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DISSERTATION ABSTRACT

Sofiane Merkouche

Doctor of Philosophy

Department of Physics

June 2022

Title: Time-Frequency Entangled Two-Photon States and Measurements

Quantum entanglement is arguably the one feature that decisively

distinguishes quantum from classical physics, and thus plays a crucial role both

in understanding the fundamental nature of reality, and in providing advantages

over classical protocols in the most promising applications of quantum physics.

Pairs of photons entangled in the various degrees of freedom of the light field are

readily available and well-studied as a platform for quantum fundamentals and

applications. However, the inherently multimode nature of optical entanglement

has yet to be fully explored and harnessed, particularly when it comes to quantum

measurements which project onto entangled states. In this dissertation we describe

a proof-of-principle experiment which takes advantage of the high-dimensional

time-energy entanglement of photons to herald a multitude of Bell states. In

addition, we give a theoretical model for using the nonlinear optical effect of sum-

frequency generation to implement projective measurements onto high-dimensional
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entangled states, and propose an experimental platform to test some of the key

features of this model. The work presented here serves as an important step

to complete the toolkit for using high-dimensional entanglement for quantum

information science.

This dissertation contains previously published and unpublished material.
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CHAPTER I

BACKGROUND AND MOTIVATION

1.1. The quantum nature of light

Ever since its early days at the beginning of the twentieth century, quantum

mechanics has been intimately connected to the study of electromagnetic

phenomena. It was while attempting to develop a theory of blackbody radiation

that Max Planck had to posit the quantization of radiation energy emitted and

absorbed within a cavity in discrete units [4]. Shortly thereafter Albert Einstein

was able to famously explain the photoelectric effect by generalizing Planck’s idea

to postulate that light itself is made up of photons, a contribution which was later

to earn him the Nobel Prize [5]. Over the next few decades, rapid developments in

quantum theory culminated in Paul Dirac’s and Richard Feynman’s formulations

of quantum electrodynamics, the first of the quantum field theories which form the

basis of the standard model, our best explanation of the fundamental workings of

the Universe [6, 7].

It was not until the 1960’s, however, that the ideas of the quantum theory

of electromagnetic radiation became refined into what is known today as the field

of quantum optics. This can be credited to two major developments. One of these

was the quantum theory of optical coherence put forward by Roy Glauber in 1963,

for which he was awarded the Nobel Prize in 2005. Glauber’s work established

a direct relationship between the coherence properties of the light field and

statistical correlations in photodetection [8]. The other was the development of the

laser by Theodore Maiman in 1960 [9]. The laser was the first source of coherent
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light at optical frequencies, opening up an array of new branches of fundamental

research and applications.

Today the field of quantum optics is distinguished in being a prolific

testbed for the most fundamental implications of quantum theory. From the first

observation of sub-Poissonian photon statistics in 1974 [10], to the first realization

of quantum state tomography in 1993 [11], to the first demonstration of quantum

teleportation in 1997 [12], to one of the first loophole-free tests of Bell’s inequality

in 2015 [13], several of the most spectacular demonstrations of the quantum nature

of reality, with deep philosophical implications, have been performed using light.

This prominence of the role of quantum optics in revealing the fabric of reality is

largely thanks to the developments which allowed generation and verification of

quantum states of light with no classical counterpart.

Beyond fundamental research, quantum optics is also the breeding grounds

for some of the most promising applications of quantum mechanics today. The

field of quantum information science (QIS) is founded on studying and exploiting

the quantum nature of information at the fundamental level, extending the ideas

of Claude Shannon on classical information theory to the quantum regime. It is

widely accepted that photons will be the carriers of information in this quantum

internet, establishing links of entanglement between distant quantum computers

[14]. In addition, quantum light offers an enhancement in precision measurements

by way of increased sensitivity, from the use of squeezed light for gravitational

wave detection [15], to the use of entanglement for increasing the signal-to-noise

ratio in target detection via quantum illumination [16, 17].
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1.2. Entanglement: from bug to feature

One of the most striking phenomena of quantum theory is the concept of

entanglement, correlations between distant objects which defy the assumptions,

inherent in classical physics, of locality and realism. Locality holds that a system

can only be influenced by its immediate surroundings, while realism holds that the

properties of a system do not depend on the measurements made on that system.

In the famous paper by Einstein, Podolsky, and Rosen (EPR) [18], it was shown

that quantum mechanics is inconsistent with these assumptions, and allowed for

what Einstein termed “spooky action at a distance” [19]. On this basis, the EPR

paper concluded that quantum mechanics did not provide a complete description

of reality.

In a striking turn of events, John Stewart Bell showed in 1964 that the EPR

paradox, as it came to be known, was more than just a philosophical thought

experiment. In his paper, Bell derived a statistical inequality which all correlations

of the local realistic kind must obey, and which quantum entanglement could

violate [20, 21]. It was not long afterwards that the first experimental tests of the

Bell inequality began to be performed using pairs of entangled photons, each time

conclusively violating local realistic assumptions and further corroborating the

quantum mechanical predictions.

With the reality of quantum entanglement firmly established, today it is

widely accepted as an important feature of the theory, and beyond revealing

some of the most surprising fundamental aspects of reality, it can be harnessed

to accomplish unprecedented tasks. Entanglement is now identified as a quantum

resource, which can be quantified [22]. It is the crucial link between the nodes

of a quantum network, which allows for the distribution of quantum information
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between multiple parties. It can be used to accomplish quantum key distribution

(QKD), enabling protocols for cryptography whose security is guaranteed

by the laws of physics [23]. Furthermore, quantum entanglement enables the

measurement of physical parameters, such as optical phase, beyond what is

classically achievable, reaching down to the Heisenberg limit [24].

1.3. The state-measurement duality and entangled measurements

Another distinguishing feature of quantum theory is the important role that

measurement plays in obtaining physical results. The mathematical language of

quantum mechanics is linear algebra. The most general formulation of the theory

holds that the state of a system is described by an operator ρ̂ acting on a vector

space called a Hilbert space, obeying certain constraints. Meanwhile, a quantum

measurement is also represented by a set of operators {Π̂n} acting on the same

Hilbert space. The connection to the results of measurements performed on a

system is then obtained by the Born rule, which states that the probability of

obtaining measurement outcome n, given that the state ρ̂ was prepared, is given

by

pn = Tr
(
ρ̂Π̂n

)
, (1.1)

where Tr(·) denotes the trace.

This duality between states and measurements in quantum theory

is succinctly distilled in what is called the retrodictive approach. Given a

measurement outcome n with a corresponding operator Π̂n, one may define the

retrodicted quantum state
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ρ̂n =
Π̂n

Tr
(

Π̂n

) , (1.2)

which corresponds to the quantum state that would have led to measurement

outcome n with unit probability (assuming an ideal measurement device [25]).

Based on this retrodicted state, one may ascribe to the measurement operator Π̂n

all of the attributes that one associates with a quantum state. For example, the

measurement Π̂n is a pure measurement if the state ρ̂n is a pure state. In that

limit it corresponds to an ideal projective Von Neumann measurement [26].

Things get particularly interesting when we consider measurements on two

quantum particles. For just as two particles may be in an entangled state, so

can a joint measurement on two particles be said to be entangled, in the sense

that it projects the two particles onto an entangled state. The best-known such

entangled measurement is the Bell-state measurement, which projects the incoming

particles onto one of the Bell states, which are the maximally entangled states that

form a basis for the Hilbert space associated with two particles. To appreciate

the state-measurement duality in the context of entanglement, it is perhaps most

instructive to consider the quantum teleportation scenario.

It is known that it is impossible in general to copy an arbitrary quantum

state of one system onto another. This is known as the no-cloning theorem [27].

Remarkably, Charles Bennett and coauthors showed in 1993 that one could,

however, teleport an arbitrary quantum state of a system possessed by one party,

Alice, onto a system possessed by another party, Bob, provided Alice and Bob

share entanglement, and in a way that necessarily results in the erasure of the

original quantum state of Alice’s system [28].
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FIGURE 1.1. Quantum teleportation protocol, see text for description. BSM: Bell
state measurement.

A rough outline of the quantum teleportation protocol is as follows: Alice

and Bob share a maximally entangled state of two particles between them, a Bell

state. Alice is also in possession of a particle in an arbitrary quantum state |ψ〉

to be teleported to Bob. The key step for teleportation is for Alice to perform

a joint measurement on this particle and her half of the Bell state. This joint

measurement is a Bell-state measurement, projecting the two particles onto a Bell

state, meanwhile resulting in Bob’s particle assuming the state |ψ〉, up to a simple

transformation. What should be appreciated here is the symmetry of the entire

process: we start with three particles, one in a quantum state |ψ〉 and two in a

Bell state, and we end with the same three particles with one in the quantum state

|ψ〉 and two in a Bell state1. What has changed is which two particles are in the

Bell state, and the final Bell state is entirely due to the Bell state measurement.

The schematic of the teleportation protocol in Fig. 1.1 makes this symmetry clear.

In a recent article [29], Nicolas Gisin notes

1Note that, when quantum teleportation is implemented using photons, only one photon
remains (the one in the quantum state |ψ〉, since the Bell state measurement destroys the two
measured photons.
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. . . entanglement is exploited twice in quantum teleportation. Firstly,

entanglement is the “quantum teleportation channel”, i.e. entanglement

between distant systems. Second, entanglement appears in the

eigenvectors of the joint measurement that Alice, the sender, has to

perform jointly on the quantum state to be teleported and her half

of the “quantum teleportation channel”, i.e., entanglement enabling

entirely new kinds of quantum measurements. I emphasize how poorly

this second kind of entanglement is understood.

Indeed, interest in quantifying the entanglement inherent in joint measurements

is a rather recent development. Although this kind of entanglement has been

recognized since the early 1990s2 [30], the first papers that propose a way to certify

that a quantum measurement is entangled, that is, has entangled eigenstates, were

not published until 2011 [31, 32]. Subsequently it was shown experimentally that

the entanglement inherent in Bell state measurements can be certified [33].

Another related quantum protocol is that of entanglement swapping, shown

schematically in Fig. 1.2. In this case, Alice produces one pair of entangled

particles, A1 and A2, and Bob produces another entangled pair, B1 and B2. Alice

sends particle A2 and Bob sends particle B2 to a third party, Charlie. Charlie

in turn performs a Bell-state measurement on these independent particles. As

expected, the measured particles A2 and B2 are now projected onto an entangled

state. More surprisingly, the particles A1 and B1, which have never interacted and

are still in Alice’s and Bob’s possession, respectively, also become projected onto

an entangled state! Effectively, as a result of the measurement, the entanglement

2In fact, Charles Bennett has noted that it was this work which inspired the conception of
quantum teleportation

7



BSM

Bell State
Source

Alice Bob

Bell State
Source

Charlie

FIGURE 1.2. Entanglement swapping protocol, see text for description.

has been teleported, or swapped [34]. The most important use of entanglement

swapping is as a quantum repeater, serving to extend the range of entanglement in

the presence of loss and noise. However, it is also a spectacular demonstration

not only of the non-locality inherent in entangled quantum states, but also of

that induced by measurement, and in this work we will show an extension of this

protocol to make use of the high-dimensional nature of the entanglement present in

quantum states of light.

1.4. Optical quantum information encoding and entanglement

One of the benefits of using light for quantum information encoding is the

inherently high information capacity offered by the degrees of freedom of light.

The electromagnetic field can be decomposed into modes which are solutions to

Maxwell’s equations, such that each mode is uniquely specified by four variables,

typically chosen as the three spatial degrees of freedom, and the polarization of

light. There are two main approaches to taking advantage of this in quantum

optics.
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The first approach is called the continuous variable, or CV, approach.

Here a fixed number of modes of light is considered, and each mode is treated

as a quantum harmonic oscillator whose quantum state can encode information.

One can associate with each mode two non-commuting observables, X̂ and P̂ ,

analogous to position and momentum of a classical system. This is known as

the CV approach because these observables can take on any value in principle.

Furthermore, one can entangle two modes (A and B) such that their respective

observables are correlated: 〈X̂A − X̂B〉 = 0, 〈P̂A + P̂B〉 = constant. This is

analogous to the position and momentum entanglement considered in the original

EPR paper. Finally, the energy spectrum of each mode is discrete, with equally-

spaced energy levels, precisely the discrete energies which Planck postulated and

which Einstein associated with the light quanta we call photons.

The second, perhaps more intuitive approach, is known as the discrete

variable, or DV, approach, and it is the one considered in this work. Here a

fixed number of photons is considered, whereas information is encoded in which

modes they occupy. If the polarization modes are used, the state space is two-

dimensional, and can encode at most a quantum bit, or qubit, of information in

a single-photon state of light. This is done by associating with each polarization

state of light one of the binary logical values {0, 1}. Choosing, for instance,

the linear polarization states of light as the basis for encoding, we can choose

{0 → |H〉 , 1 → |V 〉} as our encoding scheme, where |H〉 , |V 〉 denote single-photon

states in the horizontal and vertical polarizations, and we’re using the Dirac ket

notation. The most general qubit can then be represented as

|ψ〉 = α |H〉+ β |V 〉 , (1.3)
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where α, β are complex coefficients satisfying |α|2 + |β|2 = 1. This approach

is easily accessible experimentally and has been the basis of many of the

groundbreaking proof-of-principle experiments in quantum optics.

However, it is possible to use the spatial degrees of freedom to exploit a

d-dimensional state space (d > 2), and encode a qudit rather than a qubit

of information in a single-photon state, since the number of spatial modes are

unlimited in principle. In particular, the longitudinal degree of freedom of a

traveling light field, that is, the wavelength, or frequency, of the light, presents

a particularly attractive mode basis to encode information. This is due in part

to the mature technologies that exist for measuring light spectra, in part to the

compatibility of spectral modes with optical fiber networks, and finally in part

to the ease with which pairs of photons entangled in frequency and time can

be generated in the laboratory. It is now well-accepted that spectral-temporal

encoding of quantum information in single-photon states of light forms one of the

most viable and promising paradigms for quantum information processing [35].

1.5. Expanding on the state of the art

Given that the spectral-temporal degree of freedom of light offers a platform

for high-dimensional quantum information encoding, it is worth examining the

available toolkit for QIS using TF-encoded states of light. After having acquired

an overview of the state of the art in TF quantum information encoding, it should

become more apparent what is needed to expand this toolkit, and where the work

presented in this thesis fits in. To this end it is helpful to consider the three main

components of a quantum experiment: state preparation, state manipulation, and

measurement.
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Quantum state preparation in the spectral-temporal domain is a rather

mature technology by now. As previously stated, the laser has been in existence

for over 60 years, allowing an exquisite amount of control over the modal

properties of light. In that time, lasers have been developed across a vast range of

wavelengths, and with a possessing a large range of spectral coherence properties.

Continuous-wave (CW) lasers can be confined to spectral linewidths in the

kHz regime at infrared frequencies [36]. Meanwhile, wavelength-tunable pulsed

lasers routinely allow for the generation of ultrashort pulses with durations on

the order of femtoseconds, corresponding to spectral bandwidths in the GHz

range. Additionally, nonlinear optical effects such as second- and third-harmonic

generation provide access to shorter wavelengths while retaining the coherence

properties of the source lasers.

Since they are the ultimate source of quantum states of light, the versatility

in laser spectral properties is in turn responsible for the generation of quantum

states of light with well-tailored spectral properties. A key resource in this field

is time-frequency entangled photon pairs, and their generation is well-studied.

The use of narrow linewidth lasers, combined with appropriate non-linear optical

crystals, can generate pairs of photons with ultra-broadband spectra and a high

degree of entanglement, spanning over an octave in frequency [37]. At the other

end, the use of pulsed lasers allows for the generation of photon pairs exhibiting no

spectral entanglement, such that the detection of one of the photons heralds the

other photon in a pure quantum state [38]. In between these two regimes, spectral

shaping of the laser light, in combination with versatile design of nonlinear crystal

properties, now permit an unprecedented degree of control over the amount of
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correlations between photon pairs [2, 39]. The mechanism whereby these properties

are responsible for two-photon entanglement will be addressed in the next chapter.

Manipulation of quantum states of light in the time-frequency domain has

also seen great progress in the past two decades. Because the properties of a

single photon consist in the classical mode it occupies, many classical methods

of spectral-temporal manipulation can be carried over into the quantum regime.

Chief among these is pulse shaping, whereby dispersion is used to separate the

light into its spectral components, such that each of these can be addressed

independently in amplitude and phase using a spatial light modulator (SLM) [40].

However, spectral amplitude shaping is inherently lossy, and although this is not a

problem for classical light, this is incompatible with photonic quantum information

processing, where it is desired so manipulate the modal properties without altering

the photon number properties.

Such manipulation is achieved through unitary operations, acting only on the

spectral and temporal phases of the optical modes. This area of the field is still

in its infancy due to the technical challenges of implementing phase operations

in the time domain, but some important steps have been taken towards this

goal. These include frequency translation [41], bandwidth compression [42], and

time lensing [43]. Furthermore, it has been shown theoretically that an arbitrary

unitary transformation may be realized via a sequence of alternating time-domain

and frequency-domain phase shifts within a reasonable number of steps [44].

We have already seen how quantum measurements are key players in

quantum physical processes, on a par with quantum states. It is not surprising,

then, that a complete toolkit for quantum information science using TF-encoded

states of light should require a versatile set of measurement techniques. These
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should include projective measurements both in the time basis, which are

achievable through time-resolved single-photon detection, and the frequency basis,

using conventional spectrometers with single-photon sensitive detectors. But

furthermore, arbitrary projective measurements onto wavepacket modes are also

essential, and these have been achieved at the quantum level using quantum pulse

gates, which use a high-intensity shaped pulse as a gate in a non-linear interaction,

implementing a pulse mode-selective frequency conversion to a register mode which

can be detected with a standard single-photon detector [2, 45, 46].

However, it is also necessary to implement joint two-photon measurements.

These measurements are the key requirement for quantum repeaters for the

distribution of entanglement, which forms the “quantum channel” for connecting

distant parties in a quantum network, as we saw in the discussion of entanglement

swapping. To this end, entanglement swapping has been demonstrated using all

of the available degrees of freedom of light, including polarization [47], time bins

[48], transverse spatial modes [49], and most recently time-frequency modes [50].

All of these implementations rely on using a linear-optics Bell-state measurement

on two photons, as we describe in the next chapter, and it is known that such

a measurement (without auxiliary photons) can project onto at most a two-

dimensional entangled state [51]. Reference [49] is particular among these in that

multiple spatial-mode Bell states are swapped and individually characterized.

However, this is done in a post-selected manner, such that information about

which Bell state was swapped is only obtained after Alice and Bob compare their

results.

This dissertation is concerned with expanding upon joint two-photon

measurements to better utilize the capabilities afforded by the high-dimensional
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nature of TF entanglement. In Chapter II we establish the theoretical framework

in which to understand TF quantum information encoding in single- and two-

photon states and measurements of light. In Chapter III we report on an

entanglement swapping experiment that uses a spectrally multiplexed Bell-state

measurement implemented by Charlie, such he can reveal to Alice and Bob ahead

of time which spectrally-encoded Bell state they have swapped. This experiment

is compatible with standard off-the-shelf entangled photon sources, making use

of the full dimensionality of the entanglement available therein. In Chapter IV

we expand on the results of the entanglement swapping experiment to show how

spectrally-resolved two-photon interference can reveal entanglement even in the

limit of maximally mixed quantum states, as long as they are antisymmetric

upon exchange of photon labels. In Chapter V we consider theoretically the use

of sum-frequency generation, a non-linear optical effect whereby a pair of photons

are upconverted into a single photon, to implement two-photon measurements.

We show that a mode-resolved detection of the upconverted photon can be

backpropagated onto a joint measurement on the input photon pair, and describe

some useful properties of the measurement operator. Finally, in Chapter VI we

carry through with some the implications of the two-photon detection model

presented in the previous chapter, and describe an experimental setup towards

testing these implications, before concluding in Chapter VII. Chapters III and V,

and the appendices associated therewith, contain previously published material

co-authored by the author and reprinted with permission from all the authors.
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CHAPTER II

QUANTUM OPTICS AND TWO-PHOTON ENTANGLEMENT

Since the bulk of the work described in this thesis relies on an understanding

of multimode quantum optics in the single- and two-photon regime, this chapter

aims to build a preliminary framework to understand this work. First, we will

show how to quantize the electromagnetic field, and how the picture of photons

as quantum-mechanical objects follows naturally from this quantization. Then

we describe single- and two-photon states which can encode information in the

spectral-temporal degree of freedom of light, and establish various quantities

related to entanglement. Afterwards we describe the process of parametric down

conversion, which is the most common way of generating time-frequency entangled

photon pairs. Finally, we show how to model single- and two-photon detection in

the quantum measurement formalism. These concepts should help to understand

the subsequent chapters of this thesis.

2.1. The free quantum electromagnetic field

In this section we will follow the standard procedure for the canonical

quantization of the electromagnetic field, which results in describing the normal

modes of the field, which are solutions to the classical Maxwell’s equations, as

quantum harmonic oscillators. To this end, we express the electric and magnetic

fields in terms of a monochromatic plane-wave expansion in a given quantization

cavity of volume V as
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E(r, t) = i
∑
k,σ

ekσ

√
~ωk

2ε0V

[
αkσuk(r)e−iωkt − α∗kσu∗k(r)eiωkt

]
, (2.1)

B(r, t) = i
∑
k,σ

k× ekσ

|k|

√
~ωk

2c2ε0V

[
αkσuk(r)e−iωkt − α∗kσu∗k(r)eiωkt

]
. (2.2)

Here ~ is the reduced Planck’s constant, c is the vacuum speed of light, and ε0 is

the vacuum permittivity. The wavevector k and the polarization unit vector ekσ

satisfy k · ekσ = 0, and σ = ±1 labels the polarization. Furthermore, uk(r) =

eik·r are the plane-wave monochromatic modes, and ωk = c|k| are the angular

frequencies of the monochromatic modes.

The Hamiltonian representing the electromagnetic energy in this volume is

given classically by

H =
ε0
2

∫
V

d3r
[
E2(r, t) + c2B2(r, t)

]
. (2.3)

Using the forms of the fields in Eq. (2.1) and (2.2), and integrating over the spatial

variables, we can express the Hamiltonian in terms of the expansion coefficients as

H =
∑
k,σ

~ωk

2
(α∗kσαkσ + αkσα

∗
kσ) (2.4)

If we now define the canonically conjugate variables, also known as the field

quadratures,

Qkσ =

√
~
2

(αkσ + α∗kσ)

Pkσ = −i
√

~
2

(αkσ − α∗kσ),

(2.5)
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the Hamiltonian can be expressed in terms of these as

H =
∑
k,σ

ωk

2
(Q2

kσ + P 2
kσ). (2.6)

This can be recognized as the Hamiltonian for a set of decoupled harmonic

oscillators, subject to the Hamilton equations

dQkσ

dt
=
∂Hkσ

∂Pkσ

,
dPkσ

dt
= −∂Hkσ

∂Qkσ

, (2.7)

where Hkσ = ωk

2
(Q2

kσ + P 2
kσ) is the Hamiltonian for the mode labeled by kσ.

We quantize this field by promoting the field quadratures to operators Q̂kσ,

P̂kσ, and imposing on them the canonical commutation relations

[Q̂kσ, P̂k′σ′ ] = i~δkk′δσσ′ , [Q̂kσ, Q̂k′σ′ ] = [P̂kσ, P̂k′σ′ ] = 0. (2.8)

Likewise the expansion coefficients αkσ and α∗kσ become operators âkσ and â†kσ,

respectively, such that

âkσ =
1√
2~

(Q̂kσ + iP̂kσ), â†kσ =
1√
2~

(Q̂kσ − iP̂kσ). (2.9)

These are the ladder operators for the quantum harmonic oscillator, and they obey

the commutation relations

[âkσ, â
†
k′σ′ ] = δkk′δσσ′ , [âkσ, âk′σ′ ] = [â†kσ, â

†
k′σ′ ] = 0. (2.10)

Finally, the quantum Hamiltonian operator takes the form
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Ĥ =
∑
k,σ

~ωk

2
(âkσâ

†
kσ + â†kσâkσ) =

∑
k,σ

~ωk

(
â†kσâkσ +

1

2

)
. (2.11)

From this development it is evident that the free electromagnetic radiation

field is equivalent to a set of decoupled quantum harmonic oscillators, each one

corresponding to a mode labeled by kσ obeying the classical Maxwell’s equations.

The Hilbert space H associated with the radiation field is the tensor product of the

Hilbert spaces H` of each mode, where ` = k, σ labels each mode. That is

H = ⊗∞` H`. (2.12)

The operator â†`â` = N̂` is known as the number operator: its eigenvalues are the

natural numbers n` ∈ N, and its eigenvectors are the Fock states, |n`〉. These form

a basis for the Hilbert space H` for the mode labeled by ` = k, σ. The state |n`〉 is

the state containing n photons in the mode `, and the ground state for that mode

is |0`〉, containing zero photons. The ground state for the entire system is known

as the vacuum state, |vac〉, where every mode is in the ground state

|vac〉 = |01〉 |02〉 . . . |0`〉 . . . = |01; 02; . . . 0`; . . .〉 . (2.13)

The creation operator â†` acts on this state to create a single photon in the mode `:

â†` |vac〉 = |01; 02; . . . 1`; . . .〉 = |1`〉 . (2.14)

More generally, the creation operator â†` adds a photon to the mode `, while the

annihilation â` operator removes a photon from the mode `, according to
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â†` |n1;n2; . . . ;n`; . . .〉 =
√
n` + 1 |n1;n2; . . . ;n` + 1; . . .〉 ,

â` |n1;n2; . . . ;n`; . . .〉 =
√
n` |n1;n2; . . . ;n` − 1; . . .〉 .

(2.15)

2.1.1. Coherent states

Having quantized the field and constructed the Fock basis of states with

definite photon number, it is worth mentioning another notable class of states.

These are the coherent states, which are the closest in behavior to classical states

of light. For a given mode of the light field, a coherent state |α〉 is defined as an

eigenstate of the annihilation operator with complex eigenvalue α:

â |α〉 = α |α〉 . (2.16)

Solving this eigenvalue equation leads to the representation of a coherent state in

terms of a vacuum state displaced by an amount α in the X̂, P̂ quadrature space:

|α〉 = exp
[
αâ† − α∗â

]
|vac〉 . (2.17)

In the Fock basis, the coherent state is represented by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (2.18)

The mean photon number is given by

〈n〉 = 〈α|N̂ |α〉 = |α|2, (2.19)

and the photon number distribution is Poissonian, given by
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P (n) = |〈n|α〉|2 = e−|α|
2 |α|2

n!
. (2.20)

2.1.2. Wavepacket modes

The decomposition of the electromagnetic field into the plane-wave

monochromatic modes, labeled by kσ is not unique. It was shown as far back as

1966 by Titulaer and Glauber that one could decompose the electromagnetic field

in terms of wavepacket modes, defined by

vmσ(r, t) =

∫
d3k

(2π)3
Uσ
m(k)ukσ(r)eıωkt (2.21)

where Uσ
m(k) is a unitary transformation satisfying

∫
d3k

(2π)3
Uσ∗
m (k)Uσ

m′(k) = δmm′ , (2.22)

and where we have defined ukσ(r) = eσukσ(r).

Furthermore, it is possible to construct a new set of creation and annihilation

operators, defined by

b̂mσ =

∫
d3k

(2π)3
Uσ∗
m (k)âkσ, b̂†mσ =

∫
d3k

(2π)3
Uσ
m(k)â†kσ, (2.23)

which, because of the unitarity of the transformation Uσ
m(k), also obey the bosonic

commutation relations

[b̂mσ, b̂
†
m′σ′ ] = δmm′δσσ′ , [b̂mσ, b̂m′σ′ ] = [b̂†mσ, b̂

†
m′σ′ ] = 0. (2.24)

The operator b̂†m (b̂m) creates (annihilates) a photon in wavepacket mode m.
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2.2. Pulse-mode one-photon and two-photon states

In this dissertation, we are mainly concerned with quantum states of light

in wavepacket modes defined over time and frequency, such as can be produced

in pulsed laser systems. The broadband nature of these pulses, consisting of

a superposition of frequencies, leads to a localization of the field amplitude in

time. These wavepackets are localized in space as well, since they are produced

by coherent laser fields which typically assume a Gaussian transverse profile.

However, because the spatial degree of freedom is not as relevant to our work, and

because we collect the light in single-mode fibers for interference and for detection,

we can assume that the light occupies a single transverse spatial mode, and focus

our attention on the temporal domain, as well as the spectral domain, which is

its Fourier conjugate. Wavepacket modes defined in the time-frequency domain

are commonly referred to as spectral-temporal modes, or temporal modes [35], in

analogy with the spatial modes which result from boundary conditions imposed by

waveguides and laser cavities.

We can now define a single-photon state in a temporal mode labeled by j as

|ψj〉 =

∫
dωψj(ω)â†(ω) |vac〉 , (2.25)

where â†(ω) creates a photon in a monochromatic mode with angular frequency ω.

Here ψj(ω) is a complex mode function of angular frequency, normalized such that

〈ψj|ψj〉 =

∫
dω |ψj(ω)|2 = 1. (2.26)

By taking a Fourier transform to the time domain, we may equivalently

express the same state in the time domain as
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|ψj〉 =

∫
dtψ̃j(t)â

†(t) |vac〉 , (2.27)

where

â†(t) =
1√
2π

∫
dωâ†(ω)eiωt, (2.28)

and

ψ̃j(t) =
1√
2π

∫
dωψj(ω)e−iωt (2.29)

Henceforth we will exclusively represent states of light in the frequency domain,

with the understanding that the time domain representations can always be

obtained through Fourier transforms. This is because in the experimental work

we discuss in this thesis, most of the measured quantities are functions of optical

frequency, as the latter readily accessible in the laboratory using both stationary

devices such as standard grating spectrometers, and time-of-flight spectroscopy

methods as will be discussed in the experimental sections.

The temporal mode functions can be any set of functions which span

the frequency and the time domains. For instance, they could be idealistic

monochromatic modes, such that each mode has a frequency-domain

representation that is a delta function of a single frequency, and a time-domain

representation as a sinusoid of infinite extent. Often the temporal mode functions

ψj of interest form an orthonormal basis, such as the Hermite-Gauss modes, of

which we show the first three in Fig. 2.1. For such orthonormal mode functions,

the inner product of two single-photon states gives

〈ψj|ψk〉 =

∫
dωψ∗j (ω)ψk(ω) = δjk. (2.30)
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FIGURE 2.1. First three Hermite-Gauss modes in the frequency (left) and
time (domain). The Hermite-Gauss modes form an orthonormal mode basis for
frequency and time.

Furthermore, we can define creation (annihilation) operators Â†j (Âj) as

Â†j =

∫
dωψj(ω)â†(ω) =

∫
dtψ̃j(t)â

†(t), (2.31)

and these obey the standard bosonic commutation relation

[
Âj, Â

†
k

]
= δjk (2.32)

It is also possible to have a single-photon state in a temporal mode which is

undetermined. As we shall see later, such a state can result when one photon from

a pair of time-frequency entangled photons is detected without spectral resolution.
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This situation corresponds to a mixed quantum state, represented as a convex

combination of temporal-mode single-photon states

ρ̂ =
∑
j

pj |ψj〉 〈ψj| , (2.33)

where pj are weighting coefficients satisfying
∑

j pj = 1. Expanding out the right

hand side obtains

ρ̂ =
∑
j

pj

∫
dωdω′ψj(ω)ψ∗j (ω

′)â†(ω) |vac〉 〈vac| â(ω′). (2.34)

In this case it is convenient to define the single-photon spectral density matrix as

ρ(ω, ω′) =
∑
j

pjψj(ω)ψ∗j (ω
′). (2.35)

This is the most general representation of a single-photon state in frequency space.

