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Critically-sized bone defects experience delayed regeneration correlated to 

deficient protein signaling at the injury site. Delivering the potent growth factor bone 

morphogenetic protein-2 (BMP-2) to the defect is a promising clinical intervention to 

augment fracture healing in such cases. The release kinetics of BMP-2 from a hydrogel 

scaffold play a crucial role in the success of therapeutic delivery in terms of improved 

healing outcome. For instance, rapid BMP-2 release causes suboptimal bone formation. 

Affinity interactions between BMP-2 and binder proteins offer a mechanism to fine- 

tune the spatial placement and timing of exogenous BMP-2 bioactivity over the course 

of bone healing.  

Experimental selection techniques may identify such binder proteins from large 

protein libraries. However, experimental pipelines fail to reveal structural details of the 

protein-protein interaction and explore only a small subset of the possible sequence 

landscape for binding proteins. The computational design route is therefore an attractive 

strategy to rationally engineer a BMP-2 delivery control mechanism. In order to slow 

BMP-2 release, I first sought to directionally modify experimentally selected binding 

proteins with computational modeling and mutagenesis. Next, I generated de novo 
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protein binders hypothesized to retain BMP-2 via affinity interactions when conjugated 

to the hydrogel scaffold. I approached this challenge with well-established 

computational protein design methodologies to yield binding proteins with target 

surface site-specificity. I then developed a machine learning model to predict binding 

affinity for computationally modeled proteins. Finally, I sought to experimentally 

characterize my designed binders using yeast surface display and flow cytometry to 

validate in vitro that my computational pipeline generates functional designs, 

appropriate for controlled BMP-2 delivery. 
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Introduction 

Non-union fractures require medical intervention 

Each year, over 630,000 people suffer from non-union bone fractures in the US. 

Accounting for about 10% of fractures, non-union or delayed fractures result in the 

incomplete bridging of bone due to the extent and size of the bone and soft tissue 

damage [1].  These critically-sized injuries require further medical intervention due to 

the impairment of protein signaling pathways for regeneration. Researchers are 

increasingly investigating the delivery of therapeutic proteins or biologics to promote 

local regeneration via protein expression and signaling at the injury site [2]. Biologics 

may be native proteins that have endogenous bioactivity.  

The family of growth factors known as bone morphogenetic proteins (BMPs) 

offer potential as regenerative biologics. Members of the endogenous human BMP 

family, such as BMP-2, have various functions in development and tissue regeneration. 

To be effectively therapeutic in treating non-union bone fractures, exogenous BMP-2 

needs to be delivered to the site of injury at a high dose over the weeks and months of 

bone proliferation: the stage of healing that follows initial inflammation and precedes 

bone remodeling. BMP-2 acts during the proliferative stage of healing by signaling 

progenitor cells to differentiate into osteoblasts, or bone mineralizing cells [3].  

In order to accomplish effective BMP-2 biologic therapy, the protein must be 

delivered with optimal spatiotemporal control. Collagen sponges used for delivering 

BMP-2 locally to fractures are limited by their low retention rate. Rather than a slow 

and steady release over several weeks, the sponge burst releases large doses of BMP-2 

in the first 24 hours of delivery. The rapid release of biologic when employing a 
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collagen sponge delivery vehicle necessitates the use of above physiological doses of 

growth factor, leading to heterotopic ossification, a condition of abnormal superficial 

bone growth. To prevent this condition, BMP-2 needs to be delivered in a more gradual 

manner, a method called controlled release. To achieve slower, controlled release, 

researchers developed a novel approach utilizing designed hydrogels. Hydrogel 

biomaterials like hyaluronic acid and alginate have been explored for their cross-linking 

properties, which may control the release dynamics of the biologic. Alternatively, 

hydrogels may be fabricated with BMP-2 binding proteins, thereby mediating biologic 

delivery with affinity interactions [4]. In this method, a small protein is covalently 

linked to the hydrogel and allowed to interact with soluble BMP-2 during fabrication. 

By using small proteins that are known to bind to BMP-2 with a particular binding 

affinity, the growth factor is retained within the hydrogel scaffold more reliably, 

preventing burst release and sequestering endogenous growth factor for a naturally 

amplified therapeutic effect. 

The success of this approach relies heavily on obtaining BMP-2 binders with 

certain binding characteristics: proteins that bind BMP-2 moderately–in the low µM kd 

range–may afford a slow release rate or koff. These small protein binders can be 

obtained using magnetic bead sorting from a highly diverse affibody library. An 

affibody is a 58 amino acid long three helical protein scaffold with 13 variable positions 

(fig. 1). After magnetic bead sorting, affibodies that interact with the target protein 

undergo high- throughput analysis using yeast surface display and flow cytometry, or 

fluorescence activated cell sorting (FACS). The selected affibodies require further 

characterization and optimization to reach the desired binding affinity or kd [5]. This 
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experimental pipeline can achieve small protein binders with nM affinity, but fails to 

reveal any structural information about the site or orientation of binding. Moderate and 

low affinity binders identified by magnetic activated cell sorting (MACS) are 

susceptible to low specificity, which may lead to adverse off-target effects. Downstream 

optimization of protein binders without the aid of structural information is an inefficient 

and intensive experimental process, when compared to pipelines that utilize 

computational protein modeling. 

Fortunately, recent advances in the fields of computation and protein biophysics 

have eclipsed to enable researchers to obtain accurate structural models of 

biomolecules. Such molecular models can be used to investigate the intermolecular 

interactions that constitute binding and therefore efficiently guide functional design. For 

instance, a model of a protein’s predicted binding site can reveal favorable mutations at 

the protein-protein interface that strengthen the binding interaction through increase 

hydrogen bonding, thereby outcompeting other proteins. During my thesis project, I 

developed and implemented a series of computational modeling and design pipelines 

for generating better BMP-2 binders. 

Protein folding, modeling, and design 

From the experiments of Anfinsen, we know that protein sequence, or the length 

and order of the amino acid chain that makes up the primary structure of a protein, 

ultimately informs protein structure, or the 3D shape that the protein adopts [6] due to 

the minimization of energy during folding. While some proteins need assistance to fold 

into their native structure from molecular machines like chaperones, it is generally true 

that a protein with a given amino acid sequence will fold into one unique structure that 
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represents the most stable, or lowest energy, conformation of the protein [7]. This 

phenomenon is often denoted as the protein folding problem in the field of protein 

engineering as it opens the possibilities for us to predict a protein’s structure simply 

from its sequence. Indeed, many scientists have accepted the challenge of protein 

modeling and developed incredible computational tools capable of modeling proteins 

with atomic resolution from sequence information alone. 

The opposite of the folding problem is the design problem, wherein we can 

imagine ourselves moving backward from a final, folded protein structure to the optimal 

sequence that encodes that structure. In nature, proteins adopt incredibly diverse shapes 

to do incredibly diverse functions. While evolution is responsible for the naturally 

occurring proteins that we observe, we can now employ the decades of knowledge we 

have gathered about protein biophysics and biochemistry to explore the infinite possible 

structures that proteins can take on, conceptualized as structure space. Sequence space 

is the corresponding infinite combinations of amino acids that inform such structures. 

De novo design—meaning protein sequence optimization that does not derive from 

evolutionary information—enables protein engineers to probe the vast uncharted 

structure and sequence spaces that remain untouched by evolution but hold incredible 

potential for the design of novel molecular machines, biomaterials, and therapeutic 

drugs and vaccines [8, 9, 10, 11]. 

The osteoinductive growth factor, BMP-2, is just one member of a family of 

bone morphogenetic proteins, many of which share nearly identical structures, save for 

a few non-conserved regions [3]. To control biologic delivery in a protein-rich 

biological healing environment, it is crucial that binders interact with BMP-2 and not its 
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close relatives, some of which inhibit bone mineralization. In this project, I propose a 

pipeline for protein modeling and design augmented by machine learning to predict 

binding affinity to guide binder selectivity toward BMP-2 alone. 

Rational design approach  

Here, I will describe the computational approaches I took to efficiently obtain 

BMP-2 binders as well as the experimental methods to characterize them. In chapter 

one, I outline the modeling of existing affibody-BMP-2 interactions to modulate 

affibody affinity with mutagenesis. In chapter 2, I describe the steps I took to rationally 

design site-specific BMP-2 binders with novel topologies. Finally, chapter 3 covers the 

machine learning models that I explored in order to develop an algorithm for multi-state 

design of selective BMP-2 binders. 

Both modeling and design of proteins and their intended interactions require the 

parameterization of biophysical and chemical forces acting on the constituent atoms of 

the proteins and their environment in order to accurately represent the natural biological 

system. I used Rosetta, a modular software suite which enables the generation of 

custom protein modeling and design pipelines [12], to reveal the structural basis of the 

BMP-2-affibody interaction as well as design novel interactions. To increase the 

success of novel designs, motifs or structural elements of a native binding interactions 

are extracted from crystal structures of natural protein-protein complexes and seeded or 

grafted into the backbone of a de novo scaffold, in a technique called motif-grafting 

[13]. This technique can be used to guide the site-specificity of a design, or the 

likelihood of designed binders to interact with one particular surface on a target protein. 
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Recently, protein designers have been hoping to move away from this technique, 

instead generating new computational pipelines that use the structure of the target 

protein alone to guide binder design, relying on highly accurate protein modeling and 

efficient sampling of sequence and structure space [14,15]. The advantage of these new 

methods is that design would no longer rely on the existence of relevant and accurate 

crystal structures. While promising, these pipelines have extremely low success rates 

and must be further improved to rival the efficacy of motif-grafting. Also at the 

forefront of the field is the development and implementation of machine learning to 

rapidly predict properties of proteins or protein-protein interactions, which can then be 

iterated with computational design for more robust exploration and exploitation of 

sequence and structure space [11, 16]. 

To computationally design site-specific and selective protein binders I use 

Rosetta, which employs physics- and heuristics-based calculations to assess the free 

energy of a protein structure. The field of protein engineering generates massive 

amounts of biophysical and statistical data, allowing researchers to leverage the power 

of machine learning for protein classification and prediction problems. To utilize data 

science for binder design, I developed a machine learning model that will predict the 

binding affinity between two proteins using Rosetta metrics as input. In the future, I will 

incorporate this ML model into an iterative sequence exploration and optimization 

program for multi-state design of binder proteins.  
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Chapter 1: Computational Modeling of Affibody-BMP-2 Interactions 

Introduction 

Advances in computational protein structure prediction and docking, or the 

process of modeling protein-protein interactions (PPIs), have enabled researchers to 

predict the structural basis of binding with atomic level accuracy. Such high resolution 

is crucial as many PPIs depend upon the participation of particular atoms in 

intermolecular interactions. Hydrogen bonding, electrostatic interactions, and 

hydrophobic packing interactions help to stabilize the PPI, making the overall process 

of binding energetically favorable. Here I use computational modeling tools to 

investigate the binding interactions of affibodies against BMP-2 that are experimentally 

selected and characterized from a large library. Models of such PPIs offer a structural 

basis for further optimization and downstream characterization, such as the prediction 

of affibody mutants with different binding affinities. I hypothesized that affibodies 

would bind to one of the two receptor binding sites or epitopes on the BMP-2 surface. 

These epitopes have been characterized with X-ray crystallography and have been 

named the “wrist” and the “knuckle” to indicate their resemblance to the corresponding 

parts of hands, wherein the BMP-2 dimer is akin to a handshake (fig. 6). 

My pipeline begins with structure prediction of affibodies, then docking of the 

PPI, then mutant prediction. While recent advances in deep learning have made 

structure prediction less challenging, docking continues to be a challenging modeling 

problem within computational structural biology. As a result, I have designed a pipeline 

that utilizes several checkpoints and iterations to refine docking models. Models of 

affibody-BMP-2 interactions confirm that affibodies prefer to bind to the “wrist,” a 
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helical binding epitope of BMP-2, where BMP-2 cofactors and type 2 extracellular 

receptors bind physiologically to begin the BMP-2 signal transduction pathway for bone 

mineralization. This docking model provides insight into a targetable binding site for 

the design of novel BMP-2 binders and atomistic detail for rational design. 

Computational design of affibody mutants with affinity for BMP-2 in the low 

micromolar range, could offer more physiologically optimal release from a hydrogel 

into a bone fracture while minimizing off-target interactions. Binding interactions with 

serum proteins like fibronectin have been previously shown to accelerate BMP-2 

release, causing uncontrolled temporal and spatial delivery and, as a result heterotopic, 

abnormal bone growth. Therefore, specificity in binding is crucial. In the future, I 

would endeavor to model affibody interactions with serum proteins like fibronectin and 

proteins intended to be co-delivered with BMP-2, such as FGF and GMCSF. 

Methods 

Computational 

Public servers and the University of Oregon Talapas server are used to perform 

computational protocols. Rosetta licensed for the Hosseinzadeh lab is used to perform 

all RosettaScripts protocols. PyMOL is used for molecule visualization. The python 

pandas package is used for data analysis and matplotlib and seaborn are used for data 

visualization. 

 

Structure prediction and preparation 

Collaborators in the Hettiaratchi lab at University of Oregon obtained Sanger 

sequencing (Azenta) results of affibody vectors (Appendix 2) and translated them into 
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amino acid sequences (Expasy). I input the affibody amino acid sequences into 

AlphaFold to predict the structure of the affibodies (as well as Robetta, however I used 

AF results for modeling). I stored the output 3D protein structures as PDB files. I then 

input PDB files into a RosettaScripts program running FastRelax to minimize the 

energy of predicted structures. FastRelax optimizes the protein structure through 

stochastic and iterative backbone and side chain packing while ramping up repulsive 

forces to model atomic packing, and generated PDB outputs. 

 

Interface analysis of affibody-BMP-2 interaction 

I input relaxed structures as PDB files into ZDOCK, an online server for docking which 

outputs a file with the top ten docking predictions. These predictions are relatively low 

refinement. They have not yet been characterized using the handpicked metrics of the 

Rosetta score calculation, a weighted value which approximates free energy based on 

physical and heuristic models. I completed initial visual inspection of the top ten 

predictions from ZDOCK using PyMOL. In order to probe specific biophysical features 

at the interfaces of these predicted PPIs to explore the metrics which most influence 

binding affinity, I wrote an interface analysis RosettaScripts program (Appendix 1) to 

calculate these features and output them for each prediction in an array structure. I 

analyzed the computational feature data in Jupyter Notebooks. 

 

Ensemble analysis 

Protein-protein interactions are dynamic in physiological circumstances, allowing for 

small movements of atoms and even the macromolecules themselves, in relation to one 
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another. Therefore, modeling a protein’s dynamics may improve interface analysis of a 

binding interaction. I generated a collection of decoys, or PPI conformations, that would 

model the diversity of these structures. Ensemble generation and metrics on each decoy 

were performed in another Rosetta program that utilized an algorithmic “mover” in 

RosettaScripts called BackrubDDMover. This mover makes small movements in the 

backbone to model the movements that would occur physiologically upon binding of 

the affibody to BMP-2. I analyzed the ensemble of decoys using interface analysis 

metrics (Appendix 1). 

 

RosettaDock 

I performed refined docking to more precisely model the positions of atoms in the 

affibody-BMP-2 complex using the RosettaDock application. This program samples a 

large number of decoys and assesses the thermodynamic parameters associated with 

each. I generated 2000 decoys for protein dynamic analysis. I analyzed the biophysical 

data output for all decoys using Pandas in Jupyter Notebooks. I then selected one low 

energy decoy as the final, refined PPI model. 

 

Computational site-saturation mutagenesis 

I performed computational site-saturation mutagenesis (SSM) in order to investigate the 

individual contributions and importances to binding of each interfacial residue of the 

affibody. This approach selects all residues of the affibody that occur within 8 

angstroms of BMP-2, mutates them to all twenty amino acids, and records the delta 

delta G (ΔΔG) or free folding energy of each point or single mutation. ΔΔG is a proxy 
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for binding energy in the case of protein complexes. I input each refined docking 

prediction from RosettaDock into a RosettaScripts program which performs 

computational SSM using an algorithmic mover called GreedyOptMutationMover. The 

recorded ΔΔG data is stored in a table where the rows are the residue numbers and the 

columns are the amino acids to which that residue is mutated. The table values store the 

ΔΔG for each single mutant. I visualized the tabular output with a seaborn heatmap in 

Python (Appendix 1). 

 

Mutant generation 

I generated single mutants from computational SSM by visualizing the wild type 

affibody in PyMOL and using the Wizard feature to mutagenize the original residue to 

the mutant residue. This is done for each single mutant. To minimize the energy of 

these manually generated mutants, I then used the RosettaScripts platform to perform a 

relax on the PDBs. These relaxed point mutants are then ready to be computationally 

assessed for BMP-2-binding ability. 

