and two PUs. The

base case determines the best O&P from these four O&Ps by using the cost function.

For a scenario with three kernels and two PUs, the second case of Eq. (4.4) is used. In

this case, one kernel is separated and placed in all the PUs along with the best O&P

of the remaining two kernels, which are derived from the base case. Again, the cost

function and EPTO are applied to determine the best O&P of the three kernels. In

this way, the total set gets bigger by applying the cost function while DP eliminates

unnecessary combinations.

4.5.2 DP-Based Kernel Collocation Algorithm. The objective of the

DP-based kernel collocation algorithm is to determine a near-optimal O&P based

on a defined EPTO. Algorithm 3 provides a simplistic pseudo-code that implements

Eq. (4.4). This algorithm takes three inputs: (1) list of kernels, (2) list of PUs, and
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Algorithm 3 DP-Based Kernel Collocation

1: [t] Input: n Kernels, K = {K1,K2, ...,Kn},
m Processors, P = {P1, P2, ..., Pm}, and EPTO

2: Output: O&P with MAX weight, S(V ).
3: for i = 2 to n
4: if i == 2
5: Calculate all possible base cases.
6: continue
7: for each V ∈ K where |V | = i
8: S(V )← {∅}
9: for each Ki ∈ V
10: Max weight← 0
11: V partial = V − {Ki}
12: for each Pj ∈ P
13: S(VPj ) = Collocate(S(V partial), {Ki}, ρj)]
14: Get time τc and energy εc
15: Update τmax, τmin, εmax, εmin

16: for each Pj ∈ P
17: ω(VPj ) = Calculate weight(τc, εc, EPTO)
18: if ω(VPj ) > Max weight
19: Set Max weight = ω(VPj )
20: Update S(V ) = S(VPj )

(3) EPTO. The output of the algorithm is the near-optimal O&P, which is denoted

as S(V ). This starts with finding the O&P for minimal subset V (i.e., the base case

where |V | = 2) by finding the maximum weight based on EPTO and the cost function.

The algorithm then increases the size of V by one new kernel while reusing the saved

maximum weighted (i.e., best) O&Ps from past iterations. The algorithm finds the

best O&P, which is processor wise queues, ρmaxweight = {ρ1, ρ2, ..., ρm}. At [Lines 1–2],

input and output are defined. At [Line 3], the algorithm iterates through the smallest

(|V | = 2) to the largest subset size |V | = n. In [Lines 4–7], the base case of Eq. (4.4)

is calculated by considering two kernels and m PUs. In [Line 8], the algorithm iterates

over every possible subset V of K, where |V | = i. [Line 9] initializes S(V ). In [Line

10], every Ki is considered from the current set V . In [Line 12], Ki is separated,

and a partial set V partial is formed. The best O&P for this partial set is already
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calculated in the previous iteration. At [Line 13], every processor, Pj, is considered

for a potential placement for kernel Ki. At [Line 14], Ki is added to the O&P of

S(V partial), Collocation Estimator algorithm (i.e., Algorithm 2) is called, and the

result is stored at S(VPj
). In [Line 15], execution time, τc, and energy consumption,

εc, are updated, which are the output of Algorithm 2. In [Line 16], τmin, τmax, εmin,

and εmax are updated. In this way, time and energy are calculated for all the possible

subsets that are built on top of the best O&P of previous iterations. Now, there

is a set of execution time and energy consumption. At [Line 19], the cost function

in Eq. (4.3) is invoked by using the Calculate weight() function that uses energy,

time, EPTO, and all the minimum-maximum values. In [Lines 21–22], the algorithm

checks whether the current O&P provides maximum weight. If it does, Max weight

and S(V ) are updated. When the algorithm finishes its iterations, S(V ) contains the

desired near-optimal O&P for the given inputs.

4.5.3 Complexity. As mentioned previously, Algorithm 2 has a complexity

of O(nm). The outer loop of Algorithm 3 at [Line 3] is iterated (n−1) times, and the

selection of subsets V with size i results in the loop at [Line 8] and the innermost loop

to be iterated
∑n

i=2

(
n

i

)
and

∑n
i=2 i

(
n

i

)
times, respectively, resulting in a complexity

of O(n22n−1m2). However, a brute force search over all the combinations will reach

a complexity of O(nm2n!). The DP solution is faster but might not always yield the

optimal O&P. The performance of the DP-based strategy is evaluated in the next

section.

4.6 Experimental Setup

These experiments were conducted on NVIDIA’s Tegra Xavier SoC development

platform. For parallel kernel execution on the CPU, the OpenMP programming

model was used. All the CPU executions refer to the multithreaded execution that
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Table 12. Benchmark kernels. All the benchmarks are taken from Rodinia benchmark
suite except triad, which is taken from Roofline tool. Two benchmark names are
abbreviated (pf = particlefinder and hw = heartwall).

Serial Number 1 2 3 4 5 6 7 8

Benchmarks cfd srad1 srad2 pf triad hw nw lud

DRAM byte 210 G 449 G 663 G 6 G 918 G 221 G 91 G 18 G

Total flop 518 G 441 G 1.3 T 33 G 115 G 1.1 T 12 G 74 G

OI 2.46 0.88 2.0 5.2 0.125 5.27 0.14 3.93

GPU Flop/s 31.0 G 29.8 G 77.1 G 2.8 G 22.6 G 113.8 G 1.2 G 1.3 G

GPU Avg. Power 8.3 8.3 7.7 7.9 9.1 15.6 5.5 12.1

CPU Flop/s 22.5 G 87.1 G 21.8 G 2.3 G 19.4 G 9.3 G 2.4 G 18.9 G

CPU Avg. Power 9.5 9.0 10.6 17.3 15.3 9.4 12.1 10.6

Favorable PU Both CPU GPU Both Both GPU Both CPU

uses all the available cores. For GPU and PVA execution, the CUDA and OpenCV

programming models are used, respectively. The Xavier platform gives users the

ability to measure power consumption for the CPU, GPU, and PVA separately. The

tegra parser tool [164] was used to measure PU-wise power consumption. To measure

the number of flops and memory R/W bytes from the LLC to the system memory (i.e.,

operational intensities) for the kernels, NVIDIA’s proprietary profiling tool nvprof

was used. Since the ARM Carmel CPU of Xavier does not yet have the required

counters to calculate operational intensity, the values reported by nvprof were used.

This approach led to a reasonable approximation for the CPU execution, which is

further explained in Section 4.7.2.

For GPU and CPU characterization and execution, scientific kernels from the

Rodinia benchmark suite [165] and synthetic kernels from the Roofline toolkit [158]

were used to demonstrate the effectiveness of MEPHESTO. For PVA, applications

from the OpenCV [166] benchmark suite, which is bundled with NVIDIA’s Vision

Programming Interface (VPI) software development kit [167], were used. The data

corresponding to the characteristics of these kernels is presented in Tables 12 and 13.
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Figure 18. Result for benchmark kernels for EPTO (0, 0): near-optimal O&P
selection for all combinations. The red star is EPTO, the blue triangle is the optimal
solution, and the magenta square is the near-optimal solution by DP. The absolute
minimum-maximum value pairs for energy and time are 0.72–3.3 kWatt-seconds and
45.5–255.5 seconds.

While experimenting, no power cap was set in the device. Power caps in Xavier limit

the maximum frequency in PUs and thus change the kernel behavior; DVFS picks

frequency from a defined set of frequency for a power cap. Changing power caps

requires the kernels in the affected PUs to be reprofiled to generate data for Tables

12 and 13. By using these kernels, the proposed DP-based scheduling was compared

with three other scheduling approaches: (1) optimal scheduling for a specific EPTO,

(2) random scheduling, and (3) a greedy scheduling approach commonly used by the

related work [112].

4.7 Experimental Results

This section evaluates the efficacy of MEPHESTO in six steps: (1) the model and

algorithms are shown to result in a near-optimal solution in a CPU+GPU collocated

execution scenario, (2) the prediction accuracy of the model is evaluated, (3) different

EPTO goals are evaluated, (4) a comparison with a greedy algorithm is presented, (5)

the experiments are extended to include concurrent execution on CPU+GPU+PVA,

and (6) the overhead associated with MEPHESTO is discussed.
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4.7.1 Kernel Collocation Using Scientific Kernels. The first

experiment was a high-level feasibility study to demonstrate how the proposed

collocation technique can find a near-optimal solution among hundreds of thousands

of possible O&P combinations. In this experiment, the EPTO goal is set as (0,0),

which indicates that energy and performance should both be optimized. Although

this is an unrealistic goal for the targeted platforms, this experiment is used to argue

why the EPTO should be treated as a trade-off knob rather than an “optimize-all”

target between energy and performance with more realistic goals such as (100,0),

(0,100), and (50,50).

The proposed algorithm was evaluated by using the eight benchmark kernels listed

in Table 12. The LLC-to-DRAM R/W bytes and the number of flops reported in

the table are generated by using the counters provided by NVIDIA. The execution

time and average power data for each kernel are collected in standalone mode for

the CPU and GPU. There are 282, 241 possible ways in which eight kernels can be

collocated (i.e., 282, 241 O&Ps on two PUs). To apply the EPTO of (0,0), the energy

consumption and execution time of each O&P were normalized to a value between 0

and 100. Then, all the possible O&Ps were plotted in Figure 18. The green circles

represent all the possible O&P (random scheduling). The EPTO (0, 0) was marked

with a red star, the optimal solution with a blue triangle, and the DP-based solution

with a magenta square. The optimal O&P and the near-optimal solution found by the

algorithm are closely located. Hence, the DP-based strategy is capable of selecting a

reasonable near-optimal solution.

A trade-off between the execution time and the energy consumption is necessary

when the inverse relationship between them is observed. However, in Figure 18, the

inverse relation is absent; hence, the need for a trade-off seems unnecessary (i.e.,
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there is no need for EPTO) because some kernels are better suited for one processor.

Running a kernel on the ill-suited processor leads to a nonoptimal result (i.e., higher

execution time and a higher level of energy consumption). This explains why there

are multiple clusters in Figure 18. Section 4.7.3 further delves into the most close-to-

optimal cluster, which is the leftmost-bottom cluster and shows the effects of different

EPTO values on the success of the proposed scheduling technique.

(a) Execution time comparison. (b) Energy consumption comparison.

Figure 19. Model accuracy of MEPHESTO.

4.7.2 Accuracy of the Empirical Model. The proximity of the O&P

generated by the algorithm to the optimal O&P relies on the accurate estimation

of collocated execution times and energy consumption for each kernel produced by

the model. To further evaluate the prediction accuracy of the models, we focused

on a subset of five kernels in Table 12. We observed how the modeled energy and

execution time match with the actual execution for all the combinations possible

with five kernels, which is 482. Figures 19a and 19b depict the execution time

and energy consumption for all 482 combinations by comparing the estimations

from the model and the actual execution. In these figures, the x -axis shows the
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(a) Inverse relation of time and energy.

(b) EPTO (0,100).

(c) EPTO (100,0).

(d) EPTO (50,50).

Figure 20. Demonstration of the need for EPTO. The red star is EPTO, the blue
triangle is the optimal solution,the magenta square is the near-optimal solution by
DP, and the black circle is the greedy solution. The x - and y-axes are normalized. The
absolute minimum-maximum value pairs for energy and execution time are 0.72–1.2
kWatt-seconds and 45.5–77.4 seconds.
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specific O&P combination. The model energy consumption and execution time

values, which are denoted by the orange lines, are sorted, resulting in a smooth

curve. The real execution time and energy consumption corresponding to the specific

O&P for every data point are denoted by blue lines. The analysis shows that

the model estimate is on par with the actual values for the execution time and

energy consumption. Relative accuracy for an O&P is computed by the formula,

accuracy = [1−Absolute(Real −Model)/Real]*100, and then averaged for all. The

average model accuracy for execution time and energy consumption is 88.4 and 92%,

respectively.

4.7.3 Experiments with Different EPTO Goals. The experiment

presented in Figure 18 includes many possible O&P combinations that result in

unpractical high-energy consumption and execution times. To better demonstrate

the scale at which various EPTO goals can be used to achieve the desired trade-off,

the amount of O&P combination space was reduced by identifying the kernels that

are more suitable to run on CPUs or GPUs and fixing them to the corresponding PU.

A kernel is considered to be more suited for a specific processor if the ratio

of the execution time is at least two times faster while taking average power into

consideration. For example, a kernel has a Flops/s value of t1 and t2 in PU1 and

PU2 and the Avg.Power of pw1 and pw2 in PU1 and PU2. If t1/t2 > 2 (at least

two times faster) and pw1/pw2 < 2, then the kernel is suitable for PU1. In the same

way, we determined whether the kernel is suitable for PU2. If the kernel does not

satisfy the condition for any processor, then the kernel is considered favorable by both

processors, and its placement in all these processors is considered.

Based on the Flops/s and the Avg.Power values reported in Table 12, the CPU-

friendly kernels were identified as srad1 and lud, and the GPU-friendly kernels were
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identified as srad2 and heartwall (last row of the table). On the other hand, the cfd,

particlefinder, stream− triad, and nw kernels can be run on any processor since no

PU always favors their execution.

After the fixed affinities are set, badly performing O&Ps are eliminated, and the

inverse relationship between the execution time and energy consumption is revealed

in Figure 20a. The circled diagonal region demonstrates that there is no best solution

that optimizes energy and performance, and there is a clear need for different EPTO

goals. Figures 20b, 20d, and 20c show the optimal O&P combination (triangle), the

near-optimal combination found by the algorithm (square), and the solution found

by a greedy algorithm (circle) for different EPTO goals (shown by stars) of (0, 100),

(50, 50), and (100, 0), respectively. These figures demonstrate that the DP-based

scheduling can select the near-optimal O&P to achieve the desired trade-off between

energy consumption and execution time.

EPTO provides significant control over kernel collocation decisions. If the user

wants to pick an O&P without having a desired trade-off in mind, EPTO (0, 0) can

be chosen. EPTO (0, 0) will always provide an O&P that is close to the diagonal line

shown in Figure 20a, but no specific trade-off is guaranteed. If the user wants the

fastest execution time or the least energy consumption, EPTO (0, 100) and EPTO

(100, 0), respectively, will guarantee that trade-off. Other EPTOs, such as EPTO (50,

50), also guarantee the desired trade-off. This strategy provides the run time system

with more control over the device and, if necessary, empowers the run time system to

dynamically choose different EPTO values based on the device’s energy consumption

priority. Moreover, this algorithm works irrespective of the system power cap, which

in turn provides an extra level of control.
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Figure 21. Comparison with greedy scheduling. Blue dots are EPTO points, and the
black circle is the greedy solution.