For the special case of a pure state, only one term in the sum is populated, and

the density matrix is factorable as ρ(ω, ω′) = ψj(ω)ψ∗j (ω
′). Otherwise the state is

mixed. We may define the purity of the state as

P(ρ̂) = Tr(ρ̂2) =

∫
dωdω′ρ(ω, ω′)ρ(ω′, ω). (2.36)

It follows that, in general, 0 ≤ P(ρ̂) ≤ 1, where equality to 1 is achieved for a pure

state, and to 0 for a maximally mixed state, one where there is complete lack of

information about the spectral characteristics of the state.
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2.3. Two-photon states and time-frequency entanglement

We now extend the discussion to include two-photon states of light, and

study how entanglement, the non-classical correlations between distinct modes

of the light field, can arise in such states. As we shall see shortly, two-photon

entangled states, commonly known as entangled photon pairs, or EPP, are only

a subset of the rich variety of entangled states of light that can be obtained in

quantum optics. Indeed, because it is the modes, rather than the photons, that are

the fundamental objects in quantum optics, the most fundamental understanding

of entanglement must ultimately be framed in terms of the field quadratures of

the harmonic oscillator modes. However, EPP are particularly well-studied due to

their ease of generation and applications in various protocols, in addition to having

a more intuitive interpretation as “objects”. After all, it is the photons, rather

than the modes, which are observable to our eyes.

We have already seen how a single-photon state can be generated from the

vacuum by a single application of the creation operator: |1j〉 = Â†j |vac〉. By

repeated application of this operator, we can see that a normalized n-photon state

of the mode j of the field can be represented as |nj〉 =
(A†

j)n
√
n!
|vac〉. In particular, a

two-photon state in the mode j is given by

|2j〉 =
(A†j)

2

√
2
|vac〉 . (2.37)

Such a state is inherently a single-mode state of two photons. Because they are

indistinguishable, there is no measurement in principle that could separate these

photons deterministically. This single-mode two-photon state is interesting in its
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own rights, but we only mention it here in passing for completeness. Things get

more interesting when we consider a two-mode, two-photon state of the form

|Ψ〉 = Â†jÂ
†
k |vac〉 . (2.38)

In this case we have one photon in the mode j, and one in the mode k. Now

there is a way in principle to distinguish these photons and separate them in a

deterministic manner. If the modes j and k were labels of orthogonal polarization

modes, then a polarizing beam splitter, such as we discuss in this work, would

suffice for the task. In the present case of temporal modes, this can be done using

a spectrometer for quasi-monochromatic modes, or more generally for arbitrary

pulse-mode using a temporal-mode sorter [2, 45, 46], which relies on mode-selective

frequency conversion to a register mode which can be subsequently detected. To

generalize even further, the two photons could occupy distinguishable spatial or

polarization modes, in addition to different temporal modes. We can distinguish

this case by using a different letter for the creation operator, for instance,

|Ψ〉 = Â†jB̂
†
k |vac〉 (2.39)

Most generally, a two-photon state of light can be defined over a coherent

superposition of modes,

|ΨAB〉 =
∑
j,k

γjkÂ
†
jB̂
†
k |vac〉 , (2.40)

where the γjk are complex coefficients satisfying the normalization condition∑
j,k |γjk|2 = 1. Written in terms of the expansions of Â†j =

∫
dωψj(ω)â†(ω) and
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B̂†k =
∫

dω′ψk(ω
′)b̂†(ω′) into their respective temporal mode functions, the state

has the form

|Ψ〉 =

∫
dωdω′

∑
j,k

γjkψj(ω)ψk(ω
′) â†(ω)b̂†(ω′) |vac〉

=

∫
dωdω′f(ω, ω′)â†(ω)b̂†(ω′) |vac〉 ,

(2.41)

where we have defined the joint spectral amplitude (JSA)

f(ω, ω′) =
∑
j,k

γjkψj(ω)ψk(ω
′). (2.42)

The JSA can be thought of as a two-photon wavefunction in frequency space, and

its modulus squared is the joint spectral intensity (JSI),

F (ω, ω′) = |f(ω, ω′)|2, (2.43)

normalized such that
∫

dωdω′F (ω, ω′) = 1. This latter gives the probability

density for detecting one photon at frequency ω and the other at frequency ω′, and

is readily measurable in the laboratory using spectrally correlated single-photon

detection as we describe in this work.

A related quantity, obtainable by a double-Fourier transform of the JSA, is

the joint-temporal amplitude,

f̃(t, t′) =
1

2π

∫
dωdω′f(ω, ω′)e−iωte−iω

′t′ =
∑
j,k

γjkψ̃j(t)ψ̃k(t
′), (2.44)

as well as it’s modulus squared, the joint temporal intensity. Although the joint

temporal amplitude (intensity) is in principle equivalent to the JSA (JSI), in the
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regimes where we typically operate it is not as accessible due to the high timing

precision required to resolve it using time-correlated measurements. Thus we will

rarely refer to it throughout this text and mainly consider the spectral domain.

Entanglement in the time-frequency domain occurs when the JSA is not

factorable into a product of functions of the form

f(ω, ω′) = fA(ω)fB(ω′). (2.45)

This is because, if the JSA is factorable, then it is possible to find a temporal-

mode basis such that the state |Ψ〉 can be expressed as a product state.

Equivalently, the two photon-state is entangled if γjk cannot be expressed as

a product of the form αjβk, otherwise it is a product state. At the end of this

section we make some brief comments regarding entangled states of light, of which

two-photon entangled states are only a subset. However, in what follows I focus

solely on two-photon entanglement, showing how to describe entangled states

uniquely using the Schmidt decomposition, and the relationship between two-

photon entanglement and the purity of the constituent single photons.

2.3.1. Schmidt decomposition of a TF entangled state

For a given JSA f(ω, ω′) =
∑

j,k γjkψj(ω)ψk(ω
′), it is possible to find a basis

of modes such that it may be expressed uniquely as [52]

f(ω, ω′) =
∑
i

√
λiφ

A
i (ω)φBi (ω′), (2.46)

where the complex functions φ
A(B)
i , known as the Schmidt modes, form an

orthonormal mode basis in the frequency space for photon A(B), and where λi
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are non-negative real coefficients, known as the Schmidt coefficients, and satisfy

the normalization condition
∑

i λi = 1. This representation is known as the

Schmidt decomposition, and it follows from the general result of the singular value

decomposition of a complex matrix, in this case the matrix γjk [53]. Using this

result, we can re-express the state in the Schmidt basis as

|Ψ〉 =
∑
i

√
λi |φAi 〉 |φBi 〉 , (2.47)

where

|φAi 〉 =

∫
dωφAi (ω)â†(ω) |vac〉 , |φBi 〉 =

∫
dωφBi (ω′)b̂†(ω′) |vac〉 . (2.48)

When expressed in the Schmidt basis, the state |Ψ〉 is a product state if it

contains only one term, with λ0 = 1 and λi = 0 for all other i. Otherwise the state

is entangled. Furthermore, the Schmidt decomposition provides a way to quantify

the amount of entanglement in the state, through the Schmidt number, or Schmidt

rank, defined as [54]

K =
1∑
i λ

2
i

. (2.49)

The Schmidt number essentially quantifies the number of populated mode pairs

(φAi , φ
B
i ), and is equal to one for a product state, and tends to infinity for a

maximally entangled state (one with an infinite amount of populated mode pairs).
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2.3.2. The trade-off between purity and entanglement

Given a pure state of two photons |ΨAB〉, which may or may not be

entangled, the state of either of the constituent photons, say photon A, is

represented by the reduced density operator ρ̂A, given by

ρ̂A = TrB(|ΨAB〉 〈ΨAB|) =

∫
dω 〈vac| b̂(ω) |ΨAB〉 〈ΨAB| b̂†(ω) |vac〉 , (2.50)

where TrB denotes the trace over photon B’s spectral degree of freedom. A

straightforward calculation shows that

ρ̂A =

∫
dωdω′ρA(ω, ω′)â†(ω) |vac〉 〈vac| â(ω′), (2.51)

and that ρA(ω, ω′), photon A’s spectral density matrix, is given in terms of the

two-photon JSA as

ρA(ω, ω′) =

∫
dΩf(ω,Ω)f ∗(ω′,Ω). (2.52)

From here it is evident that ρA is factorable if and only if the JSA f is

factorable, such that if the two-photon state is entangled, the reduced state of

photon A is necessarily mixed. Furthermore, if we express the JSA in the Schmidt

basis, we obtain for the spectral density matrix

ρA(ω, ω′) =
∑
i

λiφ
A
i (ω)φA∗i (ω′). (2.53)

Recalling the definition of the purity of a state as Tr(ρ̂2
A), we find
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P(ρ̂A) =
∑
i

λ2
i =

1

K
. (2.54)

Thus the purity of photon A tends to zero as the Schmidt number of the two-

photon state increases. The same calculations can be done for the reduced state

of photon B, given by ρ̂B = TrA(|ΨAB〉 〈ΨAB|), with the result that

ρB(ω, ω′) =
∑
i

λiφ
B
i (ω)φB∗i (ω′) =

∫
dΩf(Ω, ω)f ∗(Ω, ω′), (2.55)

and

P(ρ̂B) =
1

K
= P(ρ̂A). (2.56)

We note, while these calculations have been done for photons entangled in their

spectral degree of freedom, these results are general and hold for any pure bipartite

quantum state.

Finally, we note that the mixedness of the reduced state provides a valid

measure of entanglement of a pure bipartite state. More specifically, the entropy

of entanglement of the state |ΨAB〉 is defined as the Von Neumann entropy S of

either ρ̂A or ρ̂B, given by

S(ρ̂A(B)) = −Tr
[
ρ̂A(B) log ρ̂A(B)

]
= −

∑
i

λi log λi. (2.57)

2.3.3. Mixed-state entanglement

Just as with one photon, the most general quantum state for two photons is

a mixed state, represented by a density operator which is a convex combination of

pure states:
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ρ̂AB =
∑
i

pi |Ψi
AB〉 〈Ψi

AB| . (2.58)

We can express this state in terms of a two-photon spectral density matrix,

ρ̂AB =

∫
d4ω ρAB(ωA, ω

′
A;ωB, ω

′
B)â†(ωA)b̂†(ωB) |vac〉 〈vac| â(ω′A)b̂(ω′B). (2.59)

where ρAB(ωA, ω
′
A;ωB, ω

′
B) =

∑
i pifi(ωA, ωB)f ∗i (ω′A, ω

′
B), as for the one photon

case. The state ρ̂AB is a product state if it can be expressed as ρAB = ρA ⊗ ρ̂B.

However, now it is also possible for the state to exhibit classical correlations

without being entangled. In general, such a state containing no entanglement is

said to be separable if it can be expressed as

ρ̂AB =
∑
j

wj ρ̂
j
A ⊗ ρ̂

j
B,

∑
j

wj = 1, (2.60)

otherwise it is entangled. Here we have used the wj notation for the weighting

coefficients simply to distinguish from the pi.

Unlike for pure states, it is in general not straightforward to determine

whether or not a mixed state is entangled. That is, given an arbitrary state ρ̂AB,

it is not possible in general to show that it cannot be expressed in the form (2.60).

However, there are numerous criteria in the literature that can test for mixed-

state entanglement, usually in the form of necessary but not sufficient conditions

for separability. Most notable among these is the Peres-Horodecki separability

criterion [55]. In addition, there are quantities which serve as monotonic measures

of entanglement. These include the concurrence [56], the entanglement of

formation [57], and the negativity and logarithmic negativity [58]. In Chapter
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IV, we show a test involving two-photon bunching which distinguished certain

entangled states from all separable states, even in the mixed case.

2.3.4. A brief digression on entanglement

Entanglement is notoriously difficult to define in quantum physics and

quantum information. Whether a quantum state is entangled or not often reduces

to a question of the basis in which we choose to express the state. To give an

example, consider a two-photon state consisting of a single photon in horizontal

polarization H and on in the vertical polarization V . In this basis the state would

be expressed as

|ψ〉 = |1〉H |1〉V , (2.61)

which is manifestly a factorable state. However, when expressed in the diagonal-

antidiagonal basis, where

|1〉D =
|1〉H + |1〉V√

2
, |1〉A =

|1〉H − |1〉V√
2

, (2.62)

this same state becomes

|ψ〉 =
1√
2

(|2〉D |0〉A − |0〉D |2〉A), (2.63)

which exhibits number entanglement between the diagonal and antidiagonal

polarization modes. Note that no physical changed ocurred to this state: we are

simply reexpressing it in another basis. This fact crucially emphasizes the basis-

dependence of entanglement. Entangled states of light need not even involve more
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than a single photon. Indeed, the single-photon state |1〉D from Eq. (2.62), when

written more explicitly as

|1〉D |0〉A =
1√
2

(|1〉H |0〉V + |0〉H |1〉V ), (2.64)

manifests number entanglement between polarization modes H and V . Far

from being just a theoretical construct, this kind of modal entanglement is

experimentally verifiable using homodyne measurement techniques [59].

When we refer to entanglement of photons, we usually refer to two photons

that are spatially separated, that is, that occupy distinguishable spatial modes,

and that exhibit entanglement in some additional degree of freedom. For

instance, the two photons occupy distinct wavevectors, k1 and k2, and yet exhibit

polarization entanglement. Such a state might look like

|ψ〉 =
1√
2

(
â†H(k1)â†V (k2)− â†V (k1)â†H(k2)

)
|vac〉 , (2.65)

which is a singlet state for polarization-entangled photons. Often it is convenient

to represent such a state with a shorthand such as

|ψ〉 =
1√
2

(|H〉1 |V 〉2 − |V 〉1 |H〉2) , (2.66)

where |H〉1 = â†H(k1) |vac〉, for instance, and use expressions such as “photons 1

and 2 are polarization-entangled”.

As a final example of an entangled quantum state of light which involves

entangled modes but no entangled photons, consider the two-mode squeezed

vacuum state, defined by

34



|ξAB〉 = exp(−ξâ†b̂† + ξ∗âb̂) |vac〉 , (2.67)

where â and b̂ are annihilation operators for two distinct modes A and B,

respectively, and ξ = r eiφ is known as the squeezing parameter. By expanding

the exponential this state may be expressed as

|ξAB〉 = sech(r)
∞∑
n=0

[−eiφtanh(r)]n |nA;nB〉 . (2.68)

This state exhibits non-classical photon number correlations between modes A and

B, and this entanglement may be verified via balanced homodyne detection of the

modes [60].

2.4. Parametric down conversion for the generation of EPP

Here we outline the theory of parametric down conversion (PDC), a

nonlinear optical process that is the workhorse in quantum optics for generating

entangled photon pairs (EPP). Over the past three decades, PDC has been well

studied as a means of photon pair generation, and as a result it is now possible to

tailor the process to deliver photons with a great amount of control over the modal

characteristics and entanglement.

PDC is best described as an interaction involving three fields, the pump (p)

field, which is provided by a bright laser source, and the signal (s) and idler (i)

fields, which are taken to be in the vacuum state initially. The interaction occurs

in a non-linear medium, typically a crystal exhibiting The interaction Hamiltonian

for the three fields is given by
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Ĥ(t) = χ

∫
d3rÊ+

p (r, t)Ê−s (r, t)Ê−i (r, t) + H.c., (2.69)

where χ is a complex coupling parameter associated with the medium, and H.c.

denotes the Hermitian conjugate. In a thorough treatment of the theory, the

fields are represented as vectors, and χ is a rank 3 tensor coupling the various

combinations of field polarizations. However, for the scope of this work, we assume

the three fields propagate in a collinear configuration, and we shall denote the

relevance of the different polarizations as needed, so that it’s sufficient to treat

them as scalar quantities. The spatial integral is taken over the volume of the

interaction medium, i.e. the crystal, taken to be of length L in the propagation

direction.

We expand the fields in terms of their frequency components, giving

Ê+
j (r, t) =

∫ ∞
0

dωjAj(ωj) exp [i(kj(ωj) · r− ωjt)] â†j(ωj),

Ê−j (r, t) =
(
Ê+
j (r, t)

)† (2.70)

where j = p, s, i, and Aj =
√

~ωj

2ε0V
is slowly-varying so that it can be taken out of

the integration. After absorbing the Aj into the interaction parameter χ, we obtain

for the Hamiltonian

Ĥ(t) = χ

∫
d3r

∫
d3ω exp [i(kp(ωp)− ks(ωs)− ki(ωi)) · r]

× exp [−i(ωp − ωs − ωi)t] âp(ωp)â†s(ωs)â
†
i (ωi) + H.c..

(2.71)

In a typical experimental setting the input state to the PDC process is a strong

coherent pump field |α(ω)〉p, with the signal and idler fields in the vacuum state,
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so that we may replace the pump annihilation operator with the amplitude α(ω).

The output PDC state after a time t is given by Schrödinger evolution as

|ΨPDC〉 = exp

[
− i
~

∫ t

0

dt′Ĥ(t′)

]
|vac〉s,i ≈

(
Î − i

~

∫ t

0

dt′Ĥ(t′)

)
|vac〉s,i (2.72)

where the last approximation is valid in the weak interaction limit. Since the

Hermitian conjugate part of the Hamiltonian annihilates the vacuum and gives

0, the output PDC state is

|ΨPDC〉 =

(
1− iχ

~

∫ t

0

dt′
∫

d3r

∫
d3ω exp [i(∆k · r−∆ωt′)]α(ωp)â

†
s(ωs)â

†
i (ωi)

)
|vac〉s,i

(2.73)

where we have defined ∆k = kp(ωp)− ki(ωi)− ks(ωs) and ∆ω = ωp − ωs − ωi.

We take the pump field to be an ultrashort laser pulse, such that the

interaction time is set by the pulse duration. This allows us to take the time

integral to infinity, obtaining a delta function in frequency,

∫
dt′ exp [−i∆ωt′] = 2πδ(∆ω).

This corresponds to energy conservation, since it imposes that ωs + ωi = ωp, and

it allows us to also integrate over one of the frequencies. We choose ωp, and replace

all its occurrences with ωs + ωi.

As a further simplification, we take the spatial integral to infinity in the

transverse spatial directions, x and y, by assuming that the transverse profiles

interacting beams fit entirely within the crystal’s cross-sectional area. Meanwhile,
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the z integral is taken over the length L of the crystal. Thus for the spatial

integral we have

∫
d3r exp [i∆k · r] =

∫
dx ei∆kxx

∫
dy ei∆kyy

∫ L

0

dz ei∆kzz

= (2π)2δ(∆kx)δ(∆ky)

∫ L

0

dz ei∆kzz.

We assume a collinear configuration, where all the fields are copropagating along

the z direction, so that ∆kx = ∆ky = 0. Then the spatial integral evaluates to

∫
d3r exp [i∆k · r] = (2π)22L exp

[
i∆kzL

2

]
sinc

[
∆kzL

2

]
.

Using these results, and absorbing all constant factors into χ (including ~),

we may finally express the output state as

|ΨPDC〉 = |vac〉s,i − iχ
∫

dωsdωiα(ωs + ωi)Φ(ωs, ωi)â
†
s(ωs)â

†
i (ωi) |vac〉s,i , (2.74)

where we have introduced the phasematching function Φ, given by

Φ(ωs, ωi) = exp

[
i∆kL

2

]
sinc

[
i∆kL

2

]
,

∆k = kp(ωs + ωi)− ks(ωs)− ki(ωi),
(2.75)

with the z subscript omitted for clarity. This quantity corresponds to momentum

conservation in the PDC process, and takes on its maximum value when ks + ki =

kp.
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By inspection it can be seen that the product of the pump amplitude α(ωs +

ωi) and the phasematching function Φ(ωs, ωi) constitutes a JSA for the two-photon

PDC state:

f(ωs, ωi) = α(ωs + ωi)Φ(ωs, ωi). (2.76)

By controlling these two quantities, it is possible to generate a rich variety of two-

photon states with tailored spectral properties and time-frequency entanglement.

The phasematching function is ultimately dependent on the dispersion properties

of the nonlinear crystal. These may be calculated for a given crystal through the

empirical Sellmeier equations1. Meanwhile the pump amplitude function may be

controlled through laser source engineering and pulse-shaping techniques. Much

progress has been made on both of these fronts in the last few decades, and a good

review of the state of the art in two-photon spectral-temporal engineering may be

found in Ref. [2]. Here we shall briefly outline a few important aspects of standard

PDC sources in order to understand how they contribute to a variable amount of

spectral-temporal entanglement.

2.4.1. Pump amplitude

The pump amplitude function is perhaps the easiest aspect to understand.

It is a function of the sum frequency ωs + ωi of the signal and idler photons,

and, when derived from a pulsed laser system, it is adequately represented by a

Gaussian profile:

1Since k(ω) = ωn(ω)/c, where n(ω) is the index of refraction.
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α(ωs + ωi) = α exp

[
−(ωs + ωi − ω0)2

σ2

]
exp [iφ(ωs + ωi)] , (2.77)

where ω0 is the carrier frequency, and φ(ωs +ωi) is some spectral phase, which is at

most a linear function for a transform-limited pulse. In the limit of monochromatic

pumping using a continuous wave (CW) laser,

α(ωs + ωi)→ δ(ωs + ωi − ωp).

The pump amplitude function can be plotted as a function of the signal and idler

frequencies. Because it is a function of only the sum of these frequencies, it only

varies along the diagonal direction in this plot. This behavior can be seen in the

JSA plots in Fig. 2.2 below.

2.4.2. Birefringent phasematching

An important property of several crystals is birefringence, where there are

two distinct indices of refraction for the two orthogonal polarizations of light

propagating through the crystal. A detailed analysis of birefringence is beyond the

scope of this work, and can be found, for example, in Fowles [61]. For our purposes

it is sufficient to note that the anisotropy of the crystal lattice structure generally

distinguishes two polarizations for an incident beam of light: one for which the

index of refraction varies as a function of an angle θ between kp and the crystal

axis, known as the extraordinary, or e-, polarization, and one for which the index

of refraction does not vary, known as the ordinary, or o-, polarization. The angle

dependence of the e-polarization index of refraction is given by
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ne(θ) =

[
cos2 θ

n2
o

+
sin2 θ

n2
e

]−1/2

, (2.78)

where no is the ordinary index, and ne is the maximum value of the extraordinary

index.

There are two configurations which make use of birefringent phasematching:

type I, where the signal and idler fields share the same polarization, (say o-

polarized), while the pump field is orthogonally polarized (e-polarized); and type

II, where the signal and idler fields are orthogonally polarized (one e-polarized and

one o-polarized), while the pump field is either e- or o-polarized2.

To calculate the correct phasematching angle configuration for a given

combination of pump, signal, and idler frequencies (or wavelengths), one can

numerically solve the phasematching condition for θ, which corresponds to, for

example,

ke(ωs + ωi, θ) = ko(ωs) + ko(ωi) (2.79)

for type I, and

ke(ωs + ωi, θ) = ke(ωs, θ) + ko(ωi) (2.80)

for type II, using the fact that

ko(ω) =
ωno(ω)

c
, ke(ω, θ) =

ωne(ω, θ)

c
. (2.81)

2A convenient shorthand to denote these configurations is e→ o+o or o→ e+e for type I, and
e→ o+ e or o→ o+ e for type II.
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The dependence of no and ne on ω is given by the dispersion relations obtained

from the Sellmeier equations for a given crystal. In this work, we further restrict

our consideration to degenerate phasematching, corresponding to an angle θD

which solves the above equations with ωs = ωi = ω0/2.

In this case the most salient distinguishing feature of these two types of

phasematching is the behavior of the phasematching function near the degenerate

point (ω0, ω0) on the ωs − ωi plane and the amount of entanglement it creates in

the JSA. For type I, signal and idler experience the same dispersion. This results

in the phasematching function being symmetric with respect to the two frequencies

near the degenerate point, and running parallel to the pump amplitude function.

This provides a high amount of overlap between the two functions and produces

a JSA that is highly anti-correlated. In the type II case, since the signal and

idler fields don’t experience the same amount of dispersion, the phasematching

function will not be symmetric near the degenerate point, and will be maximal at

a direction that is generally oblique with respect to the pump amplitude function.

This results in less entangled state, generally. In Peter Mosley’s dissertation

[62], it is shown how to take advantage of this configuration, and, by tuning

the pump and phasematching bandwidths, create a two-photon state exhibiting

close to no time-frequency correlations. In Fig. 2.2, we plot two typical JSA’s

obtainable through PDC, one via type 0 or I phasematching, and one via type

II phasematching, showing a different degree of spectral correlations.

2.4.3. Quasi-phasematching through periodic poling

Another technique to achieve the phasematching condition is through

periodic poling. This consists of applying a voltage to the crystal to reverse the
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FIGURE 2.2. Two typical JSA’s f(ωs, ωi) (blue contour plots) obtainable through
PDC. In both cases, the pump amplitude function α, here a Gaussian, is a
symmetric function of ωs, ωi (solid contours). The phasematching function Φ is
approximated as a Gaussian function here (dashed contours). For type 0 or I
phasematching, Φ is symmetric where it crosses the ωs = ωi line, and this typically
leads to a high degree of frequency correlation in the JSA. Meanwhile, for type II
phasematching, because the signal and idler fields experience different dispersion,
there is no such symmetry.
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domains of the crystal in a periodic fashion across its length. A treatment of the

underlying physics can be found in Boyd, for example [63]. For our purposes,

we can have an intuition for how this works by noticing that, for a small phase

mismatch ∆k, the spatial integral in the Hamiltonian (2.71) has the effect of

cycling the energy periodically between the pump field and the signal and idler

fields. The idea behind quasi-phasematching is to periodically reverse the direction

of this cycling, such that the energy flow is towards the signal and idler fields.

Thus the poling period Λ is chosen so that

∆k =
2π

Λ
, (2.82)

and it is typically on the order of a few microns. Although quasi-phasematching

can be, and is, combined with birefringent phasematching configurations, it is most

useful for the case of type 0 phasematching, where the pump, signal, and idler

fields are all co-polarized. In Reference [2], it is shown how quasi-phasematching is

combined with type II phasematching, along with pump pulse shaping, to achieve

two-photon states with a controllable number of Schmidt modes, as well as for the

construction of highly versatile mode-selective quantum pulse gates.

2.5. Quantum measurement model of photon detection

In the laboratory, light can be detected at the single photon level using

“click” detectors. These are detectors designed to give a macroscopic signal upon

detection of a single photon. The most commonly available detectors of this

kind are avalanche photodiodes (APDs), whereby a semiconducting detector

is operated with a bias voltage, such that a single incident photon triggers an

avalanche of photoelectrons, resulting in an electric pulse which can then be
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detected using standard electronics. Another, more recent type of detector are

the superconducting nanowire single-photon detectors (SNSPDs). These rely

on a detection element in the form of a coiled wire cooled down just below

the superconducting threshold temperature, such that there is no electrical

resistance across the wire. The incidence of a single photon temporarily raises

the temperature of the wire and induces a resistance, which is converted to an

electrical pulse again to be detected electronically. Our laboratory uses both of

these types of detectors, but in the current context, we shall abstract away from

the physics and describe these click detections using the quantum measurement

formalism. A proper description of the theory of photodetection can be found in

standard quantum optics textbooks such as Mandel and Wolf [64].

2.5.1. Single-photon detection

The most rudimentary click detector for our purposes is one that clicks when

it absorbs one or more photons, but does not distinguish between different photon

numbers, or reveal any spectral-temporal information other than the arrival time

to within a small finite integration time. This is a good approximation to the

actual detectors in the laboratory. These detectors are fiber-coupled, so that we

can neglect the spatial response and assume all the detected light is in a single

spatial mode with annihilation operator â. Further, we assume that the detector

has uniform quantum efficiency η over the range of spectral modes of interest:

given that a single photon in this spectral range is incident, the detector will click

with probability η.

Using the positive operator-valued (POVM) formalism, we can express the

POVM element for detecting no clicks as [65]
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Π̂noclick =
∞∑
n=0

(1− η)nΠ̂n, (2.83)

and the one corresponding to obtaining a click as

Π̂click = 1−
∞∑
n=0

(1− η)nΠ̂n (2.84)

where 1 is the identity in the relevant Hilbert space. We define the Π̂n as the

POVM elements corresponding to detecting n photons in the field if the detector

could resolve the photon number:

Π̂n =


|vac〉 〈vac| n = 0∫

dω1 . . . dωn â
†(ω1) . . . â†(ωn) |vac〉 〈vac| â(ω1) . . . â(ωn) n ≥ 1.

(2.85)

These definitions ensure that, given that the field is in some one-photon state |ψj〉

as defined in (2.25), the probabilty of obtaining a click or obtaining no click are,

respectively

pclick = 〈ψj| Π̂click |ψj〉 = η, pnoclick = 〈ψj| Π̂noclick |ψj〉 = 1− η. (2.86)

Finally, we note that although real detectors are susceptible to dark counts, where

spurious counts are registered even in the presence of no photons, we neglect

these in our model since their rates are typically very low, and in the coincidence

detection schemes we employ, the error they contribute is negligible. For the
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remainder of this section, we will assume that there is at most one photon incident

on the detector during its integration time. This allows us to focus solely on

Π̂1 =

∫
dωâ†(ω) |vac〉 〈vac| â(ω), (2.87)

as a representation of a single-photon detection, and show what kind of

information can be gained about light given a click from such a detector,

particularly in the context of entangled photons.

Consider the two-photon state |ΨAB〉 from (2.40), and suppose that we use a

single photon detector to detect photon B, which indicates the presence of photon

A (this is known as heralding). We represent this detection by the writing the

POVM as

Π̂B =

∫
dωb̂†(ω) |vac〉 〈vac| b̂(ω), (2.88)

where we have dropped the 1 subscript for convenience.. After the detection, the

state of photon A will be given by

ρ̂A =
TrB(Π̂B

1 |ΨAB〉 〈ΨAB|)
Tr(Π̂B

1 |ΨAB〉 〈ΨAB|)

=

∫
dωdω′ρA(ω, ω′)â†(ω) |vac〉 〈vac| â(ω′),

(2.89)

with ρA(ω, ω′) given by (2.52). Since the detector does not resolve frequency,

the only information we gain is the presence of photon A, and any spectral

entanglement between the two photons will result in a corresponding mixedness

of the heralded photon.

We now consider restricting the detector’s spectral range by placing

a frequency bandpass filter in front of it, which we model using a complex
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transmission amplitude function Tj(ω)3, whose support is restricted around some

frequency ωj with a finite bandwidth [66]. This results in a measurement operator

given by

Π̂B
j =

∫
dω |Tj(ω)|2 b̂†(ω) |vac〉 〈vac| b̂(ω), (2.90)

and the heralded state of photon A is given

ρ̂Aj =

∫
dωdω′ρAj (ω, ω′)â†(ω) |vac〉 〈vac| â(ω′), (2.91)

where

ρAj (ω, ω′) =

∫
dΩ|Tj(Ω)|2f(ω,Ω)f ∗(ω′,Ω)∫
dΩdΩ′|Tj(Ω)|2|f(Ω′,Ω)|2

. (2.92)

where the integration range is now narrowed down by the filter function, thus

reducing the mixedness of the state.

In the limit that Tj(ω) → δ(ω − ωj) the measurement becomes an ideal

spectrally resolved measurement

Π̂B
j → Π̂B(ωj) = b̂†(ωj) |vac〉 〈vac| b̂(ωj). (2.93)

In this limit, the heralded photon A now has a spectral density matrix given by

ρAj (ω, ω′) =
f(ω, ωj)f

∗(ω′, ωj)∫
dΩ|f(Ω, ωj)|2

. (2.94)

3A filter can be modeled as a frequency-dependent beamsplitter, with transmission and
reflection amplitudes Tj(ω) and Rj(ω), obeying the unitarity relation |Tj(ω)|2 + |Rj(ω)|2 = 1.
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Closer inspection shows that this is just a pure single-photon state, which we may

express as

|φAj 〉 =

∫
dωφAj (ω)â†(ω) |vac〉 , φAj (ω) =

f(ω, ωj)√
ρB(ωj, ωj)

, (2.95)

where ρB is the spectral density matrix for photon B as defined in (2.55).

