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Neurons in the brain face the challenge of representing sensory stimuli in a way

that accurately encodes the features of these stimuli while minimizing the effects of

noise. This thesis will use the concept of mutual information from information theory,

which quantifies the amount of information one variable can tell us about another

and vice versa, to better understand neural coding in the auditory cortex. Previ-

ous research has been done in maximizing mutual information to better understand

neural behavior patterns in the visual cortex, with limited auditory findings. We per-

form numerical optimization in Python to maximize information that a population

of neurons contains about an auditory stimulus within the framework of information

theory. This is done by first finding the optimal width and location of tuning curves

that characterize neural response to one dimensional stimuli (sound frequency), then

updating the optimization algorithm to fit two-dimensional stimuli (sound frequency

and intensity). By testing the algorithm with a set of natural sound data, our com-

putations show that in the latter case, optimal stimulus information is represented

by a specific homogeneous population with similar response properties. Our findings

provide a method to better understand neural representation in the auditory cortex,

specifically, the relationship between neural response and natural sound stimuli.
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1 Introduction and Background

One phenomenon in the brain many researchers are interested in understanding

is neurons’ ability to accurately encode information about the world. This proves to

be difficult as neurons are noisy, meaning that when the same stimulus is presented,

the neurons do not produce the same response each time. A goal in neuroscience,

specifically in the study of how the brain represents sensory information, is to be

able to construct models that best explain neural response to sensory stimuli while

representing the relationship between the two.

This research is in theoretical and computational neuroscience, which means there

will not be elements commonly seen in scientific research, such as conducting exper-

iments, producing the data, and analyzing the data to reach a conclusion. In this

thesis, we will use theories, mathematical concepts, formulas, and computer program-

ming to better understand phenomena that have been observed previously in experi-

ments by other researchers. In particular, we will focus on the mathematical descrip-

tion of tuning curves in auditory cortex, where a tuning curve characterizes a neuron’s

response to different stimuli. The below sections provide important background infor-

mation and motivation for our study of the auditory cortex, for our research method

of mutual information maximization, for our analysis of neural response represented

by tuning curves, which help us to answer this work’s main research question: how

auditory stimuli information is optimally represented in the brain.

1.1 Auditory Cortex

Definition (Auditory Cortex). The auditory cortex is a network of areas in the part of

the brain that receives inputs from the subcortical auditory pathways in the brainstem and

thalamus. Through an elaborate network of intrinsic and extrinsic connections, the auditory

cortex is thought to bring about the conscious perception of sound and provide a basis for



the comprehension and production of meaningful utterances[8].

There has been much research done in understanding how auditory signals undergo

the chain of processing that begins at the ear, through a series of complex subcortical

brain regions, then ultimately reaches the auditory cortex[10]; however, the specifics

of how neurons in the auditory cortex respond to sound stimuli, specifically natural

sounds, is far from understood. This is because of the unique organization of the

Auditory cortex— with a longer subcortical pathway between the peripheral recep-

tors compared with other sensory cortices. This suggests that the auditory system

may implement different strategies in contrast to other cortices in order to extract

behaviorally relevant information from an environment of natural stimuli [21]. In

addition, it has been shown that, as opposed to other cortices, auditory neurons have

the property of high complexity in their selectivity to sound features. This is crucial

when trying to understand neural response to natural sounds. Therefore, analyzing

auditory cortical processing is an important step in understanding many overall brain

functions such as decision making and learning [10].

Why are we studying neural responses to natural sound stimuli? This is because

the structure of natural sounds consists of various and complex temporal patterns of

acoustic energy and sound levels extending over a wide range of frequency bands [14].

Therefore, natural sound stimuli are interesting because they are rich and complex

in important ways that simple stimuli traditionally used in laboratory studies are

not. Since laboratory stimuli are not representative of such complexities encoded in

natural stimuli, we are interested in using natural sounds in order to produce more

biologically plausible results, meaning how sounds in the real world affect neural

response in the auditory cortex. Moreover, studies in the visual cortex, a different

brain region, have shown that models derived from natural stimuli are the most robust

at predicting responses to other broadband stimulus ensembles that were not used

in their estimation and also provide good predictions of tuning curves [18]. This is
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likely to be applicable to the auditory cortex as well.

In pursuit of finding strategies to represent how the auditory cortex encodes infor-

mation, researchers have come up with many encoding strategies. One approach is by

using the spectrotemporal receptive field (STRF)[10]. The STRF is a computational

tool for characterizing the responses of auditory neurons. Most widely used as part of

a linear-nonlinear (LN) model, the STRF model is reliable as it chooses random struc-

tured stimuli with relatively small amounts of data. Although this method provides a

set of tools to represent a single neuron or a population of neurons and describe neu-

ral responses, STRFs do not accurately capture the full complexity of the behavior

of auditory neurons [19]; this means the model results display too much discrepancy

between synthetic/laboratory stimuli and natural sounds. Additionally, researchers

have seen that neurons in the auditory cortex are classically thought to primarily

encode auditory frequency [20]. Although most neurons are responsive to a singu-

lar frequency, a portion do respond to multiple frequencies, and research has shown

that the relationship between these frequencies is harmonic [20]. Harmonic template

neurons [5] have an important role in processing sounds with harmonic structures, es-

pecially those seen in nature. Responses of these neurons show nonlinear facilitation

to harmonic complex sounds over inharmonic sounds and selectivity for particular

harmonic structures [5]. The existence of these harmonic template neurons further

suggests there is a complex harmonic processing organization in the auditory cor-

tex[20]; however, it is unclear of exactly where this stage of processing occurs [5].