4.7.4 Comparison with Greedy Algorithms. We believe that a study

that consults both execution time and energy consumption to mitigate memory

contention has never been performed. For this reason, the closest work in which

the greedy algorithm is only dependent on the execution time [112] was chosen

for comparison. The greedy algorithm [112] starts by scheduling the longest GPU-

friendly kernel in GPU and selects a CPU-friendly kernel to collocate. This strategy of

collocation excludes lower operational intensity for reducing memory contention. This

is a classic scenario that stems from the fact that a compute-intensive kernel should

be collocated with a memory-intensive kernel. When one kernel in one processor

finishes its execution, the next PU-friendly kernel to that processor is chosen. When

all PU-friendly kernels are scheduled, the neutral kernels are chosen.

Following this strategy, an O&P of 3675|2841 is chosen by the greedy solution for

which the numbers represent the kernels from Table 12. This O&P is compared in

Figure 20d by using a black circle. The positioning of the black circle reveals that

there are many better solutions available in terms of the energy consumption and

the execution time. Figure 21 presents a better comparison between the greedy

approach and the proposed DP-based algorithm. The blue points are DP-based

solutions for different EPTO points of 0–100, 10–90, 20–80, ..., 100–0, and a trade-
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Table 13. OpenCV kernels for PVA.

Benchmark name klt tracker convolve 2D timing

Benchmark source VPI.0.1 VPI.0.1 VPI.0.1

Total DRAM R/W byte 26 G 7 G 15 G

Total flop 72 G 70 G 122 G

Operational intensity 2.41 5.35 7.87

PVA Execution time (sec) 2.41 5.35 7.87

PVA Flop/s 30.0 G 13.2 G 15.5 G

PVA Avg. Power (Watt) 1.24 1.39 1.39

off line is also drawn based on the positioning of different levels of EPTO. The

greedy solution is observed to be significantly far from the trade-off line. The best

case for execution time—EPTO (0, 100)—provides a scheduling in which execution

time is 46.5 seconds for eight kernels, whereas the scheduling picked by the greedy

solution provides an execution time of 58.3 seconds, which is 11.8 seconds more

(i.e., 20% savings by the DP-based approach). On the other hand, the best case

for energy consumption—EPTO(100, 0)—provides the total energy consumption of

0.75 kWatt-seconds, whereas the greedy solution shows the energy consumption of

1.1 kWatt-seconds, which translates to 32% energy savings. Although the DP-based

solution is more computationally expensive than the greedy algorithm, it can save

more execution time. For example, the DP-based solution takes 1.1 seconds to find

the scheduling for eight kernels but can save 11.8 seconds. Moreover, the DP-based

approach provides the means to achieve the desired EPTO.

4.7.5 Three-PU Scenario: CPU, GPU, and PVA. To demonstrate that

MEPHESTO can work for diversely heterogeneous systems, the experiments were

extended to cover three different PUs: CPU, GPU, and PVA. In this experiment, a

different subset of eight kernels was used: five top kernels from Table 12 for execution

on CPU and GPU and three OpenCV kernels from the NVIDIA VPI samples from
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(a) EPTO (0,100).

(b) EPTO (50,50).

(c) EPTO (100,0).

Figure 22. Experiments with three processors: CPU, GPU, and PVA. The red star
is the EPTO, the blue triangle is the optimal solution, and the magenta square is
the near-optimal solution picked by DP. The x - and y-axes are normalized. The
absolute minimum-maximum value pairs for energy and execution time are 0.47–0.78
kWatt-seconds and 34.01–58.47 seconds.
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Table 13 for execution on PVA. Among the five kernels from Table 12, srad1 is

CPU-friendly, srad2 is GPU-friendly, and remaining three are considered for both

CPU and GPU. For all eight kernels in which one kernel favors CPU, one favors

GPU, and three favor PVA, there are 720 O&Ps. The optimal and near-optimal

O&P selections are plotted in Figure 22. For two different EPTO targets—(0, 100)

and (100, 0)—the DP-based algorithm was able to select near-optimal solutions in

Figs. 22a and 22c, respectively. However, EPTO(50, 50) in Figure 22b shows an

interesting case where optimal and the DP-based solution are far away from each

other. While the distance between the optimal point (denoted by a triangle) and the

EPTO point (denoted by a star) is shorter, the DP-based solution was able to locate

a more energy efficient solution. This is mainly due to the fact that the Euclidean-

distance-based method of finding the optimal reference point (denoted by a triangle)

relies on the absolute distances and ignores whether the optimal point uses more

or less energy/execution-time. However, the DP-based approach was able to pick

a solution from one of the closest clusters from the EPTO point. This experiment

demonstrates that the proposed algorithm can also achieve the desired trade-off for

three PU diversely heterogeneous systems.

4.7.6 Overhead Analysis of DP-Based Search. The overhead of the

proposed DP-based solution in MEPHESTO for varying numbers of kernels to be

ordered and placed is shown in Figure 23. For eight kernels, the algorithm finds the

near-optimal solution in 1,061 milliseconds, and this time corresponds to only 1.9%

(mentioned in the x -axis) of the total execution time compared with the minimum

execution time. On the other hand, since the overhead increases exponentially, for

larger kernel counts and shorter kernel execution times, the algorithm should be

complemented with a windowing technique similar to the one proposed in Belviranli
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et al. [163]. Although this technique limits the benefits that can be obtained from

considering all potential O&P possibilities, it is a simple and effective approach

for controlling the increasing overhead. Moreover, we foresee that a multithreaded

implementation of DP-based algorithm will help reduce the overhead.

Figure 23. Overhead analysis of MEPHESTO.

4.8 Related Work

4.8.1 Memory Contention Studies. This section reports two studies that

are similar to this work. The first study was done by Zhu et al. [112, 168] in which the

authors studied co-scheduling on an integrated CPU-GPU system and considered a

power cap. They devised a greedy algorithm that addressed memory contention

from degradation in the execution time perspective while selecting frequency for

power capping. However, they did not consider the impact of memory contention

on power or energy. Moreover, the greedy algorithm does not provide any trade-off

opportunity. The second study was done by Lee et al. [154] in which the authors

designed a strategy to dynamically predict the slowdown due to memory contention.

However, this study only considered execution time. Compared with these works, the

strategy in this chapter defines memory contention from both the energy and time

perspectives while achieving the desired trade-off. Other works [169, 170, 152] studied

memory contention and stalling in heterogeneous systems with shared LLC. Pan et
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al. [171] designed an LLC management strategy for better performance. Cavicchioli et

al. [153] studied different SoCs and fused CPU-GPU devices to characterize memory

contention. Hill et al. [172] extended the Roofline model for mobile SoCs to address

memory contention from the perspective of PU BW usage. These studies mainly

focused on performance and did not consider the impact of memory contention on

power or energy consumption.

4.8.2 Kernel Collocation in CPU-GPU Systems. Kernel collocation

in a CPU-GPU environment is also another well-studied area. Kaleem et al. [157]

studied scheduling in integrated heterogeneous systems in which an online profile was

used for load balancing between CPU and GPU. Panneerselvam et al. [147] devised

a task placement strategy in a CPU-GPU system that achieves application-specific

performance goals. Zhu et al. [112] designed a greedy algorithm with post-local

refinement for memory contention-aware kernel collocation. Cho et al. [104] devised

an on-the-fly strategy to partition irregular workloads in integrated CPU-GPU

systems without considering energy consumption. Zhang et al. [173, 174] designed a

decision tree-based model to determine the impact of kernel collocation on different

applications in integrated CPU-GPU systems. Pandit et al. [105] designed a dynamic

work distribution that considered the data transfer need of kernels in OpenCL run

time. Liu et al. [175] designed a scheduling policy for tree traversal algorithms

in which CPU and GPU transfer information to make a decision. Although there

are more studies in the literature that investigated kernel collocation under memory

contention, to the best of our knowledge, there are no schemes that consider kernel

collocation with the intention of addressing energy and performance simultaneously

while considering the effects of memory contention on both factors. Moreover, almost

all existing work focuses only on CPU/GPU-based systems, whereas this method
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works for more diverse heterogeneous systems, such as SoCs consisting of CPU, GPU,

and PVA.

4.8.3 Energy-Aware Algorithm Studies. Barik et al. [156] introduced

a black-box approach for finding energy-aware scheduling by characterizing

applications. Ma et al. [109] designed GreenGPU, which dynamically throttles the

frequency of GPU and memory. Zhu et al. [112] dynamically finds the appropriate

frequency for applications to keep the execution under a power cap. Komoda et

al. [110] also studied power capping by using DVFS to find near-optimal frequency

settings for CPU-GPU. Intel introduced a power capping mechanism RAPL (running

average power limit) in CPUs [176]. Liu et al. [111] designed an energy-aware kernel

mapping strategy in a heterogeneous system in which PUs are assigned different

frequencies by using DVFS. Unlike these studies, as mentioned previously, the method

in this chapter considers finding a collocation mapping that can lead to user-defined

energy-performance balance while considering contention.

4.9 Summary

This chapter presents MEPHESTO, which defines memory contention in an

integrated shared memory heterogeneous system in terms of energy and performance.

Using operational intensity, MEPHESTO presents an empirical model to estimate

a kernel collocation scenario for multiple kernels and devises a strategy to reach

a desired energy-performance balance. MEPHESTO’s task placement can be

implemented in a runtime system following a window technique. Based on

experiments, this strategy can predict execution time and energy consumption with

an acceptable error rate and find a near-optimal solution that outperforms a greedy

approach. Moreover, experiments demonstrated the efficacy of MEPHESTO by

yielding near-optimal solutions for more than two processors. However, MEPHESTO
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needs an awareness of the operational intensity of kernels to model the impact of

memory contention. In order to implement MEPHESTO’s dynamic task placement

algorithm, a runtime system must know the operational intensities of the kernels

waiting in the queue before placing tasks in PUs. For this reason, operational intensity

needs to be deduced at compile time.

Operational intensity is the ratio between the FLOPs and bytes transferred

between LLC and DRAM. Compile time analysis tools such as COMPASS

framework [13] can deduce the number FLOPS through static analysis. However,

statically predicting LLC-DRAM traffic is still an open area. The next chapter

addresses this problem for modern Intel CPUs.
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CHAPTER V

MAPREDICT: STATIC ANALYSIS DRIVEN MEMORY ACCESS PREDICTION

FRAMEWORK FOR MODERN CPUS

This chapter contains previously published and unpublished material with co-

authorship. All of the presented research in this chapter was conducted as a

collaboration between the University of Oregon and Oak Ridge National Laboratory

(ORNL). Section 5.2 of this chapter provides a summary of the research presented

at MCHPC 2020 [16]. The complete work of MAPredict is in preparation for a

submission. Both of these works have the same co-authors. While working on

MAPredict, I received regular guidance from Dr. Seyong Lee. MAPredict extends

the COMPASS framework, which Dr. Lee developed. MAPredict also uses the

Aspen domain-specific language, which was developed at ORNL. I received high-level

guidance from Dr. Allen Malony and Dr. Jeffrey Vetter. I did all the experiments,

writing, and data collection. Dr. Malony provided a thorough proofreading of the

MCHPC 2020 paper and added his words where necessary. Dr. Lee helped with

proofreading for both of the submissions.

5.1 Introduction and Motivation

This chapter outlines the design of a framework that is capable of predicting LLC-

DRAM traffic using analytical models in modern CPUs (corresponding to Research

Question 4 — RQ4: Can we model the memory access patterns and design a static

analysis framework to predict LLC-DRAM traffic in modern CPUs for complex

HPC applications?). With the increasing hardware complexity intended to address

the memory wall problem [177], designing analytical models becomes a non-trivial

task. With the rise of heterogeneous systems, the importance of such a modeling

approach for prediction has increased significantly. As shown in the previous chapter,
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the execution of an application on an ill-suited processor may lead to non-optimal

performance [12], therefore, the runtime system needs to make a quick decision on

where to execute kernels on the fly. Predicting a kernel’s performance and energy

consumption can enable runtime systems to make intelligent decisions. For such

prediction, floating-point operations (FLOPs) and memory traffic need to be counted.

While calculating FLOPs is straightforward, memory traffic prediction is complex and

dynamic because the memory access request can be served by the cache or the DRAM.

Statically predicting LLC-DRAM traffic is vital for three reasons. Firstly,

a heterogeneous runtime system can make intelligent scheduling decisions if

it can statically identify compute and memory-bound kernels based on the

Roofline model [178]. The previous chapter, which introduced MEPHESTO [12],

demonstrated that energy-performance-aware scheduling decisions can be made based

on operational intensity (FLOPs/LLC-DRAM Bytes) of kernels. There are tools

such as Intel Advisor [179] and NVIDIA Nsight Compute [180] that report the

operational intensity of a kernel. However, a runtime system needs this information

before executing the kernel to make better placement decisions. While static analysis

tools can provide the FLOP count at compile time [13], statically predicting LLC-

DRAM traffic needs to be explored. Simulation frameworks can provide LLC-DRAM

traffic, but they are not fast enough to be integrated into a runtime system [181].

Secondly, developing a framework to predict the energy and performance of modern

CPUs requires predicting LLC-DRAM memory transactions because LLC-DRAM

transactions incur a significant amount of energy and time [182]. Finally, a static

approach for predicting the LLC-DRAM traffic enables simulation-based design space

exploration to determine the best memory configuration [183]. For these reasons, this

in this chapter we aims to build a framework capable of predicting the LLC-DRAM
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traffic statically. However, a static analysis approach for predicting the LLC-DRAM

traffic encounters three major challenges: 1) it must keep up with the continuous

innovation in the processors’ memory hierarchy,2) it must deal with the complex

memory access patterns and different execution models (sequential and parallel),

and 3) it does not have access to the dynamic information necessary to obtain high

prediction accuracy. These challenges are detailed further below.

Microprocessor manufacturers have implemented many innovations to improve

performance. In particular, the memory hierarchy has gone through significant

changes, bringing us to the first challenge. Multi-level cache hierarchy with different

sizes and cache policies, prefetching algorithms, and non-inclusive victim L3 cache are

note-worthy examples [16, 184]. While these changes improve performance, analyzing

and understanding a processor’s memory hierarchy behavior through performance

monitoring interfaces at runtime (e.g., performance counters) has become complex.

Moreover, performing such analysis at compile time is significantly harder. Indeed,

every microarchitecture brings some new features. Studies have been done to evaluate

and understand the cache hierarchy’s performance at runtime by using different

benchmarks [185, 186, 187, 188, 189, 190, 184]. However, a systematic formulation

and end-to-end flow to predict LLC-DRAM traffic through static analysis is still an

open research area.

The second challenge stems from the fact that the application’s memory access

pattern impacts the LLC-DRAM traffic. For example, sequential streaming access

patterns yield the best performance from the cache hierarchy, whereas a strided

or random access pattern generally exhibits worse cache performance. Moreover,

different compilers (this study investigates Intel and GNU compilers) can also produce

different results due to variation in the generation of cache-friendly instructions.
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Additionally, multi-threaded parallel execution may also impact the LLC-DRAM

traffic. Previous studies [191, 192] consider memory access patterns and build

analytical models to predict the LLC-DRAM traffic based on simulation. However,

they fall short when modern CPU features (such as prefetching) are taken into

account. Moreover, in a runtime system where prediction is needed to make a decision

during execution, simulations are not fast enough.