Although this limit is unphysical, it provides a good understanding of some our

main results in this dissertation, and the definitions ensure that the pure states are

normalizable and have an intuitive physical interpretation.

2.5.2. Two-photon detection

Next we consider the joint detection of single photons using two detectors.

The most general measurement operator would be a tensor product of POVM

elements for each of modes A and B,

Π̂AB
click = Π̂A

click ⊗ Π̂B
click. (2.96)

However, in the present case, we will restrict our consideration to only the one

photon term from each element. Again omitting the 1 subscript for clarity, we have

Π̂AB =

∫
dωdω′â†(ω)b̂†(ω′) |vac〉 〈vac| â(ω)b̂(ω′). (2.97)

The extensions to the filtered coincidence detection

Π̂AB
jk =

∫
dωdω′ |Tj(ω)|2 |Tk(ω′)|2 â†(ω)b̂†(ω′) |vac〉 〈vac| â(ω)b̂(ω′), (2.98)
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and to the spectrally-resolved coincidence detection

Π̂AB(ωj, ωk) = â†(ωj)b̂
†(ωk) |vac〉 〈vac| â(ωj)b̂(ωk), (2.99)

are readily obtained. The spectrally-resolved detection gives a direct measure of

the JSI of the two-photon state, since the probability of a coincidence is

P (ωj, ωk) = 〈ΨAB| Π̂AB(ωj, ωk) |ΨAB〉 = |f(ωj, ωk)|2 = F (ωj, ωk). (2.100)

2.5.3. Bell state measurements on two-photon states

A crucial feature of measurements in quantum mechanics is that they affect

the post-measurement state. This is widely recognized by students of quantum

mechanics in the famous Stern-Gerlach experiment, where a measurement of

an electron’s spin along the z-axis ensures that subsequent measurements along

that same axis are bound to give the same result (always spin up, for instance),

while causing measurements along the other two axes (x and y) to give either

result (spin up or down) randomly. In the language of quantum mechanics, this

is because a measurement of spin in the z basis projects the spin state onto an

eigenstate of the spin-z operator, which is not an eigenstate of the spin-x or spin-y

operators [67].

This projective property of quantum measurements is not as obvious in the

case of photon detection, because a photon cannot be measured again once it

has been detected. However, it becomes easier to appreciate when we consider

detection of entangled photons. We have already seen how detecting photon B

from the frequency-entangled state |ΨAB〉 without resolving its frequency results
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in photon A being described by a mixed state ρ̂A. Meanwhile, choosing instead to

resolve the frequency of photon B, and obtaining the result ωj, projects photon

A onto a pure state |φA〉. As another example, consider the two-mode squeezed

vacuum state |ξAB〉 from Eq. (2.68). Without applying any detection to mode B,

the reduced state of mode A is completely mixed state, known as thermal state,

with an exponential photon number distribution. However, detecting n photons

in mode B projects mode A into a Fock state with n photons. In fact, the most

complete description of the PDC state is an ensemble of two-mode squeezed vacua

exhibiting pairwise photon number correlations, and the example just described is

precisely what happens when we produce heralded single (or n) photon states.

Of particular importance in many quantum protocols is the Bell state

measurement (BSM), which is a projective measurement onto one or more of the

Bell states, the maximally entangled states for a bipartite system. For a system of

two qubits with basis states {|0〉A(B) , |1〉A(B)}, the four Bell states are

|Φ±〉 =
1√
2

(|0〉A |0〉B ± |1〉A |1〉B),

|Ψ±〉 =
1√
2

(|0〉A |1〉B ± |1〉A |0〉B).

(2.101)

It is known that, using linear optics and coincidence photon detection, it is

possible to implement a BSM. However, such a linear-optics BSM can only project

onto a two-qubit Bell-state of the form above, and furthermore, it is an incomplete

BSM, in that it can at most distinguish three out of these four Bell states [51].

For many quantum protocols, it suffices to implement an incomplete BSM which

projects onto one of the Bell states, namely |Ψ−〉, and in our work, the two qubits

are two photons occupying two distinct frequency modes.
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The BSM is achieved as follows: Two single photons are incident on the

opposite input modes â and b̂ of a 50-50 beam splitter, which transmits half and

reflects half of each input mode. The output modes ĉ and d̂ are given in terms of

the input modes as

ĉ(ω) =
â(ω) + b̂(ω)√

2
, d̂(ω) =

â(ω)− b̂(ω)√
2

, (2.102)

which amounts to a unitary basis transformation. Now consider placing a

frequency-resolved single-photon detector at each output mode, such that a

coincidence detection is given by

Π̂CD(ωj, ωk) = ĉ†(ωj)d̂
†(ωk) |vac〉 〈vac| ĉ(ωj)d̂(ωk). (2.103)

When expressed in the basis of the input modes, this becomes

Π̂CD(ωj, ωk) =
1

2

(
â†(ωj)â

†(ωk)− â†(ωj)b̂†(ωk) + b̂†(ωj)â
†(ωk)− b̂†(ωj)b̂†(ωk)

)
|vac〉

× 〈vac| 1
2

(
â(ωj)â(ωk)− â(ωj)b̂(ωk) + b̂(ωj)â(ωk)− b̂(ωj)b̂(ωk)

)
.

(2.104)

Considering that there is only one input photon in each of the modes â and

b̂, the terms containing a product of two â’s or two b̂’s do not contribute to the

detection, and a successful coincidence detection projects onto a two-photon, two-

frequency Bell state

Π̂CD(ωj, ωk) = |Ψjk〉 〈Ψjk| , (2.105)
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with

|Ψ−jk〉 =
1√
2

(
â†(ωj)b̂

†(ωk)− â†(ωk)b̂†(ωj)
)
|vac〉 . (2.106)

It is important to point out that the input state need not have been in this

Bell state before the measurement, and it need not have been entangled at all,

in order to obtain a successful detection with non-zero probability. All that is

required is that it had some non-zero overlap (in the inner product sense) with the

Bell state. Indeed, this is the power of the BSM, in the case of a complete BSM,

in that it can project any input state onto a Bell state, since the Bell states form a

basis for the bipartite Hilbert space over which they are defined.

BSM’s of the kind we just described, using a beam splitter and projecting

onto Bell states of various degrees of freedom of light, are a key ingredient in the

implementation of several quantum protocols, including quantum teleportation

[28], superdense coding [68], and entanglement swapping [34], and the reader is

encouraged to review these references for a detailed analysis.

2.5.4. Bridge

Having developed a basic understanding of multimode quantum optics and

two-photon entanglement in the time-frequency domain, in the next chapter, we

will describe a striking demonstration of the power BSM’s on spectrally-entangled

photons. We will demonstrate an entanglement swapping scheme, which takes

two pairs of multimode entangled photons, and using linear optics and spectral

resolution, transforms that entanglement into several, mutually orthogonal,

frequency-encoded Bell states. This is an important step towards implementing

entangled measurements that utilize the multimode nature of time-frequency

entanglement.
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CHAPTER III

SPECTRAL ENTANGLEMENT SWAPPING VIA MULTIMODE BELL STATE

MEASUREMENTS

This Chapter includes material that was published in: Merkouche, S.,

Thiel, V., and Smith, B. J. “Spectrally resolved four-photon interference of time-

frequency-entangled photons”, Phys. Rev. A 105, 023708 (2022). Reprinted with

permission from the authors. I developed the theory and conceived the experiment.

VT and I performed the experiment and data analysis, and wrote the paper. BJS

was the principal investigator for this work.

3.1. Introduction

With the advent of the quantum information age, it is well-established by

now that the encoding of quantum information into the degrees of freedom of

light is the key component of quantum communication networks [14]. Whereas

polarization and spatial-mode encoding benefit from ease of implementation, they

are prone to scrambling from environmental noise and optical-fiber transmission,

which undermines their suitability for long-distance communication. Meanwhile,

the time-frequency (TF) degree of freedom is more robust in this regard

(frequency-channel crosstalk does not occur in optical fiber), and TF-encoding

has now been established as a complete toolkit for quantum-information processing

[35], opening an active venue of research into the generation, manipulation, and

measurement of TF-encoded quantum states of light.

In the quantum regime, entanglement plays a key role in many protocols

for computation [69] and communication [23, 70]. Furthermore, entanglement of
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photons has recently been of great interest to the metrology and spectroscopy

communities due to its promise of enhancements in sensitivity beyond what

is attainable in the classical domain [71]. It comes as no surprise, then, that

the generation of photon pairs in well-defined TF-entangled states is a widely-

researched area of quantum optics, and great strides have been made over this

terrain in the past two decades [2]. In addition to state generation, harnessing

the full capabilities of quantum entanglement also requires the ability to perform

projective measurements onto entangled states. Indeed, entangled measurements

[31], of which the Bell-state measurement is the prototype, are nearly as ubiquitous

in quantum protocols as entangled states, most notably in quantum teleportation

[28] and entanglement swapping [34].

In this work, we describe theoretically, and demonstrate experimentally,

an entanglement swapping scheme that relies on the multimode nature of TF-

entanglement in pairs of photons. The central component of the setup is a

multimode, frequency-resolved Bell-state measurement (BSM), performed on idler

photons from two independent TF-entangled pairs generated from spontaneous

parametric down conversion (SPDC). The BSM heralds the signal photons

onto a pulsed Bell state whose central frequencies depend on the result of the

BSM. In this way we are able to herald multiple orthogonal Bell pairs and verify

entanglement in each pair, all derived from the same source state and within the

measurement scheme. This aspect of our work can be viewed as a generalization

of pulse-mode entanglement swapping, such as that reported in Ref. [50], to

utilizing the high-dimensional TF entanglement that is available in standard

of-the-shelf SPDC sources. In section 3.2 we outline the theory underlying our

work. In section 3.3 we describe the experimental setup. Then, in section 3.4 we
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describe our results, which show remarkable agreement with a simple and intuitive

Gaussian model using pure quantum states, before concluding in section 3.5.

Finally, in the Appendix we cover the more technical details of our work which

would otherwise encumber the account of our main results.

3.2. Theory

3.2.1. Four photon state

The entanglement swapping protocol we realize is depicted conceptually

in Fig. 3.1. The protocol consists of two independent spontaneous parametric

down conversion (SPDC) sources. Each source generates pairs of photons into

paths labeled by the bosonic operators ân for the signal and b̂n for the idler, where

n ∈ {1, 2} labels the two sources. Here we consider pulsed collinear type II SPDC

sources, where the signal and idler modes are distinguished by their orthogonal

polarization. Furthermore, all the light is collected into single-mode optical fibers,

so that only the time-frequency degree of freedom is relevant.

In Appendix A.1, we derive the general four-photon quantum state of

SPDC in the context of Fig. 3.1. Generally, this state is a coherent superposition

containing terms corresponding to either source generating two pairs of photons, as

well as a term corresponding to each source generating exactly one pair of photons.

This last term is the one of interest throughout this work, and in Appendix A.1

we outline the assumptions that allow us to consider solely this term. Under the

assumptions that both sources are identical, the four photon state arising from this
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term is given by

|ψ〉 =

∫
d4ω f(ωS, ωI)f(ω′S, ω

′
I) â

†
1(ωS)b̂†1(ωI)â

†
2(ω′S)b̂†2(ω′I) |vac〉 , (3.1)

where f(ωS, ωI) is the joint spectral amplitude (JSA) associated with either source.

The modulus squared of the JSA, known as the joint spectral intensity (JSI),

corresponds to the probability density function for creating a pair of photons,

called signal and idler, at optical frequencies ωS and ωI , respectively. The two-

photon state from either source contains spectral entanglement when the JSA

cannot be factored into a product of the form f(ωS, ωI) = fS(ωS)fI(ωI).

Most of the experiments in this chapter rely on performing a spectrally-

resolved BSM on the idler photons. Although the spectral resolution of this BSM

is finite, we model the results in the limit of narrow spectral resolution. This limit

has the benefit of providing a simple and intuitive model with which to understand

the physics in terms of pure quantum states. A more complete model taking into

account the finite spectral resolution of the BSM and the resulting states is then

easily constructed from this pure-state approximation, which is done in Appendix

A.2. As we shall see, the pure-state approximation is sufficient to account for the

majority of the results of our experiment.

3.2.2. Heralded state and JSI

A Bell-state measurement is performed on the idler photons by resolving

their frequencies at the output of a 50:50 beam splitter, with a small path

difference at the input giving a relative time delay τI as depicted in Fig. 3.1. The
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Source 1

Source 2

FIGURE 3.1. Conceptual scheme of the experiment. Two sources, 1 and 2, emit
photon pairs into the modes labelled â and b̂ for signal and idler, respectively. The
BSM Π̂jk on the idler photons projects the signal photons onto the state |Ψjk〉.
This state in the signal modes is characterized by measuring its JSI Fjk, as well as
the two-photon interference signal Pjk. The time delays τI and τS serve to balance
the interferometer.

beam splitter transforms the input field operators b̂†1, b̂†2 into

b̂†3(Ω) =
eiΩτI b̂†1(Ω) + b̂†2(Ω)√

2
,

b̂†4(Ω′) =
eiΩ

′τI b̂†1(Ω′)− b̂†2(Ω′)√
2

,

(3.2)

and coincidences are detected between b̂3 and b̂4. For clarity, we will label the

optical frequencies of the idlers as Ω and those of the signals as ω. Because we

use the pure state approximation, we can consider that this spectral measurement

is achieved with perfect resolution, whereby the measurement operator is given by

Π̂jk = b̂†3(Ωj)b̂
†
4(Ωk) |vac〉 〈vac| b̂3(Ωj)b̂4(Ωk) (3.3)

which is a projector onto single photon states with monochromatic frequencies

Ωj and Ωk. Although this limit of frequency-resolved detection corresponds

to projective measurements, it is important to recognize that a more realistic
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model of the measurement with finite resolution should incorporate a positive

operator-valued measure (POVM) element defined over a frequency band, as we

outline in Appendix A.2. Furthermore, since the POVM formalism describes the

most general quantum measurements, projectors such as Π̂jk are indeed POVM

elements, and for consistency throughout the text, we refer to all our measurement

operators as POVM elements. We define

|Ωj,Ωk〉34 = b̂†3(Ωj)b̂
†
4(Ωk) |vac〉 ,

and we compute the heralded signal state, |Ψjk〉12, defined by

|Ψjk〉12 ⊗ |Ωj,Ωk〉34 =
Π̂jk |ψ〉√

pjk
, (3.4)

with the norm pjk given by

pjk = 〈ψ| Π̂jk |ψ〉 . (3.5)

Since our original state |ψ〉 only contains a single photon in each of paths b̂†1 or

b̂†2, applying Π̂jk acts as an effective Bell-state measurement on these modes.

Henceforth, we will drop the 12-index in |Ψjk〉12 for convenience.

To compute the form of |Ψjk〉, we will introduce, for convenience, the reduced

density matrices for the states of the signal and idler photons, given respectively

by,

ρS(ω, ω′) =

∫
dΩf(ω,Ω)f ∗(ω′,Ω),

ρI(Ω,Ω
′) =

∫
dωf(ω,Ω)f ∗(ω,Ω′),

(3.6)
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both of which obey the relation ρ(ω, ω′) = ρ∗(ω′, ω). Using these, along with the

assumption of identical sources, it is straightforward to show that

pjk =
1

2

[
ρI(Ωj,Ωj)ρI(Ωk,Ωk)− |ρI(Ωj,Ωk)|2 cos θjk

]
, (3.7)

with

θjk = (Ωj − Ωk)τI = ∆ΩjkτI, (3.8)

where we defined ∆Ωjk as the difference between the heralding frequencies. Eq.

(3.7) is the probability distribution for a coincidence between the idler photons at

(Ωj,Ωk), or equivalently, the JSI of the idler photons at the output of the beam

splitter.

Most importantly, the heralded signal Bell-state has the simple form

|Ψjk〉 =
|φj〉1 |φk〉2 − e

iθjk |φk〉1 |φj〉2√
2Cjk

, (3.9)

where |φj〉n is a pulse-mode normalized single photon state [72] given by

|φj〉n =

∫
dω φj(ω)â†n(ω) |vac〉 , (3.10)

with

φj(ω) =
f(ω,Ωj)√

Nj

, (3.11)

where Nj = ρI(Ωj,Ωj), as described in Appendix A.10, and n ∈ {1, 2}. Essentially,

|φj〉n is the state that the signal photon is projected onto, when its corresponding

idler photon is detected at frequency Ωj. Finally the normalization constant Cjk is
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given by

Cjk = 1− |〈φj|φk〉|2 cos θjk, (3.12)

where the inner product 〈φj|φk〉 is taken either in mode 1 or in mode 2, but we

have dropped the index for better readability. The functions φj are defined from

the JSA and several identities are shown in Appendix A.10. While normalized,

they are not necessarily orthogonal, hence the dependence on the modal

overlap in the normalization from Eq. (3.12). In Sec.3.4, we will use a Gaussian

approximation that gives a simple expression for those functions.

Since nearly all of our measurements are conditioned upon the BSM on the

idler photons, we will use the state |Ψjk〉 to calculate our quantities of interest. In

addition, we also consider the case of a non-resolving BSM, given by

Π̂ =
∑
j,k

Π̂jk =

∫∫
dΩjdΩk |Ωj,Ωk〉 〈Ωj,Ωk| , (3.13)

which, upon taking Tr
(

Π̂ |ψ〉 〈ψ|
)

, heralds the mixed state

ρ̂ =

∑
jk pjk |Ψjk〉 〈Ψjk|∑

jk pjk
. (3.14)

This state is normalized by
∑

jk pjk, which is not equal to unity in general, but

this fact is inconsequential to our measurements, as only the relative probabilities

pjk are physically relevant. At this point we note that we are using the sum
∑

jk

in place of the integral
∫

dΩjdΩk. This summation serves as a reminder that

the pure state description of |Ψjk〉 is itself an approximation stemming from the

infinite spectral resolution limit. In Appendix A.2 we justify the validity of this
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approximation, which gives similar results as the model taking into account the

finite resolution of the BSM and the resultant impurity of the heralded state.

3.2.3. State characterization and entanglement verification

We characterize the heralded state |Ψjk〉 first by measuring its joint spectral

intensity (JSI). This measurement is defined by the POVM element

Π̂JSI = |ω1, ω2〉 〈ω1, ω2| , (3.15)

with

|ω1, ω2〉 = â†1(ω1)â†2(ω2) |vac〉 ,

and we calculate the resultant JSI as

Fjk(ω1, ω2) = 〈Ψjk| Π̂JSI |Ψjk〉 . (3.16)

Using (3.9), we then obtain

Fjk(ω1, ω2) =
1

2Cjk

∣∣∣φj(ω1)φk(ω2)− eiθjkφj(ω2)φk(ω1)
∣∣∣2. (3.17)

In the absence of spectral resolution in the BSM, the heralded state is ρ̂ from

Eq.(3.14), and the measured JSI is given by

F (ω1, ω2) =
∑
jk

pjkFjk(ω1, ω2). (3.18)
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In terms of previously defined quantities, this function takes the general form

F (ω1, ω2) =
1

2

[
ρS(ω1, ω1)ρS(ω2, ω2)−

∣∣∣∣∫ dΩf(ω1,Ω)f ∗(ω2,Ω)eiΩτI
∣∣∣∣2
]
. (3.19)

To verify that the heralded state |Ψjk〉 is indeed entangled, beyond classical

correlation, two-photon interference is used in a manner analogous to Refs.

[50, 73]. In our verification protocol, the signal photons are combined at a 50:50

beam splitter while scanning a relative delay between the input modes (â1 and â2)

denoted by τS and monitoring coincidences at the output modes (â3 and â4) as

depicted in Fig. 3.1. These modes transform as

â†3(ω) =
eiωτS â†1(ω) + â†2(ω)√

2
,

â†4(ω′) =
eiω

′τS â†1(ω′)− â†2(ω′)√
2

. (3.20)

The POVM element associated with such a coincidence detection is defined as

Π̂verif =

∫∫
dωdω′ |ω, ω′〉 〈ω, ω′| , (3.21)

with

|ω, ω′〉 = â†3(ω)â†4(ω′) |vac〉 , (3.22)

where we will again consider only the terms that contain both â†1 and â†2. The

probability of detecting a coincidence heralded for the input state |Ψjk〉 is given

by

Pjk(τS) =
〈

Ψjk

∣∣∣ Π̂verif

∣∣∣Ψjk

〉
=

∫∫
dωdω′

∣∣∣ 〈ω, ω′|Ψjk〉
∣∣∣2. (3.23)
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Evaluating this using Eq. (3.9), we obtain

Pjk(τS) =
1

2Cjk

(
1 + Φj(τS)Φk(τS) cos [(ωj − ωk)τS − θjk]−O(|〈φj|φk〉|2)

)
. (3.24)

where Φj(τS) is the modulus of the Fourier transform of |φj(ω)|2, ωj is the center

frequency of φj, and finally,

O(|〈φj|φk〉|2) =

∣∣∣∣∫ dωφ∗j(ω)φk(ω)eiωτS
∣∣∣∣2 + |〈φj|φk〉|2 cos θjk (3.25)

are terms that depend on the overlap of φj and φk and are negligible except for

when Ωj ≈ Ωk, which is the regime where pjk ≈ 0. The main feature of Pjk(τS) is

the interference due to the oscillating term at the difference frequency (ωj − ωk).

This interference is a signature of frequency-bin entanglement [73, 74], as it arises

due to the coherence between the two terms in the state |Ψjk〉. It is important to

note that Pjk(τS) also depends on τI implicitly through θjk, and we will sometimes

write Pjk(τS, τI) when showing this dependence explicitly.

In the absence of frequency resolution of the BSM, we can consider the

interference signal associated with the mixed state ρ̂, and obtain

P (τS, τI) =
∑
jk

pjkPjk(τS, τI). (3.26)

In terms of the previously defined quantities, we have

P (τS, τI) =
1

4

(
1 +

∣∣∣∣∫∫ dωdΩ |f(ω,Ω)|2 ei(ωτS+ΩτI)

∣∣∣∣2
−
∫∫

d2Ω |ρI(Ω,Ω
′)|2 ei(Ω−Ω′)τI −

∫∫
d2ω |ρS(ω, ω′)|2 ei(ω−ω′)τS

)
. (3.27)
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In both Eqs. (3.18) and (3.26), we see that the quantities F and P are

obtained by taking a weighted sum over the individual quantities Fjk and

Pjk, with the weights given by pjk. The results are equivalent to replacing the

spectrometers with “bucket” (non-resolving) detectors. This weighted sum may

also be interpreted in terms of probabilities, where the probability of obtaining a

four fold coincidence is the product of the probability of a heralding event from

a coincidence between the idler photons, and the probability of a coincidence

between the signal photons conditional on the heralding event. This concept of

weighting the average is analogous to other experiments that utilize multi-pixel

detection in the spatial [75] or spectral [76, 77] domains.

3.3. Experiment

3.3.1. Description

The experimental setup shown in Fig. 3.2(a) consists of a single 2.5mm-

long bulk BiBO crystal, double-passed by a pump laser to generate two pairs of

SPDC photons in a type-II configuration, where signal and idler are orthogonally

polarized. By convention we label the first-pass SPDC process as source 1, and the

second-pass process as source 2. The pump for this process is obtained by second

harmonic generation (SHG) of a commercial Ti:Sapph laser (Spectra-Physics

Tsunami) delivering 100 fs-long pulses at a repetition rate of 80 MHz centered

at a wavelength of 830 nm. A part of the Ti:Sapph beam is directed to a fast

photodiode to generate a clock for the experiment. The SHG is realized in a 1mm-

long type I BiBO crystal and the output consist of another train of pulse centered

at 415 nm with a bandwidth of 2.3 nm at full width at half-maximum (FWHM).

The SHG efficiency is over 30%, with an average output power of over 300 mW at
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FIGURE 3.2. a) Experimental setup; PD: photodiode; SHG: second harmonic
generation; DM: dichroic mirror; PDC: parametric down conversion; PZT:
piezoelectric actuator; PBS: polarizing beamsplitter; TOFS: time of flight
spectrometer; SMF: single mode fiber; CFBG: chirped fiber Bragg grating; FBS:
fiber beam splitter. b) Bell state measurement: the idler photons interferences
are spectrally-resolved and used as a herald. c-d) different configuration of the
measurement on the signal photons depending on the experiment.

415 nm. To ensure better quality of the spatial mode of the SPDC photons, the

pump beam is spatially filtered by a pinhole, transmitting about 60% of the power.

This filtering has been shown to greatly optimize the heralding efficiency of SPDC

sources when the photons are collected by single-mode fibers.

The double-pass configuration consists of reflecting the pump beam back

into the crystal, while transmitting the SPDC single photons from the first source

(first pass) through the dichroic mirrors used to steer the pump beam. This
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configuration ensures spectral overlap of the two sources. The back mirror for

the second source (second pass) is mounted on a piezo actuator (PZT) with a 10

µm travel to finely adjust the phase between the two sources. The SPDC photon

pairs are separated by polarization with polarizing beam splitter (PBS) as signal

(V polarization, 10 nm FWHM) and idler (H polarization, 16 nm FWHM) and

injected into single mode polarization-maintaining fibers. Motorized delay lines

are introduced into both signal and idler of source 1 to match their time of arrival

with the other photons from the second source.

The BSM is achieved by interfering the idler photons from each source on a

fiber beamsplitter prior to the heralding spectral measurement. Spectral resolution

is then obtained by utilizing frequency-to-time conversion at the output of the

beamsplitter, thus heralding the frequency bins Ωj and Ωk, see Fig. 3.2(b). Finally,

the heralded JSI and verification is done respectively by routing the signal photons

through the setup described in Fig. 3.2(c), (d).

3.3.2. Detection

The single photons are detected utilizing superconducting nanowire single

photon detectors (SNSPDs) from IDQuantique (ID281) which can detect the

arrival time of photons with a resolution of 20 ps. This temporal resolution is

translated into spectral resolution using time-of-flight spectrometers (TOFS),

thanks to frequency-to-time conversion [78, 79]. For coarse spectral resolution,

we used two spools of 500 m-long HP780 fiber (see Fig. 3.2(a) ). These imprint

a dispersion of approximately 50 ps per nm of bandwidth at 830 nm, with losses

of less than 1 dB per spool. For fine resolution, we used two chirped fiber Bragg

gratings (CFBG from Teraxion) with a dispersion of ∼ 1000 ps/nm [80] (see
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Fig. 3.2(a) ). This extra resolution comes at the expense of an overall signal

attenuation of over 10 dB due to coupling losses and to a finite spectral window of

10 nm. The photocurrent coming out of the detectors is registered with a time-to-

digital converter (TDC, ID900 from IDQuantique). The time reference is provided

by the optical clock, thus ensuring that each time tag is taken with respect to a

stable signal for each pulse.

When the photons are detected at the SNSPDs, their time of arrival is

recorded with an adjustable precision. Throughout this work, this resolution was

set to 100 ps unless stated otherwise, which corresponds to a spectral resolution

that depends on which dispersive medium is used. Using the calibration data

shown in Fig. A.4 in Appendix A.4, this spectral resolution is 0.1 nm for the

CFBG and 2 nm for the fiber spools. These resolutions define the minimal bin

size in which the frequency of any event is recorded. Therefore, when doing any

type of four-fold coincidence measurement, the time of arrival of every event may

be binned with that resolution in a histogram, thus resulting in spectral bins, or

pixels, as depicted in Fig. 3.3, which can be analyzed in post processing.

For instance, for experiments that only require spectral resolution on

the herald (such as the verification Pjk), time tags corresponding to heralding

frequencies Ωj,Ωk are acquired and subsequently binned at the resolution of the

spectrometer, corresponding to the probability of getting spectral coincidences

in every possible combination of frequency bins. When all four spectrometers are

needed (for instance to measure the JSI Fjk heralded by a BSM at frequencies

Ωj and Ωk), the measurement then consists of four sets of time tags that can be

binned into a four-dimensional histogram, such as shown in Fig. 3.6. For more

readability, we label those heralding bins by integers j and k, such that index 0
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FIGURE 3.3. Acquisiton of the heralded JSI pjk of the idler photons showing the
calibration and indexing convention of the frequency bins.

corresponds to Ω0, the central wavelength of the idler spectrum. The axes in Fig.

3.3 give the index-to-wavelength mapping.

3.3.3. Source distinguishability

This experiment relies on the indinstinguishability of the two sources as

noted in the previous section. This has to be achieved on every degree of freedom.

Since the polarization and the spatial degree of freedom are constrained by

polarization-maintaining fibers, there remains to match the sources in frequency

and in time.

The spectral indistinguishability can be estimated by measuring the joint

spectral intensity of both sources. We obtained such JSI measurements by using

the two 500m fiber spools (TOFSb) to detect signal and idler photons from
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each source in coincidence, while operating the time tagger at its maximum

resolution of 13 ps, such that the spectral resolution is only limited by the timing

jitter of the SNSPDs. These measurements are shown in Fig. 3.4. It can be seen

that both sources are very similar thanks to the dual-pass configuration of the

pump. A Gaussian fit to this experimental JSI is used throughout this chapter

to define the parameters of the JSA f(ω,Ω) that are used in our mathematical

model, as described in Sec.3.4.1. Note that there can be an additional cause of

distinguishability due to spectral phase mismatch between both sources which

cannot be determined with an intensity measurement. Therefore, the dispersion

was mostly matched in every path of the interferometer by ensuring that every

fiber element had the same length.

Temporal mode matching is achieved by scanning both delays τS and τI while

monitoring the coincidences between ports b̂3 and b̂4 for the idlers (at FBSb)

and â3 and â4 for the signals (at FBSa), which do not share photon number

correlations. This results in an unheralded Hong-Ou-Mandel (HOM) dip with a

poor visibility (less than 10%), which is still sufficient to coarsely match the time

of arrival of the photons. We also measured a higher-visibility HOM interference in

a heralded manner by detecting fourfold coincidences between ports b̂1, b̂2, â3 and

â4. In Appendix A.7, we show how such a measurement with and without spectral

resolution can give a lower bound on the purity of the heralded state.

Finally, another convenient method [81] to match both sources can be

applied. With the configuration from Fig.3.1, we can monitor the two-fold

coincidences between combinations of one output from each beamsplitter, for

instance b̂3 and â3. When both delays are matched, i.e. τS = τI = 0, then

these coincidences oscillate at the optical frequency. This interference is phase-
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FIGURE 3.4. Experimental joint spectral intensity of both sources. Insets:
marginal spectra.

sensitive, and analogous to classical first-order interference, except that it is

observed in the coincidences. In Appendix A.6, we show that the visibility of this

interference provides a direct measurement of the overlap between both sources,

taking into account any phase effects. This method proved essential to accurately

match delays before every experiment, while it also provided a bound to quantify

indistinguishability, with a maximum measured contrast of 80%.
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3.4. Simulations and results

In this section, we further model the experiment with a Gaussian

approximation of the JSA to derive analytical expressions from the quantities

defined in Sec. 3.2. This allows for a better understanding of the dependence of

the interferences on the experimental parameters, notably on the delay between

the idler photons in the BSM. We then compare our experimental results to the

theory using this approximation.

3.4.1. Gaussian model

It is convenient to write the JSA f(ωS, ωI) as a Gaussian distribution by

approximating the sinc function with a Gaussian of the same width :

f(ωS, ωI) = C exp

[
−
(
ωS − ω0

2σS

)2

−
(
ωI − ω0

2σI

)2

− α(ωS − ω0)(ωI − ω0)

]
, (3.28)

where σs (σI) is the cross-sectional width of the JSI in the ωS- (ωI-) direction

evaluated at ωI (ωS), ω0 is the center frequency, α quantifies the amount of spectral

entanglement, and C =
(∫

d2ω |f(ω, ω′)|2
)−1/2

is a normalization constant.