 

Point Mutant Docking 

Point mutants are docked using RosettaDock with the same protocol used for the wild 

type affibody-BMP-2 PPIs and subsequent data analysis in Python is performed to 

assess the docking using 2,000 decoys (Appendix 1). 

 

Experimental 
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I selected six single mutants of one of the modeled affibodies to be experimentally 

characterized in order to validate the accuracy and efficacy of the computational 

pipeline for generating affibody mutants. 

 

Site-directed mutagenesis primer design 

For site-directed mutagenesis to obtain G3C1 affibody mutants, I manually designed 

forward and reverse primers to have melting temperatures (Tm) within 1.5ºC of each 

other. The primer pairs have overlapping regions less than half the length of the full 

primer length (colored in red and blue) which include the mutated residue codon 

(lowercase). The overlapping and non-overlapping primer regions were designed to 

have Tm within 5-10ºC of each other. I analyzed heterodimer Delta G of each primer 

pair and checked overlap length using the IDT Codon Analyzer Tool. I translated the 

forward primer (red and black) from a nucleotide sequence into an amino acid sequence 

using Expasy Translate to confirm the mutation. I performed NCBI nucleotide Blast for 

each primer, where the primer was the query and the pCT40 vector including G3C1 

affibody sequence was the subject. 

 
V28W 
5' CAGAGAtggGCATTCGCGCGGGCACTGTATAACGAC ; Tm=68.8 ºC, length=36 
5' CGAATGCccaTCTCTGACCCTGGGTCAGGTTCGG ; Tm=69.1 ºC, length=34 
heterodimer Delta G: -31.57 kcal/mole, Base Pairs: 16 
Expasy translated forward primer amino acid sequence: QRWAFARALYND 
NCBI Nucleotide Blast: forward primer alignment: 33/36, reverse primer alignment: 
31/34 
 
V28T 
5' CAGAGAaccGCATTCGCGCGGGCACTGTATAACGAC ; Tm=68.8 ºC, length=36 
5' CGAATGCggtTCTCTGACCCTGGGTCAGGTTCGG ; Tm=69.2 ºC, length=34 
heterodimer Delta G: -31.97 kcal/mole Base Pairs: 16 
Expasy translated forward primer amino acid sequence: QRTAFARALYND 
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NCBI Nucleotide Blast: forward primer alignment: 34/36, reverse primer alignment: 
32/34 
 
V28D 
5' CAGAGAgacGCATTCGCGCGGGCACTGTATAACGAC ; Tm=68.5 ºC, len=36 
5' CGAATGCgtcTCTCTGACCCTGGGTCAGGTTCGG ; Tm=, len=68.8 ºC, len=34 
heterodimer Delta G: -30.13 kcal/mole Base Pairs: 16 
Expasy translated forward primer amino acid sequence: QRDAFARALYND 
NCBI Nucleotide Blast: forward primer alignment: 35/36, reverse primer alignment: 
33/34 
 
A33Q 
5' GCGCGGcagCTGTATAACGACCCGTCCCAGAGCTCTG ; Tm=71.6 ºC, len=37 
5' ATACAGctgCCGCGCGAATGCGACTCTCTGACCCTGGGTC ; Tm=72.4 ºC, 
len=40, heterodimer Delta G: -33.73 kcal/mole Base Pairs: 15 
Expasy translated forward primer amino acid sequence: ARQLYNDPSQSS 
NCBI Nucleotide Blast: forward primer alignment: 34/37, reverse primer alignment: 
37/40 
 
A33L 
5' GCGCGGttgCTGTATAACGACCCGTCCCAGAGCTC ; Tm=70.1 ºC, len=35 
5' ATACAGcaaCCGCGCGAATGCGACTCTCTGACCCTGGG ; Tm=71.2 ºC, 
len=38, 
heterodimer Delta G: -32.28 kcal/mole Base Pairs: 15 
Expasy translated forward primer amino acid sequence: ARLLYNDPSQS 
NCBI Nucleotide Blast: forward primer alignment: 32/35, reverse primer alignment: 
35/38 
 
A33Y 
5' GCGCGGtatCTGTATAACGACCCGTCCCAGAG ; Tm=66.6 ºC, len=32 
5' ATACAGataCCGCGCGAATGCGACTCTCTGACCCTG ; Tm=67.7 ºC, len=36 
heterodimer Delta G: -29.25 kcal/mole Base Pairs: 15 
Expasy translated forward primer amino acid sequence: ARYLYNDPSQ 
NCBI Nucleotide Blast: forward primer alignment: 29/32, reverse primer alignment: 
33/36 
 
Vector and vector linearization 

The pCT40 vector from Dane Wittrup (Appendix 2) is used here for characterization 

with yeast surface display and flow cytometry. Vector is extracted from one of the 

experimentally selected affibody cultures using the yeast plasmid extraction kit from 

Zymoprep. The vector is then linearized and amplified using primers on the outside of 
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the affibody sequence region and PCR. The PCR product concentration is measured 

using Nanodrop spectrophotometry. I obtained linearized vector which excludes the 

affibody sequence to enable yeast homologous recombination. I linearized vectors using 

forward and reverse primers outside the affibody sequence. I followed the Takara Bio 

HiFi PCR Premix Quick Protocol for linearization PCR (Thermocycler). I digested PCR 

product using Dpn1 restriction enzyme according to the Dpn1 digest protocol from 

NEB. I ran a 1% agarose gel to confirm the linearized plasmid size. 

 

G-Block mutant sequence design 

For homologous recombination to obtain G3C1 affibody mutants, I designed seven 

double stranded DNA segments–one positive control and six mutant sequences– 

intended for transformation into competent yeast along with linearized pCT40 vector, 

which excludes the affibody sequence. Yeast perform homologous recombination to 

join dsDNA inserts (g-blocks) to pCT40 using overlapping regions of the vector from 

17-30 base pairs long. I used the IDT Codon Optimization Tool for Saccharomyces 

Cerevisiae to translate amino acid sequences into nucleotide sequences. We ordered 

final g-block sequences from IDT. Sequences and g-block details in Appendix 2. 

 

Homologous recombination and yeast transformation 

Yeast cells possess the ability to perform homologous recombination in vivo, potentially 

increasing the efficiency of in vitro experimental manipulation to insert the mutant 

sequence into the vector for expression into EBY100 chemically competent yeast. 
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Linearized vector and mutant affibody g-blocks (IDT) are transformed into yeast using 

the frozen EZ yeast transformation kit (Zymoprep). Yeast are recovered for half an hour 

in 5ml YPD (Hackel) and then plated in a 2000X dilution of PBSA onto SDCAA 

(Hackel). 

 

Liquid culture plasmid extraction and Sanger sequencing 

Half of a transformed colony grown on SDCAA is inoculated into 5ml SDCAA liquid 

media and grown for 16-18 hours at 30˚C and 250 rpm. 1.5mL of this culture is used to 

extract yeast plasmid according to Miniprep kit instructions (Zymoprep) and eluted in 

15ul DNA elution buffer. A sample of 5-7 ul of pure plasmid at at least 50ng/ul is 

submitted to same-day Genewhiz Sanger sequencing using the Azenta platform and 

primed off-site using T7 primer. Sequences are analyzed first in CLC Sequencer and 

then compared to target sequences using NCBI Nucleotide Blast and Expasy Translate 

public online servers. 

 

Flow cytometry on yeast surface display 

Samples for flow cytometry are prepared according to Benjamin Hackel et al. protocols 

used by the Hettiaratchi lab. One colony from the mutant affibody sample plated on 

SDCAA is used to inoculate 15ml SDCAA with ampicillin (100 mg/ml) and 

ciprofloxicin (1 mg/ml) and cultures are grown in a 125ml baffled flask at 30˚C, 

250rpm for 18 hours. Cultures are then centrifuged at 5000g for 3 minutes and the pellet 

is resuspended in 1ml of SGCAA and added to 15 ml SGCAA with ampicillin and 

ciprofloxicin and incubated in 125ml baffled flask at 30ºC, 250rpm for 24 hours. 
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Cultures should be cloudy. Cell densities are measured using a Countess machine and In 

Vitrogen Countess slides (3ul from cell culture added to 597ul PBSA; 10ul added to 

slide; cell concentration recorded as two orders of magnitude greater than the Countess 

reading provided). One million cells are used for each sample for flow cytometry. Flow 

cytometry (FC) experiments should be conducted with a positive control, negative 

control (EBY100 grown in YPD), and experimental sample. For each sample (controls 

and treatments), FC is run on wells with cells only, secondary antibody solution and 

cells, secondary antibody solution and 2.5 ul anti-C-myc antibody and cells, secondary 

antibody solution and 2.5ul anti-HA antibody and cells, secondary antibody solution 

and biotinylted BMP-2 and cells, secondary antibody solution and biotinylated BMP-2 

and anti-C-myc antibody and cells, or secondary antibody solution and biotinylated 

BMP-2 and anti-HA antibody and cells (7 wells per sample). Secondary solution 

contains Alexa Fluoraphore 647 and Alexa Fluoraphore 488 (333nM). 

Flow cytometry experiments are conducted on the BD6 Acuri automated flowcytometer 

(FC). Limits of 10,000 events, 150ul, and 3 minutes are set under manual controls. The 

medium flow setting is used for FC experiments. After primary antibodies and/or BMP-

2 and cells are mixed in Eppendorf tubes, samples are shake incubated in 4ºC for 1 

hour. Samples are then washed with 500ul PBSA and resuspended in 50ul secondary 

antibody solution (except cells only samples which are resuspended in 200ul PBSA and 

set aside). Samples are incubated in dark conditions and 4ºC for 15 minutes before 

being washed twice with with 500 and then 800ul PBSA and resuspended in 200ul 

PBSA for transfer to a chilled, flat-bottom 96-well plate. 
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Results 

My computational pipeline to model protein-protein interactions between BMP-2 

and several affibodies revealed a consistent affibody preference for the wrist epitope of 

BMP-2. Prior to modeling, our collaborators obtained Sanger sequence data of seven 

affibodies selected from a large library during MACS to obtain functional 

protein binders. Affibody library diversity is produced by 17 variable residues out of the 

total 58 residues of the affibody scaffold (fig. 2a). 

With unique affibody sequences as input, I predicted structures of affibodies using 

Robetta and AlphaFold, both of which generate confidence plots upon prediction. 

Confidence plots from AlphaFold show that five out of seven affibodies are predicted 

with high confidence, above 70% pLDDT or predicted local difference distance test 

score, while the other two affibodies are less confident overall (fig. 2b). The predicted 

3D structures of affibodies correspond with these results, showing that five of the 

affibodies are regularly structured in three well-defined alpha helices (fig. 2c) while two 

of the affibodies are less tightly packed (fig. 2d), in addition to being less confidently 

predicted. 

I then did a low-refinement docking in the publicly accessible server, ZDOCK. 

ZDOCK outputs its top ten structures for each PPI (fig. 3), which I then minimized 

using FastRelax in Rosetta, a step to computationally optimize the complex structure 

using small torsion movements. This outputs a “score" file where the lowest scoring 

complex out of ten, whose score is based on the Rosetta energy score function, is 

chosen as the lowest energy and therefore most likely to occur. In addition, I analyzed 

the affibody-BMP-2 interface using other biophysical metrics such as ΔΔG and SASA. 
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Data analysis in which I compared the metrics of different predictions against one 

another led to a deeper understanding of the likely preferences of the affibodies toward 

certain sites of BMP-2 due to both geometric and chemical interaction predictions and 

calculations. 

Ultimately, score (a Rosetta weighted energy term in REU, Rosetta energy units), 

ΔΔG (or change in free folding energy), shape complementarity (or geometric surface 

fit), and SASA (or solvent accessibility) led me to select three out of ten of the ZDOCK 

outputs to further characterize (fig. 4). 

Data analysis on ensembles rather than singular protein interactions offers a more 

holistic view of the PPI and its dynamics. In order to model the effect of dynamic 

movements on the favorability of each of the three chosen protein-protein interactions, I 

generated ensembles of complex decoys, or slightly moved conformations of the 

complex between an affibody and BMP-2, using the BackrubDD mover of Rosetta. For 

all decoys, I plotted the distribution of the score value. Data analysis of the RosettaDock 

output demonstrates a positive correlation between root mean square (RMS) and 

thermodynamic features of the PPI, essentially showing that more energetically 

favorable PPI conformations have a particular structural distinction from the starting 

input structure. A funnel shape in the graph of RMS versus interface score (I_sc) shows 

that the PPI falls into an energetic minima for a folded and bound structure. The lowest 

energy, and therefore most favorable, decoy is selected from RosettaDock as the most 

refined conformation. The violin plots corresponding to each complex demonstrate that 

two out of the three complexes were more favorable, having a lower score distribution 

(fig. 5). 
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Not only were they more favorable, these two complexes both showed that the 

affibody docks to BMP-2 in a well-defined pocket of the BMP-2 protein known as the 

wrist. This pocket or epitope is the location of BMP-2 binding to one of its two 

receptors. The other binding epitope on the surface of the BMP-2 protein that 

participates in receptor-binding is known as the knuckle and consists primarily of a 

twisted beta sheet (fig. 6). Seven affibodies structures were predicted and docked to 

BMP-2 using ZDOCK and RosettaDock, demonstrating the preference of the affibody 

scaffold, a three helical bundle topology, for the wrist epitope. This preference is likely 

due to the well-matches shapes of the secondary structures of the BMP-2 wrist and the 

affibody scaffold, whose surface exposed side chains may make hydrophobic, as in the 

case of leucine, or hydrogen bonding interactions, as in the case of aspartic acid. 

In order to explore the modulation of affibody affinity for BMP-2, I used 

computational site saturation mutagenesis (SSM) to compute the change in ∆∆G as a 

result of the in silico mutation of each interface residue of the affibody to all 19 other 

amino acids. Experimental methods such as alanine scanning, mutating residues to 

alanine, or deep mutational scanning (DMS), in which site saturation mutagenesis is 

followed by deep sequencing, are costly and labor intensive in comparison to 

computational SSM. In order to perform computational mutagenesis, I used Rosetta’s 

GreedyOptMutationMover and decided to focus my data analysis on point mutations 

which increased ∆∆G, from more favorable, negative values, to less favorable, positive 

values (fig. 7). I binned these point mutations into low, medium, and high change and 

selected 2-3 PMs from each bin. I selected point mutants for each affibody based on 

both the heatmap visualizations of change in ∆∆G (fig. 7) and visual inspection of side 
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chain contact at the interface with PyMOL. These mutants are predicted to resukt in a 

less favorable ΔΔG, suggesting that the binding interaction between the mutant and 

BMP-2 is weaker than the wild-type interaction. A weaker binding interaction that still 

results in binding at the computationally predicted site is here hypothesized to generate 

binders which have micromolar affinity and an increased release rate over a 

physiological relevant timescale (months) in which bone healing occurs. Point mutants 

that result in less favorable ΔΔG are then binned according to change in ΔΔG and 

several point mutants are selected for computational assessment prior to experimental 

characterization. 

To computationally generate point mutants, I used the mutagenesis Wizard tool in 

PyMOL and relaxed subsequent point mutants with Rosetta’s FastRelax protocol to 

energetically minimize the structures before docking them to BMP-2 with RosettaDock. 

Point mutants that were predicted to dock to the BMP-2 wrist epitope demonstrated a 

characteristic funneling during docking toward 0 rms from the input structure and the 

lowest I_sc or interface score. I selected six point mutants of the G3C1 affibody to 

characterize experimentally (fig. 8). I generated point mutant nucleotide sequences by 

modifying Sanger sequencing results of the original affibody (Appendix 2) to 

incorporate the point mutation optimized for yeast expression. I first attempted to 

experimentally mutagenize the G3C1-affibody sequence contained within the pCT40 

vector using site directed mutagenesis with non-overlapping and partially overlapping 

primer sequences. The low efficiency of this method led me to try using yeast 

homologous recombination in order to experimentally generate mutants instead. I 

expressed point mutants in competent yeast through transformation and homologous 
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recombination, confirming mutant expression using clonal PCR or overnight 

amplification and Sanger sequencing. Results of the initial flow cytometry analysis of 

these mutants have been inconclusive due to the growth of negative controls and the 

lack of induction of yeast to express mutant affibodies. Future reports will detail the 

results of more extensive flow cytometry analysis and binding affinity measurements. 

Conclusion 

Modeling affibody conformation and docking has provided structural insight 

into the interaction between binding affibodies and BMP-2. Affibodies are predicted to 

bind the wrist epitope of BMP-2, a function site on the protein. Computational SSM 

further probes the specific residues that contribute strongly to binding and can thus 

modify the binding dynamics if mutated. I have selected and experimentally 

characterized such mutants with the goal of weakening the original affinity of the 

binding interaction for more effective and physiologically relevant BMP-2 release into 

regenerating bone tissue. As computational simulations of energetic force fields and 

heuristic protein features improve, models of protein-protein interactions become a 

more enticing tool for protein engineering. The relative simplicity of the modeling 

pipeline described here allows the tools and models to be increasingly accessible. 

