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The importance of good sleep cannot be overstated. What makes sleep “good”, 

productive, and beneficial are of interest to any sleep researcher. Studying morphology 

of sleep features can provide insight about what differentiates healthy and unhealthy 

sleep and create benchmarks for recognizing instances when characteristics such as 

aging and disease may be impacting sleep quality. The purpose of this study was to 

examine an N2 sleep feature termed a sleep spindle and conduct an analysis of 

morphology on a sample of healthy adult EEG using recently validated and created 

sleep spindle detection algorithm to create a baseline measurement for spindle presence. 

The effect of age on spindles was of particular interest and was found to be related to a 

decrease in spindle length. The possible reason for this effect is discussed, as well as 

future applications for use of this algorithm and spindle analysis. 
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Introduction  

One third of the human life is spent sleeping, and the quality of that sleep is very 

important for physical and mental function. The importance of “good sleep” is widely 

alluded to, by physicians and parents alike, but recordings such as an 

electroencephalogram (EEG) allows researchers to view what the brain is doing during 

sleep. This information can give insight to questions such as “How does sleep help 

memory?’ and “How much REM sleep is normal?” Establishing a baseline for “normal” 

sleep features, including duration, allows for the use of sleep recordings as a non-

invasive way to characterize abnormal sleep patterns, including departures from 

normative sleep patterns at the population level (i.e., between people) or departures 

from normal patterns within an individual. 

Many factors can contribute to changes in sleep quality: aging, mood disorders, 

and neurodegenerative diseases are just a few examples. However, each of these factors 

changes sleep in a distinctive way prompting different targets for treatment intervention. 

Certain features of sleep, like REM staging and slow waves, have been studied 

extensively. Others, such as sleep spindles (described below), remain relatively 

unexamined. Thus, much more work is needed to understand the relative importance 

and prevalence of these features in normal adult sleep. One of the best ways to examine 

sleep comes from recording the brain’s aggregated electrical activity throughout the 

night, in the form of an electroencephalogram (EEG). Studying this EEG requires 

people who have been trained in identifying relevant sleep features or using machine 

learning to create an algorithm that is as efficient at detecting sleep features as a human 
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would be. Lacourse et al. (2019) created a sleep spindle detection algorithm comparable 

to highly trained human raters; the goal is to exceed that algorithms capability.  

Why is analyzing sleep features important? Creating a study where a specific 

type of brain activity during sleep can be linked to changes in memory, performance, or 

disease is immensely valuable both for understanding brain function and improving 

sleep quality.  For example, at least one link between aging and memory decline has 

been proposed based on analysis of sleep characteristics; Scullin (2012) found that older 

adults who perform worse on memory tasks have a corresponding decrease in slow 

wave sleep. Implications of this finding are that if the duration of slow wave sleep could 

be increased in older adults, perhaps memory decline would not be as dramatic and 

devastating. While slow wave sleep has been linked to memory, there are other sleep 

features that have not been studied as much and their effect and purpose remains 

relatively unknown.  

Sleep spindles, which occur primarily in non-rapid eye movement stage 2 of 

sleep (N2 and N3) are one of those such sleep features. Spindles are smooth sinusoidal 

waves that occur during sleep, in relatively short (greater than 0.5 seconds) bursts of 11-

16 Hz activity. They were first observed 80 years ago in early EEG sleep observations, 

but it wasn’t until 30 years ago that it was determined sleep spindle activity is driven by 

thalamocortical loops in the forebrain (Fernandez and Lüthi, 2020). Spindle activity and 

slow wave activity are inversely related in periods of sleep, suggesting that they play 

different roles in sleep homeostasis. In addition to the regulatory role of spindles, they 

have implications in cognitive functions. They could become an increasingly important 

measure of sleep quality as aging occurs, due to the previously stated decrement in slow 
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wave activity also corresponding to aging. The decision to examine sleep spindles 

comes from a desire to understand function, establish baseline measurements for shape 

and frequency of the spindles, and ensure that there in an algorithm that is able to 

identify and note those features with at least the same accuracy as an expert sleep rater. 

One potential application for spindle detection centers around the understanding that 

key characteristics of spindles change when neurological diseases are present. 

Understanding how and why they change in these instances can offer insight into the 

mechanism of disease and potential treatment or sleep therapy.  

Spindles are typically detected by use of electroencephalography (EEG) 

recordings of sleep. This results in 8-hour recordings for each individual assessed. 

Manually going through those recordings to mark and measure features is time 

consuming and introduces human error into the process. The use of an algorithm in this 

study ensures that machine learning can be used to eliminate time constraints and 

introduce higher levels of precision into data recording and analysis. Creating an 

algorithm that compares well to gold standard EEG raters would mean that labs or 

hospitals would not need to allocate as many resources or personnel to EEG analysis.  