Fitting the experimental JSI from Fig. 3.4 to this function, we obtain the following

parameters: σS = 2.39 THz, σI = 5.24 THz and α = 37.5 · 103 fs2. These provide

all the values necessary to simulate the experiment in the Gaussian model that is

presented here. Note that the center frequency ω0 is adjusted to the experimental

data, so it is a free parameter.
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Using the form of Eq. (3.28) for the JSA, the density matrices ρS and ρI are

given by

ρS(ω, ω′) = C2
√

2πσI exp

[
− (ω − ω0)2 + (ω′ − ω0)2

4σ2
S

+
1

2
α2σ2

I (ω + ω′ − 2ω0)2

]
,

(3.29)

ρI(Ω,Ω
′) = C2

√
2πσS exp

[
− (Ω− ω0)2 + (Ω′ − ω0)2

4σ2
I

+
1

2
α2σ2

S(Ω + Ω′ − 2ω0)2

]
.

(3.30)

Meanwhile, the φj functions are given by

φj(ω) =
1√

σS

√
2π

exp[−(ω − ωj)2/4σ2
S], (3.31)

which are Gaussians with a width equal to that of the signal’s cross-sectional

width and a central frequency given by

ωj − ω0 = −2α σ2
S (Ωj − ω0). (3.32)

Finally, the normalization constant Cjk is given by

Cjk = 1− exp
[
−∆ω2

jk/4σ
2
S

]
cos [∆ΩjkτI] , (3.33)

where ∆ωjk = ωj − ωk is the difference between the central frequencies of the

heralded modes, and follows the relation ∆ωjk = −2ασ2
s∆Ωjk. Note that, for most

of our data, (ωj−ωk)2 � σ2
S, so that Cjk ' 1. In Fig. 3.5, we used the experimental

JSI to plot the measured
∣∣φj(k)(ω)

∣∣2 in the limit of infinite spectral resolution at

the BSM.
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FIGURE 3.5. Gaussian approximation of the spectral heralding: a detection at
frequency Ωj(k) projects the signal photon onto the mode φj(k), centered at ωj(k),
shown on the left (dashed). The pure state model assumes that the idler photon
is detected with perfect resolution onto a mode with infinitesimal spectral support
(top, dashed). A more accurate development is shown in Appendix A.2, which
considers integration over a finite spectral window for the herald.

In the following, we first consider the case of a perfect BSM with τI = 0, and

then explore the effect of minor distinguishability in the BSM with τI 6= 0. The

latter, more general, case, not only describes the four photon interference effect

more comprehensively, but also allows for the heralding of the generalized Bell

states given by Eq. (3.9).

3.4.2. Case of τI = 0 (θjk = 0)

We first study the case where the idler paths are exactly matched, setting

τI = 0(θjk = 0), which yields the results that we report on in [1]. Under this
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constraint, and using the Gaussian model in Eq. (3.28), we proceed to obtain

analytic forms for our measured quantities. First, the probability pjk of performing

a BSM at frequencies Ωj and Ωk and heralding the state |Ψjk〉 is given by Eq.

(3.7) with θjk = 0

pjk =
1

2

[
ρI(Ωj,Ωj)ρI(Ωk,Ωk)− |ρI(Ωj,Ωk)|2

]
. (3.34)

The distribution pjk in fact corresponds to the joint probability of detecting two

photons at the output of a beam splitter, when they are in a separable state

at the input, with each photon described by a density matrix ρI. Notably, the

indistinguishability of the photons manifests as a dip along the degenerate Ωj = Ωk

frequencies as pj=k = 0. This implies that the probability of measuring any

quantities is zero in this case. An experimental measurement of pjk is shown in

Fig. 3.3, showing the bimodal structure of this distribution. It also shows our

labelling convention for Ωj(k) where we set j(k) = 0 to correspond to Ω0 which

is the center frequency of the degenerate SPDC light.

Next we compute the JSI Fjk associated with the state |Ψjk〉 from Eq. (3.17)

Fjk(ω1, ω2) =
|φj(ω1)φk(ω2)− φj(ω2)φk(ω1)|2

2Cjk
, (3.35)

which can be approximated for |Ωj − Ωk| � 0, i.e. for distant heralding

frequencies, as

Fjk(ω1, ω2) ' |φj(ω1)φk(ω2)|2 + |φj(ω2)φk(ω1)|2

2
, (3.36)
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FIGURE 3.6. (a) Simulation of the heralded JSI Fjk for pure states, from Eq.
(3.35), using experimental parameters derived from the sources’ JSI measurement.
(b) Experimental result from [1] obtained by acquiring 30000 spectral coincidences
over 10 hours and binning the JSI into frequency bins, labelled according to Fig.
3.3.
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which corresponds to two Gaussian spots centered at (ωj, ωk) and (ωk, ωj), mirror-

symmetric about the ω1 = ω2 axis. For exactly degenerate heralding events Ωj =

Ωk, the heralded JSI vanishes as the probability of obtaining a BSM result is null

in this case.

In the intermediate case where Ωj ' Ωk, the two Gaussian spots

of the heralded JSI begin to overlap. However, the cross terms obtained by

expanding Eq. (3.35) manifest in the JSI as a dip along the degenerate ω1 = ω2

frequencies, akin to Eq. (3.34). The heralded JSI is simulated in Fig. 3.6(a) for

the pure state approximation and using values of (Ωj,Ωk) that are determined

experimentally, showing the aforementioned behavior. To retrieve the same

quantity experimentally, we set up the experiment for the characterization

procedure (Fig. 3.2(c)) and measure spectral coincidences at the output of FBSa

heralded by a BSM at frequencies (Ωj,Ωk) (Fig. 3.2(b)). The result is shown in

Fig. 3.6(b) where the frequency bins are labelled according to Fig. 3.3. Note that

both color maps are normalized, such that the amount of energy per bin has to be

multiplied by the probability of realizing this measurement, given by pjk in Fig.

3.3. Therefore, when computing the total number of four fold coincidences per

pixel in Fig. 3.6(b), we obtain exactly the distribution depicted in Fig. 3.3.

We assess the validity of our theoretical model by comparing it with the

experimental data. For each measured Fjk, the counts are distributed into two

clusters. We calculate the center of mass of each of the two clusters for a given

experimental Fjk, and, by taking the difference of the centers of mass, obtain an

experimental measure of ∆ωjk for that JSI. We compute the relative error with

respect to the theoretical value of each ∆ωjk from the Gaussian model as given

by Eq. (3.32). Over the whole set presented in Fig. 3.6(b), the relative error is
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25%, which is mostly dominated by the statistical noise due to the low number of

events close to the degenerate heralding frequencies (j = k). For the Fjk with a

high number of total counts (corresponding to a high probability of a coincidence

between the heralding photons, see Fig. 3.3), the relative error is lower than 10%.

This simple comparison shows that the pure state approximation used in our

model is adequate for describing our results.

Taking a weighted sum over Fjk(ω1, ω2) from Eq. (3.35), with the weights

given by pjk according to Eq. (3.18), we obtain the mixed-state JSI F (ω1, ω2) from

Eq. (3.19) with τI = 0, which simplifies to

F (ω1, ω2) =
1

2

[
ρS(ω1, ω1)ρS(ω2, ω2)− |ρS(ω1, ω2)|2

]
. (3.37)

First we note that the distribution F (ω1, ω2) for the signal photons is analogous

to the distribution pjk from Eq. (3.34) for the idler photons. Indeed, this is the

joint spectral distribution that would be obtained were the beam splitter placed in

the signal paths rather than the idler paths, and the fact that such a distribution

is measured without the presence of a beam splitter is evidence of the non-local

nature of this fourfold measurement. In Fig. 3.7(a), we simulate F (ω1, ω2) using

the values obtained from the source JSI’s, where it can be seen the bimodal

structure persists in the summation.

By summing our experimental data from Fig. 3.6(b) over all heralded

bins, we obtain the histogram shown in Fig. 3.7(b), which closely matches the

simulation. We note that the JSI is indeed zero for degenerate frequencies, which

is a consequence of HOM interference. The measurement of the heralded JSI shows

the validity of the pure state approximation for the resolution of the heralding

TOFS, which is sufficiently narrow.
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FIGURE 3.7. (a) Simulation of the full heralded JSI F defined by the sum of Eq.
(3.18) over all j, k. (b) Experimental result obtained by summing the acquisitions
from Fig. 3.6(b) over all bins.
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We now proceed to evaluate the entanglement verification signal Pjk(τS)

from Eq. (3.24), for this case of θjk = 0. We find that Φj(τS) = Φk(τS) since the

Gaussians φj(k) only differ in their first moment ωj(k) (see Eqs. (3.31) and (3.32)),

such that we have:

Pjk(τS) =
1

2Cjk

{
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS

]
− | 〈φj|φk〉 |2(1 + e−σ

2
Sτ

2
S )
}
. (3.38)

Similar to the heralded JSI, we analyzing this function depending on the spectral

distance between Ωj and Ωk. We find that for |Ωj − Ωk| � 1/ασS, 〈φj|φk〉 → 0

such that the verification signal reduces to

Pjk(τS) =
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS

]
2

. (3.39)

The constant term corresponds to a background probability of 1/2 of getting a

coincidence event between uncorrelated, heralded single photons after the balanced

beam splitter. The other term is a Gaussian envelope with the transform-limited

temporal width of the signal photon, analogous to what is obtained in classical

cross-correlation between ultrafast pulses. This envelope is modulated by fringes

at the difference of the heralded frequencies ωj − ωk. Note that the fringes vanish

when setting α = 0 in Eq. (3.32), consistent with the notion that the observed

fringes are a result of discrete frequency entanglement. Additionally, for the case of

τI = 0 and θjk = 0, these fringes have no phase offset and always a maximum at

τS = 0.

In the pure state model, the probability pjk of obtaining a coincidence

detection event after the balanced beam splitter at degenerate frequencies Ωj = Ωk

is null, and the verification signal Eq. (3.38) is not defined. However, we find that
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it has the following limit

Pj→k(τS)→ 1

2
− 1

2

(
2σ2

Sτ
2
S − 1

)
e−σ

2
Sτ

2
S , (3.40)

which can be easily demonstrated by noticing that 〈φj|φk〉 is a Gaussian function

of the variable ∆ωjk under the Gaussian approximation (see for instance Eq.

(3.33)). The expression is similar to that reported in [50] that utilizes an

engineered non-linear interaction to obtain spectral Bell states.

In Fig. 3.8(a), we plotted the simulated Pjk using our approximated model

and parameters obtained experimentally. This plot shows the previously described

behavior, showing oscillations at the difference frequency which merge into a

single peak in the near degenerate case. The background color map for these plots

represent the probability of measuring these events, i.e. pjk from Eq. (3.34).

In Fig. 3.8(b), we show the experimental counterpart, with the colored

background representing the experimental pjk obtained by computing the total

number of counts in each bin. Using a fit to the Gaussian model (shown as a solid

red curve in the experimental plot), we again assess the validity of the model. The

fitted parameters ∆ωjk are within 15% of the value predicted by the model when

averaged over all bins, while for several bins that contain faster oscillations (such

as (3,−3) and its immediate neighbors), the relative error is lower than 5%. It is

also worth noting that the fitted values agree within the same margins with the

retrieved values from the experimental JSI in Fig.3.6(b). Additionally, we find that

the visibility of the interference fringes is between 70 and 80%. While the visibility

should in theory be unity, in practice it is limited by the indistinguishability of

the two source JSA’s. In App. A.6, we demonstrate this relationship and we

experimentally estimate the indistinguishability to be on the order of 80%, and
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FIGURE 3.8. (a) simulation of the entanglement verification signal Pjk for pure
states, see Eq. (3.38). (b) experimental result from [1], obtained by binning
the verification signal acquired over 15 hours. These results are fitted to the
approximated model from (3.39). The frequency bins are labelled according to
Fig. 3.3. The colormap in the background represents the probability pjk of an
heralding event, theoretical (left) and experimental (right).
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thus the visibility of the fringes shown in Fig. 3.8(b) is in good agreement with the

theory (a).

Finally we evaluate the verification signal P (τS) with θjk = 0 for the non-

spectrally-resolved case, given by Eq. (3.26). We find that it contains four terms:

P (τS) =
1

4

[
1 +

∣∣∣∣∫∫ dωdΩ |f(ω,Ω)|2 eiωτS
∣∣∣∣2 − ∫∫ d2Ω |ρI(Ω,Ω

′)|2

−
∫∫

d2ω |ρS(ω, ω′)|2 ei(ω−ω′)τS

]
. (3.41)

The first term is simply a background probability, while the second term

corresponds to the overlap between the two sources with a relative delay τS

between the signal photons. Evaluating this term reveals a Gaussian along τS

whose width depends on the joint temporal distribution of the sources. This is

quite similar to the cross-correlation between two classical pulses, except that in

the present case, the phase of the fringes is constant, implying that the Pjk sum

coherently to a single peak at τS = 0. We will see in the next section how that

phase can be offset by introducing an additional time delay in the BSM.

The last two terms of Eq. (3.41) correspond respectively to the overlap

integrals between the idler and the signal density matrices of each source. The

former evaluates to a constant, which is unity when the sources are perfectly

matched. The latter describes an unheralded HOM dip between the signal

photons. Hence, the full verification signal can be summarized as a Gaussian peak

centered in a HOM dip which is similar in form to Eq. (3.40). In Fig. 3.9(a), we

plot a simulation of the full signal P (τS) showing this behavior. In Fig. 3.9(b), we

show the experimental result obtained without binning the data from Fig. 3.8(b),

where the red curve is not a fit, but rather the sum of the fits to the individual
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Pjk signals. Most remarkably, the visibility of the HOM peak is not limited by

the purity of the incident quantum state, suggesting that antibunching can reveal

entanglement even for a certain class of mixed states.

We stress that the presence of oscillating fringes in Pjk(τS) or a peak in

P (τS), where the coincidence probability goes above the baseline of 1/2, is a

witness of an entangled state (see, for example, [74]). Our setup is therefore

capable of performing entanglement swapping between a large number of frequency

Bell states. As we show in [1], not all of the heralded states shown in Fig. 3.6(b)

are mutually orthogonal, but it is possible to select multiple subsets which form a

set of mutually orthogonal Bell states. In Appendix A.9, we show how to post-

select an orthogonal set of states by running an algorithm that isolates sets of

quasi-orthogonal modes, all of which satisfy the verification procedure for our

entanglement swapping protocol.

3.4.3. Case of τI 6= 0 (θjk 6= 0)

We now study the case when there is a temporal delay τI between the

idler photons at the output of FBSb. Note that when this delay becomes too

large compared to the temporal width σ−1
I ≈ 300 fs of the idler photons, they

become distinguishable at the output of the beam splitter, effectively reducing the

entanglement in the heralded Bell state. Therefore, in the scope of the chapter,

we take τI to be smaller than this value, such that the state |Ψjk〉 retains some

entanglement. One limitation of the pure state model arises because the idler

BSM from Eq. (3.3) assumes perfect spectral resolution, leading to infinite

temporal support of the quantities defined in Sec. 3.2 over τI whereas they should

necessarily be bounded by an envelope whose width is inversely proportional to the
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FIGURE 3.9. Probability P (τS) of a coincidence heralded by a BSM without
spectral resolution. Left: simulation from Eq. (3.41); Right: experimental result
presented in [1] obtained by summing the individual Pjk that are depicted in Fig.
3.8(b). The solid red curve is a sum of the individual fits on the experimental
Gaussian model from Eq. (3.39).

spectral resolution. The derivation for the mixed state case, corresponding to finite

spectral resolution, is shown in Appendix A.2. Nevertheless, the pure state model

accurately predicts our results and is therefore sufficient to describe the effects of

slight distinguishability in the BSM.

The heralded state in the Gaussian model is given by Eq.(3.9) and shows a

phase offset between the two states that depends on τI. The heralded JSI from Eq.

(3.17) evaluates to

Fjk(ω1, ω2) =
1

2Cjk

[
|φj(ω1)φk(ω2)|2 + |φk(ω1)φj(ω2)|2 − 2γjk(ω1, ω2) cos (∆ΩjkτI)

]
,

(3.42)

where γ(ω1, ω2) = φj(ω1)φk(ω2)φj(ω2)φk(ω1) for real modes φj(k), for simplicity.

The last term is responsible for the HOM dip along the degenerate frequencies

ω1 = ω2, marking indistinguishability. As previously, γjk → 0 when heralding

distant bins |Ωj − Ωk| � 0 so the delay between the idlers photons has no
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influence. However, for degenerate bins Ωj → Ωk and for τI < σ−1
I , γjk×cos θjk → 0

which causes the two Gaussian spots to merge.

Putting these limits together, we find that a small delay between the idler

photons results in a heralded JSI similar to Fig. 3.6(a) where the JSI in the bins

close to the j → k diagonal are more or less merged depending on τI. For spectral

bins that are spaced further, the JSI is unchanged since the distinguishability is

marked by a relative phase between the Gaussian spots.

The full JSI is obtained by summing Fjk according to Eq.(3.18):

F (ω1, ω2) =
ρS(ω1, ω1)ρS(ω2, ω2)− Γ(ω1, ω2; τI)

2
, (3.43)

where Γ is a function that depends on the overlap of the signal density matrices as

a function of the idler delay (see Appendix A.10). Similar to the previous case, the

overlap between φj and φk depends on the indistinguishably in time of the idlers.

We next consider the entanglement verification signal from Eq. (3.24), which

depends on both τS and τI. Evaluating it with the Gaussian model, we obtain

Pjk(τS, τI) =
1

2Cjk

(
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS − θjk

]
− | 〈φj|φk〉 |2(e−σ

2
Sτ

2
S + cos θjk)

)
.

(3.44)

We perform yet another asymptotic behavior analysis. For distant heralding

frequencies, we find that the limit is similar to Eq. (3.39) with an additional phase

shift

Pjk(τS, τI) =
1 + e−σ

2
Sτ

2
S cos

[
∆ωjk(τS − τ ′I)

]
2

, (3.45)
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where we used Eq. (3.32) to factorize by the difference of heralded frequencies and

we defined τ ′I = τI/2ασ
2
S. We can see that the value of τI has a more noticeable

effect compared to the heralded JSI. The fringes are no longer synchronized to the

envelope and a phase shift occurs when the delay between the idlers photons is

nonzero. This effect is quite important in our case since a delay as small as 100

fs between the idler photons is sufficient to cause a phase shift of π due to the

relatively large spectral bandwidth of the JSA.

Note that using the more realistic mixed state model, the envelope of the

fringes is also affected by this delay and causes a reduction in visibility. In the

pure state approximation, the envelope in the idler direction is infinite, but it is

sufficient to show the most noticeable effect of the phase shift. Note also that it is

possible to find a value for both delays such that τS = τ ′I , in which case the phase

shift cancels, but the visibility of the fringes would be decreased. This is illustrated

in Fig. 3.10 which compares a simulation (left) that uses the approximated model

with the same parameters as the experimental results (right). The entanglement

verification utilizes the previous experimental protocol for 7 different values of

τI. While we see good qualitative good agreement between the experimental and

simulated fringes, the envelope in the model has no dependence on τI whereas it is

clearly the case experimentally.
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FIGURE 3.10. Simulated (left) and experimental (right) probability to get a
coincidence at FBSa between â3 and â4 heralded by a BSM at frequencies Ωj

and Ωk for (j, k) = (2,−2). The simulation utilizes the Gaussian, pure state
approximation from Eq. (3.45) with the same parameters as in the experimental
case. The experimental plots are acquired over 900s for different positions of the
idler stage (on the right). The heralding frequencies are separated by 8nm (or
about 10 THz). The red curve represents a fit to the theoretical model. This is a
different representation of the data shown in Fig. 3.11 in the bin labelled (2,−2).
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For near-degenerate heralding frequencies, we have the following limit

Pj→k(τS, τI) =
1

2
− 1

2
· 2σ2

S(τS − τ ′I)2 − 1

1 + 4(τ ′I)
2

e−σ
2
Sτ

2
S . (3.46)

which is equal to Eq. (3.40) when setting τI = 0. Putting both limits together, we

find that a scan over τS and τI of the verification signal Pjk from Eq. (3.44) look

very similar to Fig. 3.8(a), except that the fringes will be offset as a function of τI

while the peak close to the diagonal remains centered. In both cases, the visibility

is decreased. This effect was very useful experimentally to verify that the delay

at both beam splitters was as close to zero as possible. Moreover, the decrease

in contrast for non-zero values of τI is yet another proof that the visibility of the

oscillations in Pjk is a marker of entanglement.

In Fig. 3.11 we show an experimental waterfall plot representing each Pjk for

values of τI ranging from -300 to +300 fs which originates from the same dataset

as Fig. 3.10. In this measurement, the spectrally resolved heralding is done at

half the resolution than used earlier (shown in Fig. 3.3) to have sufficient data

statistics. These plots show that the fringes have a phase shift as a function of τI

for distant (j, k) frequency bins as predicted by Eq. (3.45), while in the degenerate

j = k case, the fringes collapse to a single peak as described by Eq. (3.46).

The phase shift is defined by the proportionality factor between τI and τ ′I , which

depends on the amount of entanglement and on the spectral bandwidth of the

signal photons. This data shows that entanglement swapping is still achieved for

this specific range of delay mismatch in the BSM, even though this mismatch

introduces some distinguishability.

91



6,-6 6,-4 6,-2 6,0 6,2 6,4 6,6

4,-6 4,-4 4,-2 4,0 4,2 4,4 4,6

2,-6 2,-4 2,-2 2,0 2,2 2,4 2,6

0,-6 0,-4 0,-2 0,0 0,2 0,4 0,6

-2,-6 -2,-4 -2,-2 -2,0 -2,2 -2,4 -2,6

-4,-6 -4,-4 -4,-2 -4,0 -4,2 -4,4 -4,6

-6,-6 -6,-4 -6,-2 -6,0 -6,2 -6,4 -6,6

0 0.2 0.4 0.6 0.8 1.0
Normalized counts (arb. units)

FIGURE 3.11. Waterfall plot of Pjk plotted against τS (horizontal) for different
values of τI (vertical) where each plot represents a frequency bin Ωj,Ωk labelled by
j and k. The plot range and units for τS and τI are the same as shown in Fig. 3.10.
For each j, k subplot, the color gradient spans the entire range for that subplot,
such that the color is representative of the amount of data collected.
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Finally, by repeating the same experiment either without spectral resolution

of the BSM or by summing the individual Pjk according to Eq. (3.26), we find that

the expression of the verification signal is then given by

P (τS, τI) =
1

4

(
1 +

∣∣∣∣∫∫ dωdΩ |f(ω,Ω)|2 ei(ωτS+ΩτI)

∣∣∣∣2 − ∫∫ d2Ω |ρI(Ω,Ω
′)|2 ei(Ω−Ω′)τI

−
∫∫

d2ω |ρS(ω, ω′)|2 ei(ω−ω′)τS

)
, (3.47)

which is similar to Eq.(3.41) with an additional dependence on τI. We simulated

this expression using the Gaussian model in Fig. 3.12 and show the corresponding

experimental result. It is straightforward to identify the three nonconstant terms

as familiar quantities. The second term is the cross-correlation between both JSA

as a function of both delays. It can be written as the product of Fourier transform

of the joint spectrum with respect to ω and Ω, thus reducing to the product of

envelope functions centered at τS and τI. This term is responsible for the slanted

peak in Fig. 3.12. The last two terms correspond respectively to the overlap

integrals between the density matrices of the idlers and of the signals. They show

the effect of interferences between uncorrelated photons and hence are visible as

HOM dips along either τS or τI, as shown again in Fig. 3.12. This figure allows

us to identify more clearly the range over which entanglement swapping can be

verified, which is essentially the area over which the slanted peak appears, since

the HOM dips correspond only to quantum interferences between unentangled

single-photon states.
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FIGURE 3.12. Top: Simulation of Eq. (3.47) with experimental parameters.
Bottom: experimental acquisition obtained by monitoring four-fold coincidences
over 15 hours while scanning both τS and τI without spectral resolution of the
herald.
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By exploring the range of both time delays in this configuration, we explicitly

see the ultimate equivalence between signals and the idlers in what is effectively

a four-photon interferometer. As such, it is adequate to consider Pjk(τS, τI) and

P (τS, τI) as the most general representation of the phase-insensitive part of four-

photon interference where TF entanglement is present.

3.5. Conclusion

In this work, we have undertaken a more thorough and more general analysis

of the results we report on in Ref. [1]. In summary, we demonstrated and analyzed

a novel scheme for TF entanglement swapping, using a multimode, spectrally-

resolved Bell-state measurement as the heralding mechanism. The most salient

feature of our method is the heralding of several, mutually-orthogonal Bell states

derived from identical multimode entangled photon pairs. We further generalized

our result to consider the case of non-zero time delay in the heralding Bell-state

measurement, giving rise to Bell states with a varying amount of phase. Our

setup is the first known to the authors to incorporate four simultaneous time-of-

flight spectrometers, and thus points towards a promising venue of study of TF

entangled four-photon interferometry.

As a proof-of-concept experiment, our work paves a way towards utilizing

the high-dimensionality of the TF entanglement available in SPDC sources for

distributed quantum information. It is straightforward to scale this protocol

to herald a large number of orthogonal entangled states, which is in principle

limited by the bandwidth, and thus the amount of the entanglement, of the SPDC

sources. Our measurement scheme could further be extended to high-dimensional

quantum teleportation and entanglement swapping, whereby ancillary photons
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and multiport beam splitters are used to implement a high-dimensional Bell state

measurements, as has been recently demonstrated for path [82, 83] and orbital

angular momentum [84] entanglement. Alternately, it is possible in principle to

use sum-frequency generation to implement projective measurements onto high-

dimensional TF-entangled states for the same purpose [85]. Finally, if used in

combination with deterministic sources of entangled photon pairs [86] and with

quantum memories [87], multimode quantum repeaters of the kind that our

protocol allows could prove to be a scalable solution for multiplexed quantum

networks.
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CHAPTER IV

CHARACTERIZATION OF SPECTRALLY-ENTANGLED PHOTONS

4.1. Spectrally-resolved interference and entanglement

It is well-known that two-photon interference of the Hong-Ou-Mandel type

can be used to characterize the modal properties of the incoming light fields. For

example, interference of an input single photon with a reference single photon [88]

or highly attenuated coherent state [89] can be used to reconstruct the density

matrix of the input photon. Similarly, HOM interference of two photons can reveal

the extent of their indistinguishability and their symmetry properties [74, 90].

In this section we will analyze how spectrally-resolved two-photon HOM

interference type can reveal spectral entanglement in certain two-photon states

which may even be mixed states. The measurement we consider is that of a JSI at

the output of a HOM interferometer, where there is a fixed relative time delay τ

between the arrival times of the input photons. We will call this measurement a

“HOM-JSI” for convenience, and the configuration for making such a measurement

is depicted in Fig. 4.1. It consists of a two photon state which may or may not be

pure, and may or may not be spectrally entangled, where each photon is incident

at one of the input modes of a beam splitter, with a fixed relative time delay τ

between them. At the output, spectrally-resolved coincidence measurements are

made on the two photons.

Following the developments in Chapter III, we can write down the POVM

element corresponding to a coincidence detection at frequencies (Ω,Ω′) in the basis

of the input modes, as

97



FIGURE 4.1. Spectrally-resolved interference for measuring HOM-JSI: a two-
photon state is incident on a balanced beam splitter, where the photons each
occupy mode â1 and â2, but otherwise may be in a pure or mixed state and may
or may not be spectrally entangled. A joint detection is made at the output at
frequencies Ω and Ω′ with probability P (Ω,Ω′; τ).

Π̂(Ω,Ω′; τ) =
â†1(Ω)â†2(Ω′)− ei∆Ωτ â†1(Ω′)â†2(Ω)

2
|vac〉 〈vac| â1(Ω)â2(Ω′)− e−i∆Ωτ â1(Ω′)â2(Ω)

2
,

(4.1)

where ∆Ω = Ω − Ω′. Note the factor of 1/2, which is related to the fact that we

have dropped terms corresponding to two-photons in the same input mode, since

we are assuming that the two photons are in opposite input modes.

We consider the most general two-photon state in this configuration, given by

ρ̂12 =

∫
d2ω1d2ω2ρ12(ω1, ω

′
1;ω2, ω

′
2)â†1(ω1)â†2(ω2) |vac〉 〈vac| â1(ω′1)â2(ω′2), (4.2)
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where ρ12(ω1, ω
′
1;ω2, ω

′
2) is the spectral density matrix for the two photons. If the

two-photon state is separable, the spectral density matrix can be expressed as

follows:

ρ12(ω1, ω
′
1;ω2, ω

′
2) =

∑
i

pi ρ
(i)
1 (ω1, ω

′
1)ρ

(i)
2 (ω2, ω

′
2),

∑
i

pi = 1. (4.3)

Consider performing a spectrally-resolved HOM interference measurement

on these photons, such that they are detected at frequencies (Ω,Ω′) at the output

of a 50-50 beamsplitter. The probability for such a coincidence, and hence the

measured HOM-JSI, is given by

P (Ω,Ω′; τ) =
1

4

(
ρ12(Ω,Ω; Ω′,Ω′) + ρ12(Ω′,Ω′; Ω,Ω)

−ρ12(Ω,Ω′; Ω′,Ω)exp[i(Ω− Ω′)τ ]− ρ12(Ω′,Ω; Ω,Ω′)exp[−i(Ω− Ω′)τ ]
)
.

(4.4)

The first two terms do not show any interference, and we shall refer to them as

the constant terms, because they show no τ -dependence. Meanwhile, we refer to

the second two terms, which do depend on τ , as the interference terms. We now

proceed to analyze this HOM-JSI for a few special cases, which help guide us to a

conjecture about how the HOM-JSI can reveal spectral entanglement.

4.1.1. Case 1: Pure product states

The simplest case to begin with is one where the photons are separable and

each is in a pure spectral state. The form for ρ12 in is:
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ρ12(ω1, ω
′
1;ω2, ω

′
2) = φ∗1(ω1)φ1(ω′1)φ∗2(ω2)φ2(ω′2). (4.5)

In this case, the HOM-JSI reduces to:

P (Ω,Ω′; τ) =
1

4

(
|φ1(Ω)|2|φ2(Ω′)|2 + |φ1(Ω′)|2|φ2(Ω)|2

−φ∗1(Ω)φ2(Ω)φ∗2(Ω′)φ1(Ω′) exp [i(Ω− Ω′)τ ]− c.c.
) (4.6)

There are two limiting cases of interest for this expression. The first is when

the two photons are identical, φ1(ω) = φ2(ω) = φ(ω). In that case, the expression

for P (Ω,Ω′; τ) reduces to

P (Ω,Ω′; τ) =
1

2

[
|φ(Ω)|2|φ(Ω′)|2 (1− cos(Ω− Ω′)τ)

]
. (4.7)

This corresponds to interference fringes everywhere in the JSI. Furthermore, note

that τ = 0 corresponds to no coincidences, as is expected from HOM interference.

We simulate this case in Fig. 4.2 (a), where take both photons to have Gaussian

spectral amplitudes centered at 830 nm with a FWHM bandwidth of 5 nm, and set

the relative time delay τ to 1 ps.

The other limiting case is where there is no spectral overlap between the

photons, such that φ∗1(ω)φ2(ω) ≈ 0, ∀ω. Then the interference term vanishes, and

we obtain

P (Ω,Ω′; τ) =
1

4

(
|φ1(Ω)|2|φ2(Ω′)|2 + |φ1(Ω′)|2|φ2(Ω)|2

)
. (4.8)

This corresponds to two factorable JSI’s located symmetrically about the Ω = Ω′

axis. This case is simulated in Fig 4.2 (b), where we have centered the photons at

825 nm and 835 nm while keeping the other parameters the same.
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FIGURE 4.2. HOM-JSI’s for two photons in pure factorable states. (a) Identical
photons centered at 830 nm with 5 nm FWHM bandwidth, and τ = 1ps. (b)
Distinguishable photons, where photon 1 is centered at 825 nm and photon 2 is
centered at 835 nm, with all other parameters kept the same.