The third challenge involves the lack of availability of dynamic information (e.g.,

input size) to the static analyzer. One study [15] demonstrated that instruction

counts could be evaluated with respect to machine property to provide a prediction. A

static analysis framework, COMPASS [13], demonstrated the capability of capturing

dynamic information from user input in source code or from the runtime system to

make a timely prediction [13]. However, it did not employ CPU-specific models for

memory access prediction; instead, it used instruction count-based prediction. Ideally,

a framework would provide a lightweight prediction based on static analysis, yield high

accuracy, operate independently, and be available to the runtime system through a

library call. For this reason, a framework is needed that addresses these challenges

by understanding modern CPUs, employing a modern cache-aware analytical model

for different access patterns, and capturing dynamic information to provide fast and

accurate prediction.

This research presents MAPredict, a framework that predicts the LLC-DRAM

traffic for applications in modern CPUs. To the best of our knowledge, this is

the first framework that simultaneously addresses all of the challenges above. We

present systematic experimentation on different Intel microarchitectures to elicit

their memory subsystem behavior and build the analytical model for a range of

memory access patterns. Through static analysis at compile-time, MAPredict
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creates Aspen [15] application models from annotated source code, captures the

dynamic information, and identifies the memory access patterns. It then couples

the application and machine model to accurately predict the LLC-DRAM traffic.

This study reports the following contributions:

• A systematic unveiling of the behavior of modern Intel CPUs for different read

and write strategies, accounting for prefetchers, compilers, and multi-threaded

executions;

• A formulation of a cache- and prefetching-aware analytical model using application,

machine, and compiler features;

• A static analysis driven framework named MAPredict to predict LLC-DRAM traffic

at compile time by source code analysis, dynamic information, and analytical

modeling; and

• An evaluation of the MAPredict framework using 130 workloads (summation

of number of functions * input sizes) from different benchmarks in four

microarchitectures of Intel, where we achieve higher prediction accuracy for regular

access patterns when compared to the models from literature. MAPredict also

provides means to combine static and empirical observation for irregular access.

5.2 Understanding Memory Reads and Writes in Intel Processors

To design a static analysis framework for LLC-DRAM traffic prediction, it is

necessary to explore the factors that trigger an LLC-DRAM transaction. This

section systematically unveils these factors triggering LLC-DRAM memory transfers

by studying the handshake between the application and the processor’s memory

hierarchy. From the application’s viewpoint, the memory access pattern plays a

vital role. The two most common memory access patterns — sequential streaming
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Table 14. Machines and microarchitectures.

Name Year Processor detail. here L3 = LLC
Broadwell 2016 Xeon E5-2683 v4, 2 sockets, 32 cores,

2 NUMA domains, L2 - 256 KiB, L3 - 40 MiB
Skylake 2017 Xeon Silver 4114, 2 sockets, 20 cores,

2 NUMA domains, L2 - 1 MiB, L3 - 14 MiB
Cascade Lake 2019 Xeon Gold 6248, 2 sockets, 40 cores,

2 NUMA domains, L2 - 1 MiB, L3 - 28 MiB
Cooper Lake 2020 Xeon Gold 6348H, 4 sockets, 96 cores,

8 NUMA domains, L2 - 1 MiB, L3 - 132 MiB

access and strided memory access are considered. Cache line size, page size,

initialization, prefetching mechanism, and parallel execution are identified as the key

hardware factors. This section also explores the effects of the evolution of CPU

microarchitectures.

5.2.1 Description of the Hardware. In this study, Intel CPUs

are considered because they are the most widely available processors in HPC

facilities [193]. By applying our techniques across Intel CPU microarchitecture

generations, we can test MAPredict’s robustness with respect to newer memory

system features. Further, the findings from this work can be extended for use on

processors from other manufacturers such as AMD and ARM. Table 14 depicts the

four recent microarchitectures that are a part of this study — Broadwell (BW),

Skylake (SK), Cascade Lake (CS), and Cooper Lake (CP). The introduction of

the non-inclusive victim L3 cache and the larger L2 cache (starting from the SK

processors) is the most important change concerning the memory subsystem [184].

Even though the design of the cache has remained largely unchanged since the SK

microarchitecture, we find it important to consider the effect of different cache sizes

in newer processors for completeness.
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(a) Impact of cache line size and page size.

(b) Impact of array initialization.

(c) Impact of prefetching on read traffic.

Figure 24. LLC-DRAM traffic for different read and write scenarios in Intel
processors. LLC-DRAM traffic is shown at Y-axis.
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5.2.2 A Tool for Measuring the LLC-DRAM Traffic. To understand

the behavior of the cache subsystem of Intel processors, LLC-DRAM traffic needs to

be measured. (MAPredict aims to generate such data using performance models).

To accurately measure the LLC-DRAM traffic, uncore counters of memory channels

associated with the integrated memory controllers (IMC) are measured since L3 cache

miss in Intel processors do not reflect the write traffic [16]. The BW processor has two

IMCs, whereas SK, CS, and CP have three IMCs. Each IMC controls two memory

channels, and there are two counters (read and write) for each channel. For a single

socket, there are a total of eight counters for BW and twelve for others. These counters

provide LLC-DRAM traffic measurement in the unit of cache line (64 bytes), and this

unit is followed throughout this study. Multiplying the measured counter value with

the cache line size provides the total bytes transferred between the LLC and the

DRAM.

TAU [8] is used to measure the corresponding PAPI [194] uncore counters

(imcX::UNC M CAS COUNT). TAU and PAPI are used for their portability and

their ability to measure function-wise LLC-DRAM traffic for an application. PAPI

counters are measured socket-wise, and for this reason, counters are read from the

socket where the code is executing. When multi-threaded execution is used, threads

are pinned to the cores of the socket from where the counters are read. This is to

ensure the correctness of the measurement and is not related to thread migration. If

cores belonging to multiple sockets are used, counters are read from multiple sockets.

We develop a script-based dynamic analysis tool to execute the application and

collect the TAU profiles for each counter. The dynamic analysis tool parses the

profiles to generate function-wise LLC-DRAM traffic for read and write operations.

Internally, a custom tool [195] is invoked to study the impact of prefetching (by
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toggling it). The LLC-DRAM traffic measurements reported in this study are

gathered through this dynamic analysis tool.

5.2.3 Different Read and Write strategies. To investigate the

application-cache interplay, a variant of vector multiplication code that exhibits

sequential streaming (stride = 1) and strided access pattern (stride > 1) is considered.

The code has three arrays (100 million 32-bit floating-points) allocated and aligned

for vector multiplication. Since the cache line length of these Intel processors is 64

bytes, in an ideal case, an array size of 100M (M represents million) for sequential

streaming vector multiplication should generate 6.25M writes of cache lines (100M *

size of 32bit float / cache line size = 6.25M) and 12.5M reads. However, Figure 24

tells a different story, where read and write traffic for varying stride (by doubling) is

shown. Cases portrayed in Figure 24 are discussed below.

5.2.3.1 Impact of Cache Line Size. In Figure 24a, the read-write traffic

is shown where the read traffic is close to 12.5M for stride 1. This trend continues until

stride 16 (64 bytes/size of 32bit float=16), referenced by 1 . Because a cache line is

64 bytes long, while fetching one 32-bit floating-point data, the memory subsystem

fetches 15 (60 bytes worth) additional neighboring data. Thus, the read traffic does

not reduce until stride 16. However, after stride 16 at 1 , the read traffic halves every

time the stride is doubled. This clearly shows the impact of cache line size on the

LLC-DRAM traffic. Write traffic for stride 1 is also close to 6.25M. However, for the

write traffic, it appears that the cache line size does not have any impact, given that

the region 2 stretches up to a stride of 524,288. For a stride of one (100M access)

and a stride 524,288 (only 190 access), the same number of cache lines (6.25M) are

transferred. Thus, the cache line size has an impact on the read traffic but not on

the write traffic. This observation is explained in Section 5.2.3.2.
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5.2.3.2 Impact of Page Size. In Figure 24a, the cache line length has

no impact on the write traffic because the write array was only allocated but not

initialized. When the write array is accessed, page zeroing occurs, and irrespective

of the actual accesses, all the cache lines in a page become dirty. Page zeroing helps

avoid information leakage from previous content [196]. For this reason, the write

traffic in Figure 24a is not affected by the cache line size. Instead, it depends on

the page size. The default page size on Intel processors is 4 KiB, i.e., a stride of

1024 for 32-bit floating-point. Because Linux supports “transparent huge pages”, it

allows larger page sizes. Intel processors support large pages of 2 MiB and 1GiB

size. Because the data structure size in our study was 100M, a page size of 2MiB was

selected. This explains why we see a transition at 3 on a stride of 524,288. After

that point, the write traffic is halved every time the stride is doubled.

5.2.3.3 Impact of Initialization. In Figure 24b traffic is shown when the

write array is initialized. The write traffic is close to 6.25M at stride 1, and at this

point, the impact of the cache line size is visible at 5 . Specifically, until a stride of

16, no page zeroing takes place. After a stride of 16, the traffic is reduced by half

when the stride is doubled. However, the read traffic is close to 18.75M for stride 1,

indicating that three vectors are read instead of two (the region pointed by 4 ). The

extra read traffic occurs due to the “write-allocate” cache policy. When a store miss

happens, a cache line is retrieved from the DRAM to the cache, and this causes the

extra read (also called an “allocating store”). After a stride of 16, traffic is reduced by

half when the stride is doubled. All four microarchitectures considered in this study

show this same trend.

5.2.3.4 Impact of Hardware Prefetchers. Intel implements aggressive

prefetching, but not all the details are openly available to the community. In the
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experimental results shown in Figure 24a and Figure 24b, prefetching is disabled.

The impact of toggling prefetching support on the read traffic is shown in Figure 24c.

(BW-Pf means Broadwell with prefetching). Note that prefetching has no impact on

the write traffic. Intel has four types of hardware prefetchers per core determined

by four MSR bits [197]. Three regions in read traffic are shown in Figure 24c. The

regions 6 (stride 1 to 16) and 8 (stride 128 and onward) show no visible difference

with prefetching enabled. Further investigation by experimenting with a smaller

stride confirms that the impact of prefetching vanishes after a stride of 80 in all

microarchitectures. Hence, a stride of 80 is the starting point of region pointed by 8 .

However, 6 (i.e., a stride of 1 to 16) is the region that benefits most from prefetching.

For example, the execution times for stride of 1 with and without prefetching are 384

and 897 milliseconds.

The region 7 (from a stride of 32 to a stride of 128) shows interesting behavior

and a visible difference in performance when prefetching is enabled. The difference

here arises from the extra cache lines that are fetched. The first bit of MSR causes an

additional cache line to be fetched, making the effective cache line length 128 bytes

(as opposed to 64). Hence, for a stride of 32, the read traffic behaves similarly to a

sequential stream of data. The second bit of MSR causes an additional cache line to

be fetched in the L2 cache, resulting in three cache lines being fetched for one access.

For this reason, for a stride of 64, each access could result in three cache lines being

fetched (the last two bits are for L1 and history data-based prefetcher). Moreover,

the prefetching behavior in region 7 is not the same for all microarchitectures. Read

traffic is 10% higher in BW when compared to others (SK, CS, and CP show the same

level of read traffic). This observation can potentially be attributed to the change in

the cache subsystem design following the BW microarchitecture.
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Figure 25. Impact of using Intel compiler.

5.2.3.5 Impact of Compiler. The GNU compiler is used to generate

Figure 24. However, using the Intel compiler can provide a different result depicted

by Figure 25. From a stride of 2 and onward, all the data in Figure25 shows a

similar trend as the GNU compiler. However, the region pointed by 9 shows the

difference between the two compilers when the stride is 1. The Intel compiler has

a default option known as the “streaming store” or “non-temporal store”, where

sequential streaming access can be automatically detected. The GNU compiler does

not implement this feature by default. However, non-temporal store can be turned

on or off using compiler flags and intrinsics in the Intel and GNU compilers. When

the streaming store option is used, data is not read from the DRAM for a store miss.

Instead, the data is directly written to DRAM (bypassing the cache) through a write-

combining buffer. This explains why the extra read traffic for an initialized write array

is not present for a stride of 1. The use of a streaming store improves performance

significantly (upto 20%). Another observation for a stride of 1 is the write traffic for

the non-initialized case. The write traffic doubles for this case, suggesting that the

page zeroing is separated from the actual store operation.

5.2.3.6 Impact of Multi-threaded Parallel Execution. Because

streaming and strided access patterns exhibit regular memory access, no visible
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Figure 26. Comparing single vs. multi-threaded runs.

difference is observed when comparing single-threaded execution with multi-threaded

execution (using 8 OpenMP threads). Figure 26 depicts this observation. However,

for a large dataset with a complex irregular pattern, multiple threads share the cache,

and hence, the data is overwritten by other threads, thereby increasing the DRAM

traffic.

5.3 Modeling Different Types of Access

A static analysis framework needs analytical models for different types of memory

access patterns to predict the LLC-DRAM traffic. For this reason, this section builds

on the findings from Section 5.2 to formulate analytical models for different access

patterns. Three kinds of regular access patterns are discussed in this section. First,

the model is formulated for the sequential streaming access pattern to predict LLC-

DRAM cacheline transfer. Then, models are prepared for other access patterns by

using the model for streaming access patterns. In the end, random access patterns

(irregular) are discussed.

5.3.1 Sequential Streaming Access Pattern. The sequential streaming

access pattern (where memory access is consecutive, i.e., stride = 1) is one of the

most common access patterns found in applications. Prefetching does not impact the
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amount of traffic transferred between LLC and DRAM for this pattern. However, the

impact of the cache line and page size needs to be considered.

5.3.1.1 Read Traffic. Because the LLC-DRAM read transaction is done in a

unit of cache lines, the amount of read traffic can be expressed using Eq 5.1. In Eq 5.1,

a data structure size is Elementcount and the size of each element is Elementsize bytes.

Readcount is the number of LLC-DRAM transactions for reading a data structure.

Data structure initialization has no impact on Readcount. Because alignment is not

certain, the ceiling is considered.

Readcount =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
(5.1)

5.3.1.2 Write Traffic. The initialization of the data structures plays an

important role for write traffic. At first, the case where the data structure is not

initialized but only memory is allocated is discussed. For such a case, the page size

becomes the deciding factor because of page zeroing (as shown in Section 5.2.3.2). In

Eq 5.2, Writenot init is the number of cache line transfers when the data structure is

not initialized). Because the machines in Table 14 support transparent huge pages

by default, the page size picked by the operating system (OS) depends on the data

structure size (We made no changes in the OS). The ceiling is considered to capture

the extra traffic from the fragmented access on the last page.