Ultimately, my PPI models of affibodies and BMP-2, as well as the modeling pipeline 

itself, will continue to direct protein engineering efforts in BMP-2 delivery to augment 

bone healing. 
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Chapter 2: Rational Design of Novel BMP-2 Protein Binders 

Introduction 

In physiological BMP-2 signaling, the growth factor simultaneously engages 

with two receptors on the surface of osteoblast progenitor cells, which triggers a signal 

transduction cascade resulting in the differentiation of the precursor cell to the 

osteogenic cell. BMP-2 binds its two receptors using two unique epitopes: the wrist and 

the knuckle. Solved X-ray crystal structures of BMP-2-receptor interactions offer 

researchers a structural understanding of BMP-2 activity in development and bone 

regeneration. Structural characterization can be efficiently translated into clinically 

relevant work on therapeutics and biologic delivery mechanisms. On the other hand, 

experimental selection pipelines which use magnetic bead sorting or fluorescence 

activated cell sorting to select BMP-2 binders require downstream optimization and 

characterization. Such pipelines fail to perform site-specific selection resulting in a lack 

of structural information about binding, such as the interacting surfaces, residues, and 

orientations. 

Protein structure prediction of experimentally selected affibodies indicates 

highly conserved scaffold structure. Due to the conserved protein topology of the three- 

helical affibody library, we hypothesized that binders would prefer to bind one specific 

site regardless of the availability of other sites or epitopes on the target protein. For 

these reasons, rational binder design using computational methodologies offers 

advantageous control over the selectivity and specificity of the binder to a particular 

target site and access to more than one site on the target protein using a variety of sized 

and shaped scaffolds for design. In this project I perform design of novel binders to two 
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prominent epitopes for native receptor-binding to BMP-2 with the computationally 

intensive but effective algorithms and force field approximations of Rosetta. Low 

throughput and high throughput pipelines for novel binder design are described here. I 

then outline the pipeline to experimentally characterize designs using yeast surface 

display and flow cytometry analysis or fluorescent activated cell sorting (FACS) and 

deep Illumina sequencing. In the future, structure-guided design of BMP-2 binders may 

be extended to even more surfaces on the target protein for wider functionality and 

deliverability. 

Methods 

Computational 

Public servers and the University of Oregon Talapas server are used to perform 

computational protocols. Rosetta licensed for the Hosseinzadeh lab is used to perform 

all RosettaScripts protocols. 

 

Scaffold library generation 

Stable, mini-protein scaffold libraries from Rocklin (2017), Strauss (2021), and 

truncated scaffolds from Brunette (2019) are collected and used for motif grafting. 

Truncation of helical repeat proteins from Brunette 2019 was accomplished by manual 

selection of highly resolved scaffolds designed without disulfide bridges and 

visualization in PyMOL to truncate the scaffold after the fourth helical repeat. The 

surface was then redesigned to stabilize the newly solvent-exposed region of the 

scaffold with Rosetta, written up in a script called designsurface.xml (Appendix 1). 

Scaffolds range from 38-98 amino acids in length. 
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Motif grafting 

Native binding motifs were extracted from crystal structures of BMP-2 and RGMC 

(PDB ID: 4ui1) or ALK1 (PDB ID: 6sf2) to seed design at the wrist epitope and 

knuckle epitope of BMP-2. Motif grafting was then performed in RosettaScripts with 

the MotifGraft Mover. Motif_graft.xml is contained in Appendix 1. 

 

Graft diversification 

Outputs from wrist motif grafting were diversified using BackrubDD Mover for the 

high throughout pipeline. This step was omitted for low throughput design. In the high 

throughput pipeline, over 75,000 designs were generated after this step, in which each 

successful graft was diversified approximately 20-fold. Backrub_grafts.xml is contained 

in Appendix 1. 

 

Sequence optimization and interface minimization 

The FastDesign Mover in RosettaScripts was used to optimize sequences for the BMP-2 

interface and for hydrophobic packing in a script called optimize_sequence.xml 

(Appendix 1). In the high throughput pipeline, special care was taken to prevent the 

redesign of loops, prolines, glycines, and core residues. The interface was then 

minimized with the FastRelax mover to improve packing and rotamer positioning. 

 

Filtering 

Designs were then filtered in the low throughput pipeline using several metrics 

including score, ddg, sasa, packstat, shape complementarity, interface holes, and buried 
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unsatisfied polar atoms. For LTP: score < 0, ddg_norepack < 0, shape_complement > 

0.6, packstat > 0.6, interface_holes < 1.5, and buried_unsat < 1. The high throughput 

pipeline was similarly filtered using metrics inspired by those used in the thesis work of 

Brian Coventry (2021). For HTP: score < 0, cms > 450, ddg_norep < -30, 

mismatch_probability < 0.5, contact > 100, and t_sap_score < 50. The low throughput 

pipeline yielded nine promising designs that were subsequently docked using 

RosettaDock with the same protocol as described in chapter 1 and narrowed down to six 

designed for experimental characterization based on visual inspection of cavities, 

hydrophobic interactions, and hydrogen bonding networks using PyMOL. For the high 

throughput pipeline, 1017 designs passed the HTP filters. 

 

Experimental 

Six low throughput designs were selected to be experimentally characterized in order to 

validate the accuracy and efficacy of the computational pipeline for generating novel 

BMP-2 binders to the wrist and knuckle epitopes. 

 

Library primer design 

The high throughput pipeline yielded more than 1000 designs to test, generating the 

necessity to design and synthesize a library for yeast transformation. Primers for flow 

cell attachment and synthesis reaction sequencing for Illumina were designed and 

ordered through IDT. G-blocks for design sequences were ordered through Twist. 

 

Vector 
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The pCT40 vector from K. Dane Wittrup (Appendix 2) is used here for characterization 

with yeast surface display and flow cytometry or FACS. Vector is extracted from one of 

the experimentally selected affibody cultures using the yeast plasmid extraction kit from 

Zymoprep. The vector is then linearized and amplified using primers on the outside of 

the design sequence region and PCR. The PCR product concentration is measured using 

Nanodrop spectrophotometry. 

 

Homologous recombination and yeast transformation 

Same protocol as described in Chapter 1 methods. 

 

Flow cytometry and FACS for yeast surface display 

Same protocol as described in Chapter 1 methods. 

Results 

One primary concern in the design of protein binders to native, or naturally 

occurring, targets such as BMP-2 is non-specific or off-target binding, which may cause 

aberrant signaling and other off-target effects. To prevent non-specific interactions, I 

began the design of site-specific BMP-2 binders by identifying structural elements that 

have been experimentally validated through X-ray crystallography and are known to 

interact with BMP-2 in endogenous human protein signaling pathways. Since these 

structural elements, often 4-14 amino acids in length, are known to directly interface 

with BMP-2 in nature, they can be used as seeds to generate novel binders. These 

structural elements are called motifs and the process of generating whole protein 

binders around them is called motif grafting (fig. 9). The native binding interaction 
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between BMP-2 and its cofactor RGMC, also known as hemojuvelin, provides a motif 

to guide the de novo design of protein binders with specificity toward the wrist epitope 

of BMP-2 (fig. 10). The wrist epitope consists of an alpha helix and a loop, both of 

which interact with the interfacial alpha helices of RGMC, as demonstrated in the 

crystal structure of the BMP-2-RGMC complex (PDB ID: 4ui1). Alpha helical-alpha 

helical interactions such as this one are often made favorable by both hydrophobic 

interactions. I chose to extract a binding motif from RGMC due to the rigidity and high 

predictability of the interfacial structural element, here, an alpha helix. The wrist 

epitope of BMP-2 binds to other proteins, like BMP receptors, but these interactions 

contain several loop regions, which are less predictable and relatively harder to design 

with than alpha helices. 

In order to design binders that are site-

specific to the knuckle epitope of BMP-2, I 

extracted a structural binding motif from a 

receptor that uses a beta sheet to make a 

specific interaction with the beta sheet of the 

knuckle (PDB ID: 6sf2). Such beta sheet-beta sheet interactions are challenging because 

they rely on hydrogen bonding (fig. 11). Hydrogen bonds use polar contacts, atoms that 

can either accept or donate a proton to maintain this relatively strong non-covalent 

interaction. In fact, hydrogen bonds between water molecules, which are polar 

molecules, are responsible for the surface tension we observe in nearly spherical 

droplets of water and the high heat required to boil a pot of water, which breaks these 

bonds to release individual water molecules as gas particles. In the case of the BMP-2 
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knuckle epitope, hydrogen bonding between two beta sheets requires the sheets to be 

parallel, which is complicated by the twisted conformation of the knuckle’s beta sheet. 

Therefore, guiding design with a native-binding beta sheet motif increases the 

likelihood of maintaining that parallel interaction geometry. My colleague is also 

working on the design of BMP-2 knuckle binders using a beta-sheet extension pipeline 

developed by Sahtoe et al (2021). This program builds out a beta sheet binding element 

by analyzing the beta sheet of the knuckle epitope and generating a novel motif to guide 

specific binder design. 

The binding motif alone is not stable enough to deliver BMP-2 to a bone 

fracture. Like intermolecular interactions interactions, favorable intramolecular contacts 

may stabilize a polypeptide, allowing it to maintain a stable 3D structure. Additionally, 

larger and more complex proteins than these motif peptides may increase the specificity 

and strength of the interaction by making favorable contacts with other BMP-2 surfaces 

near the binding epitopes. For these reasons, I inserted my extracted binding motifs into 

de novo protein scaffolds. De novo, translating to “from scratch,” protein engineering 

aims to develop proteins with little to no sequence homology to natively occurring 

proteins for protein applications in biotechnology, biopharmaceuticals and biomaterials, 

to name a few. One category of de novo protein engineering that has expanded in recent 

years is the field of mini-protein design. Mini-proteins are small proteins, often ranging 

from 30-70 amino acids in length, which can, depending on their primary sequence, 

adopt various conformations with secondary structure elements like alpha helices, beta 

sheets, loops, and turns (fig. 12). The various shapes, or topologies, that are created by 

the combination of these secondary structure elements diversify the interactions these 
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proteins can make and therefore the applications for which they can be used. This 

phenomenon is encapsulated in the form-function relationship of molecules, which 

states that a molecule’s 3D structure informs its physiological function. Nature has 

generated a beautiful diversity of protein shapes and sizes to match each unique 

function that proteins have in and around cells. However, we can imagine even more 

shapes, which in turn, may produce novel functions ranging from biocatalysis to 

biomechanical signaling. 

To design proteins which may stabilize the binding motifs extracted from native 

interactions with BMP-2, I computationally inserted the motifs into highly stable, de 

novo mini-protein scaffolds. Motif grafting in Rosetta allows the user to apply certain 

constraints on the insertion of such elements which may be appropriate for a given 

application. Here, I applied constraints to keep the motif as intact as possible while also 

changing the core of the scaffold minimally. These grafting constraints ensured that the 

motif would maintain enough structural integrity to remain site-specific while the 

scaffold would retain the intramolecular contacts that stabilize it in a highly predictable 

conformation (fig. 13). I then submitted the completed grafts to Rosetta’s FastDesign 

program, which optimized the sequence for interactions with BMP-2 while, again, 

constraining design to maintain the original structural integrity of the motif and the 

scaffold. Improvements upon this binder design pipeline in the second round of design 

diversified and expanded the library of grafts to be optimized with FastDesign by 

generating 20-fold ensembles of the grafts through backrub (BackrubDD mover). 

I then calculated a number of computational interface metrics that are shown to be 

important for optimal binding. The designs with best interface metrics values passed my 
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metric filters (fig. 14) and were docked to analyze binding conformation predictability 

(fig. 15). After round one, six designs were selected to characterize, three designed to 

BMP-2 knuckle and three designed to the BMP-2 wrist. After round two, which 

included graft diversification and modifications to sequence optimization, 1017 designs 

passed my filters. Final de novo designed binders are predicted to bind to the wrist and 

knuckle epitopes of BMP-2 depending upon which motif (RGMC or ALP-I) was used 

in motif grafting (fig. 16). 

To experimentally characterize binders, I have prepared designs from both rounds 

in a library, totaling 1023 designs. I will transformed this library of g-blocks sequences 

with linearized vector into competent yeast and analyze induction, or the rate of 

expressing the designs on the yeast surface, and binding to BMP-2 using fluorescent 

activated cell sorting or FACS (SH800). I plan to sort the yeast into high, moderate, and 

low affinity gates, extract the recombined vectors from these yeast, and amplify the 

sequences with enrichment PCR. I will then submit PCR products to Illumina 

sequencing at the G3CF core facility at University of Oregon in order to deep sequence 

each gate. I will analyze Illumina results to assess the success of my design library. 

Experimental characterization will not only provide information about which designed 

binders are successful at binding to BMP-2, it will generate qualitative data regarding 

the strength of binding which may be iteratively incorporated into the design pipeline 

using interface metric analysis data from Rosetta. 

Conclusion 

To generate site-specific BMP-2 binders, I extracted native-binding motifs and 

grafted them into stable mini-protein scaffolds, optimized grafts for BMP-2 binding, 
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and finally filtered resultant designs to obtain the most successful designs to 

experimentally characterize. After two rounds of design, I expressed 1023 of my 

designs in yeast and performed yeast surface display experiments to separate high, 

moderate, and low affinity binders. Computational modeling of protein-protein 

interactions thus enabled me to factor structural insights into my design of site-specific 

binders. I will further characterize the affinity, stability, and structure of my novel, high, 

moderate, and low affinity BMP-2 binders to experimentally confirm the success of an 

efficient computational pipeline for site-specific protein binder design. 

Figures 

 

 



 

36 
 

 



 

37 
 

 



 

38 
 

 



 

39 
 

 

 

  



 

40 
 

Chapter 3: Machine Learning to Predict PPI Affinity 

Introduction 

Along with site-specificity, affinity is an important characteristic for fine-tuning 

the proposed biologic delivery mechanism to augment bone healing. However, 

experimental selection of known affinity binders is challenging. The computational 

design of protein binders with particular affinity is similarly elusive given the unclear 

relationship between modeled biophysical features of protein-protein interactions (ie. 

Rosetta metrics) and binding affinity. Recent advances in machine learning models and 

increases in the availability of accurate binding affinity data open up new possibilities 

for leveraging computational data science for protein design. Overall, compilation of 

datasets from biological experiments has generated a reckoning within the field of 

bioinformatics and protein design alike in translational tasks like classifying, predicting, 

and even generating proteins with functionality for a wide array of applications, from 

biotechnology to drug delivery. 

Applying machine learning to the prediction of protein-protein interaction affinity 

could drive massive efforts to design reliable protein binders for biopharmaceuticals, 

biomaterials, and smart biologic diagnostics. In this project, I aimed to develop an 

affinity predictor to use in conjunction with my computational design pipeline or as part 

of a genetic algorithm in order to obtain binders. Here, I employed the PDBbind dataset 

of affinity-labeled protein-protein interactions from the Protein Data Bank to train a 

number of machine learning models to classify protein affinity into one of several 

quantitative categories with adequate accuracy. I propose that this model be used to 

iteratively guide designed proteins to obtain a desired affinity within a genetic algorithm 
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to optimize protein binder selectivity, a step forward in the challenging field of negative 

protein design. For future improvement of the model, I suggest several ways in which 

the learning can be improved, including cross-validation, deep architecture, and larger 

and more diverse data input. Furthermore, a highly accurate affinity prediction model 

can be utilized in protein engineering efforts beyond the design of a biologic delivery 

mechanism for bone regeneration. 

Methods 

All code for dataset preparation, ML and DL models, and performance evaluation is in 

Appendix 1 under machine_learning.py. 

 

Dataset 

The PPI dataset was manually inspected by opening PDBs in PyMOL to find suitable 

protein interactions between two chains only. Metals and hetero-atoms were also 

excluded. The dataset of PDBs had 613 samples after this cleaning process. All PDBs 

were minimized with Rosetta FastRelax. The labels for this dataset correspond to four 

affinity bins split at experimental kd measurements included in the PDBbind dataset. If 

pkd, or the log of kd, is greater than or equal to 9, corresponding to a kd less than 1.0 

nM, the sample is labeled class 1. If pkd is greater than or equal to 7 and less than 9, 

corresponding to a kd greater than 1.0 nM and less than 100 nM, the sample is labeled 

class 2. If pkd is greater than or equal to 5 and less than 7, corresponding to a kd greater 

than 100 nM and less than 10 µM, the sample is labeled class 3. Finally, if the pkd is 

less than 5, corresponding to a kd greater than 10 µM, the sample is labeled class 4. 
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Features 

Interface analysis was then performed in Rosetta using the InterfaceAnalyzer mover on 

the dataset of relaxed protein-protein complexes to extract 76 features (Appendix 1; 

metrics_wet.xml).  