4.1.2. Case 2: Separable mixed states

We can now generalize further to the case of mixed separable states, ones of

the form (4.3). In this case the coincidence probability takes the form

P (Ω,Ω′; τ) =
1

4

∑
i

pi

[
ρi1(Ω,Ω)ρi2(Ω′,Ω′) + ρi1(Ω′,Ω′)ρi2(Ω,Ω)

−ρi1(Ω,Ω′)ρi2(Ω′,Ω) exp [i(Ω− Ω′)τ ]− c.c.
]
.

(4.9)

We can treat each term individually without loss of generality, so we’ll consider the

i-th term and omit the index for simplicity.

Again we consider two limiting cases. The first case is where the two photons

are identical, with ρ1(ω, ω′) = ρ2(ω, ω′) = ρ(ω, ω′). Then we obtain
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P (Ω,Ω′; τ) =
1

2

[
ρ(Ω,Ω)ρ(Ω′,Ω′)− |ρ(Ω,Ω′)|2 cos(Ω− Ω′)τ

]
. (4.10)

Here the constant term consists of the product of the two marginal spectra,

just as in the pure case. However, the amplitude of interference term is just the

modulus squared of the density matrix. In the limit of a maximally mixed state,

this amplitude is only non-zero in the diagonal region where Ω ≈ Ω′, while in the

pure state limit, we recover the result of Eq. (4.8), where the constant term and

the interference term are identical. In Fig. 4.3 (a), we plot the HOM-JSI for

The second limit is again when there is no spectral overlap between the

photons, such that ρ1(ω, ω′)ρ2(ω′, ω) ≈ 0, ∀ω, ω′. The interference term vanishes

again, and we are left with

P (Ω,Ω′; τ) =
1

4
[ρ1(Ω,Ω)ρ2(Ω′,Ω′) + ρ1(Ω′,Ω′)ρ2(Ω,Ω)] , (4.11)

In this limit the HOM-JSI is identical to that of the pure distinguishable states,

and no information is revealed about the coherence properties of the state.

4.1.3. Case 3: Bell states and other symmetric states

For the case of a frequency-encoded Bell state, such as those resulting from

the entanglement swapping experiment of Ch. III, we have a drastically different

situation. As we shall see, interference occurs even where we have no spectral

overlap between photons 1 and 2. In particular we will study the case of the

frequency anti-correlated Bell states, with JSA’s of the form

102



FIGURE 4.3. HOM-JSI’s for two photons in mixed separable states. (a) Identical
photons centered at 830 nm with 5 nm FWHM bandwidth, and τ = 1 ps, and
a spectral coherence linewidth of 1 nm. (b) Distinguishable photons, where
photon 1 is centered at 825 nm and photon 2 is centered at 835 nm, with all other
parameters kept the same.

Ψ±jk(ω1, ω2) =
1√
2

(φj(ω1)φk(ω2)± φk(ω1)φj(ω2)) , (4.12)

and where we assume no spectral overlap between the mode function, that is,

φj(ω)φ∗k(ω) = 0 ∀ω. These are the states that we herald in Ch.III, and they exhibit

(anti)symmetry under exchange of mode labels:

Ψ±jk(ω1, ω2) = ± Ψ±jk(ω2, ω1). (4.13)

Due to these symmetry properties of these states, we find that, for

ρ±jk(ω1, ω
′
1;ω2, ω

′
2) = Ψ±jk(ω1, ω2)

(
Ψ±jk(ω

′
1, ω

′
2)
)∗

,

ρ±jk(Ω,Ω; Ω′,Ω′) = ρ±jk(Ω
′,Ω′; Ω,Ω) = ± ρ±jk(Ω,Ω

′; Ω′,Ω). (4.14)
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Because of this, we have the result that the constant term and the

interference term in the HOM-JSI are identical, up to a sign, yielding a HOM-JSI

of the form:

Pjk(Ω,Ω
′; τ) =

1

2
ρ±jk(Ω,Ω; Ω′,Ω′) (1∓ cos(Ω− Ω′)τ) . (4.15)

To appreciate the significance of the interference term in this case, we shall

contrast it with the classically correlated state

ρcl
jk(ω1, ω

′
1;ω2, ω

′
2) =

1

2

(
φj(ω1)φk(ω2)φ∗j(ω

′
1)φ∗k(ω

′
2) + φj(ω2)φk(ω1)φ∗j(ω

′
2)φ∗k(ω

′
1)
)
.

(4.16)

In this case the HOM-JSI is identical to that of Eq. (??), exhibiting no

interference. Thus in this case the interference fringes, in combination with the

correlated nature of the JSI and the HOM-JSI, are a signature of entanglement.

In Fig. 4.4 we show the HOM-JSI for both (a) Ψ+ and (b) Ψ−, simulated with the

same parameters used before. Note the interference fringes are out of phase with

each other between these two states, as expected from the sign difference.

We now arrive at an even more notable result. Consider mixtures of Bell

states of the form

ρ±(ω1, ω
′
1;ω2, ω

′
2) =

∑
jk

pjkρ
±
jk(ω1, ω

′
1;ω2, ω

′
2). (4.17)

These are the mixed states we herald in the entanglement-swapping experiment

when we do not resolve the BSM, and they retain the symmetry properties of their

constituent Bell states, such that
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FIGURE 4.4. HOM-JSI’s for two photons in a Bell state |Ψ+
jk〉 (a) or |Ψ−jk〉 (b).

Note the out-of-phase interference fringes due to the sign difference between the
states.

ρ±(Ω,Ω; Ω′,Ω′) = ρ±(Ω′,Ω′; Ω,Ω) = ± ρ±(Ω,Ω′; Ω′,Ω). (4.18)

Thus for these mixed states, the HOM-JSI still contains identical constant and

interference terms:

P (Ω,Ω′; τ) =
1

2
ρ±(Ω,Ω; Ω′,Ω′) (1∓ cos(Ω− Ω′)τ) , (4.19)

and still display interference fringes across the full spectrum. In Fig. 4.5 we show

the HOM-JSI simulated for the mixed state ρ̂ from the entanglement swapping

experiment, with a delay of τ = 1 ps.
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FIGURE 4.5. HOM-JSI simulated for the mixed state ρ̂ from the entanglement
swapping experiment. The interference fringes persist because of the full
antisymmetry of the state.

4.1.4. When spectrally-resolved interference can verify entanglement

Having studied these cases of spectrally resolved HOM interference, we can

arrive at a conjecture as to when the HOM-JSI reveals spectral entanglement of

a two-photon state. We first observe that the interference fringes are observed

over the entire HOM-JSI only for the states where the constant term and the

interference term are identical (up to a sign). This condition, as we have seen,

holds for at least two classes of two-photon states: pure factorable identical

states, and states that, although mixed, exhibit (anti)symmetry with respect to

exchange of the frequencies. Furthermore, we saw how, for states that contain only

classical correlations, there will be no spectral fringes except along the diagonal

Ω = Ω′. This leads to the intuition that if the JSI1 of the two-photon state is

not factorable, and if the HOM-JSI exhibits interference fringes throughout the

1We indeed mean the JSI (not the HOM-JSI), which can be measured directly without using a
beam splitter.
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spectrum, then we can conclude the two-photon state is entangled. We can make

the notion more precise by examining the converse:

If a two-photon state is not entangled, then it falls into either Case 1 or Case

2 that we studied above. In these cases, the symmetry condition

ρ12(Ω,Ω; Ω′,Ω′) = ρ12(Ω′,Ω′; Ω,Ω) = ± ρ12(Ω,Ω′; Ω′,Ω) (4.20)

is only obtained for Case 1, in the limit that the two single-photon states are

identical, for which the JSI is factorable. Therefore, if the JSI is not factorable,

and the condition (4.20) holds, such that the constant and the interference terms

in the JSI are identical, then the state is entangled. If the JSI is factorable, or if

the symmetry condition fails, then no conclusion can be made with regards to the

entanglement.

4.1.5. Experimental verification of entanglement using HOM-JSI

We are able to experimentally investigate this conjecture by using the

heralded Bell states |Ψjk〉 and ρ̂ =
∑

jk pjk |Ψjk〉 〈Ψjk| from the experiment in

Chapter III. As we indicated in Chapter III Appendix A.2, because of the pulsed

nature of our photon states, we lose entanglement whenever τI is much greater

than the pulse duration, since this introduces distinguishability in the heralded

states. Thus by changing this parameter we are able to test the HOM-JSI for both

the entangled and the classically correlated case.

The setup for this experiment is identical to that for measuring the

Fjk(ω1, ω2), except that we introduce the beamsplitter before the JSI measurement.

We set the delay τS at a constant value of 3 ps, in order to introduce spectral

fringes, and then we measured Pjk(Ω,Ω
′; τ) for both the entangled case, where
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τI = 0ps, and the non-entangled case, where we set τI = 1ps. We determined that

this delay was sufficient to destroy the entanglement based on the two-dimensional

peak we measured in the entanglement-swapping experiment. We collected the

data for each case over a period of 16 hours.

In Fig. 4.6, we show the results of the entangled case, with τI = 0ps. Note

the spectral interference fringes that are present in every HOM-JSI for each state

|Ψjk〉2, even for the states in the regions away from the diagonal line. The presence

of the fringes over the full spectrum suggest that the states satisfy the symmetry

condition (4.20). We also look at the aggregate HOM-JSI due to the mixed state

ρ̂, and observe that these same interference fringes persist over the entire spectrum

(Fig. 4.7).

We take a double Fourier transform of the data to isolate the constant and

the interference terms. We plot the Fourier-domain data in Fig. 4.8 (a), where

we see a peak in the center corresponding to the constant term, and two peaks

offset along the diagonal at 3 ps away from the center, which correspond to the

interference term and agree with the delay τS that we set. We isolate the constant

and the interference terms and, by taking an inverse Fourier transform, we can plot

their respective amplitudes (Fig. 4.8 (b) and (c)), and see that the interference

term extends over the entire spectrum.

2In this data, we have binned the (j, k) components at twice the native resolution of the time-
tagger. This is because it allows us to observe four times as much data in each bin and better
resolve the spectral fringes. Ultimately the count rate of this measurement is half of that of the
Fjk due to the addition of a second beamsplitter.
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FIGURE 4.6. Experimental HOM-JSI’s measured for the |Ψjk〉 heralded in the
entanglement swapping experiment, with τI = 0 ps. Here the data was binned
at twice the native resolution so that there are more counts per bin, making the
fringes more visible.
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FIGURE 4.7. Aggregate HOM-JSI for the state ρ̂ from the entanglement swapping
experiment. The antisymmetry of the Bell pairs persists in the mixed state, and
interference fringes can be seen on the spectrum.
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FIGURE 4.8. (a) Fourier-domain representation of the data from Fig. 4.7.
We apply filters (shown in red) in the Fourier domain to isolate the constant
and interference terms, and, by taking an inverse Fourier transform, plot their
amplitudes in the spectral domain. The amplitudes of the constant (b) term and
the interference (c) term can be seen to have their support over the same region,
which is consistent with the symmetry condition.

We contrast the entangled case with the non-entangled case, which we

obtain by setting τI = 1 ps for the heralded states. This is sufficient to introduce

distinguishability between the heralding photons, and result in a classically

correlated state. This destruction of coherence results in the erasure of interference

fringes in the HOM-JSI, and this can be observed in Fig. 4.9, where fringes are

only observed along the diagonal where |ρ(Ω,Ω′)|2 is nonzero. We again take

a double Fourier transform and isolate the constant and interference terms. By

transforming back to the frequency domain, we see that the interference term only

has support along the diagonal (Fig. 4.11 (c)).

These results are consistent with our theoretical prediction that the

symmetry condition (4.20) is a sufficient test for entanglement in the case of states

with a symmetric JSI exhibiting frequency anti-correlations. That is, given a two-

photon JSI F (ω1, ω2) which exhibits frequency anti-correlations symmetric about

the diagonal ω1 = ω2, it is possible to test for whether these anti-correlations
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are classical or quantum in nature by measuring the HOM-JSI. The presence

of interference fringes in the HOM-JSI can confirm the quantum nature of the

correlations, whereas the absence of fringes is inconclusive. This test surprisingly

verifies entanglement even for the class of fully mixed states which happen to

satisfy the symmetry condition.

4.2. Antibunching of photons in mixed entangled states

In Reference [74], it was shown by Fedrizzi et al that antibunching of two

photons at a beam splitter in the HOM configuration is indicative of a state that is

antisymmetric upon exchange of the input mode labels. In other words, this kind

of antibunching is indicative of entanglement in some degree of freedom. In the

case of that article, and in the case we study in this thesis, the entanglement is in

frequency. Here we generalized this result to show that this test of antibunching

can reveal entanglement even in mixed states.

Consider the HOM coincidence probability from the previous section, with

τ = 0, but instead of spectrally resolving the detections, we simply detect all of the

coincidences. The coincidence probability is now given by

P (τ = 0) =

∫
dΩdΩ′P (Ω,Ω′; 0) =

1

2

∫
dΩdΩ′

(
ρ12(Ω,Ω; Ω′,Ω′)− ρ12(Ω,Ω′; Ω′,Ω)

)
.

(4.21)

For a separable state of the form (4.3), this probability evaluates to
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FIGURE 4.9. Experimental HOM-JSI’s measured for the ρ̂jk heralded in the
entanglement swapping experiment, with τI = 1 ps, introducing distinguishability
and erasing coherence between the two terms in the Bell state. Note the absence of
interference fringes now.
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FIGURE 4.10. Aggregate HOM-JSI for the state ρ̂ from the entanglement
swapping experiment. Because of the distinguishability introduced by the time
delay τI = 1 ps, the interference fringes are erased and only survive in the diagonal
region where there ρ(Ω,Ω′) is nonzero.
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FIGURE 4.11. (a) Fourier-domain representation of the data from Fig. 4.10.
We apply filters (shown in red) in the Fourier domain to isolate the constant
and interference terms, and, by taking an inverse Fourier transform, plot their
amplitudes in the spectral domain. The amplitude of the interference term (c)
is now restricted to the diagonal region, as compared with the amplitude of the
constant term (b).

P (0) =
1

2

∑
i

pi

(∫
dΩρ

(i)
1 (Ω,Ω)

∫
dΩ′ρ

(i)
2 (Ω′,Ω′)−

∫
dΩdΩ′ρ

(i)
1 (Ω,Ω′)ρ

(i)
2 (Ω′,Ω)

)
=

1

2

∑
i

pi

(
1− Tr(ρ̂

(i)
1 ρ̂

(i)
2 )
)
.

(4.22)

The quantity Tr(ρ̂
(i)
1 ρ̂

(i)
2 ) is a measure of the overlap of the the two states ρ̂

(i)
1

and ρ̂
(i)
2 , and satisfies (see, for example [62])

0 ≤ Tr(ρ̂
(i)
1 ρ̂

(i)
2 ) ≤ 1. (4.23)

Therefore, for all separable states (pure or mixed), we have

0 ≤ P (0) ≤ 1

2
. (4.24)
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Thus, whenever P (0) >
1

2
, that is, whenever a HOM peak, rather than a dip, is

observed, we can conclude that the two-photon input state is not separable, and

therefore entangled. This is indeed the case for the state responsible for the peak

in Chapter III, Fig. 3.9, which retains the antisymmetry of the constituent states

|Ψjk〉 〈Ψjk|.

We may equivalently express this result in terms of the POVM element

corresponding to the HOM detection, which, as we saw in the previous chapter,

is a sum over the Bell-state measurements Π̂jk,

Π̂HOM =
∑
jk

Π̂jk. (4.25)

Now the inequality (4.24) may be expressed as

Tr(ρ̂Π̂HOM) ≤ 1

2
, for all separable states ρ̂. (4.26)

Thus observing Tr(ρ̂Π̂HOM) > 1
2

indicates that ρ̂ is non-separable, and this quantity

is an entanglement witness [91].

4.3. Bridge

We have developed theoretically and experimentally a spectrally multiplexed

method of implementing entangled measurements on two-photon states, and

demonstrated entanglement swapping of multimode time-frequency entangled

states. Our methods rely on the standard linear optics Bell state measurement,

coupled with high spectral resolution to enable both the heralding and verification

of multimode entangled states. Perhaps one obvious question that arises is, given

that it is possible to generate high-dimensional entanglement in two photon states,
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is it equally possible to perform two-photon entangled measurements that project

onto correspondingly high-dimensional entanglement? In the next chapter, we

answer this question in the affirmative, by showing how to exploit a non-linear

optical process that is the reverse of parametric down-conversion: sum-frequency

generation. In this process, two photons interact in a non-linear medium to

produce one photon. We show using the POVM formalism how the subsequent

detection of that photon amounts to a joint measurement on the two input

photons, and describe several properties associated with the two-photon POVM,

including entanglement. We believe this formalism paves the way towards having

a general framework for multimode entangled measurements which can be applied

towards understanding two-photon processes and informing implementations of

quantum protocols.
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CHAPTER V

POSITIVE OPERATOR-VALUED MEASURE FOR TWO-PHOTON

DETECTION VIA SUM-FREQUENCY GENERATION

This Chapter includes material that was published in: Merkouche, S., Thiel,

V., and Smith, B. J. “Positive operator-valued measure for two-photon detection

via sum-frequency generation”, Phys. Rev. A 103, 043711 (2021). Reprinted with

permission from the authors. I developed the theory and wrote the paper, and VT

edited the paper. BJS was the principal investigator for this work.

5.1. Introduction

Entangled photon pairs are an extremely useful system for studying both the

fundamentals [92] and applications of quantum mechanics, and are the workhorse

of experimental quantum optics. This is mainly due to their ease of generation in

the laboratory through spontaneous parametric downconversion (PDC), whereby

a nonlinear medium such as a crystal is pumped with a bright laser beam and

mediates the probabilistic splitting of one pump photon into a pair of photons,

subject to energy and momentum conservation. Over the past three decades,

much progress has been made in the generation of PDC photon pairs with well-

engineered polarization, spectral-temporal, and spatial structure, exhibiting

varying degrees of correlation in all of these degrees of freedom. Particular

attention has been given recently to encoding quantum information in the spectral-

temporal degree of freedom of light. This is because time-frequency modes of light,

generally referred to as temporal modes, can encode a large amount of information,

are particularly well-suited to integrated optics technology, and are robust to
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communication channel noise [35]. In addition, time-frequency entangled photons

are useful for applications such as large-alphabet quantum key distribution [93],

quantum-enhanced spectroscopy [71, 94, 95], and quantum-enhanced sensing [96].

Complementary to two-photon state generation is two-photon joint detection,

which is an example of the more general concept of a joint quantum measurement

on two systems. It is known that joint quantum measurements on separately

prepared systems can inherently reveal more information than accessible through

separate measurements relying on local operations and classical communication

[97]. In addition entangled measurements, joint measurements whose eigenstates

are entangled states, are as crucial a resource as entangled states in quantum

protocols such as quantum teleportation [28], remote state preparation [98],

entanglement swapping [99? ], superdense coding, and quantum illumination [?

]. In fact, the equal footing that entangled states and entangled measurements

have in quantum protocols such as teleportation has only recently been given due

attention [29].

One way to implement a two-photon joint measurement is to use the

complement of PDC, sum-frequency generation (SFG). Here two photons interact

in a nonlinear medium and are upconverted to a single photon, conserving

energy and momentum. Two-photon measurement via SFG has been explored

theoretically [95] and experimentally [100]. In addition, it has been pointed out

that the theory of two-photon detection by SFG closely parallels that of two-

photon absorption in a molecule, and a unified framework describing both of these

processes can be found in reference [95].

In this work we construct and analyze the positive operator valued measure

(POVM) associated with joint two-photon measurements relying on SFG followed
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by mode-selective detection of the upconverted photon in the time-frequency

domain. Our development of the two-photon POVM closely parallels that of the

POVM for a single photon detected after a filter, as described in reference [66].

We then give some figures of merit for such measurements that are relevant to

some of the aforementioned protocols, namely the projectivity, orthogonality, and

entanglement of the measurement operators. We illustrate the role of entanglement

in measurements with a model of the spectral quantum teleportation scenario. We

conclude by highlighting some questions and possible future directions left open by

this work.

5.2. Framework

5.2.1. The three-wave mixing interaction

We begin by writing down the transformation describing three-wave mixing,

which includes both parametric down-conversion and sum-frequency generation, in

the interaction picture. We assume a given polarization configuration and assume

that all the interacting fields occupy a single transverse spatial mode, so that

only the time-frequency degrees of freedom of the field are relevant. Under these

conditions the transformation may be expressed as

Ĥ = ĤPDC + ĤSFG,

ĤPDC = χ

∫
dωsdωiΦ(ωs, ωi) âp(ωs + ωi)â

†
s(ωs)â

†
i (ωi),

ĤSFG = (ĤPDC)†,

(5.1)

where â
(†)
j (ωj) is the annihilation (creation) operator for a single photon at

monochromatic mode j with frequency ωj, and j = p, s, i label the pump, signal,
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and idler frequencies; χ � 1 is a parameter characterizing the efficiency of the

process, describing the second-order nonlinearity and containing all the parameters

that are constant or slowly-varying over the integration; and Φ(ωs, ωi) is the phase-

matching function, which has the form

Φ(ωs, ωi) ∝ sinc

(
∆k · L

2

)
, (5.2)

where L is the vector quantifying the length of the interaction medium, and

∆k = kp(ωs + ωi)− ks(ωs)− ki(ωi) is the wavevector mismatch for the three fields.

Φ takes on its maximum value when ∆k = 0, and thus corresponds to momentum

conservation in the process. Finally, we have separated the transformation

explicitly into ĤPDC , the term responsible for PDC, and its Hermitian conjugate,

ĤSFG, responsible for SFG.

The interacting fields evolve unitarily under this transformation, and for our

analysis, we will consider only the weak-interaction limit, so that, for an input

state |Ψin〉, the output state is given by

|Ψout〉 = exp [−iĤ] |Ψin〉 ≈
(

1− iĤ
)
|Ψin〉 . (5.3)

Note that, in a slight abuse of notation, we are using Ĥ to reflect the fact that this

transformation is derived from the interaction Hamiltonian for three-wave mixing,

although the latter is a time-dependent quantity with a different dimensionality

(see Appendix B.1).
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FIGURE 5.1. Two-dimensional plot of the magnitude of a typical JSA. The solid
lines contour a Gaussian pump mode φp(ωs + ωi), and the dashed lines contour the
phasematching function Φ(ωs, ωi). This shows how spectral correlations arise in the
JSA. Frequencies are in arbitrary units.

5.2.2. PDC photon pairs and the joint spectral amplitude

It is instructive to briefly review the spectral-temporal structure of photon

pairs generated by PDC, governed by the ĤPDC term. In most applications PDC

is pumped by a strong coherent state occupying a spectral mode function φp(ω),

which can be treated as a classical field amplitude Ep(ω) = E0φp(ω), where

E0 quantifies the field strength, and φp(ω) is normalized as
∫

dω |φp(ω)|2 = 1.

However, since we are working in the perturbative limit, it is equivalent to consider

a single-photon pump in the state

|Ψin〉 = |φp〉 =

∫
dωφp(ω)â†p(ω) |vac〉 . (5.4)

After this state undergoes unitary evolution according to equation (5.3), we obtain

the output state

|Ψout〉 = |φp〉 − i
√
w |ΨPDC〉 , (5.5)
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where

|ΨPDC〉 =
χ√
w

∫
dωsdωiφp(ωs + ωi)Φ(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |vac〉 (5.6)

is a normalized two-photon state, and where

w =

∫
dωsdωi|χ φp(ωs + ωi)Φ(ωs, ωi)|2 (5.7)

is a normalization factor.

It is convenient here to define the joint spectral amplitude (JSA)

f(ωs, ωi) =
χ√
w
φp(ωs + ωi)Φ(ωs, ωi), (5.8)

so that

|ΨPDC〉 =

∫
dωsdωif(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |vac〉 (5.9)

The JSA can be viewed as a two-photon wavefunction, and its modulus squared,

|f(ωs, ωi)|2, is the probability density function for the photon pair in frequency

space, normalized as
∫

dωsdωi|f(ωs, ωi)|2 = 1. Considerable progress has

been made in engineering the temporal-mode structure of PDC photon pairs,

which is completely characterized by the JSA, and this is done by shaping of

the pump spectral amplitude φp(ωs + ωi) and engineering of the phasematching

Φ(ωs, ωi) in the nonlinear medium. We plot schematically in Fig. 5.1 a typical

JSA configuration showing its dependence on the pump amplitude and the

phasematching function. A thorough review of the state-of-the-art in two-photon

state engineering in the time-frequency domain can be found in reference [2].
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FIGURE 5.2. PDC uses a χ(2) interaction medium to convert a single-photon state
|1φ〉 in the mode p to a pair of photons in modes s and i, described by the state
|ψPDC〉 given in the text. In the time-reverse picture, a projective measurement
P̂n of a single photon produced by SFG implements measurement with POVM
element Π̂n on the two input photons.

5.2.3. Two-photon SFG and the two-photon POVM

We now turn our attention to the SFG term in equation (5.1), explicitly

given by

ĤSFG = χ∗
∫

dωsdωiΦ
∗(ωs, ωi)â

†
p(ωs + ωi)âs(ωs)âi(ωi) (5.10)

and consider the upconversion of an arbitrary pure two photon state given by

|Ψin〉 = |ψg〉 =

∫
dωsdωig(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |vac〉 , (5.11)

where g(ωs, ωi) is a two-photon JSA. The output state will then be

|Ψout〉 = |ψg〉 − iχ∗ |σ〉 , (5.12)
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where

|σ〉 =

∫
dνσ(ν)â†p(ν) |vac〉 , (5.13)

with the (unnormalized) spectral amplitude function

σ(ν) = −1

2

∫
dν ′ Φ̃∗ (ν, ν ′) g̃ (ν, ν ′) . (5.14)

We obtain this last equation by changing variables to the sum and difference

frequencies ν = ωs + ωi and ν ′ = ωs − ωi, and defining Φ̃∗(ν, ν ′) = Φ∗
(
ν+ν′

2
, ν−ν

′

2

)
(and likewise for g̃(ν, ν ′)).

We are now equipped to develop the two-photon POVM corresponding to

a detection of the upconverted single-photon state |σ〉, which closely mirrors the

one-photon, pre-filter POVM described in reference [66]. Consider performing an

ideal, projective measurement of the upconverted photon onto an orthonormal set

of temporal mode single photon states {(P̂n = |φn〉 〈φn|)∞n=1} with

|φn〉 =

∫
dωφn(ω)â†p(ω) |vac〉 , (5.15)

satisfying

〈φn|φm〉 =

∫
dω φ∗n(ω)φm(ω) = δnm. (5.16)

Such a measurement can in principle be realized using a quantum pulse gate,

recently described and demonstrated in references [46, 101], whereby a strong

pump field in a particular temporal mode selects out that same mode from an

input signal field and upconverts it through SFG to a register mode which can be
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easily detected with a spectrometer. The probability for a successful detection for

this measurement will be given by

pn = |χ∗ 〈φn|σ〉 |2

=

∣∣∣∣−χ∗2
∫

dνdν ′ φ∗n(ν)Φ̃∗ (ν, ν ′) g̃ (ν, ν ′)

∣∣∣∣2
=

∣∣∣∣χ∗ ∫ dωsdωiφ
∗
n(ωs + ωi)Φ

∗(ωs, ωi)g(ωs, ωi)

∣∣∣∣2
(5.17)

However, this same probability can be obtained by applying the Born rule to the

input state ρ̂in = |Ψin〉 〈Ψin| in the two-photon space:

pn = Tr(ρ̂inΠ̂n), (5.18)

if we define a POVM element

Π̂n = wn |Ψn〉 〈Ψn| , (5.19)

where

|Ψn〉 =
χ
√
wn

∫
dωdω′φn(ω + ω′)Φ(ω, ω′)â†s(ω)â†i (ω

′) |vac〉 , (5.20)

and

wn =

∫
dωdω′|χ φn(ω + ω′)Φ(ω, ω′)|2. (5.21)

We immediately recognize |Ψn〉 as the normalized two-photon state that

would result from PDC with a pump photon in the state |φn〉. That is, a

projective measurement of an upconverted photon with projector P̂n = |φn〉 〈φn|
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implements a generalized measurement of the two input photons with POVM

element Π̂n. This is schematically shown in Fig. 5.2. Furthermore, the properties

of Π̂n follow immediately from the properties of the PDC state |Ψn〉, as we will see

in the following section. It is convenient to associate with the POVM element Π̂n a

measurement JSA

fn(ω + ω′) =
χ
√
wn
φn(ω + ω′)Φ(ω, ω′). (5.22)

To complete the POVM, we note that we are considering an ideal detector in

the SFG mode, such that any upconverted photon is detected with certainty. We

are thus justified in defining an element corresponding to no detection as

Π̂null = 1−
∞∑
n=1

Π̂n, (5.23)

where 1 denotes the identity operator in the relevant two-photon subspace. Using

the fact that the φn mode functions form a complete orthonormal set, such that

∞∑
n=1

φn(ω + ω′)φn(ω̃ + ω̃′) = δ(ω + ω′ − ω̃ − ω̃′), (5.24)

we can evaluate

∞∑
n=1

Π̂n = |χ|2
∫

dωdω′Φ(ω, ω′)Φ∗(ω̃, ω + ω′ − ω̃) |ω, ω′〉 〈ω̃, ω + ω′ − ω̃| , (5.25)

where |ω, ω′〉 = â†s(ω)â†i (ωi) |vac〉. Using the completeness relation of POVMs, we

can express Π̂null explicitly as
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Π̂null = 1− |χ|2
∫

dωdω′dω̃Φ(ω, ω′)Φ∗(ω̃, ω + ω′ − ω̃) |ω, ω′〉 〈ω̃, ω + ω′ − ω̃| . (5.26)

Thus the complete two-photon POVM is

{
(Π̂n)∞n=1, Π̂null

}
, (5.27)

satisfying

∞∑
n=1

Π̂n + Π̂null = 1. (5.28)

5.3. Properties of the measurement operator

5.3.1. Projectivity

We will now take advantage of the well-studied properties of the two-photon

PDC state |Ψn〉 to analyze some of the useful properties of the POVM element Π̂n.

We begin by defining the retrodicted two-photon state [25], corresponding to an

outcome n, as

ρ̂n =
Π̂n

Tr(Π̂n)
= |Ψn〉 〈Ψn| . (5.29)

We consider the measurement projective, if ρ̂n is a pure state, satisfying Tr(ρ̂2
n) =

1, which is indeed the case for equation (5.29).

In general, however, single-photon detectors are not perfectly resolving. In

the case of the quantum pulse gate, a detector click may not correspond to single

pulse mode, but rather an incoherent mixture of a few modes. In the case of a
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non-ideal spectrally resolving detection, one either uses a filter of finite bandwidth,

or a spectrometer with finite resolution. In all of these cases, it is more accurate to

describe a non-ideally resolving, that is, non-projective, single-photon measurement

by

P̂q =
∑
n

qnP̂n (5.30)

where 0 ≤ qn ≤ 1 are weighting coefficients. This leads to a two-photon POVM

element

Π̂q =
∑
n

qnΠ̂n, (5.31)

and a retrodicted state

ρ̂q =
Π̂q

Tr(Π̂q)
, (5.32)

which has Tr(ρ̂2
q) ≤ 1 and is not in general a pure state. Evidently, the two-photon

POVM elements are projective if and only if the single-photon measurement

operators are projective.