When a data structure is initialized, page zeroing does not take place, and the

cache line becomes the deciding factor. Because of write-allocate policy in Intel,

existing data is read from DRAM before writing on to it. So one write operation also

causes one read operation. The write traffic (Writeinit) is shown in Eq 5.3. The extra

read traffic (Readfor write) generated for the write operation is shown in Eq 5.4.
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Writenot init =

⌈
Elementcount ∗ Elementsize

Pagesize

⌉
∗ Pagesize

Cachelinesize
(5.2)

Writeinit =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
(5.3)

Readfor write =


0 if data structure is not initialized

Writeinit if data structure is initialized

(5.4)

Thus, total read traffic for streaming access, Readstream = Readcount +Readfor write

and total write traffic for streaming access, Writestream = Writenot init or Writeinit

based on data structure initialization.

Since streaming store operations do not cause extra read traffic for initialized write

data structure (shown in Figure 25), Readfor write is set to zero when Intel compilers

are used. When the write array is not initialized, Writestream is multiplied by two to

accommodate the extra page zeroing traffic (shown in Figure 25).

5.3.2 Strided Access Pattern. The strided access pattern is another

common pattern. Based on the observation in Figure 24c, there are three regions.

Read and write traffic formulation for each region is presented below.

5.3.2.1 Streaming Region . When the (Stride ∗ Elementsize) is smaller than

the Cachelinesize, both reads and writes are the same as streaming access (region 6

in Figure 24c). In this region (stride 1 to 16), read and write traffic are same as

streaming access because the whole cache line is transferred. For this reason, total

read and write traffic for this region is presented by Readstream and Writestream.

5.3.2.2 No Prefetching Region . As discussed in Section 5.2.3.4, the

impact of prefetching vanishes after stride 80, and hence, this is the starting point

of a “no prefetching” region which is pointed by 8 in Figure 24c. For this reason,
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when (Stride ∗ Elementsize) is larger than (5 ∗ Cachelinesize), no prefetching region is

considered since (5 ∗ Cachelinesize) = stride 80 for 32-bit floating-point.

At first, write traffic is considered. If the data structure is initialized, the write

traffic is decided by the cache line size and stride size. It also causes extra read traffic.

This case is expressed in Eq 5.5.

Writeinit or Readfor write = Writestream/

(
Stride ∗ Elementsize

Cachelinesize

)
(5.5)

If the data structure is not initialized, the write traffic is decided by the Pagesize.

If (Stride ∗ Elementsize) > Pagesize then Eq 5.6 expresses write traffic, otherwise write

traffic is equal to Writestream. Read traffic is expressed as Eq 5.7.

Writenon init = Writestream/

(
Stride ∗ Elementsize

Pagesize

)
(5.6)

Readcount = Readstream/

(
Stride ∗ Elementsize

Cachelinesize

)
(5.7)

5.3.2.3 Prefetching Zone . Only when (Stride ∗ Elementsize) is larger than

the cache line and smaller than five times of the cache line, the impact of prefetching

becomes visible (denoted by region 7 which starts from stride 16 and ends at stride

80 in Figure 24c). In this region, if prefetching is disabled, write and read traffic can

be expressed as Eq 5.5, Eq 5.6, and Eq 5.7. However, the main difference is observed

when prefetching is enabled, and in that case, only read traffic is impacted. Intel

prefetching suggests fetching an adjacent cache line and an additional cache line if all

MSR bits are set. For this reason, the number of data access is multiplied by three

in the prefetching zone. This is expressed in Eq 5.8. Since prefetching has no impact

on write traffic, the write traffic is expressed as the non-prefetching formula given at

Eq 5.5 and Eq 5.6.
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Readcount = 3 ∗
(

Elementcount

Stride

)
(5.8)

Moreover, SK, CS, and CP show a 10% read traffic drop when compared to BW

(from Figure 24c), which is considered in the model.

5.3.3 Stencil Access Pattern. Stencil access patterns are also common in

scientific applications. The write operation in a stencil access pattern usually follows

a sequential streaming pattern, and hence, the equations for streaming access are

followed. However, read operations are complicated and need to be considered for

different dimensions.

5.3.3.1 One-dimensional Stencil. In a one-dimensional stencil pattern,

usually consecutive elements are accessed in each operation. Since adjacent elements

can be served by cache, the read operations follows a sequential streaming pattern.

5.3.3.2 Two-dimensional Stencil. In a two-dimensional stencil, if the

neighboring elements are sequentially accessed, the repetitive accesses are served by

the cache. Hence, read traffic is equal to the streaming access pattern. However,

if the data structure size is larger than the cache and the distance between stencil

points is large, additional reads may need to be performed for bringing old elements

for multiple iterations.

5.3.3.3 Three-dimensional Stencil. Like a two-dimensional stencil, if

the elements are adjacent, a streaming access pattern is followed. However, if the

distance between stencil points is high for a large data set, the cache size becomes a

limiting factor by causing capacity misses. Usually, the operating space of a three-

dimensional stencil is larger than the other stencils. For a large data set, old data

may need to be brought to the cache more frequently.
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5.3.4 Random Access Pattern and Empirical Factor. The random

access pattern is found in applications with irregular access [198]. The number of

total access in irregular cases is expressed by Accessrandom. Moreover, modern CPUs

introduce randomness in data reuse because of their replacement policies and the

cache size since all data can not be retained in cache for further use. Therefore, LLC-

DRAM traffic prediction for random access must consider the randomness derived

from applications and machines. We first discuss different kinds of randomness in

applications, followed by a discussion of randomness derived from machines.

5.3.4.1 Data Structure Randomness. In data structure randomness,

the reuse behavior becomes uncertain because of how the data structures are

accessed, e.g., A[B[i]] (A’s memory access can be random). In this case, the

randomness is one-dimensional since only the location of access is random, and the

total number of access, Accessrandom is known. In such cases, cache reuse is non-

deterministic at compile time because the access depends on another data structure

at runtime. Furthermore, prefetchers may fetch some extra cache lines, which adds

more uncertainty. So, machine randomness needs to be considered for this case.

5.3.4.2 Algorithmic Randomness. The worst case of randomness is

algorithmic randomness which has two dimensions, 1) randomness in the number

of total access, Accessrandom and 2) randomness in which locations are accessed.

While the first randomness depends on the data structure size, the second kind may

introduce data reuse in the cache, reducing LLC-DRAM access. Complex branching

usually exists in this kind of randomness, which plays an important role in deciding

LLC-DRAM traffic. An example of algorithmic randomness is searching algorithms,

such as binary search. For such cases, algorithmic complexity analysis provides
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an upper-bound of memory access on a data structure and is considered to define

Accessrandom. The second dimension is captured through machine randomness.

5.3.4.3 Machine Randomness and Empirical Factor. Machine

randomness depends on cache size, replacement policies, and memory access location.

In recent Intel processors (Since SK), replacement policies (dictating which data from

cache will be replaced) are dynamically selected from a set of policies at runtime, and

the policy is chosen for a given scenario is not disclosed [184]. Moreover, in the cases

of algorithmic and data structure randomness (as described above), the location of

access is random. So, multiple dimensions of randomness from the machine and the

application make statically determining the LLC-DRAM traffic a complex problem.

Moreover, the undisclosed mapping of dynamic replacement policies from Intel

makes it further complicated. To the best of our knowledge, statically determining

LLC-DRAM traffic in modern CPUs for irregular cases is an unsolved problem.

This study does not claim to solve this problem statically; rather, it combines

static analysis and empirical observation. At this point, an empirically obtained

Empiricalfactor is introduced to represent machine randomness. The Empiricalfactor is

calculated from memory access obtained from the dynamic analysis tool (described in

Section 5.2.2) and statically obtained total access (Accessrandom) where Empiricalfactor

= measured access / statically obtained access. This ratio captures the randomness

of the application and the underlying machine.

5.4 MAPredict Framework

This section describes the MAPredict framework. MAPredict statically gathers

information from an application and a machine to invoke the appropriate model

presented in Section 5.3 and generates a prediction for LLC-DRAM traffic.

MAPredict depends on OpenARC compiler [14] for static analysis of the code and the

131



COMPASS [13] framework for expressing an application in the Aspen [15] domain-

specific modeling language. First, an overview of OpenARC, Aspen, and COMPASS

is presented. After, a description of the workflow of the MAPredict framework is

provided.

5.4.1 Aspen, OpenARC, and COMPASS. Aspen (Abstract Scalable

Performance Engineering Notation) [15] is a domain-specific language that provides

the opportunity for analytical performance modeling in a structured fashion. Aspen’s

formal language and methodology provide a way to express applications and machines’

characteristics abstractly (e.g., Aspen application model and machine model). Built-

in or custom Aspen tools can provide various predictions, such as predicting

resource counts (e.g., number of loads, stores, FLOPs, etc.), execution times, power

consumption, etc. Open Accelerator Research Compiler (OpenARC) [14] is an open-

source compiler framework for various directive-based programming research. It

provides source-to-source translation, a desired feature for this research to create

Aspen application models. COMPASS [13] is an Aspen-based performance modeling

and prediction framework, which is built on OpenARC. COMPASS provides a set of

Aspen directives (pragma-based) that can be used in source code. MAPredict extends

COMPASS by adding new Aspen directives for enabling cache-aware memory access

prediction.

5.4.2 Description of MAPredict Framework. The workflow of the

MAPredict framework is shown in Figure 27. Four phases of MAPredict are described

below.

5.4.2.1 Source Code Preparation Phase. The main idea of MAPredict

is to prepare a source in such a way that when the preparation is done, MAPredict

can statically provide memory access prediction. This one-time effort of source code
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Figure 27. Workflow of MAPredict framework.

preparation (i.e., phase 1) is necessary to capture the dynamic information unavailable

at compile time. First, COMPASS-provided Aspen compiler directives (i.e., pragmas)

are used to identify the target model region in the code for capturing information

at compile time. MAPredict introduces new traits that need to be included in

the directives to specify memory access patterns where necessary. Access pattern

traits such as sequential streaming and strided access patterns are automatically

generated; however, user input (through pragmas) is needed for stencil and random

access patterns. The user inputs in the source code are input sizes of data structures

and Empiricalfactor for random access patterns. These inputs are required because of

their unavailability at compile time.

5.4.2.2 Compile-time Static Analysis phase. In phase 2, MAPredict

gathers application information that is required to execute the model presented in

Section 5.3. MAPredict invokes OpenARC’s compile-time static analysis capability,

which generates an intermediate representation of the code and captures variables,

variable sizes (i.e.,Elementsize), instruction types (load or store), FLOPs, loop

information, access pattern information, machine-specific Empiricalfactor, etc., from
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source code. After gathering the needed information, the source-to-source translation

feature of OpenARC is invoked to generate the Aspen language’s abstract application

model by following Aspen’s grammar [15]. An application model combines different

types of statements in a graph of kernels with one or more execution blocks. An

example of an application model is given in Listing 5.1 which shows load and store

information of matrix multiplication. Every load and store statement is coupled with

the access pattern of that data structure. In this example, the only manual input is the

param N (data structure size). The other information in Listing 5.1 is automatically

generated.

5.4.2.3 Machine Model Generation Phase. In phase 3, the machine

model is generated by gathering information about the machine, following the Aspen

grammar (a manual process). The machine model contains information unavailable in

the application model, and is required to execute the model presented in Section 5.3.

MAPredict gathers information about the microarchitecture, Cachelinesize, Pagesize,

prefetching status, compiler, etc., from the machine model. The machine model in

Listing 5.2 shows cache-related information necessary for memory prediction. The

machine models are smaller than the application models.

Listing 5.1 Application model - Matrix Multiply (partial view).

model matmul {

param N = 512

data a [((4∗N)∗N)]

kernel Matmul openmp {

execute [N] "block_Matmul" {

loads [((1∗sizeof float)∗N)] from b as stride(1)

loads [((1∗sizeof float)∗N)] from c as stride(N)

stores [(1∗sizeof float)∗N] to a as stride(1)

}}}
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Listing 5.2 Machine model (partial view).

param bwNumCores = 32

param bwCacheCap = 40 ∗ mega

cache bwCache {

property capacity [bwCacheCap]

property cacheline [64]

property pagesize 1 [4046]

property pagesize 2 [2 ∗ mega]

}

5.4.2.4 Prediction Generation Phase. MAPredict’s prediction engine

is invoked at phase 4. This invocation can be standalone, which requires passing

the application and machine model to MAPredict. MAPredict invocation can also

be made from a runtime system using the optional runtime invocation feature of

COMPASS. When MAPredict is invoked, it traverses the call graph of the Aspen

application model in a depth-first manner. In this graph, each node represents an

execution block (a part of a function). MAPredict walks through every load and

store statement of the application model, collects the access pattern, and evaluates

the expression to obtain Elementcount, Elementsize, Stride, etc. Then, MAPredict uses

the machine model information to invoke the appropriate prediction model to generate

memory access prediction for that statement. MAPredict does this evaluation for each

statement and generates a prediction for the execution block, which is recursively

passed to make a kernel/function-wise prediction. When the graph traversal finishes,

MAPredict provides a total memory access prediction for the application. MAPredict

can provide kernel-wise memory access (shown in Listing 5.3) and execution block-

wise memory access. In debug mode, it offers statement-wise detail analysis.

5.4.3 Identifying Randomness and Empiricalfactor. MAPredict

combines static and empirical approaches to address randomness. In a large
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codebase, identifying algorithmic and data structure randomness is challenge because

randomness usually exists only in certain functions (not in the entire application).

MAPredict provides a method of identifying randomness in source code. At first,

the source is annotated with basic MAPredict traits (without any Empiricalfactor).

When MAPredict is executed, it provides function-wise memory access prediction for

the application. Then the dynamic analysis tool is run on real hardware to get the

same function-wise data. Comparing the results from both tools makes it apparent

which functions provide low accuracy, indicating a potential source of randomness.

However, a function can be large. MAPredict provides execution block-level and

statement-wise detailed analysis to pin-point the randomness. After identifying, as

described in Section 5.3.4.3, the Empiricalfactor is calculated by comparing the output

from the dynamic analysis tool (measured value) and MAPredict (statically obtained

value). Then the Empiricalfactor is annotated in the source code for that statement

or execution block. When MAPredict is rerun, it uses the Empiricalfactor to generate

the prediction.

Listing 5.3 MAPredict’s memory access analysis.

< MAPredict − Kernel Level Analysis >

Kernel Name Memory access

InitStressTermsForElems : 27000000

IntegrateStressForElems : 81000000

....................

LagrangeLeapFrog : 1567400990

Total Memory access : 1567400990

Total time (millisecond): 28.383000

5.5 Experimental Setup

The experiment environment is discussed in this section. Processors in Table 14

were used in the experiments. The operating system of these processors is Centos-
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(a) Stream access : Triad. (b) Stencil access : Laplace2D.

(c) Stencil access : Jacobi. (d) Strided access in Region 7 : Vecmul 50.

(e) Strided access in Region 8 : Vecmul 200. (f) Comparing single vs. multi-threaded
execution.