Features: 

'score', 'fa_atr', 'fa_rep', 'fa_sol', 'fa_intra_atr_xover4', 'fa_intra_rep_xover4', 
'fa_intra_sol_xover4', 'lk_ball', 'lk_ball_iso', 'lk_ball_bridge', 'lk_ball_bridge_uncpl', 
'fa_elec', 'fa_intra_elec', 'pro_close', 'hbond_sr_bb', 'hbond_lr_bb', 'hbond_bb_sc', 
'hbond_sc', 'dslf_fa13', 'omega', 'fa_dun_dev', 'fa_dun_rot', 'fa_dun_semi', 'p_aa_pp', 
'hxl_tors', 'ref', 'rama_prepro', 'gen_bonded', 'b_sap_score', 'bb_sap_score', 'buns_all', 
'buns_bb', 'buns_sc', 'cms', 'complex_normalized', 'contact', 'contact_norm', 'dG_cross', 
'dG_cross/dSASAx100', 'dG_separated', 'dG_separated/dSASAx100', 
'dSASA_hphobic', 'dSASA_int', 'dSASA_polar', 'ddg_norep', 'ddg_rep', 
'delta_unsatHbonds', 'filter_hyd_sasa', 'filter_pol_sasa', 
'filter_sasa', 'h_sasa', 'hbond_E_fraction', 'hbonds_int', 'int_holes', 'int_hydcontact', 
'mismatch_probability', 'nres_all', 'nres_int', 'p_sasa', 'packstat', 
'per_residue_energy_int', 'pstat', 'sasa', 'sc', 'sc_value', 'side1_normalized', 'side1_score', 
'side2_normalized', 'side2_score', 'ss_sc', 't_sap_score', 't_sasa', 'tb_sap_score', 
'vbuns_all', 'vbuns_bb', ‘vbuns_sc' 
 

For one model entitled ‘Random forest classifier with 8 features,’ feature engineering 

was performed by partitioning redundant features into 8 groups by general biophysical 

property (ie. solvent accessibility) and randomly choosing one feature from each 

partition on which to train the random forest classifier. 

Partitions: 

score_terms = ['total_score', 'per_residue_energy_int', 'side1_score', 'side2_score'] 
other_terms = ['fa_atr', 'fa_dun_dev', 'fa_dun_rot', 'fa_dun_semi', 'fa_elec', 
'fa_intra_atr_xover4', 
'fa_intra_elec', 'fa_intra_rep_xover4', 'fa_intra_sol_xover4', 'fa_rep', 'fa_sol', 'hxl_tors', 
'lk_ball', 'lk_ball_bridge', 'lk_ball_bridge_uncpl', 'lk_ball_iso', 'omega', 'p_aa_pp', 
'pro_close'] 
burial_terms = ['buns_all', 'buns_bb', 'buns_sc','vbuns_all', 'vbuns_bb', 
'vbuns_sc','delta_unsatHbonds', 'hbond_E_fraction','hbonds_int','hbond_sr_bb', 
'hbond_lr_bb', 'hbond_bb_sc', 'hbond_sc',] 
packing_terms = ['cms'] 



 

43 
 

ddg_terms = ['dG_cross', 'dG_separated', 'ddg_norep', ‘ddg_rep'] 
sasa_terms = ['dSASA_hphobic', 'dSASA_int', 'dSASA_polar', 'filter_hyd_sasa', 
'filter_pol_sasa', 'filter_sasa', 'h_sasa','p_sasa','t_sasa', 'sasa'] 
sc_terms = ['ss_sc', 'mismatch_probability'] 
sap_terms = ['b_sap_score', 'bb_sap_score', 't_sap_score', 'tb_sap_score'] All other 
models used all 76 features. 
 

ML Model 

Train-test split, random forest regression, and performance metrics were built using the 

SKLearn python package. The model was written and tested in the Jupyter Notebooks 

environment. For random forests, 1000 trees were used and the models were built with 

default depth and ‘balanced’ class weight. A train/test split of 10% was used. For the 

gradient boosting classifier, 100 trees were used with a learning rate of 0.1 and a 

maximum depth of 4. For linear SVM, the linear kernel was used with a C value of 100. 

For rbf SVM, the rbf kernel was used with a C value of 0.1. 

 

DL Model 

Deep architectures included fully connected deep neural nets (DNNs) with five layers. 

The python Keras package was used to build and compile the models. In the DNN 

model, five dense layers constitute the model architecture, where the hidden layers used 

the relu activation function and the output layer used the sigmoid activation function. 

To train the DNN, 10 epochs were used with the Adam optimizer and the binary cross- 

entropy loss function. In the sequential 5-layer DNN, the sequential keras model is 

specified in the architecture and again, hidden layers use relu and the output layer uses 

the sigmoid activation function. To train the sequential DNN, 150 epochs were used 

with batch size of 10. The optimizer was Adam and categorical cross-entropy was used 
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as the loss function. In both DNN models, the metric used to perform back-propagation 

was accuracy. 

 

Performance metrics 

Using SKLearn, accuracy, precision, recall, and f1 score were calculated on the test set. 

Confusion matrices, which are colored based on true positives, are provided to visualize 

performance of each model. 

Results 

Machine learning models are susceptible to bias depending on the dataset that is 

used for training. To investigate if my models may be biased by the representation of 

certain Kd class labels more than others, I analyzed the distribution of both Kd and class 

label in the cleaned dataset and found that both distributions were roughly normal (fig. 

17). To re-weight the class labels, I used balanced class weighting in the random forest 

classifier with 76 features. Insufficient model robustness for predicting binding 

affinities of class label 1 and 4 may be the result of class weighting bias, demonstrated 

in the absence of true positives in the upper lefthand and lower righthand corners of the 

confusion matrices for machine learning models (fig. 20-24). Enlarging the dataset to 

offer a more uniform distribution of class labels may decrease this bias. 

When trained on over 600 protein-protein interactions with over 70 biophysical 

and heuristic features, a random forest classifier model was able to achieve 56% 

accuracy, which is greater than the accuracy of the random forest classifier using 8 

randomly selected features from 8 biophysical partitions. (fig. 25). Both classifiers, 

however, achieve greater accuracy than other models, including deep learning models. 



 

45 
 

Automated hyper-parameter tuning of the random forest classifier with 76 features may 

improve the accuracy of the model significantly. Currently, machine learning to predict 

binding affinity is far from robust or accurate, given that a random assignment of 

predicted labels to test samples would theoretically yield an accuracy of 50%. Relative 

feature importances are indicated in figure 19. Exploiting highly important features by 

engineering new features calculated from these may improve machine learning models. 

An improved predictor may be further applied in order to guide the design of 

novel, selective binders. The machine learning model would be nested within a genetic 

algorithm (fig. 18). This genetic algorithm would diversify binder sequences while 

assessing the fitness of designs at each round by their higher affinity for BMP-2 than 

BMP-7, a close structural relative to BMP-2 and therefore an endogenous protein with 

the ability to generate off-target effects in the event of non-selective binding. The result 

of the genetic algorithm would therefore be sequences optimized for BMP-2 binding 

and unlikely to bind to BMP-7, ensuring the selectivity of binders. This is a process 

called multi-state design; on one hand, positive design increases the affinity toward one 

target, here, BMP-2 while negative design decreases affinity toward off-target proteins, 

like BMP-7. 

Conclusion 

I developed a machine learning model to predict the affinity of a protein-protein 

interaction based on biophysical and heuristic features which can be calculated by 

Rosetta. Improvement of the model, however, could be achieved using a larger dataset, 

hyper-parameter tuning, cross-validation (train/test/validation splitting instead of simply 

train/test splitting), and the addition of manually calculated, engineered features based 



 

46 
 

on the metrics available through Rosetta. In fact, InterfaceAnalyzer is amenable to the 

engineering of new features using Calculator Metrics, or new metrics that are output via 

the calculation of one of more existing metrics within the script. 

Overall, computational models enable efficient and cost-effective multi-state 

design pipelines. Experimental techniques such as magnetic bead sorting are also 

capable of multi-state selection, but these processes can be more labor intensive and can 

present the risk of decreasing, rather than increasing, the diversity of binders one can 

characterize downstream, thereby limiting access to different spaces in the sequence and 

structure landscape. Therefore, exploring machine learning methods in order to predict 

binding affinity is a worthwhile investigation, as it may contribute greatly to the 

robustness of functional protein binder design. 
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Discussion 

Implications, Limitations, and Future Directions 

Affinity interactions to fine-tune BMP-2 release into a critically sized bone 

defect can leverage the power of intentional or rational engineering for regenerative 

outcomes, where other methods like standard collagen sponges may fail to direct the 

signaling outcome of a potent biologic. In this project, I modeled and designed BMP-2 

protein binders to control BMP-2 release from a hydrogel scaffold using computational 

pipelines. By incorporating force field approximations from Rosetta to modulate 

affibody affinity and rationally design site-specific binding proteins, I introduced 

structural insight into the design of affinity interactions. 

The designs are therefore limited by the accuracy of structure prediction tools, 

crystal structures, and Rosetta in detailing protein and protein complex structure. The 

machine learning models I used to predict protein affinity are also limited due to the 

relatively small dataset (<700) of Rosetta-generated biophysical metrics used to train 

the models, which can be subject to the same inaccuracy as PPI models and designs and 

may be insufficient for learning. 

In the future, I plan to explore other computational tools for protein modeling 

including molecular dynamics simulations and to increase the size of the current protein 

affinity dataset. I will further characterize purified BMP-2 protein binders, affibody 

mutants and novel designs alike, from E. Coli with size-exclusion chromatography, 

circular dichroism, X-ray crystallography, bioactivity assays and toxicity screening. 

Binders that have been characterized as expressible, stable, and functional will 

be incorporated into BMP-2 delivery hydrogels and assessed in bone regeneration 
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studies using a rat femoral fracture model. Fine-tuned BMP-2 delivery into large 

fractures may be augmented by both rationally designed BMP-2 protein binders and 

other engineered biomaterials. Fracture healing involves a suite of signaling proteins 

beside BMP-2 which are expressed and active during particular stages of bone 

regeneration, providing even more target proteins to potentially consider in the 

structure-guided design of affinity interactions. Therapeutic efficacy and regeneration 

may ultimately be achieved using a complex combination of bioengineered biologic 

release mechanisms and biomechanical scaffolds and materials. 

 



 

54 
 

Conclusion 

I have validated the modeling and design of binder interactions to BMP-2 using 

experimental characterization in the form of yeast surface display and flow cytometry or 

FACS. In addition, I developed a machine learning model to predict protein affinity. 

Within this project, I generated pipelines to model PPIs and ligand point mutants 

as well as rationally design specific protein binders. I intend to help train other members 

of the Hosseinzadeh lab and members of the Hettiaratchi lab and beyond to use these 

pipelines for their own applications in protein engineering, helping to grow the body of 

computationalists at the University of Oregon and even the Eugene-Springfield 

community, one workshop at a time. 

In addition, I have been offered rewarding opportunities to present my research 

at the UO Undergraduate Research Symposium, RosettaCon, UO IMB Retreat, and the 

Oregon Bioengineering Symposium. Furthermore, I have had the opportunity to design 

a summer project for and mentor a high school student from the Camas High School 

STEM program as well as help train another undergraduate research assistant. My 

research journey has inspired me to co-found an undergraduate journal club and become 

an ASURE peer mentor. Undergraduate research has enabled me to program in multiple 

coding languages, conduct and troubleshoot experiments in the wet lab, communicate 

scientific research at varying levels of formality and to different kinds of audiences, and 

ultimately develop as a young scientist. 

After graduation, I will matriculate into the Bioengineering PhD program at the 

Knight Campus where I will continue to grow and learn as a scientific researcher, 

communicator, writer, and mentor. I would not be in the position to write this thesis or 
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even pursue undergraduate research if not for all the wonderful people who have 

supported me. Thank you to my parents, my sisters, my friends, my lab-mates, my 

collaborators, my professors, and my advisors. I would like to especially thank my 

mentor, PI, and advisor, Parisa Hosseinzadeh, for all the time she has given me, all the 

support, encouragement, and feedback she has wholeheartedly offered me, and all the 

inspiration, as a person and as a scientist, she continues to provide me. 
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Appendix 1 

XML and Python scripts 

interface_analyzer.xml 
 
<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<!--Defining the score function as the default--> 
<ScoreFunction name="score" weights="ref2015.wts"/> 
</SCOREFXNS> 
 
<RESIDUE_SELECTORS> 
<!--Defining the protein and target--> 
<Chain name="bmp" chains="1"/> 
<Chain name="binder" chains="2"/> 
<!--Defining the protein, target interface--> 
<Neighborhood name="bmp_binder_interface" selector="binder" distance="10."/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
</TASKOPERATIONS> 
 
<SIMPLE_METRICS> 
<!--Sasa measurements,including polar and hydrophobic,for the interface--> 
<SasaMetric name="tot_sasa" 
residue_selector="bmp_binder_interface" sasa_metric_mode="all_sasa"/> 
<SasaMetric name="pol_sasa" residue_selector="bmp_binder_interface" sasa_metric_mode="polar_sasa"/> 
<SasaMetric name="hyd_sasa" residue_selector="bmp_binder_interface" sasa_metric_mode="hydrophobic_sasa"/> 
</SIMPLE_METRICS> 
 
<FILTERS> 
<!--interface complementarity--> 
<ShapeComplementarity name="shape_complement" min_sc="0.5" residue_selector1="binder" 

residue_selector2="bmp" confidence="0"/> 
<!--ddg with and without repack--> 
<Ddg name="ddg_repack" chain_num="2" threshold="-1" repeats="5" repack="1" confidence="0" scorefxn="score"/> 
<Ddg name="ddg_norepack" chain_num="2" threshold="-1" repack="0" confidence="0" scorefxn="score"/> 
<!--filters cooresponding to our previous sasa metrics--> 
<SimpleMetricFilter name="filter_sasa" metric="tot_sasa" 
cutoff="100" comparison_type="gt" 
confidence="0"/> 
<SimpleMetricFilter name="filter_pol_sasa" metric="pol_sasa" cutoff="100" comparison_type="gt" confidence="0"/> 
<SimpleMetricFilter name="filter_hyd_sasa" metric="hyd_sasa" cutoff="100" comparison_type="gt" 
confidence="0"/> 
<!--filtering buried unsatisfied polar atoms--> 
<BuriedUnsatHbonds name="buried_unsat" 
residue_selector="binder" report_all_heavy_atom_unsats="true" scorefxn="true" cutoff="4" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" 
dalphaball_sasa="1" probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="very_buried_unsat" 
residue_selector="binder" report_all_heavy_atom_unsats="true" scorefxn="score" ignore_surface_res="false" 
print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" use_ddG_style="true" 
burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" confidence="0" /> 
 
</FILTERS> 
 
<MOVERS> 
<!--Mover for the interface interaction--> 
<InterfaceAnalyzerMover name="inter_move" scorefxn="score" 
packstat="true" interface_sc="true" ligandchain="B"/> 
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<RunSimpleMetrics name="metric1" metrics="tot_sasa" prefix="m1_"/> 
<RunSimpleMetrics name="metric2" metrics="pol_sasa" prefix="m2_"/> 
<RunSimpleMetrics name="metric3" metrics="hyd_sasa" prefix="m3_"/> 
</MOVERS> 
 
<PROTOCOLS> 
<!--Order of actions--> 
<Add mover="inter_move"/> 
<Add mover="metric1"/> 
<Add mover="metric2"/> 
<Add mover="metric3"/> 
<Add filter="shape_complement"/> 
<Add filter="ddg_repack"/> 
<Add filter="ddg_norepack"/> Add filter="filter_sasa"/> 
Add filter="filter_pol_sasa"/> Add filter="filter_hyd_sasa"/> 
<Add filter="buried_unsat"/> 
<Add filter="very_buried_unsat"/> 
</PROTOCOLS> 
 
<OUTPUT /> 
</ROSETTASCRIPTS> 
 

greedy_opt_analysis.py 
 
 
#!/usr/bin/env python # coding: utf-8 
# # Greedy Opt Analysis 
 
import pandas as pd import seaborn as sns import numpy as np 
 
AA_list = [ "ARG", 
"LYS", 
"HIS", 
"ASP", 
"GLU", 
"ASN", 
"GLN", 
"SER", 
"THR", 
"CYS", 
"TRP", 
"TYR", 
"PHE", 
"MET", 
"ILE", 
"LEU", 
"VAL", 
"ALA", 
"PRO", "GLY" 
] 
number_native = [] sc_native=[] ddg_native=[] 
 
num_lines = sum(1 for line in open('GreedyOptTable_g3c1_0577_0001_0001.tab')) print(num_lines) 
sc_array=np.zeros((num_lines, len(AA_list))) ddg_array=np.zeros((num_lines, len(AA_list))) 
 
