
EMPIRICAL PERFORMANCE ANALYSIS OF HPC APPLICATIONS WITH

PORTABLE HARDWARE COUNTER METRICS

by

BRIAN J GRAVELLE

A DISSERTATION

Presented to the Department of Computer and Information Sciences
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2022

DISSERTATION APPROVAL PAGE

Student: Brian J Gravelle

Title: Empirical Performance Analysis of HPC Applications with Portable
Hardware Counter Metrics

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Sciences by:

Boyana Norris Chair
Allen Malony Core Member
Hank Childs Core Member
Diego Melgar Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded June 2022

ii

c© 2022 Brian J Gravelle
All rights reserved.

This work, including text and images of this document but not including
supplemental files (for example, not including software code and data), is licensed

under a Creative Commons
Attribution 4.0 International License.

iii

http://creativecommons.org/licenses/by/4.0/

DISSERTATION ABSTRACT

Brian J Gravelle

Doctor of Philosophy

Department of Computer and Information Sciences

June 2022

Title: Empirical Performance Analysis of HPC Applications with Portable
Hardware Counter Metrics

In this dissertation, we demonstrate that it is possible to develop methods of

empirical hardware-counter-based performance analysis for scientific applications

running on diverse CPUs. Although counters have been used in performance

analysis for over 30 years, the methods remain limited to particular vendors or

generations of CPUs. Our hypothesis is that counter-based measurements could

be developed to provide consistent performance information on diverse CPUs. We

prove the hypothesis correct by demonstrating one such set of metrics.

We begin with an introduction and background discussing empirical

performance analysis on CPUs. The background includes the Roofline Performance

Model which is widely used to visualize the performance of scientific applications

relative to the potential system performance. This model uses metrics that are

portable to different CPU architectures, making it a useful starting point for

efforts to develop portable hardware counter metrics. We contribute to existing

roofline literature by presenting a method using counters to measure the required

application data on two CPUs and by presenting benchmarks to produce the

Roofline Model of the CPU. These contributions are complementary since the

iv

benchmarks can be used to validate the hardware counters used to measure the

application data.

We present a set of performance metrics derived from Hardware

Performance Monitors that we have been able to replicate on CPUs from two

vendors. We developed these metrics to focus on information that can inform

developers about the performance of algorithms and data structures in applications.

This method contrasts with other methods which are aimed at microarchitectural

features and allows users to understand application performance from the same

perspective on multiple CPUs.

We use a series of case studies to explore the usefulness of our metrics

and to validate that the measured values provide the expected information. The

first set of studies examines benchmarks and mini-applications with a variety of

performance. Finally, we study the performance of several versions of a scientific

application using the Roofline Model and the new metrics. These case studies show

that our performance metrics can provide performance information on two CPUs,

proving our hypothesis by example.

This dissertation includes previously published co-author material.

v

CURRICULUM VITAE

NAME OF AUTHOR: Brian J Gravelle

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
Gonzaga University, Spokane, WA, USA

DEGREES AWARDED:

Doctor of Philosophy, Computer Science, 2022, University of Oregon
Bachelor of Science, Computer Engineering, 2015, Gonzaga University

AREAS OF SPECIAL INTEREST:

High Performance Computing
Performance Analysis
Computer Architecture

PROFESSIONAL EXPERIENCE:

Graduate Research Assistant, Los Alamos National Laboratory, 2018-2022
Graduate Employee (Research), Dept. of Computer and Information

Science, University of Oregon, 2017-2022
Graduate Employee (Instructor of Record for Computer Architecture), Dept.

of Computer and Information Science, University of Oregon, Spring 2021
Graduate Employee (Teaching Assistant for undergraduate courses), Dept.

of Computer and Information Science, University of Oregon, 2015-2017
Undergraduate Research Assistant, Gonzaga University, 2013-2015

GRANTS, AWARDS AND HONORS:

Moursund Graduate Teaching Award, University of Oregon, 2021

vi

PUBLICATIONS:

Gravelle, B. J., & Nystrom, W. D., Yokelson, D., & Norris, B. (2021).
Enabling cache-aware roofline analysis with portable hardware
counter metrics. International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems.
Springer.

Graziano, V., & Nystrom, W. D., & Pritchard, H., & Smith, B., & Gravelle,
B. J. (2021). Optimizing a 3d multi-physics continuum mechanics code
for the hpe apollo 80 system. Cray User Group (CUG).

Gravelle, B. J., & Norris, B. (2019). Performance Analysis of Compressed
Batch Matrix Operations on Small Matrices. The 6th Special Session on
High Performance Computing Benchmarking and Optimization.

Gravelle, B. (2019). ”Understanding the Performance of HPC Applications.”
Technical Report for Departmental Area Exam.

Gravelle, B. (2017). ”Performance and Power Impacts of Autotuning of
Kalman Filters for Disparate Environments.” Technical Report for
Departmental Directed Research Project.

vii

ACKNOWLEDGEMENTS

I would like to begin by thanking those organizations that financially

supported the research presented in this dissertation. This work was supported

by the U.S. Department of Energy through the Los Alamos National Laboratory

(LANL). Los Alamos National Laboratory is operated by Triad National Security,

LLC, for the National Nuclear Security Administration of U.S. Department

of Energy (Contract No. 89233218CNA000001). The work would have been

impossible without the Darwin testbed at LANL which is funded by the

Computational Systems and Software Environments subprogram of LANL’s

Advanced Simulation and Computing program (NNSA/DOE). Additional support

came from the U.S. National Science Foundation, under grants PHY1520969,

PHY1521042, PHY1520942 and PHY1624356, and under Cooperative Agreement

OAC1836650, and by the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, Scientific Discovery through Advanced

Computing (SciDAC) program.

While completing this research I worked primarily in Los Alamos, New

Mexico and Eugene, Oregon. The following statements from LANL and the

University of Oregon, respectively, recognize the importance of the land to the

indigenous populations.

LANL and the communities of Los Alamos and White Rock are located

on Indigenous lands, ancestral to the Tanoan and Keresan speaking peoples of

northern New Mexico. This landscape, being located in an area of migration

and trade along the Rio Grande and Jemez Mountains, also retains ancestral

significance to Athabaskan speaking peoples – including the Dinétah and Apache

viii

– the Zuni and the Hopi. We value, respect and honor the traditional peoples and

landscapes which comprise the Laboratory, and recognize the multi-generational

support that Native American peoples and communities have provided to

LANL and the Department of Energy complex across the United States. Our

directive is to be responsible stewards of this landscape; to practice environmental

responsibility to meet the legal and ethical requirements needed for long-term

preservation of these indigenous lands.

The University of Oregon is located on Kalapuya Ilihi, the traditional

indigenous homeland of the Kalapuya people. Following treaties between 1851

and 1855, Kalapuya people were dispossessed of their indigenous homeland by

the United States government and forcibly removed to the Coast Reservation in

Western Oregon. Today, descendants are citizens of the Confederated Tribes of

Grand Ronde Community of Oregon and the Confederated Tribes of Siletz Indians

of Oregon, and continue to make important contributions in their communities, at

UO, and across the land we now refer to as Oregon.

Throughout my time as a graduate student, Boyana Norris has advised,

guided, and occasionally cajoled me into completing my research. Her technical

and personal advice helped me through the more difficult periods, while her

persistent joy and curiosity have been a source of inspiration. I have no doubt

that the successes of this dissertation are primarily due to her guiding hand and

its limitations due to my obstinacy.

Similarly, Dave Nystrom and been an invaluable mentor in matters of my

career and in my research. I have attempted to follow his example of dedication

and patience, and I hope that eventually I can pass some of his wisdom to other

interns.

ix

At both UO and LANL, I had many colleagues who supported this work.

Sam Pollard, Ph.D., Kewen Meng, Ph.D., and Curtis Dlouhy, Ph.D. were colleague

and friends throughout my time in Oregon. Cindy Martin, Andrew Montoya, Julie

Wiens, Howard Pritchard, and numerous others made my time at LANL enjoyable

and productive.

Finally I would like to thank my family for their love and support. They are

a constant source of inspiration and encouragement.

x

Dedicated to Denise and Delia in gratitude for their utmost patience.. . .

xi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. BACKGROUND . 6

2.1. Performance Measurement and Analysis of Applications 8

2.2. Arithmetic Intensity and the Roofline Model 10

2.2.1. Arithmetic Intensity and Data Movement 11

2.2.2. Roofline variations 14

2.3. Wrapping up the background 16

III. METHODOLOGY . 17

3.1. Systems . 17

3.2. Tools . 18

3.3. Benchmarks . 19

3.3.1. STREAM . 19

3.3.2. FP Crunch . 20

3.3.3. Cache Conflict Measurement 21

3.3.4. Matrix Multiplication 22

3.3.5. N-Body Simulation 26

3.4. Summary . 28

IV. EMPIRICAL ROOFLINES WITH HARDWARE
COUNTERS . 29

4.1. Architectural Rooflines . 30

4.1.1. STREAM Modification 31

4.1.2. FP Crunch . 38

4.2. Application Points . 40

xii

Chapter Page

4.2.1. Measuring Time . 41

4.2.2. Measuring Data Movement 41

4.2.3. Measuring Floating Point Operations 45

4.3. Examples . 48

4.3.1. N Body Example . 48

4.3.2. Matrix Multiplication Example 50

4.4. Summary . 52

V. A PROPOSED SET OF HARDWARE COUNTER
METRICS . 54

5.1. Defining Metrics . 55

5.2. Measuring the Metrics . 55

5.2.1. Counter Collection and Analysis for Data
Movement Metircs 57

5.2.2. Counter Collection and Analysis for Computation Metrics . . 60

5.2.3. Counter Collection and Analysis for Computation
Data Rate Metrics 63

5.3. Detailed Metric Discussion 63

5.3.1. Overall Performance 63

5.3.1.1. Demonstration with STREAM 64

5.3.1.2. Demonstration with Matrix Multiplication 66

5.3.2. Data Movement . 67

5.3.2.1. Demonstration with STREAM data 69

5.3.2.2. Demonstration with Loop Blocking 70

5.3.2.3. Demonstration with Cache Conflicts 73

5.3.3. Cache Efficiency . 75

5.3.3.1. Demonstration with Cache Conflicts 77

xiii

Chapter Page

5.3.3.2. Demonstration with Loop Blocking 79

5.3.4. Computation . 84

5.3.4.1. Demonstration with STREAM 86

5.3.4.2. Demonstration with Matrix Multiplication 86

5.3.5. Computation Data Rates 90

5.3.5.1. Demonstration with STREAM 92

5.3.5.2. Demonstration with Matrix Multiplication 92

5.4. Summary . 96

VI. CASE STUDIES OF MINI-APPLICATION
PERFORMANCE USING THE HARDWARE COUNTER
METRICS . 102

6.1. Kernel Examples . 102

6.1.1. N-Body Simulation 102

6.1.2. XSBench . 106

6.1.3. Cloverleaf . 109

6.1.4. PENNANT . 112

6.1.5. VPIC . 114

6.2. Summary . 118

VII. A CASE STUDY OF THE PAGOSA MULTI-PHYSICS
APPLICATION . 119

7.1. Target Application . 119

7.2. Vofid . 121

7.2.1. Versions . 121

7.2.2. Results . 124

7.2.3. Takeaways . 128

7.3. Strength 1 and Strength 2 131

xiv

Chapter Page

7.3.1. Versions . 131

7.3.2. Results . 132

7.3.3. Take Aways . 138

7.4. Summary . 143

VIII. CONCLUSION . 144

REFERENCES CITED . 148

xv

LIST OF FIGURES

Figure Page

1. Comparison between the basic Von Neumann architecture
and a more modern model with multiple levels of memory caching. . . . 11

2. Results running the modified STREAM benchmark on the A64FX . . . 33

3. Results running the modified STREAM benchmark on the
Cascade Lake . 35

4. STREAM Bandwidth relative to per core data size on the A64FX . . . 36

5. STREAM bandwidth relative to per core data size on the
Cascade Lake . 36

6. STREAM Bandwidth relative to per core data size on the
Cascade Lake . 37

7. Comparison of the bytes moved and bandwidth on the A64FX 45

8. Comparison of the bytes moved and bandwidth on the
Cascade Lake . 46

9. Comparison of expected and measured flops on A64FX 48

10. Comparison of expected and measured flops on Cascade Lake 49

11. Roofline plot for N Body on the A64FX 50

12. Roofline plots for N Body on the Cascade Lake 51

13. Roofline plots for matrix multiplication on the A64FX 52

14. Roofline plots for matrix multiplication on the Cascade Lake 53

15. Overall metrics for the STREAM benchmark run at each
level of cache on the A64FX. 65

16. Overall metrics for the STREAM benchmark run at each
level of cache on the Cascade Lake. 65

17. Overall metrics for three versions of the Matrix
Multiplication run on the A64FX 66

xvi

Figure Page

18. Overall metrics for three. versions of the Matrix
Multiplication benchmark run on the Cascade Lake. 67

19. Overall metrics for three versions of the Matrix
Multiplication run on the A64FX 68

20. A64 bytes at each cache level for each STREAM size. 70

21. Cascade Lake bytes at each cache level for each STREAM size. 71

22. Data movement relative to block size for the matrix
multiplication kernel on the A64FX. 72

23. Execution time relative to block size for the matrix
multiplication kernel on the A64FX. 73

24. Cascade Lake bytes relative to block size for the matrix
multiplication kernel. 74

25. Cascade Lake time relative to block size for the matrix
multiplication kernel. 75

26. A64FX bytes relative to the offset in our associativity example. 76

27. Cascade Lake bytes relative to the offset in our associativity example. . . 77

28. A64FX byte ratios relative to the offset in our associativity example. . . 78

29. Cascade Lake byte ratios relative to the offset in our
associativity example. 79

30. A64FX miss rates relative to the offset in our associativity example. . . 80

31. Cascade Lake miss rates relative to the offset in our
associativity example. 81

32. A64FX byte ratios for the matrix multiplication variations. 82

33. Cascade Lake byte ratios for the matrix multiplication variations. . . . 83

34. A64FX miss rates for the matrix multiplication variations. 84

35. Cascade Lake miss rates for the matrix multiplication variations. 85

36. Percent difference between the expected and measured flops
for STREAM run on the A64FX 87

xvii

Figure Page

37. Percent difference between the expected and measured flops
for STREAM run on the Cascade Lake 88

38. A64FX flops for the matrix multiplication variations. 89

39. Cascade Lake flops for the matrix multiplication variations. 90

40. A64FX computation data rates for STREAM with several
data sizes. 93

41. Cascade Lake computation data rates for STREAM with
several data sizes. 94

42. A64FX flops / LD and flops / ST for the matrix
multiplication variations. 95

43. Cascade Lake flops / LD and flops / ST for the matrix
multiplication variations. 96

44. A64FX Time for the matrix multiplication variations. 97

45. Cascade Lake Time for the matrix multiplication variations. 98

46. A64FX LD ins/ST ins for the matrix multiplication variations. 98

47. Cascade Lake LD ins/ST ins for the matrix multiplication variations. . 99

48. A64FX AI flops / LD bytes and flops / ST bytes for
the matrix multiplication variations. 99

49. Cascade Lake AI flops / LD bytes and flops / ST bytes
for the matrix multiplication variations. 100

50. A64FX AI and flops / LD bytes for the matrix
multiplication variations. 100

51. Cascade Lake AI and flops / LD bytes for the matrix
multiplication variations. 101

52. Hotspots of Pagosa . 120

53. A roofline with application points for the Vofid kernel on
the A64FX. 125

54. A roofline with application points for the Vofid kernel on
the Cascade Lake . 127

xviii

Figure Page

55. A roofline with application points for the Strength 1 kernel
on A64FX. 133

56. A roofline with application points for the Strength 1 kernel
on Cascade Lake. 134

57. A roofline with application points for the Strength 2 kernel
on A64FX. 135

58. A roofline with application points for the Strength 2 kernel
on Cascade Lake. 136

xix

LIST OF TABLES

Table Page

1. Architecture details for the systems used in this dissertation. 17

2. Cache details of the two systems. 32

3. Results from the FP Crunch benchmark on A64FX 40

4. Results from the FP Crunch benchmark on Cascade Lake 40

5. Counters used to calculate the Bytes on A64FX 42

6. Counters used to calculate the flops and bytes on Cascade Lake 43

7. Counters used to calculate the FLOPs on the A64FX 47

8. Roofline application point data for N Body on two systems. 50

9. The Proposed set of existing and new metrics. 56

10. PAPI [1] Counter names used to calculate the data
movement on Cascade Lake . 58

11. Counters used to calculate data movement on A64FX 58

12. PAPI [1] Counter names used to calculate the data
movement on Cascade Lake . 61

13. Counters used to calculate the flops and IPC on A64FX 61

14. flops / fp ins for each version of matrix multiplication 91

15. Compilers and options for the N-Body application 103

16. N-Body data from unoptimized and optimized versions 104

17. XSBench event kernel data . 107

18. Cloverleaf PdV kernel data . 110

19. PENNANT doCycle kernel data with different OpenMP
chuck sizes . 113

20. VPIC Data for the center p kernel 116

xx

Table Page

21. Versions of the Vofid kernel . 123

22. Counter results for the Vofid kernel on A64FX 129

23. Counter results for the Vofid kernel on Cascade Lake 130

24. Versions of the Strength functions. 133

25. Counter results for the Strength 1 kernel on A64FX 139

26. Strength 1 counter results on Cascade Lake 140

27. Strength 2 counter results on A64FX 141

28. Counter results for the Strength 2 kernel on Cascade Lake 142

xxi

CHAPTER I

INTRODUCTION

The research presented in this dissertation explores the potential of using

Hardware Performance Monitors to analyze application performance consistently

across multiple types of CPUs. Hardware Performance Monitors (also called

hardware counters) have been used for many years to study the performance

of software and systems. The counters offer a close look at how software uses

the microarchitecture of a processing unit, which enables users to gain detailed

insight into the performance of an application running on a particular system.

Unfortunately, the methods based on hardware counters often restrict users to

specific systems and only provide limited information about the algorithm targeted

by the analysis. This dissertation explores the hypothesis that hardware counter

metrics can provide actionable performance information to users on a diverse set of

CPU types. We prove the accuracy of our hypothesis by developing a set of such

hardware counter metrics, validating those measurements, and applying them to a

series of example applications on two CPU types.

This hypothesis is transformed into our central research question: Can

hardware counters on different CPU types produce the same set of performance

metrics that help the user understand the performance of scientific applications?

We answer this question in four stages

– Can an existing CPU-agnostic performance analysis technique be used in

conjunction with hardware counter metrics derived from diverse CPU types?