Figure 28. Accuracy comparison of different regular access patterns. Y-axis is
accuracy, and X-axis is microarchitectures with prefetching disabled and enabled.
BLUE=MAPredict, WHITE=literature, and GREEN=multi-threaded execution.
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7, and it supports transparent huge pages by default. The applications, along with

their input sizes and access patterns, are listed in Table 15. Forty-four functions

from these applications are evaluated for different input sizes, making it a total of

130 workloads. All the input sizes are bigger than the cache sizes of the machines in

Table 14. GCC-9.1 and Intel-19.1 compilers are used for experimentation. For parallel

execution, the OpenMP programming model is used. In the graphs, BW stands

for Broadwell without prefetching, and BW pf represents Broadwell with prefetch

enabled. A similar convention is used for others.

5.5.1 Accuracy Calculation. Relative accuracy is considered, where

accuracy = [100 - Absolute {(measured-predicted)/measured*100}]. The measured

value is generated by the dynamic analysis tool described in Section 5.2.2. The

predicted values are generated using MAPredict. Both MAPredict and the dynamic

analysis tool provide output resembling Listing 5.3, making the accuracy calculation

possible for each application function.

5.5.2 Comparison with Literature. The prediction accuracy of

MAPredict is compared with the model from the literature [192] (referred to as

“model from literature”). Even though this study [192] investigates data vulnerability,

the main contribution is the analytical model for LLC-DRAM traffic prediction.

Two other studies investigate memory access prediction for static analysis [191, 13].

The main reason they are not considered for comparison is the lack of a detailed

analytical model with equations (detail in Table 18). Moreover, one of these research

projects depends on cache simulation [191], while another depends on instruction

counts without considering machine properties [13]. The study presented in [192] is

selected for comparison because it provides analytical models, considers all access

patterns, and does not solely rely on instruction count obtained from static analysis.
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Table 15. Benchmarks.

Name Pattern Input sizes
STREAM Triad [160] Sequential streaming 50M, 100M,

access pattern 150M
Jacobi [14] Stencil access pattern 67M, 268M,

without initialization 1B
Laplace2D [14] Stencil access pattern 16M, 64M,

with initialization 100M
Vector Multiplication Strided pattern 50M, 100M,

for region 7 [14] in prefetching zone 200M
Vector Multiplication Strided pattern 100M, 200M

for region 8 [14] in no prefetching zone 400M
XSBench [199] Algorithmic randomness large

Lulesh [200] Mixed patterns 15M, 27M, 64M

It considers machine properties such as cache line size, cache size, etc., for predicting

memory access for different access patterns. However, it does not consider prefetchers,

compilers, and changes in different microarchitectures.

5.6 Experimental Results

In this section, the accuracy of the MAPredict framework is evaluated. The

evaluation is done in two steps. In the first step, the prediction accuracy of different

applications with regular memory access patterns is evaluated. In the second step,

irregular access patterns and a large application with mixed access patterns are

investigated.

5.6.1 Regular Access Patterns. Regular access patterns are investigated

for various microarchitectures, input sizes, compilers, and execution models.

5.6.1.1 Sequential Streaming Access Pattern. To evaluate the model

for sequential streaming memory access pattern, the triad kernel of STREAM [160] is

used. The data structure is initialized, and the size is 50M 64 bit floating-points. The

total traffic, which is the summation of read and write traffic, are measured for all the
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microarchitectures with prefetching disabled and enabled. The prediction accuracy

from MAPredict and the model from the literature [192] are compared in Figure 28a.

MAPredict invoked Eq 5.3 and provided 99.1% and 99.1% average accuracy in all

processors when prefetching is disabled and enabled. For the same cases, the model

from literature provided 75.0%, and 75.4% average accuracy.

5.6.1.2 Stencil Memory Access Pattern. To evaluate the prediction

accuracy of MAPredict for stencil pattern, two benchmark kernels are selected,

Laplace2d and Jacobi [14]. Both of these kernels have a 2D stencil access pattern

with adjacent stencil points. However, Laplace2D has the write array initialized, and

Jacobi has the write array non-initialized. Laplace2D operates on a 4000×4000 matrix

of 64-bit floating-points, whereas Jacobi operates on an 8912× 8912 matrix of 32-bit

floating-points. In Figure 28b the comparison for Laplace2D is shown. Since the

data structure is initialized, allocating-store causes extra read, which the model from

literature does not consider. MAPredict provided 95.9% and 92.5% average accuracy

when prefetching is disabled and enabled, respectively. On the other hand, the model

from literature provided 65.7% and 68.5% average accuracy. In Figure 28c portrays

the prediction accuracy of Jacobi. Since the write data structure is not initialized,

page zeroing took place. Even though the model in the literature did not consider

page zeroing, the equation remained the same. For this reason, both MAPredict and

the model from the literature provided same accuracy.

5.6.1.3 Strided Memory Access Pattern. To provide an evaluation of

strided access pattern of prefetching region pointed by 7 and no-prefetching region

pointed 8 in Figure 24c, vector multiplication of 100M size is used with stride 50

and 200. The stride size 50 is used with a non-initialized write array to evaluate the

page zeroing effect for strided pattern. Initialized write array is considered for stride
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200. For the prefetching zone, traffic becomes significantly different across different

microarchitectures. Moreover, for stride 50, the whole array is written to the memory

instead of one in fifty. The accuracy comparison is shown in Figure 28d. MAPredict

captured the prefetching differences between different microarchitectures successfully

and provided 93.3% and 91.6% average accuracy when prefetching is disabled and

enabled, respectively. On the other hand, the model from literature provided 54.6%

and 38.2% average accuracy since it is not equipped to predict prefetching and non-

initialized cases. For stride 200, the initialized data structure causes allocating-store.

The comparison is shown in Figure 28e where MAPredict provided 88.5% average

accuracy in all processors. On the other hand, the model from literature provided

66.2% average accuracy.

5.6.1.4 Single vs. Multi-threaded Execution. Multi-threaded execution

is compared to single-threaded execution in Figure 28f. Eight threads of BW are

used for experimentation, and OpenMP from GCC is used. No significant difference

is observed for sequential streaming, stencil, and strided access patterns. Other

microarchitectures show a similar trend.

Figure 29. Accuracy of various input sizes. WHITE = prefetching disabled and
BLUE = prefetching enabled.
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5.6.1.5 Comparison of Different Input Sizes. MAPredict’s accuracy

is evaluated for different input sizes for each application with regular access pattern

given in Table 15. Triad is tested with array sizes of 50M , 100M , and 150M .

Matrix sizes for Jacobi are 8192 × 8192, and 16384 × 16384, and 32768 × 32768.

Laplace2D is tested with 4000 × 4000, 8000 × 800, and 1000 × 1000 matrix sizes.

Strided vector multiplication is tested with vector sizes of 50M , 100M , and 200M for

prefetching region and 100M , 200M , and 400M for no prefetching region. Prediction

accuracy of each data set for prefetching enabled and disabled cases are presented

in Figure 29. The accuracy of different input sizes demonstrates that MAPredict’s

provides consistent accuracy for varied input sizes. The BW processor is used for this

evaluation, and a similar trend is observed for others.

Figure 30. Accuracy comparison of GCC and Intel compiler.

5.6.1.6 Comparison of GCC vs. Intel Compiler. The impact of

different compilers is portrayed in Figure 30. When ICC is used, the most significant

difference in traffic is observed for Triad because of the streaming store operation

by Intel compiler (observation at 9 in Figure 25). Compiler information is made

available to MAPredict through the machine model, and MAPredict invokes the

analytical model for ICC. For this reason, high accuracy is observed for Triad in

Figure 30. However, this streaming only resolves at compile time. For example, if a
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Table 16. Analysis of Lulesh (selected functions) for single threaded execution.
d1=data size 1 without prefetching, p-d1=with prefetching.

Function name Access MAP TAU Single thread - 3 data sizes
(Shortened) Pattern redict PAPI d1 p-d1 d2 p-d2 d3 p-d3

IntegrateStressF.Elm St,S 81M 83M 99.0 97.4 88.5 88.9 91.8 91.7

CFBHour.ForceF.Elm St,S 239M 241M 96.9 99.1 97.0 96.5 82.2 82.6

CHourg.Cont.F.Elm St,I,DR 604M 647M 92.8 93.1 93.0 92.7 76.2 77.9

LagrangeNodal All 824M 874M 94.2 94.2 95.3 95.1 85.4 86.5

CKinematicsF.Elm S,St 99M 100M 98.7 99.7 96.0 96.6 98.3 98.7

CLagrangeElements St,S,I 126M 130M 98.3 97.5 99.7 99.9 98.5 98.3

CMon.QGrad.F.Elm S,St 99M 105M 95.2 94.4 95.6 95.6 94.6 94.5

CMon.QReg.F.Elm DR,N,S 141M 150M 94.9 94.6 95.4 93.2 94.3 93.2

CEnergyF.Elm S 249M 261M 97.7 95.6 94.0 98.6 99.9 93.4

EvalEOSF.Elm DR,S 429M 451M 99.1 95.1 95.7 97.9 98.4 93.0

UpdateVol.F.Elm S 10M 10M 99.9 99.9 99.7 99.9 99.9 99.9

LagrangeElements All 824M 869M 98.4 95.0 99.3 96.7 96.9 93.7

LagrangeLeapFrog All 1.6B 1.7B 95.0 93.0 96.6 94.3 95.8 99.2

loop is in the following format for(i = 0; i < n; i = i + x) where the value of x is

1, streaming store is not activated since x is a variable. Other applications do not

perform streaming stores and hence provided no difference. Figure 30 shows the data

for BW; others demonstrate similar behavior.

5.6.2 Irregular Access and Large Application with Mixed Patterns.

To evaluate MAPredict’s capability of combining static and dynamic information

for irregular access and mixed patterns, two applications, XSBench and Lulesh, are

considered.

5.6.2.1 Algorithmic Randomness. XSBench [199] is a proxy application

based on the Monte Carlo transport algorithm. It calculates the macroscopic neutron

cross-section by randomly searching for energy and material. The energy search

(grid search) for each lookup is done by employing a binary search on a unionized

energy grid, an example of algorithmic randomness (total access = Accessrandom *
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Table 17. Analysis of Lulesh (selected functions) for multi-threaded execution.
d1=data size 1 without prefetching, p-d1=with prefetching.

Function name Multi-threaded - 3 data sizes
(Shortened) d1 p-d1 d2 p-d2 d3 p-d3

IntegrateStressF.Elm 86.3 83.5 86.9 86.0 86.0 84.9

CFBHour.ForceF.Elm 96.9 94.7 96.6 96.7 72.3 72.6

CHourg.Cont.F.Elm 77.0 75.7 77.1 76.6 80.0 82.5

LagrangeNodal 79.7 78.5 79.9 79.4 90.6 92.4

CKinematicsF.Elm 89.8 88.6 90.0 89.7 89.9 89.5

CLagrangeElements 89.5 88.6 89.8 89.6 89.5 89.2

CMon.QGrad.F.Elm 81.8 81.0 82.0 81.6 82.0 81.5

CMon.QReg.F.Elm 95.0 99.6 95.5 99.1 94.3 100

CEnergyF.Elm 89.7 84.2 91.3 85.5 88.6 83.2

EvalEOSF.Elm 86.8 82.8 87.8 83.6 85.6 81.7

UpdateVol.F.Elm 99.3 99.4 98.9 98.6 99.9 99.9

LagrangeElements 86.8 85.7 87.6 86.3 86.1 85.2

LagrangeLeapFrog 82.1 80.7 82.6 81.5 95 93.4

Empiricalfactor). As discussed in Section 5.3.4.2, both the number of access and the

location of access are random. Since grid search follows a binary search, algorithm

complexity (logn) is used to measure Accessrandom. The Empiricalfactor is calculated

for BW with prefetching disabled and used for all other processors (Empiricalfactor =

the ratio of measured value and Accessrandom). The predicted value is then compared

to the average of five measurements (up to 5% standard deviation) for accuracy

calculation. The blue bars in Figure 31 show that only BW provided high accuracy

when prefetching is disabled and hence demonstrating the need for machine-specific

Empiricalfactor. When individual Empiricalfactor is used, the accuracy of each processor

improved (yellow bar). MAPredict provides the option to include multiple machine

specific Empiricalfactor for a single statement; thus, a single source code can be updated

for multiple machines. The method presented in [192] does not calculate the total

number of random access rather focuses on the access location, which makes the
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Figure 31. Accuracy of algorithmic randomness for XSBench.

comparison irrelevant. Algorithmic randomness is an extreme case, and it is only

present in a certain function. For this reason, a large application with mixed patterns

is investigated next for different input sizes and execution models.

5.6.2.2 A Large Application with Mixed Patterns: Lulesh. To

demonstrate that MAPredict can work with a large application with different memory

access patterns (including random), Lulesh [200] is considered. Lulesh is a well-known

app with different memory access patterns for a 3D mesh data structure. It has 38

functions with a complex call graph and 4474 lines of code, making it a large and

complex example. Moreover, functions have multiple access patterns. Three large

data structure sizes (250× 250× 250, 300× 300× 300, and 400× 400× 400) are used.

The SK machine is selected for experimentation because it has the smallest cache and

hence, stresses the capability of MAPredict by increasing the probability of machine

randomness.

5.6.2.3 Function Categorization of Lulesh. Out of 38 functions in

Lulesh, 24 functions provide significant memory transactions (> 1 Million LLC-

DRAM transactions for the data size of 300× 300× 300). The 24 memory intensive

functions have different memory access patterns. Most memory intensive functions are

shown at Tables 16 and 17 , where column-2 in Table 16 shows access patterns. Here,

145



St=stencil (eight-point non-adjacent 3D stencil), S=stream, DR=data structure

randomness, and I=non-initialized arrays, N=nested randomness (data structure

randomness with branches), and All=all the above patterns.

5.6.2.4 Empiricalfactor. Lulesh has data structure randomness in three

functions. The Empiricalfactor is calculated by comparing the static and dynamic data

to address this randomness (a one-time effort). So, a total of three Empiricalfactor are

used in three functions (out of 38).

5.6.2.5 Traffic: Number of LLC-DRAM Transactions. Columns 3

and 4 in Table 16 show the LLC-DRAM transaction (M=Million and B=Billion)

obtained for MAPredict and TAU+PAPI (dynamic analysis tool). The last function,

which is the parent of all functions, shows a total of 1.7 Billion LLC-DRAM

transactions. However, for the largest data size, Lulesh exhibits 3.5 Billion LLC-

DRAM transactions.

5.6.2.6 Scaling and Accuracy for Lulesh. Scaling in terms of input sizes

and the number of threads provides a measure of success for one-time calculation of

the Empiricalfactor in this complex case. Column 5-10 of Table 16 show the accuracy

of different functions for different data sizes for prefetching enabled and disabled

cases. Since some functions are parents to other functions and the last function is the

parent to all (total traffic), inaccuracy in one function impacts the overall accuracy.

