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DISSERTATION ABSTRACT

R. Cameron Dennis

Doctor of Philosophy

Department of Physics

December 2021

Title: Jamming: Marginal Stability and Thermodynamic Rigidity

This dissertation marks a significant step forward in fully understanding

glasses and jammed materials as we unify the concept of marginality in amorphous

systems, definitively resolve the jamming threshold problem, create new methods

for simulating and analyzing polymer packings, and prove a series of salient

theorems involving periodic boundary conditions.

We shift the discussion of Gardner marginality to include athermal

systems and open the door to broader explorations. For the first time, we show

that athermal jammed systems in physically relevant spatial dimensions are

controlled by the marginal Gardner phase. The set of over-jammed minima form

a hierarchical ultrametric space.

Understanding the physics of the jamming transition is widely relevant

because jamming critical points occur in systems forming a universality class.

This work takes important steps toward verifying the critical properties of this

transition. While previous works have confirmed the criticality of thermodynamic

variables, no such tests have been carried out for the distributions of contact forces

and interparticle gaps.
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We demonstrate that mechanically stable jammed packings of spheres can

be made at densities all the way down to zero, not only answering a long-standing

question about the lower limit on the density of sphere packings, but demonstrating

the shocking result that mechanically rigid packings of spheres can exist at zero

density. This result is of widespread importance in materials science research.

A system of athermal soft spheres that interact via a one-sided contact

potential is an excellent model for jamming and glasses. However, many glasses

we interact with on a daily basis consist of molecular chains. By modifying the soft

sphere model, I demonstrate how to create polymer packings and examine their

properties.

Most simulations involving glasses and jamming utilize periodic boundary

conditions, a simple choice that drastically reduces finite-size effects. However,

we find that sometimes there is a stark difference between systems with

periodic boundary conditions and the corresponding infinitely repeated lattice

representations. We show a series of proofs that put these differences into

perspective, providing a foundation for better understanding when periodic

boundary conditions are appropriate.

This dissertation includes previously published and unpublished single-

authored and co-authored materials.
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CHAPTER I

INTRODUCTION

I love doing research on glasses because it’s so easy. You see, glass is just a

very viscous liquid. That’s why the beautiful stained glass windows in cathedrals

are thicker at the bottom than at the top. All of these windows will eventually

need to be replaced before they turn into iridescent pools on the ground. Similarly,

if you visit a museum with ancient Mesopotamian glass jewelry, you’ll notice that

much of it has flowed and congealed into a singular mass. But if glass is simply a

liquid that flows very slowly, why are so many physicists studying it? Well, because

everything I just said is a lie.

When mummies come back to life, they will be quite relieved to find their

glass artwork is precisely as they left it and not a puddle. But I can’t blame

anyone for perpetuating these myths. The window pane myth for example is an

exceptionally appealing and simple explanation for something that is actually quite

complicated.

So then what is a glass and why do we care? To begin to answer this

question, let’s consider a material that everyone is a little more comfortable with:

water. We’ve all seen water in the process of freezing: it gets cold and then some

small patches of ice start to form before the whole thing eventually becomes rock

solid. So what’s happening here? As the water is cooled, the molecules start to

organize themselves into a nice crystalline arrangement. Water molecules in a liquid

state are arranged without any structures–they slip and slide past each other easily,

going wherever they want. Water molecules in an ice crystal on the other hand are
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arranged in a nice repeated crystalline pattern and dance in place, bumping into

the neighbors that surround them.

So are glasses like liquid water or are they like solid ice? The answer is

both...and neither. The molecules of glass, just like the molecules of liquid water,

are arranged amorphously–they don’t have any structure. But the molecules of

glass, like the molecules in ice, are caged by their neighbors and can only dance

in place, unable to explore as much space as a molecule in a liquid can. Glass is a

solid. It doesn’t flow and it shatters if you put too much stress on it.

Taking these ideas one step further, we know that if you heat up a piece of

glass, it becomes soft and pliable, transitioning into a substance that is liquid

and flows. The hotter the liquid glass, the less viscous it becomes. You might

expect that as liquid glass is cooled, it just becomes more and more viscous until

eventually we just deem it solid. This is where the idea that glass is a liquid comes

from, but as I keep saying, this isn’t true! There really is a transition from liquid to

solid that happens. If you believe this (and you should) then you might think that

the glass transition is just like the transition from liquid water to solid ice, but this

also isn’t true. The glass transition is something distinct and different and while

there has been a plethora of research in understanding this transition, we still have

a lot to learn about it.

One way to attack this glass problem is to think about amorphous systems

that don’t have temperature. The particles don’t jiggle around and bump into each

other. Some examples of this are grains of sand and rice. The sand on the beach

is solid; you can stand on it and it supports your weight. The sand on the beach

is liquid; you can fill a bucket with it and pour it out. When you were a kid, did

you ever go to a party that had a big jar of candy and a sign beseeching you to
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guess how many pieces the jar contains? If the candies were stacked in a nice even

cube, you could just count the number of candies on one side and cube the result,

but the candies are never arranged nicely, they’re always amorphously filling the

jar. This little game is an example of a concept called jamming. If you pick up the

jar of candy and shake it, either the jar rattles as the candy moves around, or the

jar is silent and the candy is packed so tight it can’t move. The latter situation

is jammed and the former is unjammed. Jamming is strongly related to the glass

problem because of the amorphicity. And jamming, much like the glass, has a

transition associated with it. If your jar of candy rattles, you can simply add

another candy to it. If you repeat this process, your jar will go from rattling to

slient: from unjammed to jammed. This is called the jamming transition and is the

subject of much of my research.

In chapter II of this dissertation, I will share with you a manuscript that was

published in Physical Review Letters which will explain jamming more thoroughly

and show an interesting connection between glasses and jammed solids. There is a

complicated phase transition that glasses can go through called the Gardner phase

transition. In this manuscript I show that jammed packings of spheres are marginal

as well. Marginal stability is an interesting, albeit confusing concept. One way

to understand the marginal phase is by considering a jammed pile of sand grains.

Sand grains in a pile don’t move around; they’re happy where they are–stable.

However, if you gently push on a pile of sand, an avalanche will occur and the sand

grains will move and rearrange. However, the pile of sand before and after the soft

push are the same macroscopically. We therefore say that the pile of sand is both

jammed and marginally stable.
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Chapter III is a collaborative, comprehensive study on finite size effects.

For real finite glasses, theorists have been unsuccessful in writing down a theory

that explains their behaviors. However, a mean-field theory has been developed

for infinite dimensional space. Since we only really care about two and three

dimensional space, it may seem like this is a waste of time; however it turns out

that this mean-field theory is extremely successful at describing things that we

actually see in two and three dimensions. We look at a few different types of

finite simulations of jamming and compare the theoretical predictions for the

distributions of particle gaps and interparticle forces. We show that these agree

with the mean-field predictions which means that they are all part of the same

universality class.

Chapter IV is about a fundamental property of jamming: the jamming

threshold. If you can pick up that jar of candy we talked about a minute ago and it

doesn’t rattle, we called that jammed. If you’re careful about how you pack those

candies into the jar, you can fill more of the jar volume than if you were to throw

them in haphazardly. Likewise, if you’re very careful, you can also make a jammed

structure where there is more free space in the jar. But there must be a limit,

right? The lowest density one can achieve is called the jamming threshold. We

show in this paper that the jamming threshold is precisely zero, which is a counter-

intuitive and fascinating result.

Chapter V is a single-author methods paper. In my other projects and indeed

in the study of jamming at large, sphere packings are often used. The reason

for this is that they are easy to deal with and still give rich, beautiful physics.

However, most glasses we encounter on a daily basis are made of polymer chains.

This paper shows how to create packings of semi-flexible polymers (clusters of
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spheres that are glued together and can’t be broken apart). The paper also goes

into great detail on how to analyze the structural properties of these packings.

The goal of this research is to create a slightly more realistic model that can be

used to better understand the polymer glass transition and the elastic properties of

polymeric systems.

Chapter VI is a project that was first proposed by Varda Fagir Hagh. This

project was a collaborative effort between Varda, me, and Eric Corwin. In jamming

physics, we often use something called periodic boundary conditions which is like

pac-man’s world. If pac-man goes all the way to the left of the screen, he suddenly

shows up on the right. Likewise, the left side of packings of spheres interacts with

the right side. We think of these packings as a representation that tiles all of space.

However, we show why this is a problematic idea. If you can pick up your packing

and shake it without the particles rattling around, then the packing is jammed.

However, if you take this same packing and tile all of space with it, this may no

longer be true.

These chapters represent manuscripts in various stages of publication and are

presented in a format that has only been slightly altered from their published or

pre-published formats.

Studying amorphous materials has been an immensely satisfying endeavor

these past few years and I am fortunate and excited to continue this research.
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CHAPTER II

JAMMING ENERGY LANDSCAPE IS HIERARCHICAL AND ULTRAMETRIC

2.1. Introduction

The energy landscape surrounding a crystalline material clearly reflects the

underlying crystal symmetries. Likewise, the energy landscape surrounding an

amorphous material must reflect the replica symmetries underlying amorphous

systems. The replica theory of glasses has shown that in the mean field limit,

amorphous systems can exist in the liquid phase, the stable glass phase, or the

marginal Gardner phase [2, 3, 4, 5, 6, 7, 8, 9]. The energy landscape of the liquid

phase is a single smooth basin, reflecting the unbroken replica symmetry of an

ergodic phase. In the stable glass phase, this replica symmetry is broken and

the landscape consists of many smooth basins separated by energy barriers [8].

However, within any individual basin, replica symmetry is still present. In the

marginal Gardner phase, the replica symmetry is infinitely broken as each sub-basin

is itself broken up into many sub-basins ad infinitum [5, 7, 10, 11, 12, 13, 14, 15].

In the mean field framework, jamming is predicted to lie within the marginal

Gardner phase [11, 12, 13, 15, 16]. Indirect evidence for this phase in thermal

systems has been observed in numerical simulations [17, 18, 19, 20, 21, 22, 23], in

two dimensional pseudo-thermal granular systems [24], and in thermal colloidal

systems [25]. The mean field result is applicable to low dimensional systems as

evidenced by a recent result demonstrating through thermal exploration that the

free energy landscape of quenched soft spheres has a hierarchical structure [23].

Similarly, the free energy landscape of thermal disks at low temperatures
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has been observed to be hierarchical [22]. However, it is unknown how well

this theory relates to physically relevant three dimensional athermal jammed

packings [26, 27, 28, 29] for which not only are dynamics absent, but the system

need not be created by an equilibrium process, and for which all behavior is solely

determined by geometry. In this paper, we directly measure the Gardner phase in

over-jammed systems by constructing the distance metric between nearby minima

and characterizing its hierarchy and ultrametricity. We find that for a range of

pressures, jammed systems are both hierarchical and ultrametric.

2.2. Background

As illustrated in Figure 2.1, the single replica symmetry breaking (1RSB)

solution reflects the fact that a stable glass phase is characterized by distinct,

infinitely long-lived energy basins. The solution with infinitely many distinct

basins-within-basins representing the marginal Gardner phase is called the fullRSB

solution [2, 6, 30]. The hierarchical structure of a marginal Gardner phase results

in minima forming a tree-like structure in phase space for which minima within

a given sub-basin will all be much closer to one another than they will be to

minima within any other sub-basin [4]. This feature is codified by the ultrametric

inequality [31, 32] which states that the distance d between any three configurations

a, b, and c must satisfy

d (a, c) ≤ max [d (a, b) , d (b, c)]. (2.1)
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FIGURE 2.1. Above: two dimensional schematic illustrations of the energy
landscape present in the stable (1RSB) and marginal Gardner (fullRSB) phases,
below: their respective metrics. The ij entry in the metric describes the distance
between minimum i and minimum j. The stable system has two levels of distinct
infinitely long-lived free energy basins, shown as the set of circles contained within
a larger circle. The metric for the stable phase likewise reflects this hierarchy,
shown schematically below. In the marginal Gardner system, every sub-basin has
sub-basins forming a fractal energy landscape. The metric for such a landscape
reflects marginality and is shown schematically below. Note that we depict each
basin as having the same number of sub-basins, but marginal systems do not
generally have this feature.
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2.3. Methods

We construct jammed packings of N monodisperse soft spheres interacting

through a harmonic contact potential in three dimensions using the FIRE

algorithm [33] as implemented by the pyCudaPacking software [29, 34, 35]. In

order to unambiguously distinguish nearby minima in the energy landscape, all

calculations are done with quad precision floating point numbers and minimization

is only halted once the maximum unbalanced force on any particle is less than

10−20 in natural units. Systems are created in a cube of side length 1 with periodic

boundary conditions and at a large initial packing fraction φ = 0.8. These packings

are then brought to a specified pressure [36] through an iterative process exploiting

the known scaling between packing fraction and pressure for over-jammed systems

[37].

In sufficiently small systems (N ∼ 10 in two dimensions), one can sample the

entire energy landscape, enumerate all minima, and use these minima to construct

the metric for the landscape [38, 39]. However, this quickly becomes intractable as

the number of minima increases exponentially with increasing N. Choosing energy

minima at random results in a small uncorrelated sample which will trivially not

reveal any hierarchical structure as it is extraordinarily unlikely that two minima

will be a part of the same deep sub-basin [40, 41]. Instead, we search for correlated

samples with a small number of minima which are close together in configuration

space and thus have the power to reveal any existing hierarchy.

To explore behavior as a function of distance to jamming, we create initial

systems at logarithmically spaced pressures, p, running from 10−1 down to 10−5.5

in natural units. Given a system at a specified pressure, we explore the nearby

minima that characterize the local energy landscape by repeatedly perturbing the
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initial conditions of the original minimum and re-minimizing. Each perturbation

is chosen randomly from a Gaussian distribution and amounts to moving each

particle a random distance in a random direction. Due to the random nature of

the perturbation, there will be a small component of global particle translation.

To remove this we subtract off the global translation when calculating ε, the

magnitude of the perturbation. Further, this magnitude is normalized by the

typical interparticle spacing, N−1/3, to remove the trivial dependence on the

number of particles in the system in a way which is independent of the system’s

packing fraction.

Depending on the initial pressure, many to most nearby perturbed systems

will return to the original configuration. To adequately sample the nearby

landscape, we continue to perturb the original minimum until we have found 500

distinct minima (with the exception of the data presented in Figure 2.4 for which

5000 minima were found).

Finding the metric for nearby minima using the perturbation technique

requires choosing a length scale for the perturbation. A perturbation which is too

small will frequently lead back to the original minimum. A perturbation which is

too large will result in minima which do not fall within the same top-level super-

basin and are not sufficiently nearby in configuration space to properly probe the

hierarchical structure of the landscape. Because the configuration space is Nd

dimensional, sampling a small spherical volume of the space biases points to the

surface of the sphere. Instead, to better sample nearby minima, the length of the

perturbation ε is chosen from a uniform distribution between 0 and εmax.

Figure 2.2 shows the magnitude of the initial perturbation, scaled by
√
N ,

plotted against the resulting normalized distances between the original system and
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FIGURE 2.2. Two dimensional histograms of the distribution of normalized metric
distance to the original packing as a function of the size of the perturbation. The
original packing is perturbed by a Gaussian random vector with length ε and then
minimized. The distance between the original minimum and this newly discovered
minimum, d (a, b) , is found. This distance is normalized by

√
|a| |b| where the

absolute value of a system |a| , is defined as d (a, 0) and 0 is the contact network
containing all zeros. From the top, plots for packings with 64, 256, 1024, and 4096
particles at pressure p = 10−3. We see that these curves all take a similar functional
form and have a normalized metric distance of about 1 at 0.4

√
N which is thus a

natural value for εmax. 11



FIGURE 2.3. Evolution of hierarchy with minimization. 500 configurations with
N = 4096 are prepared by perturbing a random minimum at a pressure 10−3. The
metric distance between every pair of configurations, as given in equation 2.2, is
shown for 0, 100, and 1000 minimization iterations as well as for fully minimized
systems. The color scale reflects the metric distance is labelled by square rooted
numbers, reflecting the fact that the metric distance is roughly the square root of
the number of changed contacts between two systems for d(a, b) <

√
N .

the minimized perturbed system. A scaled distance of one means that the number

of stable contacts that differ between two systems is comparable to the number

of stable contacts present within each system. Systems that are greater than this

distance bear no more structural relationship and are thus in different top-level

basins, making this a natural cutoff for exploring the hierarchical structure of the

local energy landscape. The relationship between distance and initial perturbation

becomes sharper with increasing N and does not depend strongly on pressure.

Exploiting this empirical relationship, we set εmax = 0.4
√
N.

Given a set of nearby minima, we construct the metric d by calculating the

distance between every pair of minima. To avoid the ambiguity introduced by

rattlers and by global drifts, we define the distance based on the stable contact

vector network within each system. The stable contact vector between particle

i and particle j for configuration a is denoted as ~Cij
a . If two particles are not in

contact, the contact vector between them is taken to be ~0. The distance between
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two systems a and b is

d (a, b) ≡ 1

〈σ〉

√∑
ij

(
~Cij
a − ~Cij

b

)2
(2.2)

where σ is the diameter of a particle. This metric has the convenient property that

d(a, b) will be approximately equal to the square root of the number of contacts

that differ between the two minima for d(a, b) <
√
N .

For any set of elements with a metric, one can construct a new ultrametric

by changing the pairwise distances. There exists a family of ultrametrics for

which every distance is smaller than that found in the original metric. Of these,

the ultrametric that is closest to the original metric is called the subdominant

ultrametric, d<, and can be constructed from the original metric using a minimum

spanning tree [42] as detailed in the supplementary information. We characterize

the generalized distance between the subdominant ultrametric and the original

metric as

D ≡
√〈

(d(a, b)− d<(a, b))2
〉

(2.3)

where the angle brackets denote an average taken over every pair of a and b. D = 0

indicates a precisely ultrametric system.

2.4. Results

Development of hierarchy upon minimization – Figure 2.3 shows the evolution

of the metric between distinct nearby minima of N = 4096 particles as a function

of iterations of the minimization protocol. These 500 minima are all initially

created by the above perturbation process around an arbitrarily chosen initial
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FIGURE 2.4. Metrics (top) and corresponding subdominant ultrametrics (bottom)
as a function of pressure constructed from 5000 systems with N = 4096
particles. Next to each metric and ultrametric is a blowup of the region for
which the subdominant ultrametric distance is less than

√
4096 which amounts

to approximately 1 contact per particle. Contours of the subdominant ultrametric
are overlayed to highlight the hierarchy and their values are shown on the color bar.
The color scheme is the same as in Figure 2.3.

minimum. The simple nature of this random perturbation is revealed in the first

panel which shows every system is initially nearly equidistant (shown in black and

dark green). After 100 iterations (second panel) of minimization, the structure of

a basin (shown in black and blue) begins to appear as some systems relax towards

the initial minimum by reforming contacts; meanwhile others relax away by forming

different contacts and fall into distinct super-basins (shown in lighter green). After

1000 iterations (third panel), the hierarchical structure begins to appear but only

becomes fully realized once systems are fully minimized (final panel). The metrics

are all sorted using the single link clustering algorithm [43] on the subdominant

ultrametric of the fully minimized systems.

The hierarchical structure at different pressures – We plot the metric and

corresponding subdominant ultrametric for minima of N = 4096 particles far from
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jamming, p = 10−1, and those closer to jamming, p = 10−4, in Figure 2.4. These

metrics are each constructed from 5000 distinct nearby minima. As jamming is

approached, we observe the metric to become more similar to the subdominant

ultrametric and we see that ever fewer minima fall into the same sub-basins.

Visually, systems at a low pressure have a metric that is closer to the subdominant

ultrametric than do those at high pressure. This can be observed in the quality

of the color scale matching and the sharpness of the boxes corresponding to sub-

basins. For the high pressure metric, three-fifths of all systems differ from one

another by less than one contact per particle whereas at low pressure about two-

fifths of the systems differ by less than this amount. Once perturbed, the positions

of particles for low pressure systems do not need to change as much before finding

a new minimum. As the pressure is decreased, the number of nearby minima

explodes leading to a shrinking of the region that can be densely sampled. Both

of these results arise from the increasingly rough and hierarchical energy landscape

upon the approach to jamming.