– Can additional metrics be collected to add further information to the

performance analysis?

1

– Does this provide useful info in a variety of performance cases?

– Does this scale to a full application?

For this research, we restrict the scope of hardware and software. Any

area of computing can make use of performance analysis to get the most use out

of its systems, but we focus on scientific computing which has a long history of

using some of the largest Supercomputers available. In general, these applications

rely on floating-point arithmetic and have a computational rate defined as the

number of floating-point operations executed per second. We limit ourselves to

these applications because of the consistency of this definition of performance and

the long history of performance analysis in the scientific computing community.

Each year a larger portion of scientific computing moves to processing on Graphics

Processing Units (GPUs) instead of the more generalizable Central Processing

Units (CPUs). We limit the scope of the work to CPUs because there is a sufficient

variety of microarchitectures to impede the portability of metrics, justifying the

need for application-oriented metrics. In future work, we can extend the scope to

GPUs and other accelerators which would add variety to the microarchitectures.

We describe the current state of related research in Chapter II. This

chapter discusses historical and modern methods of using hardware counters for

performance analysis, with particular focus on the limitations of these methods

that our research aims to resolve. In addition, we discuss the Roofline Method of

modeling processors and performance. We use hardware counters to gather the

metrics required for this method and to validate the benchmarks necessary to

produce the architectural models. Our research builds on the work discussed in

this chapter.

2

Throughout the dissertation, we use a consistent set of tools, systems,

and benchmarks. These pieces of our methodology are described in Chapter III.

In this chapter, we describe the set of tools we use for collecting and processing

hardware counter data although users may have other methods that they prefer.

Additionally, we describe the two CPU types we use throughout this work and the

other aspects of the systems including compilers and operating systems. Finally, we

describe several benchmarks that we use to evaluate and then showcase hardware

counter metrics. The infrastructure discussed in Chapter III is used repeatedly

throughout the dissertation, but additional tools and applications are introduced as

needed in later chapters.

After establishing this context for the research, we present our contributions.

The central aim of the contributions is to assess the feasibility of using consistent

hardware counter metrics across different microarchitectures to provide users with

empirical application-oriented performance information. We demonstrate our

methods of performance analysis by first introducing a novel method of using

hardware counters to conduct Roofline-based performance analysis. Then we

develop a larger range of empirical hardware counter metrics that are applicable

across different microarchitectures along with a series of analyses that showcase

the use of the metrics. Finally, we apply the combined methods to a scientific

application, to gain insight into the change in performance over several versions.

In Chapter IV, our contributions begin by building on performance analysis

using the Roofline Model. We chose this starting point because the roofline

provides a simple model of a generic CPU that is applicable across all modern CPU

types. It connects this model to target applications by plotting the application

point on the model. This combination provides context for the performance of the

3

application and indicates potential limiting hardware features. We introduce a set

of benchmarks that are useful for building empirical Roofline Models. Additionally,

we use these benchmarks to validate a set of hardware counter metrics which can

be used to plot the application point on the Roofline Model. The result is a new

method to empirically use Roofline Modelling to understand the performance of an

application on different CPU types.

Starting with roofline measurements, we take a similar approach to defining

a set of performance metrics in Chapter V. The Roofline Model uses two metrics

that apply to any CPU, and we decided to search for other microarchitecture-

agnostic metrics that hardware counters could measure. We sought to define

metrics that provided information 1) about common hardware features, 2) related

to the algorithm or data structures, and 3) can be measured with hardware

counters on our two target systems. Our efforts resulted in a set of metrics

that users can apply to their application without detailed knowledge of the

microarchitecture. Some of these metrics are novel and some have been used by

other researchers. The focus of the metrics is on how data is moved in the system

and how computation is performed.

Based on this set of metrics, we conduct several analyses of benchmarks and

mini-applications in Chapter VI. Each of the benchmarks and mini-applications we

consider is related to one or scientific applications, so the performance features will

be relevant to real-world users. We collect data on the two systems discussed in

Chapter III and for multiple versions of each target mini-application. This process

allows us to demonstrate the applicability of the metrics to a range of performance

situations.

4

Finally, in Chapter VII, we present a case study of analysis of Pagosa, a

fluid dynamics application that is in widespread use. We use both the Roofline

Model analysis and the hardware counter metrics presented in previous chapters

to study the performance of a series of optimizations to key computational kernels

in the application. This study addresses why certain optimization efforts worked

for the kernels, demonstrating the usefulness in aiding developers’ evaluation and

optimization of application performance.

The methods presented in this dissertation show that hardware counters

can be used to conduct performance analysis focused on the application’s features

rather than the specifics of a microarchitecture. We relate our method to the

commonly used performance analysis method based on the Roofline Model

(Chapter IV) and extend it to new areas with the introduction of portable

hardware counter metrics (Chapter V). Through a series of case studies we show

that the method is scalable to small kernels (Chapter VI) and full applications

(Chapter VII). In total, this research demonstrates that a set of hardware counter-

based metrics can provide actionable information to the user across a set of CPUs

with different ISAs, microarchitectures, and hardware counter interfaces.

5

CHAPTER II

BACKGROUND

The research presented in this dissertation builds on the long history of

node-level performance analysis of scientific applications. Scientific applications are

a vital part of research for scientists in many fields who rely on simulation or data

processing to conduct their research [2] [3]. Performance analysis and optimization

of these applications is a necessary part of the process since time on computing

clusters can be expensive or a bottleneck to other research. Of the many aspects

of performance in a scientific application, we chose to focus on the performance

of computational kernels running on CPUs. At this level, performance analysis

considers the use of the processor pipeline, arithmetic units, caches, main memory,

and other ”node-level” aspects of the system.

There is a great deal of background information available to those interested

in High Performance Computing (HPC) in general. We recommend Eijkhout’s

open-source textbook [4] for an introduction to many of the intersecting fields that

an HPC user may encounter. Robey and Zamora [5] is an up-to-date text that

covers the systems and software that are found in modern HPC systems. Jeffers

and Reinders [6] bring together a set of parallel computing examples with many

details and implementations to help readers understand parallel computation. For

those interested in the architectural aspects of HPC, Hennessy and Patterson have

written six editions of textbooks guiding readers through computer architecture [7].

Also, Dean et al. [8] provides insight on recent trends in computer architecture

and the future of the field. Similarly, Jalby et al. give their thoughts on the future

of HPC as we enter the Exascale era [9]. There are doubtless many more authors

6

whose work readers may find useful, but we hope these will provide a starting point

for the interested reader.

We do not expect that the reader will understand the full scope of HPC

research (the author certainly falls short of this goal), but the reader may find a

review of performance analysis useful. Performance analysis can be based on data

from empirical studies, information gathered statically through the examination

of algorithms and hardware, or the results of simulation. Empirical analysis

is much like other sciences; measurements are taken and results are examined

leading to new hypotheses and experiments. Static analysis or simulation provides

information that may be difficult to measure empirically, but these methods are

also limited in the amount of detail they can consider. Application developers use

the information gathered from any of these methods to understand the performance

of the application.

We focus on empirical performance analysis because our background

research led us to the conclusion that hardware counter information was not

used to its full potential. This conclusion encouraged us to explore our primary

hypothesis that hardware counter metrics can provide actionable performance

information to users on a diverse set of CPU types.

Performance analysts who use empirical analysis can use a range of metrics

from simple timers to tools that record and trace each memory address that an

application uses. The methods we use in the following chapters use hardware

counters to collect data on events that occur in the CPU or memory subsystem

while an application is running. We provide background on this method of analysis

in Section 2.1. The Roofline Model is a model of a CPU that can be used in

conjunction with measurement or static program analysis to provide the user with

7

an understanding of their application. In Section 2.2, we describe the model and

the measurements that are necessary to build and use the model.

2.1 Performance Measurement and Analysis of Applications

Measuring the performance of an application can be as simple as using

a clock to check how long an application takes to run or involve complex

toolchains to gather detailed information on the hardware. Any measurement of

an application running on the target system is empirical analysis.

Modern programming languages offer interfaces to the operating system

timers which can be placed at key points in an application. By measuring key

points throughout the application, the user can identify which areas are most

important. Amdahl’s Law [10] tells us that we need to focus our optimization

efforts on the most time-consuming portions of the application, so this ”hotspots“

analysis is a good first step.

The metrics we introduce in this research are all based on hardware

counters. Physically, these are registers built into CPUs and GPUs that record

events that occur in the processor. Conveniently, libraries such as PAPI [1] and

perf [11] provide human-readable names and high-level language interfaces for the

counters. The PAPI authors regularly update these interfaces for new CPUs.

The data collection can occur in one of two ways. Sampling is one option,

which periodically interrupts the program to record the counter values. This

method is less intrusive to the application but also less accurate. It is used by

TAU [12, 13] and HPCTookit [14, 15]. Alternatively, the measurements can be

inserted into an application at key points. This instrumentation can be done

manually as in Caliper [16] and Likwid [17], or a tool can perform automatic

instrumentation which is another option in TAU [12, 13]. We find that sampling

8

provides a good overview of the program which can be used to choose particular

areas of focus for the instrumentation.

In addition to the open-source tools, many vendors provide tools for users to

measure the performance on their systems. Intel offers VTune, ARM has Forge, and

HPE provides Craypat. These tools are professionally maintained with nice graphic

user interfaces but can limit the user to particular products.

Hardware counters provide unique information about the inner workings of

the processor, but the uniqueness causes challenges for validation. Since there is no

way to check many of the values measured by counters, validation is a challenge.

Carefully made benchmarks [18, 19, 20, 21] are the best way to validate the values

provided by counters.

At first hardware, counters were primarily used to characterize the workload

of systems. In [22], the authors use counters to identify which instruction types

have the largest impact on the performance of a mainframe system. Williams et

al. [23] compare two identical systems with different workloads to help guide future

system design. Finally, Cvetanovic and Bhandarkar [24] compare technical and

commercial workloads to gain insight into the similarities and differences between

the two workload types.

In [25], Zagha et al. conduct analysis and optimization of computational

kernels based on the results of hardware counter data. The authors describe the

implementation of the hardware required for the counters along with the software

that enables the application developer to make use of them. Additionally, the

authors use several cache metrics similar to our own to identify performance

bottlenecks in their target kernels.

9

When studying the performance of a particular kernel, the most common

method of hardware counter analysis is to identify a base measurement of time or

work and then count events that fill up the base value to establish what hardware

features are most important to the performance of an application. Eyerman et

al. [26, 27] use cycles per instruction (CPI). The authors effectively visualize where

the potential CPI is lost which makes the method useful to developers. Similarly,

Nowak et al. present the HCA [28], which uses a tree structure to visualize

the allocation of CPU cycles guiding users to performance bottlenecks. Yasin

introduces the Top-Down Method of Analysis in [29], which uses slots (available

spots for instructions to retire in each cycle) as the base metric. The TMA has

been extended several times [30, 31] and is widely used on Intel systems, and may

soon be used on ARM [32] and AMD [33], as well. These methods are thorough,

but require the user to have detailed knowledge of the CPU architecture to be

useful. Developing this knowledge is an added burden for many scientific software

developers who need to focus their attention on their discipline.

Several authors have worked on identifying particular metrics for

performance analysis [34, 35]. Their methods have inspired some of ours, in

particular identifying ways to consistently validate counters across systems. We

build on this work by adding new metrics beyond Bandwidth and data movement.

2.2 Arithmetic Intensity and the Roofline Model

One of the simplest models of computing is the Von Neumann architecture

(Figure 1a). This model presents a computer as having two primary functions; data

movement and arithmetic. The model is simple but holds true even for modern

computers.

10

(a) The basic Von
Neumann architecure.

(b) A model memory
hierarchy with caches.

Figure 1. Comparison between the basic Von Neumann architecture and a more
modern model with multiple levels of memory caching.

This model can be used to understand the performance of a computer

system by looking at the throughput of operations for arithmetic and data

movement parts of the hardware. If the data movement is not operating quickly

enough then the arithmetic functions are delayed waiting for the necessary data

and vis a versa. The point at which arithmetic and movement match is known as

”machine balance” [36].

2.2.1 Arithmetic Intensity and Data Movement. In Callahan’s

work [36], the data movement is simply defined as the amount of data moved

between the main memory and the processor. However, in the intervening years,

there have been many layers of cache added between the processor and the main

memory (see Figure 1b). The amount of data varies at each level, forcing users

to question which is most useful. Additionally, there are several techniques for

measuring or estimating the data movement each of which has its advantages and

disadvantages.

11

Modern processors usually have 2 or 3 levels of cache and data movement

between any of these levels can be used for AI. We refer to the movement between

the level 1 cache (closest to the processor) and the processor as DataL1. Similarly,

movement between the level 2 and level 1 cache is referred to as DataL2.

When referring to data movement to or from a particular level of cache,

this is subtly different from the hardware-defined bandwidth of the cache. Most

existing caches have a single set of ports that moved data from the layer below and

layer below, but we only refer to the data moved to or from the next level closest

to the CPU. We think of this metric as the ”apparent bandwidth” i.e. what the

CPU can access when the data is residing in the cache level in question. While

there are situations in which the user will want to understand the utilization of the

physical bandwidth at a particular cache level, the apparent bandwidth method is

easier to relate to an application kernel and therefore more useful for improving the

performance.

In the original Roofline [37], data movement was defined as that moved

between the main memory and the last level of cache (AImainmem). The main

memory bandwidth is often a significant limiting factor to the performance of

applications so there is significant motivation to focus on this level. Additionally,

users tend to understand the bottleneck posed by the main memory and there are

many optimizations (i.e. cache block and data layout optimizations) that aim to

alleviate the bandwidth and apply to many scientific kernels.

Unfortunately, AImainmem has significant disadvantages. In particular,

the volume of data moved can be inconsistent for different data sets and many

algorithmic changes. For example, a kernel that repeatedly iterates through a data

set that is significantly larger than the caches will have more data movement than

12

a kernel operating on a data set that is close to the size of the last level cache. As

a result, the AImainmem will be volatile relative to the data st size. Similarly, if a

cache blocking optimization is applied so that the kernel uses the cache’s temporal

locality, then the AImainmem will change with the reduced main memory data

movement. In the most extreme case, data will fit entirely in a cache level and

the AImainmem will become non-sensical. Such variations in the AImainmem can be

confusing and difficult to connect back to changes in the algorithm.

At the other extreme is the AIL1, which uses the data moved between the

first level of cache and the processor. This method was popularized by the Cache

Aware Roofline Method [38]which produced Rooflines for each of the cache levels

all based on the AIL1. This method provides a consistent understanding of the data

moved relative to the amount of computation even with changes to the data size

or optimizations designed to better use cache. AIL1 is designed to be more closely

tied to the algorithm under consideration enabling the user to more easily compare

optimizations and predict what changes will best improve application performance.

Additionally, it allows bandwidth lines to be plotted fr all the cache levels, so the

user can understand which level is having the most impact on performance. The

main downside is that new users of the Roofline are often not informed of the

differences between AIL1 and AImainmem leading to significant confusion.

For users looking for additional detail, they can combine the AI versions

into a single Roofline. This method, the Integrated Roofline, plots each cache

line based on its own AI and then plots one application point for each AI. The

resulting plots can be quite confusing but offer more information on how the

different cache levels are used.

13

The versions discussed so far are all defined relative to the hardware in

use. One final option is a theoretical AI (AItheory). In this case, data movement

and floating-point operations can be computed by algorithm analysis and

plotted accordingly. This method is most closely related to the formulation of

the algorithm in question but can neglect important factors such as compiler

optimizations. If these changes aren’t understood, then the user may mis-

characterize the kernel that is actually run on the system.

While the author’s personal preference is the AIL1, there are good reasons

for the other options. What is most important is that the user understands which

method is in use and takes that into consideration when reasoning about the

performance of the application.

2.2.2 Roofline variations. The Roofline model [37] of performance

recognizes the computation and data movement as the primary limiting functions

of a given processor. The model then compares the floating point operations per

second (flops/s) to the AI to model the performance potential of the processor.

Users can use the AI and flops/s of their application to compare to the potential

performance. The position of the application point to the ceilings that represent

the performance potential of different hardware features can help the user identify

areas for improvement. Roofline Modeling is a useful tool, so researchers have

developed many versions.

The peak potential of the processor generally includes all possible

hardware optimizations available on the system including, SIMD operations, FMA

instructions, threads, and any others. The user can then add roofs where each of

those features is removed to measure the reduced potential ceiling. For the data

14

movement part of the Roofline, cache level are often used, but features such as

prefetching, unit stride access patterns, and NUMA domains are also possible.

The original version defined the arithmetic intensity in terms of the data

moved between main memory and the last level of cache, but as discussed above,

this has some drawbacks. In particular, there are no ceilings for the different cache

levels. The Integrated Roofline model [39] adjusts the arithmetic intensity to each

level of cache. This innovation allows the user to have ceilings of bandwidth for

each cache level, but complicates the plotting of application points since there are

multiple AI measurements to choose from. The Cache Aware Roofline resolves

these issues by using the AIL1 as we discussed previously. We choose the Cache

Aware version for our work in Chapter IV because of the ease of use.

Many other variations of the Roofline model exist, often targeting particular

types of CPU hardware and software. Denoyelle et al. [40] target nodes with

heterogeneous memory hierarchies. The authors of [41] modify the Roofline for

asynchronous runtimes. Cardwell and Song [42] extend the model for distributed

memory systems. Choi et al. modified the model to a greater extent to create a

Roofline Model of Energy in [43].

Two separate groups, Marques et al. [44] and Cabezas and Püschel [45],

extend the roofline to consider the instruction mixes of the application being

studied. This allows the user to have more realistic expectations of the potential

and a better understanding of which ceilings are limiting performance.

In addition to many versions of the Roofline, there are several papers about

focused on applying the Roofline model in different situations. Lo et al. [46] present

a tool to create the architectural model, and Doerfler et al. [47] apply the model to

15

performance analysis of an application on an Intel XEON Phi processor. Norris et

al. [48] present a visualization tool for Rooflines.

Most similar to our work, Ofenbeck et al. [49] develop a detailed method of

measuring data for application points for the original Roofline. This work is limited

to Intel CPUs and single-threaded validation.

2.3 Wrapping up the background

In this chapter, we have provided an overview of empirical performance

analysis of scientific applications with particular focus on the use of hardware

counters to collect data. Additionally, we discussed the Roofline model of

performance and the different ways that a user may measure arithmetic intensity.

Lacking in the existing literature are hardware counter metrics that provide

actionable performance information to users on a diverse set of CPU types. The

remainder of this dissertation shows that such metrics are possible for at least two

CPUs with different sets of hardware counters.