Projective two-photon measurements are of particular importance in

quantum teleportation and remote-state preparation, and entanglement swapping,

because in these schemes the measurement acts as a herald to a single photon state

or a two-photon entangled state, respectively. Ideally the heralded states should

be pure to be useful for quantum information processing. And the purity of the

heralded state is limited by both the purity of the input states and the purity

(projectivity) of the heralding measurement [25].
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5.3.2. Orthogonality

Orthogonal measurements are measurements which project onto orthogonal

states, and thus satisfy

Π̂nΠ̂m ∝ δnmΠ̂n. (5.33)

We note here that orthogonal measurements of the SFG photon do not correspond

to orthogonal two-photon POVM elements in general. This is analogous to the fact

that PDC pumped with orthogonal pulse modes does not produce orthogonal PDC

states in general. The non-orthogonality of the two-photon states can be seen by

taking

〈Ψn|Ψm〉 =

|χ|2
√
wnwm

∫
dωdω′φ∗n(ω + ω′)φm(ω + ω′)|Φ(ω, ω′)|2 6= δnm.

(5.34)

This is due to the filtering induced by the phasematching function. This is indeed

analogous to what happens when two orthogonal modes are subjected to linear

filtering (see reference [66] on this point): in general the transmitted modes

considered alone are not orthogonal, even though filtering is a unitary process. The

orthogonality is preserved only when considering all of the modes involved in the

transformation, whereas here we are only considering the signal and idler modes

and not the pump.

An obvious question that arises then is, in what cases do the POVM

elements, in fact, correspond to orthogonal measurements? The answer to this

question becomes obvious when we rewrite equation (5.34) in terms of the sum and

difference frequencies ν and ν ′,
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FIGURE 5.3. JSA’s for the configuration described in the text where the
phasematching function is engineered through group-velocity matching makes
an angle θ = 45o with respect to the ωs-axis. Then it becomes independent of
the sum frequency ν = ωs + ωi, and thus orthogonal measurements of the SFG
photon correspond to orthogonal two-photon POVM elements. Blue (red) indicates
positive (negative) amplitudes. In the case of PDC, the amount of correlations in
the JSA can be controlled by shaping of the pump pulse, as described in reference
[2]. Here we plot the JSA’s obtained by shaping the pump into the (a) zeroth-,
(b) first-, and (c) second-order Hermite-Gauss modes, resulting into mutually-
orthogonal two-photon states. Frequencies are in arbitrary units.

〈Ψn|Ψm〉 =

|χ|2

4
√
wnwm

∫
dνdν ′φ∗n(ν)φm(ν)

∣∣∣Φ̃ (ν, ν ′)
∣∣∣2 . (5.35)

Clearly, only when the phasematching function does not depend on the sum-

frequency ν, that is, Φ = Φ(ν ′), then do we obtain

〈Ψn|Ψm〉 = δnm, (5.36)

and the Π̂n then satisfy

Π̂nΠ̂m = δnmwnΠ̂n. (5.37)

Orthogonality of the two-photon POVM elements is of interest, for example,

in the quantum illumination scheme as originally described by Lloyd [? ]. Here

an entangled two-photon state |Ψn〉 is prepared and one of the photons sent
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to reflect off a possibly present target, while the other photon is kept in the

lab. The two photons are then to be jointly measured, whereupon a successful

projection onto the initial state |Ψn〉 indicates the presence of the target. If one

is to implement this scheme using SFG as the two-photon measurement, non-

orthogonal measurements would suffer from the possibility that the desired state

|Ψn〉 could give a positive outcome corresponding to the “wrong” measurement

associated with a non-orthogonal state |Ψm〉.

In general, the orthogonality condition (5.36) can be approximately satisfied

as long as the phase-matching function varies slowly enough in the ν direction,

in comparison to the support of the detection mode function. This happens,

for example, in a sufficiently short interaction medium. However, there are two

limiting cases that are of note. The first is the spectrally resolved detection limit,

which corresponds to simply measuring the output with an ideal spectrometer. In

this limit, the detection mode can be approximated by a delta function,

φn(ω)→ δ(ω − ωn), (5.38)

and

fn(ω, ω′) ∝ δ(ω + ω′ − ωn), (5.39)

where ωn is the measured frequency at the spectrometer. This is the analogue of

pumping a PDC source with monochromatic, or continuous-wave (cw), light. In

both of these cases, orthogonal pump (or measurement modes) with frequencies ωn

and ωm correspond to orthogonal two-photon states (or measurements) with sum

frequencies ωn and ωm.

132



The second case of interest is achieved by extended phase-matching

techniques, as described in reference [2]. For certain nonlinear materials and field

configurations, it is possible, using group-velocity matching, to make the phase-

matching function approximately constant in the ν direction over some range of

interest. More precisely, the phase-matching function can be engineered to make

an angle θ = 45o in the ωs-ωi plane, perpendicular to the angle that the pump

function makes. This configuration has been used by Ansari et al to generate PDC

states with a controllable temporal-mode structure and degree of entanglement

through pump pulse-shaping [101]. This concept is illustrated schematically in Fig.

5.3. More recently, similarly exotic two-photon states have been obtained through

phasematching shaped by the periodic poling of the nonlinear crystal, rather than

pulse-shaping of the pump [50].

An interesting result that follows from the limit where Φ is independent

of ν is the possibility of downconverting an arbitrary pulse shape in a nonlinear

medium into an entangled photon pair, and recovering the pump pulse shape by

upconverting the photon pair in an identical medium. This can be seen by taking

g̃(ν, ν ′) = φ(ν)Φ̃(ν ′) in equation (5.14), and obtaining

σ(ν) = φ(ν)

∫
dν ′|Φ̃(ν ′)|2, (5.40)

which is evidently proportional to the input φ(ν). The spatial analogue of this

result, whereby a pump beam shaped in a specific transverse spatial mode is

downconverted, and the photon resulting from the upconversion of the PDC pair

is shown to recover the transverse spatial mode, has recently been experimentally

demonstrated by Jimenez et al [102].
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5.3.3. Entanglement

We now turn to perhaps a more interesting question regarding the two-

photon measurement operator: when is the POVM element Π̂n a projector

onto an entangled two-photon state, and thus can be said to enact an entangled

measurement on the input photons? [31, 103] We can answer this question readily:

Π̂n is an entangled measurement, if the retrodicted state ρn is an entangled state.

Entangled measurements play a central role in quantum teleportation, superdense

coding, and quantum illumination, among many other protocols, and recently

the role of entanglement in joint measurements has been recognized to be equally

important to the role of entanglement of states as a shared resource [29].

To illustrate the role of entangled measurements in a quantum protocol, we

will investigate briefly the spectral quantum teleportation scenario, described by

Molotkov [104] and by Humble [3] (and whose spatial analogue was described by

Walborn et al [105]). In this protocol, Alice and Bob share a two-photon entangled

state described by a JSA fs(ωa, ωb), and Alice is to teleport a single photon state

with spectral amplitude ψc(ωc) by performing an SFG measurement on this photon

and her half of the entangled state, and communicating the measurement result to

Bob.

Reference [104] considers only the case of a maximally-correlated pair of

entangled photons shared between Alice and Bob, while reference [3] generalizes

this result to the case of a Gaussian JSA, which is a good approximation to what

can be produced using pulsed lasers as a pump. In both references however, Alice’s

joint measurement is a spectrally-resolved measurement of the SFG photon. Here

we use our formalism to generalize further to a pulse-mode resolved measurement

of the SFG photon, as can be realized with a quantum pulse gate, by considering
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a

b

c
Alice

Bob

FIGURE 5.4. Spectral teleportation scenario considered in the text. Alice and
Bob share entangled photons a and b in the state |Ψs〉. Alice performs a two-
photon SFG measurement Π̂m on her photon a and photon c, in the state |ψc〉, and
communicates the result of her measurement to Bob, whereupon Bob reconstructs
the state |ψb|m〉.

a generalized measurement JSA fm(ωa, ωc). It was first pointed out in the original

proposal of quantum teleportation [28] that in addition to the maximally-entangled

state (generalized Bell-state) shared by Alice and Bob, quantum teleportation with

unit fidelity is achieved when Alice’s joint measurement projects onto a maximally-

entangled state. Here we show behavior that is consistent with this result by

quantifying the teleportation fidelity as a function of the entanglement of both

the shared state and the joint measurement. It is worth clarifying that our current

goal is not to demonstrate that the POVM element is entangled, but rather, it is

to show that our POVM formalism is sufficient to describe quantum teleportation

in the time-frequency domain, provided we stipulate entanglement as a property of

the measurement. This is in keeping with the more familiar case of the Bell-state

measurement’s role in qubit teleportation.

The teleportation scenario we consider is shown schematically in Fig. 5.4.

Alice and Bob share entangled photons a and b, respectively, described by a

Gaussian JSA similar to the one in reference [3]:
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|Ψs〉 =

∫
dωa dωb fs(ωa, ωb)â

†
a(ωa)â

†
b(ωb) |vac〉

fs(ωa, ωb) = NsExp

[
− 1

γ2
s (1− α2)

(
ω2
a

2
+
ω2
b

2
+ αωaωb

)] (5.41)

where α ∈ [−1, 1] is the correlation between the the photon frequencies, with α = 1

corresponding to maximal frequency anticorrelation, such as would be obtained

from a cw pump; γs is the characteristic bandwidth of the PDC photons, and Ns

is the normalization constant. Alice provides a single photon c to be teleported,

described by the state

|ψc〉 =

∫
dωcψc(ωc)â

†
c(ωc) |vac〉 (5.42)

where ψc(ωc) is an arbitrary spectral amplitude function. Alice initiates the

teleportation by performing an SFG measurement on photons a and c, represented

by an operator Π̂m = wm |Ψm〉 〈Ψm|, with

|Ψm〉 =

∫
dωa dωc fm(ωa, ωc)â

†
a(ωa)â

†
c(ωc) |vac〉

fm(ωa, ωc) = NmExp

[
− 1

γ2
m(1− β2)

(
ω2
a

2
+
ω2
c

2
+ βωaωc

)] (5.43)

with parameters defined similarly to |Ψs〉.

We point out here that we have centered both fs and fm at 0 in frequency

space, without loss of generality. This is because, in the protocol described

in reference [3], Alice communicates her obtained frequency ωa + ωc to Bob,

whereupon he performs the appropriate frequency translation to his photon b

to recover the state that would have resulted, had Alice obtained ωa + ωb in her

measurement. Further note that we are using the parameters α and β to quantify

the entanglement of the shared state and the joint measurement, respectively,
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FIGURE 5.5. Behavior of the teleportation fidelity for the different cases described
in the text. Plot (a) shows the behavior with α, the state entanglement, and
σ = γc/γs, for the ideal SFG measurement, with β = 1 and γm → ∞, as considered
in Ref [3]. The same plot describes the fidelity as a function of β and σ = γc/γm
for the case of a maximally entangled state with α = 1 and γs → ∞. Plots (b)
and (c) illustrate the behavior of the fidelity when the entangled state and the
entangled measurement have comparable bandwidths (here γs = γm = 1). Here
the fidelity behaves differently with α and with β, because fs and fm are not in
general interchangeable in the expression for ψb|m. All quantities are dimensionless.

rather than a more familiar measure of entanglement for pure states, such as the

Schmidt number [106]. We have made this choice because, although the Schmidt

number K bears a simple relationship with our parameter α (or β), satisfying

K = 1√
1−α2 (see Appendix B.2), the latter has the convenient feature of being

bounded by the interval [−1, 1], whereas the Schmidt number diverges for maximal

entanglement.

With all of this in consideration, Alice’s joint measurement on photons a and

c heralds Bob’s photon b in the teleported state

|ψb|m〉 =

∫
dωbψb|m(ωb)â

†
b(ωb) |vac〉 ,

ψb|m(ωb) = Nb|m

∫
dωadωcf

∗
m(ωa, ωc)fs(ωa, ωb)ψc(ωc).

(5.44)
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where Nb|m is the appropriate normalization constant. The teleportation fidelity is

then given by the modulus squared of the overlap,

F =
∣∣〈ψc|ψb|m〉∣∣2 =

∣∣∣∣∫ dωψ∗c (ω)ψb|m(ω)

∣∣∣∣2 (5.45)

For this analysis, we let ψc be a Gaussian function with characteristic width γc,

ψc(ω) =
1√
γc
√
π
e−ω

2/2γ2c . (5.46)

Using this form for the states and measurements, we obtain an

algebraic expression for the fidelity which depends on five parameters, F =

F (α, β, γs, γm, γc). The full expression is unwieldy and not very instructive to

display here. We shall verify that our formalism reproduces the result of reference

[3] in the appropriate limits. That reference studies the behavior of the fidelity as

a function of α and σ = γc/γs for a uniformly phasematched SFG process followed

by an ideally-resolved frequency detection. This corresponds to taking the limit

γm →∞ and β = 1. In these limits, our formalism exactly recovers the fidelity

Fγm→∞ =

√
4σ2(σ2 + 1)(σ2 + 1− α2)

((σ2 + 1)2 − α2)2
, (5.47)

which is displayed in Fig. 5.5 (a). In that reference, an interesting feature of

this behavior of the fidelity was noted. That is, although the fidelity increases

monotonically with the source entanglement α for σ � 1, this is no longer true

for when γc is comparable to γs. In particular, the fidelity is equal to one along the

curve α2 = 1 − σ4, and is equal to
√

8/9 at the upper-right hand corner of the

plot, where α = 1 and σ = 1. In the language of our formalism, given the ideal

entangled measurement, with infinite SFG bandwidth and ideal spectral resolution,
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there is a trade-off between spectral bandwidth and spectral entanglement of the

sources.

Our result allows us to generalize further, however, and also consider the case

of the Gaussian SFG measurement with finite bandwidth. First we consider the

reverse scenario to the one above, where the source is perfectly entangled, with

γs → ∞ and α = 1, and look at the dependence of the fidelity on β and σ. In this

case we find that the fidelity exhibits the same dependence, that is,

Fγs→∞ =

√
4σ2(σ2 + 1)(σ2 + 1− β2)

((σ2 + 1)2 − β2)2
, (5.48)

and we can conclude that, given an ideal entangled state between Alice and Bob,

there is a trade off between spectral bandwidth and spectral entanglement of the

measurement.

Finally, we arrive at the most realistic case, where both the entangled

source and the measurement have finite bandwidths, corresponding to finite

phasematching in the PDC and SHG processes. Here we set them equal, taking

γs = γm = 1, and obtain

Fγm=γs =

√
4σ2(β2 − 2(1 + σ2))(β2 − (2− α2)(1 + σ2))

(1 + σ2)2(α2 + β2 − 2(1 + σ2))2
. (5.49)

In this case we find the interesting and counterintuitive result that the behaviors

of the fidelity with the source entanglement α and with the measurement

entanglement β are no longer equivalent. We show this by plotting the behavior

of the limiting cases of Fγ(α, 1, σ) (spectral resolution of the SFG) and Fγ(1, β, σ)

(monochromatic pumping of the PDC) in Fig. 5.5 (b) and (c), respectively. In the

case of β = 1, the fidelity is maximized along the curve α2 = 1+σ2−2σ4

1+σ2 and has
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similar limiting behaviors to the ideal case considered in reference [3]. The case

of α = 1 exhibits a starker contrast, taking its maximum value along the curve

β2 = −1+σ2+2σ4

−1+σ2 . Unlike any of the previous cases, the fidelity is no longer equal to

unity in the bottom right-hand corner, for σ = 1, β = 0, but instead it is equal to√
8/9.

We emphasize that β < 1 does not represent a non-ideal spectral resolution

of the upconverted photon, since we are only considering projective measurements,

but instead corresponds to a coherent broadband measurement, as could be

obtained using a quantum pulse gate. What this last result suggests is that,

for finite bandwidths of the entangled source and the entangled measurement,

it is not generally the case that spectral resolution maximizes the teleportation

fidelity. Further, the asymmetry between the behaviors of entangled state and the

entangled measurement can be understood from the fact that the state JSA fs and

the measurement JSA fm are not interchangeable in the expression for ψb|m, with

fm having both of its arguments integrated over. Most notably, we have shown

that, by treating two-photon measurements more generally and on equal footing

with the two-photon states, it is possible not only to recover previously-obtained

results in the limit of ideal measurements, but also to uncover which states and

measurements are optimal for a given task (in this case spectral teleportation),

under more realistic constraints (in this case, finite PDC and SFG bandwidths).

This brief analysis leaves open the question of how to generalize to a more

realistic, non-ideally resolved SFG measurement. For a mixed bipartite state

ρ̂, a convenient measure of entanglement is the negativity [58]. The negativity

essentially counts the negative eigenvalues of ρ̂ partially transposed with respect

to one of its subsystems, and it sets an upper bound on the teleportation capacity
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of the state. This suggests that we may define a negativity associated with a non-

projective POVM element Π̂q as the negativity of its mixed retrodicted state

ρ̂q. The role of finite spectral resolution in SFG detection has been investigated

numerically for entanglement swapping in reference [107]. However, it could be

more elegant to frame this relationship in terms of the negativities both of the

input states and the measurements in scenarios such as quantum teleportation and

entanglement swapping, and this remains to be explored in future work.

5.4. Conclusion

We have demonstrated how to construct the POVM associated with two-

photon detection by SFG followed by temporal-mode-selective single-photon

detection. We have shown that this POVM is proportional to the two-photon

state created in the time-reverse PDC process pumped with a field in the

detected mode. This allowed us to characterize several aspects of the POVM

relevant to its adequacy for quantum information protocols. In particular, we

have shown that a projective measurement of the SFG photon corresponds to

a projective two-photon POVM element. We have pointed out the special case

where orthogonal SFG single-photon measurements correspond to orthogonal two-

photon measurements. And finally, we have shown the correspondence between

the two-photon entanglement retrodicted by the SFG measurement and the two-

photon entanglement produced by the time-reversed PDC process. These results

could have implications for quantum information experiments relying on PDC and

SFG in terms of exploring the interplay between entangled states and entangled

measurements. Additionally, it remains an open question how best to certify

the entanglement of the SFG measurement [33], or even to perform quantum
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tomography of the process. Finally, given recent interest in using quantum light

for two-photon absorption [94] [108], our results open the question of whether

it’s possible to have a combined framework of two-photon processes in terms of

quantum measurement theory.
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CHAPTER VI

IMPLICATIONS OF THE POVM MODEL OF TWO-PHOTON SFG

The POVM model for two-photon detection via mode-resolved sum-frequency

generation (SFG) developed in the previous chapter opens the question of whether,

and how, it is possible to experimentally test some of the predictions of the model.

Just as a quantum state can be characterized through a set of measurements

in various bases, it is possible to characterize a quantum measurement by

preparing a judicious set of quantum states and deducing the properties of

the measurement from the resulting statistics. This is the basis of quantum

measurement tomography. In general this is difficult to perform for an arbitrarily

large Hilbert space, since a tomographically complete set of states tends to scale

as the square of the dimensionality [109]. However, it can still be worthwhile

to verify the basic assumptions of the model by following through some of its

implications. To that end, in this chapter we carry out the calculation for the

POVM corresponding to an SFG measurement where the upconverted mode is

simply detected without resolution. We show that even in this limit, entanglement

of the input two photon state can enhance the SFG process. We then propose an

experimental design to verify quantitatively the enhancement due to entanglement.

In our setup, the SFG signal generated was not sufficient to allow for following

through with the experiment, but we suggest some possible improvements that

would achieve this goal.
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6.1. Theoretical model

Having constructed the POVM for two-photon detection by SFG followed by

a mode-resolved single-photon detection in Chapter V, we can make quantitative

predictions about how entanglement enhances the process. We begin by

considering the case of a single-photon detector which does not resolve the SFG

photon, but simply detects its presence. This corresponds to summing over all the

POVM elements corresponding to a detection:

Π̂SFG =
∞∑
n=1

Π̂n. (6.1)

The fact that the φn SFG detection modes form an orthonormal basis, as noted in

Section 5.2, we obtain the result

∞∑
n=1

φn(ω + ω′)φ∗n(ω̃ + ω̃′) = δ(ω + ω − ω̃ − ω̃′). (6.2)

This in turn leads to expressing Π̂SFG as

Π̂SFG = |χ|2
∫

dωdω′dω̃ Φ(ω, ω′)Φ∗(ω̃, ω + ω′ − ω̃) |ω, ω′〉 〈ω̃, ω + ω′ − ω̃| . (6.3)

For a given two-photon input state |Ψin〉 =
∫

dωdω′fs(ω, ω
′) |ω, ω′〉, we can

calculate the total probability of SFG detection by

PSFG = 〈Ψin| Π̂SFG |Ψin〉

= |χ|2
∫

dωdω′dω̃f ∗(ω, ω′)Φ(ω, ω′)f(ω̃, ω + ω′ − ω̃′)Φ∗(ω̃, ω + ω′ − ω̃)
(6.4)
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The last equality shows that the detection probability is simply given by the norm

of the upconverted single-photon state, which we recall we never normalized. By

changing to the sum and difference frequency variables again, ν = ω + ω′, ν ′ =

ω − ω′, we find that this probability reduces to

PSFG = |χ|2
∫

dν |σ(ν)|2 = |χ|2 〈σ|σ〉 , (6.5)

where

σ(ν) = −1

2

∫
dν ′ Φ∗ (ν, ν ′) fs (ν, ν ′) (6.6)

is the spectral amplitude function of the upconverted signal from Eq. (5.14), which

we recall is not normalized. In terms of the JSA and the phasematching function,

this probability has the form

PSFG =
|χ|2

4

∫
dν

∣∣∣∣∫ dν ′Φ∗(ν, ν ′)fs(ν, ν
′)

∣∣∣∣2 . (6.7)

This expression of the detection probability in terms of the SFG

phasematching function and the two-photon JSA allows to construct a simple

model that tests directly when and how the SFG conversion efficiency depends

on the two-photon entanglement. We note that although it has been shown that

the upconversion of broadband EPP is dependent on the spectral phase across the

JSA [? ], the efficiency has not been quantified in terms of the amount of spectral

entanglement.

6.1.1. Gaussian model

In order to make some quantitative estimates regarding the effect of

entanglement on SFG, it is useful to adopt a simple model for both the JSA of
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the two input photons and the SFG phasematching function. We assume a type-0

or type-I PDC process for creating the EPP, and the same type of process for the

SFG. This allows us again to make use of the bivariate Gaussian from Chapter

V, Eq. (5.41). This time, we express it in terms of the broad bandwidth γs and a

narrow, correlation bandwidth, σs,

fs(ωa, ωb) =

√
2

πγsσs
exp

[
−(ωa − ωb)2

2γ2
s

− (ωa + ωb)
2

2σ2
s

]
(6.8)

Direct comparison with (5.41) shows that the normalization constant Ns is given

by

Ns =

√
2

πγsσs
, (6.9)

and the correlation parameter α is given by

α =
γ2
s − σ2

s

γ2
s + σ2

s

. (6.10)

Recall that in Chapter V we noted that α ∈ [−1, 1], with α→ 1 corresponding to a

maximally anticorrelated JSA. This is consistent with (6.10).

In terms of the sum and difference frequencies ν = ωa + ωb and ν ′ = ωa − ωb

the JSA is

fs(ν, ν
′) =

√
2

πγsσs
exp

[
− ν

′2

2γ2
s

− ν2

2σ2
s

]
. (6.11)

Upon inspection we can see that this JSA is separable into functions of ν and ν ′

(see [108]), f(ν, ν ′) = fN(ν)fB(ν ′), if we define
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FIGURE 6.1. Plot of the Gaussian model used for two-photon SFG, showing the
relevant state bandwidths γs and σs, and the phasematching bandwidth σp. The
two-photon JSA is shown in blue, and the contour of the phasematching function
is shown in dotted lines.

fN(ν) =

√ √
2√
πσs

exp

[
− ν ′2

2σ2
s

]
, fB(ν ′) =

√ √
2√
πγs

exp

[
− ν

′2

2γ2
s

]
. (6.12)

Likewise for the case of type-0 or type-I phasematching it is reasonable to

take the function Φ(ωa, ωb) to be symmetric in the frequencies, and approximate

the sinc function with a Gaussian of the form

Φ(ωa, ωb) = Φ(ωa + ωb) = exp

[
−(ωa + ωb)

2

2σ2
p

]
= exp

[
− ν2

2σ2
p

]
, (6.13)

where σp is the phasematching bandwidth. The relevant parameters are shown in

Fig. 6.1.
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Using these approximations, we arrive at a closed form for the SFG

probability, given by

PSFG =
|χ|2

4

∫
dν |Φ(ν)|2 |fN(ν)|2

∣∣∣∣∫ dν ′fB(ν ′)

∣∣∣∣2 . (6.14)

The insight gained from this approximation is that the phasematching function

simply acts as a frequency filter in the ν (“narrow”) direction, where phase effects

do not contribute since we are using incoherent detection on the SFG mode. This

is in contrast to the ν ′ (“broad”) direction, spectral phase effects are significant, as

we shall see when we examine the effect of dispersion.

6.1.2. The effect of dispersion

This model correctly predicts the effect of quadratic phase, or dispersion, on

the SFG efficiency. We assume that the input photon pair propagates in a collinear

configuration, so that both photons experience the same amount of dispersion. In

our model, the JSA picks up a quadratic phase with the group-delay dispersion

(GDD) parameter β, such that the JSA after dispersion is given by

f̃(ωa, ωb) = f(ωa, ωb) exp
[
iβ(ω2

a + ω2
b )
]

= f(ν, ν ′) exp

[
i
β

2
(ν2 + ν ′2)

]
. (6.15)

We can already see from the form of Eq. (6.14) that we do not expect the

quadratic phase to have an effect on the ν-dependent part. This is confirmed by

direct calculation: by computing the SFG probability with and without dispersion,

we can take the ratio of these two probabilities and obtain a closed form for the

effect of dispersion,
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FIGURE 6.2. Plot of the reduction of the SFG signal, η(β, γs), for two different
values of bandwidth γs at a central wavelength of 830 nm, as a function of the
dispersion parameter β.

η(β, γs) =

∫
dν
∣∣∣∫ dν ′Φ∗(ν)f̃s(ν, ν

′)
∣∣∣2∫

dν
∣∣∫ dν ′Φ∗(ν)fs(ν, ν ′)

∣∣2 =
1√

1 + β2γ4
s

. (6.16)

As expected, the SFG signal is reduced for large β, and this effect is greater the

larger the bandwidth γs. This is in agreement with calculations for the effect of

dispersion on two-photon processes using broadband EPP [108]. The reduction of

efficiency due to dispersion β for two different bandwidths γs is plotted in Fig. 6.2.

6.1.3. The effect of the entanglement parameter α

We can evaluate the effect of the entanglement parameter α on the SFG

probability if we express PSFG in closed form in terms of the parameters for the

Gaussian model. We carry out this calculation and obtain

PSFG = |χ|2 γs
σs

√
π

1/σ2
s + 1/σ2

p

. (6.17)
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For a given SFG phasematching bandwidth σp and two-photon correlation

bandwidth σs, we see that the probability depends on the state bandwidth ratio

γs
σs

. We can use (6.10) to express this bandwidth ratio in terms of α as

γs
σs

=

√
1 + α

1− α
. (6.18)

Evidently α → 1 maximizes PSFG, which also corresponds to γs
σs
→ ∞.

While obviously unphysical, this model gives a good intuition for the role that

entanglement plays in SFG at the two-photon level, and is in good agreement with

the models recently developed for two-photon absorption in molecules [108].

6.2. Experimental setup

The aim of the following experiment was to characterize the role of time-

frequency (TF) entanglement in the two-photon process of SFG. The main

experimental goal is to use spontaneous parametric down conversion in a crystal to

create entangled photon pairs (EPP) exhibiting a high degree of TF entanglement,

to use pulse compression and pulse shaping techniques to manipulate the amount

of TF entanglement, and subsequently quantify how the efficiency of the SFG

process depends on the amount of entanglement. As such, there were several

desirable parameters as well as technical constraints which influenced the

experimental design. Perhaps the most crucial constraint is the low cross-section

for SFG in the low-flux regime of two-photon states. The SFG efficiency in this

regime is on the order of 10−9 − 10−7, which, considering the laser repetition rate

of 80 MHz and the regime of one photon pair per laser pulse, dictates a success

rate on the order of 1 Hz. This low-flux regime in turn requires optimization of

the process, namely through compensation of the dispersion experienced by the
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FIGURE 6.3. Experimental setup for charactering the effect of two-photon
entanglement on SFG. Broadband EPP are generated using PDC at a nonlinear
crystal. Subsequently

EPP due to their broadband nature, which is expected to attenuate the signal

by about two to three orders of magnitude. In the end it proved very difficult to

obtain a practical SFG signal, and we suspect this was due to the extremely broad

bandwidth ( 120 nm) of the EPP, coupled with their large spatial extent. In the

Results subsection we discuss some suggestions to improve this experiment. The

experimental design is outlined in Fig. 6.3, and described in detail in the following

subsections.

6.2.1. PDC stage

The pump beam was generated by frequency-doubling the Ti:Sapph pulses in

a 1 mm-long BiBO, producing pulses at 415 nm with about 2.3 nm of FWHM

bandwidth via type I SHG. This is the same pump beam as was used for the

entanglement-swapping experiment. The spatial filter was removed to provide

maximum power to the PDC crystal. This beam is focused onto the ppKTP using
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a f = 200mm achromatic plano-convex focusing lens. The PDC beam is collected

and collimated using a f=100 mm B-coated achromatic lens.

The EPP source for the experiment is a 10 mm-long, periodically-poled

potassium titanyl phosphate (ppKTP) crystal from Raicol. The crystal is poled for

type-0 phasematching for degenerate PDC from 415 nm to 830 nm, and the poling

period is quoted to be 3.45 µm. It was found through second-harmonic generation

(SHG) measurements that 20◦C (293 K) was not optimal for phasematching at

830 nm, but that the optimal temperature for this wavelength was 50◦C (323 K).

The crystal temperature control is achieved by placing the crystal in a machined

copper oven, heated by a resistance heating element. The oven is passively cooled,

meaning that it cannot be operated below room temperature. Thus it is possible

to operate in one of two configurations, either by heating the crystal to 323 K, or

by operating at the phasematching wavelength for 293 K, which was 828.2 nm,

which can be achieved by wavelength-tuning the laser.

6.2.2. SFG stage

The SFG crystal is identical to the one used for PDC, another 10 mm-

long ppKTP, with a poling period of 3.45 µm. The PDC beam is focused onto

this crystal using a f = 100 mm, in a configuration symmetrical to the PDC

collimation. The SFG was aligned using the classical tracer beam, which was

overlapped with the pump beam to ensure that it takes the same path as the PDC

beam.

To further ensure overlap of the tracer beam with the pump beam, we

introduced a free-space delay line to achieve temporal overlap between the two

pulses. We verified this temporal overlap by observing difference-frequency
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FIGURE 6.4. Oscilloscope trace of the tracer beam detected at a photodiode,
showing phase-sensitive amplification and deamplification due to overlap with the
pump field.

generation (DFG) at the PDC crystal. Because of the degeneracy of the process,

the tracer beam field at 830 nm experiences amplification and deamplification as

a function of the relative phase between itself and the pump field at 415 nm (see,

for example, [110] and [111]). Thus the overlap was verified by collecting the tracer

field into a photodiode and measured at an oscilloscope, and varying the relative

delay between tracer and pump until phase-sensitive fringes are observed on the

oscilloscope. The oscilloscope trace showing these fringes is shown in Fig. 6.4.

Once the overlap of the pump and tracer beam was insured, the SFG

efficiency was benchmarked using second-harmonic generation (SHG) from the

classical tracer beam, obtaining 140 µW of SHG when pumping with 5 mW of

Ti:Sapph pulses. The SHG from the classical tracer beam was collimated using a

f=75 mm A-coated lens, and coupled into a multimode fiber (MMF) for detection.