We quantify the qualitative result of increasing ultrametricity with decreasing

pressure in Figure 2.5 by plotting D as a function of scaled pressure, N2p, which

can be interpreted as the distance to jamming [44]. We see that for all system sizes

D collapses onto a master curve which achieves a plateau value of about 2.7 as

N2p goes to zero. This means that on average the distance between any pair of

minima will be bigger than the distance needed for ultrametricity by about 2.7.

However, the distance between any pair of minima itself scales with
√
N so this

fractional excess of distance will tend to zero as N becomes large. Therefore in

the thermodynamic limit the metric becomes precisely ultrametric for all of the

pressures explored.
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FIGURE 2.5. The generalized distance between the subdominant ultrametric and
the original metric, D, as a function of pressure and system size. The number of
systems over which each point is averaged is chosen such that the standard error
bars fall below a threshold. Systems of different sizes fall on a master curve.
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2.5. Conclusions

The structure of the distance metric between minima provides the

first evidence that the energy landscape of over-jammed three dimensional

configurations becomes hierarchical and ultrametric in the thermodynamic limit

for all pressures sampled. In this limit, the marginal Gardner phase arises as

strictly a consequence of geometry with no recourse to thermal fluctuations. It is

far from clear that this hierarchy and ultrametricity arises for such low-dimensional

configurations, especially with finite numbers of particles. This result points to

the universality of the marginal Gardner phase within amorphous materials as

it has now been measured within athermal materials in addition to the already

known thermal [22, 23] and mean-field limits [3]. By exploring the energy landscape

at zero temperature and never with any sense of thermal exploration, we have

sampled a spatially localized region of phase space. Our results demonstrate that

the Gardner phenomenology is not just restricted to the easily accessible regions

of configuration space that are seen in thermal materials, but is instead present

everywhere.

This research demonstrates that Gardner physics can be observed in athermal

out-of-equilibrium systems. Furthermore, that this result can be seen in an

athermal system demonstrates that the Gardner transition controls not only the

free energy landscape but also the underlying energy landscape. As such, Gardner

physics should be amenable to experimental tests which need not rely on thermal

systems. This innovation marks a significant step forward in fully understanding

glasses and jammed materials as we unify the concept of marginality in amorphous

systems.
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2.6. Supplementary Materials

2.6.1. The Subdominant Ultrametric

We present here a simple outline of the algorithm for creating the

subdominant ultrametric and provide an intuitive explanation for how it works.

Given a metric, d, the corresponding subdominant ultrametric, d<, can be found

with the following algorithm [42]:

1. The metric, d, is a symmetric matrix of pairwise distances between minima.

This can be reinterpreted as an edge-weighted graph where the nodes are the

minima and the edge weights are the distances between minima.

2. We compute the minimum spanning tree of this graph, which is simply

the network with the minimum possible total edge weight (sum of distance

values) which connects every node into a single tree. The minimum spanning

tree is unique [45] and has the property that every pair of nodes has only one

path connecting them.

3. The subdominant ultrametric, d<, is created as a symmetric matrix with

entries d<ij determined by the maximum edge weight in the path from node

i to node j in the minimum spanning tree.
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The hierarchical nature of d< derives from that of the minimum spanning tree. The

maximum condition ensures that the resulting metric will be ultrametric as it is

a direct enforcement of the ultrametric inequality (Equation 1 of the text). Given

any triplet of minima the constructed subdominant ultrametric d< will produce

a triangle with one short side and two equal long sides. This is an equivalent

definition of the ultrametric inequality given in the manuscript. This explanation

demonstrates why this algorithm returns an ultrametric which always contains

distances that are less than or equal to the corresponding metric entries. However,

the proof that this is the largest possible ultrametric to satisfy this criterion is less

intuitively obvious and can be found in the original reference [42].

2.6.1.1. Uniqueness of the Subdominant Ultrametric

If all of the edge-weights in our metric are distinct, the minimum spanning

tree will be unique [45]. Our metrics come from amorphous systems with unique

edge-weights and unique minimum spanning trees. Additionally, the subdominant

ultrametric is always unique whether or not this condition is met because while

degenerate edge-weights results in multiple minimum spanning trees, the maximum

edge-weight along the path between every pair of nodes will be the same [42].
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CHAPTER III

FINITE SIZE EFFECTS IN THE MICROSCOPIC CRITICAL PROPERTIES OF

JAMMED CONFIGURATIONS: A COMPREHENSIVE STUDY OF THE

EFFECTS OF DIFFERENT TYPES OF DISORDER

3.1. Introduction

Jammed systems may lack dynamics, but their study is far from motionless.

A surge of physical interest over the last couple of decades has indeed led to

marked advances [8, 10, 46, 47, 48, 49, 50, 51]. This sustained interest stems partly

from jamming being observed in systems as varied as grains, foams, and emulsions,

and partly from jamming exhibiting features encompassed in few universality

classes. The mix of ubiquity and universality has motivated the search for a

common framework to explain the pervasiveness of jammed systems and their

properties, starting with the seminal works of Liu, Nagel and co-workers [26, 52].

It has since become clear that although different systems reach jamming by tuning

different physical variables, several properties near and at the onset of jamming

are shared by all of them. In other words, the same underlying physics should be

responsible for the jamming phenomenology. Even though a fully comprehensive

theory remains to be formulated, a major step forward has been the discovery that

this jamming point is critical and gives rise to a phase transition, albeit an out-of-

equilibrium one [28].

Attempts to better understand jamming [47] commonly focus on systems of

frictionless spherical particles[49], which are central to a fairly wide universality

class (see below). An outstanding example of the theoretical analysis that can
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be achieved by such geometric simplification is the recently developed mean-

field (MF) theory [5, 6, 7, 8, 46, 53] that describes –exactly, in the infinite-

dimensional limit– the behavior of glass-forming liquids from the point they fall out

of equilibrium up to jamming. Even though one might expect this theory only to

be valid in high spatial dimensions, near jamming it describes many of the critical

properties observed in dimensions as low as d = 2 and d = 3[8, 37, 46, 54].

(A different criticality is observed in quasi-one-dimensional systems [55, 56].)

Jamming criticality is peculiar because not only thermodynamic variables, e.g.

the pressure or bulk and shear moduli, but also collective quantities, such as the

mean square displacement and the average contact number, scale critically with

the distance from the jamming point. More specifically, denoting the configuration

density (or packing fraction) φ and its value at the onset of jamming φJ , several

quantities either jump discontinuously or scale as power laws, |φ− φJ |µ, as the

jamming point is approached [26, 48, 57]. Although φJ depends sensitively on the

preparation protocol –thus giving rise to a density continuum of jamming points

[17, 49, 58, 59, 60, 61]– µ is often surprisingly independent of dimensionality and

polydispersity[26]. And even though different interaction potentials may yield

different exponents for a given quantity, this dependence can often be trivially

accounted for [48, 50, 57]. Importantly, once a jammed state is reached for a given

potential, the resulting configuration is an equally valid jammed state for any other

potential [37] .

However broad this universality class may be, it does not prevent µ from

depending on whether the jamming point is approached either from below (i.e.

from the under-compressed (UC) phase, φ → φ−J ) or from above (over-compressed

(OC) phase, φ → φ+
J ). A salient example is pressure, P , which scales as
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P ∼ |φ− φJ |±1 [26, 62], i.e., µ± = ±1 as φ → φ±J . In the UC case, pressure

thus diverges as density approaches φJ , as found in granular materials or glass-

formers made out of infinitely hard particles [10]. Conversely, in the OC case,

pressure vanishes linearly as the packing fraction is brought down to φJ , as found

in soft-harmonic particles [26]. Another important example is the average contact

number, z. Simulations of harmonic soft spheres, for instance, show that z exhibits

a discontinuity exactly as φ→ φ−J , and then grows as z(φ)− z(φJ) ∼ (φ− φJ)1/2 for

φ > φJ [26]. This discontinuity can be related to the condition that the number of

contacts in a configuration should exactly match its number of degrees of freedom,

i.e., the onset of isostaticity [48, 50, 63]. Recent studies have further verified the

expected finite-size scaling of P , z, and the bulk and shear moduli for a wide

variety of potentials in d = 2 and 3 [44, 64]. A Widom-like scaling function has

further been derived for these variables as well as for the configurational energy

and shear stress [65]. Furthermore, various studies have identified correlation

lengths associated to the characteristic length scales of vibrational response to

perturbations [66, 67], the fluctuations in the number of contacts [68, 69], and the

fluctuations of particle mobility [57], all of which diverge at the jamming point.

These observations for thermodynamic variables and bulk properties provide

some of the strongest evidence in support of the critical nature of the jamming

transition.

Remarkably, some of the microscopic structural properties of jammed

configurations, such as the distributions of contact forces and interparticle gaps,

are also expected to exhibit non-trivial critical scalings. In particular, in a jammed

configuration of N spherical particles with center positions {ri}Ni=1 and diameters

{σi}Ni=1, one can define a dimensionless gap between any pair of particles, hij =

22



|ri−rj |
σij

− 1, with σij = (σi + σj)/2. Because jammed packings are disordered,

gap values are randomly distributed, but theoretical predictions [6] state that the

distribution of small gaps should scale as

g(h) ∼ h−γ, with γ = 0.41269 . . . (3.1)

Similarly, the distribution of small contact forces is predicted to scale algebraically,

p(f) ∼ f θ, but initial reports found a strong dependence of θ on dimensionality and

jamming protocol, in apparent contradiction with the theoretical expectation [70].

This paradox was resolved by recognizing that two different types of forces

contribute in this regime [37, 70]. Opening the contact between a pair of particles

can indeed give rise to two distinct responses: (i) a localized rearrangement of

neighboring particles; or (ii) a displacement field that extends over the whole

configuration, without decaying with distance. The former is associated with

a buckling motion, and hence remains localized; the latter is associated with

a correlation length of the same order as the system size, and hence is a clear

example of the criticality of jammed packings. Considering these two types of forces

separately yields two power laws with different exponents,

p(f`) ∼ f θ`` , with θ` ' 0.17, (3.2a)

p(fe) ∼ f θee , with θe = 0.42311 . . . ; (3.2b)

for localized and extended excitations, respectively. The ability of MF theory [6,

8, 46] to predict the non-trivial values of γ and θe is considered a major analytical

success. MF theory, however, does not directly predict θ`, because bucklers are an

intrinsically low-dimensional feature [37], and are therefore absent from the d → ∞
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description. The critical exponents of gaps and contact forces are also of utmost

importance because they are associated with the mechanical stability of jammed

packings. By considering the displacement field that follows opening one of the two

types of contacts as well as the ensuing closure of gaps to form stabilizing contacts,

a pair of inequalities between γ, θ`, and θe can be derived [54, 71],

γ ≥ 1− θ`
2

, (3.3a)

γ ≥ 1

2 + θe
. (3.3b)

MF theory values as well as numerical simulations indicate that both inequalities

are in fact saturated, implying that jammed packings are marginally stable [71,

72]. This result is consistent with the MF description, which always locates the

jamming point within a critical Gardner phase that emerges deep in the glass phase

and is characterized by the emergence of marginally stable states [5, 6, 8, 17, 46,

73].

The picture that coalesces from putting together the exact MF description

with the critical scalings for thermodynamic and other variables, and from

considering the robustness of numerical experiments for several dimensions and

for different protocols [8, 10, 28, 37], suggests that the jamming transition of

spherical particles properly defines a universality class. We now know that this

class should encompass a broad range of problems and models beyond spherical

particles, including the perceptron [74, 75], neural networks [76, 77, 78], statistical

inference [79], and the SAT-UNSAT transition in continuous constraint satisfaction

problems [80, 81]. Recent works have shown that universality persists even when

the interactions are non-analytic, for instance, due to discontinuous forces [75, 82].
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Yet, a careful analysis of the values of θ`, θe, and γ inferred from numerical

simulations has not systematically been carried out. Conducting such an analysis

is especially important considering that packings of slightly polydisperse crystals

are reported to exhibit a microstructure characterized by exponents that differ

considerably from those of Eqs. (3.1) and (3.2) [83, 84]. Additionally, recent

works have shown that many of the salient features of spherical packings depend

sensitively on particle shape. For instance, introducing even an infinitesimal

amount of asphericity changes the universality class [85, 86], in which the isostatic

condition no longer holds. An assessment of the extent of the jamming universality

class and an accurate test of its many theoretical predictions are therefore in

order [73].

In this work we systematically analyze the finite-size scaling of the

distributions of interparticle gaps and contact forces. These distributions are one

of the fundamental consequences of the presumed non-trivial critical behavior of

jammed packings, hence their testing is a key step toward rigorously validating

a whole set of critical properties. Although a similar analysis has been carried

out for the perceptron [87] and for the gaps distribution of a two-dimensional

binary mixture [85], no systematic result exists for jammed packings of spherical

particles nor for amorphous packings with other sources of disorder. Here, in

addition to analyzing the most common cases of jammed configurations, i.e. 2d

polydisperse and 3d monodisperse packings, we consider two additional sets of

jammed packings: (i) polydisperse spheres in a crystalline FCC structure; and (ii)

Mari-Kurchan (MK) hard spheres with random shifts distributed uniformly over

space [88]. By examining the impact of different sources of disorder, we attempt

to define precisely which are the most robust features of jamming criticality, and
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thus better demarcate its physical universality. The rest of this paper is organized

as follows. In Sec. 3.2 we describe the models used and the algorithms employed

to produce jammed configurations and extract the relevant structural information,

i.e. the interparticle gaps, h, and contact forces associated with extended, fe, and

localized, f`, displacement fields. We also explain how finite-size effects in the

distributions of these structural variables are considered. In Sec. 3.3 we present a

detailed analysis of the finite size effects in jammed configurations of monodisperse

spherical particles in 3d, where we reveal the striking contrast of such effects on

the distributions fe and h. Then, in Sec. 3.4 we present a similar analysis for the

other types of systems considered, finding important differences with the results

for d = 3 spherical systems. We nevertheless argue that most of these differences

can be explained from the other scaling corrections described in Sec. 3.2.4. Because

theory and previous numerical studies suggest that fe and h are critically correlated

across the whole system, we first consider these two quantities. The distribution of

localized forces, f`, associated with buckling effects is expected to be independent

of system size, hence its analysis is postponed to Sec. 3.5. A discussion and brief

conclusion are given in Sec. 3.6.

3.2. Numerical methods, models systems, and finite-size scaling

In this section, we describe the numerical techniques used to produce

jammed sphere packings, coming from either the OC or the UC phase. Studying

independently these two regimes is useful because –as for other critical points–

there is no reason a priori to assume that the scalings from above and below φJ are

the same. Because each of these two phases is identified with different materials,

namely granular matter (from the UC regime) and glasses, foams, and colloids
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(from the OC phase), this verification is an important test of materials universality.

We also describe the other models considered, which are chosen to better appraise

the extent of the jamming universality class. The methodology employed to analyze

the system size dependence on the distributions of the microstructural variables,

Eqs. (3.1) and (3.2), is also detailed.

3.2.1. Jammed states from the OC phase

We first consider three-dimensional configurations of N spheres of equal

diameter, i.e σij = σ ∀i, j = 1, . . . , N , in a cubic box under periodic

boundary conditions. In a certain sense, this choice is the minimal model with

which to produce jammed packings. Lower-dimensionality systems inevitably

crystallize unless polydisperse mixtures are used, but ordering can be avoided for

monodisperse spheres in d ≥ 3. Sphere positions then serve as the only source of

disorder. Given the set of vectors of positions {ri}Ni=1, the jamming point starting

from the OC phase is obtained for the harmonic contact potential,

U
(
{ri}Ni=1

)
=
ε

2

∑
i,j

(σ − |ri − rj|)2 Θ(σ − |ri − rj|), (3.4)

where ε is a constant that defines the energy scale) and Θ is the Heaviside step

function. Hence, a pair of particles only interacts if there is an overlap between

them. Starting in the OC phase with φ > φJ (φ = 1.02 in two dimensions (see

below) and φ = 0.792 in three dimensions) and a uniformly random distribution

of spheres in a square box, a series of energy minimization steps and packing

fraction reduction steps are performed until the system has just a single state

of self stress, which is where jamming criticality occurs [54, 58, 71, 89]. Such

27



a state is characterized for having one contact above isostaticity, i.e. when the

total number of constraints in a system, Nc, matches its number of degrees of

freedom, Ndof . A single state of self stress is required for critical jamming in order

to achieve a finite bulk modulus [44, 90]. Put differently, the system density is

an additional variable that needs to be fixed, and thus requires one additional

contact above isostaticity [91]. At a given density the FIRE algorithm, a damped

dynamics method, is used to achieve force balance in the configuration [33]. The

energy of the configuration is then calculated and the known scaling relation,

U ∝ (φ− φJ)2 [37], is used to determine by how much the sphere radii should be

uniformly decreased to reduce the system energy by a fixed fraction. After several

iterations of this procedure, the packing has precisely Nc = Nsd − d + 1 contacts

where Ns is the number of stable particles and thus Ndof = d(Ns−1) corresponds to

the number of degrees of freedom in a system under periodic boundary conditions.

A small fraction of particles, termed rattlers, remain unconstrained at jamming

and do not contribute to the overall rigidity of the packing[37, 64, 91], thus

Ns = N − Nr, with Nr denoting the amount of rattlers in a given configuration.

In a d-dimensional system, these rattlers can be identified as particles with fewer

than d+ 1 contacts. Although Nr changes from one configuration to another, Nr/N

always lies within a small range of ∼ 2 − 3%. Only the total number of particles in

the system, N , is thus reported. After removing rattlers, the dynamical matrix [50]

is used to ensure that the packing is jammed. This algorithm is implemented in

the pyCudaPacking software using general purpose graphical processing units

and quad-precision calculations [29, 34, 35]. Given that our configurations are

not subject to any external force, once the jamming point is reached the Nc

dimensional vector of forces magnitudes, f , is obtained as the non-zero solution to
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the set of linear equations that impose the condition of mechanical equilibrium[37]:

STf = 0 ; Sαk〈ij〉 = (δjk − δik)nαij . (3.5)

In this last equation, 〈ij〉 with i < j is the index of a contact, nij is the unit

contact vector pointing from particle i to j, and α = 1, . . . , d indexes its

components. (The single state of self stress that results guarantees that f is

unique.) Contributions associated with localized buckling displacements, f`, are

then separated from those that produce extended excitations, fe, using the fact

that (with high probability) bucklers are particles with z` = d + 1 contacts [37].

The set {f`} is thus taken as the set of forces applied on particles with z` contacts,

while {fe} is its complement.

3.2.2. Jammed states from the UC phase

For configurations initially in the UC regime, an infinitely hard-sphere

potential is used and a combination of molecular dynamics (MD) and linear

optimization algorithms are employed to approach φJ from below. More precisely,

we start from a low-density configuration of particles with random positions and

use event-driven MD with a Lubachevsky–Stillinger (MD-LS) growth protocol [59]

to increase the (reduced) pressure up to P = 500. This first step is performed

with a fast compression rate in order to avoid any partial crystallization and is then

followed by a second, much slower, growth protocol until P & 107. In this way, the

MD-LS protocol compresses a low density fluid into an out-of-equilibrium glass at

a very high pressure, while still closely following the (phenomenological) equation

of state [10, 17, 59]. The high pressure configuration is then used as input for the
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sequential Linear Programming (LP) algorithm used in Refs. [92, 93] to produce

jammed packings. At each step, the LP algorithm finds the optimal rearrangement

of particles that maximizes their radius, considering a linearized version of the

non-overlapping constraint between any pair of particles. Upon convergence, this

algorithm produces a jammed configuration, because neither particle displacements

nor size increases are possible. This approach also allows to easily build the full

network of contacts at jamming, because genuine contact forces can be identified,

up to a proportionality factor, from the active dual variables associated to the

non-overlapping constraints. As with the OC phase, rattlers are removed and only

systems with a single state of self stress are considered. Moreover, it is easy to show

that the contact forces thus obtained also satisfy Eq. (3.5), and therefore our hard-

sphere packings are well defined jammed states.