Neither model fully captures all of the ways that neurons respond to natural-sound

stimuli. Therefore, it is important for us to construct a model that can optimally

represent natural auditory stimuli.
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1.2 Tuning Curves

Definition (Tuning curve). A tuning curve characterizes the response of a neuron. A simple

way of representing this is to find the average firing rate r, which is the number of action

potentials fired over (in theory, an infinite number of) trials and divide by the trial duration.

The average firing rate can be written as a function, r = f(s), where s is a stimulus

parameter (e.g. sound frequency), is called the neural response tuning curve [4].

The above definition is saying that neurons communicate with other neurons by

sending brief electro-chemical pulses known as action potentials or spikes to their

neighbors. The number of spikes generated in a given period of time is thought to

be the means by which neurons encode information about the world. Tuning curves

describe a neuron’s response to a stimulus in spikes per second. A set of tuning curves

can define a neural code for a population of neurons, which can be understood as the

relationship between responses and sensory neurons to sensory stimuli such as the

frequency of an auditory tone. As discussed by Kriegeskorte [12], a “tuned” neuron

may selectively respond to stimuli within a particular band of some stimulus variable,

such as frequency or intensity, and the tuning curves are a quantitative measure of

neural responses as a function of a stimulus variable. An example of such 1D tuning

curve can be seen in Figure 1

A phenomenon that inspired this project is the paper by Sadagopan and Wang

[16], in which the authors investigated neural response characteristics in the primary

auditory cortex region of awake marmosets. In the Sadagopan and Wang study, two

different types of tuning representations were observed: “V-Shaped” and “O-Shaped”

Tuning Curves, as seen in Figure 2 [16].

Typically, a neuron’s firing rate response increases as sound intensity level in-

creases until saturation. This is called a monotonic rate level function. Conversely,

when neurons exhibit a maximum response rate followed by a decrease as sound level
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Figure 1: Sample tuning curve (blue) shows mean spikes per second (firing rate) as a function of the stimulus
parameter. The shaded gray region illustrates the variability in firing rate upon the administration of repeated,
identical trials, also known as noise.[11]

increases, this is a nonmonotonic rate level function. Wang and Sadagopan found

that neurons with “V” and “I”-shaped tuning curves span across a higher frequency

range as sound level increases. This covariance makes it difficult to predict frequency

and sound level simply based on firing rate. On the other hand, “O”-shaped tuning

curves spanning across a certain frequency range maintain their width at different

sound levels, which makes it easy to parse frequency and sound level based on neural

responses. A neuron with “O”-shaped turning curves is a non-monotonic rate level

function. The idea of modeling frequency tuning in respect to sound level (intensities)

is one of the main goals of this project. The hypothesis that this thesis investigates

is that optimal stimulus information is represented by a mixed population of these

“O”-shaped and “V”-shaped neurons that respond in qualitatively different ways to

auditory stimulus features, and not a homogeneous distribution of either all “O”-

shaped or all “V”-shaped neurons. We came to this hypothesis because of neural

heterogeneity [9]: only a small fraction of neurons in a given population carry sig-

nificant sensory information in a specific context. Therefore we suspect that optimal

tuning occurs with a combination of “V” and “O”-shaped tuning curves.

5



Figure 2: ”O”(bottom) and ”V”(top) shaped tuning curves, Each shape denotes the combination of frequency
and sound level that causes a particular neuron to respond with an increased firing rate [16]

1.3 Information Theory

Definition (Information Theory). Shannon’s information theory is the mathematical treat-

ment of the concepts, parameters and rules governing the transmission of messages through

communication systems [13]. It is a means of quantifying information, choice and uncer-

tainty. Additionally, it is a methodology to develop efficient coding and communication of

data across noisy channels [3].

Information theory was first introduced to the world by Claude Shannon with his

seminal paper “A mathematical theory of communication [17]”. As Dayan and Ab-

bott [4] state, a main motivation for using information theory in neuroscience, is to

answer the question “How much does the neural response tell us about a stimulus?”

The techniques of information theory allow us to answer this question in a quantitative

manner. More importantly, information theory provides a framework that quantifies

how a coding scheme or a communication channel conveys information and enables

us to understand the relationships and interactions between arbitrary multivariate

random variables [3]. Besides information theory, there have been many approaches

and methodologies to analyzing and understanding neural response behavior to cap-
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ture specific features of neural activity such as connectivity, effective dimensionality,

encoding, and decoding [3].