MAPredict showed more than 93% accuracy for all data sizes, which demonstrates

the model and Empiricalfactor scaled well in terms of input size. For the multi-

threaded case, maximum threads (10 threads) in a socket are used. Multi socket

runs are avoided because memory-intensive kernels provide worse performance when

different NUMA nodes are used. For example, Lulesh showed a 48% performance

drop when ten threads in one NUMA node and 20 threads in two NUMA nodes runs
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are compared. Columns 2-7 in Table 17 show the accuracy of different data sizes in

multi-threaded experiments. A drop in accuracy is observed in the multi-threaded

results since multiple threads occupy the cache in a complex access scenario. However,

two data sizes showed more than 80% overall accuracy, and one data size provided

more than overall 93% accuracy.

5.6.3 Discussion. For regular access patterns, MAPredict’s static analysis

provides higher accuracy than the literature model and can handle different input

sizes, microarchitectures, cache sizes, compilers, and execution models. However,

MAPredict requires empirical observation for irregular patterns.

5.6.3.1 Overhead of MAPredict. One of the objectives of MAPredict is to

make it usable from runtime systems for fast decisions. The evaluation of Lulesh takes

28.3 milliseconds (38 functions), averaging to less than a millisecond per function. For

source code preparation, 249 lines of Aspen directives are used for 4474 lines of code,

which is 5.5% source code overhead. 79 directives are for enabling MAPredict.

5.6.3.2 Usability of Empiricalfactor. The calculation of Empiricalfactor for

irregular accesses is needed in complex applications (i.e., Lulesh). However, the

Empiricalfactor calculation is a one-time effort. Once calculated, it becomes a part of

the source code and can provide prediction statically. Moreover, randomness usually

occurs only in a small portion of an application (regular access patterns are more

commonly found). So, the Empiricalfactor calculation is needed only where randomness

exists.

5.7 Related Works

Related works presented in this section are divided into two categories. The first

category shows the literature related to memory access prediction and static analysis.

The second category shows the importance of understanding Intel processors.
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5.7.1 Memory Access Prediction. Several studies investigated memory

access patterns to make a reasonable prediction. Yu et al. [192] used analytical models

of different memory access patterns. In Tuyere [191], Peng et al. used data-centric

abstractions in an analytical model to predict memory traffic for different memory

technologies. Application models in these aforementioned studies are manually

prepared. Moreover, MAPredict goes beyond these wrok by including the impact of

page size, prefetchers and compilers in machine model. Moreover, Tuyere framework

showed the benefit of analytical models over trace-based or cycle accurate simulator

(such as Ramulator [201], DRAMSim [202]) both in terms of time and space.

MAPredict further improves upon Tuyere by providing prediction in 1-3 milliseconds

per function. Allen et al. [203] investigated the impact of two memory access patterns

on GPUs. Some previous works used load and store instruction counts to measure

memory access and used that count to predict performance(e.g., COMPASS by Lee

at al. [13]). Compile-time static analysis tools, such as Cetus [204], OpenARC [14],

and Caascade [205] are also used to measure instruction counts at compile time and

can provide a prediction. MAPredict does not solely depend on instruction counts;

it captures the impact of cache hierarchy through analytical models. In contrast to

MAPredict’s near-accurate prediction, analytical models such as Roofline Model [178]

and Gable [172] provide an upper bound for a system.

5.7.2 Understanding Intel processors. Some studies delved into Intel

processors to understand their performance by using benchmarks. Using the Intel

advisor tool, Marques et al. [179] analyzed the performance of benchmark applications

to understand and improve cache performance. Alappat et al. [184] investigated

Intel BW and CS processors to understand the cache behavior using the likwid tool

suite [206]. Hammond et al. investigated the Intel SK processor [190] by running
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Table 18. Comparison with other works. A=All, P=Partial.
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Peng et al.[191] 3 7 A 7 7 3 7

Yu et al. [192] 3 3 A 7 7 7 7

Monil et al. [16] 7 7 P 3 7 7 3

Lee at al. [13] 3 7 P 3 7 3 7

Marques et al. [179] 7 7 P 7 7 3 7(disabled)
Alappat et al. [184] 7 7 P 3 3 3 3

Hammond et al. [190] 7 7 P 3 7 3 7

Molka et al. [187] 7 7 P 3 7 3 7(disabled)
MAPredict 3 3 A 3 3 3 3

different HPC benchmarks. Hofmann et al. also investigated different Intel processors

to analyze core and chip-level features [189, 188]. Park et al. also investigated the

performance of different Intel microarchitectures and optimized HPC benchmarks to

perform better. Molka et al. [187] used a micro-benchmark framework to analyze

the main memory and cache performance of Intel Sandy bridge microarchitecture

(also AMD Bulldozer processors). Performance evaluation using benchmarks is also

done by Saini et al. for Ivy Bridge, Haswell, and Broadwell microarchitectures [185,

186]. These works investigated Intel microarchitectures using benchmarks but did

not develop strategies for predicting memory traffic.
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5.7.3 Novelty in MAPredict. Table 18 shows the comparison of

MAPredict with other literature. The first four rows represent the study of memory

access patterns and static analysis. The next four rows represent studies that are

focused on an in-depth understanding of Intel microarchitectures. MAPredict bridges

these two areas and provides a unique framework that can provide memory access

prediction in modern CPUs.

5.8 Summary

This chapter presents the MAPredict framework, which predicts memory traffic

for Intel processors. MAPredict is a prerequisite for MEPHESTO presented

in Chapter IV. This study investigates the interplay between an application’s

memory access pattern and Intel micro-architectures’ cache hierarchy. Based on

the observation from Intel processors, an analytical model is derived that takes

memory access patterns of an application, properties of a processor, and choice of

the compiler into consideration. MAPredict generates an application model for a

given application through compile-time analysis. The application is combined with

a target machine model to synthesize the appropriate analytical model to predict

LLC-DRAM traffic. Through experimentation with benchmarks on processors from

Intel Broadwell, Skylake, Cascade Lake, and Cooper Lake micro-architectures, the

analytical model’s validity is verified by achieving average accuracy of 99% for

streaming, 91% for strided, and 92% for stencil patterns. MAPredict also facilitates

providing hints in the source code to capture dynamic information and randomness

either from the application or machine to obtain better accuracy. By combining

static and empirical approaches, MAPredict achieved up to 97% average accuracy on

different micro-architectures for random access patterns.
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By providing the means to predict LLC-DRAM traffic in modern CPUs,

MAPredict solves a important piece of the puzzle for MEPHESTO. However, a similar

prediction is needed for GPUs as well to implement MEPHESTO’s dynamic task

placement in a runtime system for heterogeneous system. For this reason, the next

chapter strives to understand and model LLC-DRAM traffic in GPUs.
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CHAPTER VI

UNDERSTANDING AND MODELING LLC-MEMORY TRAFFIC IN GPUS

This chapter contains unpublished material with co-authorship. All of the

presented research in this chapter was conducted as a collaboration between the

University of Oregon and Oak Ridge National Laboratory (ORNL). Research

presented in this chapter is accepted at RSDHA 2021 [207] workshop at SC 2021.

While working on this research, I received regular guidance from Dr. Seyong Lee. I

also received high-level guidance from Dr. Allen Malony and Dr. Jeffrey Vetter. I did

all the experiments, writing, and data collection. Dr. Lee helped with proofreading

the submission.

6.1 Introduction and Motivation

This chapter investigates LLC-DRAM traffic in GPUs so that MAPredict can

provide prediction for both CPUs and GPUs (corresponding to Research Question 5

— RQ5: Can we capitalize the understanding of the CPUs to explain and model the

LLC-DRAM traffic for GPUs?). From a hardware design perspective, latency-focused

CPUs are vastly different than throughput-focused GPUs. Moreover, instruction

set architectures, programming models, and execution models also differ. For this

reason, finding similarities and identifying dissimilarities among CPUs and GPUs

from different manufacturers can provide a better way of generating analytical models.

Where the previous chapter focused on Intel CPUs, this chapter focuses on GPUs

from NVIDIA and AMD. The intense race between GPU manufacturers to provide

more computational power is propelling frequent releases of new, more capable, and

more complex GPUs. For example, NVIDIA’s recent Ampere GPUs (A100) [208]

were countered by AMD’s Instinct GPUs (MI100) [209]. Both host more than 30 GB

of device memory, and NVIDIA’s Ampere GPUs have more than double the device
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memory of the previous Volta GPUs. To increase the potential of machine-learning

applications and take advantage of this growing discipline, both manufacturers

have added dedicated cores—NVIDIA Tensor Cores and AMD Matrix Cores—to

accelerate machine-learning calculations. This competition is reflected in large-scale

supercomputers as well. For example, Frontier, the upcoming exascale machine from

Oak Ridge National Laboratory (ORNL), will use AMD’s Instinct GPUs, whereas the

new Perlmutter machine, being installed at the National Energy Research Scientific

Computing Center, will use NVIDIA A100 GPUs. Due to the current trend, this

chapter considers different generations of NVIDIA and AMD GPUs.

Because CPUs have existed much longer than GPUs, the research community has

a significantly wider breadth of knowledge and understanding of CPU architectures

than the comparatively new GPU architectures. Although previous studies have

investigated the impact of memory-access patterns on CPUs and GPUs, not

many studies have compared the LLC-memory traffic patterns between CPUs and

GPUs [210, 16, 203]. Investigating similarities would provide opportunities to apply

similar optimization techniques, and finding the dissimilarities would provide a better

understanding of the differences between CPU and GPU memory traffic patterns.

This study adopts an experimental evaluation approach to explore and understand

the impact of memory-access patterns on different GPUs from NVIDIA and AMD

and attempts to find the similarities and dissimilarities with Intel CPUs. Using

the two most common memory-access patterns (i.e., sequential streaming and strided

access patterns), this study reveals the factors that decide LLC-memory transactions.

Finally, this study formulates analytical models that can be included in MAPredict.

The following contributions are described:
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• Common factors in the cache hierarchy that trigger an LLC-memory

transaction;

• Strategies to measure LLC-memory traffic by using NVIDIA’s Nsight Compute

and AMD’s ROCm profiler;

• Investigation and comparison of three NVIDIA GPUs (i.e., P100, V100, A100)

with Intel CPUs for two memory access patterns;

• Investigation and comparison of three AMD GPUs (i.e., MI50, MI60, MI100) to

explore similarities and dissimilarities between Intel CPUs and NVIDIA GPUs;

and

• A proof concept for predicting LLC-memory traffic of NVIDIA and AMD GPUs.

6.2 Methodologies for GPU Access Investigation

This section provides the methodologies used to investigate LLC-memory traffic

for sequential streaming and strided access patterns in NVIDIA and AMD GPUs.

Here, memory refers to the device memory of the GPUs. First, detailed information

about the NVIDIA and AMD GPUs used in this study is presented. Then, the

application that exhibits sequential streaming and strided access patterns is presented

(i.e., the strided vecMul function for GPUs). Finally, the strategies for measuring the

LLC-memory traffic for different NVIDIA and AMD GPUs are discussed.

6.2.1 NVIDIA and AMD GPUs. NVIDIA and AMD have been releasing

different GPUs for decades. With the rejuvenation of machine learning, GPUs are

garnering even more attention, and an intense race between manufacturers to provide

better performance for diverse workloads is under way. Current NVIDIA and AMD

GPUs include tensor/matrix cores capable of performing fused matrix multiply and
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accumulate operations to facilitate machine-learning workloads. This study considers

three recent GPUs from both NVIDIA and AMD. Table 19 and 20 show an overview

of hardware information for three NVIDIA Tesla and AMD Radeon GPUs, of which

the most recent are NVIDIA’s A100 and AMD’s MI100 [211, 212, 208, 209, 213].

The machines used in this study are part of ORNL’s Experimental Computing

Laboratory (ExCL) [214] and the Oregon Advanced Computing Institute for Science

and Society (OACISS) [215].

6.2.2 Strided Vector Multiplication for CUDA and ROCm. To

investigate sequential streaming and strided access patterns, the vector multiplication

application used for the CPU study in Section 5.2 in Chapter V is modified for

Table 19. NVIDIA GPUs.

Item NVIDIA Tesla GPUs
description Pascal: P100 Volta: V100 Ampere: A100
Release year 2016 2017 2020
Architecture Pascal Volta Ampere

Number of SMs/CUs 56 80 108
Number of cores 3,584 5,120 6,912

Peak performance FP32 13.41 TFLOPS 14.13 TFLOPS 19.49 TFLOPS
Peak performance FP64 6.705 TFLOPS 7.066 TFLOPS 9.746 TFLOPS

Tensor/Matrix cores No Yes (640) Yes (432)
Device memory size 16 GB HBM2 16 GB HBM2 40 GB HBM2e

Memory bus 4,096 bit 4,096 bit 5,120 bit
Bandwidth 732.2 GB/s 900 GB/s 1,555 GB/s

L1 cache per SM/CU 24 KB 128 KB 192 KB
L2 cache size 4 MB 6 MB 40 MB

Cache line size 32 bytes 32 bytes 32 bytes
Warp/Wavefront size 32 threads 32 threads 32 threads

Compiler nvcc nvcc nvcc
Profiler nvprof nvprof Nsight compute

Software stack CUDA-11.0 CUDA-11.2 CUDA-11.2
Machine name Oswald01 Leconte Illyad

Facility ExCL ExCL OACISS
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the CUDA and ROCm platforms [16]. The basic difference between multithreaded

CPU code and GPU code is presented in Figure 32. Programming models, such as

OpenMP, divide a data structure among the available threads in a CPU, where each

thread continuously (based on stride size) executes the array indices. Multithreaded

execution for two threads is shown in Figure 32. However, a GPU decomposes the

total computation in blocks consumed by warps/wavefronts in the SM/CU. For this

reason, blocks are usually chosen as multiples of the warp/wavefront size. Each

warp/wavefront employs 32 (NVIDIA) and 64 (AMD) threads for computation.

To make the comparison straightforward, the GPU execution shown in Figure 32

displays a hypothetical situation in which each warp has only two threads. So, the

Table 20. AMD GPUs.

Item AMD Radeon Instinct GPUs
description MI50 MI60 MI100
Release year 2018 2018 2020
Architecture GCN 5.1 GCN 5.1 CDNA 1.0

Number of SMs/CUs 60 64 120
Number of cores 3,840 4,096 7,680

Peak performance FP32 13.41 TFLOPS 14.75 TFLOPS 23.07 TFLOPS
Peak performance FP64 6.705 TFLOPS 7.373 TFLOPS 11.54 TFLOPS

Tensor/Matrix cores No No Yes (each CU)
Device memory size 16 GB HBM2 32 GB HBM2 32 GB HBM

Memory bus 4,096 bit 4,096 bit 4,096 bit
Bandwidth 1,024 GB/s 1,024 GB/s 1,229 GB/s

L1 cache per SM/CU 16 KB 16 KB 16 KB
L2 cache size 4 MB 4 MB 8 MB

Cache line size 64 bytes 64 bytes 64 bytes
Warp/Wavefront size 64 threads 64 threads 64 threads

Compiler hipcc hipcc hipcc
Profiler rocprof rocprof rocprof

Software stack ROCm-3.9.0 ROCm-4.3.0 ROCm-4.3.0
Machine name Gilgamesh Explorer Cousteau

Facility OACISS ExCL ExCL
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Figure 32. A simplistic representation of execution on a CPU and GPU for strided
access. Here, two threads are considered for the CPU. For the GPU, only two threads
per warp/wavefront (hypothetical) are considered to show the difference. However,
the warp/wavefront sizes are 32 threads for NVIDIA GPUs and 64 threads for AMD
GPUs.

computation is done on hardware threads in a multithreaded execution on CPUs

(considering OpenMP), where the same thread processes the neighboring elements,

which increases cache locality. On the other hand, warps/wavefronts consume thread

blocks in the GPU, where different threads access adjacent data (depending on stride

size). Because warps/wavefronts are scheduled in the SM/CU, having the same

warp threads working on neighboring data provides the best cache locality and can

take advantage of memory coalescing in the L1 cache. For this reason, the vector

multiplication application is modified in such a way that neighboring threads in a

warp/wavefront execute the adjacent elements (a standard practice [203]). Because

this study focuses on the LLC-memory (L2-global memory for GPUs), the impact on

shared memory at L1 is not considered.