16

CHAPTER III

METHODOLOGY

Throughout this dissertation, we use a consistent set of systems, tools, and

benchmarks to develop and demonstrate our analysis methods. The systems we

use have several major differences, especially in what types of data are measured in

the hardware counters. The tools and benchmarks we try to keep consistent for the

whole dissertation. We present the details of our systems, tools, and benchmarks in

this Chapter.

3.1 Systems

We use two CPU types to design and test our methods. The first is an

Intel Cascade Lake Gold, and the second is the Fujitsu A64FX. While both have

48 cores and 512-bit SIMD Instructions, the most important differences between

the two appear in the memory subsystems. Cascade Lake’s main memory is DDR

with a peak Bandwidth (BW) of approximately 200 GB/s, while A64FX has High

Bandwidth Memory (HBM) that measures 800 GB/s. Additionally, the Cascade

Lake has three levels of cache while the A64FX has only two levels. Table 1 shows

detailed specifications comparing the CPUs and memory subsystems.

Table 1. Architecture details for the systems used in this dissertation.

A64FX Cascade Lake Platinum 8260
ISA ARM with SVE x86 with AVX512

Sockets 4 2
Cores per socket 12 24
Threads per core 1 2

L1 Cache 64KiB per core 32KiB per core
L2 Cache 32 MiB Total 1 MiB/core (48MiB Total)
L3 Cache None 35.75 MiB

Main Memory 31 GB HBM 188 GB DRAM
Cache Line size 256 Bytes 64 Bytes

17

On the Cascade Lake system we compile the applications with the Intel

compiler version 19. and OpenMPI 3.1.6 when MPI is used.

On the A64FX we use three different compilers depending on the needs.

3.2 Tools

Measuring hardware counters requires the users to record the counter

values and program data then process that data. We discuss some of the tools for

empirical measurement of hardware counters in Chapter II Section 2.1. This section

covers the methods we use.

PAPI [1] and lilbpfm [11] interface directly with the hardware and provide

a consistent interface for accessing hardware counters on a variety of CPU

architectures. The developers regularly update the libraries to keep pace with

new CPUs. We use these libraries together which allows us to access the counters

through the human-readable interface. Counter names used later in the dissertation

will use the PAPI names.

We also use the Caliper [16] library to connect the PAPI interface to

applications. Although PAPI can be directly called from applications, we use the

Caliper library because it handles the interface with PAPI alongside the metadata

necessary for understanding OpenMP and MPI results. We configure Caliper

to write the results to a set of JSON files, which provide consistent format for

processing the results.

As we discuss in Chapters IV and V, we need to collect around 50 counters

to compute all the metrics presented. This process takes some time because there

are more events counted by hardware counters than there are registers to count

them. As a result, we automate the process of repeatedly running the application

to collect all of the necessary counters.

18

Once the data is collected, we use python scripts to automatically compute

our metrics.

3.3 Benchmarks

We use a set of benchmarks (small, carefully crafted applications) to help us

understand how the CPUs are operating and exactly what the hardware counters

are measuring. These benchmarks can serve multiple purposes, including validating

hardware counter metrics and developing a deeper understanding of the CPU. We

use the benchmarks in this section for both purposes and refer to them throughout

the dissertation.

3.3.1 STREAM. STREAM [50] is a widely used benchmark for

measuring peak memory bandwidth by element-wise additions and multiplications

of large arrays. Conventionally, STREAM includes four kernels: Copy, Add,

Scale, and Triad. The data size can be adjusted to fit in each cache to measure

the bandwidth at each level of cache. We use the benchmark to measure the

bandwidths of the memory subsystem and to validate various hardware counter

metrics.

Note that this bandwidth is not that of the physical cache interface; rather,

it is the bandwidth between a set of data residing primarily in a particular cache

and the CPU. This distinction is subtle, but STREAM cannot be used to measure

the physical bandwidth of a cache interface because the timing is performed on the

CPU. It is perfect for measuring what we think of as the ”apparent bandwidth” for

an application with data residing in some layer of cache. Our research is focused

on understanding the performance of applications, not hardware, so we see this

distinction as a useful feature of STREAM.

19

We adjust the STREAM benchmark so that the number of memory and

arithmetic operations remain constant as the data size changes. We achieve this

consistency by adding an additional repetitions loop and providing an automated

tool for computing the sizes and iterations required for each system1. It is unlikely

that we are the first to use STREAM in this way; however, we are not aware of any

similar publications or publically available benchmarks.

We show our modified STREAM Triad in Algorithm 1. N is the number

of elements in each array; this value determines the number of load and store

operations performed by the benchmark. Originally, N was intended to be larger

than the last level of cache to force the benchmark to repeatedly read from the

main memory. We adjust N to measure how the apparent bandwidth changes as

the data size changes. The first repetition loop (NT 1 in Algorithm 1) is part of

the original STREAM benchmark designed to run the kernel multiple times for

improved accuracy. We add a second iterations loop (NT 2) which can be adjusted

to hold the number of operations constant while N is varied. Keeping the product

of N and NT 2 constant ensures that the CPU performs the same amount of work

on different sizes of data. This consistency allows the user to adjust the benchmark

to measure the bandwidth of each layer of cache or validate the results of hardware

counters.

3.3.2 FP Crunch. We designed the FP Crunch benchmark to

complement STREAM by measuring the peak rate of floating-point computation

on a system. Algorithm 2 shows the FP Crunch benchmark. At first glance, it

appears similar to STREAM, but the trials and the iterations loops are reversed.

This change allows the CPU to run the arithmetic operations rapidly without

1https://github.com/HPCL/benchmarks/tree/shingles/kernels/shingles/STREAM

20

Algorithm 1 STREAM Triad

N ← Data size
NT 1← Number of repetitions
NT 2← Number of repetitions to match operation count
a← [N]
b← [N]
c← [N]
scalar ← some scalar floating point
for k in NT 1 . original repetitions

for kk in NT 2 . additional repetitions for our version
for each i loop nest N

a[i] = b[i] + scalar ∗ c[i]

waiting on memory operations. Additionally, manual scalar replacement of the

array access prevents the compiler from adding unnecessary write operations to

the kernel. Finally, the kernel can be easily modified (see Chapter V) to measure

different types of arithmetic operations.

Algorithm 2 FP Crunch

N ← Data size
NT ← Number of trials
a← [N]
b← [N]
c← [N]
for i in N . Iterations loop

fa sca = fa[i]
for kk in NT . Trials loop

fa sca+ = fc[i] ∗ fb[i]
fa[i] = fa sca

3.3.3 Cache Conflict Measurement. We use a cache conflict

benchmark as our last example of the data movement metrics. Similar to

STREAM, this benchmark iterates over the elements in an array that is larger

than the L1 cache; however the iteration steps by an offset of o. An outer loop is

used to ensure the same number of load and store operations occur for all values

21

of o. Algorithm 3 shows the benchmark. When the offset is a multiple of the

number and size of cache blocks, then cache conflicts will occur. Our array size and

operation count are large enough that only a fully associative cache could handle

the number of conflicts.

Algorithm 3 Cache Conflict Benchmark

N ← Data size
o← offset; number of elements between accesses
P ← Number of operations
L← Number of trials to run: P ∗ o

N

a← [N]
scalar ← some scalar floating point
for k in L . repetitions to keep operations constant

for i in 0, . . . , i + o, . . . , N . iterate from 0 to N by o
a[i] = scalar ∗ a[i]

Compared to the other benchmarks in this chapter, the cache conflict kernel

is more specialized. We designed this kernel to identify a particular performance

issue that can be difficult to identify in applications. In Chapter V, we use the

benchmark to validate some of our hardware counter metrics for caches.

To our knowledge, this kernel is the first benchmark developed and publicly

released which can reproduce the problem of cache conflicts on modern CPUs. In

future work, it may be possible to use this benchmark along with other data to

develop an exact method of diagnosing cache conflicts in real-world applications.

3.3.4 Matrix Multiplication. Matrix Multiplication is a vital part of

many applications and an excellent benchmark kernel for performance analysis.

The computation is well studied which allows performance analysts to try new

techniques on a familiar subject and easily reproduce a variety of variations to

compare.

22

Our Default version of matrix multiplication (Algorithm 4) is a triple nested

loop that loops over the three matrices. While we will not review the process of

matrix multiplication here, we will draw the reader’s attention to two points. The

entire B matrix is reused once for each row of the C matrix and each row of the A

matrix is reused once for each column of the C matrix. This repetition provides an

opportunity for the kernel to make use of CPU caches for improved data access.

Secondly, if we assume column-major ordering, the kernel will skip over entire rows

of the B matrix with each iteration preventing the CPU from using all of the data

in the cache lines.

Algorithm 4 Default matrix multiplication

Let A be an n×m matrix
Let B be an m× o matrix
Let C be an n× o matrix
for i ∈ {0, . . . , n− 1}

for j ∈ {0, . . . ,m− 1}
for k ∈ {0, . . . , o− 1}

C[i, j]+ = A[i, k]×B[k, j]

The first optimization of matrix multiplication is to transpose the B matrix

which is shown in Algorithm 5. We make this adjustment intending to improve the

use of data loaded into cache in cache lines. If this optimization were included in

an actual application, rather than a benchmark, the users would need to assess the

overhead required to transpose B. For our studies, we ignore that overhead since

our goal is to use this benchmark to compare measurements of cache efficiency.

Measuring the transposition along with the matrix multiplication would only

obfuscate the results.

Next, we manually unroll the j loop and jam the resulting loops back

together (Algorithm 6). Known as Unrolljam, this optimization can improve the

23

Algorithm 5 Transpose Matrix Multiplication

1: Let A be an n×m matrix
2: Let B be an m× o matrix
3: Let C be an n× o matrix
4: Let BT be the Transposition of the B matrix
5: for i ∈ {0, . . . , n− 1}
6: for j ∈ {0, . . . ,m− 1}
7: for k ∈ {0, . . . , o− 1}
8: C[i, j]+ = A[i, k]×BT [j, k]

use of SIMD operations and the pipeline efficiency of the kernel. We apply this

optimization on top of the Modern compilers can also unroll loops automatically,

but we apply the optimization manually for another opportunity to study the

results of our metrics.

Algorithm 6 Unroll-jam matrix multiplication

1: Let A be an n×m matrix
2: Let B be an m× o matrix
3: Let C be an n× o matrix
4: Let BT be the Transposition of the B matrix
5: for i ∈ {0, . . . , n− 1}
6: for j ∈ {0, 8, 16, . . . ,m− 8}
7: for k ∈ {0, . . . , o− 1}
8: C[i, j]+ = A[i, k]×B[j, k]
9: C[i, j + 1]+ = A[i, k]×B[j + 1, k]
10: . . .
11: C[i, j + 7]+ = A[i, k]×B[j + 7, k]

12: for j ∈ {j, . . . ,m− 1}
13: for k ∈ {0, . . . , o− 1}
14: C[i, j]+ = A[i, k]×B[j, k]

Our final optimization, shown in Algorithm 7, is to block the loops so

that operations that reuse matrix elements occur shortly after each other. This

optimization is applied after transposing B but without the unrolling. Unrolling

and Blocking can be combined, but this results in much more complex code

24

without a significant change in performance. The combination does not add to our

understanding of performance analysis, so we do not present it here.

Blocking is a common optimization for matrix codes since it can significantly

improve the cache efficiency of some applications. We collect data on a range of

block sizes for our study. Finding the best block size is a tedious process that

can be performed using autotuners such as [51] and [52]. We explore a range of

block sizes with our metrics in Chapter V which allows us to develop a better

understanding of the measurements we make and the impacts of blocking on the

kernels.

Algorithm 7 Blocked matrix multiplication

1: Let A be an n×m matrix
2: Let B be an m× o matrix
3: Let C be an n× o matrix
4: Let BT be the Transposition of the B matrix
5: for ii ∈ {0, . . . , BlockSize, . . . , n− 1}
6: for jj ∈ {0, . . . , BlockSize, . . . ,m− 1}
7: for kk ∈ {0, . . . , BlockSize, . . . , o− 1}
8: for i ∈ {ii, . . . , ii + BlockSize− 1}
9: for j ∈ {jj, . . . , jj + BlockSize− 1}
10: for k ∈ {kk, . . . , kk + BlockSize− 1}
11: C[i, j]+ = A[i, k]×B[j, k]

These four variations of matrix multiplication provide a useful tool for our

study of performance measurement. The computation is familiar to readers in

many areas of computational science, so it is a useful example for reaching a wide

audience. Similarly, the code needed to run a matrix multiplication is smaller, but

the size of the data can be scaled to fill large caches or even multiple nodes of a

cluster. Despite the simplicity of the kernel, we have four variations with different

performance features, allowing us to examine and then showcase many hardware

counter metrics in Chapter V.

25

3.3.5 N-Body Simulation. N-Body problems arise in science when

a set of objects each interact continuously with each other object in the set.

These systems can be modeled by computing the pairwise interactions for all the

objects in each timestep. For example, this method can model the gravitational

interactions of celestial bodies. Each body in the 3-dimensional space has a

position, velocity, and mass. The position and velocities are represented by 3

element vectors in a Cartesian space. The equation to calculate the force applied

by two objects on each other is:

fij = G ∗ mi ∗mj ∗ rij
||rij||3

(3.1)

Our N Body benchmark computes this force between each pair of bodies and

then uses it to update the positions at each timestep. In the above equation the

force (fij), and distance between objects (rij) are each 3D vectors. The mass of the

two objects (mi and mj) are scalars. The algorithm used to simulate the system of

celestial bodies is shown in Algorithm 8.

N-Body is similar to matrix multiplication in the sense that it is a simple

kernel that is particularly useful for the study of performance analysis. The

problem is widely known and implementations do not require a significant coding

effort, but there are numerous optimization options available for those interested

in applying them. For example, the data structures are based on one-dimensional

arrays which can be organized as arrays of structures or structures of arrays. Some

of the optimizations are not useful in the matrix multiplication algorithm, so the

two kernels complement each other in that way.

26

Algorithm 8 N Body Problem

1: Let T be the number of timesteps to complete
2: Let dt be the change in time with each timestep
3: Let N be the number of particles
4: Let M be an array of size N with the mass of each particle
5: Let PX be an array of size N with the x position of each particle
6: Let V X be an array of size N with the x velocity of each particle
7: Let PY be an array of size N with the y position of each particle
8: Let V Y be an array of size N with the y velocity of each particle
9: Let PZ be an array of size N with the z position of each particle
10: Let V Z be an array of size N with the z velocity of each particle
11: for t ∈ {0, . . . , T − 1}
12: for j ∈ {0, . . . , N − 1}
13: ax = 0.0
14: ay = 0.0
15: az = 0.0
16: for k ∈ {0, . . . , N − 1}
17: dx = PX[k]− PX[j]
18: dy = PY [k]− PY [j]
19: dz = PZ[k]− PZ[j]
20: d =

√
dx ∗ dx + dy ∗ dy + dz ∗ dz . distance between the objects

21: w = M [k]
d3

22: ax = ax + w ∗ dx . Acceleration caused by the interaction
23: ay = ay + w ∗ dy
24: az = az + w ∗ dz
25: V X[j] = V X[j] + ax ∗ dt . Update speed
26: V Y [j] = V Y [j] + ay ∗ dt
27: V Z[j] = V Z[j] + az ∗ dt
28: for j ∈ {0, . . . , N − 1} . Update positions
29: PX[j]+ = V X[j] ∗ dt
30: PY [j]+ = V Y [j] ∗ dt
31: PZ[j]+ = V Z[j] ∗ dt

27

3.4 Summary

In this chapter, we presented the experimental environment that we use

to develop and validate our methods of empirical hardware counter performance

analysis. The systems uses different microarchitectures, ISAs, and hardware counter

architectures. These differences ensure that our metrics are applicable to at least

some variations of CPUs and can be measured with at least some variation of

hardware counter designs. For readers who wish to replicate our work, we include

an explanation of the measurement tools we used. These tools are one of many

options that a user could chose to collect the hardware counter data needed for

the metrics discussed later in this dissertation. Finally the bulk of the chapter

focused on a series of benchmarks that we will use in subsequent chapters. These

benchmarks have known performance characteristics which allow us to validate and

demonstrate hardware counter measurements. We refer back to this chapter as we

use the systems, tools, and benchmarks discussed here.

28

CHAPTER IV

EMPIRICAL ROOFLINES WITH HARDWARE COUNTERS

As we discussed in Chapter II, the Roofline Method [37] is a common

technique for understanding the node-level performance of HPC systems and

applications. The Roofline Model of a processor separates performance into two

aspects: the data movement and the computation. These aspects are measured

as bytes of data moved between the L1 Cache and the CPU (for the cache aware

version), floating-point operations, and execution time. Despite differences

in architectures, the Roofline Model is a widely used tool for comparing the

performance of an application to the potential performance of the system.

In this chapter, we identify hardware counters which can be used to

measure the metrics necessary to plot application points on architectural rooflines.

Empirical methods for obtaining this information have long been lacking in the

literature, so we fill the gap with hardware counter metrics across multiple system

types. By doing so, we demonstrate that an existing CPU-agnostic performance

analysis technique can be used in conjunction with hardware counter metrics

derived from diverse CPU types.

For the purposes of this research, we use the Cache Aware Roofline [38]

based on the data movement and bandwidth between the L1 cache and the CPU

based (BWL1). First (Section 4.1), we develop a set of benchmarks to measure

data movement and computation on CPUs. These benchmarks allow us to produce

architectural rooflines and to validate the hardware counter metrics. These metrics

are presented and validated in Section 4.2 which explains how they can be used

to place application points on an architectural roofline. We show examples of the

combination of architectural rooflines and application points in Section 4.3.

29

This chapter includes previously published [53] co-authored work.

Contributions to the paper are as follows: Brian Gravelle, the author of this

dissertation, was first author in [53]. He developed the hardware counter metrics

to enable Roofline analysis with hardware counters and modified existing.

Additionally, he collected the hardware counter data for validation and case studies.

William Nystrom assisted with the benchmark design, and the writing of the

paper. Dewi Yokelson contributed the software needed to produce the plots of the

Roofline models. Boyana Norris gave advice on many aspects of the work especially

identifying research aims and presenting the results effectively to the reader in the

resulting paper.

4.1 Architectural Rooflines

Producing accurate Rooflines can be a challenge thanks to ever-expanding

hardware and compiler features that make achieving peak floating-point

performance elusive to the casual user. Some options exist to handle this challenge,

but these are limited to specific vendor systems or require too much user input to

be reliable for some users.