The goal of the study will be to use this algorithm to examine differences in 

spindle density across participants. Because all participants are healthy adults with no 

sleep complications, the main effect to examine will be how age shapes sleep spindle 

morphology and what potential applications that has for cognitive function.  
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Proposed Investigation 

In sleep scoring, expert raters are considered the gold standard for identifying 

sleep features such as sleep spindles. However, manually examining an 8-hour EEG 

recording is time consuming; doing so for an entire study’s worth of participants is a 

massive demand. Computer learning is a useful alternative assuming sufficient 

sensitivity and discretion can be taught.  

Lacourse et al. (2019) present an algorithm referred to as A7. While many other 

algorithms exist, the A7 algorithm is open source, allowing for continual testing and 

improvement. The aim of this study is to use this algorithm to analyze previously 

collected data to measure sleep spindle density and plot how this changes as age of 

participants increases.  
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Existing Literature 

This study attempts to build on previous literature and algorithms created to 

analyze sleep spindles and examine the possible applications for detecting abnormalities 

in spindle quantity and density, specifically related to aging. Sleep spindles are related 

to aspects of cognition such as learning and memory and seem to change when 

neurological diseases are present.  

The primary paper used to direct the study was Lacourse et al (2019), as this 

work introduced the A7 algorithm used for spindle detection and analysis. It was 

created to reduce the time and expense of using human raters and to show that an 

algorithm could reach the same amount of agreement as human raters. The six 

automated spindle detection algorithms previously created did not show high validation 

with human scorers; algorithm #7 (A7) set out to be different by comparing 

performance to human raters and four other detection algorithms. With detection 

parameters of absolute sigma (the wavelength of spindle waves) power, relative sigma 

power, sigma covariance, and sigma correlation, the A7 identified a spindle when all 

those parameters exceed their threshold. In tests, A7 received the highest F score, 0.17 

points above the next detection algorithm and comparable to human raters, who were 

0.03 points below A7. While each method of spindle detection is yields different 

advantages, this was a high level of spindle detection that agreed well with gold 

standard rated epochs. Because this algorithm has already been validated, further use 

will assume that validation holds.  

Fernandez and Lüthi (2020) offer a brief summary of spindle characteristics, 

location, and implications for cognitive activity. Fernandez and Lüthi describe how 
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spindles play a role in memory consolidation by supporting synaptic plasticity, and how 

the interplay between the thalamus and the cortex (essential for cognition) is the same 

circuit that underlies spindles. Neurodevelopmental disorders such as attention disorders 

and autism that have a genetic component often express those genes in the thalamic 

nucleus, so differences in spindle expression are typically present in individuals with 

those disorders. Epilepsy, Alzheimer’s, schizophrenia, Parkinson’s, and many more 

neurodegenerative/developmental disorders also show marked differences in spindle 

density or amplitude, suggesting that spindles could serve as some sort of predictive 

biomarker for cognitive abnormality, disease, and decline.  

Latrielle et al. (2015) examined in more detail the link between spindle 

characteristics and individuals with Parkinson’s disease specifically. EEG sleep 

recordings were taken from a sample of Parkinson’s patients without dementia and a 

healthy control sample, and slow wave and spindle activity was measured. Then, 4.5 

years later, the same tests were given to examine the effects of aging and disease 

progression. About 30 percent of the Parkinson’s sample had developed dementia in 

that time, and spindle density decrease was noted in those individuals, both compared to 

baseline and to the healthy population. While slow wave sleep was decreased compared 

to controls, there was no difference between Parkinson’s patients who developed 

dementia and those who did not. This suggests that lower spindle density and frequency 

in Parkinson’s patients may be predictive of decline into dementia.  

Christensen et al. (2015) also examined sleep spindles in Parkinson’s patients 

but chose to look specifically at characterizing morphological differences. A 

Parkinson’s group and a control group were compared, and significant differences were 
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found between the groups, giving an idea of morphological differences that may affect 

or result from neurodegeneration. Spindle density was decreased, spindles themselves 

were longer and at a lower frequency, and peak to peak amplitude was higher compared 

to controls, which were age and sex matched. This work suggested that Parkinson’s 

disease may affect (either directly or not) the area of the brain responsible for spindle 

generation (thalamus), although more research would need to be done to understand this 

unique effect as opposed to other neurodegenerative diseases, as well as to ensure this 

effect is not related to Levodopa and other similar drugs. Christensen concluded by 

stating the importance of making sure algorithms exist to detect abnormal spindle 

activity, because spindle detectors are likely to be used in analyzing EEG of 

neurodegenerative disease patients. 