Using either of the two methods to reach jamming we find that all our

configurations have a similar final density, φJ ≈ 0.64, which corresponds to inherent

structures of systems that are quenched relatively quickly[10, 26, 46, 48, 49, 50, 58,

59, 92, 93, 94]. (Fluctuations around the average value of φJ decrease for larger

system sizes, as first reported in Ref. [26].) Some remarks about the differences

of the two protocols are nevertheless in order. First, note that independently of

how a jammed packing is realized, it must be a minimum of the corresponding free

energy [6]. And indeed, both of our protocols are implemented to perform such

minimization, although in markedly different circumstances. For instance, critical

jamming occurs in the T → 0 limit when coming from the OC phase, so the free

energy is minimized by finding a energetic ground state of the configuration. The

FIRE algorithm allows to perform such energy minimization, and by iteratively

decompressing the system until overlaps vanish, we guarantee that the final
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configuration is also valid when T = 0. For hard spheres, by contrast, only the

entropic contribution to the free energy matters, because the interaction energy is

necessarily zero and the kinetic contribution is trivial. Correspondingly, our MD-

LS+LP method proceeds by maximizing the entropy of the configuration as the free

volume per particle vanishes [95].

But it should be mentioned that harmonic[96] and logarithmic contact

potentials[94, 97] can also be used to produce jammed packings from the UC

phase. In our case however, the two different protocols we implemented to reach

free energy minima are conceived to follow the specific route of the systems we

aim to model: (OC) thermal glass formers, soft particles etc., or (UC) grains, rigid

particles and other athermal systems.

3.2.3. Other models of jammed packings

We also investigate the jamming point of three other models.

Polydisperse disks: Previous studies strongly suggest that the upper critical

dimension of the exact MF theory is d = 2 [37, 54, 64]. However, as mentioned

above, particles of different sizes must then be utilized to inhibit crystallization. An

additional source of disorder is thus introduced by extracting particle radii from a

log-normal distribution to achieve a polydispersity–defined as the ratio of standard

deviation to mean–of 20%. This was achieved by generating a Gaussian random

number, R, with parameters µ = 0 and σ =
√

ln (0.22 + 1) and setting the radii

to be eR. (Note that the radii distribution parameters should not be confused with

the particle diameter used in monodisperse systems.) These soft harmonic spheres

are initially in the OC regime, and thus the FIRE-based algorithm is used to bring
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configurations to their jamming point via repeated quenching and decompression

steps.

Crystalline polydisperse spheres: Removing randomness from particle

positions while keeping size polydispersity as the main source of disorder is

achieved by generating jammed packings on the sites of a regular face-centered

cubic (FCC) lattice. Radii are drawn from a log-normal distribution with a

polydispersity of 3%. These nearly crystalline packings are brought to critical

jamming using the quenching and decompressing FIRE-based protocols for soft

spheres initially in the OC phase. Although this type of system displays many of

the features associated with traditional glasses [83], its distributions of forces and

gaps often markedly differ from those predicted by MF theory [83, 84]. By using a

system with a different crystalline symmetry we aim to quantify such discrepancy.

Monodisperse Mari-Kurchan (MK) spheres: The MK model is a MF

reference given that, by construction, the properties of MK configurations are

roughly independent of dimension. Specifically, we consider d = 3 systems of

monodisperse spheres that interact according to a randomly shifted distance,

D(ri, rj) = |ri − rj + Aij|, where Aij is a quenched random vector drawn uniformly

from the total system volume. Introducing random shifts, Aij, suppresses almost

completely correlations due to short loops on the interaction graph. Even if

D(ri, rj) = D(rj, rk) = σ it is very unlikely that D(ri, rk) ' σ. In other words,

while for particles interacting via the usual Euclidean distance neighbours of a

given particle are likely also neighbours, in the MK model, almost certainly, they

are not. Because this property is also the case for systems using the Euclidean

distance in the d → ∞ limit, it is expected that the microscopic structural

properties of MK jammed configurations should follow the MF theory predictions
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closely. Besides, it has already been verified that the MK model exhibits several

features of more usual glass formers [98], that a Gardner transition also occurs

deep in the glass phase [99], and that contact number fluctuations are critically

correlated at jamming [69]. Consequently, any deviation from MF predictions

observed for this system can safely be attributed to finite-size corrections, which

makes the MK model a particularly useful reference to explain the contrasting

scaling effects in the distributions of gaps and contact forces (Sec. 3.6). For this

model, we consider hard sphere configurations initially in the UC phase, and use

the MD-LS and LP algorithms to reach their corresponding jamming point, after

going through the liquid and glass phases[98, 99].

3.2.4. Expected finite-size scalings

To ensure that we sampled all the systems of a given type with the same

accuracy, MN independent configurations are produced for a fixed value of N ,

such that data of N × MN & 106 particles is obtained. (Specific values for each

system are given below.) Forces and gaps can then be studied across many orders

of magnitude, and finite-size corrections can be systematically identified. Because

testing for power-law distributions using logarithmic binning of the probability

density function (pdf) leads to poor comparisons (due to the loss of resolution when

grouping data in a single bin to produce a smooth trend [100]), the cumulative

distribution function (cdf) is considered instead. Note that if a random variable x

is distributed according to a pdf of the form ρ(x) ∼ xα for α > −1, then its cdf

follows c(x) ∼ x1+α.

When fitting a distribution to empirical data it should be considered

that even if x ideally follows such a distribution all the way down to x → 0,
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finite sampling inevitably leads to deviations. Here, the situation is further

complicated by our consideration of marginals of correlated variables. Gaps

and forces distributions of finite N configurations are indeed prone to exhibit

deviations from their expected form due to both finite sampling and system-wide

correlations. Fortunately, introducing a scaling function, as is usually done in the

study of critical phenomena [101, 102], can account for both effects, and hence the

dependence of the cdf on system size can be carefully teased out.

To derive the size scaling of the distributions of x, we first note that in a

sample of size N � 1, we can estimate the order of the smallest value observed

in the data, xmin, from the probability mass assigned to the extremes of the

distribution: ∫ xmin

0

ρ(x) dx ∼ x1+αmin ∼
1

N
. (3.6)

In other words, xmin can be estimated from the weight assigned to the extremal

value of the empiric cdf, whence it follows that xmin ∼ N−1/(1+α). Note that strictly

speaking in this last equation N should be replaced by Nc when analyzing, for

instance, the distribution of contact forces. However, given that Nc ∼ dN and

that we are mostly concerned with the scaling exponent, we can safely neglect

the associated proportionality constants. The behavior of the gap distribution is

expected to be similar, in that the amount of particles almost in contact should be

self-averaging. Next, we follow the traditional path for analyzing size scaling and

write the pdf as

ρ(x) ∼ Nβ ρ̃
(
xN

1
1+α

)
(3.7)

where ρ̃ is the scaling function of the pdf such that ρ̃(x) ∼ xα for x & 1.

The exponent β can be easily determined by requiring that ρ(x) exhibits no N
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dependence for a large enough value of x, given that if N
1

1+α x� 1 the data should

follow the expected power-law scaling for any N . We thus get that β = − α
1+α

,

whence the expressions used for the scalings studied in Ref. [87] are recovered. For

the cumulative distributions, repeating the above analysis for c(x) ∼ N−δ c̃
(
xN

1
1+α

)
gives c̃(x) ∼ x1+α, and it immediately follows that δ = 1, whence the relevant

scaling relation is

c(x) ∼ N−1 c̃
(
xN

1
1+α

)
. (3.8)

Using the correct α should remove any dependence on N . Data for different system

sizes should then be rescaled such that they follow a common curve, c̃. Finding a

good collapse of the curves for different N thus indicates that deviations from the

expected power laws fall outside the thermodynamic limit, but are not caused by

the variables following a different power-law scaling. Additionally, showing that

the system size influences the cdf of a given variable strongly evinces that such

a variable is correlated across the whole system. Hence, an upper bound to the

correlation length can then be estimated.

We want to stress that for microscopic variables of jammed configurations

the situation is conceptually different from that of standard critical phenomena,

because the systems are already at the critical point. We here do not investigate

how the distributions of contact forces and gaps converge to their expected

distributions as we move away from φJ , but instead analyze how the system size

affects the range over which power-law scalings are followed. As a result, most

techniques for size scaling analysis (i.e. computing γ(N) and θe(N) by isolating

the non-singular contribution of an appropriate scaling function away from φJ and

then extrapolating to N → ∞) are inapplicable. Equation (3.8) can nevertheless

35



be used to estimate the scaling functions of the cdf of gaps and forces obtained by

integrating Eqs. (3.1) and (3.2), respectively.

At the upper critical dimension d = 2, we expect a logarithmic correction to

the size scaling law [64, 103, 104, 105],

ρ(x) ∼ xα(− lnx)ξ, for x� 1. (3.9)

We can then estimate xmin as

∫ xmin

0

ρ(x)dx ∼ xα+1
min (− lnxmin)ξ ∼ 1

N
, (3.10)

leading to

xmin ∼ N−
1

1+α (− lnxmin)−
ξ

1+α ∼ N−
1

1+α (lnN)−
ξ

1+α . (3.11)

Repeating the same argument as above, we get

c(x) ∼ N−1(lnN)−ξ c̃
(
xN

1
1+α (lnN)

ξ
1+α

)
, (3.12)

where the pre-factor is chosen such that c(x) does not depend on N for x � xmin.

For the cases considered in this work, no theoretical prediction exists for the value

of ξ, and hence it here serves as a fitting parameter.

We consider yet another correction to Eq. (3.7) that can also be derived from

MF theory. Given that jammed configurations have one extra contact than Ndof

(see Sec. 3.2.1), the power laws of the microstructural critical variables should be

cut off at very small values [80, 85, 106]. MF theory predicts that interparticle gaps

are distributed as h−γ only for values larger than a cut-off h? ∼ δz
1

1−γ , where δz

is the excess of contacts in a system with respect to isostaticity. In our case, δz ∼
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FIGURE 3.1. Cumulative distributions of extended contact forces associated with
extensive excitations of monodisperse configurations of frictionless spheres for
different system sizes N , as their jamming point is reached (a) from below (UC)
and (b) from above (OC). To better distinguish between the two different regimes,
results belonging to the UC (OC) phase are identified by circular markers (solid
lines). (c) Rescaling (a) and (b) according to Eq. (3.8) clearly collapses the data.
The red dashed line corresponds to the power-law scaling of Eq. (3.3b), and shows
an excellent agreement between the MF predictions and our numerical results. The
coincidence of results from the UC phase and OC phase for various N confirms that
θe is the same when jamming is reached from either direction. In the left tail of the
distributions of panel (c) we also include a comparison with the linear scaling (cyan
dotted) expected for very small values, following Eq. (3.14). When put together,
these two behaviors match the predictions given in Eq. (3.15).
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FIGURE 3.2. Cumulative distributions of interparticle gaps for the same
configurations as in Fig. 3.1, as their jamming point is reached (a) from below
(UC) and (b) from above (OC). (c) Rescaling (a) and (b) according to Eq. (3.8)
shows that finite-size corrections can be accounted for in all cases. For comparison,
the power-law scaling derived from MF theory, Eq. (3.1), is also shown (red dashed
line). Once again, the fact that datasets from both phases, i.e. UC (markers)
and OC (lines), neatly superimpose confirms that the exponents at the jamming
point are the same, independently of how φJ is approached. Additionally, the
secondary scaling regime g(h) ∼ 1 of Eq. (3.13), also predicted by MF theory,
can be observed for very small values. Its associated linear cdf is shown (cyan
dotted line). These two regimes confirm that the scaling function agrees with our
prediction in Eq. (3.15).
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1/N , so instead of Eq. (3.1) the pdf describing the distribution of h reads,

g(h) ∼


N

γ
1−γ g0

(
hN

1
1−γ

)
, hN

1
1−γ � 1

h−γ, hN
1

1−γ & 1

; (3.13)

where g0(x) ∼ 1 for x � 1[85]. Analogously, for extended forces Eq. (3.2b) should

be replaced by

p(f) ∼


N

−θe
1+θe p0

(
fN

1
1+θe

)
, fN

1
1+θe � 1

f θe , fN
1

1+θe & 1

, (3.14)

where p0(x) ∼ 1 for very small values is to be expected. Equations (3.13) and (3.14)

are indeed consistent with Eq. (3.7) and, repeating the same arguments as above, it

is straightforward to derive that both regimes can be captured by Eq. (3.8) using a

single scaling function, such that

c̃(x) ∼


x , x� 1

x1+α , x� 1

. (3.15)

That is, using the correct α in Eq. (3.8) accounts for size effects that give rise to

deviations from the main power-law scaling as well as the appearance of the linear

regime in the left tails. By plotting Nc as a function of N
1

1+αx both corrections can

thus be tested from a single scaling collapse.

3.3. Finite-size effects in d = 3 systems

We first consider systems of monodisperse particles in d = 3 by generating, for

each N , MN independent packings, such that N × MN ' 2.2 × 106 (5.5 × 106)

particles are considered when the jamming point is approached from the UC

39



(OC) phase. Figure 3.1 shows the distributions of fe obtained coming from below

(UC, panel (a)) and from above (OC, panel (b)). Comparing the results with the

theoretical prediction for the power-law scaling reveals an outstanding agreement

over at least three decades. More importantly, no visible signature of finite-

size corrections can be detected over the range of N considered. To verify more

stringently the absence of finite-size effects, we attempted to collapse the different

curves by rescaling the extended forces and their cdf following Eq. (3.8), obtaining

the curves reported in panel (c). This last figure evinces that the same critical

distribution of forces is found independently of whether the jamming point is

generated from the UC or OC regimes. Yet, it is clear that our packings exhibit

an excess of very small forces (an effect more noticeable when jamming is reached

from below; see Fig. 3.1a), echoing earlier observations [37, 54, 83, 87]. Note

that the scaling of Eq. (3.8) does not remove these deviations from the predicted

distribution. Note also that these deviations roughly occur for the same scaled

force, N
1

1+θe fe . 1. It is therefore likely that forces are subject to size effects caused

by the onset of a second power law, p(f) ∼ 1 (see Eq. (3.14)). We get back to this

point below.

Figure 3.2 presents the corresponding cumulative distributions of gaps.

The data are also in very good agreement with the predicted scaling of Eq. (3.1),

independently of the direction in which jamming is approached. More importantly,

the distributions of h are strongly dependent on system size. In contrast to p(fe),

the scaling correction given in Eq. (3.8) using the MF value of γ precisely corrects

for such effects over almost seven orders of magnitude (Fig. 3.2c). The growing

deficit of very small gaps as the system size decreases is another manifestation of

the cut-off of the main power law of g(h). It leads to a secondary linear regime,
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FIGURE 3.3. Cumulative distributions of fe for jammed configurations of (a)
d = 2 polydisperse disks packings, (b) polydisperse spheres with a FCC crystalline
structure, and (c) packings using the d = 3 MK model. Panel (d) depicts the same
data from the MK model, rescaled according to Eq. (3.8); see text for details. Data
in the upper (resp. lower) panels were produced as jamming was approached from
above (resp. below). The expected power law, Eq. (3.2b) is shown (red dashed
lines), as is the secondary linear regime, see Eq. (3.14) (cyan dotted lines).
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as given in Eq. (3.13), that is in agreement with the numerical results (Fig. 3.2c).

This indicates that distances between nearby spheres are significantly modified

in finite-size configurations and, consequently, so is the distribution of gaps. This

phenomenon is physically interesting. Heuristically, the finite N influence on g(h)

can be understood by relying on the marginal stability of jammed packings. In the

thermodynamic limit, a system has always enough space to relax any perturbation

caused by a contact opening, and hence is always able to re-accommodate particle

positions–even if this requires bringing many of them infinitesimally close to each

other–in order to guarantee stability. In a finite system, by contrast, no such

unconstrained relaxation can take place. Rearranging an extensive fraction of

particles necessarily influences the pair of spheres involved in the contact just

opened. There is therefore a certain scale, below which the occurrence of small gaps

is disfavoured. If the system were further relaxed, then at least one extra contact

would form.

At this point, we wish to stress that our results demonstrate the existence of

two different types of finite-size corrections to the distributions of extended forces

and gaps. The first is a consequence of large scale correlations and can thus be

readily taken into account by the scaling of the cdf given in Eq. (3.8). Although

this correction is practically absent in the forces distribution, for g(h) it is the main

source of deviation from the theoretical prediction. The second is a consequence

of the critical scalings of Eqs. (3.1) and (3.2b) being cut off at very small values.

This effect, which is very likely related to the excess contact with respect to Ndof

(see Sec. 3.2.4), affects both microstructural variables and can also be teased out

reasonably well using the scaling advanced in Eq. (3.8). We get back to this point

in Sec. 3.4, after having considered its signature in other models.
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Before concluding this section, it is worth emphasizing that our numerical

results are in excellent agreement with the MF, d → ∞ predictions for the power-

law scaling of the distributions of both the extended forces and the interparticle

gaps. These results confirm that the jamming criticality of these microstructural

variables is robust with respect to changes in the systems dimensionality, all the

way down to d = 3, in agreement with earlier albeit less accurate studies [28, 54,

70]. Because results from both OC and UC phases superimpose onto each other, we

further conclude that the critical behavior is controlled by the same exponents on

both sides of the jamming point.

3.4. Finite-size effects in other disordered systems

We next consider the finite-size scaling of the force and gap distributions at

jamming for the three other models mentioned above: (i) polydisperse disks, (ii)

crystalline polydisperse spheres, and (iii) monodisperse MK spheres. From Sec. 3.3,

we understand that the direction of approach to the jamming point does not

influence on the criticality of microstructural variables, so only one such direction is

considered for each mode. The first two approach the jamming point from the OC

phase with N × MN ' 5 × 106 particles, and the third from the UC phase with

N ×MN ' 106.

Despite the marked differences between the three models, their distributions

of fe all follow the MF predictions very closely (Fig. 3.3). (a) The d = 2

packings show a very good agreement with the cdf derived from Eq. (3.2b) over

most of the accessible range. (b) Results for the FCC symmetry also follow the

expected scaling, but because its onset takes place at smaller forces, the range

of consistency with the MF power-law scaling is correspondingly reduced. (c)
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FIGURE 3.4. (a) Cumulative distributions of h of jammed configurations of d = 2
polydisperse disks and different size N . (b) Scaling of the different curves following
Eq. (3.8) using the MF value of γ. (c) Same scaling as in (b) but including a
logarithmic correction as in Eq. (3.12). Choosing ξ = −2.5 then best collapses
the results. For reference, the expected power-law scaling is shown (red dashed
line), as is the linear regime given by Eq. (3.13) at very small arguments (cyan
dotted line).
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Jammed configurations produced using the MK model exhibit a noticeable–albeit

small–dependence on N , but this dependence can be removed by rescaling the cdfs

according to Eq. (3.8) using the MF value of θe (see Fig. 3.3d). Interestingly, all

three systems display an excess of very small contact forces for fe . 10−4, similarly

to what was found for d = 3 configurations (see Sec. 3.3). Our results suggest that

this effect is due to a crossover to a second regime, in which forces are distributed

uniformly, as given by Eq. (3.14). A comparison with the corresponding linear

behavior in each panel of Figure 3.3 presents a reasonably good agreement, in

support of this hypothesis. A more careful analysis would nonetheless be needed

to single out the true form of the left tails of p(fe).

We next consider the finite-size effects on the distribution of gaps of these

three systems. From the spacing between different curves in d = 2 packings, it

is clear that such effects are pronounced (Fig. 3.4a). Rescaling these distributions

following Eq. (3.8) with MF value for γ yields a collapse (Fig. 3.4b) that is not as

good as for their d = 3 counterparts. Section 3.2.4 anticipated this discrepancy on

the basis that d = 2 is the upper critical dimension for jamming [64], and hence a

logarithmic correction should be included, as in Eq. (3.12). As shown in Fig. 3.4c,

with such correction the data can be robustly collapsed using the MF value of γ.

By contrast, gaps distributions in the FCC jammed configurations are best

described by a completely different exponent. Figure 3.5 clearly shows that (a)

finite-size corrections are important, but that (b) a poor collapse is obtained

when curves are rescaled using Eq. (3.8) with the MF value of γ. Using (c) a

different γFCC ' 0.33, however, satisfactorily captures the N dependence.