The modified CUDA code is shown in Listing 6.1, in which neighboring threads

execute neighboring elements for various strides. When the stride is 1, vecMul exhibits

a standard sequential stream access pattern like the STREAM benchmark [160]. Note
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that only the vectors read by vecMul are allocated and initialized before transferring

to the device (h a and h b). The write array is only allocated. While measuring

the traffic, only the vecMul function is considered. The hipify tool from the ROCm

software stack is used to convert the CUDA code to HIP code. Because the code is

short, the conversion using hipify compiled without any error. For this study, the

nvcc (cuda-11.0) and hipcc (rocm-3.9.0 and rocm-4.3.0) compilers are used.

Listing 6.1 Strided vector multiplication in CUDA.

global void vecMul(float ∗a, float ∗b, float ∗c, int n, int stride){

// Get our global thread ID

int id = blockIdx.x ∗ blockDim.x + threadIdx.x;

// Ensuring strided access and boundary checking

if (id∗stride < n)

c[id∗stride] = a[id∗stride] ∗ b[id∗stride];

}

int main( int argc, char∗ argv[] ){

int n = 100000000;

// host and device data structures

float ∗h a, ∗h b, ∗h c, ∗d a, ∗d b, ∗d c;

size t total size = n∗sizeof(float);

// Allocate the vectors in the host

h a, h b, h c = allocate host(total size);

// Initialize a and b vectors int the host

for( int i = 0; i < n; i++ ) {

h a[i] = sin(i); h b[i] = cos(i);

}

// Allocate the vectors in the device

d a, d b, d c = allocate device(total size);

// Initiate host to device synchronous transfer

copy to device(h a, d a, h b, d b)

Start memory counters(); // done automatically by profiler

vecMul<<<gridSize, blockSize>>>(d a, d b, d c, n, stride);

Stop memory counters(); // done by profiler

// Initiate device to host synchronous transfer

copy from device(h c, d c);
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// free host and device memory

free(h a, h b, h c, d a, d b, d c);

}

6.2.3 Measuring LLC-memory Traffic in GPUs. LLC-memory traffic

is measured for the GPUs listed in Table 19 and 20to investigate the impact of

memory-access patterns. NVIDIA’s CUDA software stack provides nvprof and Nsight

Compute (ncu) for profiling GPU kernels. AMD’s ROCm software stack provides the

ROCm profiler (rocprof ) for profiling the AMD GPUs. These tools are used in this

study to gather LLC-memory traffic for the strided vecMul function.

6.2.3.1 Using nvprof and ncu for NVIDIA GPUs. The nvprof

profiling tool provides the functionality to measure hardware metrics for GPU kernels

(vecMul in this case). Unlike Intel CPUs, where uncore counters are read from the

integrated memory controller, nvprof provides a direct metric for LLC-memory byte

transfer. The name of the metrics are dram read bytes and dram write bytes. Here,

dram indicates the device memory. These metrics are specified in the command line,

whereas the executable is attached to nvprof. In some cases, the kernels are rerun

multiple times to provide an accurate count of the LLC-memory bytes transferred.

LLC-memory traffic for P100 and V100 is measured using nvprof. However, support

for nvprof was discontinued in CUDA Compute Capability 8.0 and onward. For this

reason, Nsight Compute (ncu) has been used for A100, in which the metric names are

dram bytes read and dram bytes write (one extra underline in the counter name).

6.2.3.2 Using rocprof for AMD GPUs. AMD’s ROCm profiler (rocprof )

is used in this study to measure LLC-memory traffic for MI50, MI60, and MI100

GPUs. Like nvprof, the rocprof command-line tool can measure basic hardware

counters and derived metrics. Unlike nvprof, counters/metrics are specified in a

file provided in the command line along with the executable. The value of the
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hardware counters/metrics is then generated and stored in a CSV file. Two derived

metrics represent the LLC-memory traffic for AMD Instinct GPUs: FETCH SIZE

and WRITE SIZE. These metrics provide the traffic as KiB, which is converted to

MB for an even comparison.

6.2.3.3 Scripts for Data Collection. To gather the data seamlessly,

scripts are prepared both for NVIDIA and AMD GPUs to execute and collect the

LLC-memory traffic. These scripts vary the stride size and collect the traffic, which

is then plotted for analysis.

6.3 Understanding NVIDIA and AMD GPUs

This section explores the similarities and dissimilarities of LLC-memory traffic

between Intel CPUs and NVIDIA and AMD GPUs. LLC-memory traffic is measured

on the GPUs using the methodologies presented in Section 6.2. The memory traffic

is then compared with the memory traffic from the Intel CPUs, as described in

Section 5.2 of Chapter V. Three NVIDIA GPUs are investigated, followed by an

exploration of AMD GPUs. All graphs presented in this section show the stride

along the x-axis, and the read/write traffic in MB along the y-axis. Through the

course of this investigation, some key observations and hypotheses are formulated.

6.3.1 LLC-memory Traffic of NVIDIA GPUs. Three NVIDIA GPUs

are investigated: Pascal (P100), Volta (V100), and Ampere (A100).

6.3.1.1 Similarities between P100 GPU and Skylake CPU. LLC-

memory traffic for strided vecMul on the P100 is presented in Figure 33. The blue

lines represent the data for the P100. The P100’s traffic trend is very similar to

the CPU when the write data structure is initialized and compiled using the Intel

compiler. Notably, vecMul for the GPU does not have the write array initialized.

Even though the write array is uninitialized, the P100 shows a trend similar to the
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Figure 33. Read and write traffic for the P100 GPU. The P100 traffic follows a trend
similar to the Skylake CPUs when the write data structure is initialized, and the Intel
compiler is used.

CPU with allocating store. The CPU traffic is presented using green lines. In this

case, the primary difference is observed for the strides of 8 and 16. This difference is

caused by the cache line sizes in the NVIDIA GPU (32 bytes) vs. the Intel CPU (64

bytes). The following observations can be made from the results in Figure 33.

Observation-1 Like the Intel compiler, the nvcc compiler implements the

streaming-store operation when the stride is 1.

Observation-2 The NVIDIA GPU performs the allocating store even when the

data structure is not initialized.

Observation-3 The NVIDIA GPU’s write traffic is the same as the write traffic

for the initialized case of the Skylake CPU.

6.3.1.2 Similarities between P100, V100, and A100. Figure 34

depicts memory traffic from all NVIDIA GPUs studied here. As one can see, the

write traffic for all GPUs is the same. Moreover, all GPUs implement streaming

store and allocating store. Therefore, Observations 1, 2, and 3 are also applicable

for V100 and A100. For both read and write traffic, V100 and A100 show little to
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Figure 34. Read and write traffic for all NVIDIA GPUs.

no difference. The main difference between P100 and later GPUs is observed for the

read traffic when the stride size is larger than the cache line size (stride of 8). On

average, the read traffic for V100 and A100 is 1.6× higher than for P100. When the

stride size is larger than the cache line size, the difference between P100 and A100

(also V100) shows a striking similarity to the prefetching-enabled and disabled cases

for Intel CPUs presented in Figure 24c in Section 5.2 of Chapter V. This difference

suggests that a major change was applied to the prefetchers of the Volta architecture

and onward. Therefore, the following observation and hypothesis can be made.

Observation-4 When the stride size is larger than the cache line on V100 and

A100 GPUs, the read traffic shows a similar pattern to the prefetching-enabled

Skylake CPU. Traffic is about 1.6× higher than on the P100 and on the prefetching-

disabled Skylake CPU.

Hypothesis-1 From the Volta GPU architecture onward, NVIDIA GPUs

implement an Intel CPU–like prefetching mechanism.

6.3.1.3 A Tailored Graph to Realize the Similarities. A hypothetical

scenario is considered in which the cache line size of the Skylake CPU is 32 bytes
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Figure 35. Tailored comparison between NVIDIA GPUs and Intel CPU.

instead of 64 bytes to demonstrate the similarities between the Intel CPU and the

NVIDIA GPUs. Even though the consideration is hypothetical, the data presented in

Figure 35 are actual data. To prepare Figure 35, the read and write traffic for stride

16 is removed only for the CPU and shifted to the left for all strides greater than

16. This conversion shows the CPU data for a 32-byte cache line because one read

or write would fetch/store 32 bytes instead of 64 bytes. The highest stride shown in

Figure 35 is 4,096 instead of 8,192. After this conversion, the write traffic for all GPUs

and the CPU shows similar data and trends. The similarity is observed between the

read traffic for the P100 and the CPU with prefetching disabled (see the overlapped

blue and black lines in Figure 35 for the read traffic).

All GPUs and the CPU in Figure 35 show similar data for the read traffic until

a stride of 8. The A100, V100, and the prefetching-enabled CPU show the same

trend after a stride size of 8 (denoted by green and red lines in Figure 35). However,

there is no overlap between the green and red lines, and the CPU reports higher

read traffic than the A100 GPU until stride 64, and then the opposite is observed.

The CPU keeps prefetching until stride 80, which is not shown in the figure and is
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determined experimentally. In contrast, the GPU keeps prefetching even for higher

strides where there should not be any benefit for such action because the memory

accesses are more than four cache lines apart. In summary, it can be said that there

are more similarities than dissimilarities. Therefore, the following hypothesis can be

formulated.

Hypothesis-2 A model prepared to predict LLC-memory traffic for sequential

streaming and strided access patterns for an Intel Skylake CPU with a cache line size

of 32 bytes can be customized to predict LLC-memory traffic for NVIDIA GPUs.

6.3.2 LLC-memory Traffic of AMD GPUs. Compared with the

NVIDIA GPUs, the AMD GPUs considered in this study are relatively new. The

MI50 and MI60 Instinct GPUs have the same GCN 5.1 architecture, whereas MI100

adopts a CDNA 1.0 architecture. Because these GPUs were released within two years,

similarity is expected.

Figure 36. Read and write traffic for the MI50 GPU compared with the Intel Skylake
CPU.

6.3.2.1 Similarities between MI50 GPU and Skylake CPU. The

LLC-memory traffic for MI50 is shown in Figure 36. The read and write traffic for

stride 1 is very close to the theoretical lower bound. The read traffic in Figure 36
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for MI50 follows the same trend as the Skylake CPU when the data structure is not

initialized (shown initially in Figure 24b in Section 5.2 of Chapter V). The vecMul

function for the GPU does not have the write array initialized. So, unlike NVIDIA

GPUs, the MI50 does not implement allocating store, which is more appropriate for

this function because there is no value in the write array, and bringing the cache line

from memory is unnecessary.

Observation-5 AMD GPUs do not implement allocating store for an uninitialized

write array.

Even though the read traffic shows similarity with the non-initialized case, the

write traffic in Figure 36 shows the same trend as the write traffic for the initialized

case. Hence, it proves that page zeroing, like on the CPU, is not occurring even

though the write array is not initialized.

The most interesting observation in Figure 36 is that a drop in read traffic occurs

when the stride is 16, but a drop in write traffic occurs when the stride is 8. This

difference suggests that the cache line length is 64 bytes for the read transactions and

32 bytes for the write transactions. Such a scenario is not observed in Intel CPUs or

NVIDIA GPUs. To confirm the cache line length, the rocminfo command is used in

all AMD GPUs, in which the cache line length is 64 bytes. The write traffic dropping

at a stride of 8 instead of 16, even though the cache line length is 64 bytes, must be

investigated.

To investigate this anomaly, the metric used to measure the write traffic is

explored. The metric’s formula is WRITE SIZE = (TCC MC WRREQ sum*32) /

1024 (this formula is found in the metrics.xml file inside the ROCm software stack’s

rocprofiler directory). The metric is described as, The total kilobytes fetched from

the video memory. This is measured with all extra fetches and any cache or memory
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effects taken into account. For further investigation, the TCC MC WRREQ sum

metric is explored, where the formula is sum(TCC MC WRREQ,16). The metric is

described as, Number of 32-byte transactions going over the TC MC wrreq interface.

Sum over TCC instances. This description confirms that AMD GPUs perform 32-

byte transactions for write traffic, and the write traffic in AMD GPUs follows the

same trend as the NVIDIA GPUs.

Observation-6 AMD GPUs show 64-byte LLC-memory transactions for read

traffic and 32-byte transactions for write traffic.

Figure 37. Read and write traffic for all AMD GPUs.

6.3.2.2 Similarities between MI50, MI60, and MI100. The LLC-

memory traffic for MI50, MI60, and MI100 is shown in Figure 37. All AMD GPUs

show similar trends and data. Therefore, Observations 4 and 5 apply to all AMD

GPUs (transitive property), and the following hypothesis can be made.

Hypothesis-3 Because of the many similarities, a model prepared to predict

LLC-memory traffic for sequential streaming and strided access patterns for

an Intel Skylake CPU can be customized to predict LLC-memory traffic for

AMD Instinct GPUs.
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6.3.3 Comparison of the Profiling Tools. This study found that

NVIDIA’s ncu tool provides more hardware counters and metrics for GPU execution

than AMD’s rocprof. However, the detailed formula behind a metric can be found

in rocprof, which is helpful for further investigation. Moreover, rocprof provides the

facility to write custom-derived metrics. From an accuracy standpoint, both ncu and

rocprof provide reasonably accurate traffic counts that are close to the theoretical

traffic count for lower strides. Unfortunately, this is not the case for CPUs. Our

previous study observed some extra traffic while measuring CPUs. One common

problem found for all cases is that when the number of accesses is low (i.e., higher

strides), the traffic count is not accurate when compared with the theoretical traffic.

Based on this study, it is possible that the inaccuracies in higher strides come from

having low memory access and an application with a shorter lifespan. A shorter

application lifespan makes pinpointing the memory traffic of a function difficult for

the profiler. While modeling and comparing accuracy, this factor must be taken into

consideration.

6.3.4 Discussion about the Hypotheses. Three hypotheses are

formulated in this study. To prove Hypothesis-1, one would need to study the details

of the changes in NVIDIA’s prefetching algorithm from Pascal to Volta. However,

Hypotheses 2 and 3 can be verified by preparing a prediction model.