Astori et al. (2013) review the physiology of sleep spindles and their pace 

making in order to offer some insight as to how manipulating spindles may affect neural 

function. In humans, fast spindles occur over parietal and central areas of the cortex and 

slower ones are localized to the frontal cortex; Astori et al. found that fast spindles 

appear to couple with slow waves in memory consolidation related events between the 

hippocampus and the cortex, while slow spindles then recruit frontal areas as memory 

storage space. Another proposed function of sleep spindles relates to the thalamus as the 

relay station for sensory signals. Spindles may serve a protective function for sleep by 

filtering out excess stimuli. fMRI studies showed auditory cortex activation to noise 

during NREM sleep, but that activation was absent during spindle events.  
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The review also references ways in which model systems may be used in 

conjunction with optogenetics to explore the thalamocortical loops and cortical 

feedback underlying spindle instances.  
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Methods 

Previously collected EEG data from a sleep study at the Brain Electrophysiology 

Lab was used for analysis. Of the 10 subjects used, 5 were female (M=41.70, SD=18.6). 

Participants were partially a convenience sample of family and friends and partially 

recruited older adults with no health complications. The original study spanned three 

nights, but only the second and third nights of data were used for analysis, which 

included a randomized night of neuromodulation to investigate its effect on slow wave 

sleep. Neuromodulation entailed a block of stimulation at slow wave frequency (0.5-4 

Hz) at the first detected sign of N2 sleep (either a sleep spindle or a K-complex, another 

marker of N2 sleep) in order to try and induce or enhance slow wave activity. This EEG 

had previously been down sampled, filtered, marked with artifact on bad channels 

(which were replaced), had N2 and N3 segments extracted and parsed into 15 second 

segments, and had each segments marked as artifactual or not. This resulted in the files 

which were used for analysis, after being converted into a .mat file format. This meant 

the EEG was clean and artifact free, and segments of interest for this analysis had been 

extracted. A script was run to transform each original .mff file into numerical 

representations for each of the parameters the A7 algorithm uses to detect spindles. 

These comprise of the sleep stage, if there is artifact in the segment, and the signal data 

from the EEG itself.  

After the files had been properly configured, they were run through the A7 

algorithm in MATLAB, which resulted in spindle detection and information such as 

spindle duration and if spindles were expected to be found in that segment of sleep. The 

A7 algorithm uses a central channel towards the top of the head and a reference channel 
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on one of the mastoids. These were C3 and M2 on a 10-20 array EEG net. Comparable 

channels were found to be channel 59 and the right mastoid channel on the EGI dense 

array 256 electrode EEG nets.  

Running the algorithm on segmented data from nights 2 and 3 from each of the 

10 participants resulted in detection of 7148 sleep spindles. These spindles were 

characterized with where in the segment the spindles started and ended (seconds), the 

duration of the spindle (seconds), the sleep stage in which the spindle was found, and 

the number of the segment, so the spindle could be located in the original EEG segment. 

Spindles were randomly checked to ensure the numerical output aligned with visual 

detection of a spindle waveform activity. Of the 10 spindles examined, the algorithm 

detection corresponded with visual detection. This is to be expected, because the A7 

algorithm has already been validated, but the additional verification was reassuring.  
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Results 

Spindle measures were output into a text file (.txt), which was converted to an 

excel spreadsheet. A profile was created for each participant, where the N2 and N3 

spindles recorded for each of the nights slept were averaged. N3 data was much less 

prevalent, with some nights only yielding detection of 1 or 2 spindles. For this reason, 

N3 data was excluded from analysis. Additionally, N2 is the stage of sleep where 

spindles are a benchmark sleep feature and most literature focuses on that stage alone, 

so this study chose to follow that trend and only report basic measures of N3 sleep 

spindles, which across all participants, resulted in (M=0.726, SD= 0.172) across 339 

spindles. N2 data was much more prevalent, with 6809 spindles detected (M=0.735, 

SD= 0.077).  