This confirms previous reports that γ is changed in presence of an underlying

crystalline structure [83, 84]. Reference [84] even found that γ depends on the
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FIGURE 3.5. (a) Cumulative distributions of h for jammed configurations of
polydisperse spheres with an FCC structure and different N . Scaling the different
curves according to Eq. (3.8) using (b) the MF value of γ and and (c) γFCC = 0.33.
For a clearer comparison, the trend for the expected power-law exponent (red
dashed line) and for γFCC (pink dashed-dotted curve) are shown. For FCC
configurations, unlike for d = 2 systems, the collapse obtained with the MF value of
γ is poor over the whole interval considered of the scaled variables (see Fig. 3.4b).
Note that when γFCC is used, a linear scaling at very small arguments is recovered
(cyan dotted line).
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system polydispersity, through the variance of the particle sizes. It is important to

stress that finding a smaller γ is not merely a matter of scrupulous curve fitting. It

also positively violates the marginal stability relations, Eqs. (3.3), and thus indicate

that near-crystals belong to a different universality class than standard amorphous

packings of spheres. We comment further on this point in Sec. 3.6.

Figure 3.6 presents the gap distributions for the MK model. Here again,

finite-size corrections to g(h) are significant, but now taking the MF value of γ

in Eq. (3.8) yields a very good collapse, as expected from the MF nature of the

model. It is important to note that although individual distributions of h suggest

that a smaller exponent would better fit the curves in Fig. 3.6a, doing so worsens

significantly the quality of the scaling collapse. This situation is typical of many

critical scalings in finite-N systems [101, 102]. The most reliable way to determine

critical exponents remains the finite-size scaling analysis. It is however surprising

that the individual distributions in the MK model, which by construction should

be closer to the MF solution, do not display the right gap exponent. Indeed,

we observe from Fig. 3.6b that the scaling variable using the MF value of γ is

the correct one (data do collapse when plotted versus h̃ = N1/(1−γ)h), but the

slope of the curves in the range covered in our simulations (10−3 < h̃ < 103)

is not that predicted by MF theory. An important concern is thus whether this

deviation is due to finite-size corrections or whether it indicates a failure of the MK

model. In order to resolve the matter, we used the expected form of the scaling

function, Eq. (3.15), to construct a fitting function, F (h̃), that assumes the correct

behavior of the scaling function for large values of h̃; more specifically, F (h̃) =[
(ah̃)d + (bh̃1−γ)d

]1/d
. The fitting function hence only depends on three parameters

and fulfils the condition that F (h̃) ∝ h̃ for h̃ � 1, while the MF form, h̃1−γ,
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FIGURE 3.6. (a) Cumulative distributions of h for jammed configurations of d = 3
MK systems of different size N . (b) Same data but collapsed using the scaling in
Eq. (3.8). Such scaling indicates that γMK = γ, in agreement with MF theory,
although finite-size corrections are particularly important for this model (see
main text for discussion). The MF (red dashed lined) and linear (cyan dotted
line) behaviors are indicated, as well as the fitting function (solid black) based
on Eq. (3.15), as discussed in the text. (Inset) Difference between the MF γ and
the local slope estimate at two different values of the scaling variable, 1 (crosses,
dashed) and 100 (squares, solid). These results suggest that systems orders of
magnitude larger would be needed to recover the pure MF power law (see main
text for details).
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FIGURE 3.7. Cumulative distributions of f` for jammed packings of (a) d = 3
monodisperse spheres, (b) d = 2 polydisperse disks, (c) polydisperse spheres with
FCC structure, (d) d = 3 MK model. Solid lines (circular markers) denote data
obtained from configurations from the OC (UC) phase. For reference, the expected
power law, cdf(f) ∼ f 1+θ` , with θ` = 0.17, is shown (red dashed lines), and in
panel (d) the power-law fit found by inspection for the MK model, cdf(f) ∼ f , i.e.,
θ`,MK = 0, is also shown (pink dotted line). See text for more details.

is recovered for large values of the scaling variable. Fitting F (h̃) to the largest

system size results gives the black line in Fig. 3.6b, which clearly interpolates nicely

between both regimes. Therefore, the hypothesis that results for larger MK systems

would eventually follow the MF power-law cannot be confuted. The convergence

of the slope of the scaling function to the predicted value is nevertheless extremely

slow, especially relative to that of other models (see, e.g. Figs. 3.2c, 3.5c) or to the

distribution of forces in this same MK model (see Fig. 3.3d). One must thus reach

very large values of the scaling variable in order to measure the right slope. More

precisely, in the inset of Fig. 3.6b we report the difference of γ and our estimation

of local γMK from the local slope as a function of N . Around h̃ = 1, the slope

clearly differs from the MF prediction, but even when h̃ ∼ 102 very large system

sizes are needed for it to approach the theoretical exponent. This deviation results

in an apparent size dependence of the global exponent, i.e. γMK = γMK(N),
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that is substantially more pronounced than for other models at similar N . Such

discrepancy likely results from the MK system being fully connected. In contrast

with their sparse counterparts, fully connected models indeed require much larger

system sizes for thermodynamic power-law scalings to be visible [107, 108, 109].

This feature can be physically understood by recalling that the introduction

of random shifts results in neighbors of a given particle (very likely) not being

neighbors themselves. A particle can thus have many more contacts than normally

allowed in Euclidean space. For instance, it is not uncommon (∼ 1%) for particles

at jamming to have as many as 12 contacts (the d = 3 kissing number) or more. In

general, particles are thus surrounded by many more particles–both actual and near

contacts–than usual hard spheres. Additionally, jamming densities in this model

are much higher than can be achieved with hard spheres. Using our MD-LS+LP

algorithm, as well as planting [99] to speed up the growing protocol, results in

jamming packing fractions φJ,MK & 3.1 (cf. φJ,3d ' 0.64). Now, given that φ ∼ σ1/d,

our MK configurations are made out of particles nearly twice as big as those of

standard hard spheres. The combination of these two effects is that particles in

MK packings are surrounded by a cluster of many relatively large neighbors. The

effective size of the system being drastically reduced, finite-size corrections are

correspondingly more pronounced. We thus conclude that gaps in the MK model

will probably follow the MF power-law scaling, as expected, but only at system

sizes orders of magnitude larger than those considered here. In practice the finite

size effects are so important in the distribution of gaps in the MK model that its

MF nature is, perhaps paradoxically, a strong limitation to study its MF behavior.

Looking at the whole set of gap distributions, an interesting feature is the

robust emergence of a regime of uniform distribution at very small gaps, in a way
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entirely analogous to the distributions of extended contact forces. We argued in

Sec. 3.2.4 that this truncation of the leading power-law scaling in the distributions

likely follows from the combined effect of the additional state of self stress and

the system sizes being finite. All the models consistently exhibit this behavior

and show very good agreement with the associated linear scaling (see Figs. 3.2c,

3.4c, 3.5c and 3.6b). The invariance of this secondary power-law scaling with

dimensionality, inherent order or other system properties is reassuring, albeit

somewhat surprising, given that the leading power-law scaling is more strongly

affected by these same effects. The universality of this secondary scaling has been

previously predicted [80] for all models that can be mapped to jamming of spherical

particles, and it has been shown to occur even for non-spherical particles [85],

provided that their jammed states remain sufficiently close to isostaticity. Such

robustness can be understood in part by considering that isostaticity is a global

property of the system related to a matching between constraints and degrees

of freedom, and not to the specific distributions of its microstructural variables.

Because we have restricted our analysis to packings with exactly Nc = Ndof + 1, the

ubiquity of the linear left tails in our distributions supports the hypothesis that the

form of g0(x) (Eq. (3.13)) and p0(x) ( Eq. (3.14)) is determined by the single state

of self stress alone, and not by the inherent structure. It is then remarkable that

the same size scaling also seems to capture the behavior of the extremal part of the

distributions of gaps and of extended forces, albeit not as evidently for the latter.

Our findings are therefore in agreement with Eq. (3.15).
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3.5. Cumulative distributions of f`

The last microstructural variable we consider is the set of localized forces.

Figure 3.7 presents the probability distributions for all our results. As expected,

this quantity exhibits no clear finite N signature for any of the models, even though

some dispersion around the expected behavior is observed in the left tails of d = 3

monodisperse and MK configurations, (panels (a) and (d), respectively). This

behavior is expected because the set {f`} corresponds to contact forces acting on

bucklers, for which opening a weak contact mostly results in localized displacement

field [37, 54]. Because opening any of the contacts associated with a buckler only

has a non-negligible effect over a few particle layers away from its origin, it is

reasonable to assume that their properties should be insensitive to N , or to any

border or periodic effects.

An intriguing finding is that only the cdf of d = 3 monodisperse and

d = 2 polydisperse particles follow the known value of θ` ' 0.17 (see Fig. 3.7a-

b). By contrast, FCC structures give rise to no obvious power-law scaling. The

FCC arrangement induces strong spatial correlations that seem to suppress the

appearance of localized forces, as seen from the smaller slope of the cdf. Observing

a distribution with an exponent different from θ`, or actually failing to scale

as a power law, is in striking contrast with many other models, and even other

crystalline structures [83]. It nonetheless echoes very recent reports of a dependence

of θ` on geometry for other near-crystals [84]. These considerations highlight the

need for further assessment of which aspects of jamming criticality are indeed

universal, which are more generically conserved [55], and which disappear in the

presence of long-range spatial constraints.
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Although a power-law scaling is also obtained for MK configurations, the

best fit to the data is achieved with a unit slope, i.e., θ`,MK = 0 (see Fig. 3.7d).

Localized forces are thus distributed uniformly in this model. A careful analysis

suggests that this unexpected distribution is in tune with the spatial properties

of MK packings. First, note that even though bucklers follow a different pdf,

selecting particles with z` = d + 1 contacts is still a valid selection criterion. (If

their contribution had not been isolated, the remaining forces would not follow the

MF power-law scaling given in Eq. (3.2b), as it does in Fig. 3.3c, whereas if both

kinds of forces are considered together, their joint pdf scales as ≈ 1.1, which differs

from the analogous quantity for standard hard spheres [37].) Second, analyzing

the distribution of dot products between contact vectors as in Ref. [93] reveals

that particles with z` contacts in MK packings have a very similar distribution

as those in standard hard sphere packings. Bucklers thus mainly give rise to a

localized response thanks to them having three nearly coplanar contacts and one

nearly orthogonal force. In order to understand why localized forces are uniformly

distributed, we follow Ref. [54], which showed that the two types of contact forces

are related to two types of floppy modes: extended forces are related to floppy

modes that can couple strongly to external perturbations, and hence their response

is bulk dominated; and buckling forces are associated to floppy modes of a rapidly

decaying displacement field. (The value of θ` ≈ 0.17 was estimated from the

statistics of displacements in the latter.) There is therefore a strong connection

between the distribution of forces in bucklers and the particle displacements their

floppy modes produce. Now, let us assume that in an MK packing we open a

buckling contact, 〈ij〉, between particles i and j, in order to describe the associated

displacement field. In particular, let us focus on the remaining contacts of any of
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Property d = 3 Monodisperse d = 2 Polydisperse FCC MK

UC and OC OC OC UC

p(fe) with θe = 0.42311 3 3 3(but small range) 3

g(h) with γ = 0.41629 3 3 7: γFCC ' 0.33 3

p(f`) with θ` = 0.17 3 3 7: no power law 7: θ`,MK = 0

Eq. (3.8) scaling for forces 7 7 7 3(but small effect)

Eq. (3.8) scaling for gaps 3 3(Eq. (3.12)) 3(using γFCC) 3

TABLE 3.1. Summary of our main results for the various properties and models
considered. In the heading we also indicate if the respective jamming point was
reached from the under- (UC) or over-compressed (OC) phase. In the first three
rows a check-mark (3) denotes that the corresponding theoretical prediction
was verified, and a cross (7) that it was not. In the last two rows symbols
denote whether the size scaling was verified or not. Results that contradict MF
predictions, or results from previous studies, are highlighted in red.

these particles, say i. Because of the random shifts, the other particles touching

i are (very likely) not constrained by each other nor by the other particles near i.

Instead, the displacement of each neighbor of i is limited by its own contacts, which

are not neighbors themselves, and are typically far apart. By the same token, the

effect on the rest of particles in contact with j is determined by secondary contacts

that–with high probability–are distant from each other and from 〈ij〉. As a result,

opening a buckling contact produces a small series of uncorrelated displacements.

No particular length scale is hence favored over any other. Because of the close

relation between localized forces and displacements just mentioned, it is natural for

f` to be uniformly distributed.

Before closing this section, we note that the distributions of f` for the FCC

and MK packings violate the stability condition related to local excitations given

by Eq. (3.3a). We comment further on this point in Sec. 3.6. For now, we simply

note that broader classes of disorder need to be considered when studying the

criticality associated with localized contact forces, even though their finite-size

effects are unimportant.
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3.6. Discussion

For clarity, we synthesize our results in Table 3.1. The first three rows,

which consider the power-law scaling of the pdfs in Eqs. (3.1) and (3.2), assess

the jamming criticality associated with microstructural variables for different

types of systems. Recall that not only were different models considered, but so

was the direction of approach to the jamming point. The systematic corroboration

of the non-trivial distributions of forces and gaps for fully disordered systems at

jamming completely supports the description derived from the exact MF theory.

Systems with an underlying FCC symmetry, however, exhibit marked discrepancies.

Our result thus validate earlier reports that crystalline structures fall outside

the jamming universality [83, 84] , even though some of its critical features are

conserved [55].

Our main finding is the contrasted system-size dependence of the distribution

of gaps and contact forces, as summarized in the last two rows of Table 3.1. Size

effects in p(fe) are practically nonexistent for all models, dimensionality, and

interaction type, while g(h) exhibits clear and systematic signatures of finite-

N deviations from the expected power-law scaling. Logarithmic corrections to

g(h) are further observed in two-dimensional systems. We emphasize that testing

for such size scalings not only rigorously assesses the critical scaling and its

exponents [101, 102], but also provides key insight into the length scale of their

correlations. Hence, we conclude that the MF exponents for all gap distributions

and the fe one in the MK model are correct. Yet–leaving aside for the moment the

MK results–a second and more informative conclusion is that the distribution p(fe)

reaches its thermodynamic limit behavior at smaller values of N than g(h). Two

different correlation lengths, ξfe and ξh, therefore characterize the relevant length
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scales of correlations of contact forces and gaps, respectively. This finding is rather

unexpected, because the critical behavior of both quantities is controlled by the

onset of isostaticity at the jamming transition. Moreover, theoretical approaches

[7, 46, 80] suggest that forces and gaps can be studied from a unified viewpoint

(essentially by considering forces as the zero limit of negative gaps), and thus they

should share a common correlation length, ξ. Naturally, in the thermodynamic

limit ξ should diverge at the jamming transition, thus signalling system-wide

correlations between microscopic variables. Our results for finite-size systems, by

contrast, suggest that correlations in gaps and forces have different length scales,

namely ξh & N1/d � ξfe . The fact that no known relation for ξ has been put

forward (nor for ξh or ξfe for that matter) partly obfuscates further analysis. A

simple resolution could be to assume that both ξh and ξfe are proportional to ξ, but

with a prefactor that is much larger for the former than for the latter. Considering

that forces and gaps are usually treated on an equal footing from the perspective

of the SAT-UNSAT transition in the perceptron [74, 75], constraint satisfaction

problems [80, 106], and neural networks [78] as well as from the point of view of

marginal stability in amorphous solids [71, 72], the disparity in their correlation

lengths is nevertheless surprising.

MK results also fit into this description if we consider that their very high

densities and connectivity reduce the effective system size, as discussed in Sec. 3.4.

Observing the scaling of Eq. (3.8) for the cdf of fe is thus a manifestation of

the smaller effective volume (for a similar N), which confirms that finite-size

corrections for p(fe) are present at jamming, but disappear for relatively small

system sizes. The significantly more pronounced N dependence of the distributions

of h (Figs. 3.3c and 3.6b) thus supports our finding that ξh � ξfe .
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Interestingly, our results further suggest that the marginal stability

bounds for the exponents, as expressed in Eqs. (3.3), should be modified when

different types of disorder are present. For instance, our findings along with

other works [83, 84] evince that these inequalities are prone to be violated when

crystalline lattices are used to generate the jammed packings. The inherent

geometry of jammed configurations therefore plays a significant role in formulating

general stability criteria. Because the bounds in Eq. (3.3) were derived [54, 71, 72]

assuming, implicitly, that particles positions are uncorrelated, it should not be

overly surprising that γFCC violates both relations. It nevertheless suggests that,

despite being likewise composed of frictionless spheres, near-crystals are not part of

the same universality class.

The linear growth of cdf(f`) in the MK model is also at odds with the

stability condition of Eq. (3.3a). This finding is more surprising because there

is no long-range order in this type of system. At the end of Sec. 3.5 we used the

peculiar geometry of these packings to suggest a physical explanation for the

uniform distribution of f`, but this reasoning does not explain why the stability

condition between γ and θ` is apparently violated. Given the drastic difference in

the inherent structures of the FCC and MK packings, they highlight the need for

more studies to better understand the role played by disorder in determining how

the response to external perturbations is related to spatial correlations between

particles in jammed systems.

The most persistent observation was that all cumulative distributions of

both gaps and extended forces behave in a seemingly linear fashion at very small

arguments, in agreement with the MF predictions, p0 and g0 in Eqs. (3.13) and

(3.14), respectively. Such a cut-off of the main power-law scaling is due to the
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extra contact of isostatic configurations and its effect in the scaling function can be

captured using the same scaling transformation we performed for the main power-

law scaling (see Sec. 3.2.4, especially Eq. (3.15)). It has been previously reported

for the gaps distributions of disks packings [85], but we are not aware of analogous

findings in any other model or for the fe distributions. As discussed at the end of

Sec. 3.4, our results suggest that scalings caused by the additional contact with

respect to isostaticity are more robust against changes in the type of disorder

and have a similar characteristic scale in both types of microstructural variables.

However, because of undersampling of the left tails of these distributions, a more

stringent analysis would need to be carried out to verify that p0(x) ∼ g0(x) ∼ 1

when x � 1. A previous work on the perceptron [87] also reported a similar

transition to a uniform distribution of contact forces that depended on the type

of algorithm used to reach the jamming point, but given that we have used two

different algorithms to produce our packings, it is unlikely that both could produce

the same systematic effect. This question is particularly interesting because it

would directly affect the robustness of jamming universality, albeit only for the very

smallest forces and gaps. Yet, given that the left tails of g(h) and p(fe) determine

the smallest gaps and contact forces, accurately describing their true distribution is

key to assessing the stability of jammed packings away from the thermodynamic

limit. We nevertheless leave this and other related issues as topics for future

consideration.

Acknowledgments – We want to thank Franceso Zamponi for insightful

comments and suggestions to our work. RDHR thanks Georgios Tsekenis for

very useful discussions during the initial stage of this work and Beatriz Seoane

for helpful suggestions regarding the molecular dynamics simulations of the MK

58



model. This work was supported by the Simons Foundation grant (# 454937, PC;

# 454939, EC; # 454949 GP) as well as by the European Research Council under

the European Unions Horizon 2020 research and innovation program (grant No.

694925, G.P.). H.I. was supported by JSPS KAKENHI No. 20J00289.

59



CHAPTER IV

DIONYSIAN HARD SPHERE PACKINGS ARE MECHANICALLY STABLE AT

VANISHINGLY LOW DENSITIES

4.1. Introduction

When sand is densely packed, it is strong enough to support the weight of

an elephant. But how loosely can one pack sand before this rigidity is lost? The

answer is as loosely as one would like. That is, it is possible to rigidly pack hard

spheres at any density, from filling all of space to filling none. In this manuscript

we show a method for creating the sparsest possible hard sphere packings and

demonstrate their impressive stability. Hard sphere packings are of particular

interest because unlike other materials with a high strength-to-weight ratio such as

tensegrity structures [110] and aerogels [111], hard spheres are purely compressive

and do not rely on internal tensile forces.