The tracer beam is attenuated down to the 10-100 nW range using neutral density

filters, and then the MMF is connected to a single-photon counting detector

(LASER COMPONENTS COUNT BLUE). The detector has a quantum efficiency

of around 55% at 415 nm, a dark count rate under 10 Hz, and a timing jitter of
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FIGURE 6.5. Prism compressor for dispersion compensation in a folded
configuration. D: D-shaped mirror. HWP: achromatic half-wave plate at 830 nm.
P 1, 2, 3, 4: SF11 prisms in the order in which they are traversed. PF: primary
fold. SF: secondary fold.

around 2 ns. In order to reject background noise and dark counts, we temporally

resolve the signal by using the ID900 time tagger with the 80 MHz laser pick off as

a reference. This has the same effect as temporally gating the detector.

6.2.3. Dispersion-compensation module

The broadband nature of the PDC leads to a significant impact on the

SFG signal due to dispersion. The dispersion-compensation module is a prism

compressor, which consists of two dispersive SF11 glass prisms and an adjustable

inter-prism distance. The geometry of the setup is such that it causes the red end

of the spectrum to travel throug a longer path through glass than does the blue

end, thereby compensating for any common-path dispersion induced elsewhere in

the setup. The setup is shown in Fig. 6.5, which makes clear how the red part of

the spectrum travels through more glass.

Direct measurement of the amount of dispersion in the setup would required

ultrafast pulse duration measurement using autocorrelation techniques [112].
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Instead a rough estimate is obtained by accounting for the optical elements that

the EPP encounter, which include the PDC and SFG crystals and the focusing

and collimating lenses. The group velocity dispersion (GVD) of KTP at 830 nm

is about 177 fs2/mm1, so for a total of 20 mm of KTP we expect to acquire about

3540 fs2 of group delay dispersion (GDD). The two achromatic doublets that we

use for collimating and focusing the PDC beam (Thorlabs AC254-100-AB) each

consist of a LAK22 element that is 8 mm thick (GVD = 65 fs2/mm) and a SF10

element that is 4 mm thick (GVD = 150 fs2/mm). All together, the GDD acquired

through both lenses is estimated to be 2240 fs2. Thus the GDD in the entire set up

is on the order of 5780 fs2.

Using software to calculate a reasonable prism insertion and separation to

compensate for this dispersion, it is found that an insertion of 3 mm for each prism

and a separation of 400 mm is sufficient. Thus we built the prism compressor to be

able to explore a range that encompasses these values. In practice we found that

an insertion of 3 mm for each prism and about 600 mm of prism separation was

capable of nearly doubling the SHG signal due to the classical tracer beam which

has a bandwidth of around 8 nm, which is somewhat consistent with our estimates.

By comparing with Fig. 6.2, we expect about 2-3 orders of magnitude of reduction

in the SFG signal from the PDC beam, which has a bandwidth of around 120 nm.

6.2.4. Pulse-shaping module

In addition to dispersion compensation, it is desirable to have arbitrary

control over the spectral amplitude and phase of the PDC. To this end we

constructed a prism-based 4-f pulse shaper [113]. This pulse shaper was not used

1This value, along with the subsequent GVD values, were obtained from refractiveindex.info.
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FIGURE 6.6. Pulse shaper for arbitrary amplitude and phase modulation of
the PDC spectrum. D: D-shaped mirror. BS: beam splitters used to pick off
a reference line for pulse shaper calibration. P: SF11 prism. CCM: cylindrical
concave mirror, f = 400mm. f 1, 2, 3, 4: the four f = 400 mm focal lengths
constituting the 4-f line. When not in calibration mode, the upper BS is removed,
and the lower BS is replaced with a mirror.

in the experiment since we did not obtain a practical SFG signal from the PDC

photons, and due to the difficulty of managing the PDC beam spatially over large

path lengths, but nonetheless we describe the pulse shaper here for completeness.

The pulse-shaper consists of an SF11 equilateral prism, which disperses the PDC

spectrum, followed by an f = 400mm cylindrical concave mirror to focus the light

onto a reflective spatial light modulator (SLM) (Hamamatsu X13139-02). The

configuration is shown in Fig. 6.6.

The pulse shaper was not used in the experiment as of yet, as there was

difficulty obtaining enough SFG signal in the first place using the unshaped PDC

light. However, after being constructed, the pulse was roughly pre-calibrated by

using the classical tracer beam. The beam is split with a 50-50 beam splitter,

156



and half of it is sent to through a reference line with an adjustable delay. The

other half is sent through the pulse shaper, before the two are recombined and

the spectrum is measured with a standard spectrometer (Ocean Optics Flame).

When there is an a relative time delay τ between the two pulses, and a spectral

phase φ(ω) imparted by the SLM, one expects to see spectral fringes such that the

spectrum I(ω) is modified to give a term of the form I(ω)(1 + cos(ωτ + φ(ω))). An

exemplary spectral interferogram and its Fourier transform are shown in Fig. 6.7.

6.2.5. Results and discussion

In Fig. 6.8 we show the best-case SFG signal obtained when pumping the

crystal with 200 mW of 414 nm blue, with all the crystals operated at room

temperature, and while bypassing the prism compressor and pulse shaper. The

data was collected over one hour. Subsequently the SFG crystal was removed from

the beam path and data was collected for another hour to obtain the background

counts. Integrating the area under the SFG curve gives a count rate of about 2.9

Hz. We note that 200 mW is above the estimated damage threshold of the ppKTP

(around 30 mW), so that this configuration would be unsustainable for continued

operation.

157



2.20 2.25 2.30 2.35

0

2000

4000

6000

8000

10000

12000

ω [x 1015 rad/s]

I(
ω
)
[A
.U
.]

I(ω)

-6 -4 -2 0 2 4 6
0

5000

10000

15000

20000

25000

t [ps]

I
[A
.U
.]

F.T.[I(ω)]

FIGURE 6.7. Spectral interference for calibrating the pulse shaper. Top: spectral
interferogram showing fringes due to interference between the a pulse going
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transform of the interferogram, where the sidebands correspond to a relative time
delay between the pulses of about 1 ps. In general, calibration of the pulse shaper
can be obtained by extracting the phase from the interferogram.
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It proved very difficult in this experiment to obtain a consistent SFG signal

from the PDC photons. Although we obtained a peak PDC power of around 12

nW when pumping with 200 mW of blue, this PDC flux proved insufficient to

generate a practical signal to optimize on. We conclude that this is due to the

very large bandwidth of the PDC, coupled with the large transverse spatial profile

of the PDC beam, which was on the order of 1 cm in diameter. Although it was

possible to collect the entire beam at the SFG crystal when bypassing the prism

compressor, the dispersion acquired through the setup in this configuration likely

caused 2-3 orders of magnitude of reduction of the signal. Meanwhile, significant

clipping of the beam occurred when going through the prism compressor, resulting

in only 1 to 2 nW of PDC arriving at the SFG crystal. The most straightforward

improvement to the setup would be to replace the components of the prism

compressor with 2-inch optics to reduce the amount of clipping.

Finally, we note that, alternately, it was possible to use a 2 mm long

ppKTP to generate the blue pump at 414 nm. This gave an estimated pump

bandwidth of 0.4 nm, and reduced the PDC bandwidth significantly to around

60 nm. For completeness we show the PDC marginal spectrum acquired with this

configuration, and compare it with the one obtained with the 2.3 nm bandwidth

pump, in Fig. 6.9, along with their simulations, calculated using the Sellmeier

equations for KTP. Both of these spectra were obtained with a single-photon

sensitive spectrometer (Horiba iHR320). The spectral bandwidth of 60 nm is

more practical to operate with, since the effects of dispersion are less prohibitive

than they are for 120 nm of bandwidth. However, in this configuration it was not

possible to generate a significant amount of blue pump (under 40 mW), and thus

PDC (around 1-2 nW), without damaging the 2 mm long ppKTP, and so again
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FIGURE 6.8. SFG signal obtained in the best case scenario, showing counts
measured over the period of one hour, while pumping the PDC crystal with 200
mW of blue (above damage threshold, yielding 12 nW of PDC incident at the
SFG crystal. The blue curve shows counts obtained with the SFG crystal in the
beam path, while the yellow curve shows the counts obtained with the crystal out
of the beam path. In both cases the counts are time-resolved by triggering on a
reference pulse from the Ti:Sapph laser, so that it’s easier to reject background
counts. Integrating the area between these curves in the region under the peak
gives a count rate of about 2.9 Hz.

this was not practical. In principle the experiment could be improved overall by

operating with a narrowband blue pump with sufficient power.
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obtained from Sellmeier equations for KTP. (b) Measured spectra using a single-
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CHAPTER VII

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Entanglement is a fundamental feature of quantum theory, and it is the

aspect of this theory which provides for the most striking departures from classical

physics. Still, quantum entanglement of physical systems is a subtle phenomenon

that hides in plain sight, requiring the most careful experimental efforts to tease

out its implications, and, like its cousin, quantum coherence, is easily destroyed

by interaction with the environment. Even more subtle still is the entanglement of

measurements, a seemingly esoteric and purely theoretical construct which turns

out to have very real, measurable physical consequences.

In this thesis we have explored both kinds of entanglement, as well as

the interplay between them, using light as the physical system of interest. In

particular we aimed to take advantage of the high dimensionality, and thus high

information capacity, offered by photons entangled in their spectral-temporal

properties, and to extend standard quantum protocols into this regime. First,

we experimentally demonstrated how to perform entanglement swapping using

time-frequency entangled photons, in a way that utilizes the multimode nature

of the entanglement by making spectrally multiplexed two dimensional Bell-

state measurements on highly-entangled photon pairs available from standard

parametric down conversion sources. This work represents the first demonstration

of multiplexed entanglement swapping producing distinct, heralded Bell states in

an optical fiber based setting.

Next we showed how spectrally multiplexed Bell state measurements can

reveal time-frequency entanglement even for certain mixed states, ones that are
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mixtures of antisymmetric Bell states. This is a somewhat surprising result given

that mixed states of Bell states are typically less entangled than their constituent

components. Because the mixed two-photon states we consider retain the full

antisymmetry properties of their mutually orthogonal constituent Bell states, the

photons exhibit antibunching at a beam splitter, showing quantum interference

whose visibility does not decrease even in the limit of maximally mixed states.

This allows us to construct an entanglement witness in the form of an inequality

that is satisfied by all separable states, but conclusively violated by certain

entangled states.

Finally, we addressed the question of how to perform joint measurements on

two photons that project onto arbitrary multimode two-photon states, analogous

to parametric down conversion. We showed that such measurement can be realized

using sum frequency generation, a process that is the reverse of parametric down

conversion, and showed how to describe this measurement in a theoretically

consistent way using the language of POVMs. Although two-photon SFG has

been previously demonstrated and suggested as a tool for spectral quantum

teleportation and entanglement swapping, we believe that our framing of it as

a two-photon measurement which can exhibit entanglement in analogy with the

entanglement of two-photon states provides more insight into understanding

this process as well as other similar two-photon processes such as two-photon

absorption.

We proposed and constructed an experiment to test some of the quantitative

of the entangled POVM model of two-photon SFG, namely the role of two-

photon entanglement in the process. In particular, we expect the SFG to increase

linearly with the amount of entanglement, quantified by a correlation parameter
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α which can be directly related to the Schmidt number. While ambitious, this

experiment in its current configuration suffers from low count rates, due to the

low cross section for observing SFG at the low, isolated photon pair flux regime,

compounded with the deleterious effects of dispersion on the highly broadband

two-photon states we use. Thus the main improvements we suggest for this

particular experiment are twofold. The first is to reduce the bandwidth of the

entangled photon pair by using a narrower-bandwidth pump, which would make

the effects of dispersion less detrimental to the efficiency of the setup. The second

is to use a PDC crystal with a higher damage threshold that allows for using a

blue pump power on the order of 200 mW. Both of these can be satisfied by a

pump and crystal configuration such as the one we used in Ref. [114].

Given that the experiment conducted in Chapter VI produces viable SFG

count rates, it lends itself to being easily adaptable for various proof-of-principle

experiments. One is a test of quantum illumination as originally proposed by

Lloyd in Ref. [16]. For instance the pulse-shaper module could perform double

duty by being used to simulate a target that is to be detected by one of the

photons in the entangled pair, while simultaneously varying the amount of

two-photon entanglement. Another possible direction to take is towards more

extensively characterizing the SFG process as a two-photon measurement. In

particular, it could be possible to construct a set of two-photon states using pulse

shaping techniques that could test whether two-photon SFG is indeed an entangled

measurement as we claim, in manner similar to the experiment in Ref. [33].

In this thesis we have made the case that two-photon measurements are an

interesting object of study in their own right, on par with two-photon states. This

is particularly true when it comes to the rather mysterious role of entanglement
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in such measurements, especially because entanglement is typically understood in

terms the nonlocal behavior of bipartite and multipartite systems that are spatially

separated to disallow communication. We have shown that there are measurable

physical quantities that can be directly related to the POVM describing the two-

photon measurement as a projector onto a particular two-photon state, both

theoretically in the context of Chapter V, and experimentally in the context of

Chapter III. We hope that our results help guide future research towards more

completely characterizing measurements of this kind, which we expect will prove

to be increasingly important towards quantum networks relying on distributed

entanglement, in addition to their significance for understanding the fundamental

nature of measurement inherent in the quantum mechanical worldview.
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APPENDIX A

ENTANGLEMENT SWAPPING SUPPLEMENTAL

A.1. Deriving the four-photon state

In the low gain regime, the output state of the nth SPDC source, where n ∈

{1, 2}, is given by

|ψn〉 =
∞∑
p=0

√
ηn

p

p!

(∫∫
dωSdωIfn(ωS, ωI)â

†
n(ωS)b̂†n(ωI)

)p
|vac〉 . (A.1)

The function fn(ωS, ωI) is the joint spectral amplitude (JSA), given by

fn(ωS, ωI) = un(ωS + ωI)sinc

[
∆kn(ωS, ωI)L

2

]
, (A.2)

where un represents the spectral mode function of the pump, ∆kn is the wave-

vector mismatch between the pump, signal and idler modes, and L is the length

of the interaction medium. Finally, ηn is the gain of the parametric process, which

depends on the length L, the non-linear strength of the material and the number

of photons in the pump beam.

The SPDC state due to the two independent sources can be written as a

tensor product |ψ1〉 ⊗ |ψ2〉. We expand this and keep only terms of order η, which

are responsible for the four-photon contribution, obtaining the following state after

normalization

|ψη〉 =

(√
η1η2 |ψ12〉+ η1

2
|ψ11〉+ η2

2
|ψ22〉

)√
η1η2 + η2

1/4 + η2
2/4

, (A.3)
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where

|ψnm〉 =

∫
d4ω fn(ωS, ωI)fm(ω′S, ω

′
I)×

â†n(ωS)â†m(ω′S)b̂†n(ωI)b̂
†
m(ω′I) |vac〉 . (A.4)

is the four-photon state arising from either a photon pair from each source, or two

pairs from one source and none from the other.

To facilitate the discussion of our results, we made a few simplifying

assumptions in the main text, which we will now enumerate in the context of Eq.

(A.3). First, we assumed that both sources are identical, such that f1(ωS, ωI) =

f2(ωS, ωI) = f(ωS, ωI) and η1 = η2 = η. This is because in the experiment, the two

sources are derived from double-pumping the same crystal as in Ref. [47], and are

matched to a great degree as discussed in the experimental section. Further, any

source mismatch does not reduce the quality of the entanglement in the swapped

state, just the visibility of quantum interference in the method we use to verify

entanglement.

Second, we assumed that the relative phases between the three terms in Eq.

(A.3) are random. This implies that these terms are not mutually coherent and

therefore do not contribute to any quantum interference. In reality there is such

a coherence, which is due to the phase of the pump, and we observe this in both

two- and four-photon interference, as we show in Appendix A.6. However, this

phase drifts over the course of the interference measurements we will describe,

which are several hours long, and thus |ψ11〉 and |ψ22〉 contribute to a constant

background in these measurements.

167



Finally, in the main text we focused our attention solely on the |ψ12〉 term

of Eq. (A.3), which corresponds to each source producing a pair of entangled

photons, which is rewritten as |ψ〉 for better readability. In most entanglement

swapping and quantum teleportation experiments relying on SPDC sources, the

other two terms (the double-pair terms), though present, do not contribute when

the four photons are detected in coincidence, so that heralded states are post-

selected [115]. Similarly, the double-pair terms only contribute in our setup in

the aforementioned interference measurement, where they constitute a constant

background, which we measure and subtract in Appendix A.8.

A.2. Mixed state model

In the realistic case, the BSM on the idler photons is not performed with

perfect resolution, but rather within a finite spectral window. In our case, this is

due to the resolution of the time-of-flight spectrometer, which is a convolution of

multiple response functions in the frequency-to-time conversion. It is dominated by

the timing jitter (' 20 ps) of the superconducting nanowires.When this resolution

is not perfect, then we can show that the signal photons are heralded into a mixed

state. The effect of this finite resolution on the heralded spectral distributions is

shown graphically in Fig. A.1.

We begin by redefining the BSM operator as:

Π̂BSM
lm =

∫∫
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2 Π̂BSM

jk

=

∫∫
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2 |Ωj,Ωk〉 〈Ωj,Ωk| ,

|Ωj,Ωk〉 = ĉ†(Ωj)d̂
†(Ωk) |vac〉 ,

(A.5)
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FIGURE A.1. Representation of the effect of finite resolution on the heralding.
The finite bandwidth (white vertical lines) implies that a detection at frequencies
(Ωj,Ωk) (vertical dashed lines) is integrated over the filtered modes, shown in the
top plots. The heralded modes are represented on the left, where the black dashed
line represent |φj|2 and |φk|2 from the pure state model.

where tl(m)(Ωj(k)) are transmission amplitudes centered at Ωl(m), and satisfy∑
lm |tl(Ωj)|2|tm(Ωk)|2 = 1. We have introduced new indices l, m, so that we may

incorporate the j, k-dependent quantities from the main text into our analysis.

Moreover, it is straightforward to show that the POVM element (3.3) is obtained

by setting tl(m)(Ω)→ δ(Ω−Ωl(m)). To simplify our notation henceforth, we will use

the following shorthand

∫∫
lm

dΩjdΩk :=

∫∫
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2. (A.6)

It can be seen from Fig.3.5 that the finite resolution of the idler detection bin

reduces the purity of the heralded signal state, due to the entanglement of the two-
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photon state. Because of this, the POVM element (A.5) requires that we describe

the heralded state as a mixed state

ρ̂lm =
Trb̂

[
Π̂BSM
lm |ψ12〉 〈ψ12|

]
plm

, (A.7)

where Trb̂ is the partial trace over the subspace defined by operators b̂1 and b̂2.

Analogously to the pure state case, the probability plm are defined as

plm = Tr
[
Π̂BSM
lm |ψ12〉 〈ψ12|

]
=

∫∫
lm

dΩjdΩk pjk. (A.8)

where the idler density matrix is defined as Eq.(3.6), and we again obtain Eq.(3.7)

by setting the filters tl(m) as δ functions.

We may now compute the heralded state density matrix:

ρ̂lm =
1

plm

∫∫
lm

dΩjdΩk pjk |Ψjk〉 〈Ψjk| (A.9)

while recalling the definition of φj(k)(ω) in |Ψjk〉 as

φj(k)(ω) =
f(ω,Ωj(k))√
ρI(Ωj(k),Ωj(k))

. (A.10)

This has the intuitive interpretation of a mixed state as an incoherent sum of pure

states over the detection bandwidth of tl(m). All of the measured quantities follow

in a straightforward manner. In the absence of frequency resolution, we herald

again the mixed state

ρ̂ =
∑
lm

plm ρ̂lm, (A.11)
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just as with the pure state model.

The heralded JSI is given by:

Flm(ω1, ω2) = 〈ω1, ω2| ρ̂lm |ω1, ω2〉 , (A.12)

which can be expressed in terms of Fjk as

Flm(ω1, ω2) =
1

plm

∫∫
lm

dΩjdΩk pjk Fjk(ω1, ω2). (A.13)

The integrated JSI corresponding to the state ρ̂ is again given by

F (ω1, ω2) =
∑
lm

plmFlm(ω1, ω2). (A.14)

When the signal photons in the state ρ̂lm are incident on a 50:50

beamsplitter, the coincidence fringes at the output are given by

Plm(τS, τI) = Tr
(

Π̂verif ρ̂lm

)
=

∫∫
d2ω 〈ω, ω′| ρ̂lm |ω, ω′〉 , (A.15)

where |ω, ω′〉 = â†3(ω)â†4(ω′) |vac〉 as before. Evaluating this in terms of Pjk, we

Plm(τS, τI) =
1

plm

∫∫
lm

dΩjdΩk pjk Pjk(τS, τI). (A.16)

Finally the integrated interference peak for the state ρ̂ is recovered by taking

P (τS, τI) =
∑
lm

plm Plm(τS, τI). (A.17)
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We will make a few comments regarding the most interesting feature of

comparing this model with the pure state model. To this end, we shall represent

the pure state |Ψjk〉 〈Ψjk| as a density matrix in the {|φj〉 |φk〉 , |φk〉 |φj〉} basis as

follows:

|Ψjk〉 〈Ψjk| =
1

2Cjk

 1 eiθjk

−e−iθjk 1

 . (A.18)

Meanwhile, the mixed state ρ̂lm has the representation:

ρ̂lm =
1

plm

∫∫
lm

dΩjdΩk
pjk
2Cjk

 1 eiθjk

−e−iθjk 1

 . (A.19)

Notably, the off-diagonal terms e±iθjk = e±i(Ωj−Ωk)τI , the coherence terms,

are the hallmark of the bipartite entanglement in these states, and are responsible

for the interference we observe in Pjk. It seems reasonable then to ask if, and to

what extent, the averaging over the l,m bands in the mixed state is expected

to reduce the entanglement. Take first the special case of τI = 0. In this case,

θjk = 0 ∀ j, k, and the off-diagonal terms are equal to unity, and hence, no phase-

averaging occurs for the mixed state ρ̂lm. Indeed, the off-diagonals survive even

for the fully-averaged state ρ̂, and one can interpret this as the reason why the

interference peak survives at full visibility for τI = 0.

More generally, however, for τI 6= 0, the disagreement between the two models

becomes more salient. The pure-state model assumes that the idler photons are

detected at monochromatic frequency modes at (Ωj,Ωk), which are necessarily

infinite in extent in the time domain. This means that the idler photons remain

indistinguishable at the output of the BSM beamsplitter, even for arbitrary τI

delays at the input. On the other hand, taking into account the averaging over
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the l,m bands introduces distinguishability, and the BSM is no longer ideal in this

case. Furthermore, this averaging introduces more distinguishability the larger τI

is, since the argument of the phase factor (Ωj − Ωk)τI is proportional to this time

delay. This phase-averaging results in a reduction of the off-diagonal terms, and

of the visibility of the Plm interference for large enough τI. This behavior is most

clearly seen in the profile of the fully-integrated two-dimensional peak in Fig. 3.12,

which results from averaging over all phases with a weight pjk. The peak vanishes

in the τI direction over a delay timescale comparable to the inverse bandwidth of

the idler photons. The intuitive interpretation is that the idler photons become

distinguishable at the output of the beamsplitter when the relative delay is at least

as long as their pulse durations.

A.3. Experimental details (ADDENDUM)

It is convenient to conceive of the experiment as composed of three main

elements: the pump module, the PDC sources, and the detection apparatus. In

this section we will describe some of the more technical details of each of these

elements, along with some detailed schematics and alignment procedures.

A.3.1. Pump module

The laser source for the experiment is a wavelength-tunable pulsed Tsunami

titanium sapphire oscillator (Ti:Sapph) from Spectra Physics, pumped by a

Millenia eV (also from Spectra Physics) 532 nm continuous-wave (CW) diode-

pumped solid-state laser. The Millenia eV is operated at 10 W to generate

from the Tsunami with an average power of 1.5 W, centered at 830 nm, with

approximately 8 nm of full-width at half-maximum (FWHM) bandwidth, and a

173



repetition rate of 80 MHz. The 830 nm beam is filtered through a quarter-wave

plate (QWP) and a half-wave plate (HWP) followed by Glan-Thompson polarizer,

which generates a clean linear polarization while allowing for external optical

power control. For this experiment we set the HWP to operate at a power of 1.1

W.

The remainder of the pump module is shown in Fig. A.2. The 830 nm (IR)

pulses are then frequency-doubled via type-I second-harmonic generation (SHG)

in a 1.5 mm-long bismuth triborate (BiBO) crystal, generating a 415 nm pulse

train (blue) with a FWHM bandwidth of 2.7 nm. The IR beam is focused onto

the BiBO using an f = 50 mm plano-convex lens, and the blue beam is collimated

using another f = 75 mm plano-convex lens. A dichroic mirror is used to reflect

the blue beam, through which the IR beam is transmitted and dumped onto a

beam block. We use a blue glass filter to further reject any residual IR light.

After the blue glass filter, the blue power was measured to be about 300 mW,

corresponding to an SHG efficiency of about 30%.

Finally we use an f = 50 mm lens to focus the blue beam onto a 25 µm-

diameter pinhole to filter the spatial mode in the Fourier plane. This selects a

nearly Gaussian mode of the blue pump beam, which is otherwise astigmatic

due to the walk-off inherent in birefringent phasematching [62], which is found

to improve the heralding efficiencies of the photon pairs. After the spatial filter,

the blue pump power was measured to be about 190-200 mW. The filtered blue

pump beam is then collimated using another f = 50 mm lens and sent to the PDC

sources.
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FIGURE A.2. Components of the pump module. L1: f=75 mm lens. L2, L3, L4:
f=50mm lenses. DM: dichroic mirror. SF: spatial filter with a 25 µm pinhole.

A.3.2. PDC sources

The PDC sources for the two pairs of photons used for entanglement

swapping are depicted in Fig. A.3. The two PDC sources are derived from the

same 2.5 mm-long type-II phasematched BiBO crystal, which is double-passed by

the pump to generate a pair of PDC photons on each pass. For the first pass the

blue pump is directed into the crystal using a dichroic mirror (DM1), and focused

into the crystal using an f = 250 mm lens which precedes DM1. This creates

the PDC photon pair for source 1. After the crystal the blue pump is reflected

through a second dichroic mirror (DM2), through which the PDC photon pair is

transmitted and collimated using an achromatic f = 125 mm lens, as well as going

through a red glass filter for further pump rejection. The signal and idler photons

are then separated using a polarizing beam splitter (PBS), where the H-polarized

idler photon is transmitted while the V-polarized signal photon is reflected. Each

photon is routed through a delay line consisting of a motorized stage controlled by

a Kinesis module from Thorlabs, and finally coupled into polarization maintaining
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(PM) single-mode fibers. The delay lines are labeled τS for signal 1 and τI for idler

1. These delays allow for temporal matching with the PDC photons from source 2.

After being reflected at DM2, the blue pump beam is collimated using an

f = 150 mm lens, and retro-reflected on a mirror mounted on a piezo-electric

transducer stack (PZT), where the 75 mm-lens serves to refocus the pump beam

onto the BiBO crystal in a second pass, counterpropagating with respect to the

first pass. This second pass creates the PDC photon pair for source 2. The blue

pump is reflected at DM1, where the photon pair is transmitted, filtered through a

red glass filter and collimated using an achromatic f = 125 mm lens, just as with

the photon pair from source 1. The signal and idler from source 2 are split using

another PBS, before being coupled into another pair of PM fibers. A motorized

delay line was placed into the beam path of the source 2 idler photon to allow for

balancing all four beam paths, but this configuration was not necessary or used for

this experiment.

Because of the collinear nature of the PDC process we use, the procedure for

aligning the collection PMF fibers was relatively straightforward. We back-injected

each fiber using a pick-off from the IR beam from the Ti:Sapph, and directed the

output towards the BiBO crystal for use as a tracer beam. Removing the red glass

filters allowed the blue pump beam to counterpropagate with this IR beam for

some distance, which enabled the overlapping of the two beams at two points.

This was found to be sufficient for detecting single-photon counts at each fiber,

and detecting coincidences at a rate higher than the accidental coincidence rate

for uncorrelated photon counts (see A.3.4). From that point it is straightforward

to align by optimizing both the single-photon count rates and the coincidence

count rates. At the optimum, we obtained raw single photon count rates of 1.8
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FIGURE A.3. Schematic for the PDC sources. L1: f = 250 mm lens. L2: f = 150
mm lens. L3, L4: f = 125 mm achromatic lenses. PBS1, PBS2: polarizing beam
splitters to separate signal and idler. RG: red glass filter. τext is a delay line to
allow matching of all four paths, not used in this experiment.

MHz for each signal and idler, coincidence rates of 300 kHz for each source, and

fourfold coincidence rates of 1 kHz, all measured directly with the superconducting

nanowire single-photon detectors (SNSPDs).

To match the photon paths temporally, we inject either idler 1 and idler 2

or signal 1 and signal 2 through a 50-50 PM fiber beamsplitter (from Oz Optics),

and scan either τI (for the idlers) or τS for the signals, until we observe a Hong-

Ou-Mandel (HOM) interference dip in the coincidences. For this measurement

and the rest of the experiment, it is important to use a half-wave plate (HWP)

before each injected fiber to optimize polarization matching. Since these measured

coincidences are accidental, arising from events from independent sources, the

visibility of the HOM dip is limited not only by the spectral purity of each photon

(as described in A.7), but also by the spurious two-photon events arising from
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double-pair emissions from each source. As a result, the HOM dip visibility in

these measurements is around 10%. Nevertheless, it is sufficient to allow path-

length matching to within ∼ 100 fs. Finally, with both fiber beam splitters in

place, it is possible to check the visibility of the path interference effect described

in A.6 to further optimize the temporal as well as spectral matching. At the

optimum, we obtained a path interference visibility of 80%.

A.3.3. Detection apparatus

Once the alignment is optimized and the PDC photon pairs are matched

temporally and spectrally, as well as in polarization, the remainder of the

experiment is all fiber-based, consisting of dispersive elements for time-of-flight

spectrometry, SNSPD’s for efficient single-photon detection, and time-taggers for

recording the timestamps of correlated photon detection events. In section A.4 we

detail how the time-of-flight spectrometers are calibrated, and in section A.5 we

outline the algorithms for obtaining the correlated timestamps. Here we simply

describe the different detection configurations and what each is used for.

In the default detection configuration, the four photons, each coupled

into its collection fiber, are routed directly to four SNSPD’s. From there, the

photodetection events are converted to electrical signals, amplified, and sent as

inputs to the ID900 time-tagger. The time-tagger then directly computes the

desired coincidences onboard and outputs the time stamps to a computer. In this

configuration the time stamps do not contain information about the spectral-

temporal structure of the light, but are simply used to record the count rates.

Optimization of the optical alignment is always done in the default configuration.
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In the JSI configuration, signal 1 and idler 1 (or signal 2 or idler 2) are

each routed through a 500 m-long fiber spool to impart dispersion and measure

the JSI of source 1 (or source 2). The output of each fiber spool is then routed

to the SNSPD’s, and the remainder of the setup is the same as in the default

configuration. In this case the time stamps of the photodetection events impart

information about the wavelength of the incoming light, and in section A.5 we

describe how they are used to calculated the JSI’s.

In the heralded JSI configuration, each idler photon is coupled to the input

of a 50-50 FBS, and the outputs are each routed through one of the dispersive

fiber spools. Meanwhile, the signal photons are each routed through one of the

CFBGs. The outputs of the fiber spools and the CFBGs are each coupled to an

SNSPD, and the remainder of the setup is the same as the previous configurations.