# Filling in the dicts 
with open("GreedyOptTable_g3c1_0577_0001_0001.tab") as f: #opening XXX.tab for line in f: # reading line by line 
space_sep = line.rstrip().replace( 

'\t', ' ').split(" ") # splitting the line by space resi=space_sep[0] number_native.append(resi) 
resi_point = len(number_native) - 1 
for i in range(4,len(space_sep)): # 0-3 are resi, (resi, one-letter, and ). val_lines=space_sep[i].split(":") #getting 3-letter, 

ddg, -1*sc 
if "*" in val_lines[0]: 
sc_native.append(-1*float(val_lines[2])) ddg_native.append(float(val_lines[1])) AA3 = val_lines[0].replace("*","") 
else: 
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AA3 = val_lines[0] sc_array[resi_point][ 
AA_list.index(AA3)] = -1*float(val_lines[2]) ddg_array[resi_point][ 

AA_list.index(AA3)]=float(val_lines[1]) sc_array[resi_point][:] -= sc_native[resi_point] 
ddg_array[resi_point][:] -= ddg_native[resi_point] 
 
sc_df = pd.DataFrame(sc_array, 
columns=AA_list, index=number_native) 
ddg_df = pd.DataFrame(ddg_array, 
columns=AA_list, index=number_native) 
 
sns.heatmap(sc_df) sns.heatmap(ddg_df, vmax=20) sns.heatmap(ddg_df, vmax=100) 
sns.histplot(data=ddg_df.iloc[16,:], bins=10, binrange=(0,20)) sns.histplot(data=ddg_df.iloc[16,:], bins=10, 
binrange=(20,100)) 
 
 

designsurface.xml 
 
 
<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<ScoreFunction name="score" weights="ref2015.wts"/> 
</SCOREFXNS> 
 
<RESIDUE_SELECTORS> 
<!--Selects the repeat protein scaffold--> 
<Chain name="scaffold" chains="1"/> 
<!--Selects anything within 8 of bmp as well as bmp--> 
<Layer name="surface" select_surface="true" select_boundary="true" select_core="false" ball_radius="2"/> 
<!--Selects the nonsurface for the taskop--> Not name="nonsurface" selector="surface"/> 

<ResidueName name="hyd" residue_names="LEU,ALA,VAL,ILE,GLY,PHE,TYR,TRP"/> 
ResiduePropertySelector name="hyd" properties="HYDROPHOBIC"/> Not name="nonhyd" selector="hyd"/> 
<And name="hyd_surface" selectors="surface,hyd"/> 
<Not name="non_hs" selector="hyd_surface"/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
<!--Prevent the core from designing--> 
<OperateOnResidueSubset name="nodes_nonhs" 
selector="non_hs"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
</TASKOPERATIONS> 
 
<FILTERS> 
<ExposedHydrophobics name="exp_hyd" threshold="500.0" confidence="0"/> 
</FILTERS> 
<MOVE_MAP_FACTORIES> 
<MoveMapFactory name="relax_mm" bb="false" chi="false" jumps="false"> 
<Chi residue_selector="non_hs"/> 
<Backbone residue_selector="non_hs"/> 
</MoveMapFactory> 
</MOVE_MAP_FACTORIES> 
 
<MOVERS> 

<FastDesign name="fast_design" scorefxn="score" task_operations="nodes_nonhs" 
movemap_factory="relax_mm"/> 
FavorNativeResidue name="nonnative_penalty" bonus="2"/> 
</MOVERS> 
<PROTOCOLS> 
<Add mover="fast_design"/> 
Add mover="nonnative_penalty"/> 
<Add filter="exp_hyd"/> 
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</PROTOCOLS> 
 
<OUTPUT /> 
 
</ROSETTASCRIPTS> 
 

motif_graft.xml 
<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<ScoreFunction name="score" weights="ref2015.wts"/> 
</SCOREFXNS> 
 
<!--This section defines selections from the pose--> 
<RESIDUE_SELECTORS> 
<!--This section defines the motif and the context--> 
<Chain name="bmp" chains="1"/> 
<Chain name="rgm_motif" chains="2"/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
</TASKOPERATIONS> 
<!--This section runs analysis and filters based on user-defined thresholds--> 
 
<FILTERS> 
<Sasa name="sasa" confidence="0"/> 
<ShapeComplementarity name="sc" confidence="0"/> 
<Ddg name="ddg" repack="0" jump="1" chain_num="2" confidence="0"/> 
</FILTERS> 
<!--This section contains blueprints for processes on the pose--> 
 
<MOVERS> 
<!--Grafts a motif structure into context structure--> 

<!--Removed hotspot residue SER8 from hotspots, inc mfrsd from -1:1, inc NCprt from 1.0, inc cfsd to 2:2 to increase 
graft success (11/30/21)--> 
<MotifGraft name="motif_grafting" context_structure="/home/kfear/parisahlab/project_bmp_binder/new_motifs/ 
bmp_for_grafting.pdb" motif_structure="/home/kfear/parisahlab/project_bmp_binder/new_motifs/ 
big_rgm_clean_relax.pdb" RMSD_tolerance="1.5" 

max_fragment_replacement_size_delta="-2:2" hotspots="4:6:7:11" NC_points_RMSD_tolerance="1.5" 
clash_score_cutoff="5" clash_test_residue="ALA" full_motif_bb_alignment="1" revert_graft_to_native_sequence="1" 
allow_repeat_same_graft_output="1" combinatory_fragment_size_delta="2:1"/> MultiplePoseMover 
name="interface_design"> 

xi:include href="/home/kfear/parisahlab/project_bmp_binder/scripts/ designinterface.xml"/> 
/MultiplePoseMover> 

<!--Add backrub from backrub_interface_analysis.xml to increase scaffold diversity after grafting (1/5/22)--> 
<BackrubDD name="backrub" partner1="1" partner2="1" interface_distance_cutoff="8.0" moves="10000" 

sc_move_probability="0.4" scorefxn="score" 
small_move_probability="0.25" bbg_move_probability="0.25" temperature="0.6"> 
<span begin="1" end="55"/> 
</BackrubDD> 
</MOVERS> 
 
<!--This section lays out the steps to run--> 
<PROTOCOLS> 
<Add mover="motif_grafting"/> 
<Add mover="backrub"/> 
Add mover="interface_design"/> 
</PROTOCOLS> 
 
<OUTPUT /> 
 
</ROSETTASCRIPTS> 
 

backrub_grafts.xml 
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<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<!--Defining the score function as the default--> 
<ScoreFunction name="score" weights="ref2015.wts"/> 
</SCOREFXNS> 
 
<RESIDUE_SELECTORS> 
<!--Defining the protein and target--> 
<Chain name="bmp" chains="1"/> 
<Chain name="binder" chains="2"/> 
<!--Defining the protein, target interface--> 
<Neighborhood name="bmp_binder_interface" selector="binder" distance="5."/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
</TASKOPERATIONS> 
 
<SIMPLE_METRICS> 
<!--Sasa measurements,including polar and hydrophobic,for the interface--> 
<SasaMetric name="tot_sasa" 
residue_selector="bmp_binder_interface" sasa_metric_mode="all_sasa"/> 
<SasaMetric name="pol_sasa" residue_selector="bmp_binder_interface" sasa_metric_mode="polar_sasa"/> 
<SasaMetric name="hyd_sasa" residue_selector="bmp_binder_interface" sasa_metric_mode="hydrophobic_sasa"/> 
</SIMPLE_METRICS> 
 
<FILTERS> 
<!--interface complementarity--> 
<ShapeComplementarity name="shape_complement" min_sc="0.5" residue_selector1="binder" 

residue_selector2="bmp" 
confidence="0"/> 
<!--ddg with and without repack--> 
<Ddg name="ddg_repack" chain_num="2" threshold="-1" repeats="5" repack="1" confidence="0" scorefxn="score"/> 
<Ddg name="ddg_norepack" chain_num="2" threshold="-1" repack="0" confidence="0" scorefxn="score"/> 
<!--filters cooresponding to our previous sasa metrics--> 
<SimpleMetricFilter name="filter_sasa" metric="tot_sasa" 
cutoff="100" comparison_type="gt" confidence="0"/> 
<SimpleMetricFilter name="filter_pol_sasa" metric="pol_sasa" cutoff="100" comparison_type="gt" confidence="0"/> 
<SimpleMetricFilter name="filter_hyd_sasa" metric="hyd_sasa" cutoff="100" comparison_type="gt" 
confidence="0"/> 
<!--filtering buried unsatisfied polar atoms--> 
<BuriedUnsatHbonds name="buried_unsat" 
residue_selector="binder" report_all_heavy_atom_unsats="true" scorefxn="true" cutoff="4" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" 
dalphaball_sasa="1" probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="very_buried_unsat" 
residue_selector="binder" report_all_heavy_atom_unsats="true" scorefxn="score" ignore_surface_res="false" 
print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" use_ddG_style="true" 
burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" confidence="0" /> 
</FILTERS> 
 
<MOVERS> 
<!--Mover for the interface interaction--> 
<InterfaceAnalyzerMover name="inter_move" scorefxn="score" 
packstat="true" interface_sc="true" ligandchain="B"/> 
<RunSimpleMetrics name="metric1" metrics="tot_sasa" prefix="m1_"/> 
<RunSimpleMetrics name="metric2" metrics="pol_sasa" prefix="m2_"/> 
<RunSimpleMetrics name="metric3" metrics="hyd_sasa" prefix="m3_"/> 

<BackrubDD name="backrub" partner1="1" partner2="1" interface_distance_cutoff="8.0" moves="10000" 
sc_move_probability="0.4" scorefxn="score" small_move_probability="0.25" bbg_move_probability="0.25" 
temperature="0.6"> 

<span begin="%%first%%" end="%%last%%" /> <!--span takes variables from the batch file assigned upon reading 
the pdb. Required for diversity.--> 
</BackrubDD> 
</MOVERS> 
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<PROTOCOLS> 
<!--Order of actions--> 
<Add mover="inter_move"/> 
<Add mover="backrub"/> 
<Add mover="metric1"/> 
<Add mover="metric2"/> 
<Add mover="metric3"/> 
<Add filter="shape_complement"/> 
<Add filter="ddg_repack"/> 
<Add filter="ddg_norepack"/> 
<Add filter="filter_sasa"/> 
<Add filter="filter_pol_sasa"/> 
<Add filter="filter_hyd_sasa"/> 
<Add filter="buried_unsat"/> 
<Add filter="very_buried_unsat"/> 
</PROTOCOLS> 
 
<OUTPUT /> 
 
</ROSETTASCRIPTS> 
 

optimize_sequence.xml 
<ROSETTASCRIPTS> 
<!--Author: Karly Fear, Hosseinzadeh Lab, University of Oregon.--> 
<!--Most recently updated script with more comments on 4/18/22--> 
<!--Updated script for October/November 2021 interface design. Previous script: designinterface.xml--> 
 
<SCOREFXNS> 
<ScoreFunction name="score" weights="ref2015.wts"/> 
<ScoreFunction name="beta" weights="beta_genpot.wts"/> 
<ScoreFunction name="ICO" weights="beta_nov16.wts"/> 
</SCOREFXNS> 
 
<RESIDUE_SELECTORS> 
<!--Selects the target protein and the binding protein. (A+B) and (C+D)--> 
<Chain name="target" chains="1"/> 
<Chain name="binder" chains="2"/> 
<!--Selects anything within 8 of bmp as well as bmp. (A+B+C)--> 
<Neighborhood name="target_neighborhood" selector="target" distance="8.0"/> 
<!--Selects only ligand interface residues. (C)--> 
<And name="binder_interface" selectors="binder,target_neighborhood"/> 
<!--Selects anything within 8 of the binder as well as the binder. (B+C+D)--> 
<Neighborhood name="binder_neighborhood" selector="binder" distance="8.0"/> 
<!--Selects the interface residues of both proteins. (B+C)--> 
<And name="int" selectors="target_neighborhood,binder_neighborhood"/> 
<!--Selects the residues of both proteins that are not at the interface--> 
<Not name="not_int" selector="int"/> 
<!--Selects the target interface. (B)--> 
<And name="target_interface" selectors="target,binder_neighborhood"/> 
<!--Selects hydrophobic residues--> 
<ResiduePropertySelector name="hyd" properties="HYDROPHOBIC"/> 
<!--Selects hydrophobic interface residues of the target protein--> 
<And name="target_interface_hyd" selectors="hyd,target_interface"/> 
<!--Selects all that is not the target interface. (A+C+D)--> 
<Not name="target_noninterface" selector="target_interface"/> 
<!--Defining the residues that are not at the interface. (A+B+D)--> 
<Not name="binder_noninterface" selector="binder_interface"/> 
<!--Selects the binder residues that are not at the interface. (D)--> 

<And name="binder_noninterface_without_target" selectors="binder,binder_noninterface"/> 
<!--Selects the target residues that are not at the interface. (A)--> 

<And name="target_noninterface_without_binder" selectors="target,target_noninterface"/> 
<!--binder hotspots--> 
<ResiduePDBInfoHasLabel name="hotspots" property="HOTSPOT"/> 
<!--core--> 
<Layer name="core" select_core="true" ball_radius="2.5"/> 
<True name="true_sel"/> 
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<!--glycines and prolines--> 
<ResidueName name="GLY_PRO" residue_names="GLY,PRO"/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
<!--Task = do not repack the target noninterface--> 
<OperateOnResidueSubset name="hold_target_noninterface" 
selector="target_noninterface_without_binder"> 
<PreventRepackingRLT/> 
</OperateOnResidueSubset> 
<!--Task = do not design the target interface--> 
<OperateOnResidueSubset name="only_repack_target_interface" selector="target_interface"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
<!--Task = do not design hotspots--> 
<OperateOnResidueSubset name="only_repack_hotspots" selector="hotspots"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
<!--Task = do not design binder noninterface--> 
<OperateOnResidueSubset name="hold_binder_noninterface" selector="binder_noninterface_without_target"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
<!--Task = do not design protein core--> 
<OperateOnResidueSubset name="hold_core" selector="core"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
<!--Task = do not design glycines and prolines--> 
<OperateOnResidueSubset name="hold_gly_pro" selector="GLY_PRO"> 
<RestrictToRepackingRLT/> 
</OperateOnResidueSubset> 
</TASKOPERATIONS> 
 
<TASKOPERATIONS> 
<!--Add weight to the PPI in the score function. Should be at least 2.0--> 
<ProteinProteinInterfaceUpweighter name="upweight" interface_weight="3.0"/> 
<!--Helps with design--> 
<ExtraRotamersGeneric name="extra_chi" ex1="1" ex2="1" extrachi_cutoff="0"/> 
<RestrictToRepacking name="restrict"/> 
<InitializeFromCommandline name="init"/> 

<RestrictToInterfaceVector name="intonly" chain1_num="1" chain2_num="2" CB_dist_cutoff="10.0" 
nearby_atom_cutoff="5.5" vector_angle_cutoff="75.0" vector_dist_cutoff="9.0" include_all_water="1"/> 

</TASKOPERATIONS> 
 
<SIMPLE_METRICS> 

<!--Sasa (solvent accessible surface area) measurements,including polar and hydrophobic,for the interface--> 
<SasaMetric name="tot_sasa" residue_selector="int" sasa_metric_mode="all_sasa"/> 
<SasaMetric name="pol_sasa" residue_selector="int" sasa_metric_mode="polar_sasa"/> 

<SasaMetric name="hyd_sasa" residue_selector="int" sasa_metric_mode="hydrophobic_sasa"/> 
</SIMPLE_METRICS> 
 
<FILTERS> 
<!--geometric interface complementarity--> 

<ShapeComplementarity name="sc" min_sc="0.5" residue_selector1="target" residue_selector2="binder" 
jump="1" confidence="0"/> 
<!--ddg (delta-delta-G, free folding energy) with and without repack--> 
<Ddg name="ddg_rep" chain_num="2" threshold="-1" jump="1" repeats="5" repack="1" confidence="0" 

scorefxn="score"/> 
<Ddg name="ddg_norep" chain_num="2" threshold="-1" jump="1" repack="0" confidence="0" scorefxn="score"/> 
<!--filters cooresponding to our previous sasa metrics--> 