Information theory has fruitfully been applied in many domains, including neuro-

science, statistics, and economics [3]. As mentioned by Borst [2], the rise in popularity

of information theory, can be attributed to the theory’s rigor, which enables us to pre-

cisely measure information transfer by determining the exact probability distribution

of outputs (in our case, neural response) given any particular signal or input (in our

case, auditory stimuli). Moreover, because of its mathematical completeness, infor-

mation theory has fundamental theorems on the maximum information transferrable

in a particular communication channel.

The key idea from information theory that will be used in this thesis is that

information encoded by one variable (the neural response) can be quantified by the

reduction of its entropy when we learn about the other variable (the auditory stimulus)

[12]. The mutual information(MI) between neural response and stimulus provides a

means of quantifying this relationship. We explain mathematically in further details

below what mutual information is. In order to understand MI, we first introduce

entropy.

Definition (Entropy). The entropy of a neural response with a firing rate represented by

random variable r and a probability density p(r) of observing that firing rate is a measure

of our uncertainty about the variable.[4]

There are three probability distributions associated with entropy and mutual in-

formation. First, the probability of a firing rate happening as seen in the above

definition. Then, we are interested in the probability of a certain stimulus happening

given a set of stimulus values, also known as p(s). Lastly, we want to know the like-

lihood or probability of observing a neural firing rate r given a stimulus s, denoted

p(r|s)

In other words, entropy represented by H(r)[4] in the below equation, is how
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“surprised” we are to be seeing that response rate r, then averaging over all possible

responses.

H(r) = −
∫
p(r) log p(r)dr. (1)

Conditional entropy describes how “surprised” we are to be seeing that same firing

rate r given information about the stimulus parameter s. It is represented by [12]:

H(r|s) = −
∫
p(r|s) log p(r|s)drds. (2)

Finally, mutual information I(r, s) measures the amount of information one variable r

can tell us about the other s (and vice versa). We can first think of it as the reduction

of entropy in one variable after learning about the other variable, denoted by [4]:

I(r, s) = H(r)−H(r|s) = H(s)−H(s|r). (3)

Using Equations 1 and 2, the final formula becomes [4]:

∫ ∫
p(r, s)log

p(r, s)

p(r)p(s)
drds. (4)

In the case where variables are discrete,

I(r, s) =
∑
s,r

p(s)p(r|s)log
(
p(r|s)
p(r)

)
. (5)

1.4 Putting Everything Together

This project revolves around this relationship between natural sound stimuli and

neural response, and maximizing their mutual information so that we can learn more

about neural response if there is a strong relationship between that and natural stim-

uli. How do we maximize MI? Note that p(s), the probability distribution of the
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stimuli (in our case frequency and intensity), varies depending on the sound environ-

ment (hence the importance of using natural sound stimuli). The logic of maximizing

MI comes from minimizing uncertainty, which means the model uses optimization

techniques (further explained in later sections) to increase the accuracy of predict-

ing how a neuron responds given a set of stimuli. We want to know through these

mutual information computations whether neural response in the auditory cortex

matches the results of our optimizations. This idea sits on the basis of the efficient

coding hypothesis[1], which states that sensory systems such as the auditory system

maximizes the amount of information transferred from the environment to the brain.

Modeling a population of noisy neurons characterized by their tuning-curve responses

to a sensory variable, Ganguli and Simoncelli mathematically solved the information

maximization problem to derive optimal tuning curves as a function of prior proba-

bility distribution p(s) of the sensory variable [7]. Assuming tuning curve widths vary

inversely with cell density, the specific findings from this study include the following

conclusion: for the optimal population, the cell density is proportional to p(s), mean-

ing that more cells with narrower tuning curves are allocated to represent stimuli

with a higher prior probability density[7][6]. This is one of the results we will test

with our optimization algorithm in Chapter 2.

We first observe how one-dimensional tuning curve characteristics such as width

and location change as a function of stimulus (frequency) probability by maximizing

mutual information. Then after quantifying this information, we investigate whether

the distribution of neural response tuning curves match our hypothesis: more neurons

should be dedicated to represent narrow tuning curves at stimuli with high probabil-

ities, while wide tuning curves should present to be more sparse at low probability

stimuli. If the resulting tuning curve distribution after MI maximization accurately

encode p(s), then we can conclude our algorithm indeed finds the optimal neuron

representation in the auditory cortex.
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Next, by updating functions to perform optimization on two-dimensional stim-

uli, we attempt to explain the existence of both “V-shaped” and “O-shaped” tuning

curves with respect to sound frequency and intensity. Based on this idea, our hypoth-

esis is that a combination of these particular shapes of tuning curves will maximize

the mutual information with natural stimuli, rather than one homogeneous type of

neural response tuning curves. Moreover, another question we will be exploring is

how the orientations of these two-dimensional tuning curves contribute to the max-

imization of mutual information. The research outcome is to predict what neural

tuning curves should look like for different stimulus distributions under the assump-