There exist mechanically rigid packings with a density arbitrarily close to

unity, such as the Apollonian gasket [112, 113]. We wish to find the foil to such

a packing, that is, one with the smallest possible packing fraction that remains

mechanically stable. As Dionysus is the nadir to the zenith that is Apollo [114], we

refer to the sparsest possible mechanically stable packings as Dionysian packings.

We present in this manuscript a construction for a Dionysian packing which has

vanishingly low density in two and three dimensions.

Rigidity [115] describes a state in which no motion is possible. In the context

of sphere packings, this is termed strictly jammed [49, 116, 117, 118, 119]. A
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strictly jammed packing is resistant to all possible volume preserving deformations

of the particles and boundaries.

Demonstrating that a packing is mechanically stable is commonly done using

a linear programming algorithm [117, 118, 119]. In addition to demonstrating that

our packings are stable through this same linear programming approach, we also

compute the elastic moduli for the underlying spring network.

Finding a Dionysian packing is the same as finding the jamming threshold

of sphere packings [49, 119]. The jamming threshold is the lowest density that can

be achieved for strictly jammed configurations. However, while this threshold has

mostly been explored for monodisperse configurations, we show that lower density

packings can be found by expanding the search space to include polydispersity.

4.2. Methods

The method we employ is inspired by the construction of the Böröczky bridge

packing [120, 121] for which locally stable bridges of circles can be constructed with

arbitrary length. These bridges lead to packings with asymptotically zero density,

but only satisfy the very weakest definition of stability; they are only locally stable

or locally jammed [49, 116, 117, 118, 119, 120, 121]. Following the spirit of the

Böröczky bridge packing and allowing for the radii of the spheres to be additional

degrees of freedom, we achieve Dionysian packings subject to periodic boundary

conditions at arbitrarily low densities. This demonstrates that the lower density

bound for mechanically stable, repulsive circle and sphere packings is precisely zero.

To determine if a packing is strictly jammed, we model it as a spring network

in which spheres interact through a harmonic contact potential in their overlaps.

We examine whether or not the spring network represents a minimum with respect
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to position degrees of freedom, x, as well as symmetric affine, volume-preserving

strain degrees of freedom, ε [118, 122] where the potential is

U =
1

4

∑
i

∑
j 6=i

ξ2ij (4.1)

and ξij is the normalized overlap between spheres i and j.

We require force balance on all degrees of freedom. The forces on the position

degrees of freedom are

Fα
i = − ∂U

∂xαi
=
∑
k∈∂i

(
ξikn

α
ik

ri + rk

)
= 0 (4.2)

where nαik is the α-component of the normalized contact vector pointing from

particle k to particle i and ri is the radius of sphere i. Forces on the strain degrees

of freedom are

− ∂U

∂εαβ
=

1

4

∑
i

∑
j∈∂i

ξij
ri + rj

(
nαijx

β
ij + nβijx

α
ij

)
(4.3)

for spheres i and j in Cartesian directions α and β where εαβ is the strain degree of

freedom and xαij is the contact vector which is not normalized.

These forces are subject to the volume-preserving constraint, Tr{(ε)} =

0 [118] so that force balance is achieved when

− ∂U

∂εαβ

∣∣∣∣
Tr{(ε)}=0

= − ∂U

∂εαβ
+
δαβ

d

d∑
γ=1

∂U

∂εγγ
= 0. (4.4)

Because this derivative is proportional to overlap, it is trivially zero for any packing

where overlaps do not occur. To ensure that these packings are at a critical point
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due to a balancing of strain degrees of freedom, we evaluate the derivative with

infinitesimal overlap.

The rigidity matrix [123] in conjunction with a linear programming

algorithm [117, 118, 119] is used to determine if packings are strictly jammed. The

rigidity matrix, Rx, relates a perturbation of the particles, ~x, with the stresses

on the bonds, ~b, such that ~b = Rx~x. However, perturbing the particles is not

our only degree of freedom to explore when considering whether or not a packing

is strictly jammed as we must also consider bulk deformations of the system as

encoded in strain degrees of freedom. We define the extended rigidity matrix as

R =

(
Rx Rε

)
where Rx is the ordinary rigidity matrix and Rε relates the

bond stresses to the strain degrees of freedom. (See supplementary materials for

more information.) However, applying a strain that increases the volume of the

periodic cell will allow all of the bonds to break, unjamming the packing. As such,

we apply a constraint preventing the strain matrix, ε, from having volume changing

deformations [118].

We quantify the degree of stability by calculating the resistance of the

packing to compressive deformations and shear deformations via the bulk and

shear moduli respectively. These quantities can be calculated simultaneously

by computing the stiffness matrix, C, [124] for the packing. This matrix has the

property ~σ = C~ε where ~σ is the stress experienced by the packing when a particular

strain, ~ε, is applied. The stiffness matrix can be computed in terms of the rigidity

matrix as well as the states of self stress for Rx. The matrix of states of self stress,

S, is an orthonormal basis for the zero modes of RT
x such that RT

xS = ~0. The

states of self stress represent the basis of stresses that can be placed on the bonds

without causing particle perturbations. Using these terms, the stiffness matrix can
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be computed as

C = RT
ε SS

TRε. (4.5)

(See supplementary materials for a derivation and an explanation of this equation.)

To explicitly satisfy the constraints for shear stability and jamming, we focus

on creating a packing which is locally stable and has a high number of contacts per

particle, z, and then test for stability. As illustrated in Figure 4.1 and described in

more detail in the supplementary materials, this is achieved by placing n circles

labeled a, where n is an odd integer greater than 2, on a strictly convex curve

C such that they kiss their neighbors. A new row of circles, b, are then placed

below so that each b circle kisses two a neighbors from below and a b neighbor

on each side. Finally, the centers of circles c are placed on a line of zero slope

and constrained to touch two b circles from below. Applying the appropriate

symmetries, a stable bridge is formed. This construction can be replicated and

the bridges can be joined such that a circle packing is formed without overlapping

regions. This packing, with the addition of thirteen circles filling the largest void, is

a Dionysian packing for particular construction parameters. Our bridge placement

for the two dimensional Dionysian packing is based on the contact network of the

triangular lattice.

In the limit of an infinitely large bridge, we find that every a circle has four

contacts, every b has six, and every c has four. The asymptotic number ratio

of this packing is a : b : c = 2 : 2 : 1. This means that there are z =

(2× 4 + 2× 6 + 4) /5 = 44
5

contacts per particle in two dimensions, which is larger

than is required by the Maxwell rule for shear stable and jammed systems [125].
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a
b

c

I II

III IV
FIGURE 4.1. The construction of a Dionysian packing in two and three
dimensions. Left. I) A row of n = 5 circles a (purple) lie on a strictly convex
curve C such that each circle kisses its neighbors. II) A row of n = 5 circles b
(orange/yellow) are placed such that they kiss two circles a from below and a circle
b on either side. The rightmost b circle is constrained such that its center lies on
the vertical line tangent to the rightmost a circle. III) A row of n − 1 = 4 circles c
(blue) lie on a horizontal line and kiss two b circles above. IV) A bridge is formed
by reflecting the circles about the dotted lines of symmetry. Three bridges are
combined and their centers are filled as shown (gray). The resulting packing, which
is jammed and shear stable, has a very low density and is a Dionysian packing in
the limit as n→∞.
Right. A three dimensional mechanically stable packing at arbitrarily low
densities. Such a construction contains the same three types of spheres as in the
two dimensional analog but with additional symmetries and an entirely unrelated
set of spheres filling the void region (gray). The three dimensional Dionysian
packing has a much narrower set of convex curves C for which overlaps do not
occur (as detailed in the supplementary materials). This requires a much more
subtle curvature of C which is not apparent to the naked eye in this figure.
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For the Böröczky locally jammed packing [120, 121], the two dimensional

version can be used to create a locally jammed packing in any dimension by

elevating the circles to spheres of the desired dimension and stacking the result.

Such a trivial procedure will not work to extend the Dionysian construction

because it results in structures which are not convex and so are subject to zero

energy modes. To create a three dimensional Dionysian packing, we instead

construct a set of six bridges in three dimensions and combine them as shown in

Figure 4.1. A three dimensional bridge is constructed very similarly to the two

dimensional bridge and exploits the symmetries of three dimensional space.

In the limit of an infinitely large bridge, we find that every a sphere has

six contacts, every b has eight, and every c has eight. The asymptotic number

ratio for these spheres is a : b : c = 4 : 4 : 1. This means that there are

z = (4× 6 + 4× 8 + 8) /9 = 71
9

contacts per particle in three dimensions,

which is larger than is required by the Maxwell rule for shear stable and jammed

systems [125].

Not all convex curves C result in viable packings; some choices of C result in

overlapping of spheres in the limit as n approaches infinity. While infinitely many

viable choices of C are possible, for simplicity we choose curves that fit the form

f(x) =
(f0 − h∞)2

(f0 − h∞)− xδ + h∞ (4.6)

where f0 is the height of the curve at x = 0, δ is the slope of the curve at x = 0,

and h∞ = limx→∞ f(x). The values used in this manuscript are different between

the two and three dimensional versions. (See supplementary materials.)
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4.3. Results

For these parameters, we can track the smallest distance, w, between the b

spheres and their reflected counterparts as seen in Figure 4.2. From this figure, we

see a very clear power law and conclude that in the limit of infinitely large bridges,

no unwanted additional contacts are created. This means that regardless of the

value of n we choose, there are no overlaps for our Dionysian packing subject to the

chosen curves C. Because the length of our bridges increase with n but the other

spatial dimensions do not, this construction results in packings with a density that

falls like n1−d.

Using the aformentioned linear programming algorithm on our Dionysian

packings, we find that they are both jammed and shear stable for every n studied

up to n = 105 (N = 3145) with packing fraction 0.0558 in two dimensions and

n = 25 (N = 2731) with packing fraction 0.0128 in three dimensions.

In addition to demonstrating jamming and shear stability, we quantify the

level of stability by calculating the shear, G, and bulk, K, moduli [126, 127] shown

in Figure 4.3. The two dimensional dionysian packing is isotropic and has a single

shear modulus, G. However, the three dimensional Dionysian packing, like the FCC

crystal upon which it was based, has two independent shear moduli, G100 and

G110[128]. These moduli in two dimensions can be calculated from the stiffness

matrix as K = (C11 + C12) /2 and G = C33. In three dimensions, these are

calculated as K = (C11 + 2C12) /2, G100 = C44, and G110 = (C11 − C12) /2.

To compare the mechanical properties of Dionysian packings with other

purely compressive solids, we also studied the properties of crystals and shear-

stabilized jammed packings. We generated shear stabilized amorphous systems

with monodisperse radii in three dimensions and 25% polydispersity in two
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FIGURE 4.2. Top right inset: demonstration of the definition of a gap for a circle.
The b circles, indexed by i, oscillate in size and are separated into two categories
labelled by squares and triangles. Bottom left inset: The gap value for both square
and triangular marked spheres asymptotes in two and three dimensions. When the
asymptotic gap value is subtracted, the gap sizes follow a power law of N−1 as they
reach their respective asymptotic values.
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FIGURE 4.3. The dimensionless bulk, K, and shear, G, moduli per sphere for
Dionysian and amorphous packings in a unit cell as a function of the number
of spheres, N. The green line represents a two dimensional triangular packing,
the magenta line represents a three dimensional FCC packing, and red and blue
represent two dimensional and three dimensional packings respectively. The dashed
curves with open symbols represent G110, the shear modulus in direction (1, 1, 0),
whereas the solid curves with closed symbols represent G100. The results are exact
for the Dionysian packings and crystals. For the amorphous systems, sufficiently
many systems were sampled to make the standard error bars smaller than the
plot markers. In the limit of large N, the bulk modulus per sphere asymptotes
to a positive value in two and three dimensions for all of the systems. The shear
modulus for crystals and Dionysian packings plateaus for large N indicating that
these remain very stiff. On the other hand, the amorphous packings have a shear
modulus that decreases like 1/N [1]. 69



dimensions drawn from a log-normal distribution. We then used a modified FIRE

algorithm [33] that performs a constrained minimization with respect to both

volume-preserving strains and positions as implemented in the pyCudaPacking

software [29, 34, 35]. We created critically jammed and shear-stabilized packings by

alternating between shear-stabilizing packings and uniformly decreasing the packing

fraction and by extension the system pressure [37].

Figure 4.3 demonstrates that crystals, shear-stabilized jammed systems, and

Dionysian packings all have a bulk modulus per particle that plateaus to a fixed

value in the limit of large N. Similarly, the shear moduli per particle for crystals

and Dionysian packings plateau for large N. In contrast, we confirm the claim by

Dagois-Bohy et al. [1] that the shear modulus in shear-stabilized jammed systems

decreases like 1/N. These results indicate that Dionysian packings maintain their

stability even as the density approaches zero whereas amorphous systems are only

marginally stable in the thermodynamic limit. Remarkably, Dionysian packings can

be created without sacrificing stiffness.

Extension of our procedure to higher dimensions can be proven to not be

viable due to unavoidable overlapping of spheres (see supplementary materials).

We conjecture that higher dimensional Dionysian packings also have arbitrarily low

densities, but demonstrating this will require a novel construction.

4.4. Conclusions

We find that the lower bound on density for mechanical stability of purely

repulsive spheres is 0 (Dionysian) and the upper bound is 1 (Apollonian) in

two and three dimensional sphere packings. In addition to this solution and the

extension of our understanding of the limits associated with the jamming energy
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landscape, this discovery has implications for our fundamental understanding of

mechanical stability. Where Apollonian packings can be used to create structures

which fill space entirely, Dionysian packings can be used to create structures that

utilize very little material and remain stiff. We prove that appreciably lighter

weight materials can be constructed and give a road map for building them.
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4.5. Supplementary Materials

4.5.1. Constructing a Dionysian Packing in Two Dimensions

To construct a Dionysian packing in two dimensions, we do the following:

1. Create a chain of n kissing circles labeled a1 − an which have unit radius and

centers that lie on a convex function f(x) given by equation 6 such that the

coordinates of each circle are (x, f(x)). The values used in this manuscript

can be found in table 4.1. If we give the bridges h∞ = 1 +
√

3, we end up

with nice monodisperse crystalline structures at infinity. However, because

the radii of b circles oscillate between two values, these values of h∞ will

eventually cause overlapping to occur. To prevent this, we perturb these

values by 0.05

2. Place a circle b1 of radius 1 that kisses a1 and a2

3. Place circle bm, where m ∈ [2, n− 1], such that it kisses am, am+1, and bm−1
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4. Place circle bn such that it kisses an−1 and an and so that its center lies at

anx + 1 where anx is the x coordinate of circle an

5. Place circle cm, where m ∈ [1, n − 1], such that it lies on y = 0 and kisses

circles bm and bm+1

6. Reflect the ensemble of circles about the x axis

7. Reflect the ensemble of circles about the line normal to the x axis that passes

through the center of bn

8. Generate three of these bridges and connect them such that they share a1

circles and lie along the contact vectors of the triangular packing

9. Contain the circle ensemble in a rhombus with periodic boundary conditions

10. Place seven identical circles inside the cavity between bridges such that they

form a honeycomb pattern and each of the six outer circles touch two copies

of b1

11. Place six identical circles in the cavity each of which touches an a circle and

two of the circles in the honeycomb arrangement

4.5.2. Constructing a Dionysian Packing in Three Dimensions

The construction process is very similar in three dimensions, but with the

following changes

1. The values for the curve are different and can be found in table 4.1
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2. The coordinates of a spheres have the form

(
ax, ay, 0

)
, the coordinates of b

spheres have the form

(
bx, by, by

)
, and the coordinates of c spheres have the

form

(
cx, 0, 0

)
3. The a and b spheres each have three copies that are rotated 45 degrees about

the x axis

4. The sphere ensemble is reflected about the plane perpendicular to the x axis

that passes through the center of bn

5. Six of these bridges are created and connected such that they share sphere a1

and lie along the contact vectors of the primitive cell for the FCC packing

6. The spheres in the empty cavity formed by the bridges are different. Generate

thirteen equal sized spheres, f, in the shape of an fcc crystal such that one

sphere is in the very middle of the cavity and the other twelve touch four b

spheres associated with the ends of the bridges. Connecting these bridges will

naturally create two differently sized holes. In the six larger holes, create a

dimer of equally sized circles, m, such that they touch: each other, a b sphere,

two a spheres, and an f sphere. Also in these larger holes, place a sphere, p,

that touches eight of these m sphere and an f sphere. In the eight smaller

holes, place a triangle of equally sized spheres, q, that touch each other, three

a spheres and an f sphere

For a visual representation of the construction in two dimensions, see FIG. 1.
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d f0 h∞ δ

2 2
√

3
(
1 +
√

3
)

+ 0.05 0.01

3
√

6
(
1 +
√

2
)

+ 0.025 0.01

TABLE 4.1. The values we used to parameterize curve C for various dimensions d
according to equation 9

4.5.3. Trivial Extension to Higher Dimensions

We can prove that extending this construction to higher dimensions will not

work. The generalized construction is given by parameterizing the positions of the

a spheres as

~am =

(
amx, amy, 0, 0, . . .

)
and ~bm =

(
bmx, bmy, bmy, bmy, . . .

)

for m ∈ [1, n]. The a spheres will each have 2(d− 1) copies given by

(
amx,−amy, 0, 0, . . .

)
,

(
amx, 0, amy, 0, . . .

)
,

(
amx, 0,−amy, 0, . . .

)
,

(
amx, 0, 0, amy, 0, . . .

)
, . . .

and the b spheres will each have 2d−1 copies given by

(
bmx,−bmy, bmy, bmy, . . .

)
,

(
bmx, bmy,−bmy, bmy, . . .

)
,

(
bmx,−bmy,−bmy, bmy, . . .

)
, . . .

We consider ~a1 =

(
0, ay, 0, . . .

)
with unit radius and ~b1 =

(
1, by, by, . . .

)
with radius br. If we enforce that these two spheres kiss, we can solve for ay. We

can then find that by has a maximum value of

b∗y =

√
br(br + 2)

(d− 2)(d− 1)
.
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Because b1 cannot overlap with one of it’s copies, by ≥ br. This along with the

above equation means that

br ≤
√

br(br + 2)

(d− 2)(d− 1)

or for d > 2,

br ≤
2

d2 − 3d+ 1
.

We also know that in steady state, the sum of the radii for bm and bm+1 will be 2.

This means that setting bm to have a radius less than 1 gives bm+1 a radius greater

than 1. Therefore, if we substitute br = 1, we arrive at an upper bound for d :

d ≤ 3 +
√

13

2
≈ 3.30278

which means that this construction does not extend to dimensions higher than

three. We do conjecture that a different construction procedure exists to generate

Dionysian packings in higher dimensions.

4.5.4. Minimal Curvature for three dimensional Dionysian Packings

We remarked in the text that the curves C have a very subtle amount of

curvature in three dimensions. Given a and b spheres of radius 1, the tightest

Dionysian bridge configuration one can achieve has an a sphere with ay = (1 +
√

2).

Any tighter and the b spheres will overlap. The loosest configuration has ay =
√

6.

Any looser and the b spheres will no longer be contained. (See table 4.1). If our
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packing begins with the loosest configuration and ends with the tightest, the curve

will decrease in height by
√

6/(1 +
√

2)− 1 = 1.46% which is subtle.

4.5.5. Amorphous Shear Stabilized Systems

We generate amorphous shear stabilized systems by finding the traceless

forces on strain degrees of freedom as given in equation 4 of the manuscript. We

then use the FIRE algorithm on these strain degrees of freedom to adjust the

lattice vectors and apply an affine strain. Because Tr(ε) = 0 is just the linear

approximation for volume conservation, we also rescale the lattice vectors after each

minimization step. Once a shear stabilized packing is found, we alternate between

minimizing the system and uniformly decreasing the radius of each particle in order

to maintain the polydispersity. After rattlers are removed and the system is at one

state of self stress, we find the mechanical properties.

4.5.6. Computing the Stiffness Matrix

We first consider our extended rigidity matrix for which

Rx〈ij〉(kγ) = (δjk − δik)nγij (4.7)

Rε〈ij〉(αβ) = nαijn
β
ijσij (4.8)

for contact 〈ij〉, particle k, and dimension γ. Here, also note that nγij is the

normalized contact vector between particle j and particle i and σij is the sum of

the radii of particles i and j.
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In order to find the stiffness matrix, we define the extended hessian, which is

H =

Hxx Hxε

HT
xε Hεε

 (4.9)

where Hxx is the second derivative of the energy function with respect to positional

degrees of freedom, Hεε is the second derivative with respect to strain degrees of

freedom, and Hxε are mixed derivatives.