To produce our architectural Rooflines, we use two benchmarks, one for

the floating-point peak and one for the peaks in the memory subsystem. Using

two separate kernels lets us focus each on the details of the hardware that is

being exercised. Our first benchmark can consistently measure the performance

of each level of the memory subsystem, as it appears to the CPU when running a

kernel out of that level of memory. The second is designed to flexibly exercise the

arithmetic features of the CPU, providing an ideal maximum performance of the

computational hardware. The results can then be combined to respectively draw

the angled and horizontal parts of the Roofline.

30

4.1.1 STREAM Modification. We use our modified STREAM

benchmark from Chapter III to measure the bandwidth of each level of the memory

hierarchy for the systems in question. This benchmark is designed to consistently

execute the same number of operations for each level of cache which simplifies the

validation of the benchmark and the measurements. Because we know the amount

of data moved for the kernel, we can measure the time it takes to complete the

computation and compute the bandwidth (BW) from the data size (D) and time

(t) as follows:

BW =
D

t
(4.1)

Note that this bandwidth is not the bandwidth of the physical hardware

connected to a level of the memory hierarchy. Rather, we are measuring the

bandwidth between the CPU and the memory level including the systems in

between. We notate this bandwidth as BWcpu−X , where X is the level of memory.

The measurement takes many aspects of the microarchitecture into consideration.

Delays, such as those caused by caches in between the CPU and target memory

level, are part of the measurement as well as cache optimizations such as cache lines

that move more data than requested. However, the data is large enough to prevent

the kernel from reusing data in any cache closer to the CPU than the target

cache. For example, our L2 bandwidth is measured with a data size larger than

the L1 cache, but smaller than the L2 cache. Therefore, the benchmark includes

microarchitectural features that an application can take advantage of if its data is

similarly sized, but not those features that would only be useful to computation on

data of a smaller size.

31

Consider a kernel that operates on a data set that is larger than the L1

cache, but smaller than the L2 cache. If it performs computation that iterates

through the entire data set multiple times, then it is unlikely that the kernel will

reuse data in the L1 cache. The cache line, which is larger than a double-precision

floating-point will load more data than requested into the L1 cache. The kernel

can take advantage of this optimization if it loads data sequentially in memory.

Optimizations that take advantage of the cache line could bring the bandwidth of

this example kernel up to the measured bandwidth. If the user adjusted the kernel

to reuse data in the L1 cache (i.e., by blocking the loops), then this optimization

could raise the bandwidth above our L2 bandwidth. We would consider the

optimized kernel to be operating out of the L1 cache.

Table 2. Cache details of the two systems.

A64FX Cascade Lake 8260
Cores 48 48 (96 with SMT)

Threads per core 1 2
L1 Cache Size 64KiB per core 32KiB per core
L1 Cache Type Private to core Private to core
L2 Cache Size 0.68 MiB per core 1 MiB/core

(32 MiB Total) (48MiB Total)
L2 Cache Type Shared by CMG (12 cores) Private to core

L3 Cache None 35.75 MiB Total
None (0.763 MiB per core)

L3 Cache Type Logically shared
L3 Cache Type physically distributed
Main Memory 31 GB HBM 188 GB DRAM

Cache Line size 256 Bytes 64 Bytes

The A64FX has two caches and the main memory, so we could choose

three data sizes to measure the bandwidth for each cache. The user can use the

documentation to determine the size of the caches (see Table 2) and set STREAM

to run with data smaller than the size of the cache of interest. For example,

32

on A64FX, we could run with arrays of 20 KiB (2560 double-precision floats).

STREAM Triad uses three arrays, so the total data size will be 60 KiB. STREAM

will then run Triad with this data size on each of the cores.

Figure 2. Results running the modified STREAM benchmark on A64FX with sizes
slightly smaller and larger than the L1 cache. The upper left figure shows the bytes
allocated per core. The upper right plot shows the number of operations executed.
Bottom Left shows the resulting time. The bottom right plot shows the measured
Bandwidth as seen by the CPU.

For example runs, we ran STREAM with a series of sizes ranging from

slightly smaller to slightly larger than each cache. Figure 2 shows the results on

A64FX for sizes around the L1 cache size. The upper left of the plot shows the size

of data allocated per core for each of the four trials. Our STREAM benchmark

computes the number of repetitions to perform so that it completes the same

number of operations (upper right figure) for any size. There is a slight (less than

0.01%) variation in the number of operations due to rounding involved in integer

33

division. Since the number of load and store operations are constant, the time

measurement can demonstrate the change in cache level as the data increases in

size (see the bottom left of the plot). We then compute the number of bytes from

the number of operations and divide by the time to get the bandwidth (bottom

right) for each of the sizes.

Figure 2 shows the bandwidth results for the four data sizes we selected.

Checking with our documentation we know that either the 64 KiB or 32 KiB result

will apply to our L1 cache. We take the highest of the values because the goal of

the benchmark is to measure peak performance. Therefore, we conclude that:

BWcpu−L1 = 5, 703.5GB/s (4.2)

We repeat the experiment on the Cascade Lake system with smaller sizes

because of the smaller L1 cache. Figure 3 shows the results of that experiment.

These results suggest that:

BWcpu−L1 = 12, 433.5GB/s (4.3)

The results in Figures 2 and 3 include data sizes that are larger than the

respective L1 caches. The measurements suggest that:

On the A64FX

BWcpu−L2 = 2, 593.2GB/s (4.4)

And on the Cascade Lake:

BWcpu−L2 = 6, 762.7GB/s (4.5)

However, the experiments that produced these BWcpu−L2 measurements

use data sizes that are only slightly larger than the L1 caches. We rerun the

34

Figure 3. Results running the modified STREAM benchmark on Cascade Lake
with sizes slightly smaller and larger than the L1 cache. The upper left figure shows
the bytes allocated per core. The upper right plot shows the number of operations
executed. The bottom left shows the resulting time. The bottom right shows the
measured bandwidth as seen by the CPU.

experiments with data around the size of the L2 cache on both systems to ensure

that a small dataset relative to the total L2 size does not produce unrealistically

high expectations of the BWcpu−L2. We suspect that if the data is not more than

twice as large as the L1 cache then the measurement may include some unintended

reuse in the L1 cache. That reuse would mean we are not accurately measuring

BWcpu−L2 as defined above.

Figures 4 and 5 show the results of running the experiments on the A64FX

and the Cascade Lake systems with data sizes that range from fitting into the L1

cache to larger than the last level of cache. The Xs mark the sizes of each layer

of cache on the systems. In both cases, the plots show how the measured BW can

35

vary even for sizes within a cache level. When the data size is only slightly larger

than the next smaller level of cache, then the measured bandwidth tends to be

higher. Similarly, when the data size is close to the maximum for some level of

cache, then the bandwidth tends to be lower.

0
1E+12
2E+12
3E+12
4E+12
5E+12
6E+12

0 200 400 600 800 1000

Ba
nd

w
id

th
 (B

yt
es

/s
)

Per core data size

Overall BW Cache Sizes

Figure 4. STREAM Bandwidth relative to per core data size on the A64FX. To
help understand the bandwidth relative to the caches, we use Xs to indicate the
per core caches sizes for the L1 (64 KiB) cache.

0
2E+12
4E+12
6E+12
8E+12
1E+13

1.2E+13
1.4E+13

20 30 40 50 60 70

Ba
nd

w
id

th
 (B

yt
es

/s
)

Per core data size (KiB)

BW L1 Cache Size

Figure 5. STREAM Bandwidth relative to per core data size on the Cascade Lake.
To help understand the bandwidth relative to the caches, we use Xs to indicate the
per core cache size for the L1 (32 KiB) cache.

36

We extend the results on the Cascade Lake in Figure 6 to show bandwidth

results for STREAM sizes close to the L2 and L3 capacities, and near the middle

of those capacities. Additionally, we include the bandwidth from a size of 4096 KiB

per core which is large enough to provide us with the main memory bandwidth.

From L1 to L2 and from L2 to L3 there is a noticeable drop in bandwidth as the

array size increases beyond the cache capacity. There is not a similar step-change

in the bandwidth as the array size increases beyond the size of the L3 cache. This

smooth transition seen in Figure 6 is caused by the hardware implementation of the

cache and main memory including the prefetching hardware.

0

1E+12

2E+12

3E+12

4E+12

800 1300 1800 2300 2800 3300 3800

Ba
nd

w
id

th
 (B

yt
es

/s
)

Per core data size (KiB)

BW L2 and L3 Cache Sizes

Figure 6. STREAM Bandwidth relative to per core data size on the Cascade Lake.
To help understand the bandwidth relative to the caches, we use Xs to indicate the
per core caches sizes for the L2 (1024 KiB), and L3 (1787 KiB) caches. Note that
the L3 cache does not include data in the L2 cache, so that size is the sum of the
L2 and L3 caches.

We prefer to use bandwidths measured from approximately half of the cache

size, but other users may have different preferences. The data sizes close to the

cache sizes may be capturing effects of the other caches improving or degrading

performance, so we conclude that the middle ground will be most representative. If

37

an application has data that fits closer to the edge cases, then the user may prefer

to choose another size. Based on this reasoning, we use the following:

On the A64FX

BWcpu−L1 = 5, 703.5GB/s (4.6)

BWcpu−L2 = 2, 096.9GB/s (4.7)

BWcpu−memory = 669.8GB/s (4.8)

And on the Cascade Lake:

BWcpu−L1 = 12, 433.5GB/s (4.9)

BWcpu−L2 = 3, 651.2GB/s (4.10)

BWcpu−L3 = 910.2GB/s (4.11)

BWcpu−memory = 204.9GB/s (4.12)

4.1.2 FP Crunch. For the floating-point peaks in our architectural

Roofline, we developed an FP Crunch benchmark (see Chapter III). This

benchmark is similar to the STREAM benchmark but with two major changes.

First, the data size is much smaller than the L1 cache on the target system.

Second, the loop over the array elements is moved outside the iterations loop.

These two changes produce a benchmark that repeatedly performs floating-point

38

operations on data that resides in CPU registers which allows the user to measure

the computational potential of the CPU unhindered by the latency of the memory

subsystem.

The FP Crunch benchmark executes a specific number of operations

and reports this count to the user along with the time required to complete the

operations and the rate of computation. We compute the rate of computation (R)

as the ratio of the number of floating-point operations (F) and the time (t) that is

required to complete those operations:

R =
F

t
(4.13)

The user can use compiler options to guide the build process to measure

different aspects of the computational hardware. For example, most compilers

have options to exclude SIMD operations. Similarly, we enable the user to select

the precision (double or single) at compile time. These options allow the user to

place ceilings on the Roofline for features such as SIMD operations and to produce

Rooflines for both single and double precision computation.

Table 3 shows the results of running four versions of FP Crunch on the

A64FX. We use compiler options to run with and without SIMD operations

for both the multiplication and addition kernels. The multiply scalar version is

able to use FMA operations, so it is twice as fast as the addition scalar version.

Unfortunately, the GCC compiler was unable to combine SIMD and FMA

operations for this kernel, so the multiply SIMD and addition SIMD versions

have the same rate of computation. Therefore we double the computational rate

of multiply SIMD version to get our peak potential computation rate.

39

Table 3. Results from the FP Crunch benchmark on A64FX

Time (s) Speedup (scalar / simd) GFlops GFlops/s
mult scalar 42.54 1.00 6,390 150
mult simd 6.17 6.89 6,390 1,040
add scalar 84.17 1.00 6,390 75.9
add simd 6.17 13.64 6,390 1,040

We show the Cascade Lake results in Table 4. In this case, we include runs

with 48 threads and with 96 threads to take SMT into consideration. For scalar

and SIMD versions, the multiplication kernel takes is faster than the addition

kernel due to the FMA operations. The SIMD versions are only 1.6× to 1.9× faster

than the scalar versions. We conclude that the scalar versions are using some SIMD

operations.

Table 4. Results from the FP Crunch benchmark on Cascade Lake

Time (s) Speedup (scalar / simd) GFlops GFlops/s
mult scalar 48 thr 3.59 1.0 6,390 1,780
mult simd 48 thr 2.15 1.7 6,390 2,973
mult scalar 96 thr 6.86 1.0 12,780 1,863
mult simd 96 thr 4.25 1.6 12,780 3,008
add scalar 48 thr 7.03 1.0 6,390 909
add simd 48 thr 3.72 1.9 6,390 1,718
add scalar 96 thr 12.9 1.0 12,780 991
add simd 96 thr 7.52 1.7 12,780 1,700

4.2 Application Points

To plot the application points we need to measure three values for a

kernel: the time, the number of floating-point operations, and the amount of

data moved (between L1 cache and CPU in this case). If we are to use Rooflines

across a variety of different architectures, then we must be clear about what we

are measuring and certain that those measurements are accurate. The benchmarks

used for the architectural lines (Section 4.1) can be useful in validating the counters

40

on different systems. Most of these results were previously published at the PMBS

workshop [53].

4.2.1 Measuring Time. Measuring time can be as simple as

watching a clock on the wall, but for most kernels, we prefer more exact methods.

Generally, this means using timers that are built into the language which access the

operating system clock. We place these timers around the function or the kernel

of interest to avoid measuring the overhead that we do not want to consider in the

analysis. For parallel applications we measure the These timers are the only metric

we use that is not from hardware counters.

4.2.2 Measuring Data Movement. Here we present methods that

can effectively provide empirical estimates for the amount of data moved between

the CPU and the closest (L1) level of cache. This metric is useful because it can be

readily understood by users, is closely related to the algorithm implementation, and

can be measured on all the processors of interest to us. We intend that detailing

our methods and reasoning will enable other researchers to extend our work to

additional systems as they are released.

The systems in this work provide counters for load and store operations

which provide a close approximation of the amount of data moved for a kernel of

computation. Bytes of data moved can be computed as:

Bytes = [Load Store operations] ∗ [Bytes per operation] (4.14)

However, thanks to features such as SIMD operations, the number of bytes

moved by a single instruction is variable. How does the user know what fraction

of data movement operations are for moving larger sets of data to SIMD registers,

which is moving double, single, or half-precision data, and what is moving integers

or program instructions? The answer to this question depends on how the vendor

41

implements the hardware counters. Our two CPUs implement the counters in

different ways, so we need to establish two methods of measuring data movement.

Bridging this gap between hardware counter architectures has not been published

prior to our work in [53] and will allow performance analysts to use the same

metrics on different CPU types.

Table and 5 list the counters used to compute data movement on the A64FX

while Algorithm 9 show how to compute the Bytes. The A64FX measures three

types of load and store instructions. There is the total count of loads and stores

and then three different types of floating point data that can be used. We compute

the number of load and store bytes by identifying the number of bytes that each

type of data requires and then isolating that type from the other kinds of loads and

stores. Once each type of instruction is counted correctly, we multiply that count

by the number of bytes it moves and then sum the total back together.

Table 5. Counters used to calculate the Bytes on A64FX

[LD,ST] SPEC Scalar floating point instructions
ASE SVE [LD,ST] SPEC Executed Loads and Stores

into FP registers
FP [LD,ST] SPEC Executed Loads and Stores

into scalar FP registers

For Intel systems, the load and store instruction counters do not differentiate

between the different data sizes loaded, but there are several counters for counting

different types of computation such as precision and SIMD vector sizes. Using

this data, we assume that the ratios of data movement operation types roughly

correspond to the ratios of floating point operation types. The ratios of floating

point operation types are then used to weight the required bytes per operation

42

Algorithm 9 Bytes moved on A64FX

precision = [SP, DP]
[LD, ST] ins cnt=[LD,ST] SPEC
[LD, ST] fp cnt=ASE SVE [LD,ST] SPEC
[LD, ST] sclr cnt = FP [LD,ST] SPEC
Bytes = 4 ∗ (LD sclr cnt + ST sclr cnt)
if precision == SINGLE

Bytes = 2*Bytes

Bytes += 4 ∗ (LD ins cnt + ST ins cnt

−LD fp cnt− ST fp cnt)
Bytes += 64 ∗ (LD fp cnt + ST fp cnt

−LD sclr cnt− ST sclr cnt)

for the total byte count. Tables 6 list the counters used on Cascade Lake while

Algorithm 10 show how to compute the Bytes.

A significant downside to this work is that, to date, we have not managed

to develop a method of checking how close such estimation is for non-trivial codes.

In particular, we would like to be able to check for edge cases where computation is

run largely out of registers, or floating-point operations are not a significant driver

of the load and store operations.

Table 6. Counters used to calculate the flops and bytes on Cascade Lake

PAPI [LD,SR] INS Load and Store Instructions
FP ARITH INST RETIRED. . . Scalar floating point instructions
SCALAR [SINGLE,DOUBLE]

FP ARITH INST RETIRED. . . 128bit SIMD floating point instructions
128B PACKED [SINGLE,DOUBLE]

FP ARITH INST RETIRED. . . 256bit SIMD floating point instructions
256B PACKED [SINGLE,DOUBLE]

FP ARITH INST RETIRED. . . 512bit SIMD floating point instructions
512B PACKED [SINGLE,DOUBLE]

We use our STREAM modification to validate the hardware counter metrics.

Figures 7 and 8 show how the number of bytes which we expect STREAM to move

43

Algorithm 10 Bytes moved on Cascade Lake

prec = [SINGLE, DOUBLE]
prefix = FP ARITH INST RETIRED:
FP scalar=prefix SCALAR prec
FP 128b=prefix 128B PACKED prec
FP 256b=prefix 256B PACKED prec
FP 512b=prefix 512B PACKED prec
LS INS = PAPI SR INS + PAPI LD INS
FP tot = FP scalar cnt
+ FP 128b cnt
+ FP 256b cnt
+ FP 512b cnt
S BY TE = 4 * FP scalar

FP tot
* LS INS

if precision == DOUBLE S BY TE = S BY TE *2

128 BY TE = 16 * FP 128b/FP tot

256 BY TE = 32 * FP 256b/FP tot

512 BY TE = 64 * FP 512b/FP tot

LS BY TES = S BY TE + 128 BY TE + 256 BY TE + 512 BY TE

44

compares to the number of bytes that we measure with the hardware counters

discussed above.

0
1E+12
2E+12
3E+12
4E+12
5E+12
6E+12
7E+12

0

5E+14

1E+15

1.5E+15

2E+15

2.5E+15
32

 K
iB

64
 K

iB
96

 K
iB

12
8

Ki
B

60
8

Ki
B

64
0

Ki
B

67
2

Ki
B

70
4

Ki
B

73
6

Ki
B

76
8

Ki
B

99
2

Ki
B

10
24

 K
iB

10
56

 K
iB

BW
 (B

yt
es

/s
)

By
te

s

Input per core data size

Measured Bytes Expected Bytes
Measured BW Expected BW

Figure 7. Comparison of the bytes and bandwidth of data moved between the
CPU and L1 cache measured with hardware counters and those expected from the
STREAM benchmark running on the A64FX.