tion that their role is to maximize MI between the stimulus and neural response, then

to look for correspondences with experimentally observed tuning-curve properties. A

potential impact of this study is to embed and connect these research results to how

neural representations of stimuli change with learning, for example in mice trained to

respond to a particular auditory frequency. Further studies can be done to explore

whether more neurons should be devoted to representing stimuli that are important

for performing a learned behavior. In the next chapter, we investigate optimal one-

dimensional tuning curves and what they tell us about neural response to natural

auditory stimuli in the auditory cortex.
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2 Maximizing Mutual Information: one-dimensional stim-

uli

One of our research outcomes is to model neural tuning curves (neural response

patterns) and how their properties should differ for different prior stimulus distribu-

tions. Note all computations and modeling were done in NumPy (Python library for

scientific computing). The data used in our computations and analysis is extracted

from Montana State Library digital collections — the Acoustic Atlas, ambient record-

ings[15]. This collection consists of 2,500 recordings of species and environments from

throughout the Western United States. For the purposes of our work, these ambient

sounds constitute a representative ensemble of natural stimuli.

The first part of our one-dimensional stimulus parameter optimization, sound fre-

quency, uses the first 150 seconds of one specific sound-track: Crickets at Beaver Dam

Wash (Utah) for the purpose of efficient modeling. The cricket sound track is then

plotted with a spectrogram, which displays sound intensity at different frequencies at

each moment in time, as demonstrated in Figure 3. Next, we convert the spectrogram

(with frequencies on the y-axis) to a power spectral density graph seen in Figure 4

(with mel-frequencies on the x-axis), which is the measure of a signal’s power content.

The mel scale is a logarithmic frequency conversion that allows auditory signals to be

represented in a manner that conforms with human auditory perception. The formula

we use for this mel scale conversion is the following:

m = 2595 log10

(
1 +

f

700

)
, (6)

where f represents the list of original frequencies and m represents the converted

frequencies. By making our stimuli into a more biologically plausible representation,

we are able to see more clearly at which frequencies the stimuli display the most
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intensity (about 200Hz and 2200Hz in the cricket data).

Figure 3: Spectrogram of natural crickets’ soundtrack (Montana State University library digital collections)

To construct our model, given that the formula for mutual information (MI) is

I(r, s) =
∑
s,r

p(s)p(r|s) log

(
p(r|s)
p(r)

)
, (7)

we need to first find the stimulus probabilities p(s). Since most auditory stim-

uli are not uniformly distributed across the frequencies, we utilized the method of

binning discrete frequencies to construct a non-uniform prior stimulus distribution.

This allows us to generate random stimuli according to the probabilities. The one-

dimensional stimuli we use in our equations below is a vector of 10, 000 random

frequency stimuli s, based on the distribution of p(s). Next, We need to find the

probability distribution of neural firing rates (neural response) p(r|s) given the stim-

ulus distribution p(s), as well as the probability distribution of firing rates p(r). It’s

important to note that since we are interested in the behavior of a population of

neurons, we initialize our computations with 20 hypothetical neurons. To do this,

12
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we first modeled tuning curves prior to optimization as a Gaussian distribution with

probability density function:

f(s) = c ∗ exp

(
−1

2

(
sss− µµµ
σσσ

)2
)
. (8)

Here, f(s) represents the average number of spikes per second that the 20 neurons fire

in response to stimuli s. c is a coefficient that gives the maximum firing rate of the

neurons (we set this constant to 10, meaning the maximum firing rate of the neuron

cannot exceed 10). σ = {σ1, ..., σ20} represents a vector of 20 tuning curve widths,

s = {s1, ..., s10000} represents random stimulus frequencies, and µ = {µ1, ..., µ20}

represents a vector of 20 stimulus values at which the responses is maximized, or as

we like to call it — location of tuning curves. We set our 20 neurons to have equal

widths and locations evenly distributed across the stimuli range, thereby each neuron

has its own parameters µi and σi.

Then, the probability of a firing rate given a certain stimulus is modeled with
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a Poisson distribution with mean given by Equation 8. The Poisson distribution is

a probability distribution over discrete events and is often used for modeling spike

count distributions in neuroscience [4]. The probability that the neuron emit r spikes

in response to stimulus s is then given by:

p(rrr|sss) =
f(sss)rrr exp(−f(sss))

rrr!
. (9)

Lastly, we get the probability function of firing rates:

p(rrr) =
1

n

∑
s1,...,sn

(p(rrr|sss)), (10)

by taking the mean of the p(r|s) functions over the stimulus parameter, obtaining the

probability of a firing rate averaged over stimuli for each neuron.

After putting together the MI function with the above probability components,

the total MI that we are optimizing in Equation 7 includes a sum over our 20 neurons.

We use automatic differentiation in JAX NumPy, a Python library designed for high-

performance numerical computing especially in machine learning research, to take the

partial derivatives of the MI with respect to the parameters that we wish to optimize

— in our case, the width σi and location µi of each tuning curve i. In order to

iteratively update the parameters to maximize the MI, these partial derivatives are

then used to perform gradient ascent.