6.4 Experiment and Prediction: A Proof of Concept

In this section, a prediction model is formulated to test Hypotheses 2 and 3. The

model is evaluated for different input sizes for the vecMul function on the NVIDIA and

AMD GPUs. In Section 6.3, the input size used is 100 million of 32-bit floating-point

data. However, input sizes of 50 million and 200 million of 32-bit floating-point data

are evaluated in this section. The predicted and measured total traffic are compared
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(a) Prediction accuracy for input size of 50 M.

(b) Prediction accuracy for input size of 200 M.

Figure 38. Prediction accuracy for NVIDIA GPUs for different input sizes. (Here, M
= million)

to ascertain the prediction error. Relative accuracy is considered to determine the

error, where error = Absolute[(measured-predicted)/measured*100], and the formula

for accuracy is accuracy = [100 - error]. While experimenting, it is observed that

NVIDIA Nsight Compute does not generate data for smaller data sizes with less

computation (also explained in Section 6.3.3). For this reason, strides considered in

this evaluation range from 1 to 1,024.
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(a) Prediction accuracy for input size of 50 M.

(b) Prediction accuracy for input size of 200 M.

Figure 39. Prediction accuracy for AMD GPUs for different input sizes. (Here, M =
million)

6.4.1 Prediction Model for NVIDIA GPUs. The prediction strategy

for NVIDIA GPUs is presented in Table 21, which incorporates Observations 1–4

(reported in Section 6.3). Here, stream stands for the calculated theoretical traffic

for one data structure. For a 100 million 32-bit floating-point data structure size, the

stream equals 400 MB. To reference the cell above, the term prev is used.

6.4.2 Prediction Accuracy for NVIDIA GPUs. The prediction

accuracy of the model presented in Table 21 is depicted in Figure 38. For the input
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Table 21. Prediction for NVIDIA GPUs.

Stride Read P100 Read V100/A100 Write for all
1 stream * 2 stream * 2 stream
2 stream * 3 stream * 3 stream
4 stream * 3 stream * 3 stream
8 stream * 3 stream * 3 stream
16 prev/2 prev/2 * 1.6 prev/2
32 prev/2 prev/2 prev/2
64 prev/2 prev/2 prev/2
128 prev/2 prev/2 prev/2
256 prev/2 prev/2 prev/2
512 prev/2 prev/2 prev/2

1,024 prev/2 prev/2 prev/2

size of 50 million, high accuracy is observed for NVIDIA GPUs (P100 showed 97.3%

accuracy, V100 showed 92.6% accuracy, and A100 showed 93.4% accuracy). However,

the error increases with higher strides. When the 200 million input size is used,

the average accuracy increased (P100 showed 98.8% accuracy, V100 showed 96.4%

accuracy, and A100 showed 97.9% accuracy). This increased accuracy for larger data

sizes confirms that the profiler cannot report exact memory traffic for applications

with short lifespans that operate on smaller data sizes. Another observation can

be made from Figure 38b: from stride 16 onward, V100 and A100 report a higher

amount of errors. This inaccuracy stems from using the factor 1.6× (Observation-4) to

capture the impact of the prefetchers. Therefore, a better understanding of NVIDIA’s

prefetchers is needed to improve the model’s accuracy. However, Figure 38b shows

that this method still provides above 88% accuracy for all cases.

6.4.3 Prediction Model for AMD GPUs. The prediction strategy for

AMD GPUs is presented in Table 22, which incorporates Observations 5 and 6
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(reported in Section 6.3). Because all AMD GPUs in this study follow a similar

pattern, the same model is used for all.

Table 22. Prediction for AMD GPUs.

Stride Read for all Write for all
1 stream * 2 stream
2 stream * 2 stream
4 stream * 2 stream
8 stream * 2 stream
16 stream * 2 prev/2
32 prev/2 prev/2
64 prev/2 prev/2
128 prev/2 prev/2
256 prev/2 prev/2
512 prev/2 prev/2

1,024 prev/2 prev/2

6.4.4 Prediction accuracy for AMD GPUs. The prediction accuracy

for the model presented in Table 22 is portrayed in Figure 39. AMD GPUs provided

higher accuracy than the NVIDIA GPUs. For the input size of 50 million, higher

average accuracy is observed (MI50 showed 99.98% accuracy, MI60 showed 99.5%

accuracy, and MI100 showed 99.6% accuracy). Even higher inaccuracies are observed

with a 200 million input size (MI50 showed 99.9% accuracy, MI60 showed 99.6%

accuracy, and MI100 showed 99.7% accuracy). For both input sizes, error rates

increased for higher strides; however, all strides provided above 97% accuracy.

6.4.5 Discussion. The seemingly simplistic model generated higher

accuracy than the CPU-prediction model presented in our previous study [16].

Sequential streaming and strided memory access patterns are common in large

applications. Models for other access patterns, such as stencils, can be derived by

following similar methodologies used in Chapter V. Therefore, a proof of concept
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for these two patterns opens the door for predicting LLC-memory traffic for larger

applications.

6.5 Related Work

Memory access patterns play an important role in deciding the performance of

an application running on GPUs [210]. Two studies delved into sequential streaming

and strided access patterns. Allen et al. investigated the impact of memory access

patterns on power and performance of GPUs [203]. Their focus was to understand

the impact on attained bandwidth and average power. Ding et al. proposed an

instruction Roofline model for GPUs [216]. Even though the study focused on different

instructions, the authors looked into the impact of sequential streaming and strided

memory access patterns to define the theoretical upper bound. Unlike these studies,

we strive to understand the memory transactions that take place between the LLC and

memory. Other studies also focused on understanding the impact of memory accesses

on GPU performance and power [217, 218]. Ben-Nun et al. investigated different

memory-access patterns for a multi-GPU scenario [219]. The main objective of their

work was to provide task partitioning and device-level optimization for a multi-GPU

environment. Our study considered regular access patterns with no possibility of bank

conflict at the shared memory for a warp/wavefront. This is the best-case scenario

for performance. However, multiple threads in a warp can access the same bank

for an irregular application, thereby causing bank conflicts that impact performance.

Burtscher et al. investigated such irregular applications on GPUs [220].

Our study differs from these efforts because the main objective of our investigation

is to separate the LLC-memory traffic from other observations, such as execution time,

attained bandwidth, and energy consumption. This separation allows us to find the

apparent similarities between CPUs and GPUs.
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6.6 Summary

This chapter investigates the impact of sequential streaming and strided memory

access patterns on different NVIDIA and AMD GPUs. By presenting a similar

study to the Intel Skylake CPU, this effort attempts to identify the similarities

and dissimilarities in LLC-memory traffic on different generations of NVIDIA and

AMD GPUs. Through investigations, some key observations and hypotheses are

made. Models are prepared by incorporating those key observations. Experimental

evaluation of models shows that the LLC-memory traffic can be predicted for different

memory-access patterns in GPUs. These models can be extended and implemented

in MAPredict for CPU like prediction shown in Chapter V to enable MEPHESTO

(presented in Chapter IV) in a heterogeneous system.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

Since the end of Dennard scaling [221], heterogeneous architectures have become

the go-to solution for modern high-performance computing (HPC) systems, and this

trend is expected to continue in the future [222]. Heterogeneity meets the diverse

needs of HPC users by hosting powerful CPUs and GPUs in the same node. However,

it also increases the complexity of programmability, hardware design, and the role of

a runtime system. For this reason, runtime systems have been adapting themselves

to provide support for newer programming and execution models. Since extremely

heterogeneous systems are becoming more available, runtime systems living in the

middle of the software stack and underlying hardware can make intelligent decisions

dynamically during execution. However, a runtime system needs information about

applications and machines to make such decisions. Therefore, this dissertation

explores dynamic adaptation techniques and strives to answer the following main

question: How can information gathered from applications and machines

at compile time empower modern HPC runtime systems for intelligent

and dynamic decisions? Chapter I provides an introduction to the challenges that

need to be addressed to answer this main question. Chapter I also introduces five

fine-grained questions that are addressed in the subsequent chapters to realize the

solution to the main question (the flow is presented in Figure 40). The summary of

these chapters is given below.

In Chapter II, we explore the evolution of HPC runtime systems for the last 35

years to identify what drives change. Based on the survey, it is safe to say changes

in architecture majorly influence the evolution of HPC runtime systems.

This finding is instrumental in providing proof that dynamic adaption in runtime
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systems needs to account for the underlying hardware architecture. Chapter II then

identifies the dynamic adaptation opportunities and shows a correlation between these

identified opportunities and the chapters of this dissertation.

In Chapter III, we explore dynamic adaption in HPX runtime on different CPU

microarchitectures. By delving into parcel coalescing and task inlining strategies in

HPX runtime, Chapter III demonstrates the benefit of dynamically adaptive policies

over static policies. However, this chapter does not consider heterogeneous systems.

In Chapter IV, we investigated task placement opportunities in a heterogeneous

system with shared memory. We implemented MEPHESTO, an energy-performance

trade-off aware scheduling approach capable of mitigating memory contention at the

hardware level. Chapter IV demonstrated that knowing the operational intensity of

kernels empowers a runtime system to make intelligent decisions that can achieve

an energy-performance trade-off. Since operational intensity is a metric that derives

from the handshake between the application and hardware architecture, Chapter IV

successfully demonstrates the need for investigating static deduction of LLC-DRAM

traffic at compile time.

In Chapter V, we investigated LLC-DRAM traffic at different Intel CPU

microarchitectures. We implemented MAPredict, a static analysis-driven LLC-

DRAM traffic-prediction framework for Intel CPUs. By unveiling factors that initiate

an LLC-DRAM transaction, Chapter V formulates analytical models, which can be

invoked from the MAPredict framework at compile time to deduce LLC-DRAM traffic

prediction.

In Chapter VI, we delved into efforts to understand LLC-memory traffic in GPUs

from AMD and NVIDIA (here, memory represents the device memory of GPUs and

the system memory for CPUs). Chapter VI shows striking similarities between CPUs

175



and GPUs for LLC-memory traffic patterns for sequential streaming and strided

memory access. From the understanding of LLC-memory traffic, analytical models are

generated that can predict LLC-DRAM traffic for small-scale applications, thereby

opening the door to enhance MAPredict for GPUs.

Dynamic adaptation opportunities identified in Chapter II are addressed in

Chapters III and IV by exploring APEX and introducing MEPHESTO, respectively.

Chapters V and VI explores the sub-problems of Chapters III and IV and investigated

CPUs and GPUs to enable static prediction of LLC-memory traffic by introducing

MAPredict. Integrating MAPredict and MEPHESTO (or MAPredict and APEX)

would enable a runtime system to make application and hardware aware intelligent

and dynamic decisions for meeting energy and performance goals in a heterogeneous

system and thereby constitutes an answer to the main question. Such integration

completes the loop of the flow of this dissertation, which is shown in Figure 40 using

an orange box. Moreover, MAPredict and MEPHESTO can open the door to future

research opportunities discussed in the following section.

7.1 Future Work

We foresee this dissertation contributing to the following five areas that would

further strengthen application and hardware aware decision making in HPC runtimes.

7.1.1 Extending MAPredict. Understanding and statically measuring

LLC-DRAM traffic provides important performance insight of an application.

Chapter VI showed the similarities for the LLC-DRAM traffic between Intel CPUs

and NVIDIA and AMD GPUs. The modular design of MAPredict allows the inclusion

of manufacturer-specific LLC-DRAM traffic prediction models. Therefore, exploring

CPUs and GPUs from other manufacturers (such as CPUs from Arm, AMD, and

IBM and GPUs from Intel) would add to the usability of MAPredict.
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Figure 40. The flow of this dissertation and future work opportunities.
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7.1.2 Execution Time and Energy Consumption Prediction. The

Aspen [15] and COMPASS [13] framework can provide execution-time and energy-

consumption prediction based on instruction counts. However, relying on instruction

counts leads to inaccuracies because both cache and DRAM may serve memory

transactions. The LLC-DRAM transactions are one of the slowest factors during the

execution of a kernel. Therefore, MAPredict can be integrated with the prediction

tools in the Aspen or COMPASS frameworks for higher accuracy.

7.1.3 Static Characterization of Workloads. The roofline model [178]

is widely used for identifying compute and memory-bound workloads based on

operational intensity (FLOPs per LLC-DRAM byte). The primary motivation

of MAPredict is to generate operational intensity for MEPHESTO. However,

statically deducing operational intensity provides the opportunity to generate Roofline

positioning at compile time. Since the COMPASS framework can statically deduce

the number of FLOPs, MAPredict can be enhanced to use the FLOP counting feature

of COMPASS to enable static characterization of workloads. Dynamic performance

measurement and analysis tools, such as Intel Advisor and NVIDIA Nsight Compute,

generate Roofline graphs by executing the application. MAPredict will be able to do

such analysis at compile time.

7.1.4 Dynamic Adaptation in HPC Runtime. As this dissertation

suggests, MAPredict and MEPHESTO can be integrated and implemented in a

runtime system to provide energy-performance trade-off-aware decisions. Moreover,

MAPredict’s capability of identifying memory-intensive kernels can be used for more

dynamic decisions. For example, MAPredict can be integrated with the APEX tool to

enable NUMA-aware thread number selection in OpenMP runtime. Section 5.6.2.6 in

Chapter V shows that scheduling memory-intensive kernels with large data structures
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in a single NUMA domain provide better performance. APEX can be used to

communicate to the OpenMP runtime system (through OMPT) for dynamic selection

of NUMA domain based on the memory intensity reported by MAPredict.

7.1.5 Exploring New Architectures. Figure 4 in Chapter II suggests

that heterogeneity will be continued in the future. Heterogeneity is now present

both in processing units and memory architectures. Specialized processors tuned

for solving machine learning problems are coming into existence. Processors such as

deep learning accelerators (NVIDIA DLA) and vision processors (NVIDIA PVA)

deviate from traditional CPUs and GPUs. Moreover, mainstream NVIDIA and

AMD GPUs include specialized tensor/matrix cores to facilitate machine learning

applications. Intel also launched its OpenVINO toolkit to facilitate AI workloads

in FPGAs. These solution-specific processors are introducing new architectures that

need to be understood to generate models to empower a runtime system to make

better decisions. Moreover, exciting new ideas like NVIDIA DPU or Intel IPU aim to

provide computation power to network interface card level and need to be explored.

Last but not least, the impact of heterogeneity in memory hierarchy where high

bandwidth memory acts as a cache for slower memory in a vertical organization

requires investigation. Therefore, the loop presented in Figure 40 needs to be iterated

to include these new architectures in the proposed flow of this dissertation, which is

shown using the green cycle.

Computer architecture experts predict that the trend of heterogeneous systems to

meet diverse computing needs will continue for at least a decade. Specialized hardware

will keep coming into existence until we find a way to overcome Dennard scaling and

the memory wall. Therefore, understanding and modeling the impact of memory
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hierarchy will remain crucial and must be an ongoing process for general performance

improvement efforts and enabling runtime systems for intelligent dynamic decisions.
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