4.2.3 Measuring Floating Point Operations. We need to address

two issues to be able to count floating-point operations. First, we need to define a

single floating point operation. Second, we identify different ways that they can be

executed on current CPUs. This understanding will then allow us to approach a set

of relevant hardware counters and determine the best way to collect the count of

floating-point operations.

In this dissertation, we define floating point operations (flops) as arithmetic

operations on floating point operands. These operations consist of the following:

45

0

2E+12

4E+12

6E+12

8E+12

1E+13

1.2E+13

1.4E+13

0
5E+14
1E+15

1.5E+15
2E+15

2.5E+15

28 KiB
30 KiB

32 KiB
34 KiB

36 KiB
40 KiB

48 KiB

960 KiB

992 KiB

1024 KiB

1056 KiB

By
te

s

Input per core data size

Measured Bytes Expected Bytes
Measured BW Expected BW

Figure 8. Comparison of the bytes and bandwidth of data moved between the
CPU and L1 cache measured with hardware counters and those expected from the
STREAM benchmark running on the Cascade Lake.

– Addition and Subtraction

– Multiplication

– Division

– Logarithms and Trigonometry in some cases

The first two categories of operations can all be performed with a single

instruction on most or all CPUs used in modern HPC systems. Divisions,

logarithms, and trigonometric operations can be performed as single instructions or

multiple instructions depending on the microarchitecture and the compiler options

selected. Since we cannot modify the hardware counters on our systems, we must

simply accept whatever data is provided to us.

46

The A64FX and the Cascade Lake CPUs both provide counters for floating-

point instructions which are more alike than the data movement counters. Tables

7 and 12 list the required counters used on the A64FX and Cascade Lake while

Algorithms 11 and 12 show how to compute the FLOPs on the two CPUs.

For both systems, the process requires the user to multiply each counter by the

appropriate scale and then sum the results to get a total count of operations.

Table 7. Counters used to calculate the FLOPs on the A64FX

FP [SP,DP] SCALE OPS SPEC Scalable floating point operations
(assumes 128 SIMD length)

FP [SP,DP] FIXED OPS SPEC Fixed floating point operations
(correctly counts SIMD lengths)

Algorithm 11 flops on A64FX. RVL is the relative vector length compared to the
assumed 128 bits. For our work, we have the compiler use 512 bit SIMD operations,
RVL is 4.

precision = [SP, DP]
FP sve cnt = FP [SP,DP] SCALE OPS SPEC
FP fix cnt = FP [SP,DP] FIXED OPS SPEC
FLOPs = FP fix cnt + RVL*FP sve cnt

Algorithm 12 flops on Cascade Lake

precision = [SINGLE, DOUBLE]
prefix = FP ARITH INST RETIRED:
FP scalar cnt=prefix SCALAR prec
FP 128b cnt=prefix 128B PACKED prec
FP 256b cnt=prefix 256B PACKED prec
FP 512b cnt=prefix 512B PACKED prec
FLOPs = FP scalar cnt
+ 2*FP 128b cnt
+ 4*FP 256b cnt
+ 8*FP 512b cnt
if precision == SINGLE

FLOPs = 2*FLOPs

47

We use our Fp Crunch benchmark to validate the hardware counter floating-

point operation measurements. Figures 9 and 10 that for additions, multiplications,

and divisions, the hardware counters and expected flop counts agree. However, the

cosine and logarithms do not. Although cosine (and other trigonometric operations)

and logarithms are mathematically single operations, most computers estimate

the results with a large number of other floating-point operations. We do not

have a method to consistently estimate the cost of performing such operations in

scientific applications, but users can make use of our fp crunch benchmark to better

understand their impact.

0
2E+13
4E+13
6E+13
8E+13
1E+14

1.2E+14

multiply add div log cos

flops expected flops

Figure 9. Comparison of expected and measured floating point operations for
different versions of the FP Crunch benchmark running on the A64FX.

4.3 Examples

In this section, we combine the architectural rooflines from Section 4.1 and

the application points from Section 4.2 into examples of how a user can make full

use of the Roofline model for performance analysis.

4.3.1 N Body Example. Consider the N Body kernel that we

introduced in Chapter III. For this example, we build and run the application

48

0.00E+00

5.00E+13

1.00E+14

1.50E+14

2.00E+14

Mult Add Div Cos Log

flops expected flops

Figure 10. Comparison of expected and measured floating point operations for
different versions of the FP Crunch benchmark running on the Cascade Lake.

without compiler optimizations and then with compiler optimizations. The

optimizations we used aggressively target SIMD operations on the two systems

since those operations are vital to reach peak floating-point performance.

Figure 11 shows the A64FX Roofline derived from our benchmarks and

application points that we measured with hardware counters on the same CPU.

As expected, the N Body simd version of the kernel performs much better than the

N Body scalar version. We see the same pattern in Figure 12.

In addition to the higher computation rate, the N Body simd also has a

higher AI on both of the processors. We did not expect the AI to change with the

optimizations because the number of floating-point and data movement operations

in the source code remain unchanged.

Table 8 shows the data that we used to produce the application points in

Figures 11 and 12. We saw in the rooflines that the rate of computation improved

with the compiler optimizations on both systems, this table shows that the Time

does improve in both cases as well. On the A64FX we see that the change in AI

49

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP64 GFLOPs 2761.3 GFLOPs/s

FP64 Scalar GFLOPs 86.29 GFLOPs/s
L1 5703.5 GB/s

L2 2096.9 GB/s

STREAM HBM 669.8 GB/s

Label
n body scalar
n body simd

Figure 11. A64FX architectural rooflines with the application points from two
versions of N Body run on that CPU.

Table 8. Roofline application point data for N Body on two systems.

A64FX scalar A64FX simd Clake scalar Clake simd
Time (s) 421.7 35.8 11.2 2.98

flops 1.37E+12 10.0E+12 1.37E+12 1.37E+12
LS Bytes 20.2E+12 2.20E+12 16.2E+12 2.58E+12

AI 0.07 4.56 0.08 0.53

is caused primarily by a combination of a 9× reduction in LS Bytes and a 7.3×

increase in the flops when the compiler optimizations are applied. On the Cascade

Lake the change in AI is smaller because the LS Bytes is only 6.3× lower with the

optimizations and flops remains the same. These results are unexpected because

the AI changed without the algorithm changing.

4.3.2 Matrix Multiplication Example. As a second example, we

select the matrix multiplication kernel from Ch. III and consider four versions

50

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP64 Vector GFLOPs FMA 3008.0 GFLOPs/s

FP64 Scalar GFLOPs FMA 188.0 GFLOPs/sL1 12433.5 GB/s

L2 3651.2 GB/s

L3 910.2 GB/s

DRAM 204.9 GB/s
Label
n body scalar
n body simd

Figure 12. Cascade Lake architectural rooflines with the application points from
two versions of N Body run on that CPU.

of the kernel. We look at the default, transpose, unroll, and block versions. but

only use the best performing block size for each system. With this example, we can

demonstrate how different optimizations impact the performance relative to the

potential of the system.

Figure 13 shows the A64FX Roofline derived from our benchmarks and

application points that we measured with hardware counters on the same CPU.

The default version performs far below any of the architectural lines. Based on

this result and our knowledge of the application, we expect that this version is

not effectively using the memory subsystem. The transpose and unrolljam version

achieve performance close to the main memory roofline, while the block 64 version

has a large improvement to the arithmetic intensity. It is likely that the blocking

51

enables the application to perform more operations without loading new data.

More analysis can be seen in Ch V with our other hardware counter metrics.

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
1

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP64 GFLOPs 2761.3 GFLOPs/s

FP64 Scalar GFLOPs 86.29 GFLOPs/s

L1 5703.5 GB/s

L2 2096.9 GB/s

STREAM HBM 669.8 GB/s

Label
default
transpose
unroll jam
block 64

Figure 13. A64FX architectural rooflines with the application points from four
versions of the Matrix Multiplication run on that CPU.

The Cascade Lake results for the same set of matrix multiplication versions

are shown in Figure 14. One major difference is that the transpose version

outperforms the block 64 version and has a higher Arithmetic Intensity.

We suspect that the difference is caused by how effective the compilers are at

optimization on each system. This difference underscores the importance of trying

different optimizations with different compilers to ensure that the best result is

achieved.

4.4 Summary

This chapter describes how we use hardware counters to enable empirical

performance analysis with the Roofline Model. This model can describe the

52

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP64 Vector GFLOPs FMA 3008.0 GFLOPs/s

FP64 Scalar GFLOPs FMA 188.0 GFLOPs/sL1 12433.5 GB/s

L2 3651.2 GB/s

L3 910.2 GB/s

DRAM 204.9 GB/s
Label
default
transpose
unroll jam
block 64

Figure 14. Cascade Lake architectural rooflines with the application points from
four versions of the Matrix Multiplication run on that CPU.

potential performance of any modern CPU based on two metrics; the Arithmetic

Intensity and flops/s. Since these metrics apply to all modern CPUs,

performance analysis with the Roofline Model fits the portability requirement

from our hypothesis. We use empirical hardware counter measurements to support

the roofline analysis in two ways. First, the hardware counters can validate our

benchmarks which produce the architectural rooflines. Second, the counters

measure the Arithmetic Intensity and flops/s in applications which allow the

user to plot application points on the architectural roofline. In the next chapter,

we will build on this work to identify measurements that are portable and provide

additional performance information.

53

CHAPTER V

A PROPOSED SET OF HARDWARE COUNTER METRICS

In this Chapter, we present additional performance metrics that inform users

about common CPU features. We also present hardware counter techniques for

measuring each of these metrics. As a result we demonstrate that additional CPU-

agnostic metrics be collected which add performance information in addition to

what is provided by the Rooflines.

To use the Roofline Model, we defined a set of hardware counter metrics

based on the information we needed about an application. We then found

hardware counters that fit those needs. We expand this approach to gain additional

performance information. Specifically, we focus on how applications are impacted

by hardware features common to most modern CPUs. By focusing on these

common features we can develop hardware counter metrics that are portable to

different architectures. This chapter describes the metrics we found, which are able

to provide actionable information about the application and are not tied to specific

hardware counter implementations.

Hardware Performance Monitors (often called counters) can provide detailed

insight into how software is using the hardware but can be difficult to relate back

to the application in question. Additionally, comparing counters and metrics

derived from them can be difficult between systems. Vendors such as Intel, AMD,

and ARM all use different counter organizations. These different designs can

focus on different aspects of execution, such as instructions, cycles, or stalls. Each

is useful in its own way but learning each new system and making comparisons

between systems can be difficult.

54

These differences pose a challenge to users who are focused on software

development or scientific results and do not have the time to study the differences

in systems and counter definitions. Our research has been aimed at finding useful

commonalities between these different counter systems and developing metrics that

overlap despite the differences in design. This section presents and demonstrates a

series of metrics that can be used across Intel and ARM systems. We also discuss

the limitations of the metrics and areas where they can be extended.

5.1 Defining Metrics

The metrics we settled on (Table 9) are a combination of new and existing

metrics that can be used to conduct performance analysis. Each of the metrics is

chosen because it provides information that can be impacted by changes to the

kernel or compiler options.

5.2 Measuring the Metrics

We derive the metrics in Section 5.1 on both systems from hardware

counters. Chapter III contains a detailed description of the collection method,

and this section describes the counters required and the process for computing the

metrics. Identifying and validating these counter sets is a time consuming process.

Each system has a different hardware counter architecture design and a different

microarchitecture. The derived metrics need to be flexible enough to describe the

different microarchitectures and be derived from different sets of counters.

From a measurement and analysis perspective, the metrics in Table 9 fall

into three categories. First, there are metrics that measure the data movement

through the memory hierarchy, such as bytes moved to or from different levels of

the cache and main memory. This category includes the metrics that measure the

amount of data and the cache efficiency. Second, there are metrics that measure the

55

Table 9. The Proposed set of existing and new metrics.

Metric Definition
Overall Performance

Time Wall clock time for the region of interest, not a
hardware counter

flops/s floating point operations per second; a rate of
computation

IPC Instructions per cycle, measuring how well the
application uses instruction level parallelism

Data Movement
LS Bytes Number of bytes moved between the CPU and L1

Cache as measured by load-store (LS) instructions
[L2, L3] Bytes Number of bytes requested by the L1 cache based on

counts of missed accesses to the L1 or L2 Cache.
Mem bytes Number of bytes moved to and from main memory.

Cache Efficiency
[L1,L2,L3] MR Ratio of missed to total accesses for each Cache.
[L2,L3] / LS Ratio of L2 Bytes or L3 Bytes to LS bytes; to

help understand how much the kernel relies on the
the L2 or L3 cache for data movement.

MEM / LS Ratio of Mem bytes to LS bytes; to help
understand how much the kernel relies on the main
memory for data movement.

Computation
flops Number of floating-point operations; an amount of

computation
flops/fpins Ratio of FP operations to FP instructions; indicating

how well SIMD instructions are used by the kernel.
Computation Data Rates

AI Arithmetic Intensity; the ratio of flops to LS bytes
LD ins/ST ins Ratio of Load to Store instructions.
flops/[LD, ST] ins Ratio of floating-point operations to load or store

instructions; indicates how much computation
happens per load or store operation.

flops/[LD, ST] bytes Ratio of floating-point operations to bytes loaded
into or stored from the CPU; how much computation
happens per volume of data loaded or stored.

56

computation, total instructions, FP instructions, and FP operations. These two can

be combined into the third category, which we call data computation ratios. Data

movement, computation, and their relationship are the most prominent factors

determining the performance of computationally intensive kernels. The required

hardware counters and formulas for computing our metrics are included below.

Where possible, we have tried to make the metric derivation intuitive

based on the metric names. For example, the miss rates are ratios of the misses

to a cache (counters ending in DCM or TCM) to the total accesses to that layer.

Some metrics are also named based on the derivation (flops/LD bytes) to guide

computation based on previously computed metrics. The remainder of this section

explains the metrics and derivations necessary to measure our metrics.

The reader may notice that some of the information overlaps with Chapter

IV. We include the metrics needed for the Roofline in the Table 9 metrics, so we

also repeat the description of the computation for the sake of completion.

5.2.1 Counter Collection and Analysis for Data Movement

Metircs. Our memory subsystem metrics can be computed by measuring the

amount of data moved between the CPU and L1 cache, between adjacent levels

of cache, and between the last level of cache and main memory. For some of the

measurements, we also use computation-related hardware counters to determine the

size of the data elements moved. Once the amount of data moved at each level of

the memory hierarchy is computed, we can calculate the cache efficiency metrics.

Tables 10 and 11 list the hardware counters used to collect data for all the data

movement metrics in this paper.

The data movement between the L1 cache and the CPU (LS bytes) is

vital for understanding an application, but it can be challenging to compute.

57

Table 10. PAPI [1] Counter names used to calculate the data movement on
Cascade Lake ([prefix] is FP ARITH INST RETIRED:)

PAPI [LD,SR] INS Executed load and stores
PAPI [L1,L2,L3] TCM Total cache misses for each cache
PAPI L1 DCM L1 Data cache misses
[prefix]SCALAR [SINGLE,DOUBLE] Scalar FP instructions
[prefix]128B PACKED [SINGLE,DOUBLE] 128 bit SIMD FP instructions
[prefix]256B PACKED [SINGLE,DOUBLE] 256 bit SIMD FP instructions
[prefix]512B PACKED [SINGLE,DOUBLE] 512 bit SIMD FP instructions
skx unc imc[0,1,2,3,4,5]::

reads and writes to main memory
UNC M CAS COUNT:[WR,RD]:cpu=[0,24]

Table 11. Counters used to calculate data movement on A64FX

[LD,ST] SPEC Architecturally executed loads and stores
ASE SVE [LD,ST] SPEC Executed loads and stores into FP registers
FP [LD,ST] SPEC Executed loads and stores into scalar FP registers
L1D CACHE L1 Data cache accesses
PAPI L1 DCM L1 Data cache misses
L2D CACHE L2 Data cache accesses
PAPI L2 DCM L2 Data cache misses
PAPI L2 DCH L2 Data cache hits
L2D CACHE REFILL Loads from main memory
L2D CACHE WB Stores to main memory

Cascade Lake counts load-store instructions together regardless of the size of data

moved. We estimate the amount of data movement by computing the ratios of FP

instructions and assuming that the data movement operates with similar ratios.

See Algorithm 13 for a mathematical representation. So far, the assumptions made

have produced results that match the analytical analysis of the data movement, but

more work is necessary to identify cases where the assumption breaks down and

address them appropriately. The A64FX is far simpler because it provides counters

for loads and stores that differentiate the size of data being moved (see Algorithm

14).

58

(L2, L3) bytes are computed as the cache line size (64 bytes on Cascade

Lake and 256 bytes on A64FX) multiplied by the number of misses from the level

above. This metric is an imprecise measurement of the bandwidth used, but it

shows how much an application relies on a particular cache level, especially when

compared across different kernel versions. Data movement to and from main

memory (Mem bytes) is more precise, found by multiplying the cache line size

by the number of operations that touch main memory. Main memory operations

are the sum of the main memory counters in Tables 10 and 11.

Algorithm 13 LS bytes on Cascade Lake

1: prec = [SINGLE, DOUBLE]
2: FP scalar=FP ARITH:INST RETIRED SCALAR prec
3: FP 128b=FP ARITH:INST RETIRED 128B PACKED prec
4: FP 256b=FP ARITH:INST RETIRED 256B PACKED prec
5: FP 512b=FP ARITH:INST RETIRED 512B PACKED prec
6: LS INS = PAPI SR INS + PAPI LD INS
7: FP tot=FP scalar cnt+FP 128b cnt +FP 256b cnt+FP 512b cnt
8: SCLR BY TE = 4 * FP scalar/FP tot * LS INS
9: if prec == SINGLE
10: SCLR BY TE = SCLR BY TE *2
11: 128 BY TE = 16 * FP 128b/FP tot
12: 256 BY TE = 32 * FP 256b/FP tot
13: 512 BY TE = 64 * FP 512b/FP tot
14: LS BY TES = SCLR BY TE + 128 BY TE + 256 BY TE + 512 BY TE

Having computed the amount of data moved, we use these data movement

metrics to compute several data efficiency metrics. These ratios offer an important

perspective on the performance because they show the efficiency of the cache

system. The data sizes can be informative, but are directly related to the inputs

and algorithms. For this reason, cache efficiency are necessary to understand some

aspect of the performance.