Definition (Gradient Ascent). Given an objective function Q, and a set of parameters, θ,

gradient-based approaches involve estimating the direction in parameter space to move so

as to improve the model performance. This is achieved by estimating the derivative of the

objective function with respect to the parameters and iteratively updating the parameters

along the gradient, leading to an increase in the value of the objective function. Conse-

quently, this requires that the objective function for gradient based optimization is differ-

entiable. Typically, estimating the true gradient of the objective function is intractable. The
14



gradient is often estimated using a random sample of training data leading to stochastic

estimates of the true gradient, hence called stochastic gradient-ascent. [4]

Using this idea, the formula we use for gradient ascent is:

θ ← θ + α
∂

∂θ
I(θ), (11)

where θ is the parameter vector we are trying to optimize, ∂
∂θ
I(θ) is the gradient of

MI, and α is the learning rate of the formula, determining the size of the step along

the gradient. This learning rate is crucial in our computations because if we choose it

to be too small, our MI might never converge; on the other hand, if we choose it to be

too large, our MI might oscillate back and forth without ever finding the maximum.

2.1 1D tuning curves – optimal widths

We choose to first run this algorithm for maximizing MI with respect to one pa-

rameter: the widths of the tuning curves, represented by σi. Using gradient ascent,

we find the optimal widths of 20 tuning curves for the crickets dataset, showing that

tuning curves tend to be narrower around the frequencies that carry greater power

spectral density (around mel-scale values of 200 and 2200 in Figure 5). This matches

the peaks of the power spectral density diagram 4. Plotting MI at each step of the gra-

dient ascent algorithm, we find a steady increase and plateau of MI, as seen in Figure

6. This means we are indeed reaching a maximum of MI with our computations.
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Figure 6: MI at each step of gradient ascent optimization algorithm 1D width

2.2 1Dtuning curves – optimal widths and population density

Next, we use the gradient ascent algorithm to simultaneously optimize with respect

to two parameters: tuning curve widths and locations. The result of this optimization
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can be seen in Figure 7. As seen in the plot, neurons tuned to frequencies that have

higher intensities display a high density of narrow tuning curves; conversely, those

tuned to lower intensities are wider and sparser. Checking this result by plotting

mutual information at each step of the gradient ascent algorithm once more, we see

in Figure 8 another steady increase to plateau, meaning that we have successfully

maximized MI. This approach of understanding auditory stimuli matches the results

of previous literature, specifically in the 2010 paper by Ganguli and Simoncelli [6],

where the authors found high density narrow tuning curves corresponding to the

frequencies with high probabilities of a heterogeneous prior stimulus distribution.
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Figure 7: 1D Tuning curves for 20 neurons with optimized width and location
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Figure 8: MI at each step of gradient ascent optimization algorithm 1D width and location

2.3 1D tuning curves – combined natural sounds

To further understand one-dimensional tuning curves and to generalize the results

to explain neural response to a diverse ensemble of natural sound stimuli, we then

automate the process of importing 98 natural soundtracks using the web scraping

method from the same ambient sounds database [15], combining 100 seconds of each

sound into one large sound file. We reason the combined soundtrack better represents

the behavior of natural sound stimuli. Applying the same steps of the algorithm on

this new set of stimuli, we first find the prior probability distribution p(s) for the

combined stimuli, using the same binning method as above for the singular cricket

sound-track. We discover the highest probabilities occur around 400− 800 mel scale

as seen in Figure 9. With this information, we should expect to see a dense population

of narrow tuning curves around that frequency band. The results as seen in Figure 10

show that this is mostly the case, with the narrowest tuning curves somewhat densely

populated around 400 − 800 mel scale on the x-axis representing frequencies. Once
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again, to visually and quantitatively represent the mutual information maximization

process as at each step of the gradient ascent, the plot in Figure 11 displays the

plateauing trajectory of MI as we reach almost 900 iterations.
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Figure 9: prior probability distribution of 98 combined natural soundtracks
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Figure 10: tuning curves of 98 combined natural sound stimuli
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Figure 11: MI at each step of gradient ascent optimization algorithm for 98 natural sounds
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So far, the analysis of the 1D neural tuning curves with our algorithm of maximiz-

ing MI utilizing stochastic gradient ascent have matched previous findings, specifically

tuning curves tend to be narrower and denser in regions where the stimulus probabil-

ity is larger. However, we have assumed up to this point that all tuning curves have

the same functional form, bell-shaped neural responses (in the 1D case). We reason

that this is not the case: optimal stimulus information is represented by multiple pop-

ulations of neurons that respond in qualitatively different ways to auditory stimulus

features, rather than one homogeneous population with similar response properties.

Therefore, with highly suggestive evidence in the 1D case that our algorithm is a

robust model in aiding us to further understand neural coding in the auditory cor-

tex, considering heterogeneous populations of sensory neurons with two-dimensional

stimuli will be the subject of the next chapter.