The primary question was what effect, if any, age had on spindle morphology. A 

regression analysis was run to examine the relationship between age and spindle density 

(see tables 1, 2, and 3). A negative correlation was found (R2=0.375, F(1,19)= 10.80, p= 

0.004) (see figure 1). Additional T-tests were run to compare the conditions of gender 

and the effect of neuromodulation (if one exists). There did not appear to be an effect of 

electrical stimulation (M=0.758,SD=0.069) on sleep spindles compared to 

uninterrupted sleep (M=0.792,SD=0.081) (t(18)= 1.353, p=0.193). There was a 

significant effect of gender (t(18)=2.483, p= 0.023) with females (M=0.773,SD=0.048) 

having significantly longer spindles compared to males (M=0.697,SD=0.084).  
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Discussion 

The results were expected, with the exception of the effect (or lack thereof) of 

neuromodulation on sleep spindles. The intention of the neuromodulation in the original 

study was to target and enhance slow oscillations in N2 sleep. While it does seem that 

slow waves are linked to sleep spindles, their relationship has not been studied in much 

detail and any attempt to alter slow oscillations does not appear to have subsequently 

affected sleep spindles in this analysis. Future directions in this realm could include 

pairing this algorithm with a slow oscillation detector and attempting to examine the 

pairing of spindles with slow waves. Both are markers of N2 and have implications for 

cognitive function. Yordanova et al. (2017) examine the temporal coordination of the 

different types of sleep spindles (fast and slow) with slow waves and the implications 

this has for memory consolidation based on a pre-sleep task. A similar investigation 

could be carried out with methodology much like this study; reliable detection of 

spindles would make investigating the link between them and slow waves more 

feasible.  

An effect of age was expected, with a negative correlation being found. This 

relationship was consistent with existing literature about spindle morphology. As 

participants age, spindle duration decreases. Nicolas et al. (2001) conducted an 

extensive investigation of sleep spindle morphology over different age groups and 

found that density and duration both decrease in older adults. They noted that most of 

the changes seem to happen before the age of 40, and then spindles are relatively 

consistent until more dramatic effects of aging become apparent around the age of 70 or 

with onset of neurodegenerative disease. The “long maturation of the central nervous 
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system” is attributed to this, in addition to age-related changes of the thalamo-cortical 

pacemaker responsible for generating spindles. Nicolas et al. (2001) propose 

impairment in neural recruitment of the pacemaker or a desynchronization of neurons 

also in the chain of command as being partially responsible for this decrease in 

function.  

There was a significant effect of gender found across N2 sleep spindles. Franco 

et al. (2020), when looking at sleep and gender-based development, found that there 

seem to be gender-based differences in sleep during development. Namely, they found 

both sleep spindles and slow waves (previously discussed to be linked in some way) 

have more density in females during development. This trend would seem to continue 

into adulthood as seen in this sample.  

Limitations of this study include the relatively small sample size (10 

participants, 2 nights each analyzed) and the lack of direction in terms of investigating 

spindles, as this was merely a baseline analysis. The A7 algorithm was only validated 

on N2 epochs, so including N3 epochs was more experimental, and the lack of 

comparable spindle detections suggests that there may be morphological differences in 

N2 and N3 spindles or sleep data such that the algorithm would need to be modified for 

use in studies involving N3 sleep. Data collection was cut short due to COVID-19, so 

being able to continue analyzing sleep data as it is collected and adding to the 

understanding of spindles will allow for more reliability in results.   

Additionally, testing the spindle-slow wave pairing that has been previously 

reported in literature would be a good application of the A7 algorithm. The spindle 

detection could be conducted entirely with the algorithm, and that should orient to 
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paired slow waves. A different detection method might need to be utilized to cross 

reference slow waves. Another analysis to run would be comparing these results to a 

population of adults with a neurodegenerative disease, such as Parkinson’s. Those sleep 

spindles would be expected to be diminished, and creating a profile for spindle 

differences could be used to characterize severity of disease onset. 

To conclude, there was a significant effect of age found in the sample of data 

examined. There was no effect of gender or neuromodulation in this sample. The A7 

algorithm was able to successfully detect sleep spindles and give morphological 

information about them, with implications for future research involving sleep spindles 

and perhaps examining them in conjunction with slow waves to look at temporal pairing 

and cognitive function.  
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Glossary 

Artifact: When EEG recordings pick up some activity other than action 

potentials, such as when the participant moves, resulting in inconsistent, abnormal, and 

unreadable EEG  

Electroencephalogram (EEG): An electrical recording that aggregates brain 

activity by recording electrical charges caused by action potentials via a web of 

channels over the skull  

Morphology: Changes of structure (in the case of EEG, amplitude, frequency, 

waves shape, and density are examples of morphological characteristics)  

Parkinson’s Disease: A neurodegenerative disease that begins destroying 

dopaminergic neurons in the substantia nigra and results in pathological motor changes 

and deterioration  

Sigma: A waveform that oscillates at 11-15 Hz, found in NREM sleep  

Sleep Spindle: A burst of sigma activity, less than 0.5 seconds and in the 11-15 

Hz range  

Thalamus: A brain structure located above the brain stem, which processes 

sensory and motor information and relays signals to the cerebral cortex  
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