59

Algorithm 14 LS bytes on A64FX

1: precision = [SP, DP]
2:

3: [LD,ST] ins=[LD,ST] SPEC
4:

5: [LD,ST] fp=ASE SVE [LD,ST] SPEC
6:

7: [LD,ST] sclr = FP [LD,ST] SPEC
8:

9: Scalarbytes = 4 ∗ (LD sclr + ST sclr)
10: bytes =Scalarbytes
11: bytes += 4 ∗ (LD ins + ST ins− LD fp− ST fp)
12: bytes += 64 ∗ (LD fp + ST fp− LD sclr− ST sclr)
13:

14: if precision == SP
15: bytes = bytes *2

Cache miss rates are a long-standing metric of cache efficiency, calculated

as the number of misses per total accesses for a given layer of cache. The count of

accesses is sometimes directly available (L2D CACHE on A64FX), but sometimes

must be assumed to be the number of Loads and Stores to the L1 cache or the

number of misses from the higher level (L2 MR = PAPI L2 DCM
PAPI L1 DCM

). All necessary

counters are listed in Tables 10 and 11.

Once the various byte metrics (LS bytes,(L2,L3) bytes,Mem bytes

have been computed, the ratio metrics (i.e. L2 bytes perLS bytes) can be easily

computed. With these and other metrics, we aimed to make the derivation implied

in the metric name.

5.2.2 Counter Collection and Analysis for Computation

Metrics. The second set of counters is those related to floating-point

computation (as opposed to data movement). Tables 12 and 13 show the counters

required to derive the computation related metrics along with IPC. Notably, the

two architectures present these measurements in very different ways. The Intel

60

Cascade Lake offers the user a set of counters that measure the number of FP

instructions, divided between the different vector lengths. In contrast, the A64FX

provides a set of counters that measures flops directly. This difference is part of

the motivation for using flops/fpins for measuring vectorization since it can be

computed in both cases.

Table 12. PAPI [1] Counter names used to calculate the data movement on
Cascade Lake ([prefix] is FP ARITH INST RETIRED:)

[prefix]SCALAR [SINGLE,DOUBLE] Scalar FP instructions
[prefix]128B PACKED [SINGLE,DOUBLE] 128 bit SIMD FP instructions
[prefix]256B PACKED [SINGLE,DOUBLE] 256 bit SIMD FP instructions
[prefix]512B PACKED [SINGLE,DOUBLE] 512 bit SIMD FP instructions
INST RETIRED:PREC DIST Instructions retired

Table 13. Counters used to calculate the flops and IPC on A64FX

CPU CYCLES number of cycles to complete the measured region
INST RETIRED Instructions retired
INST SPEC Instructions executed including those not retired

due to mis-speculation
FP SPEC FP instructions executed including those not

retired due to mis-speculation
FP [SP,DP] SCALE Scalable floating-point operations
OPS SPEC (assumes 128 SIMD length)

FP [SP,DP] FIXED Fixed floating-point operations
OPS SPEC (correctly counts SIMD lengths)

The computation for flops on the Cascade Lake can be seen in Algorithm

15 and consists mainly of multiplying the instruction counts by the correct number

of operations. On the A64FX (Algorithm 16) the scalable SIMD counters assume

a vector length of 128 bits, which must be corrected for the A64FX with 512-bit

vector widths. In this case, the assumption is easy to make since all scalable SIMD

on A64FX uses 512-bit registers, but that may not remain true for all architectures.

61

Algorithm 15 flops on Cascade Lake.

1: prec = [SINGLE, DOUBLE]
2: FP scalar=FP ARITH:INST RETIRED SCALAR prec
3: FP 128b=FP ARITH:INST RETIRED 128B PACKED prec
4: FP 256b=FP ARITH:INST RETIRED 256B PACKED prec
5: FP 512b=FP ARITH:INST RETIRED 512B PACKED prec
6: if prec == DOUBLE
7: FLOPs = FP scalar + 2*FP 128b + 4*FP 256b + 8*FP 512b
8: else
9: FLOPs = FP scalar + 4*FP 128b + 8*FP 256b + 16*FP 512b

Algorithm 16 flops on A64FX

1: precision = [SP, DP]
2:

3: FP sve count = FP [SP,DP] SCALE OPS SPEC
4:

5: FP fixed count = FP [SP,DP] FIXED OPS SPEC
6:

7: FLOPs = FP fixed count + 4*FP sve count
8:

The other computational metrics have straightforward derivations. IPC

is the ratio of instruction to cycles. For instructions, A64FX primarily counts

speculatively executed instructions, while Cascade Lake primarily counts retired

instructions. We keep this difference in mind when comparing counters across

architectures, but have not found a computationally intensive kernel where the

difference has a significant impact. Flops/fpins can be computed with the flops

from above and the sum of the FP instruction counters on Cascade Lake and the

FP SPEC counter on A64FX. Similarly, flops/second uses flops and wall clock

time for the region of interest.

On Cascade Lake the flops/fpins metric is limited by how the counters

handle fused multiply-add (FMA) instructions. Each FMA instruction counts

as two instructions, allowing for correct counting of flops, but the fpins will be

62

overcounted if FMAs are involved. For example, a double-precision application

performing a series of fusible multiplications and additions with AVX512 will have

an flops/fpins of 8 whether or not FMAs are used. Users can resolve this by

looking at the optimization reports to determine if FMAs are in use, or they can

disregard FMAs and focus on how flops/fpins show the use of SIMD instructions.

5.2.3 Counter Collection and Analysis for Computation Data

Rate Metrics. The Computation Data Rates are all ratios of flops to various

measures of the data movement. We measure Arithmetic Intensity (AI) as the

ratio of flops and LS bytes. Inspired by AI we derive flops/[LD,ST] ins and

flops/[LD,ST] bytes. Both processors have load and store instruction counters

(see the data movement derivations) for the denominator of flops/[LD,ST] ins.

The LS Bytes derivation can be modified by leaving out either the LD or ST

counters to derive the separate LD bytes and ST bytes results.

5.3 Detailed Metric Discussion

The above metrics (Table 9) can be divided into five types for the purposes

of analysis. We consider the Overall Performance, amount of Data Movement,

Cache Efficiency, Computation, and lastly the Ratio between the Data movement

and Computation. Together the metrics give us insight into the application and

apply it to most modern CPUs.

5.3.1 Overall Performance. We use three metrics for measuring

overall performance; the Time, flops/s, IPC. Many applications also have metrics

of interest which can provide an application-specific performance metric as well.

The primary measure is almost always the amount of time it takes for an

application to run. Simply, the Time of an application determines how soon the

users can get results and move forward in their work. Also, users are generally

63

changed for the execution Time of their applications on systems. Therefore, wall

clock time is the main measure of performance in most cases of applications.

In addition to the time, the rate of computation can also be informative.

We use flops/s and IPC to measure the rate of computation. The flops/s is the

number of floating-point operations executed per second. flops are the traditional

measure of work in scientific computing, so we use it here. In some cases, IPC, or

instructions per cycle, is a better measure of the rate of computation, especially

if most of the computation is not performed by floating-point operations. IPC is

also a good measure of how well the CPU pipeline is used. These rates are good

at identifying how well an application is using the hardware, but many algorithmic

improvements can reduce the amount of work being performed. Therefore, both the

total time and the rate of computation are vital for understanding the performance

of an application.

5.3.1.1 Demonstration with STREAM. Consider this example

of using the overall performance metrics with our modified STREAM benchmark.

Our version of the STREAM benchmark (discussed in Chapter III) iterates through

an array sized to fit within a particular level of the memory, the computation is

repeated to ensure that each data size performs the same number of memory and

floating-point operations. In this example, we run the STREAM benchmark on

each layer of the memory hierarchy of both the A64FX and the Cascade Lake

CPUs.

We expect that as the data size grows, from the L1 cache to the L2 cache to

the L3 cache, and finally large enough to only be able to fit into the main memory,

the computation will take longer and longer to complete. Our expectations are met

as shown in Figures 15 (A64FX) and 16 (Cascade Lake). The leftmost plot shows

64

that the amount of time required for each version increases as we progress through

the levels of the memory hierarchy.

Figure 15. Overall metrics for the STREAM benchmark run at each level of cache
on the A64FX.

Figure 16. Overall metrics for the STREAM benchmark run at each level of cache
on the Cascade Lake.

The center plots in Figures 15 and 16 show the IPC for each system. When

data requests are filled from caches that are further from the CPU, the latency

required to meet those requests increases. Therefore each load instruction must

wait for more cycles, and we see the expected decrease in IPC from the L1 cache

through the main memory.

Much like the IPC, the flops/s (rightmost of the charts in Figures 15 and

16) decreases with each layer of the cache that the experiment progresses through.

For this example, the three overall performance metrics move with each other

consistently because the amount of work and types of operations are held constant.

65

If an optimization to an application reduces the amount of work or changes the

number of instructions required to complete some work (i.e. using SIMD instead of

scalar operations) then these metrics may not remain correlated.

5.3.1.2 Demonstration with Matrix Multiplication. We use

the matrix multiplication benchmark (details in Chapter III) to illustrate some

less expected results in our overall performance metrics. We look at just the first

three versions of the matrix multiplication kernel: the default, with a transposed

second matrix, and with one of the loops unrolled. The transposition is expected

to significantly improve the cache performance of the kernel. Unrolling can

improve how the kernel uses the pipeline, but it can also interfere with compiler

optimizations due to increased code complexity.

Figure 17. Overall metrics for three versions of the Matrix Multiplication run on
the A64FX and using the Fujitsu compiler of computation.

Figure 17 shows the overall metrics from running these versions of matrix

multiplication on the A64FX. In this matrix multiplication example, we use

the Fujitsu compiler. As expected the default version performs the worst in all

categories. The unrolled version also takes longer (about 1.7×) than the plain

transpose version. Interestingly, the unrolled version also has higher IPC and

flops/s than the transposed version. Normally IPC and flops/s correspond to

better performance because the computation is faster, but in this case, the time

66

is longer as well. Presumably since unrolling increases all three of the metrics it

is increasing the total number of operations performed to complete the kernel.

We can explore this hypothesis further using the other metrics presented in this

chapter.

In contrast, the Cascade Lake (Figure 16) results show that the three

metrics correlate with each other for the three variations. Since we are using the

same set of metrics on both systems, we can compare the results and speculate as

to a reason for the difference. One hypothesis is that the compilers handle unrolling

differently. For these results, we used Fujitsu’s compiler on the A64FX and Intel’s

on the Cascade Lake.

Figure 18. Overall metrics for three. versions of the Matrix Multiplication
benchmark run on the Cascade Lake.

For comparison, we rerun the experiment on the A64FX with ARM’s Clang-

based compiler. Figure 19 shows the Time, IPC, and flops/s for the same Matrix

multiplication version as seen in Figures 17 and 18. When using the new compiler,

the overall performance metrics correlate as expected as we saw on the Cascade

Lake system.

5.3.2 Data Movement. We measure data movement at each layer of

cache to inform the user about the amount of data that each level supplies to the

CPU for the application.

67

Figure 19. Overall metrics for three versions of the Matrix Multiplication run on
the A64FX and using ARM’s Clang-based compiler of computation.

The LS Bytes metric is based on our Roofline work (Chapter IV). The

metric measures the bytes requested by load and store instructions which we

use as a proxy for the amount of data required by the algorithm. The metric is

different from the amount of data movement a user may calculate by algorithm

analysis since some data may be kept in registers and additional loads and stores

are necessary for array addresses and indexing. With these limitations in mind, LS

Bytes still serves as a close proxy to the data movement needed by the algorithm

under analysis.

At the other end of the memory hierarchy from the CPU is the main

memory. Main memory sits off of the CPU chip and therefore has a high latency

for getting data to the CPU. This latency is too high to keep the CPU working

at full speed without the help of the caches. Hence, the data moving to and from

the main memory can be a major limiting factor of the performance, and many

optimization efforts are aimed at reducing the use of the main memory. Our precise

measurements of the data movement help identify when optimizations achieve this

aim.

Between the main memory and the CPU, there are caches, usually two or

three on current CPUs. As noted in Ch. IV, it is difficult to define and measure

68

the data movement of the caches. The buses that move the data into and out of

each cache work for both directions, so the physical bandwidth for a cache is used

for data moved between it and both adjacent caches. The total data moved on

the bus includes requests and stores going in both directions for each cache. The

combination of misses and hits makes such a measurement difficult to reason about,

particularly in reference to the LS Bytes and Mem Bytes which each have one

adjacent level of cache. Instead, we use proxy measurements to estimate the volume

of data that each layer of cache supplies to the algorithm.

For our proxy measurements of L2 Bytes and L3 Bytes, we collect the

number of cache misses from the next layer closer to the CPU. We assume that the

data moved by cache misses will be more important to the algorithm than data

moved by other features such as prefetching or cache coherency. In our view, this

proxy provides sufficiently detailed information about the cache to guide a user’s

understanding while remaining microarchitecture independent.

5.3.2.1 Demonstration with STREAM data. For an example

of the data volume measurements in practice, we use the modified STREAM

benchmark from Ch. IV. The results for the A64FX are in Figure 20 and the

Cascade Lake results are in Figure 21. In both cases, the data show that the LS

Bytes are consistent across the different STREAM sizes. As we look past LS

Bytes to L2, L3, and Mem Bytes, the number of bytes measured in the L1, L2,

and L3 fall to near zero one after the other. We note that there is some variance in

the exact number of bytes at the lower levels.

The observant reader will note that there is no ”known value” for these

measurements. We have not attempted to validate the measurements1 presented

1The exception being LS Bytes which has validation in Ch. IV.

69

0

2E+13

4E+13

6E+13

8E+13

1E+14

1.2E+14

LS Bytes L2 Bytes Mem Bytes

By
te

s

Measurement type

Shingles Stream Triad L1 Shingles Stream Triad L2
Shingles Stream Triad Mem

Figure 20. A64 bytes at each cache level for each STREAM size.

in Figures 20 and 21. We think such validation would give create the wrong

impression for the metrics. Each byte measurement is a proxy for the amount

of data moved at that level of cache and should be treated as a broad estimate.

Users should consider how trends in data movement change with changes in the

application or its inputs. This example improves confidence in a vague analysis

method by demonstrating one case in which the measurements respond as

expected.

5.3.2.2 Demonstration with Loop Blocking. The matrix

multiplication kernel gives us a good opportunity to demonstrate the Data

Movement metrics because the blocking optimization is designed to improve the

usage of the memory hierarchy. When a nested loop is blocked it focuses on smaller

sections of the data at a time so that data reuse occurs before it is ejected from the

cache. We describe the optimization in more detail in Chapter III.

70

0

2E+13

4E+13

6E+13

8E+13

1E+14

1.2E+14

1.4E+14

LS Bytes L2 Bytes L3 Bytes Mem Bytes

By
te

s

Measurement type

Shingles Stream Triad L1 Shingles Stream Triad L2
Shingles Stream Triad L3 Shingles Stream Triad Mem

Figure 21. Cascade Lake bytes at each cache level for each STREAM size.

We use the ARM Clang compiler to build the Matrix Multiplication kernel

with square matrices that have 8192 rows and columns. With double-precision

floating-point operations, each row is approximately the same size as the L1 cache

on the A64FX. We chose this size so that we could effectively exercise the cache.

The loop blocking can be scaled to different sizes depending on the cache sizes in

the system. We explore block sizes of 16, 32, 64, 128, 256, 512, and 1024.

The LS Bytes results are pictured in Figure 22. As the block sizes increase,

the data fits better into the caches so that the kernel requires fewer operations

to complete. Of particular note, the L2 Bytes reduce slowly from block sizes 16

to 64. At block size 256, the number of L2 Bytes increases sharply because the

blocks are now larger than the L1 cache. To help understand these results, we

include the timing results for the same experiments in Figure 23.

We repeat the experiment on the Cascade Lake system with similar results.

Figure 24 show the Byte counts for the four levels of memory hierarchy relative to

71

0
2E+12
4E+12
6E+12
8E+12
1E+13

1.2E+13
1.4E+13
1.6E+13
1.8E+13

2E+13

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

By
te

s

Matrix Multiplication Version

LS Bytes
L2 Bytes
Mem Bytes

Figure 22. Data movement relative to block size for the matrix multiplication
kernel on the A64FX.

the tested block sizes. The execution Time relative to the block sizes is pictured in

Figure 25. Similar to the A64FX, the L2, L3, and Mem Bytes on the Cascade

Lake are relatively small at each level until the blocks are large enough to fill that

cache level. At that point, the number of bytes moved to the next level of cache

increases rapidly.

The execution time of on the Cascade Lake (Figure 25) improves with the

increased block sizes until block size 256. This point corresponds with the increase

in L3 Bytes.

Automatic performance tuners, such as Orio [54], can test a large number of

block sizes and similar optimizations. Such tests are tedious and time consuming,

so the automated method of testing is a preferred approach.

72

0

20

40

60

80

100

120

140

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

Ti
m

e
(s

)

Matrix Multiplication Version

Time

Figure 23. Execution time relative to block size for the matrix multiplication kernel
on the A64FX.

5.3.2.3 Demonstration with Cache Conflicts. We gathered our

data movement measurements for this cache conflict benchmark (see Chapter III)

on the A64FX (Figure 26) and the Cascade Lake (Figure 27). This benchmark

performs a series of computations on data elements that are separated by some

offset. When this offset is a multiple of the cache block size, then cache conflicts

will prevent the L1 cache from being used effectively. In both cases, we can see

two spikes where the offset is aligned with the number and size of the cache blocks,

causing a dramatic increase in the number of L1 cache misses.

Once again we avoid detailed validation of the results. We could present an

analysis of the cache that shows where the spikes are expected, or we could run

simulations of our cache hierarchy to check that the increased misses are due to

conflicts and not capacity. Unfortunately, the complexities of applications make

73

0

5E+12

1E+13

1.5E+13

2E+13

2.5E+13

3E+13

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

By
te

s

Matrix Multiplication Version

LS Bytes
L2 Bytes
L3 Bytes
Mem Bytes

Figure 24. Cascade Lake bytes relative to block size for the matrix multiplication
kernel.

such analysis prohibitive, so we strive to create metrics that do not rely on such

validations.

In this case, we observe that the LS Bytes have almost no variation (about

10%) variation across the offsets. Further, the input size fits into the L2 but not

the L1 cache on both systems. These features suggest that the cache capacity is

not impacting the number of misses. Lastly, there is no change to the initialization

process which minimizes the possibility that compulsory misses are impacting the

data. Therefore, we conclude that it is likely that the spikes in L2 data movement

occur due to conflict misses.

We find it straightforward to build experiments of this sort in the fully

controlled environment of a new benchmark. The challenge is greater when

examining kernels within full applications, but doing so will enable hardware

counter analysis.

74

0
5

10
15
20
25
30
35
40

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

Ti
m

e
(s

)

Matrix Multiplication Version

Time

Figure 25. Cascade Lake time relative to block size for the matrix multiplication
kernel.