21



3 Maximizing Mutual Information: two-dimensional stim-

uli

While the algorithm from Chapter 2 successfully produces results that matched our

hypothesis and paints a rather clear picture of the behavior of one-dimensional tuning

curves in response to one stimulus parameter, we are still interested in understanding

the existence of “O”-shaped and “V”-shaped tuning curves [16], which are in response

to two auditory stimuli parameters: frequency and intensity (also known as sound

level). Using the cricket sound-track once again, we transform the frequencies into mel

scale, and we also take the logarithm of the intensity values to better accommodate the

large dynamic range of sound intensities. The prior stimulus probability distribution

p(s) after binning is now two dimensional, with a single probability assigned to each

pair of values, (frequencyi, intensityj). To obtain this probability distribution, we

utilize the histogram function to quantify intensity values, so that the sum of each

frequency bin adds up to the marginal probability density function of frequency values,

while the whole probability matrix is normalized to add up to 1. After constructing

the prior probability distribution, we follow the steps similar to the 1D case, and we

can model the tuning function with the two-dimensional Gaussian function:

f(s1, ...sk) =
exp

(
−1

2
(sss− µµµ)TΣΣΣ−1(sss− µµµ)

)√
(2π)k|ΣΣΣ|

. (12)

3.1 2D O-shaped Tuning Curves

To model 2-dimensional O-shaped tuning curves, we represent the tuning widths

σ1, σ2 in both directions in the following matrix Σ, where the widths of the tuning

curves are determined by the eigenvalues of the matrix, which only correspond to σ1

and σ2 if ρ is 0:
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Σ =

σ2
1 ρ

ρ σ2
2

 , (13)

where ρ represents the orientation of the 2D tuning curves.

Utilizing the fact that ρ
σ1σ2

has to be between −1 and 1 and the trigonometry func-

tion tanh(γ) is bounded between −1 and 1, we can represent ρ in terms of parameters

σ1, σ2, γ:

ρ = σ1σ2 tanh(γ). (14)

With the nice property that O-shaped tuning curves are symmetrical across either

the x or y-axis when ρ = 0, we insert this value of ρ in terms of σ1, σ2, γ. Now, we

can derive the Gaussian tuning function that represents our O-shaped tuning curves,

where c is the maximum amplitude of our tuning curves:

f(sss) = c∗exp
(
−1

2

(
(sss1 −µµµ1)2

σσσ21(1− tanh(γγγ)2)
+

(sss2 −µµµ2)2

σσσ22(1− tanh(γγγ)2)
+

(sss1 −µµµ1)(sss2 −µµµ2) tanh(γγγ)
σσσ1σσσ2(1− tanh(γγγ)2)

))
.

(15)

Interpreting this function in the context of our problem, the s1, s2s1, s2s1, s2 values are stimuli

pairs frequency s1 and intensity s2, and there are 5 parameters we are interested

in optimizing to investigate how each of them contribute to maximum MI: µ1, µ2µ1, µ2µ1, µ2

values are the centers of each tuning curve, this should be 20 pairs of values on the

frequency and intensity axes for our 20 neurons; σ1, σ2σ1, σ2σ1, σ2 are vectors of 20 tuning widths;

γγγ is a vector of 20 values determining the orientation of our tuning curves. We want

to try to understand what combination of these parameters contribute to optimal

2-dimensional neural coding.

Initializing each parameter similar to the 1D case, we begin the optimization

process with equal widths in both directions, evenly distributed peak locations across

both frequency and intensity values, and a vector of 0s for the orientations of 20

neurons. To further optimize our results, we perform the gradient ascent to maximize

MI with respect to µ1, µ2, σ1, σ2, γµ1, µ2, σ1, σ2, γµ1, µ2, σ1, σ2, γ on a Graphical Processing Unit (GPU) in the
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lab. As opposed to CPU on a laptop computer, GPUs have more cores than CPU

and hence when it comes to parallel computing of data, GPUs perform exceptionally

better than CPU. We are able to run more iterations at a faster time this way,

and obtain the 2D O-shaped tuning curves of 20 neurons, as seen in Figure 12. As

demonstrated by the plot of MI at each step of the gradient ascent algorithm in

Figure 14, we see as the number of iterations approach 20000, our MI increases fast

then slow to approach a constant value, suggesting we have found the maximum

MI for this set of 20 neurons. More importantly, if we compare this result to the

cricket soundtrack probability distribution plot as seen in Figure 13, we are able to

see that if a stimulus exhibit a high probability at a high frequency, then it has a

high probability of having high intensity (this is based on the marginal probability

density construction of our 2-dimensional p(s)). Here, the O-units that span across

the smallest frequency range and intensity range (top right corner), and the highest

density of O-units, are positioned at the relative high frequency and high intensity

values, which corresponds to the high probability region as determined by the prior

probability distribution p(s).
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Figure 12: 2D O shaped tuning curves
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Figure 13: 2D crickets natural stimuli probability distribution
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Figure 14: mutual information at each step of gradient ascent optimization algorithm for 2D O-shaped tuning
curves