From Hooke’s law, we know that

H

∆~x

~ε

 =

−~F
~σ

 (4.10)

where ∆~x is a perturbation vector of the particles and ~σ is the stress. To find the

stiffness matrix, we solve for the non-affine perturbation ∆~xna that leave the spatial

forces unchanged but imposes a stress:

H

∆~xna

~ε

 =

~0
~σ

 . (4.11)

If we solve this system of equations for ~σ, we find that C~ε = ~σ where the stiffness

matrix is

C =
[
Hεε −HT

xε (Hxx)
−1Hxε

]
. (4.12)

The term, (Hxx)
−1 is the Moore-Penrose pseudoinverse [129] of the singular matrix

Hxx. While the algebra is simple, care must be taken to prove that it is valid to use

the pseudoinverse for hyperstatic jammed packings.
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We can take this result further by considering that for systems without

prestresses, such as ours, the extended hessian can also be written as

H = RTR (4.13)

=

RT
xRx RT

xRε

RT
ε Rx RT

ε Rε

 (4.14)

so that

C =
[
RT
ε Rε −RT

ε Rx

(
RT
xRx

)−1
RT
xRε

]
. (4.15)

This can be further simplified by applying the singular value decomposition [130]

for Rx. We can define the left singular vectors as U which correspond to the

linearly independent basis of bond stresses, the right singular vectors, V, which

correspond to normal modes, and Σ which is the rectangular diagonal matrix of

singular values. Given this,

Rx = UΣV T . (4.16)

If we make this substitution in equation 4.15, we find that

C =
[
RT
ε Rε −RT

ε UΣ
(
ΣTΣ

)−1
ΣTUTRε

]
(4.17)

= RT
ε

(
1− UΣ

(
ΣTΣ

)−1
ΣTUT

)
Rε (4.18)

= RT
ε

(
UUT − UΣ

(
ΣTΣ

)−1
ΣTUT

)
Rε (4.19)

= RT
ε U
(
1− Σ

(
ΣTΣ

)−1
ΣT
)
UTRε. (4.20)
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The pseudoinverse of a diagonal matrix such as ΣTΣ is a diagonal matrix where

the nonzero entries are inverted and the zero entries remain zero. To simplify this,

we can rewrite Σ. If we let there be f floppy modes, s states of self stress, and z

nonzero singular values, then we can choose to express Σ as

Σ =

Qz×z 0z×f

0s×z 0s×f

 (4.21)

where Q is the diagonal matrix of non-zero singular values and where we have

explicitly assumed that s > f. This assumption will always hold for shear

stabilized packings where f = d corresponds to trivial floppy modes. Also note

that this form of Σ assumes that the left and right singular vectors are arranged in

a corresponding way. Substituting this equation into equation 4.20, we find that

C = RT
ε U

1−

Qz×z 0z×f

0s×z 0s×f


(Q2

z×z
)−1

0z×f

0f×z 0f×f


Qz×z 0z×s

0f×z 0f×s


UTRε (4.22)

= RT
ε U

1−

1z×z 0z×s

0s×z 0s×s


UTRε (4.23)

= RT
ε U

0z×z 0z×s

0s×z 1s×s

UTRε. (4.24)

In this equation, the 1s×s term corresponds to the entries associated with states of

self stress. As such,

C = RT
ε SS

TRε (4.25)
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where S is the matrix of states of self stress for Rx. Again, this expression is valid

under the assumption that the packing has no prestress and is strictly jammed.

We can understand this result by considering how each term interacts with an

arbitrary strain, ~ε. This arbitrary strain results in bond stresses, ~b = Rε~ε. However,

these bond stresses will very likely result in perturbations of the particles which will

bring the packing out of force balance. The SST term removes any components of

the bond stresses that are inconsistent with the states of self stress and therefore

would cause particle movements. This new set of bond stresses is then passed

through RT
ε and gives the stress vector, ~σ.

80



CHAPTER V

METHODS FOR CREATION AND LINEAR ELASTIC RESPONSE ANALYSIS

OF PACKINGS OF SEMI-FLEXIBLE SOFT POLYMERS AND CHAINS

5.1. Introduction

Glasses, grains, foams, sand, particulates, and colloidal suspensions are all

examples of amorphous systems that undergo complicated phase transitions. These

transitions have been studied extensively through simulations with packings of soft,

athermal, frictionless spheres that interact through a one-sided contact potential.

The success of this simplified model in furthering our understanding of glasses and

jamming cannot be overstated [1, 34, 35, 37, 48, 131, 132, 133]. However, many

glassy systems are not comprised of soft spheres, but polymer chains that interact

in more complex ways [134, 135, 136, 137].

While the use of soft sphere packings will not and should not subside in the

future, I hope we can get further understand glassy systems if we begin simulating

packings of soft chains of spheres. I show how this can be done through a simple

modification to code for soft sphere simulations.

The importance of polymer studies ranges from the biology of complex

biomolecules such as proteins and chains of DNA [138, 139, 140] to the polyethylene

that is omnipresent in our daily lives [141, 142]. Packings of chains and polymers

have been explored in experimental systems as well as in simulations [143, 144, 145,

146, 147, 148].

Here a novel method is proposed that can be more easily implemented

and adapted to arbitrary cluster types and constraints. While real polymers are
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comprised of components joined by various types of interparticle forces, the work

in this manuscript is done for the limiting case where the interparticle linkages

are much stronger than the interaction potential between unlinked particles.

The methods in this manuscript are focused specifically on soft chains of spheres

which interact via a one-sided harmonic potential. However, the methods can be

easily generalized to include more sophisticated interactions. Beyond the simple

simulations of clusters of rigid molecules and flexible polymeric chains, one can also

simulate clumping, aggregation, and the cementing of particles.

In this manuscript, I demonstrate how to create overjammed and critically

jammed packings of arbitrarily defined semi-rigid clusters of spheres. It is further

explained how these can be prepared and shear stabilized as well as describe

how to find features of the packing, such as the normal modes, rattling clusters,

classification in the jamming hierarchy, and elastic moduli. This simple extension to

the already successful soft sphere packing model opens the door for many avenues

of exploration in the physical properties of glassy systems.

5.2. Generating the Packings

Below a procedure is presented for generating packings of soft polymer chains

that are force balanced in a local energy minimum through the use of constraints.

5.2.1. Generating Polymers: Links

The polymer packings are comprised of individual sets (or clusters) of spheres

of variable radii, r. The individual spheres in each cluster interact via a potential,

U, that is a function of their normalized overlaps, ξ. To define these clusters,
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FIGURE 5.1. An example of a set of links in a packing. The red lines and the
black line are all links, chosen to keep the purple cluster rigid. The red links join
the particles together to form a cluster of three particles while the black link fixes
the bond angle preventing the cluster from deforming. This rigid cluster only has
three degrees of freedom: two translational and one rotational. However, three
independent, unconstrained particles have six degrees of freedom. Adding the three
links above effectively removes three degrees of freedom.
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consider linkages between particles i and j of a fixed length. These are referred

to as links.

By defining links, one is able to not only constrain the particles to be

connected in arbitrary ways, but one can also fix the bond angles between particles.

For example, given a triplet of circles, a, b, and c connected via links ab and bc, the

bond angle can be fixed by creating a link of some fixed length l between a and c

(see Figure 5.1).

5.2.2. The Orthonormalized Constraint Basis

Applying an arbitrary force to each of the particles in a packing would break

their links and violate the constraints. The approach taken to prevent this is

to project out the part of the force vector that violates the constraints to first

order. Performing this projection will result in the forces that the chains actually

experience and cause the appropriate cluster motions and torques in the simulation.

Finding the projection requires finding an orthonormalized constraint basis.

In order to derive the orthonormal constraint basis, first consider the vector

between two particles i and j that share a link, ~xij. Because we are working in

periodic boundary conditions for arbitrary lattice vectors, I define the lattice vector

matrix, Λ, to be a d × d matrix where the columns are the lattice vectors. By

considering a vector of integer lattice coordinates ~zij ∈ Zd,

xαij = xαj − xαi + Λα
γz

γ
ij (5.1)

where α and γ index the coordinates. It is also required that ~zij be an integer

lattice vector which minimizes the norm of x. For particles in contact, this means
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that ~zij is any integer vector that causes particle images i and j to be in contact.

In general, this is degenerate, but without loss of generality, it can be asserted that

every pair of overlapping spheres has exactly one ~zij and that zαij ∈ {−1, 0, 1} for all

coordinates α. If there is a link between particles i and j, our constraint is

c〈ij〉 =

√∑
α

(
xαij
)2 − l〈ij〉 = 0 (5.2)

where l〈ij〉 is the constant length of bond 〈ij〉. Defining

τ̂αij =
xαij
l〈ij〉

(5.3)

to be the normalized distance vector between particles i and j, the constraint

Jacobian is

Ωkα〈ij〉 = τ̂αij (δjk − δik) (5.4)

such that the columns of this matrix are given by the derivatives of c. If the

packing does not contain degenerate links, then the constraint Jacobian has the

property that the number of columns is equal to the rank. In practice, it is very

easy to remove degenerate links, so to simplify computations and derivations, we

assume there are no degenerate links.

This constraint Jacobian becomes very powerful in determining the forces

on the unconstrained degrees of freedom. Because links in the same cluster share

particles, the columns of this matrix will in general not be orthogonal. One can

perform QR decomposition [149] on the constraint Jacobian to find an orthonormal

basis for the constraints. QR decomposition can be fairly computationally
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intensive, so a parallelized modified Gram-Schmitt process is employed [150] on

each of the clusters individually. Since no two independent clusters share degrees

of freedom, their columns will be automatically orthogonal. After performing the

decomposition on our constraint Jacobian, the orthonormalized constraint basis, Ωo

is found. This matrix can be used to constrain the forces applied to the packing.

Given an arbitrary force vector, ~F , which acts on the particle positions, one can

project out the part of the vector that lies along the constraints. This projection

gives the constrained force vector:

~Fcons = ~F − ΩoΩ
T
o
~F (5.5)

=
(
1− ΩoΩ

T
o

)
~F . (5.6)

For a system of rigid clusters, this constrained force removes the need to

consider torques as it performs the correct angular rotation to first order. Similarly,

for clusters with free bond angles, this alters the bond angles appropriately. It is

worth noting that equation 5.6 does not apply only to forces, but other variables as

well. For example, one can find a constrained velocity in the same manner.

5.2.3. Higher Order Corrections

The previously described constraint method is only correct for infinitesimal

perturbations. As the goal is to perform a quench on these clusters, the non-

linear contributions will accumulate over the course of the simulation causing

our constraints to be violated. To combat this, the constraints are periodically

reaffixed. This can be achieved numerically by employing the Newton-Rhapson

method [151]. For simplicity, consider the positions of the particles to be
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encapsulated by a single vector, ~x. Practically, this can be achieved by simply

flattening the matrix of positions. If the constraints are considered to be a vector,

then the following recursive equation can be solved iteratively:

ΩT (~xk) [~xk+1 − ~xk] = −~c(~xk) (5.7)

for ~xk+1 where k represents the iteration number. This equation can be solved

using a method such as Gaussian elimination [149]. This algorithm is continued

until iteration n where |~c(~xn)| < p for the desired precision p. When starting in

a position that is very close to satisfying the constraints, this algorithm should

terminate after just a few steps.

This now fully defines a method for generating semi-flexible soft polymer

packings, however if one also wants to probe the linear elastic response, they should

do so for packings that are stable with respect to strains.

5.2.4. Shear Stabilization

While true stress-strain isotropy is typically reserved only for certain perfect

crystalline packings, the amorphous nature of large thermal systems of grains and

polymers causes them to be approximately isotropic as well. However, this is only

true if they are shear stabilized. That is, if the packing is not at a minimum with

respect to all strain degrees of freedom, then there exists a strain which when

applied causes the energy of the packing to decrease. This violates the isotropic

assumption which means that the packings cannot be described with elastic

moduli. While plenty of excellent research has been done on elastic response in
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FIGURE 5.2. Polymer packings made up of 50 clusters of three particles with fixed
bond angles in 2D (left) and 3D (right). For visualization purposes, only three of
the rigid clusters are shown in the three dimensional packing.

systems which are not shear stabilized [124, 152, 153, 154, 155], the desire for shear

stabilization is often warranted nonetheless [1, 117].

Shear stabilization is achieved by minimizing the energy of a packing with

respect to both position and strain degrees of freedom. In other words, we also

consider the packing’s lattice vectors to be subject to change. Given the position of

a node, ~p0, one can describe its lattice images as

~p = ~p0 + Λ~z. (5.8)

A perturbation of the lattice vectors, ∆Λ, results in

∆~p = (∆Λ) ~z. (5.9)
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Solving equation 5.8 for ~z and making a substitution,

∆~p = (∆Λ) Λ−1 (~p− ~p0) . (5.10)

Therefore, from the definition of the strain matrix,

ε ≡ ∇~p (∆~p) = (∆Λ) Λ−1. (5.11)

It’s also important to notice that the strain matrix must be symmetric; this can be

achieved by defining it’s derivatives as

∂εij
∂εkl

≡ 1

2
(δikδjl + δilδjk) . (5.12)

It is crucial that the positions of particles be a function of the affine strain, so one

can then find the distance between particle i and j as a function of position and

strain,

ψαij =
(
δαβ + εαβ

) (
xβj − xβi + Λβ

γz
γ
ij

)
. (5.13)

The constraints, c〈ij〉, and constraint Jacobian, Ω, can also be redefined as

functions of the strain degrees of freedom. This means that

c〈ij〉(ε) =

√∑
α

(
ψαij(ε)

)2 − l〈ij〉. (5.14)

The columns of Ω are comprised of derivatives of the constraints with respect to all

of the degrees of freedom, positional and strain. The derivatives are evaluated at

the current positions of the particles and the current strain of the packing. Because
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the positions and lattice vectors are updated at every step of the minimization

protocol, the constraint derivates can be evaluated at zero strain. One can derive

that

∂c〈ij〉
∂xαk

∣∣∣∣
ε=0

= τ̂αij (δjk − δik) (5.15)

as before. However,

∂c〈ij〉
∂εab

∣∣∣∣
ε=0

= τ̂aij τ̂
b
ijl〈ij〉 (5.16)

after employing equation 5.12. It’s important to note that all of the columns of our

constraint Jacobian are linearly dependent which prevents the QR decomposition

algorithm from taking advantage of the speed increase gained by assuming that the

constraints between different clusters are orthogonal.

As the strain tensor is required to be a d×d symmetric matrix, there are d(d+

1)/2 strain degrees of freedom. However, there is one final constraint to consider for

shear stabilizing a packing of polymers: constraining the box volume. For a packing

of monomers where the box volume is not constrained, the strain forces will always

lead to the decompression of the box causing an unjamming event. It is therefore

required that the applied strains keep the box volume constant. For infinitesimal

strains, this constraint is simply Tr(ε) = 0 [116, 117, 118]. The derivative of this

constraint with respect to positional degrees of freedom is zero, but for the strain

degrees of freedom, this means that

∂

∂εab

(∑
α

εαα

)
= δab. (5.17)
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To avoid confusion, the constraint Jacobian is referred to as Ω if it only involves

positional degrees of freedom and Γ if it involves both positional and strain

degrees of freedom as well as the volume preserving constraint. Likewise, the

othornormalized versions are called Ωo and Γo respectively. Just as in equation 5.6,

given an arbitrary force vector that involves the derivatives of positions and strain,

~F , the constrained force is given by

~Fcons =
(
1− ΓoΓ

T
o

)
~F . (5.18)

5.2.5. Performing Minimization

The constraints described above can be applied to any minimization

algorithm that involves forces, such as gradient descent and FIRE [33] as well as

molecular dynamics simulations. While this algorithm can be realized with any

potential, I choose to direct my attention to a soft sphere potential of the form,

U(x, ε) =
1

2w

∑
i

∑
j∈∂i

(ξij)
w (5.19)

where w is some power and ξij is the normalized overlap,

ξij = 1− ρij
σij
. (5.20)

In this equation ρij =
√∑

α

(
ψαij
)2
, σij is the sum of the radii, and j ∈ ∂i

are defined to be those particles j which are in contact with particle i. This is

understood to be a one-sided potential meaning that particles which are not

overlapping do not interact. As a result, the contact network of our polymers

changes throughout the minimization.
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The positional forces are unchanged,

F µ
x,k = − ∂U

∂xµk

∣∣∣∣
ε=0

=
∑
i∈∂k

ξw−1ik

n̂µik
σik

(5.21)

and the strain forces are

Fε,ab = − ∂U

∂εab

∣∣∣∣
ε=0

=
1

2

∑
i

∑
j∈∂i

ρij
σij
ξw−1ij n̂aijn̂

b
ij (5.22)

where n̂aij is the normalized contact vector between particles i and j where a

indexes the coordinates.

Now all that is left to do is to apply constraints to these forces and perform

the minimization. After each minimization step, the positions and strains are

updated. To simplify the scheme, the particle perturbations are applied first then

the affine strain perturbs the particles further. The strain to our lattice vectors is

also applied such that

Λnew = (1 + ε) Λ. (5.23)

Finally, the strain is reset to zero. However, applying a finite strain to the lattice

vectors will only preserve the volume to first order. To correct this, the lattice

vectors are uniformly rescaled after each step so that they have a determinant of

one. The polymer constraints also become violated to higher order so the same

scheme that appears in section 5.2.3 must be applied with our updated lattice

vectors. To demonstrate the success of this methodology, two and three dimensional

minimized system with 50 rigid clusters each containing three particles is shown in

Figure 5.2.

92



5.2.6. Crossing Links, Rattling clusters, and Danglers

Careful initialization of two dimensional packings is important to avoid

crossing links. If two dimers have links that cross, as seen in Figure 5.3, this forms

a stable configuration that minimization will not affect. This behavior can occur

between different clusters or even in a single cluster of adequate length. To avoid

this behavior, one can initialize the system such that link crossings are forbidden

prior to minimization. However, if large overlaps are present in a configuration

prior to minimization, link crossings may still occur. This behavior becomes more

likely for larger timesteps in the beginning of the quench. In a system of monomers

at densities close to jamming, particles which are not locally constrained, termed

rattlers, may introduce zero energy eigenmodes, or floppy modes, to the system.

Rattlers are particles that are able to move independently of the other particles

without affecting the system’s energy. Polymer chain systems analogously can have

rattling clusters. A rattling cluster is a cluster in which a subset of the cluster can

move independently of the other clusters without affecting the system’s energy.

A particular type of rattling cluster that may appear is a dangler. A dangler is a

single particle that does not interact with the other particles except by it’s link (see

Figure 5.4).

5.3. Finding Critically Jammed Systems

A critically jammed packing is a packing that is rigid and has zero energy. To

create such a polymer packing, start with randomly distributed cluster positions

and bond angles (avoiding link crossings in 2D) at a density which is much higher

than the expected jamming density. These clusters are allowed to interact via a

harmonic contact potential and the energy is minimized with the FIRE algorithm.
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FIGURE 5.3. Two clusters and their links are shown in a packing of short chains.
Two of the red links were crossing before minimization and these two links remain
crossing after the minimization is finished. These two chains are in force balance
despite being in a high energy configuration. This only occurs in two dimensions
and can be mitigated by ensuring that there are no crossing links before beginning
the quench.
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FIGURE 5.4. A chain of 30 particles in force balance. This chain is an example of
a rattling cluster because one end of the chain (black) is constrained by its link,
but still has a degree of freedom to move (as shown). This free motion is a floppy
mode and this means that the packing is not collectively jammed. However, simply
removing the end of the chain will remove this floppy mode from the system,
leaving a subsystem that is collectively jammed.
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The size of each cluster and the corresponding constraints are then uniformly

decreased while maintaining their average positions. After minimizing this lower-

density packing, the process is repeated until the energy reaches a low threshold.