5.3.3 Cache Efficiency. We use two types of similar metrics

to measure cache efficiency: Miss Rates and Byte Ratios. These metrics

complement the volume of data moved, by showing how effectively each cache layer

is used and how much the application relies on it.

Miss Rates is the ratio of misses to accesses for a particular level of

cache. We discuss the details of these measurements above. Cache misses arise

in three ways [55]: compulsory misses from new data, capacity misses when the

data had been evicted due to a lack of space, and conflict misses when the data

was evicted as the result of associativity conflicts. A low miss rate indicates that

the application is reusing data repeatedly and making the most of the compulsory

misses.

Distinguishing between the capacity and conflict misses is challenging to do

without memory tracing, simulation, or other methods which are beyond the scope

75

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

21
12

LS Bytes L2 Bytes Mem Bytes

Figure 26. A64FX bytes relative to the offset in our associativity example.

of this work. The user can use their knowledge of the program to reason about the

type of misses, and design experiments adjusting the inputs or data structures to

see how the miss rates are impacted. Such experiments are application-specific but

can provide a deeper understanding of the performance of an application. We offer

some examples in Section 6.1.

The Byte Ratio is the ratio of data supplied by a particular level of cache

to the data requested by the CPU. This metric is similar to Miss Rate but uses

the LS Bytes as the denominator for all the levels of cache. In [44], the authors

present a similar metric based on simulation data.

The Byte Ratios can be used to determine which caches are most heavily

used by the application. A higher ratio indicates more reliance on the cache level,

knowing how much each cache level contributes to the application is vital to know

how to focus the attention of the optimizations. For example, if cache blocking is

76

0
2E+09
4E+09
6E+09
8E+09
1E+10

1.2E+10
1.4E+10
1.6E+10
1.8E+10

2E+10

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

21
12

LS Bytes L2 Bytes L3 Bytes Mem Bytes

Figure 27. Cascade Lake bytes relative to the offset in our associativity example.

used to improve cache efficiency, then the metrics can be used to verify the success

of the blocking and pinpoint a particular block size. We include examples of this

type in Section 6.1.

5.3.3.1 Demonstration with Cache Conflicts. To demonstrate

the cache efficiency metrics, we repeat the cache coherency experiment from the

Data Movement metrics. Once again we ran the benchmark with a series of offsets

between data accesses. The data size is close to the L1 cache, so the computation

can be performed very efficiently except when cache conflicts occur because the

offset is a multiple of the block size.

Figure 28 shows the byte ratios on the A64FX and Figure 29 shows the

same ratios on the Cascade Lake. The higher associativity of the L2 (and Cascade

Lake’s L3) caches prevents the cache conflicts from impacting those caches as well,

so we see spikes in L2 Bytes / LS Bytes but not in Mem Bytes / LS Bytes

or L3 Bytes / LS Bytes. These peaks indicate that the L2 cache is used to

77

complete a larger fraction of the total load and store operations for the kernel in

those instances.

0

10

20

30

40

50

60

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

21
12

L2 / LS Mem / LS

Figure 28. A64FX byte ratios relative to the offset in our associativity example.

We show the miss rates for A64FX in Figure 30) and for the Cascade Lake

in Figure 31). For both systems, we see a low L1 Miss Rate for most of the

offsets except those which correspond to the cache conflicts. Once again the cache

metrics are performing as expected for this benchmark.

In this case, we also see a high L2 Miss Rate on both systems. A miss

rate of 30% or 40% could be the indication of poor cache performance, but from

our L2 Bytes / LS Bytes metric, we know that the L2 cache is not used for very

many of the load and store operations. Therefore, we hypothesize that the high

miss rate is probably caused more by the low number of accesses to that cache

level than a high number of misses. Notably, at the cache conflict points, the L2

78

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

896
960

1024
1088

1152
1216

1280
1344

1408
1472

1536
1600

1664
1728

1792
1856

1920
1984

2048
2112

L2 / LS L3 / LS Mem / LS

Figure 29. Cascade Lake byte ratios relative to the offset in our associativity
example.

Miss Rate drops close to zero. This fact corroborates the hypothesis since the

drop corresponds with a large increase in accesses to the L2 cache.

5.3.3.2 Demonstration with Loop Blocking. As with the Data

Movement metrics, the Matrix Multiplication benchmark provides a good example

of how the Cache Efficiency metrics respond to changes that improve the efficiency

of the cache use. We run the matrix multiplication with four types of kernels:

default, transpose, unroll, and blocked. The blocking version has seven block sizes

which show how the performance changes as the block size varies. Details on the

variations are available in Chapter III.

First, we look at the Cache Ratio metrics in Figures 32 and 33. On both of

the systems, the L2/LS Ratio is low for the small block sizes, then rises quickly.

Our hypothesis is that this rise corresponds to the block size becoming larger than

the L1 Cache which causes the kernel to have more data-filled from the larger

caches instead of the smaller and faster L1 cache. This result re-enforces our

79

0

0.01

0.02

0.03

0.04

0.05

89
6

96
0

10
24

10
88

11
52

12
16

12
80

13
44

14
08

14
72

15
36

16
00

16
64

17
28

17
92

18
56

19
20

19
84

20
48

21
12

L1 MR L2 MR

Figure 30. A64FX miss rates relative to the offset in our associativity example.

confidence that the blocking is working as intended since the smaller block sizes

can fill a larger number of requests from the L1 Cache than the larger block sizes.

On the Cascade Lake system (Figure 33), we notice that the L3/LS Ratio

and the Mem/LS Ratio rise significantly as the size increases further. The

Mem/LS Ratio on the A64FX similarly rises at a larger block size than the

L2/LS Ratio. A more fine-grained set of block sizes could help the user establish

the exact point at which the block size becomes too large for each cache.

The results have two notable differences between the two systems. First, the

A64FX has much higher ratios overall. We suspect that the higher ratios are the

result of the larger cache line size (256 bytes on A64FX compared to 64 bytes on

Cascade Lake). Inherently, any access to a lower cache is therefore moving more

data. Secondly, the Default version of matrix multiplication has a higher L2/LS

Ratio than the transpose and unroll versions on A64FX, but the three versions

80

0

0.1

0.2

0.3

0.4

0.5

0.6

896
960

1024
1088

1152
1216

1280
1344

1408
1472

1536
1600

1664
1728

1792
1856

1920
1984

2048
2112

L1 MR L2 MR L3 MR

Figure 31. Cascade Lake miss rates relative to the offset in our associativity
example.

have similar L2/LS Ratios on the Cascade Lake. Once again the cache line size

is the likely culprit. The default version wastes all but one element in the cache

line when loading data for the B matrix; therefore the larger cache line size on the

A64FX will waste more data.

We repeat the experiment with the L1 L2 and L3 Miss Rates, but

understanding these results requires some information from the Byte Ratios as

well. Figures 34 and 35 present the Miss Rates on the A64FX and the Cascade

Lake, respectively. Unsurprisingly, the L1 Miss Rates follow a pattern similar

to the data movement and Byte Ratio metrics, which show that transposition,

unrolling, and blocking each lower the missrate. The L1 Miss Rates then rise

as the Block Size increases. These results add to our confidence that our blocking

optimization improves the efficiency of the L1 cache.

The unrolled version of the Matrix Multiplication varies somewhat between

the two systems. On the A64FX, the L1 Miss Rate falls from 5.1% to 0.7%

81

0
1
2
3
4
5
6
7
8

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

Ra
tio

Matrix Multiplication Version

L2 / LS
Mem / LS

Figure 32. A64FX byte ratios for the matrix multiplication variations.

from the default to the transpose version, then to 0.5% for the unrolled version.

In contrast, the Cascade Lake L1 Miss Rate falls from 65% (default) to 48%

(transpose) to 4.8% (unroll). Although this pattern suggests that the loop unrolling

is highly effective on Cascade Lake, that is a misleading interpretation. The

transpose version is over 27× faster than the default version while the unroll

version is only 1.2× faster. The improved miss rate is the result of a combination of

factors; the Cascade Lake transpose version has a lower LS Bytes than either the

default or the unroll version, and the use of SIMD operations changes in the unroll

version.

Without examining the computation metrics out of turn, we recognize

that we avoided incorrect assumptions about the L1 Miss Rate by considering

it in conjunction with the LS Bytes and the flops/fp ins. A vital aspect of our

82

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Defau
lt

Transpose

Unrollja
m

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

By
te

 R
at

io

Matrix Multiplication Version

L2 / LS
L3 / LS
Mem / LS

Figure 33. Cascade Lake byte ratios for the matrix multiplication variations.

metrics is that they each address issues that are left open by the other metrics. For

example, the LS Bytes metric can inform us that the Cascade Lake unroll and

transpose matrix multiplications use the L1 Cache in dramatically different ways,

so we should not directly compare the LS Bytes for those versions. Additionally,

the flops/fp ins informs us that the two versions have different SIMD operations

usage. The L1 Miss Rate is based on the number of instructions that access

the L1 cache, so this change has a large impact on how we interpret the L1 Miss

Rate. We will not pretend to know all of the interactions between our metrics, but

we use the example mini-applications in Chapter VI to describe our experience with

some of these interactions.

Both systems have disturbingly high L2 Miss Rates for many of the

versions. In particular, the smaller sizes of blocks have Miss Rates over 30% on

A64FX and close to 100% on the Cascade Lake. However, the L2/LS Ratio

83

informs us that the L2 Cache is largely unused, so these misses are probably

compulsory misses required when data is touched for the first time. Additionally,

we used SIMD operations, so each load operation requests 64 bytes of data. This

size is the same as the cache line n the Cascade Lake, so each compulsory load from

the L2 into the L1 is fully utilized by the load operation. Therefore the L2 Miss

Rate is close to 100% on the Cascade Lake. The A64FX has a larger cache line,

so more data is brought in with each of the compulsory misses which improves the

efficiency of those L2 Accesses, so the A64FX L2 Miss Rate is closer to 30%.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

M
iss

 R
at

e

Matrix Multiplication Version

L1 MR
L2 MR

Figure 34. A64FX miss rates for the matrix multiplication variations.

5.3.4 Computation. Our research is focused on scientific

computing applications where the primary measure of work is floating-point

computation. Much like the data movement measurements, we provide two types

of computational metrics to the user. First we look at total computation as flops

84

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Defau
lt

Transpose

Unrollja
m

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

M
iss

 R
at

e

Matrix Multiplication Version

L1 MR
L2 MR
L3 MR

Figure 35. Cascade Lake miss rates for the matrix multiplication variations.

an efficiency measurement as flops/ fp instruction. These metrics help the user

understand how much work the application is performing and if it is using the most

efficient instructions available.

As discussed in Section 5.1, we define flops as the number of floating-point

operations executed by the hardware. We distinguished this term from flops/s

which is the rate of computation. Note that many authors differ on the notation.

The total computation can be useful for checking how optimizations change the

amount of work performed and is particularly useful when used to compare with

other metrics such as time (above) and data movement (below) to measure the

efficiency of the application.

Proper use of Single Instruction Multiple Data (SIMD or vector)

instructions is vital to maximizing the computational speed on modern CPUs.

These instructions allow the CPU to execute several identical operations at once

85

on adjacent data. The user can check for SIMD use different ways,including our

flops/fp ins (flops per floating-point instruction) metric. This metric provides an

empirical method to check how well an application is using SIMD operations.

5.3.4.1 Demonstration with STREAM. Our modified STREAM

benchmark is a good tool to help validate the count of floating-point operations.

It is carefully designed to run a known number of operations in each experiment,

which can then be compared to the measured amount from the hardware counters.

In these examples, we reuse the experimental data from Chapter IV. These results

provide a wide range of sizes on both systems and include data sizes that are larger

and smaller than each cache.

Figure 36 shows the results from various data sizes of STREAM run on

all 48 cores of the A64FX. The results show that for all of the sizes there is less

than a 0.5% difference between the expected flops and the measured value. The

error could arise from many factors including the overhead of Caliper or Papi,

variations in how the overflow of counters is handled, or how the compiler handles

the potential remainder loops required by vectorization of the computation. We are

satisfied with this error level because it is significantly more precise than the cache

measurements which are based primarily on proxy measurements.

We present similar results for the Cascade Lake CPU in Figure 37. Once

again these data demonstrate the percent differences are less than 0.5% for all of

the data sizes.

5.3.4.2 Demonstration with Matrix Multiplication. We use the

matrix multiplication benchmark to study what our computation metrics tell us

about a kernel with more complex loop nesting and data structures. The kernel

is simple in comparison to many other computation types, but the three nested

86

Figure 36. Percent difference between the expected and measured floating point
operations for different sizes of STREAM run on the A64FX CPU.

loops, 2D matrix data structures, and many optimization options represent a major

increase in complexity from the STREAM benchmark.

In principle, the number of floating-point operations in the matrix

multiplication kernel should not need to change with any of our operations. The

transpose, unrolling, and blocking, versions of the kernel all use the same number of

operations if the user were to count operations per data element in the source code

representation. We will see in this example that compilers can make unexpected

changes to the amount of work performed by a kernel, further motivating the need

for empirical and static analysis.

We show the count of Floating Point operations (flops) in Figure 38 and 38.

On both systems, the number of flops is constant for the non-blocked versions of

matrix multiplication. However, once blocking is applied, the number of floating-

87

Figure 37. Percent difference between the expected and measured floating point
operations for different sizes of STREAM run on the Cascade Lake CPU.

point operations increases by 25% on the A64FX and by close to 100% on the

Casacdelake. These increase the trend downward as the block size increases, and

the flops appears to be close to the same as the default version for the largest

block sizes.

At first, we suspected that this change in flops indicated that we were

not measuring the floating-point operations correctly. Further examination of the

assembly language revealed that the compiler modifies the algorithm slightly to

perform multiple operations that need to be summed into one of the elements

of the C matrix. Once these operations are separated, additional reductions are

needed to sum the temporary C elements into the final C element. The reduction

88

occurs at the end of one of the block loops, which means the number of added

reduction operations is inversely proportional to the block size in this kernel.

1E+12

1.05E+12

1.1E+12

1.15E+12

1.2E+12

1.25E+12

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

flo
ps

Matrix Multiplication Version

Figure 38. A64FX flops for the matrix multiplication variations.

The results for our other computational metric, flops / fp ins, are shown

in Table 14 We chose this format because the results lack variation between the

kernels. Most importantly, the A64FX version is not vectorized well. The compilers

can make use of the FMA instructions, but not SIMD operations. The Cascade

Lake compiler does vectorize well and reaches close to 8 flops / fp ins on most

versions. The unrolling seems to obscure the kernel from the compiler, so it is

prevented from using SIMD operations. The reductions added by the blocking of

the loops cannot be performed as SIMD operations, so the blocked version has a

flops / fp ins that increases, presumably asymptotically, towards 8 as the block

size increases.

89

0

5E+11

1E+12

1.5E+12

2E+12

2.5E+12

Defau
lt

Transpose

Unrollja
m

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

flo
ps

Matrix Multiplication Version

flops

Figure 39. Cascade Lake flops for the matrix multiplication variations.

From the computation metrics, we see two clear avenues to improve the

kernel. First, we will want to identify a method to perform blocking without

adding additional floating-point operations. Then we can rerun the experiments

to validate that method. Second, on the A64FX, e need to find a way to make use

of the SIMD instructions. These instructions are a vital part of the performance of

modern CPUs and matrix multiplication is a well-known code that should be able

to use SIMD operations. Addressing these issues may help us further improve the

performance of our kernel.

5.3.5 Computation Data Rates. Our final set of metrics is meant

to unite the data movement and computation measurements to help the user

understand them in context of each other. We start with Arithmetic Intensity (AI)

and add several similar ratios of flops per data loads and stores.

90

Table 14. flops / fp ins for each version of matrix multiplication on the A64FX
and Cascade Lake systems.

A64FX Cascade Lake
Default 2 8.00

Transpose 2 7.90
Unroll 2 1.00

Block 16 2 1.58
Block 32 2 7.53
Block 64 2 7.70
Block 128 2 7.82
Block 256 2 7.90
Block 512 2 7.95
Block 1024 2 7.97

AI has been used since at least [36] described the balance point of a

machine when neither the memory nor computational hardware was stalled for the

other. The Roofline Model [37] uses AI as the independent variable for modeling

the application and the hardware. In Chapter IV, we discuss AI and the Roofline

model in depth.

Additionally, we use flops/LD ins and flops/ST ins to compare the

computational work to the number of load and store instructions executed.

Distinguishing between the loads and stores is necessary because they impact

application performance in different ways. Computation (flops) moves the

application forward enabled by the loading of new data. The time to store data

can be hidden in hardware with store buffers or algorithmically by data reuse,

so computation does not depend on data writes as much as it depends on the

data loads. However, the store operations can limit the bandwidth available for

load operations, which then limits the rate of computation. Understanding the

differences in how the application uses the two types of operations can help identify

which optimizations to use.

91

Our last adjustment is to use flops/LD bytes and flops/ST bytes which

uses the bytes moved rather than the number of instructions. SIMD operations also

apply to the data movement operations so this can provide a slightly different view

than the instruction variations. Subtle differences in the metrics can occasionally

reveal important information, so extending the set of metrics to include more

variations may be a useful exercise if the user is dissatisfied with the results.

5.3.5.1 Demonstration with STREAM. Our STREAM benchmark

(see Chapter III) is designed to perform a consistent number of floating-point and

data movement operations. We run the benchmark with a range of data sizes

covering two of the caches on each system. We expect that the ratio of floating-

point operations to data movement instructions and the number of bytes moved

will remain consistent for all of the measured sizes.

Figures 40 and 41 show the results for the A64FX and the Casadelake

CPUs respectively. In both cases, we see that all of the Computation Data Rate

metrics are consistent across all of the measured data sizes. Additionally, we see

that flops/LD ins is approximately 64× the value for flops/LD byte and the

store operations have a similar ratio. The STREAM benchmark uses 512-bit SIMD

operations so each data movement instruction moved 64 bytes of data. These

results give us confidence that the metrics are performing as designed but do not

demonstrate the metrics’ usefulness.

5.3.5.2 Demonstration with Matrix Multiplication. We collected

the computation data rates for the variations of the matrix multiplication that

we discussed in Chapter III. The results show how the relationship between

computation and data movement impacts the performance of the application. As

92

0

5

10

15

20

0

0.05

0.1

0.15

0.2

0.25

0.3

32 64 96 128 608 640 672 704

flo
ps

 p
er

 in
st

ru
ct

io
n

(x
)

flo
ps

 p
er

 b
yt

es
 (o

)

Array size (KiB)

AI
flops/LD byte
flops/ST byte
flops/LD
flops/SR

Figure 40. A64FX computation data rates for STREAM with several data sizes.

shown in the Roofline Models, applications that have a higher ratio of floating-

point operations per amount of data moved to have a higher potential performance.