One potential interpretation of the distribution of our O-shaped tuning curves

is that the optimal O shaped tuning curve should span across a small range of fre-

quency and intensity values, so that we can derive accurate and specific information

at that stimuli pair. Additionally, the orientations of the O-units appear to be most

optimally represented aligned with respect to the vertical and horizontal axes of the

two-dimensional stimulus space. While values of MI such as the ones in Figure 14

are difficult to interpret in absolute terms, we can gain insight by comparing maxi-

mum MI values computed in different conditions. Thus, in the following sections we

want to compare the approximated maximal mutual information value of 20 neurons

with purely O-shaped tuning, purely V-shaped tuning, or a mix of both shapes in

order to determine how optimal stimulus information is represented in a population

of neurons.
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3.2 2D V-shaped Tuning Curves

Next, we model “V”-shaped tuning curves with a similar 2D Gaussian function as

before, but now with a minor difference. This is because as the stimulus parameter in

the y-direction (sound intensity) increases, the V-shaped tuning curves span across a

larger range of frequency values; therefore, the tuning width in the x direction is de-

pendent of the intensity stimulus value. We represent this by writing σ1 as a function

of s2: σ1(s2) = β1β1β1(s2s2s2 − ααα), where ααα is a vector of threshold values for each neuron

to constrain s2s2s2 from falling below a certain value, and β1β1β1 is a multiplication param-

eter determining the widths of the tuning curves. Then, putting all the necessary

components into the tuning function, we get:

t = c ∗ exp

(
−1

2

(s1s1s1 − µxµxµx)2

(β1β1β1(s2s2s2 −ααα))2

)
tanh(β2β2β2(s2s2s2 −ααα)). (16)

Here, c once again controls the maximum firing rate of the tuning curve; s1, s2 are

the frequency and intensity of a stimulus randomly drawn from the prior probability

distribution and µxµxµx is the center of each of the 20 V-shaped tuning curve. Our goal

will be to optimize the MI with respect to the parameters µxµxµx,β1β1β1,ααα, and β2β2β2.

The tanh in Equation 16 restricts the function to have a maximum firing rate,

preventing the MI from growing indefinitely with increasing neural firing rate. Adapt-

ing each probability density function to reflect the V-shaped tuning curve behavior,

We perform gradient ascent as before to optimize the parameters in this new model.

The result of the optimization can be seen in Figure 15. As we can see, we derive

our desired V-shaped tuning curves. It is interesting to see the tuning widths to be

so narrow across the frequency stimuli, and rather evenly spaced locations spanning

across the intensity stimuli space.

As we plot MI again at each step of the gradient ascent iterations, we find the

plot reaching a maximum of approximately 0.0013 (see Figure 16). This relatively
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small value means that, given our relatively small number of neurons, we can tell little

about a stimulus given the neural response. Additionally, comparing this value to the

maximum MI from the O-shaped tuning curves, we can conclude that so far, O-shaped

tuning is the model that encodes more information about the natural stimuli. In the

next section, we investigate the case of a neural population with a heterogeneous

combination of O and V-shaped tuning curves, how this affects MI, and what the

results tell us compared to homogeneous population of O-shaped tuning curves or

V-shaped tuning curves.
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Figure 15: 2D V shaped tuning curves

28



0 1000 2000 3000 4000 5000 6000 7000
number of iterations

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

M
ut

ua
l I

nf
or

m
at

io
n(

M
I)(

bi
ts

)

Figure 16: mutual information at each step of gradient ascent optimization algorithm for 2D V-shaped tuning
curves

3.3 2D Mixed O/V-shaped Tuning Curves

To construct a tuning function that models a combination of “O” and “V”-shaped

tuning curves, we achieve this by combining 10 neurons with O-shaped tuning function

15 and 10 neurons with V-shaped tuning function 16. Now, we need to optimize our

mutual information with respect to 9 parameters: σ1σ1σ1, a vector of 10 tuning widths

across the frequency axis; σ2σ2σ2, a vector of 10 tuning widths across the intensity axis;

µ1µ1µ1, peaks of 10 O-shaped tuning curves on the frequency axis; µ2µ2µ2, peaks of 10 O-

shaped tuning curves on the intensity axis; µ3µ3µ3, peaks of 10 V-shaped tuning curves

on the frequency axis; γγγ, a vector of 10 values determining the orientation of O-

tuning curves; β1β1β1, a vector of 10 values determining the width of V-tuning curves;

β2β2β2, a vector of 10 multiplication factors for V-shape tuning curves; ααα, a vector of

10 intensity threshold values for V-shaped tuning curves. We proceed to update all

functions in the algorithm once more to analyze the mixed tuning curve distribution

and MI maximization with respect to these parameters. As plotted in Figure 17, we

see a distribution of O-shaped and V-shaped tuning curves obtained after performing
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this optimization. The convergence of MI during gradient ascent is shown in Figure

18. The final value of 0.005 is the second greatest MI out of the three cases that

we have considered, as visually represented in Figure 19, suggesting that our optimal

neural population might not take form in a heterogeneous population of neurons, but

rather a homogeneous distribution of all O-shaped tuning curves.
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Figure 17: 2D mixed shaped tuning curves

Another aspect of understanding these two-dimensional tuning curves that has

not been investigated by previous literature is how the orientations of O-shaped tun-

ing curves contribute to maximization of mutual information, and what amount of

auditory information is encoded in the orientation parameter ρ from Equation 14.