The amount by which the packing fraction is decreased at each step is decided by

taking advantage of the scaling relationship between energy and distance to the

jamming density for soft sphere systems, φ− φj, given in reference [37].

Because of the aforementioned rattling clusters, packings prepared in this

manner will typically have some form of floppy mode present. This effect will be

discussed in section 5.5.

5.4. Defining the constrained Hessian and Rigidity Matrices

5.4.1. The Constrained Hessian

For a packing of polymers, one may wish to find the normal modes, with

or without strain degrees of freedom. In order to do that, one must first find the

second derivatives of the energy function with respect to these degrees of freedom.

These are as follows,

Hxx =
∂2U

∂rνj ∂r
µ
k

∣∣∣∣
ε=0

= (5.24)

δkj
∑
i∈∂k

[
(w − 1)

ξw−2ik

σ2
ik

nµikn
ν
ik +

ξw−1ik

ρikσik
(nµikn

ν
ik − δµν)

]

− δ〈kj〉
[

(w − 1)
ξw−2kj

σ2
kj

nµkjn
ν
kj +

ξw−1kj

ρkjσkj
(nµkjn

ν
kj − δµν)

]
,
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Hεx =
∂2U

∂εab∂r
µ
k

∣∣∣∣
ε=0

= (5.25)∑
i

δ〈ik〉
σik

{[
(w − 1) ξw−2ik − (w − 2) ξw−1ik

]
nµikn

κ
ikn

β
ik

−ξw−1ik

(
δβµnκik + δµκnβik

)}(∂εκβ
∂εab

)
,

and

Hεε =
∂2U

∂εgh∂ε
a
b

∣∣∣∣
ε=0

= (5.26)

1

2

∑
i

∑
j∈∂i

(1− ξij)
{[

(w − 1) ξw−2ij − (w − 2) ξw−1ij

]
nαijn

µ
ij

−ξw−1ij δαµ
}
nβijn

ν
ij

(
∂εµν
∂εgh

)(
∂εαβ
∂εab

)
.

In these equations, the term δ〈km〉 is equal to one if particles k and m are in contact

and zero otherwise. These terms can be combined to find the extended hessian,

which is the second derivative of the energy function in terms of both positional

and strain degrees of freedom:

H0 =

Hxx Hxε

HT
xε Hεε

 . (5.27)

The extended hessian can be used to find the energy of a perturbation that

is done to the positions of individual particles and the strains. However, with

polymer packings, we do not have access to all of these degrees of freedom. If

there are N particles in d dimensions with Nl nondegenerate links, the extended

hessian will have Nd + d(d + 1)/2 rows and columns whereas there are actually

Ndof = Nd + d(d + 1)/2 − Nl − 1 degrees of freedom (where the constraints
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due to the links and the volume-preserving strain have been subtracted). In order

to calculate the energy of a perturbation and the normal modes of the polymer

packing, one needs to translate the perturbations of the particles and affine strains

to some basis of the true degrees of freedom. This can be achieved by performing a

change of basis from the original basis to a basis of the true degrees of freedom and

the constraints.

Let ~y be a vector of length Nd + d(d + 1)/2 that contains the position and

strain variables, let ~yt be a vector of length Ndof that contains the true degrees of

freedom, and let ~λ be a vector of length Nl + 1 corresponding to the constraint

degrees of freedom. We need a square matrix, Q, that decomposes ~y into ~yt and ~λ

such that ~λ
~yt

 = QT~y. (5.28)

Without loss of generality, one can define a matrix,

(
Γ Null(ΓT )

)
. (5.29)

This gives a non-singular matrix where the first Nl + 1 columns correspond to

our constraints. This matrix can then be subjected to QR decomposition to give

a matrix Q.

With this new matrix, Q, one can define a rectangular change of basis matrix

as

B =

(
0Nl+1 1Ndof

)
QT (5.30)
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such that

~yt = B~y. (5.31)

This basis is also useful for removing the components of a vector ~y that violate our

constraints:

~y′ = BTB~y. (5.32)

With this matrix, B, the constrained extended hessian becomes

HE = BH0B
T . (5.33)

Given some perturbation, ~yt of our Ndof degrees of freedom, the change in energy

can be computed as

∆E =
1

2
~yTt HE~yt. (5.34)

The extended hessian can also be diagonalized to find the normal modes. The only

problem is that the normal modes are in terms of a rather confusing basis, but this

can be easily rectified by taking the matrix of eigenvectors and multiplying them by

BT giving a set of Ndof eigenmodes in the familiar basis of positions of particles and

strains. This entire procedure can also be easily adapted to use the matrix, Ω, and

create an extended hessian that deals only with positional degrees of freedom.
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FIGURE 5.5. The shear and bulk (inset) moduli of three dimensional packings
of clustered particles. Starting with shear stabilized, critically jammed systems
of monomers, links are randomly added to the contact network and bond angles
are frozen to simulate cementing events. The number of links at any given point
is nl and this does not include those links which are added to fix the bond angles.
There are about 25 packings for each N (from 26 to 211) in which 50 independent
percolation experiments were performed. The data for each N and nl was subject
to a weighted average where the Reuss and Voigt averages were used as a minimum
and maximum respectively. The error bars show the weighted standard error.
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5.4.2. The Constrained Rigidity Matrix

If one wanted to examine the underlying unnormalized, unstressed spring

network of a packing and find the states of self stress, they could define the

extended rigidity matrix. The rigidity matrix relates perturbations to bond stresses,

so to derive it, consider the effect that perturbing or straining the packing has on

the bond stresses. For particle perturbations, the rigidity matrix has the form

Rx,〈ij〉(kγ) = (δjk − δik)nγij. (5.35)

For strains, the rigidity matrix has the form

Rε,〈ij〉(kγ) = nαijn
β
ijσij. (5.36)

These two terms can be combined to get the rigidity matrix in terms of strains and

positions,

R0,〈ij〉 =

(
Rx,〈ij〉 Rε,〈ij〉

)
(5.37)

such that for a vector ~y =

~x
~ε

 ,

R0,〈ij〉~y = Rx,〈ij〉~x+Rε,〈ij〉~ε. (5.38)
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As before, one can perform a change of basis on this rigidity matrix to find the

constrained extended rigidity matrix,

RE = R0B
T . (5.39)

Note that the constrained extended rigidity matrix is only defined for the bonds in

the system, not for the links. If the links were included, then RE would return zero

stress on those bonds regardless of the choice for ~yt.

Similarly, the states of self stress for the network are the left singular vectors

that have a zero singular value. The constrained extended N -matrix can be

computed as NE = RER
T
E and the constrained extended dynamical matrix as

DE = RT
ERE for the underlying unstressed spring network.

5.5. Testing for strict jamming

If one were to make a hard sphere polymer packing, such as those found by

following the procedure described in section 5.3, one might want to know whether

or not this packing remains stable against all possible combinations of strains and

perturbations. One way to do this is to employ a linear programming algorithm

based on the one found in reference [118] with the constrained extended rigidity

matrix in place of the adjacency matrix. The linear program is:

min ~bT~yt (5.40)

such that RE~yt ≤ ~0 (5.41)

where |~yt| ≤ ymax. (5.42)
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In this program, we are looking for the vector ~yt which is subjected to some random

load vector ~b that is bounded such that the length is less than some finite value

ymax. If this algorithm returns a nonzero vector, ~yt, then ~yt describes an unjamming

motion. Because of the presence of rattling clusters, this may be the case. To

determine which particles are contributing to the nonzero ~yt, one can find the

nonzero indices for BT~yt. Those rattling clusters should be removed from the

packing before the linear program is executed again. This process can be repeating

until ~yt = ~0 is found. One must also run the same linear program for min − ~bT~yt
to ensure that the polymer subpacking is strictly jammed [118]. As in the previous

sections, the strain degrees of freedom do not need to be added; the same process

can be adapted to Rx to test for collective jamming.

5.6. Computing the Compliance Matrix

Now that jamming and normal modes for the polymer systems have been

discussed, the discussion can conclude by computing the elastic moduli. To

compute the elastic moduli, the compliance matrix, S, is computed. This matrix

relates the stress to the strain,

~ε = S~σ. (5.43)

Before this is derived, consider Hooke’s law for the unconstrained extended hessian,

H0

∆~x

~ε

 =

−~F
~σ

 . (5.44)
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Applying an arbitrary strain, ~ε, and perturbation, ∆~x, puts a stress, ~σ, and

interparticle forces, ~F , on our packing. Not every combination of ∆~x and ~ε

is allowed, so we need to project out the part of our vector that violates the

constraints. From equation 5.32 one can achieve this with BTB. However, this is

not quite correct. When finding the elastic moduli, deformations which may affect

the volume of the packing are allowed. As such, B is rederived with the volume-

conserving constraint excluded from Γ. This new rectangular change of basis is

referred to as B−1. A new constrained hessian can be defined as

Hc = BT
−1B−1H0B

T
−1B−1 (5.45)

such that it contains the same degrees of freedom as the original hessian.

To find the stress-strain relationship, it is not enough to apply an affine

strain. Simply applying an affine strain will cause the packing to lose force balance.

When the stress-strain relationship is probed in granular packings, minimization

steps are taken between strain steps. What one must do is apply an arbitrary affine

strain and a corresponding nonaffine perturbation, ∆~xna, such that force balance

is kept. For an unconstrained hessian, Hooke’s law can be applied to achieve an

equation such as the following:

H0

∆~xna

~ε

 =

~0
~σ

 . (5.46)

However, for the constrained hessian, this relationship is false. To understand

why, imagine applying a particular perturbation and strain that strictly violate

our constraints; this would result in zero strain. This is the exact opposite of what
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one would expect. It should be impossible to apply such a perturbation and strain,

therefore one would expect the result of such a test to return an infinite stress.

This is easily remedied by taking the Moore-Penrose pseudoinverse [129] of Hc.

This works because the pseudoinverse preserves all of the zero eigenvalues. We can

then conclude that

(Hc)
−1

~0
~σ

 =

∆~xna

~ε

 . (5.47)

This is much easier to understand as well because while certain strains may not

be possible, any stress is allowed. The result will never violate our constraints, but

may lead to zero strain. If (Hc)
−1 is partitioned,

~ε = S~σ (5.48)

where

S =

0Nd×Nd 0Nd×s

0s×Nd 1s×s

 (Hc)
−1 (5.49)

is the compliance matrix.

For three dimensional polymer chain systems, the shear and bulk moduli can

be found from the Voigt, Reuss, and Hill averages under the assumption that the

configuration is nearly isotropic [156, 157]. From these averages, the poisson ratio

and anisotropy can also be calculated. To understand this procedure, take three

dimensional shear stabilized systems of monodisperse monomers at a single state

of self stress and randomly replace some of their contacts with links. At a certain
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point sufficiently many links are added to prevent certain stresses from causing

strains. These impossible stresses show up as zero modes in the compliance matrix

and indicate a direction in which the shear modulus is infinite. Adding additional

links will also eventually cause the compliance matrix to become zero, indicating a

completely rigid packing of polymer chains. The bulk and shear moduli for these

systems as a function of the fraction of added links, nl/N, (not including those

added to preserve bond angles) are shown in Figure 5.5.

5.7. Conclusions

In this methods paper I have discussed how to generate packings of arbitrarily

defined polymer chains. I described how to simulate the annealing of these packings

and how they can be shear stabilized in the process. I gave examples of undesirable

behaviors and how to prevent them as well as the definitions of rattling clusters

and danglers. I then explained how to find the normal modes, classification in the

jamming hierarchy, and elastic moduli. This work lays the foundations for a more

thorough exploration of the mechanical properties of packings of polymer chains

and molecules as well as a clear method for furthering our understanding of many

important topics such as the polymer glass transition, clumping, and cementing

events.

5.8. Acknowledgments

I thank Eric Corwin, James Sartor, and Heinrich Jaeger for helpful

discussions and feedback. This work was supported by National Science Foundation

(NSF) Career Award DMR-1255370 and the Simons Foundation No. 454939.

106



CHAPTER VI

PROPERTIES OF AMORPHOUS MATERIALS UNDER PERIODIC

BOUNDARY CONDITIONS

6.1. Introduction

Periodic boundary conditions are a mainstay of the study of condensed

matter systems as they ameliorate or eliminate many finite size effects, allowing

one to infer bulk behavior from small systems. It is easy to take periodic boundary

conditions for granted and think of them as capturing all of the physics of a

repeated structure, but this is far from the truth. In essence, a system with

periodic boundary conditions requires that all of the particle images move in

concert whereas infinitely repeated structures have no such constraint.

For a finite-sized network (or packing) it is natural to ask how many

constraining bonds (or contacts) are needed for rigidity. This question can be

answered by the Maxwell-Calladine rule [158, 159, 160]:

F = Nd−Nc + S (6.1)

where F is the total number of floppy modes (or zero modes), N is the number

of nodes, d is the spatial dimension (making Nd the total number of degrees

of freedom), Nc is the number of constraining bonds, and S is the number of

redundant bonds which is equal to the number of states of self stress. For a

physical system to be rigid, it must only have trivial rigid motions as floppy

modes. For instance, a d dimensional finite network is considered rigid if it only has

F = d + d(d − 1)/2 floppy modes including d translations and d(d − 1)/2 rotations.
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For infinitely large systems, the only possible trivial rigid motion are translations.

Thereby, a d dimensional network (or packing) under periodic boundary conditions

can only have d floppy modes when rigid.

The Maxwell-Calladine constraint counting rule is not a suitable proxy for

measuring rigidity in all types of physical systems. For instance, in second-order

rigid systems, such as under-constrained networks that rigidify under tension,

Eq. (6.1) cannot be used to describe the rigidity [161, 162, 163, 164]. Another

example is networks with shear degrees of freedom or special symmetries (such as

square lattices), where the alignment of states of self-stress leads to internal floppy

modes that are accounted by the Maxwell-Calladine rule [165, 166]. However,

for all systems studied in this paper, including over-constrained elastic networks

and jammed packings of athermal soft particles, Eq. (6.1) is a sufficient proxy for

measuring rigidity.

In this paper we rigorously examine the mathematical structure of periodic

boundary conditions in jammed packings of soft athermal particles. Following

the more statistical findings of Goodrich et al. [66, 67], who show that infinitely

tiled two dimensional disk packings lead to anomolously low frequency modes,

we demonstrate that infinitely tiled overjammed packings of soft spheres in any

dimension can have not only anomolously low frequency modes, but negative

modes. This result demonstrates that an overjammed sphere packing with periodic

boundary conditions may not be jammed when tiling space. We also observe that

the number of newly introduced zero modes when a system is used for tiling the

space is directly related to its number of states of self-stress. We focus on three

types of systems: 1) unstressed critically jammed packings that support just a

single state of self-stress, 2) hyperstatic overjammed packings with a finite pre-
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stress, and 3) the unstressed network representation of hyperstatic packings. We

prove that jammed packings in d dimensions, whether stressed or unstressed, that

support fewer than d states of self stress will never have a jammed tiling that is

jammed and discuss the resulting floppy modes. We examine the contrapositive to

discover the nature of jammed packings with d or more states of self stress. While

these typically do have a jammed infinite lattice representation, we provide explicit

counter-examples which do not.

We also explain the issues involved with overjammed packings with more d

states of self stress by presenting the hessian in momentum space [67] via Bloch’s

Theorem [167]. We use this method to show that the infinite lattice representation

of hyperstatic overjammed packings and even overjammed shear stabilized packings

can have motions that lower the system energy. We conclude our discussion with a

proof that the elastic properties of an infinitely repeated packing are fully captured

by periodic boundary conditions.

6.2. Theorem I:

For an uncompressed, jammed spring network with S < d states of

self stress, the corresponding network that is duplicated across boundary

x will not be jammed. Therefore infinitely tiled spring networks can only

be jammed if the unit cell has S > d states of self stress.

6.2.1. Proof

We proceed with a proof by contradiction. Assume that the original network

has F = d trivial floppy modes and S < d states of self stress. Assume that the

duplicated system is jammed and therefore will also have F ′ = d trivial floppy
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FIGURE 6.1. A packing of spheres that has been duplicated. The black lines are a
state of self stress. The thickness of a line represents the magnitude of the stress on
the corresponding bond. Replicating the state of self stress for the original system
gives a state of self stress for the duplicated system.

modes and S ′ states of self stress. From the Maxwell-Calladine rule in equation 6.1,

Nd−Nc = F − S (6.2)

and 2Nd− 2Nc = F ′ − S ′ (6.3)

where Nd is the number of degrees of freedom and Nc is the number of contacts in

the original network. If we substitute F = F ′ = d and solve for S ′,

S ′ = 2S − d. (6.4)

If we have a state of self stress for the original system, we can simply

duplicate it to find a state of self stress for the replicated system [168] (as in

figure 6.1). If applying a set of stresses to the bonds of the unreplicated packing
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leads to force balance, then replicating those stresses to a duplicated packing must

also lead to force balance. Note that the orthogonality is also preserved in this

doubling procedure. With this in mind and the fact that we may find additional

states of self stress not captured by this trivial doubling procedure, S ′ ≥ S.

Substituting this result into equation 6.4,

2S − d ≥ S (6.5)

S ≥ d. (6.6)

This is a contradiction which proves the above theorem.

6.3. Argument I:

Nearly all amorphous systems with fixed boundaries and non-zero

prestress will destabilize under a sufficient number of replications

6.3.1. Reasoning

We have proven that amorphous systems with zero prestress and fewer than

d states of self stress are not jammed upon replication, but many researchers are

interested in overjammed packings. It turns out that these overjammed packings

with more than d states of self stress typically represent saddle points in the energy

landscape of the tiled system. We can show this by considering the hessian in

momentum space, H(~q), found through Bloch’s theorem [167]. For simplicity

in calculating this quantity, we consider the interaction of a packing with its

neighboring replicas. Each unit cell has 3d − 1 neighboring cells. We consider the

interaction between a unit cell and it’s neighbor, i as Hi. If we let the interaction
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between the unit cell and itself be H0, then this means that the original hessian,

H(~0), can be written as:

H(~0) = H0 +
3d−1∑
i=1

Hi. (6.7)

However, this can be simplified even further. If Hj is the hessian with respect to

neighbor j and Hk is the hessian with respect to the opposing neighbor, then Hk =

HT
j as in figure 6.2. This means that the hessian only needs to be split into (3d +

1)/2 parts and

H(~0) = H0 +

(3d+1)/2∑
i=1

(
Hi +HT

i

)
. (6.8)

In general, from Bloch’s theorem we can conclude that

H(~q) = H0 +

(3d+1)/2∑
i=1

[(
Hi +HT

i

)
cos(~q · ~ri)

(
Hi −HT

i

)
sin(~q · ~ri)

]
(6.9)

where ~ri is the d dimensional vector corresponding to the position of cell i.

We can determine whether or not a tiled packing remains jammed upon

replication by looking at the eigenvalues of the first branch. For a packing that

remains jammed when tiled, all of these eigenvalues should be greater than zero

except for the trivial zero modes that come from H(~0). Looking at a small jammed

packing with 64 particles and 30 states of self stress in 2D, we can see that the

eigenvalues in the first branch are negative for certain values of momentum (see

figure 6.3). A negative eigenvalue means there is a direction that the particles can
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FIGURE 6.2. The hessian can be split into pieces corresponding to the interactions
with neighboring cells. There are (3d + 1)/2 independent hessian pieces which are
shown in the center of their corresponding cells. In this example there is a single
central hessian pieces as well as two vertices and two edges, each with opposing
counterparts.
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FIGURE 6.3. Top Left: An overjammed amorphous packing of 64 harmonic soft
spheres at packing fraction φ = 0.9 with 30 states of self stress.
Top Right: The eigenvalues in the first branch of the momentum-space hessian for
this amorphous overjammed packing. The blue and green colors represent negative
eigenvalues which corresond to perturbations that lower the system energy.
Bottom Left: A shear stabilized packing of harmonic soft spheres at φ = 0.9 and
26 states of self stress.
Bottom Right: The corresponding contour plot of the first branch eigenvalues of
the shear stabilized system’s hessian in momentum space.
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be perturbed which would lower the tiled system’s energy. This means that the

tiled packing, while in force balance, is not jammed.

Shear stabilized packings also may have negative modes in their first branch.