In order to ensure that a near-ideal BSM is performed on the idlers, before any

measurement run, τI is scanned until the center of the idler HOM dip is found,

and the translation stage is set at this center position. In section A.5 we describe

how the time-tagger is used to calculate the heralded JSI’s Fjk(ω1, ω2) in this

configuration.

In the HOM configuration, the idler photons are coupled to the FBS and then

to the dispersive fiber spools, just as in the heralded JSI configuration. In this

case, the signal photons are also coupled to the inputs of another 50-50 FBS. The

outputs of the latter are then routed directly to the SNSPDs. The remainder of

the setup is the same as in the previous configuration. Before any measurement

run, both τI and τS are independently scanned to find the centers of the idler and

signal HOM dips, and further fine adjustment of the delays is made to optimize

the interference fringes observed in Fig. A.7. In section A.5 we describe how
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the time-tagger is used to calculate the interference fringes Pjk(τS, τI) in this

configuration.

A.3.4. Normalizing coincidence counts

The figure of merit for assessing how the measured coincidence rate RAB at

two detectors A and B differs from the expected accidental coincidence rate Racc is

the coincidence-to-accidental ratio, or CAR, given simply by RAB/Racc. It is equal

to unity for uncorrelated photon counts, and is greater than unity for correlated

counts. For uncorrelated photon counts, the probability Pacc = Racc/RL (where

RL is the laser repetition rate) of detecting an accidental coincidence between two

detectors A and B is given by

Pacc = PAPB, (A.20)

where PA and PB are the probabilities of obtaining a single detection event at

detector A and B, respectively. In terms of count rates, this can be expressed as

Racc

RL

=
RA

RL

RB

RL

. (A.21)

Using this last expression, the CAR is calculated as

CAR =
RAB

Racc

=
RABRL

RARB

. (A.22)

Because the motion of the translation stages used for the τS and τI delays

induces some steering of the PDC photon beams, there is always some variation

of the fiber coupling, and thus the detected count rates, whenever the translation

stages are scanned. This variation must be taken into account in order to faithfully
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quantify the HOM and Pjk interference visibilities, and so we normalize the

interference counts in a manner similar to the CAR calculation. For the standard,

unheralded HOM interference, measured in terms of coincidences at detectors

A and B at the output of a 50-50 beam splitter, the normalized coincidence

probability is given as a function of input delay τ as

PAB(τ) =
RAB(τ)RL

RA(τ)RB(τ)
. (A.23)

This takes into account the fact RA and RB can vary as a function of τ as the

translation stage is scanned.

We follow the same reasoning to normalize the four fold coincidence counts

for Pjk(τ). This fourfold configuration can be thought of as the same as the HOM

configuration just discussed, but this time conditioned on a coincidence detection

at two other detectors, C and D. The probability of obtaining an accidental

coincidence at detectors A and B, given a coincidence at detectors C and D, is

given by

PAB|CD = PA|CDPB|CD. (A.24)

In terms of count rates, this is expressed as

RABCD

RCD

=
RACD

RCD

RBCD

RCD

. (A.25)

Thus, just as with the unheralded HOM case, as we scan τ , the normalized

probability of measuring four-fold coincidences is given by

PABCD(τ) =
RABCD(τ)RCD

RACD(τ)RBCD(τ)
. (A.26)
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A.4. Time-of-flight spectrometer calibration

To ensure that our TOFS are accurate, it is necessary to calibrate them.

While it is usually sufficient to use a rough estimate of the dispersion imprinted

by the fiber spool or by the CFBG, this doesn’t take into account waveguide

dispersion or other sources of dispersion in the setup. Therefore, we opted for an

in-situ calibration utilizing the single photons from the SPDC.

We used a pulse shaper based on a spatial light modulator (SLM) placed

at the midpoint of a 4-f line [40], enabling us to address both the amplitude and

phase of the mode-function of single photons over a 30 nm range with a resolution

of 0.02 nm. By scanning a narrow interference filter of 1 nm FWHM over the

SLM mask while recording the resulting time tags, we obtain a calibration curve

between the recorded time tags and the wavelength of the filter set on the pulse

shaper. Over our wavelength range, this function is mostly linear and its slope

is the dispersion parameter of the TOFS. The results are shown in Fig. A.4. With

the two CFBG-based spectrometers, we obtained a dispersion of 944±4 ps/nm and

946± 2 ps/nm. With the fiber spools, we measured an equal dispersion of −54± 1

ps/nm. With the calibration in hand, it is straightforward to convert time stamps

to wavelength for any detection event after a TOFS, see for example Fig.3.3.
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better visibility.
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A.5. Two- and four-fold time-correlated measurements (ADDENDUM)

In order to obtain the various joint spectral measurements that we measure,

in addition to the well-calibrated CFBG’s and fiber spools, we make use of

various time correlation algorithms that rely on the ID900 time tagger software.

Here we describe these algorithms to some extent. The main configurations we

employ are: (I) the two-fold coincidence configuration using the fiber spools for

JSI measurements of the sources; (II) the fourfold coincidence configuration for

Fjk(ω1, ω2) using the the fiber spools for the idler photon BSM and the CFBG’s for

the signal photon heralded JSI’s; and (III) the fourfold coincidence configuration

for Pjk(τ) using the fiber spools for the idler photon BSM, and direct detection of

the signal photons as a function of scanning the delay τS.

While it is relatively straightforward to simply record The ID900 time tagger

has two operation modes: HI-SPEED, or high speed, mode and HI-RES, or high

resolution, mode. HI-SPEED mode enables the use of a dedicated START input

channel, which can receive up to 100 MHz input signal, in addition to the four

standard input channels, which are limited to a 25 MHz signal. In this mode the

maximum obtainable timing resolution is 100 ps per time bin. HI-RES mode allows

a higher resolution of 13 ps per time bin, but it is not compatible with use of the

START channel, so that only the four standard inputs can be used. We make use of

both of these modes in our measurements, as necessary.

A.5.1. I. Source JSI’s

The simplest measurement to obtain is the JSI for each source, since it only

involves two-photon coincidence counting, in addition to the reference. Because

the CFBG spectral window is only about 10 nm around 830 nm, the source JSI’s
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FIGURE A.5. The ID900 time-tagger used for the experiment (top). Note the
START port, in addition to the four standard input ports. The second time tagger
(bottom) is identical and also used in our laboratory for other experiments.

large bandwidth would cause it to be cropped. Therefore we opted to use the fiber

spools, along with HI-RES mode of the time tagger, to obtain the JSI. This is the

JSI configuration from section A.3. In order to obtain a clock signal suitable for

use with the standard inputs, we attenuate a pickoff from the ti:sapphire beam

until it produces a single-photon count rate of under 25 MHz, and detect it with

one of the SNSPD’s, thus generating a stochastic clock signal (input 3). The signal

and idler photons are each routed through one of the fiber spools, before being

detected at two other SNPSD’s and two other time-tagger inputs (inputs 1 and 2).

The stochastic clock cuts down our overall rates by about a factor of four, since we
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only observe about one out of four clock pulses, but this is not too consequential

since the coincidence rates are high enough to obtain a JSI in a matter of seconds.

The algorithm for computing the time correlated coincidences is conceptually

simple. First the appropriate electronic delays are set to ensure that the signal and

idler photons from the same clock cycle are identified, which is easily achieved by

observing the coincidence rate. If we had been using a deterministic clock signal

at 80 MHz, this would automatically reset the clock every 12.5 ns at the arrival

of each pulse. But since we are attenuating this signal optically and detecting it

with an SNSPD, the FPGA logic in the time tagger is instead programmed to

generate a 12.5 ns time window whenever input 3 receives a signal. The FPGA

then performs the following operations within that 12.5 ns window: if input 1 is

received first, record the timestamp of input 2 with respect to input 1 and with

respect to input 3, whereas if input 2 is received first, record the timestamp of

input 1 with respect to input 2 and with respect to input 3. Thus in each case

we have a relative timestamp and an absolute timestamp, from which we can

determine the timestamps of the two photons.

A.5.2. II. Heralded JSI’s

The algorithm for obtaining the heralded JSI’s Fjk(ω1, ω2) is necessarily more

involved, being a fourfold time-correlated measurement. Here the idler photons

are each routed through one of the fiber spools at the output of the fiber beam

splitter, while the signal photons are each routed directly through the one of the

CFBG’s, before all four photons are detected with SNSPD’s. This is the heralded

JSI configuration in section A.3. The clock signal in this case is deterministic, and

is an analog signal generated from detecting the ti:sapph pickoff directly with a
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fast photodiode with a timing jitter of ∼ 15 ps, which is fed to the START input of

the time tagger. Thus the time tagger is used in HI-SPEED mode, yielding a timing

resolution of 100 ps per time bin. The idler photon events are routed to inputs 1

and 3 of the time tagger, and the signal photon events are routed to inputs 2 and

4.

Electronic delay matching is achieved by observing coincidences between

each signal photon channel with each of the two idler photon channels. In this

case the physical time delay incurred by the idler photons with respect to the

signal photons from traveling through 500 m of fiber must be accounted for. Once

all channels are synchronized, a configuration is achieved such that idler photon

timing distributions, which span about 1.5 ns each, occur at the beginning (input

1) and at the end (input 3) of each clock cycle. Meanwhile the signal photon

timing distributions (inputs 2 and 4), which span about 9 ns each, overlap in

the middle of the clock cycle. This configuration is shown schematically in Fig.

A.6, and allows for removing ambiguities when it comes to calculating the relative

timestamps, as described in the following.

The algorithm for computing the time-correlated fourfold coincidences is as

follows:

– Generate a 12.5 ns pulse from each of input 2 and input 4.

– Perform a logical AND operation between these pulses, generating a pulse

2AND4.

– Use input1 and the next START to filter 2AND4, generating a pulse

1AND2AND4.
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FIGURE A.6. Exemplary distribution of timetags used for fourfold spectral
coincidences. Input 1 is in blue, inputs 2 and 4 are in orange, and input 3 is in
green.

– Add 12.5 ns to 1AND2AND4 and use this pulse to filter input 3, which is the

last pulse to arrive.

This algorithm allows us to generate the arrival time of input 3 with respect to

START, input 1, input 2, and input 4, conditional on a fourfold coincidence

between the four standard inputs. From these values we can compute the

timestamps of the four inputs with respect to START in post-processing.

A.5.3. III. Heralded two-photon interference

The time tagger configuration to obtain Pjk(τS, τI) is nearly identical to that

for measuring the heralded JSI’s Fjk(ω1, ω2), with the following exceptions. The

first is that we route the signal photons through a second 50-50 fiber beam splitter,

and bypass the CFBG’s since we are not measuring the spectra for these photons.

This is the HOM configuration in section A.3. The removal of the fiber spools results

in sharper distributions for the time stamps of input 2 and input 4, such that
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they contain no spectral information. Thus even though we collect four time

stamps as before, only the idler time stamps contain relevant information, and

we simply aggregate the idler time stamps.

The other exception is that now we are interested in the behavior of these

fourfold coincidences as a function of the physical delays τS and τI. Therefore we

scan the positions of the each stage, and at each position we collect the fourfold

time-correlated data and generate a separate file of timestamps. By associating

each file with a stage position we can generate an interferogram for each j and

k in post-processing. Finally it should be noted that while we collect data in

this configuration, we jitter the PZT that back-reflects the blue pump so that we

average the interference over any pump optical phase.

A.6. Source distinguishability

The entanglement verification protocol we use, that is, the two-photon

interference of the state |Ψjk〉, ultimately relies on the indistinguishability of

the two source states. To see this, we relabel the source JSA’s as f1(ω,Ω) and

f2(ω,Ω), and for simplicity, we assume that they are identical up to a translation

in frequency space. Note now that this leads to a heralded state

|Ψjk〉 ∝ |φ1
j〉1 |φ

2
k〉2 − |φ

1
k〉1 |φ

2
j〉2 , (A.27)

where

|φ1(2)
j(k)〉 =

∫
dωφ

1(2)
j(k)(ω)â†1(2)(ω) |vac〉 , (A.28)
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and

φ
1(2)
j(k)(ω) =

f1(2)(ω,Ωj(k))

ρ1(2)(Ωj(k),Ωj(k))
. (A.29)

Although this state is still entangled, the verification method using

coincidence fringes in Pjk(τS) will suffer from a reduction in visibility due to

the distinguishability of f1 and f2. To see this, we recalculate Pjk(τS) in its

approximate form (3.45), and find

Pjk(τS) ≈ 1

2

(
1− Vjk eσ

2
Sτ

2
S cos

[(
ω1
j + ω2

j

2
− ω1

k + ω2
k

2

)
τS

])
(A.30)

where the visibility Vjk is given by

Vjk =

(∫
dωφ1∗

j (ω)φ2
j(ω)

)(∫
dωφ1∗

k (ω)φ2
k(ω)

)
. (A.31)

We can maximize this visibility by maximizing the overlap f1 and f2. We see

that this latter provides a lower bound on Vjk by writing

∫
dωφ1∗

j (ω)φ2
j(ω) =

∫
dωf ∗1 (ω,Ωj)f2(ω,Ωj)√
ρ1(Ωj,Ωj)ρ2(Ωj,Ωj)

≥
∫

dωdΩf ∗1 (ω,Ω)f2(ω,Ω), (A.32)

and likewise for k.
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It is relatively straightforward to maximize the quantity on the left by tuning

experimental parameters, namely pump wavelength, phasematching angle, and

transverse optical fiber position (due to residual spatial chirp), and observing two-

fold coincidences resulting from first order interference of the sources. Because

both sources are pumped with the same pulse, the two-photon term of the state is

given by

|ψ〉 ∝
∫

dωdΩ
(
f1(ω,Ω)â†1(ω)b̂†1(Ω)+

f2(ω,Ω)â†2(ω)b̂†2(Ω)
)
|vac〉 . (A.33)

A straightforward calculation shows that the probability of a two-fold coincidence

between ports b̂3 (or b̂4) and â3 (or â4) is given by

Pcc =
1

4

∫
d2ω

∣∣∣f1(ω,Ω)± f2(ω,Ω)
∣∣∣2

=
1

2

(
1± Re

∫
d2ωf ∗1 (ω,Ω)f2(ω,Ω)

)
(A.34)

In the following, we will outline additional measurements to quantify the

source indistinguishability. In our case, our dual-pass geometry implies that we

need to match the JSI of both sources, which is achieved when both signals and

idlers from both sources have maximum overlap. We opted for a bulk crystal

source in Type II to enable pumping in both directions while being able to

separate our four photons into different paths. We used a BiBO crystal due to

its relatively high non linearity.
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FIGURE A.7. Measured coincidence fringes Pcc(τ) with a contrast of 80%.

First, we measured the JSI by directing the two photons from either source

into the fiber spools, since their large spectral bandwidth would be cropped with

the CFBG. The JSI from each source is depicted in Fig3.4. They show that

both sources are nearly indistinguishable; a singular value decomposition yields

a Schmidt number of K1 = 2.9± .1 and K2 = 2.9± .1. These values are lower than

the theoretical expectation (K ∼ 5) because of the timing jitter of our detectors

that result in a broader distribution. This was confirmed by measuring the JSI

with the CFBG’s, which have a better resolution but are limited in range. The

correlation width was found to be lower and therefore the Schmidt number can be

expected to be at least K = 4.

Note that this method is insensitive to any spectral phase difference, such as

dispersion from the pump (which is equivalent to setting α ∈ C in the JSA (3.28)),

since the second pump is slightly more dispersed than the first due to propagation.

This has been shown to increase the entanglement and the Schmidt number
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FIGURE A.8. Left: HOM dip between the signal photons heralded by a
coincidence between the idler photons. Right: same measurement but with spectral
resolution of the heralding photons, labelled j, k for Ωk,Ωk, where index j, k = 0
corresponds to the center frequency ω0. The labelling convention is described in
Fig. 3.3.

[2, 116]. However, this difference should be negligible, and the method presented

that relies on Eq.(A.34) allows for a more accurate estimation of the overlap.

Nevertheless, the JSI measurement showed near-perfect correspondence between

the intensity of the two sources which is a critical step to ensure indistinguishably

between the uncorrelated photon pairs.

To further characterize the indistinguishability of the sources, we measure

their heralded g(2) by splitting their signal photon into a beamsplitter. This yields

a value of g
(2)
1 = 0.16 ± 0.003 and g

(2)
2 = 0.14 ± 0.003. These values are consistent

with the relatively high optical power that is utilized to pump the sources in order

to maximize the probability of four-fold coincidences. The lower value of g(2) for

source 2 is consistent with the fact that it also has a higher heralding efficiency

than source 1. The reason is not entirely clear, but it is likely that the previous

interaction with the PDC crystal on the first pass results in an additional filtering

on the pump as well as a slight reduction in optical power because of absorption.
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Finally, in Fig. A.7 we measured the coincidences between ports b̂3 and â3

(see Fig3.1) while scanning the relative phase between the two pump fields with a

piezoelectric stack, which is related to the probability from Eq.(A.34). We scanned

using a slow voltage ramp resulting in a few micrometers of displacement over a

few seconds. The visibility of those fringes is 80%, which is a direct measurement

of the overlap between the two sources, and therefore a quantification of

distinguishability.

A.7. Purity of the heralded states

Since the state |ψ12〉 from the sources is assumed to be a pure state, the

purity of the heralded states |Ψjk〉 is ultimately dependent on the amount of

spectral filtering in the heralding BSM. To assess this purity, we measure HOM

interference between the heralded signal photons when there is no beamsplitter in

the idler arms. In this case, upon a coincidence detection of the idler photons at

(Ωj,Ωk), the reduced state of the signal photons is separable, and given by

ρ̂j ⊗ ρ̂k =

(∫
d2ωρj(ω, ω

′)

)(∫
d2ω̃ρk(ω̃, ω̃

′)

)
â†1(ω)â†2(ω̃) |vac〉 〈vac| â1(ω′)â2(ω̃′), (A.35)

where

ρj(k)(ω, ω
′) =

∫
dΩ|tj(k)(Ω)|2f(ω,Ω)f ∗(ω′,Ω). (A.36)
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FIGURE A.9. Left: P (τS) without removing the constant two photon contribution
from source 1 (dot) and source 2 (square). P (τS) resembles Eq.(3.41) and the
fit is obtained by summing the individual fits of Pjk as given by (3.26). Right:
distribution of these background terms as a function of the heralding frequencies
Ωj,Ωk

When the signal photons in this state are incident on a 50:50 beamsplitter,

the expected visibility of the HOM interference is given by [38]

V = Tr(ρ̂j ρ̂k), (A.37)

and when the idlers are detected in identical frequency bins (j = k), this becomes

V = Tr(ρ̂2
j(k)) = P(ρ̂j(k)), (A.38)

where P(·) denotes the purity of a state. Thus, for (j = k) the visibility of the

HOM dip gives a lower bound on the purity of the state ρ̂j(k), and by extension,

the state ρ̂jk. Our measurements, shown in Fig. A.8, indicate that purity of the

heralded states is at least 70%, as evidenced by the HOM visibility along the

j = k line. By comparison, a direct calculation of the expected purity using our
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experimental parameters gives ∼ 78%. The purity of our heralded state seems to

be dominated by the spectral resolution of our spectrometer. Without spectral

resolution, the purity of the heralded state is about 20% as shown in Fig. A.8. We

note that at the time of writing, an experiment has been reported using spectral-

to-spatial spectrally-multiplexed HOM interference scheme, showing a similar

decrease in HOM visibility as a function of distance between frequency bins [117].

A.8. Background signal

As shown by Eq.(A.3), the full four photon state in the interferometer

(see Fig. 3.1) contains a contribution from photon pairs emitted by individual

sources due to the stochastic nature of parametric down conversion. These terms

contribute to P (τS) in the form of interferences that get averaged over the course

of a measurement. It is therefore possible to remove that contribution from the

signal subsequently to the measurement by blocking a source and recording the

rate of four-fold coincidences.

We therefore repeated the measurement of Pjk(τS) with either source blocked

to obtain the constant background signal for each j, k frequencies, as shown in

Fig. A.9. This shown that the background terms are similar between both sources,

therefore the two sources are similar. Summing over all the bins, we can plot on

the same scale the contribution of all term in Fig. A.9. The peak corresponds to

interferences from |ψ12〉 while the flat terms represent |ψ11〉 and |ψ22〉. As expected

from the theory, both source contribute to 1/4 of the full signal. Removing those

backgrounds at Ωj,Ωk from Pjk, we obtain the fringes from Chapter III with

optimal visibility.
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FIGURE A.10. Interference fringes in the two-fold (red) and fourfold (blue)
coincidences, obtained in ”real-time”, while scanning a PZT as described in the
text. The four-fold fringes can be seen to occur at twice the frequency of the two-
fold fringes.

As stated in the main text, we have assumed that the three terms in the

full state Eq. (A.3) are mutually incoherent. This is because our measurements

are taken over a long timescale of a few hours where the optical phase drifts

significantly and any phase-sensitive interference can be neglected. Over a shorter

time-scale, we can measure this optical phase in real time by measuring fourfold

coincidences with the two beamsplitters present, while scanning the PZT between

both sources. A straightforward calculation taking into account the full state (A.3)

shows that there is a term that oscillates at the sum frequency ω + Ω ≈ ωp, where

ωp is the pump frequency, corresponding to about 415 nm in wavelength. In Fig.

A.10, we plot the measured interference of the two-fold (red) coincidences against

the four-fold fringes (blue), where the latter can be seen to modulate at twice the

frequency of the two-fold modulation.
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FIGURE A.11. Sets of orthogonal modes Fjk that have less than 15 % of mutual
overlap. The insets label j and k.

A.9. Orthogonal modes

From Eq.(3.9), we see that the heralded state |Ψjk〉 is dependent on the

modes |φj〉 and |φk〉, which, in the pure state case, results in a heralded joint

spectrum (3.17) dependent on the outer products φj(ω1)φk(ω2). For each heralding

bin j and k, we label the heralded JSI from (3.9) as Fn(ω1, ω2), where n indexes

a pair (j, k). These are normalized as
∫

d2ωFn(ω1, ω2) = 1 ∀ n but are not

orthogonal, even in the pure state case, i.e
∫

d2ωFn(ω1, ω2)Fm(ω1, ω2) 6= δnm.

Orthogonality is usually a corner stone in any quantum protocol, and it is

therefore necessary to select the heralded states from our measurement that are

orthogonal. To do so, we utilize our measurement of Fjk by measuring the spectral

coincidences between the signal’s photon heralded by a BSM on the idlers. We

then obtain the set of JSI presented in Fig. 3.7(b).

First, it is important to notice the symmetry in (3.9), where Fjk = Fkj for

j 6= k. Since our TOFS are well-calibrated, it is reasonable to symmetrize our

measured heralded JSI by averaging the experimentally obtained Fjk and Fkj (for

j 6= k) thus defining the Fn functions. Then we compute the mutual overlaps∫
d2ωFn(ω1, ω2)Fm(ω1, ω2) and use an algorithm to select a set of modes {Fn}
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which all have an overlap below a certain threshold of 15%. We represented a few

of these JSI in Fig. A.11. Since the spectral range of our high resolution TOFS is

limited, so is the range over which we can compute overlap, as can be seen from

the modes that are labelled with a large j, k. Nevertheless, there is a sufficient

amount of spectral coincidence in those cases to infer orthogonality with the other

JSI.

Note that while this overlap is computed between the joint spectral

intensities and not between the states, it can be shown that if the overlap in

intensity is zero, then the states are necessarily orthogonal, hence the strategy is

valid to select which |Ψjk〉 are mutually orthogonal. Therefore, it is fair to say

that the JSI’s Fjk from Fig. A.11 correspond to heralded states |Ψjk〉 that are all

mutually orthogonal.

A.10. Miscellaneous functions and relations

Our theoretical derivation relies on the definition of the φj(k)(ω) functions

which renders computation easier thanks to the Gaussian approximation. These

functions can be also written in a density matrix formalism.

Using the definitions from Sec.3.2, the φj(k) functions are defined from the

JSA by:

f(ω,Ωj(k)) =
√
Njφj(k)(ω), (A.39)

where Nj is a function that depends on the heralding frequency Ωj, the JSA

bandwidth over the idler axis σI and the amount of entanglement α. The reduced

density matrix of the idler, given by Eq.(3.30), can then be written in the following
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manner:

ρI(Ωj,Ωk) =

∫
dω f(ω,Ωj)f

∗(ω,Ωk)

=
√
NjNk

∫
dω φj(ω)φ∗k(ω)

=
√
NjNk 〈φj|φk〉 , (A.40)

where we see that the idler density matrix can be linked to the overlap integral

between the heralded signal states. The Nj(k) functions are then found to be equal

to the diagonal elements of the idlers density matrix:

Nj(k) = ρI

(
Ωj(k),Ωj(k)

)
, (A.41)

since the φj(k) are `2 normalized.

The signal density matrices then follow a similar derivation, with

ρS(ω, ω′) =

∫
dΩj(k) f(ω,Ωj(k))f

∗(ω′,Ωj(k))

=

∫
dΩj(k) Nj(k)φj(k)(ω)φ∗j(k)(ω), (A.42)

and the diagonal elements are given by

ρS(ω, ω) =

∫
dΩj(k) Nj(k)

∣∣φj(k)(ω)
∣∣2 . (A.43)

It is easy to show that in the case of similar sources, we also have the identity

ρS(ω, ω′) = ρ∗S(ω′, ω). (A.44)
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Finally, the overlap between the modes φj and φk can also be written in term of

the density matrices, as:

〈φj|φk〉 =
ρI(Ωj,Ωk)√

NjNk

(A.45)

A.10.1. Overlap

As shown previously, the overlap between the modes φj and φk is also

written in term of the density matrices, as:

〈φj|φk〉 =
ρI(Ωj,Ωk)√

NjNk

(A.46)

Γ(ω1, ω2; τI) =

(∫
dΩf ∗(ω1,Ω)f(ω2,Ω)e−iΩτI

)
×(∫

dΩ′f ∗(ω2,Ω
′)f(ω1,Ω

′)eiΩ
′τI

)
(A.47)

which can be written more concisely as

Γ(ω1, ω2; τI) =

∣∣∣∣∫ dΩ f1(ω1,Ω)f ∗2 (ω2,Ω)

∣∣∣∣2
= |ρs1(ω1, ω2)ρ∗s2(ω1, ω2)|2 (A.48)

by writing f1(ω,Ω) = f(ω,Ω) and f2(ω,Ω) = f(ω,Ω)eiΩτI , showing that this

term is the overlap integral between the joint spectra of the sources. The second

expression is obtained by defining the reduced density matrices for the signal

photon of each source.
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APPENDIX B

SFG THEORY SUPPLEMENTAL

B.1. Deriving the three-wave mixing transformation

Strictly speaking, the Hamiltonian describing the nonlinear interactions we

consider is a time-dependent quantity, Ĥ(t), whereby a state |Ψout〉 evolves from

an initial state |Ψin〉 according to

|Ψout〉 = exp
[
− i

~

∫ t

0

dt′Ĥ(t′)
]
|Ψin〉

≈
(

1− i

~

∫ t

0

dt′Ĥ(t′)

)
|Ψin〉

(B.1)

The relevant Hamiltonian for three-wave mixing has the form

Ĥ(t) = χ

∫
V

dV Ê+
p (r, t)Ê−s (r, t)Ê−i (r, t) + H.c. (B.2)

where Ê
+(−)
j denotes the positive (negative) frequency component of the j field

operator, with j = p, s, i. V denotes the interaction volume, which we take to be

infinite in the transverse direction (by assuming the field modes are well-confined

within the crystal area), and of length L in the longitudinal direction. Finally,

r and t denote the space and time coordinates, and χ̃ describes the interaction

strength. We expand the field operators into their plane-wave components,

Ê+
j (r, t) =

∫
dωjAj(ωj) exp

[
i(kj(ωj) · r− ωjt)

]
âj(ωj),

Ê−j = (Ê+
j )†,

(B.3)
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where Aj(ωj) is a slowly-varying function of ω. Substituting these into the

Hamiltonian and absorbing all the slowly-varying functions into χ, we obtain

Ĥ(t) =χ

∫
V

dV

∫
dωpdωsdωiâp(ωp)â

†
s(ωs)â

†
i (ωi) (B.4)

× exp
[
i(kp(ωp)− ks(ωs)− ki(ωi)) · r

]
× exp

[
− i(ωp − ωs − ωi)t

]
+ H.c..

Now we use this form of the Hamiltonian to compute output state (B.1)

to first order in the expansion, whereupon we carry the integration over the

transverse spatial directions to infinity. Additionally, we carry out the time

integral from negative to positive infinity because the input and output states are

observed long before and after the interaction time t, resulting in a delta-function

in (ωp − ωs − ωi) (energy conservation). All of this obtains

|Ψout〉 ≈

[
1− iχ

∫ L

0

dz

∫
dωsdωi exp

[
i(∆k)zz

]
×âp(ωs + ωi)â

†
s(ωs)â

†
i (ωi) + H.c.

]
|Ψin〉 ,

(B.5)

where we have also absorbed the ~ into χ. Carrying out the integration over z

provides the phase-matching function Φ(ωs, ωi), and we define the transformation

Ĥ = χ

∫
dωsdωiΦ(ωs, ωi)âp(ωs + ωi)â

†
s(ωs)â

†
i (ωi) + H.c, (B.6)

such that

|Ψout〉 ≈
(

1− iĤ
)
|Ψin〉 . (B.7)
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B.2. Relating the entanglement parameter α to the Schmidt number K

In section 5.3.3 we used the scenario of spectral teleportation to illustrate the

role of entanglement in the measurement, on par with entanglement in the state,

in a quantum protocol. To that end, we quantified the teleportation fidelity in

terms of the correlation parameters α (β) of the bivariate Gaussian state fs(ω, ω
′)

(measurement fm(ω, ω′)). This parameter has the advantage of being bounded

by the interval [−1, 1], with maximal entanglement at the boundaries, whereas

more common measures of entanglement for pure states, such as the entropy

and the Schmidt number, diverge for maximal entanglement. Here we show for

completeness how the Schmidt number K depends functionally on α, while the

same analysis holds for β.

The Gaussian JSA fs(ω, ω
′) from (5.41) has a Schmidt decomposition of the

form

fs(ω, ω
′) =

∞∑
j=0

√
λj uj(ω)vj(ω

′), (B.8)

where {uj(ω)} is the orthonormal set of Hermite-Gauss functions spanning the

spectral Hilbert space over ω, and the same is true of {vj(ω′)} [3]. The Schmidt

coefficients λj are given by

λj = sech2 ζ tanh2j ζ, (B.9)

satisfying
∑∞

j=0 λj = 1, and where ζ is given by

α = tanh 2ζ. (B.10)
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The Schmidt number K is then given by

K =
1∑∞
j=0 λ

2
j

= cosh 2ζ. (B.11)

Combining Eq. (B.10) and (B.11), we arrive at the simple relationship

K =
1√

1− α2
, (B.12)

where, as expected, K is equal to unity for the case of no correlation, α = 0, and

diverges for maximal correlation, α = ±1.

205



REFERENCES CITED

[1] S. Merkouche, V. Thiel, A.O.C Davis, , and B.J. Smith. Heralding multiple
photonic pulsed bell-pairs via frequency-resolved entanglement swapping.
2021. In preparation.

[2] Vahid Ansari, John M. Donohue, Benjamin Brecht, and Christine Silberhorn.
Tailoring nonlinear processes for quantum optics with pulsed temporal-mode
encodings. Optica, 5(5):534, may 2018. ISSN 2334-2536. doi:
10.1364/OPTICA.5.000534. URL http://arxiv.org/abs/1803.04316

https://www.osapublishing.org/abstract.cfm?URI=optica-5-5-534.

[3] Travis S. Humble. Spectral and spread-spectral teleportation. Physical Review A
- Atomic, Molecular, and Optical Physics, 81(6):062339, 2010. ISSN
10502947. doi: 10.1103/PhysRevA.81.062339.

[4] M. Planck.
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