While previous experimental work [16] appears to suggest that tuning curves tend

to be aligned with respect to the vertical and horizontal axes of the two-dimensional

stimulus space, as shown in Figure 2, this does not appear to have been carefully

quantified. By adding this parameter ρ modeled in Equation 14 to the function char-

acterizing O-shaped tuning curves in Equation 15, we find that the optimal tuning

curves orientation that maximizes MI is not necessarily at a 90 degree angle, under
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Figure 18: mutual information at each step of gradient ascent algorithm for 2D mixed shaped tuning curves

Figure 19: mutual information comparison for each of the three neural representations we considered
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the condition of a heterogeneous population of qualitatively different tuning curves.

As we see in our 2D plot in Figure 17, the optimized tuning curves in many cases

display a tilted angle. Precise quantification of the specific degree of the tilt and

how it relates to optimal neural response representation is an area that would require

further research.
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4 Discussion

This thesis approaches a rather complex problem: understanding the neural re-

sponse representation of two-dimensional tuning curves, with a step-by-step analysis.

Starting with modeling 1D tuning curves with natural sound stimuli, we success-

fully find the optimal tuning width and tuning density associated with 20 arbitrary

neurons with a max firing rate of 10. In the case of 1D neural response to natural

sound stimuli, we find frequently occurring stimuli are optimally represented by high

densities of neurons with narrow tuning. This result not only confirms the findings

of previous studies [6], but it also provides the modeling framework for optimizing

neural representations for two-dimensional stimuli.

In the 2D case, motivated by experimental observations, we consider both O-

and V-shaped tuning curves in our model. Our mutual information maximization

and gradient ascent algorithm display two important findings: first, compared to V-

shaped neurons and a combination of V-shaped and O-shaped neurons, a distribution

of entirely O-shaped tuning appear to encode more information about natural stim-

uli. This can be seen from the MI comparison results in Figure 19 after performing

the optimization process for the three cases we considered. Second, the nuance ob-

servation that the orientations of O-shaped tuning curves in a population of neurons

with mixed response properties are not optimally represented by the aligned verti-

cal or horizontal positions, but rather at a tilted angle, sheds new light into further

investigations on this topic.

The result of our optimizations of the two-dimensional stimuli did not match our

hypothesis; therefore, we propose two possible reasons for this outcome: first, we

should more carefully update our models and repeat experiments to investigate the

result of our optimal tuning curves. Second, the auditory cortex does not actually

employ mutual information maximization technique to optimally represent natural

sound stimuli. Nevertheless, the methods and results of this research project help
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us better understand neural representation in the auditory cortex. This is because

our method produced satisfactory results in the one-dimensional case, as well as

the possible conclusion that O-shaped tuning curves truly serve as the optimal two-

dimensional stimulus representation. This is important to further research in auditory

neuroscience research, as a faithful representation of auditory stimuli in the auditory

cortex is an essential first step in auditory processing, especially when trying to un-

derstand the behavior of a large population of neurons.

We recognize the limitations of these results in addition to the discrepancy be-

tween our second hypothesis and result, and we propose possible solutions. First, a

larger data collection and more fine-tuned sound stimuli selection might increase the

accuracy of the results. Selecting 200s of a random natural sound from the Montana

State University database as stimuli is a good method for the time being; however, it

does not account for times where there are little to non-existent sound activity; fur-

thermore, a larger quantity of data would be even more representative of the natural

sound environment, for both the 1D and 2D cases. Next, modeling more than the ar-

bitrary 20 neurons we utilized in our computations, and investigating the robustness

of our optimizations by repeating each maximization many times to make sure that

the algorithm finds similar solutions each time, are both strategies we can implement

to improve the results.

An immediate future direction of this research project is to better quantify the

orientation parameter as well as any additional factors that impact neural response,

in addition to optimizing the Python code that contains the algorithm to fit larger

datasets. Furthermore, it will be interesting to apply our algorithm to explore how

neural representations of stimuli change with learning, for example in mice trained

to respond to a particular auditory frequency. One potential hypothesis is that more

neurons should be devoted to representing stimuli that are important for performing a

learned behavior. The outcome of this line of future work is to be able to predict what
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neural tuning curves should look like and how they should differ for different stimuli

before and after learning, which would be an exciting connection to not only the field

of neuroscience, but also other areas of studies such as linguistics and education. For

example, in understanding the role of active and passive language learning.
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