This is also demonstrated in figure 6.3 with a shear stabilized packing with 64

particles and 26 states of self stress.

6.4. Lemma I

The rigidity matrix of any network can be written as

R =

Rc Rp

0 Rb2 +Rb1



where

(
0 Rb2 +Rb1

)
corresponds to the bonds that cross boundary x.

This matrix has singular values {σi} . The matrix defined as

RDHC ≡

Rc Rp

0 Rb2 −Rb1


has singular values {εi} . Duplicating the network across boundary

x results in a network where the rigidity matrix has singular values

{σi, εi} .

6.4.1. Proof

If we consider the b bonds that cross boundary x, then we will find that

there are p particles involved in making these bonds. We separate R into columns

that do not involve these p boundary particles and columns that do. We further
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separate R into rows that do not involve these b bonds and rows that do. This

gives us

R =

Rc Rp

0 Rb2 +Rb1

 (6.10)

where Rc are the bonds that are formed between particles not among the p

boundary particles, Rp are the bonds that involve the p boundary particles and are

not boundary bonds themselves, Rb1 are the rows of the boundary bonds where the

rightmost vectors in each row are zeroed out, and Rb2 are the rows of the boundary

bonds where the leftmost vectors in each rows are zeroed out.

If we replicate the network across boundary x, the rigidity matrix can be

written as

RD =



Rc Rp 0 0

0 Rb2 0 Rb1

0 0 Rc Rp

0 Rb1 0 Rb2


. (6.11)

If we consider ~u =

~u1
~u2

 and ~v =

~v1
~v2

 to be left and right singular vectors

(respectively) for R with corresponding singular value σ such that ~uTR~v = σ, then

we can demonstrate that 1√
2

~u
~u

 = 1√
2



~u1

~u2

~u1

~u2


and 1√

2

~v
~v

 = 1√
2



~v1

~v2

~v1

~v2


are left

and right singular vectors for RD with singular value σ. Notice that these vectors
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are orthonormal. Shown explicitly,

1

2

(
~uT ~uT

)
RD

~v
~v



=
1

2

(
~uT ~uT

)


Rc Rp 0 0

0 Rb2 0 Rb1

0 0 Rc Rp

0 Rb1 0 Rb2





~v1

~v2

~v1

~v2



=
1

2

(
~uT ~uT

)


Rc Rp

0 Rb2 +Rb1


~v1
~v2

Rc Rp

0 Rb2 +Rb1


~v1
~v2




=

1

2

(
~uT ~uT

)R~v
R~v


= σ.

This means that {σi} are singular values for RD. This is not surprising, as these are

the modes that correspond to the particles moving in concert with their duplicate.

In a similar fashion, consider ~x and ~w to be left and right singular vectors for RDHC

with singular value ε. We can now show that 1√
2

 ~x

−~x

 and 1√
2

 ~w

−~w

 are left and

right singular vectors for RD with singular value ε. Again, notice that these vectors
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are orthonormal and consider

1

2

(
~xT −~xT

)
RD

 ~w

−~w


=

1

2

(
~xT −~xT

) RDHC ~w

−RDHC ~w


= ~xTRDHC ~w

= ε.

This means that {εi} are also singular values for RD. Since RD has exactly twice

as many singular values as R, all of the singular values for RD must be given by

{σi, εi} .

6.5. Lemma II:

Let the singular value decomposition of R be given by R =Uc
Ub

Σ

Vc
Vp


T

where Ub represents the final b rows of the left unitary

singular vector matrix and Vp represents the final p rows of the right

unitary singular vector matrix. We can prove that

Rank(RDHC) = Rank(Σ− 2UT
b Rb1Vp). (6.12)
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6.5.1. Proof

Let U =

Uc
Ub

 and V =

Vc
Vp

 . Let X and W be left and right unitary

singular vector matrices for RDHC such that RDHC = XΣDHCW
T . Further, consider

α and β to be change of basis matrices such that

W = V α

and X = Uβ.

Consider

ΣDHC = XTRDHCW

= βTUTRDHCV α

= βTUT

R−
0 0

0 2Rb1


V α

= βT

UTRV − UT

 0

2Rb1Vp


α

= βT
(
Σ− 2UT

b Rb1Vp
)
α.

Now we know that the rank of ΣDHC is the same as the rank of RDHC and that α

and β must be full rank because they are change of basis matrices so we have

Rank(RDHC) = Rank
(
Σ− 2UT

b Rb1Vp
)
.
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6.6. Argument II:

For typical, unstressed, critically jammed systems with s ≥ d

states of self stress, the corresponding system that is duplicated across

boundary x will also be jammed. Therefore these systems will typically

remain jammed when tiled.

6.6.1. Reasoning

We see from Lemma II that the rank of RDHC comes from perturbing the

rectangular matrix with a matrix that is typically dense. This means that it is

extremely likely for the rank of RDHC to be Nd. From Lemma I, we would have

Rank(RD) = (2N − 1)d. Since Rank(RD) + FD = 2Nd where FD is the number of

floppy modes in the duplicated system, we have FD = d and the duplicated system

is therefore jammed.

6.6.2. Discussion

While we have explained why most amorphous, unstressed, critically jammed

packings with d or more states of self stress are typically jammed upon replication,

it is worth noting that this does indeed hinge on a statistical argument. It is

possible to create non-amorphous packings of hard spheres which are not jammed

upon replication. In figure 6.4, we create two packings based on the triangular

lattice. These packings were proven to be jammed by using a linear programming

algorithm [117, 118, 119]. However, when these packings are tiled, one finds that

novel floppy modes are introduced.
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FIGURE 6.4. Top Left: A jammed packing of hard spheres with significantly
more than d states of self stress based on a triangular lattice with a vertical line of
particles with only three contacts each.
Bottom Left: The corresponding duplicated packing which is not jammed. There
is a floppy mode in which the red and blue particles move in opposing directions.
Top Right: Another jammed packing of hard spheres with significantly more than
d states of self stress. This packing is jammed even when duplicated once in either
direction.
Bottom Right: The packing from above, but replicated in a 2x2 arrangement.
This packing is not jammed as the red and blue regions are free to move in
opposition, creating a floppy mode.

121



6.7. Theorem III:

The elastic moduli for a jammed packing are the same as the

corresponding packing that is duplicated across boundary x up to a

trivial scaling factor. This means that when tiling the system, the

stiffness matrix is extensive.

6.7.1. Proof

The elastic properties of a packing can be understood from the stiffness

matrix, C, where

~σ = C~ε (6.13)

for the stress, ~σ, and the strain, ~ε. We can find this relationship for the original

packing by considering the extended hessian, which is found from the second

derivative of energy with respect to the positional and strain degrees of freedom.

Let H be the extended hessian such that

H =

Hxx Hxε

HT
xε Hεε

 (6.14)

where Hxx is the second derivative of the energy with respect to the positions,

Hεε is the second derivative with respect to strain, and Hxε is the mixed second

derivative. From Hooke’s law, we can conclude that

H

~x
~ε

 =

−~F
~σ

 (6.15)
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where ~F represents the interparticle forces. If we want to find the stress-strain

relationship as in equation 6.13, we need to ensure that through the process of

applying a strain, force balance is never lost. Therefore, when applying a strain,

we also need to apply a non-affine perturbation, ~xna, so that

H

~xna
~ε

 =

~0
~σ

 (6.16)

Hxx~xna +Hxε~ε

HT
xε~xna +Hεε~ε

 =

~0
~σ

 . (6.17)

If we solve the first system of equations for ~xna and substitute the solution in to the

second system of equations, we find that

C = Hεε −HT
xε (Hxx)

−1Hxε (6.18)

where (Hxx)
−1 is the Moore-Penrose pseudoinverse [129] for the singular matrix

Hxx.

Now that we have an expression for the stiffness matrix of the original

packing, we need to find the stiffness matrix for the duplicated packing, CD. We

can express the positional second derivative of the duplicated system, HDxx, as

HDxx =

HA HB

HB HA

 (6.19)

because the order in which we take the partial derivatives with respect to the

positions of system A and B is inconsequential due to commutivity. The extended
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hessian for the duplicated system is therefore

HD =


HA HB Hxε

HB HA Hxε

HT
xε HT

xε 2Hεε

 . (6.20)

If we let ~x1 be the non-affine motion of the original system and ~x2 be the non-affine

motion of the replicated system, then


HA~x1 +HB~x2 +Hxε~ε

HB~x1 +HA~x2 +Hxε~ε

HT
xε (~x1 + ~x2) + 2Hxx~ε

 =


~0

~0

~σ

 . (6.21)

If we add the first two equations, we find that

(HA +HB) (~x1 + ~x2) + 2Hεε~ε = ~0. (6.22)

We can solve for ~x1 + ~x2 by using the fact that Hxx = HA + HB. Making this

substitution into the third equation reveals that

CD = 2C. (6.23)

This means that when tiling the system, the stiffness matrix is extensive.

6.8. Conclusions

Using periodic boundary conditions is immensely useful in physics to reduce

the impact of finite size effects. However, physicists need to be congnizant of
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the limitations and pitfalls. We have demonstrated that hyperstatic overjammed

packings often do not represent true minima when used to tile space. Likewise even

packings that are shear stabilized can share this feature. We also demonstrated

that critically jammed packings at a single state of self stress in periodic boundary

conditions are never jammed when used to tile space. If these issues are important

in a research endeavor, we argue that critically jammed shear stabilized systems

will typically be jammed when used to tile space and we provide a method for

checking if this is true. We finish this discussion with a proof that the elastic

properties of an infinitely tiled packing are completely captured by periodic

boundary conditions.
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CHAPTER VII

CONCLUSION

This work has focused on furthering our understanding of jammed solids and

I’m proud to claim that I not only have contributed to this monumental effort, but

I have the privilege of continuing to do so.

In chapter II, I wrote about the marginal Gardner phase, a mean-field

result for glasses, and how jammed amorphous systems fit into this picture. By

demonstrating that the jamming energy landscape is marginal, we showed how

glasses and jamming are related as well as where marginality fits in the picture.

Inspired by the mean-field theory, we showed that the jamming energy landscape is

also hierarchical and ultrametric.

Chapter III was a much larger collaborative experience that was quite

enjoyable. This chapter, like the previous, demonstrated that the mean-field

theory of glasses is very relevant for low-dimensional jammed systems. We showed

excellent agreement between several types of amorphous systems and the mean-field

theory, further understanding the universality class.

In chapter IV, we discussed rigidity and what it means for a system to be

jammed. We went on to show that there is no threshold for jamming, jammed

systems exist at arbitrarily low densities. After explaining how to create one, we

demonstrated that the construction works and examined the mechanical properties.

Dionysian packings are jammed at arbitrarily low densities and display impressive

elastic properties.

In chapter V, I demonstrated how one can simulate packings of semi-flexible

polymers, chains, and molecules. By thinking in terms of constraints, I created a
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simple modification that can be made to soft sphere packings simulations allowing

polymers to be simulated, with or without shear stabilization. Crucially, I also

explained and derived equations that can be used to calculate the normal modes

and elastic response properties of polymer packings.

In chapter VI, we demonstrated a series of proofs involving periodic boundary

conditions. It is our goal to help the jamming and glassy communities understand

what exactly their results do and do not mean in terms of the infinitely tiled

structure. We showed that critically jammed packings under periodic boundary

conditions are never jammed when replicated. We also showed that overjammed

packings (with prestresses) are rarely jammed when replicated and that shear

stabilized packings with prestresses can also have unjamming motions.
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[54] Edan Lerner, Gustavo Düring, and Matthieu Wyart. Low-energy non-linear
excitations in sphere packings. Soft Matter, 9(34):8252–8263, 2013. doi:
10.1039/C3SM50515D. URL
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm50515d.
Publisher: Royal Society of Chemistry.

[55] Harukuni Ikeda. Jamming Below Upper Critical Dimension. Physical Review
Letters, 125(3):038001, July 2020. doi: 10.1103/PhysRevLett.125.038001.
URL https://link.aps.org/doi/10.1103/PhysRevLett.125.038001.
Publisher: American Physical Society.

[56] Yuxiao Zhang, M. J. Godfrey, and M. A. Moore. Marginally jammed states of
hard disks in a one-dimensional channel. Physical Review E, 102(4):042614,
October 2020. doi: 10.1103/PhysRevE.102.042614. URL
https://link.aps.org/doi/10.1103/PhysRevE.102.042614. Publisher:
American Physical Society.

134

https://link.aps.org/doi/10.1103/RevModPhys.82.2633
https://doi.org/10.1088%2F0953-8984%2F22%2F3%2F033101
https://link.aps.org/doi/10.1103/RevModPhys.90.015006
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm50515d
https://link.aps.org/doi/10.1103/PhysRevLett.125.038001
https://link.aps.org/doi/10.1103/PhysRevE.102.042614


[57] Atsushi Ikeda, Ludovic Berthier, and Giulio Biroli. Dynamic criticality at the
jamming transition. The Journal of Chemical Physics, 138(12):12A507, March
2013. ISSN 0021-9606. doi: 10.1063/1.4769251. URL
https://aip.scitation.org/doi/10.1063/1.4769251. Publisher:
American Institute of Physics.

[58] Adam B. Hopkins, Frank H. Stillinger, and Salvatore Torquato. Disordered
strictly jammed binary sphere packings attain an anomalously large range of
densities. Physical Review E, 88(2):022205, August 2013. doi:
10.1103/PhysRevE.88.022205. URL
https://link.aps.org/doi/10.1103/PhysRevE.88.022205. Publisher:
American Physical Society.

[59] Monica Skoge, Aleksandar Donev, Frank H. Stillinger, and Salvatore Torquato.
Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review
E, 74(4):041127, October 2006. doi: 10.1103/PhysRevE.74.041127. URL
https://link.aps.org/doi/10.1103/PhysRevE.74.041127. Publisher:
American Physical Society.

[60] S. Torquato and Y. Jiao. Robust algorithm to generate a diverse class of dense
disordered and ordered sphere packings via linear programming. Physical
Review E, 82(6):061302, December 2010. doi: 10.1103/PhysRevE.82.061302.
URL https://link.aps.org/doi/10.1103/PhysRevE.82.061302. Publisher:
American Physical Society.

[61] Yang Jiao, Frank H. Stillinger, and Salvatore Torquato. Nonuniversality of
density and disorder in jammed sphere packings. Journal of Applied Physics,
109(1):013508, January 2011. ISSN 0021-8979. doi: 10.1063/1.3524489. URL
https://aip.scitation.org/doi/10.1063/1.3524489. Publisher:
American Institute of Physics.

[62] E. DeGiuli, E. Lerner, and M. Wyart. Theory of the jamming transition at
finite temperature. The Journal of Chemical Physics, 142(16):164503, April
2015. ISSN 0021-9606. doi: 10.1063/1.4918737. URL
https://aip.scitation.org/doi/10.1063/1.4918737. Publisher:
American Institute of Physics.

[63] Cristian F. Moukarzel. Isostatic Phase Transition and Instability in Stiff
Granular Materials. Physical Review Letters, 81(8):1634–1637, August 1998.
doi: 10.1103/PhysRevLett.81.1634. URL
https://link.aps.org/doi/10.1103/PhysRevLett.81.1634. Publisher:
American Physical Society.

135

https://aip.scitation.org/doi/10.1063/1.4769251
https://link.aps.org/doi/10.1103/PhysRevE.88.022205
https://link.aps.org/doi/10.1103/PhysRevE.74.041127
https://link.aps.org/doi/10.1103/PhysRevE.82.061302
https://aip.scitation.org/doi/10.1063/1.3524489
https://aip.scitation.org/doi/10.1063/1.4918737
https://link.aps.org/doi/10.1103/PhysRevLett.81.1634


[64] Carl P. Goodrich, Simon Dagois-Bohy, Brian P. Tighe, Martin van Hecke,
Andrea J. Liu, and Sidney R. Nagel. Jamming in finite systems: Stability,
anisotropy, fluctuations, and scaling. Physical Review E, 90(2):022138, August
2014. doi: 10.1103/PhysRevE.90.022138. URL
https://link.aps.org/doi/10.1103/PhysRevE.90.022138. Publisher:
American Physical Society.

[65] Carl P. Goodrich, Andrea J. Liu, and James P. Sethna. Scaling ansatz for the
jamming transition. Proceedings of the National Academy of Sciences of the
United States of America, 113(35):9745–9750, August 2016. ISSN 1091-6490.
doi: 10.1073/pnas.1601858113.

[66] Carl P. Goodrich, Wouter G. Ellenbroek, and Andrea J. Liu. Stability of
jammed packings I: the rigidity length scale. Soft Matter, 9(46):10993–10999,
November 2013. ISSN 1744-6848. doi: 10.1039/C3SM51095F. URL
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51095f.
Publisher: The Royal Society of Chemistry.

[67] Samuel S. Schoenholz, Carl P. Goodrich, Oleg Kogan, Andrea J. Liu, and
Sidney R. Nagel. Stability of jammed packings II: the transverse length scale.
Soft Matter, 9(46):11000–11006, November 2013. ISSN 1744-6848. doi:
10.1039/C3SM51096D. URL
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51096d.
Publisher: The Royal Society of Chemistry.

[68] Daniel Hexner, Andrea J. Liu, and Sidney R. Nagel. Two Diverging Length
Scales in the Structure of Jammed Packings. Physical Review Letters, 121(11):
115501, September 2018. doi: 10.1103/PhysRevLett.121.115501. URL
https://link.aps.org/doi/10.1103/PhysRevLett.121.115501. Publisher:
American Physical Society.

[69] Daniel Hexner, Pierfrancesco Urbani, and Francesco Zamponi. Can a Large
Packing be Assembled from Smaller Ones? Physical Review Letters, 123(6):
068003, August 2019. doi: 10.1103/PhysRevLett.123.068003. URL
https://link.aps.org/doi/10.1103/PhysRevLett.123.068003. Publisher:
American Physical Society.

[70] Eric DeGiuli, Edan Lerner, Carolina Brito, and Matthieu Wyart. Force
distribution affects vibrational properties in hard-sphere glasses. Proceedings
of the National Academy of Sciences of the United States of America, 111(48):
17054–17059, December 2014. ISSN 1091-6490. doi:
10.1073/pnas.1415298111.

136

https://link.aps.org/doi/10.1103/PhysRevE.90.022138
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51095f
https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51096d
https://link.aps.org/doi/10.1103/PhysRevLett.121.115501
https://link.aps.org/doi/10.1103/PhysRevLett.123.068003


[71] Matthieu Wyart. Marginal Stability Constrains Force and Pair Distributions at
Random Close Packing. Physical Review Letters, 109(12):125502, September
2012. doi: 10.1103/PhysRevLett.109.125502. URL
https://link.aps.org/doi/10.1103/PhysRevLett.109.125502. Publisher:
American Physical Society.

[72] Markus Müller and Matthieu Wyart. Marginal Stability in Structural, Spin, and
Electron Glasses. Annual Review of Condensed Matter Physics, 6(1):177–200,
2015. doi: 10.1146/annurev-conmatphys-031214-014614. URL
https://doi.org/10.1146/annurev-conmatphys-031214-014614. eprint:
https://doi.org/10.1146/annurev-conmatphys-031214-014614.

[73] Ludovic Berthier, Giulio Biroli, Patrick Charbonneau, Eric I. Corwin, Silvio
Franz, and Francesco Zamponi. Gardner physics in amorphous solids and
beyond. The Journal of Chemical Physics, 151(1):010901, July 2019. ISSN
0021-9606. doi: 10.1063/1.5097175. URL
https://aip.scitation.org/doi/10.1063/1.5097175. Publisher:
American Institute of Physics.

[74] Silvio Franz and Giorgio Parisi. The simplest model of jamming. Journal of
Physics A: Mathematical and Theoretical, 49(14):145001, February 2016. ISSN
1751-8121. doi: 10.1088/1751-8113/49/14/145001. URL
https://doi.org/10.1088/1751-8113/49/14/145001. Publisher: IOP
Publishing.

[75] S. Franz, Antonio Sclocchi, and P. Urbani. Critical Jammed Phase of the Linear
Perceptron. Physical review letters, 2019. doi:
10.1103/PhysRevLett.123.115702.
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