<SimpleMetricFilter name="filter_sasa" metric="tot_sasa" cutoff="100" comparison_type="gt" confidence="0"/> 
<SimpleMetricFilter name="filter_pol_sasa" metric="pol_sasa" cutoff="100" comparison_type="gt" confidence="0"/> 
<SimpleMetricFilter name="filter_hyd_sasa" metric="hyd_sasa" cutoff="100" comparison_type="gt" 

confidence="0"/> 
<!--filtering for buried unsatisfied polar atoms--> 
<BuriedUnsatHbonds name="buns_bb" residue_selector="int" report_bb_heavy_atom_unsats="true" scorefxn="true" 

cutoff="10" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" jump_number="1" dalphaball_sasa="1" probe_radius="1.1" 
confidence="0"/> 
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<BuriedUnsatHbonds name="buns_sc" residue_selector="int" report_sc_heavy_atom_unsats="true" scorefxn="true" 
cutoff="10" ignore_surface_res="false" 

print_out_info_to_pdb="true" use_ddG_style="true" jump_number="1" dalphaball_sasa="1" probe_radius="1.1" 
confidence="0"/> 
<BuriedUnsatHbonds name="buns_all" residue_selector="int" report_all_heavy_atom_unsats="true" scorefxn="true" 

cutoff="10" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" jump_number="1" dalphaball_sasa="1" probe_radius="1.1" 
confidence="0"/> 
<!--filtering for VERY buried unsatisfied polar atoms, harsher than buns--> 
<BuriedUnsatHbonds name="vbuns_bb" residue_selector="int" report_bb_heavy_atom_unsats="true" 
scorefxn="score" ignore_surface_res="false" print_out_info_to_pdb="true" atomic_depth_selection="5.5" 
burial_cutoff="1000" use_ddG_style="true" jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" 
probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="vbuns_sc" residue_selector="int" report_sc_heavy_atom_unsats="true" scorefxn="score" 

ignore_surface_res="false" print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" 
use_ddG_style="true" jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" 

probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="vbuns_all" residue_selector="int" report_all_heavy_atom_unsats="true" scorefxn="score" 

ignore_surface_res="false" print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" 
use_ddG_style="true" jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" 
confidence="0" /> 

<!--Packing statistics--> 
<PackStat name="pstat" threshold="0.65" chain="2" confidence="0"/> 
<!--Holes at the protein-protein interface--> 
<InterfaceHoles name="int_holes" jump="1" confidence="0"/> 
<!--Secondary structures at the interface--> 
<SSShapeComplementarity name="ss_sc" verbose="1" loops="1" helices="1" min_sc="0.5" confidence="0"/> 
<!--Holes or cavities of the binder--> 
<Holes name="holes" threshold="1.0" residue_selector="binder"/> 
<!--Interface contact--> 
<InterfaceHydrophobicResidueContacts name="int_hydcontact" target_selector="target_interface_hyd" 

binder_selector="binder_interface" 
scorefxn="score" apolar_res="ALA,CYS,CYD,PHE,ILE,LEU,MET,PRO,THR,VAL,TRP,TYR" 
confidence="0"/> 
<AtomicContactCount name="contact" partition="jump" jump="1" normalize_by_sasa="0" confidence="0"/> 
<AtomicContactCount name="contact_norm" partition="jump" jump="1" normalize_by_sasa="1" confidence="0"/> 
<Sasa name="sasa" confidence="0"/> 

<SSPrediction name="mismatch_probability" cmd="/projects/parisahlab/kfear/ 
project_bmp_binder/psipred/runpsipred_single" 
use_probability="1" mismatch_probability="1" use_svm="0" confidence="0"/> 
<!--Packing--> 
<ContactMolecularSurface name="cms" distance_weight="0.5" target_selector="target" binder_selector="binder" 

confidence="0"/> 
</FILTERS> 
 
<SIMPLE_METRICS> 
<!--Hydrophobicity metrics--> 
<SapScoreMetric name="binder_sap" score_selector="target"/> 
<SapScoreMetric name="target_sap" score_selector="binder"/> 
<SapScoreMetric name="binder_blocked_sap" score_selector="target" sap_calculate_selector="binder" 

sasa_selector="true_sel"/> 
<SapScoreMetric name="target_blocked_sap" score_selector="binder" sap_calculate_selector="target" 

sasa_selector="true_sel"/> 
<CalculatorMetric name="binder_delta_sap" equation="binder_sap_score - binder_blocked_sap"> 

<VAR name="binder_sap_score" metric="binder_sap"/> 
<VAR name="binder_blocked_sap" metric="binder_blocked_sap"/> 
</CalculatorMetric> 
<CalculatorMetric name="target_delta_sap" equation="target_sap_score - target_blocked_sap"> 
<VAR name="target_sap_score" metric="target_sap"/> 
<VAR name="target_blocked_sap" metric="target_blocked_sap"/> 
</CalculatorMetric> 
</SIMPLE_METRICS> 
 
<MOVERS> 
<!--Mover for relax/minimization before running metrics--> 
<FastRelax name="relax" scorefxn="score" disable_design="1" 
repeats="10" ramp_down_constraints="1" relaxscript="InterfaceRelax2019"> 
<MoveMap name="relax_mm" bb="1" chi="1" jump="1"> 
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<ResidueSelector selector="not_int" chi="0" bb="0" bondangle="0" bondlength="0"/> 
<Jump number="1" setting="true"/> 
</MoveMap> 
</FastRelax> 
<!--Mover for the interface analysis that helps with filtering--> 
<InterfaceAnalyzerMover name="inter_move" scorefxn="score" packstat="true" interface_sc="true" jump="1"/> 
<ddG name="ddg_move" scorefxn="ICO" chain_num="2" solvate="1" repack_bound="1" repack_unbound="1" 

solvate_rbmin="0" solvate_unbound="0" min_water_jump="1" task_operations="intonly,restrict,extra_chi"/> 
<RunSimpleMetrics name="metric1" metrics="tot_sasa" prefix="t_"/> 
<RunSimpleMetrics name="metric2" metrics="pol_sasa" prefix="p_"/> 
<RunSimpleMetrics name="metric3" metrics="hyd_sasa" prefix="h_"/> 
<RunSimpleMetrics name="bsap" metrics="binder_sap" prefix="b_"/> 
<RunSimpleMetrics name="tsap" metrics="target_sap" prefix="t_"/> 

<RunSimpleMetrics name="bblock_sap" metrics="binder_blocked_sap" prefix="bb_"/> 
<RunSimpleMetrics name="tblock_sap" metrics="target_blocked_sap" prefix="tb_"/ 
> 
<RunSimpleMetrics name="b_delta_sap" metrics="binder_delta_sap" prefix="bd_"/ 
> 
<RunSimpleMetrics name="t_delta_sap" metrics="target_delta_sap" prefix="td_"/> 
</MOVERS> 
 
<MOVERS> 
<!--Mover for design/sequence optimization--> 
<!--could add extra_chi to task operations (noted 4/18/22)--> 
<FastDesign name="fast_design" scorefxn="score" 
relaxscript="InterfaceDesign2019" 
task_operations="hold_target_noninterface,hold_binder_noninterface,only_repack_targ 
et_interface,only_repack_hotspots,upweight,hold_core,hold_gly_pro" 
movemap_factory="relax_mm"/> 
<!--Increased penalty for mutating the sequence--> 
<FavorNativeResidue name="nonnative_penalty" bonus="1.5"/> 
</MOVERS> 
 
<PROTOCOLS> 
<!--protocols for running sequence optimization--> 
<!--1.relax/minimize structures 2.optimize sequence 
3.filter designs --> 
<Add mover="relax"/> 
<Add mover="fast_design"/> 
<Add mover="nonnative_penalty"/> 
<Add mover="inter_move"/> 
<Add filter="sc"/> 
<Add filter="ddg_rep"/> 
<Add filter="ddg_norep"/> 
<Add filter="filter_sasa"/> 
<Add filter="filter_pol_sasa"/> 
<Add filter="filter_hyd_sasa"/> 
<Add filter="buns_bb"/> 
<Add filter="buns_sc"/> 
<Add filter="buns_all"/> 
<Add filter="vbuns_bb"/> 
<Add filter="vbuns_sc"/> 
<Add filter="vbuns_all"/> 
<Add filter="pstat"/> 
<Add filter="int_holes"/> 
<Add filter="ss_sc"/> 
<Add filter="int_hydcontact"/> 
<Add filter="holes"/> 
<Add filter="contact"/> 
<Add filter="contact_norm"/> 
<Add filter="sasa"/> 
<Add filter="mismatch_probability"/> 
<Add filter="cms"/> 
<Add mover="bsap"/> 
<Add mover="tsap"/> 
<Add mover="bblock_sap"/> 
<Add mover="tblock_sap"/> 
<Add mover="b_delta_sap"/> 
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<Add mover="t_delta_sap"/> 
<!--metrics added in 4/18/22 update--> 
<Add metric="binder_sap"/> 
<Add metric="target_sap"/> 
<Add metric="binder_blocked_sap"/> 
<Add metric="target_blocked_sap"/> 
<Add metric="binder_delta_sap"/> 
<Add metric="target_delta_sap"/> 
</PROTOCOLS> 
 
<OUTPUT /> 
 
</ROSETTASCRIPTS> 
 

metrics_wet.xml 
<ROSETTASCRIPTS> 
 
<SCOREFXNS> 
<!--Defining the score function as the default--> 
<ScoreFunction name="score" weights="beta_genpot.wts"/> 
<ScoreFunction name="ICO" weights="beta_nov16.wts"/> 
</SCOREFXNS> 
 
<RESIDUE_SELECTORS> 
<!--Defining the protein and target--> 
<Chain name="A" chains="1"/> 
<Chain name="B" chains="2"/> 
<!--Defining the protein, target interface--> 

<Neighborhood name="A_int" selector="A" distance="8.0"/> 
<Neighborhood name="B_int" selector="B" distance="8.0"/> 
<ResiduePropertySelector name="hyd" properties="HYDROPHOBIC"/> 
<And name="int" selectors="A_int,B_int"/> 
<Not name="not_int" selector="int"/> 
<And name="int_A" selectors="A,int"/> 
<And name="int_B" selectors="B,int"/> 
<And name="hyd_int_A" selectors="hyd,int_A"/> 
<True name="true_sel"/> 
</RESIDUE_SELECTORS> 
 
<TASKOPERATIONS> 
<ExtraRotamersGeneric name="extra_chi" ex1="1" ex2="1" extrachi_cutoff="0"/> 
<RestrictToRepacking name="restrict"/> 
<InitializeFromCommandline name="init"/> 

<RestrictToInterfaceVector name="intonly" chain1_num="1" chain2_num="2" CB_dist_cutoff="10.0" 
nearby_atom_cutoff="5.5" vector_angle_cutoff="75.0" vector_dist_cutoff="9.0" include_all_water="1"/> 

</TASKOPERATIONS> 
 
<SIMPLE_METRICS> 
<!--Sasa measurements,including polar and hydrophobic,for the interface--> 
<SasaMetric name="tot_sasa" residue_selector="int" sasa_metric_mode="all_sasa"/> 

<SasaMetric name="pol_sasa" residue_selector="int" 
sasa_metric_mode="polar_sasa"/> 

<SasaMetric name="hyd_sasa" residue_selector="int" sasa_metric_mode="hydrophobic_sasa"/> 
</SIMPLE_METRICS> 
 
<FILTERS> 
<!--interface complementarity--> 
<ShapeComplementarity name="sc" min_sc="0.5" residue_selector1="A" residue_selector2="B" 
jump="1" confidence="0"/> 
<!--ddg with and without repack--> 
<Ddg name="ddg_rep" chain_num="2" threshold="-1" jump="1" repeats="5" repack="1" confidence="0" 

scorefxn="score"/> 
<Ddg name="ddg_norep" chain_num="2" threshold="-1" jump="1" repack="0" confidence="0" scorefxn="score"/> 

<!--filters cooresponding to our previous sasa metrics--> 
<SimpleMetricFilter name="filter_sasa" metric="tot_sasa" cutoff="100" comparison_type="gt" confidence="0"/> 
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<SimpleMetricFilter name="filter_pol_sasa" metric="pol_sasa" cutoff="100" comparison_type="gt" 
confidence="0"/> 

<SimpleMetricFilter name="filter_hyd_sasa" metric="hyd_sasa" cutoff="100" comparison_type="gt" 
confidence="0"/> 
<!--filtering buried unsatisfied polar atoms--> 
<BuriedUnsatHbonds name="buns_bb" 
residue_selector="int" report_bb_heavy_atom_unsats="true" scorefxn="true" cutoff="10" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" 
jump_number="1" 
dalphaball_sasa="1" probe_radius="1.1" confidence="0"/> 
<BuriedUnsatHbonds name="buns_sc" residue_selector="int" report_sc_heavy_atom_unsats="true" scorefxn="true" 

cutoff="10" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" jump_number="1" dalphaball_sasa="1" probe_radius="1.1" 
confidence="0"/> 
<BuriedUnsatHbonds name="buns_all" residue_selector="int" report_all_heavy_atom_unsats="true" scorefxn="true" 

cutoff="10" ignore_surface_res="false" 
print_out_info_to_pdb="true" use_ddG_style="true" jump_number="1" dalphaball_sasa="1" probe_radius="1.1" 
confidence="0"/> 
<BuriedUnsatHbonds name="vbuns_bb" 
residue_selector="int" report_bb_heavy_atom_unsats="true" scorefxn="score" ignore_surface_res="false" 
print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" use_ddG_style="true" 
jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="vbuns_sc" 
residue_selector="int" report_sc_heavy_atom_unsats="true" scorefxn="score" ignore_surface_res="false" 
print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" use_ddG_style="true" 
jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" confidence="0" /> 
<BuriedUnsatHbonds name="vbuns_all" residue_selector="int" report_all_heavy_atom_unsats="true" scorefxn="score" 

ignore_surface_res="false" print_out_info_to_pdb="true" atomic_depth_selection="5.5" burial_cutoff="1000" 
use_ddG_style="true" jump_number="1" burial_cutoff_apo="0.2" dalphaball_sasa="true" probe_radius="1.1" 
confidence="0" /> 

<!--Packing statistics--> 
<PackStat name="pstat" threshold="0.65" chain="1" confidence="0"/> 
<!--Holes at the protein-protein interface--> 
<InterfaceHoles name="int_holes" jump="1" confidence="0"/> 
<!--Secondary structures at the interface--> 
<SSShapeComplementarity name="ss_sc" verbose="1" loops="1" helices="1" min_sc="0.5" confidence="0"/> 
<!--Interface contact--> 
<InterfaceHydrophobicResidueContacts name="int_hydcontact" target_selector="hyd_int_A" binder_selector="int_B" 

scorefxn="score" apolar_res="ALA,CYS,CYD,PHE,ILE,LEU,MET,PRO,THR,VAL,TRP,TYR" 
confidence="0"/> 
<AtomicContactCount name="contact" partition="jump" jump="1" normalize_by_sasa="0" confidence="0"/> 
<AtomicContactCount name="contact_norm" partition="jump" jump="1" normalize_by_sasa="1" confidence="0"/> 
<Sasa name="sasa" confidence="0"/> 

<SSPrediction name="mismatch_probability" cmd="/projects/parisahlab/kfear/ 
project_bmp_binder/psipred/runpsipred_single" 

use_probability="1" mismatch_probability="1" use_svm="0" confidence="0"/> 
<!--Packing--> 
<ContactMolecularSurface name="cms" distance_weight="0.5" target_selector="B" binder_selector="A" 

confidence="0"/> 
</FILTERS> 
 
<SIMPLE_METRICS> 
<SapScoreMetric name="binder_sap" score_selector="A"/> 
<SapScoreMetric name="target_sap" score_selector="B"/> 
<SapScoreMetric name="binder_blocked_sap" score_selector="A" sap_calculate_selector="A" 

sasa_selector="true_sel"/> 
<SapScoreMetric name="target_blocked_sap" score_selector="B" sap_calculate_selector="B" 

sasa_selector="true_sel"/> 
<CalculatorMetric name="binder_delta_sap" equation="binder_sap_score - binder_blocked_sap"> 
<VAR name="binder_sap_score" metric="binder_sap"/> 
<VAR name="binder_blocked_sap" metric="binder_blocked_sap"/> 
</CalculatorMetric> 

<CalculatorMetric name="target_delta_sap" equation="target_sap_score - target_blocked_sap"> 
<VAR name="target_sap_score" metric="target_sap"/> 
<VAR name="target_blocked_sap" metric="target_blocked_sap"/> 
</CalculatorMetric> 
</SIMPLE_METRICS> 
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<MOVERS> 
<!--Relax before running metrics--> 
<FastRelax name="relax" scorefxn="score" disable_design="1" 
repeats="10" ramp_down_constraints="1" relaxscript="InterfaceRelax2019"> 
<MoveMap name="relax_mm" bb="1" chi="1" jump="0"> 

<ResidueSelector selector="not_int" chi="0" bb="0" bondangle="0" bondlength="0"/> 
</MoveMap> 
</FastRelax> 
<!--Mover for the interface interaction--> 

<InterfaceAnalyzerMover name="inter_move" scorefxn="score" packstat="true" interface_sc="true" jump="1"/> 
<ddG name="ddg_move" scorefxn="ICO" chain_num="1" solvate="1" repack_bound="1" repack_unbound="1" 

solvate_rbmin="0" solvate_unbound="0" min_water_jump="1" task_operations="intonly,restrict,extra_chi"/> 
<RunSimpleMetrics name="metric1" metrics="tot_sasa" prefix="t_"/> 
<RunSimpleMetrics name="metric2" metrics="pol_sasa" prefix="p_"/> 
<RunSimpleMetrics name="metric3" metrics="hyd_sasa" prefix="h_"/> 
<RunSimpleMetrics name="bsap" metrics="binder_sap" prefix="b_"/> 
<RunSimpleMetrics name="tsap" metrics="target_sap" prefix="t_"/> 

<RunSimpleMetrics name="bblock_sap" metrics="binder_blocked_sap" prefix="bb_"/> 
<RunSimpleMetrics name="tblock_sap" metrics="target_blocked_sap" prefix="tb_"/> 
 
</MOVERS> 
 
<PROTOCOLS> 
<!--Order of actions--> 
<Add mover="relax"/> 
<Add mover="inter_move"/> 
<Add mover="metric1"/> 
<Add mover="metric2"/> 
<Add mover="metric3"/> 
<Add mover="bsap"/> 
<Add mover="tsap"/> 
<Add mover="bblock_sap"/> 
<Add mover="tblock_sap"/> 
<Add filter="filter_sasa"/> 
<Add filter="filter_pol_sasa"/> 
<Add filter="filter_hyd_sasa"/> 
<Add filter="sc"/> 
<Add filter="ddg_rep"/> 
<Add filter="ddg_norep"/> 
<Add filter="buns_bb"/> 
<Add filter="buns_sc"/> 
<Add filter="buns_all"/> 
<Add filter="vbuns_bb"/> 
<Add filter="vbuns_sc"/> 
<Add filter="vbuns_all"/> 
<Add filter="pstat"/> 
<Add filter="int_holes"/> 
<Add filter="ss_sc"/> 
<Add filter="int_hydcontact"/> 
<Add filter="contact"/> 
<Add filter="contact_norm"/> 
<Add filter="sasa"/> 
<Add filter="mismatch_probability"/> 
<Add filter="cms"/> 
</PROTOCOLS> 
 
<OUTPUT /> 
 
</ROSETTASCRIPTS> 
 

machine_learning.py 
#!/usr/bin/env python # coding: utf-8 
import pandas as pd import seaborn as sns import numpy as np 
import matplotlib.pyplot as plt from scipy.stats import norm 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score from sklearn.model_selection 
import train_test_split 
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from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier import random 
 
#read in the score file 
rel = pd.read_csv("relaxed_2021_10_05.dat",sep="\s+") rel = rel.drop([491,500,524]) 
 
#read in the excel spreadsheet 
csv = pd.read_csv('PDBbind.csv', header=1)[['PDB code','pKd pKi pIC50']] 
 
#create name column from csv and convert to list name = csv['PDB code']+'_0001' 
lname = name.tolist() 
 
#make list from description column of rel ldescription = rel['description'].tolist() 
 
#loop for the shared indeces shared = [] 
for i in range(len(lname)): 
if lname[i] in ldescription: shared.append(i) 
 
#loop to get the affinity values at the name indeces affinity = csv['pKd pKi pIC50'] 
lines_of_csv = [] for index in shared: 
lines_of_csv.append(affinity[index]) 
 
#add affinity data from csv to relaxed dataframe rel['affinity'] = lines_of_csv 
 
#add bins 
aff = rel['affinity'] bins = [] 
for val in aff: if val >= 9: 
bins.append(1) 
elif (val >= 7) & (val < 9): 
bins.append(2) 
elif (val >= 5) & (val < 7): bins.append(3) 
elif val < 5: bins.append(4) 
rel['bin'] = bins 
 
# copy the data df_sklearn = rel.copy() 
 
#normalize using Min-Max scaler for col in rel.columns[1:-6]: 

df_sklearn[col] = MinMaxScaler().fit_transform(np.array(df_sklearn[col]).reshape(-1,1)) 
 
#separate labels (the values we want to predict) and features labels = np.array(df_sklearn['bin']) 
 
features = df_sklearn[['score', 'fa_atr', 'fa_rep', 'fa_sol', 'fa_intra_atr_xover4', 'fa_intra_rep_xover4', 'fa_intra_sol_xover4', 

'lk_ball', 'lk_ball_iso', 'lk_ball_bridge', 'lk_ball_bridge_uncpl', 'fa_elec', 'fa_intra_elec', 'pro_close', 'hbond_sr_bb', 
'hbond_lr_bb', 'hbond_bb_sc', 'hbond_sc', 'dslf_fa13', 'omega', 'fa_dun_dev', 'fa_dun_rot', 'fa_dun_semi', 'p_aa_pp', 
'hxl_tors', 'ref', 'rama_prepro', 'gen_bonded', 

'b_sap_score', 'bb_sap_score', 'buns_all', 'buns_bb', 'buns_sc', 'cms', 'complex_normalized', 'contact', 'contact_norm', 
'dG_cross', 'dG_cross/dSASAx100', 'dG_separated', 'dG_separated/dSASAx100', 'dSASA_hphobic', 'dSASA_int', 
'dSASA_polar', 'ddg_norep', 'ddg_rep', 'delta_unsatHbonds', 'filter_hyd_sasa', 'filter_pol_sasa', 
'filter_sasa', 'h_sasa', 'hbond_E_fraction', 'hbonds_int', 'int_holes', 'int_hydcontact', 'mismatch_probability', 'nres_all', 
'nres_int', 'p_sasa', 'packstat', 'per_residue_energy_int', 'pstat', 'sasa', 'sc', 'sc_value', 'side1_normalized', 'side1_score', 
'side2_normalized', 'side2_score', 'ss_sc', 't_sap_score', 't_sasa', 'tb_sap_score', 'vbuns_all', 'vbuns_bb', 'vbuns_sc']] 
feature_list = list(features.columns) features = np.array(features) 
 
#Generating the training and test sets 
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.1, 
random_state = 42) 
# Instantiate model with 1000 decision trees 
rf = RandomForestClassifier(n_estimators = 1000, random_state = 42, class_weight="balanced") 
# Train the model on training data rf.fit(train_features, train_labels); 
# Use the forest's predict method on the test data predictions = rf.predict(test_features) 
 
y_true=[t for t in test_labels] y_pred=[int(round(p)) for p in predictions] 
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print('accuracy',accuracy_score(y_true, y_pred)) print('precision',precision_score(y_true, y_pred, average='micro')) 
print('f1',f1_score(y_true, y_pred, average='micro')) print('recall',recall_score(y_true, y_pred, average='micro')) 
 
#works with RF classifier import matplotlib.pyplot as plt 
from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(rf, test_features, test_labels, 
cmap=plt.cm.Blues) 
accRandomForestClassifier76Features = accuracy_score(y_true, y_pred) from pylab import rcParams 
import numpy as np 
import matplotlib.pyplot as plt import tensorflow as tf 
from tensorflow.keras.callbacks import EarlyStopping 
from tensorflow.keras.losses import CategoricalCrossentropy from tensorflow.keras.optimizers import Adam 
rel_features = rel[feature_list] # Step 1: get your data 
# your features should be in a numpy array 
# with shape x= number of samples x n=number of features rel_features = rel_features.to_numpy() 
affinity_bins = rel['bin'].to_numpy() 
 
nb_classes = 5 
targets = affinity_bins.reshape(-1) one_hot_targets = np.eye(nb_classes)[targets] 
one_hot_targets = np.delete(one_hot_targets, 0, 1) 
 
from sklearn.model_selection import train_test_split X, y = np.asarray(rel_features).astype('float32'), 
np.asarray(one_hot_targets).astype('float32') 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) feature_num = 76 
n = 4 
 
# activation function, can be sigmoid, etc act_func = 'sigmoid' 
 
# making first layer 
input = tf.keras.Input(shape=(feature_num,)) 
 
# Adding other layers (currently a 3 layer network) middle1 = tf.keras.layers.Dense( 
2*feature_num, 
activation=act_func, kernel_initializer=tf.keras.initializers.GlorotUniform(), 
bias_initializer=tf.keras.initializers.GlorotUniform() 
)(input) 
 
#you can change the sizes middle2 = tf.keras.layers.Dense( 2*feature_num, activation='relu' 
)(middle1) 
 
#you can change the sizes middle3 = tf.keras.layers.Dense( feature_num, activation='relu' 
)(middle2) 
 
# n here is the number of bins you'd like to predict output = tf.keras.layers.Dense( 
n, activation=act_func, kernel_initializer=tf.keras.initializers.GlorotUniform(), 
bias_initializer=tf.keras.initializers.GlorotUniform() 
)(middle3) 
 
# building the model 
model = tf.keras.Model(inputs=input, outputs=output, name='the_model') model.compile( 
optimizer=tf.optimizers.Adam(learning_rate=0.1), loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), 
weighted_metrics=['acc'], #if that doesn't work use the one below #metrics=['accuracy'], 
) 
 
# taking a look at your model tf.keras.utils.plot_model(model, show_shapes=True) 
X_train, X_test, y_train, y_test # fitting the model 
model.fit( 
X_train, #the train set y_train, #the train labels epochs = 10, 
verbose = 1, validation_data=( 
X_test, #the validation set y_test, #the validation labels 
) 
) 
 
print("Evaluating model.") eval_results = model.evaluate( 
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X_test, #the test set y_test #the test label 
) 
print("Done.\n" "Test loss: {}\n" "Test accuracy: {}".format(*eval_results)) accDNN = eval_results[1] 
features = df_sklearn[['side1_score', 'fa_dun_dev', 
'hbonds_int', 'cms', 'dG_separated', 't_sasa', 
'mismatch_probability', 'bb_sap_score']] 
feature_list = list(features.columns) features = np.array(features) 
 
#Generating the training and test sets 
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.1, 
random_state = 42) 
# Instantiate model with 1000 decision trees 
rf = RandomForestClassifier(n_estimators = 1000, random_state = 42) # Train the model on training data 
rf.fit(train_features, train_labels); 
# Use the forest's predict method on the test data predictions = rf.predict(test_features) 
 
y_true=[t for t in test_labels] y_pred=[int(round(p)) for p in predictions] 
 
print('accuracy',accuracy_score(y_true, y_pred)) print('precision',precision_score(y_true, y_pred, average='micro')) 
print('f1',f1_score(y_true, y_pred, average='micro')) print('recall',recall_score(y_true, y_pred, average='micro')) 
 
#works with RF classifier import matplotlib.pyplot as plt 
from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(rf, test_features, test_labels, 
cmap=plt.cm.Blues) 
 
accRandomForestClassifier8Features = accuracy_score(y_true, y_pred) get_ipython().system('pip3 install keras-
visualizer') 
# first neural network with keras tutorial from numpy import loadtxt 
import pandas as pd import numpy as np 
from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt 
from keras.utils.vis_utils import plot_model from keras_visualizer import visualizer from IPython.display import Image 
get_ipython().run_line_magic('matplotlib', 'inline') 
 
# define the keras model model = Sequential() 
model.add(Dense(12, input_dim=76, activation='relu')) model.add(Dense(76, activation='relu')) model.add(Dense(38, 
activation='relu')) model.add(Dense(19, activation='relu')) model.add(Dense(4, activation='sigmoid')) 
 
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) 
 
# compile the keras model 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
model.fit(X_train , # input data y_train , # labels epochs=150, batch_size=10) 
 
_, accuracy = model.evaluate(X, y) print('Accuracy: %.2f' % (accuracy*100)) 
 
# make probability predictions with the model predictions = model.predict(X_test) 
 
# your code 
_, accuracy = model.evaluate(X_test, y_test) print('Accuracy: %.2f' % (accuracy*100)) 
 
accDNNsequential = accuracy 
 
from sklearn.ensemble import GradientBoostingClassifier 
 
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=4, 
random_state=42).fit(train_features, train_labels) 
clf.score(test_features, test_labels) 
 
# Use the forest's predict method on the test data predictions = clf.predict(test_features) 
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y_true=[t for t in test_labels] y_pred=[int(round(p)) for p in predictions] 
 
print('accuracy',accuracy_score(y_true, y_pred)) print('precision',precision_score(y_true, y_pred, average='micro')) 
print('f1',f1_score(y_true, y_pred, average='micro')) print('recall',recall_score(y_true, y_pred, average='micro')) 
 
#works with RF classifier import matplotlib.pyplot as plt 
from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(clf, test_features, test_labels, 
cmap=plt.cm.Blues) 
 
accGradientBoostingClassifier = accuracy_score(y_true, y_pred) from sklearn import svm 
## complete the SVC set below based on the descriptions above. clf = svm.SVC(kernel= 'linear', ## add kernel 
C= 100.0, ## add C 

decision_function_shape = 'ovr') ## add decision function clf.fit(train_features, train_labels.ravel()) 
 
clf.score(test_features, test_labels) 
 
# Use the forest's predict method on the test data predictions = clf.predict(test_features) 
 
y_true=[t for t in test_labels] y_pred=[int(round(p)) for p in predictions] 
 
print('accuracy',accuracy_score(y_true, y_pred)) print('precision',precision_score(y_true, y_pred, average='micro')) 
print('f1',f1_score(y_true, y_pred, average='micro')) print('recall',recall_score(y_true, y_pred, average='micro')) 
 
#works with RF classifier import matplotlib.pyplot as plt 
from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(clf, test_features, test_labels, 
cmap=plt.cm.Blues) 
 
accSVMlinear = accuracy_score(y_true, y_pred) 
 
# code goes here sigma = 1 
gamma = 1/(2 * sigma**2) 
 
## Define kernel to be 'rbf' 
clfg = svm.SVC(kernel= 'rbf', ## add here 

gamma=gamma, C=0.1, decision_function_shape='ovr') clfg.fit(train_features, train_labels.ravel()) 
 
clf.score(test_features, test_labels) 
 
# Use the forest's predict method on the test data predictions = clfg.predict(test_features) 
 
y_true=[t for t in test_labels] y_pred=[int(round(p)) for p in predictions] 
 
print('accuracy',accuracy_score(y_true, y_pred)) print('precision',precision_score(y_true, y_pred, average='micro')) 
print('f1',f1_score(y_true, y_pred, average='micro')) print('recall',recall_score(y_true, y_pred, average='micro')) 
 
#works with RF classifier import matplotlib.pyplot as plt 
from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(clfg, test_features, test_labels, 
cmap=plt.cm.Blues) accSVMrbf = accuracy_score(y_true, y_pred) 
 
allAccuracies = [accRandomForestClassifier76Features, accRandomForestClassifier8Features, accDNN, 
accDNNsequential, accGradientBoostingClassifier, accSVMlinear, accSVMrbf] allAccuraciesNames = 
['accRandomForestClassifier76Features', 'accRandomForestClassifier8Features', 'accDNN', 'accDNNsequential', 
'accGradientBoostingClassifier', 'accSVMlinear', 'accSVMrbf'] plt.bar(allAccuraciesNames, allAccuracies) 
plt.xticks(rotation=90) 
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Appendix 2 

pCT-40 Vector and Proteins 

 
Name: pCT-40 ABY 
Size: 6560 bp 
Resistance: Ampicillin 
Use: This construct is a template for a representative affibody clone within a pCT-40 vector, suitable for 

plasmid production in e. coli as well as yeast surface display in EBY-100. 
 
 
Summary: 
Aga2--Spacer--FactorXa--HA-- PAS40--(G4S)3 Linker --NheI—Affibody(1-58)--BamHI--Myc--2Stop 174 bp region of interest 
 
ATGCAGTTACTTCGCTGTTTTTCAATATTTTCTGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCA 
AATCCCCTCACCAACTTTAGAATCGACGCCGTACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAA 
GGAGTTTTTGAATATTACAAATCAGTAACGTTTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCC 
CCATAAACACACAGTATGTTTTTAAGGACAATAGCTCGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCT 
CTGCAGGCTAGTGCCTCTCCAGCTGCACCTGCTCCAGCAAGCCCTGCTGCACCAGCTCCGTCTGCTCCTGCTGCCTCT 
CCAGCTGCACCTGCTCCAGCTTCTCCAGCAGCTCCTGCACCTAGTGCTCCTGCTGGGGGTGGAGGCTCTGGCGGAGG 
TGGGTCTGGTGGGGGCGGATCTGCTAGCGCCGAAGCGAAATACGCTAAAGAAAACXYZAACGCGXYZXYZGAAATCXY 
ZXYZCTGCCGAACCTGACCXYZXYZCAGAGAXYZGCATTCATAXYZGCACTGXYZGATGACCCGTCCCAGAGCTCTGAA 
CTCCTGTCTGAGGCGAAGAAACTGAACGATTCCCAAGCACCAAAAGGATCCGAACAAAAGCTTATTTCTGAAGAGGACT TGTAATAG 
 
Sequence: 
ACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGGACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTA
TCTTTTAATGATGGAATAATTTGGGAATTTACTCTGTGTTTATTTATTTTTATGTTT 
TGTATTTGGATTTTAGAAAGTAAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAATTTCAACAAAAAGCGTAC
TTTACATATATATTTATTAGACAAGAAAAGCAGATTAAATAGATATACATTCGAT 
TAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAATTCGGCATTAATACCTGAGAGCAGGAAGAGC
AAGATAAAAGGTAGTATTTGTTGGCGATCCCCCTAGAGTCTTTTACATCTTCG 
GAAAACAAAAACTATTTTTTCTTTAATTTCTTTTTTTACTTTCTATTTTTAATTTATATATTTATATTAAAAAATTTAAATTATAATTATTTTTATAGCACGTGAT
GAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTG 
TTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACA
TTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCT 
CACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGA
GAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTG 
CTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTC
ACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTG 
CCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATG
TAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACG 
ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAG
ACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTC 
CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCG
TAGTTATCTACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGAC 
AGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTA
AAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAAC 
GTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAA
AAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAAC 
TCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCA
CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG 
GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGC
TTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTG 
AGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG
GAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGA 
GCGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCT
CACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGC 
CTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCT
CTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCC 
GACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGT
GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGA 
TTACGCCAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTAGCT
CTACCACAGTGTGTGAACCAATGTATCCAGCACCACCTGTAACCAAAACAATT 
TTAGAAGTACTTTCACTTTGTAACTGAGCTGTCATTTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATT
ACATGGCATTACCACCATATACATATCCATATACATATCCATATCTAATCTTACTTA 
TATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTA
CGGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCT 
CCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATG
GTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATG 
AACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACA
GATATATAAATGCAAAAAC 
TGCATAACCACTTTAACTAATACTTTCAACATTTTCGGTTTGTATTACTTCTTATTCAAATGTAATAAAAGTATCAACAAAAAATTGTTAA 
TATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAGAATTCTACTTCATACATTTTCAATTAAGATGCAGTTACTTCGCTGTTT 
TTCAATATTTTCTGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACTTTAG 
AATCGACGCCGTACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAAGGAGTTTTTGAATATTACAA 
ATCAGTAACGTTTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTT 
TTTAAGGACAATAGCTCGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAGGCTAGTGCCTCTC 
CAGCTGCACCTGCTCCAGCAAGCCCTGCTGCACCAGCTCCGTCTGCTCCTGCTGCCTCTCCAGCTGCACCTGCTCCAG 
CTTCTCCAGCAGCTCCTGCACCTAGTGCTCCTGCTGGGGGTGGAGGCTCTGGCGGAGGTGGGTCTGGTGGGGGCGGA 
TCTGCTAGCGCCGAAGCGAAATACGCTAAAGAAAACXYZAACGCGXYZXYZGAAATCXYZXYZCTGCCGAACCTGACC 



 

73 
 

XYZXYZCAGAGAXYZGCATTCATAXYZGCACTGXYZGATGACCCGTCCCAGAGCTCTGAACTCCTGTCTGAGGCGAAG 
AAACTGAACGATTCCCAAGCACCAAAAGGATCCGAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGATCTGATAACAACAGTG 
TAGATGTAACAAAATCGACTTTGTTCCCACTGTACTTTTAGCTCGTACAAAATACAATATACTTTTCATTTCTCCGTAAACAACATGTTTTCCCATGTAATATCCTTTTCTATTTTT
CGTTCCGTTACCAACTTTACACATACTTTATATAGCTATT 
CACTTCTATACACTAAAAAACTAAGACAATTTTAATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCTATTAGTAGCTAAAAAAAGATGAATGTGAATC
GAATCCTAAGAGAATTGAGCTCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTG 
GCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGC
CCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTGTAGCGGCGC 
ATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCC
CCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACC 
TCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCC
AAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG 
CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGT
GCGGTATTTCACACCGCAGGCAAGTGCACAAACAATACTTAAATAAATACTACTCAGTA 
ATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTTAATCTAAGCGCA
TCACCAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAAATGTAAGCTTTCGGGGCT 
CTCTTGCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTTCACCTGTCCCACCTGCTTCTGAATCAAACAAGGGAATAAACGAATGAGGTTTCTGTGAAGCTGCACTGAG
TAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACT 
CTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTAATCATTGACCAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATT
TCGGAGTGCCTGAACTATTTTTATATGCTTTTACAAGACTTGAAATTTTCCTTGCAATA 
ACCGGGTCAATTGTTCTCTTTCTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAAT
GGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGCTGCCTTTGTGTGCTT 
AATCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCTTAATCGGCAAAAAAAGAAAAGCTCCGGATCAAG
ATTGTACGTAAGGTGACAAGCTATTTTTCAATAAAGAATATCTTCCACTACTGCCATCT 
GGCGTCATAACTGCAAAGTACACATATATTACGATGCTGTCTATTAAATGCTTCCTATATTATATATATAGTAATGTCGTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCG
CATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGT 
CTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGA 
 
Protein: 
Aga2p – KDNSST – Xa – HA – PAS40–(G4S)3 – AS – Affi(1 - 58)– GS – c-myc 
MQLLRCFSIFSVIASVLAQELTTICEQIPSPTLESTPYSLSTTTILANGKAMQGVFEYYKSVTFVSNCGSHP 
STTSKGSPINTQYVFKDNSSTIEGRYPYDVPDYALQAS 
ASPAAPAPASPAAPAPSAPAASPAAPAPASPAAPAPSAPAGGGGSGGGGSGGGGSASAEAKYAKENxN 
AFxEIxxLPNLNxxQRxAFIxALxDDPSQSSELLSEAKKLNDSQAPKGSEQKLISEEDL 

Affibody Sanger sequence results 

 
G1C1:ANNNNNNNNNNNNNNACATGGGAAACATGTTGTTTACGGAGAAATGA 
AAAGTATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATT 
TTGTTACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCA 
GAAATAAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTT 
CGCCTCAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTCAAGCAGTGCCTC 
AAAGAATGCCGCTTTCTGGTCGCCGGTCAGGTTCGGCAGGACCCAGATGGAA 
TTGGCCGCGGCAGTCACTTCTTTGTTGTATTTCGCTTCGGCGCTAGCAGATCC 
GCCCCCACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACT 
AGGTGCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAG 
CAGGAGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCT 
GGAGAGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTAC 
CTTCAATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTG 
CCTTTGCTANNNNNTGAGGGA 
G1C2:NNNNNNNNNNNNNNNACNTGGNANNNTGTTGTTTACGGAGAAATGA 
AAAGTATATTGTATTTTGTACGAGCTAAAAGTACNGTGGGAACAAAGTCGATT 
TTGTTACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCA 
GAAATAAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTT 
CGCCTCAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTCGAGCAGTGCAGC 
ATAGAATGCGGCTTTCTGGAAGGCGGTCAGGTTCGGCAGATACCGGATCTGG 
GTGGCCGCGGAGGACACTTCTTTGTAGTATTTCGCTTCGGCGCTAGCAGATCC 
GCCCCCACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACT 
AGGTGCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAG 
CAGGAGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCT 
GGAGAGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTAC 
CTTCAATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTG 
CCTTTGCTAGNTGTTGAGGGA 
G1C3:NNNNNNNNTTANNTGGGAAACATGTTGTTTACGGAGAAATGAAAAGT 
ATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATTTTGTT 
ACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAAAT 
AAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTTCGCCT 
CAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTAAACAGTGCGTAGACGA 
ATGCATTTCTCTGGTCGAGGGTCAGGTTCGGCAGATTATCGATCACATCGTAC 
GCGTCAAACCCTTCTTTGGTGTATTTCGCTTCGGCGCTAGCAGATCCGCCCCC 
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ACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACTAGGTGC 
AGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAGCAGGAG 
CAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCTGGAGAG 
GCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTACCTTCAAT 
CGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTGCCTTNNN 
NNNNNNNNNNNNNAGGGGNNNNNN 
G2C1:ANNNNNNNNNNNNNNNNNNCNTGGGAAACATGTTGTTTACGGAGAAA 
TGAAAAGTATATTGTATTTTGTACGAGCTAAAAGTACNGTGGGAACAAAGTC 
GATTTTGTTACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTC 
TTCAGAAATAAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTT 
TCTTCGCCTCAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTCCCCAGTGC 
AGCGATGAATGCACGTATCTGATAGCCGGTCAGGTTCGGCAGGGACCGGATG 
GACATGTCCGCGTCCAACCATTCTTTGTAGTATTTTGCTTCGGCGCTAGCAGA 
ACCACCACCACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGC 
ACTAGGTGCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGG 
CAGCAGGAGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCA 
GCTGGAGAGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATC 
TACCTTCAATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGG 
CTGCCTTTGCTAGTTGTTGAGGGNNN 
G2C2:NNNNNNNNNNTTANNTGGGANACATGTTGTTTACGGAGAAATGAAAA 
GTATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATTTTG 
TTACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAA 
ATAAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTTCGC 
CTCAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTAGACAGTGCGTCGAC 
GAATGCGGCTTTCTGAGACGCGGTCAGGTTCGGAGGTAGAAGATCACAACGT 
ACGCGTTAAACTGTTCTTTAGCGTATTTCGCTTCGGCGCTAGCAGATCCGCCC 
CCACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACTAGGT 
GCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAGCAGG 
AGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCTGGAG 
AGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTACCTTC 
AATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTGCCTT 
TGCTANNNNNNTTGAGGGGA 
G2C3:NNNNGNNNNTACNTGGGAAACATGTTGTTTACGGAGAAATGAAAAGT 
ATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATTTTGTT 
ACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAAAT 
AAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTTCGCCT 
CAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTCATCCAGTGCCTCGATGAA 
TGCGCCTTTCTGAACGCGGGTCAGGTTCGGCAGATAAAAGATCACCACGGCC 
GCGGCGCGCCTTTCTTTGTAGTATTTTGCTTCGGCGCTAGCAGAACCACCACC 
ACCAGAACCACCACCACCAGAACCACCTCCGCCAGAGCCTCCACCCCCAGC 
AGGAGCACTAGGTGCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTG 
GAGAGGCAGCAGGAGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCA 
GGTGCAGCTGGAGAGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTAT 
GGGTATCTACCTTCAATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTT 
ATGGGGCTGCCTTNNNNNNNNNNTNNNNNNNGGGGNNNAA 
G3C1:NNNNNNNNNNNNNNNNACNTGGGAANCATGTTGTTTACGGAGAAATG 
AAAAGTATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGA 
TTTTGTTACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTT 
CAGAAATAAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTC 
TTCGCCTCAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTATACAGTGCCC 
GCGCGAATGCGACTCTCTGACCCTGGGTCAGGTTCGGCAGATCATTGATCAC 
ATAGATCGCGTTCAACCTTTCTTTAGCGTATTTCGCTTCGGCGCTAGCAGATC 
CGCCCCCACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCAC 
TAGGTGCAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCA 
GCAGGAGCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGC 
TGGAGAGGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTA 
CCTTCAATCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCT 
GCCTTTGCTANNNGTTGAGGGAN 
G3C2:NNNNNGNNTTANNTGGGAAACATGTTGTTTACGGAGAAATGAAAAGT 
ATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATTTTGTT 
ACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAAAT 



 

75 
 

AAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTTCGCCT 
CAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTAGACAGTGCGTCGACGA 
ATGCGGCTTTCTGAGACGCGGTCAGGTTCGGCAGGTAGAAGATCACAACGTA 
CGCGTTAAACTGTTCTTTAGCGTATTTCGCTTCGGCGCTAGCAGATCCGCCCC 
CACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACTAGGTG 
CAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAGCAGGA 
GCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCTGGAGA 
GGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTACCTTCAA 
TCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTGCCTNNN 
NNNNNNNTNNTNNGNNNGGNNNNNAAA 
G3C3:NNNNNNNNNTACNTGGGAANCATGTTGTTTACGGAGAAATGAAAAGT 
ATATTGTATTTTGTACGAGCTAAAAGTACAGTGGGAACAAAGTCGATTTTGTT 
ACATCTACACTGTTGTTATCAGATCTCGAGCTATTACAAGTCCTCTTCAGAAAT 
AAGCTTTTGTTCGGATCCTTTTGGTGCTTGGGAATCGTTCAGTTTCTTCGCCT 
CAGACAGGAGTTCAGAGCTCTGGGACGGGTCGTTCCCCAGTGCAGCGATGA 
ATGCACGTATCTGATAGCCGGTCAGGTTCGGCAGGGACCGGATGGACATGTC 
CGCGTCCAACCATTCTTTGTAGTATTTTGCTTCGGCGCTAGCAGAACCACCAC 
CACCAGACCCACCTCCGCCAGAGCCTCCACCCCCAGCAGGAGCACTAGGTG 
CAGGAGCTGCTGGAGAAGCTGGAGCAGGTGCAGCTGGAGAGGCAGCAGGA 
GCAGACGGAGCTGGTGCAGCAGGGCTTGCTGGAGCAGGTGCAGCTGGAGA 
GGCACTAGCCTGCAGAGCGTAGTCTGGAACGTCGTATGGGTATCTACCTTCAA 
TCGTCGAGCTATTGTCCTTAAAAACATACTGTGTGTTTATGGGGCTGCCTTTG 
CTANNNNGTTGAGGGGN 
 

Affibody mutant g-block sequences 

G3C1 Affibody (wild-type): GGSASAEAKYAKERLNAIYVINDLPNLTQGQRVAFARALYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
 
Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAG TCG CAT TCG 
CGC GGG CAC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG TGC CCG 
CGC GAA TGC GAC TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.8 ºC Total GC%: 52 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
V28W: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRWAFARALYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
 
Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAT GGG CAT TCG 
CGC GGG CAC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG TGC CCG 
CGC GAA TGC CCA TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.9 ºC Total GC%: 52 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
V28T: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRTAFARALYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
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Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAA CCG CAT TCG 
CGC GGG CAC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG TGC CCG 
CGC GAA TGC GGT TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.9 ºC Total GC%: 52 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
V28D: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRDAFARALYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAG ACG CAT TCG 
CGC GGG CAC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG TGC CCG 
CGC GAA TGC GTC TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.8 ºC Total GC%: 52 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
A33Q: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRVAFARQLYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
 
Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAG TCG CAT TCG 
CGC GGC AGC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG CTG CCG 
CGC GAA TGC GAC TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.8 ºC Total GC%: 52 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
A33L: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRVAFARLLYNDPSQSSELLSEAKK 
LNDSQAPKGSEQKLISEE 
Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAG TCG CAT TCG 
CGC GGT TGC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG CAA CCG 
CGC GAA TGC GAC TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.9 ºC Total GC%: 51.6 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 R_overlap Tm: 57.8 ºC 
 
A33Y: GGSASAEAKYAKERLNAIYVINDLPNLTQGQRVAFARYLYNDPSQSSELLSEAK 
KLNDSQAPKGSEQKLISEE 
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Forward sequence: 5'- GGG GCG GAT CTG CTA GCG CCG AAG CGA AAT ACG CTA AAG AAA GGT TGA 
ACG CGA TCT ATG TGA TCA ATG ATC TGC CGA ACC TGA CCC AGG GTC AGA GAG TCG CAT TCG 
CGC GGT ACC TGT ATA ACG ACC CGT CCC AGA GCT CTG AAC TCC TGT CTG AGG CGA AGA AAC 
TGA ACG ATT CCC AAG CAC CAA AAG GAT CCG AAC AAA AGC TTA TTT CTG AAG AG -3' 
Reverse sequence: 5'- CTC TTC AGA AAT AAG CTT TTG TTC GGA TCC TTT TGG TGC TTG GGA ATC GTT 
CAG TTT CTT CGC CTC AGA CAG GAG TTC AGA GCT CTG GGA CGG GTC GTT ATA CAG GTA CCG 
CGC GAA TGC GAC TCT CTG ACC CTG GGT CAG GTT CGG CAG ATC ATT GAT CAC ATA GAT CGC 
GTT CAA CCT TTC TTT AGC GTA TTT CGC TTC GGC GCT AGC AGA TCC GCC CC 
-3' 
Total length: 221 Total Tm: 68.8 ºC Total GC%: 51.6 
F_overlap length: 17 F_overlap Tm: 58.6 ºC R_overlap length: 30 
R_overlap Tm: 57.8 ºC 
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