Figure 42 shows the flops/LD ins and flops/ST ins for the matrix

multiplication versions on the A64FX and Figure 43 shows the same data on the

Cascade Lake. On A64FX the flops/LD ins is less than one for the default,

transpose, and unroll versions. It rises to two and three for the blocked verison,

but remains constant. The Cascade Lake flops/LD ins consistently matches

the flops/FP ins for all of the versions other than the transpose version which

performs 26.2 flops per LD instruction.

Based on these results for flops/LD ins, we conclude that the kernel is

loading data from the cache for each of the array accesses in most of the Matrix

Multiplication versions on both processors. The exception is the transpose version

on the Cascade Lake which appears to be able to reuse some of the data within the

CPU to increase the amount of computation performed for each load operation.

93

0.00E+00
2.00E+00
4.00E+00
6.00E+00
8.00E+00
1.00E+01
1.20E+01
1.40E+01
1.60E+01
1.80E+01

0
0.05

0.1

0.15
0.2

0.25

0.3

28
 K

iB
30

 K
iB

32
 K

iB
34

 K
iB

36
 K

iB
40

 K
iB

48
 K

iB
96

0
Ki

B
99

2
Ki

B
10

24
 K

iB
10

56
 K

iB

flo
ps

 p
er

 in
st

ru
ct

io
n

(x
)

flo
ps

 p
er

 b
yt

es
 (o

)

Array size (KiB)

AI
flops/LD byte
flops/ST byte
flops/LD
flops/SR

Figure 41. Cascade Lake computation data rates for STREAM with several data
sizes.

The fact that the Cascade Lake transpose version is an outlier in this way is

significant because it is also the most performant variation of the kernel (see

Figures 44 and 45). Notably, transpose outperforms the blocked versions on

Cascade Lake, but not on the A64FX where the flops/LD ins is more consistent

with the other versions. We conclude that finding ways to increase the flops/LD

ins on both systems could lead to improved performance.

The flops/ST ins has a slightly different performance pattern than

the flops/LD ins. On the A64FX, it is about 4 flops/ST ins for the default,

transpose, and unroll versions. This result matches what a user could count from

the source code. When blocking is applied, the metric increases with the block size

up to nearly 900 flops/ST ins. The Cascade Lake results are similar, but with a

higher flops/ST ins for the transpose version.

The flops/ST ins results indicate that the compiler can limit stores in the

blocked version to the end of the loop blocks which results in a significant reduction

94

0
100
200
300
400
500
600
700
800
900

1000

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

flo
ps

 p
er

 in
st

ru
ct

io
n

Matrix Multiplication Version

Figure 42. A64FX flops / LD and flops / ST for the matrix multiplication
variations.

in the number of store operations required. However, Figures 46 and 47 show that

the ratio of load operations to store operations is quite high. This result, combined

with the flops/ST ins metrics does not correlate with the execution time, leads

us to believe that the stores are not a determining factor in the performance of the

kernel.

An alternative measurement to the flops/LD ins and flops/ST ins, is

the flops/LD Bytes, flops/ST Bytes, and the AI. We include these results

in Figures 48 and 49. Since the flops/ST Bytes is much larger than the other

metrics, we include just flops/LD ins and AI in Figures 48 and 49.

Depending on the situation, the change in the denominator can help

improve understanding. For this example, the results are largely the same as the

instruction-based results above. The one exception is that flops/LD ins for the

95

0

200
400
600
800

1000
1200

De
fa

ul
t

Tr
an

sp
os

e

U
nr

ol
lja

m

Bl
oc

k
16

Bl
oc

k
32

Bl
oc

k
64

Bl
oc

k
12

8

Bl
oc

k
25

6

Bl
oc

k
51

2

Bl
oc

k
10

24

flo
ps

 p
er

 in
st

ru
ct

io
n

Matrix Multiplication Version

flops/LD
flops/SR

Figure 43. Cascade Lake flops / LD and flops / ST for the matrix multiplication
variations.

default and unroll versions on the Cascade Lake. The flops/LD ins is higher

for the default version, but the flops/LD Bytes are identical for the two. This

difference occurs because the default version uses SIMD operations, but the unroll

version does not.

CPUs have a limited number of ports that can execute memory operations,

so SIMD instructions are necessary to achieve the highest possible bandwidth.

Analyzing the computation data rates based on the number of memory instructions

and the number of bytes moved will help the users make sense of the relationships

better than one of the metrics alone.

5.4 Summary

This chapter presents and demonstrates our set of hardware counter based

performance metrics. We define these metrics and show how they can be measured

96

0
200
400
600
800

1000
1200
1400
1600
1800

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

Ti
m

e
(s

)

Matrix Multiplication Version

Time

Figure 44. A64FX Time for the matrix multiplication variations.

on our two systems. After that, we provide several examples of using those metrics

to study the benchmarks discussed in Chapter III. We use these examples to show

the accuracy and usefulness of our metrics on both of the CPUs. The hardware

counter metrics in this chapter can provide performance information to users on our

two different CPUs.

97

0
5

10
15
20
25
30
35
40

Defau
lt

Transpose

Unrollja
m

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

By
te

s

Matrix Multiplication Version

Time

Figure 45. Cascade Lake Time for the matrix multiplication variations.

0

50

100

150

200

250

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

lo
ad

s
pe

r s
to

re

Matrix Multiplication Version

Figure 46. A64FX LD ins/ST ins for the matrix multiplication variations.

98

0
20
40
60
80

100
120
140

Defau
lt

Transpose

Unrollja
m

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

lo
ad

s
pe

r s
to

re
s

Matrix Multiplication Version

LD/SR

Figure 47. Cascade Lake LD ins/ST ins for the matrix multiplication variations.

0
20
40
60
80

100
120
140
160

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

flo
ps

 p
er

 b
yt

e

Matrix Multiplication Version

Figure 48. A64FX AI flops / LD bytes and flops / ST bytes for the matrix
multiplication variations.

99

0
5

10
15
20

25
30

De
fa

ul
t

Tr
an

sp
os

e

U
nr

ol
lja

m

Bl
oc

k
16

Bl
oc

k
32

Bl
oc

k
64

Bl
oc

k
12

8

Bl
oc

k
25

6

Bl
oc

k
51

2

Bl
oc

k
10

24

flo
ps

 p
er

 b
yt

e

Matrix Multiplication Version

flops/LD byte
flops/ST byte
AI

Figure 49. Cascade Lake AI flops / LD bytes and flops / ST bytes for the
matrix multiplication variations.

0

0.1

0.2

0.3

0.4

0.5

0.6

Defau
lt

Transpose

Unroll J
am

Block
16

Block
32

Block
64

Block
128

Block
256

Block
512

Block
1024

flo
ps

 p
er

 b
yt

e

Matrix Multiplication Version

Figure 50. A64FX AI and flops / LD bytes for the matrix multiplication
variations.

100

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

De
fa

ul
t

Tr
an

sp
os

e
U

nr
ol

lja
m

Bl
oc

k
16

Bl
oc

k
32

Bl
oc

k
64

Bl
oc

k
12

8
Bl

oc
k

25
6

Bl
oc

k
51

2
Bl

oc
k

10
24

flo
ps

 p
er

 b
yt

e

Matrix Multiplication Version

flops/LD byte
AI

Figure 51. Cascade Lake AI and flops / LD bytes for the matrix multiplication
variations.

101

CHAPTER VI

CASE STUDIES OF MINI-APPLICATION PERFORMANCE USING THE

HARDWARE COUNTER METRICS

In Chapter V, we presented a set of performance metrics from hardware

that we can measure on our two different systems. Here we analyze several example

mini-applications with our performance metrics. These examples show that the

metrics used can improve the user’s understanding of the performance of their

application.

6.1 Kernel Examples

To illustrate the usefulness and differences between the kernels, we analyze

several kernels designed to demonstrate the metrics. For each kernel, we include

multiple versions so the user can gain a full context for how the metrics can

be used to analyze optimizations to an application. Some of these changes are

minimal, such as changes to the compiler options, while others are significant, such

as changes to data structures. These analyses offer a demonstration of both the

individual metrics as well as the process of analysis.

The process of evaluating performance based on hardware counters can

be tedious and confounding. Numerous research efforts (see Ch. II) attempt to

clarify this process, but the efforts generally rely on extensive benchmarking of

the hardware or micro-architecture specific measurements. Both options can be

prohibitively difficult to apply. Our approach is focused on the application, so we

find that patient study of multiple versions of an application can provide useful

context to the measurements. This section illustrates that process.

6.1.1 N-Body Simulation. The N-Body problem is a classic

mechanics problem computing the movement of N celestial bodies as their

102

gravitational forces interact. This computational kernel is well-studied and a

common introduction to scientific parallel computing. In this paper, we use it to

demonstrate how the use of vector operations can have surprising effects on the

performance of an application and how our proposed metrics reveal those changes.

The N-Body results (Table 16) show results for the kernel compiled with and

without the use of SIMD instructions on each of our systems. On both systems

a few changes to compiler flags (Table 15) allow us to get a speedup (11.8× on

A64FX and 3.77× on Cascade Lake) relative to the respective scalar versions.

Table 15. Compilers and options for the N-Body application

CPU and compiler Scalar options SIMD options
Cascade Lake, Intel -O1 -g - -O3 -g

-march=cascadelake -march=cascadelake
-no-simd -qopt-zmm-usage=high

A64FX, Fujitsu -O0 -g -O3 -g -march=armv8.2-a+sve
-mcpu=a64fx

-Kfast,openmp,ocl
-Ksimd reg size=512

We begin by looking at the overall metrics of performance; time, IPC,

and flops/s. For N-Body, we see that the time is significantly reduced with the

addition of SIMD-oriented compiler options. Speedup is about 12× on the A64FX

and 4× on the Cascade Lake. The rate of computation also increases for both

systems. However, the IPC does not increase on the Cascade Lake. From this we

learn that the improvement comes in different ways on the two systems and, for the

Cascade Lake, it likely comes from less computation being performed.

103

Table 16. N-Body data from unoptimized and optimized versions

A64FX CAS
scalar simd scalar simd
Overall Performance

Time (s) 421.72 35.80 11.23 2.98
IPC 0.38 0.80 2.48 0.55

flops/s (Gflops/s) 3.26 280.3 122.4 460.8
Data Movement

LS Bytes (GB) 20,170 2,202 16,191 2,581
L2 Bytes (GB) 11,101 2,440 1,272 1,283
L3 Bytes (GB) NA NA 1,661 1,678

Mem Bytes (GB) 0.26 0.12 0.78 0.33
Cache Efficiency

L1 MR 1.59E-03 31.2E-03 9.80E-03 0.50
L2 MR 12.0E-06 43.0E-06 1.31 1.31
L3 MR NA NA 21.0E-06 25.0E-06
L2 / LS 0.55 1.11 0.079 0.50
L3 / LS NA NA 0.10 0.65

Mem / LS 12.8E-06 55.8E-06 47.9E-06 129.0E-06
LD ins / ST ins 5.65 3.75E3 2.26 80.80

Computation
flops 1.37E12 10.0E12 1.37E12 1.37E12

flops/fpins 0.95 6.08 1 7.9997
Computation Data Ratios

AI 0.068 4.56 0.085 0.53
flops/LD ins 0.32 36.41 0.98 34.50
flops/ST ins 1.81 136.5E3 2.21 2.8E3

flops/LD Bytes 0.08 4.56 0.12 0.54
flops/ST Bytes 0.45 32.7E3 0.28 43.56

Looking at the data movement in Table 16, we note at least two ways

the optimizations improve memory performance. Most obviously, the LS bytes

are significantly reduced in the optimized version. This often happens when the

unoptimized version repeatedly reloads the memory address of an array in a loop

rather than calculating the next address. Without the repetitive address loads,

we see that a significant portion of the data comes from the L2 cache. Further,

the optimizations reduce the amount of data stored which improves the LD ins

104

/ ST ins ratio. Since loading data is often a limiting factor for performance, it is

important not to delay loads with unnecessary stores. The reduction in overall data

movement and stores, in particular, is a likely contributor to the improved overall

performance of the kernel.

The computation-focused metrics reveal a murkier picture. We see the

SIMD version flops are nearly 10× higher than the scalar version. Some of these

added flops are likely due to reductions that are sometimes performed to sum

SIMD registers into a single scalar value. Others may have unused results that are

excluded with masking. Details may be available in optimization reports or analysis

of the assembly but not through empirical analysis of hardware counters. Notably,

it is most likely that these additional flops are performed entirely in registers

without movement to cache or memory since the AI for A64FX increases much

more than that measured for the Cascade Lake. The vectorization metric, flops/fp

ins, indicates that A64FX is not vectorizing to its full potential (maximum 16

flops/fp ins with FMAs), but that Cascade Lake gets quite close (maximum of

8 flops/fp ins since FMA are not measured). We could use compiler reports to

check on the use of FMA operations, but want to keep the focus of the paper on

hardware counter analysis. In total, computation shows some improvement with the

SIMD options, but may be able to benefit from additional SIMD operations and

changes limit extraneous flops on A64FX.

The impact of the memory and floating-point improvements can be seen

in the comparative ratios: AI, flops / LD ins, flops / ST ins, flops / LD

bytes. Improving the amount of computation relative to the data movement

is an important step in using most modern systems, so it is encouraging to see

increases in all these measurements. High AI would indicate the algorithm is a

105

good candidate for further vectorization or porting to accelerators. On the A64FX,

the compiler can hold enough data in registers so that stores are nearly eliminated.

The N-Body algorithm updates each body based on data from all the others, so the

minimal stores make sense if there are enough registers to hold all the data for two

bodies.

Based on this analysis, we conclude that further exploration of vectorization

on A64FX could be helpful, while the Cascade Lake version could use additional

work on its cache performance. The user can modify the code based on these

results, form hypotheses about how performance will be impacted, and repeat the

hardware counter analysis to verify how the performance changes.

6.1.2 XSBench. The first mini-application we consider is

XSBench [56], which represents a key kernel of the Monte Carlo neutron transport

algorithm. The kernel executes a large number of lookups into a table of data based

on material properties and the energy of neutrons moving through those materials.

Functionally, the kernel is executing a series of randomized memory accesses into

a data table larger than most caches. XSBench is useful for studying full neutron

transport applications like OpenMC [57].

We consider the event based parallelization of XS Bench which has three

variations: a default random access version (called event), optimization 1 which

sorts based on energy and materials (event opt 1), and optimization 2 which sorts

solely based on energy (event opt 2). We profile and compare all three versions

with the metrics presented in this paper.

106

Table 17. XSBench event kernel data

A64FX CAS
Original opt 1 opt 2 Original opt 1 opt 2

Overall Performance
Time (s) 4.17 3.51 2.37 1.46 0.80 0.58

flops/s (Gflops/s) 9.46 10.22 15.51 18.42 32.27 45.32
IPC 0.22 0.75 0.76 0.27 1.43 1.79

Data Movement
LS Bytes (GB) 201 190 194 234 226 230
L2 Bytes (GB) 913 624 699 214 137 151
L3 Bytes (GB) NA NA NA 188 12.3 13.8

Mem Bytes (GB) 702 12.5 6.89 129 112 7.42
Cache Efficiency

L1 MR 0.017 0.018 0.019 0.241 0.16 0.18
L2 MR 0.43 0.020 0.0098 0.88 0.090 0.091
L3 MR NA NA NA 0.63 0.60 0.35
L2 / LS 4.54 3.29 3.61 0.92 0.61 0.66
L3 / LS NA NA NA 0.80 0.055 0.060

Mem / LS 3.49 0.066 0.036 0.55 0.050 0.032
LD ins / ST ins 3.73 3.91 3.91 5.23 5.36 5.361

Computation
flops 39.45E9 35.91E9 36.71E9 26.87E9 25.88E9 26.42E9

flops/fpins 1.59 1.51 1.51 2.11 2.15 2.15
Computation Data Ratios

AI 0.20 0.19 0.19 0.11 0.11 0.11
flops/LD ins 1.86 1.75 1.76 2.31 2.34 2.34
flops/ST ins 6.96 6.86 6.87 12.06 12.52 12.53

flops/LD Bytes 0.25 0.24 0.24 0.14 0.14 0.14
flops/ST Bytes 0.95 0.91 0.91 0.72 0.73 0.73

Our XS Bench optimizations improve on each other for all three of the

overall performance metrics (Table 17). This improvement is seen in both IPC and

flops/s, so we suspect that the improvement comes from more efficient processing

rather than a reduction in work. We will learn how from the other metrics.

Starting with the data movement, we see that the LS Bytes remains fairly

consistent, but the other data volumes change considerably. On both systems, from

the event version to event opt 1, the L2 Bytes and Mem Bytes both drop by

107

large margins (L3 Bytes too on Cacade Lake). Looking at the change from opt 1

to opt 2, we see that the L2 Bytes goes back up a small amount, while Mem

Bytes is reduced further. The efficiency metrics (miss rates and cache ratios)

reinforce the impression that the optimizations both make the cache use more

efficient.

Consider the case of comparing the two systems to port an application

from one to the other. With the help of the metrics here we can see where the

performance on the A64FX falls short of the Cascade Lake. The most striking

difference arises in the measurement of L2 Bytes which is the number of bytes

moved from the L2 cache to the L1 and then CPU due to L1 cache misses. The

A64FX has a 256 byte cache line, while that of the Cascade Lake is only 64 bytes.

Based on this information, we can hypothesize that the additional cache line space

is being wasted moving unnecessary data, resulting in more data being moved on

the A64FX than on the Cascade Lake.

Moving on to the floating-point metrics, we note that the flops/s improves

consistently, but the flops/fp ins does not. It is not surprising that random

memory accesses are not easily transformed into SIMD operations, but if the user

succeeds there will likely be large benefits. The limited number of load and store

ports on CPUs means that SIMD instructions are needed to achieve peak memory

bandwidth on many systems, so even memory-focused applications can benefit from

vectorization.

Due to the consistency of both flops and LS Bytes, the various

comparative metrics do not change significantly across the variations. However,

there is a difference, between the two systems. The difference comes from a

combination of higher flops and lower LS Bytes on the A64FX relative to the

108

Cascade Lake. Identifying experiments to explore these differences may be a good

next step in the optimization process since understanding why the runtime is

smaller on Cascade Lake and the data movement is reduced on A64FX may help

the user port those improvements to the other system.

6.1.3 Cloverleaf. CloverLeaf [58] is a mini-app that solves the

compressible Euler equations on a Cartesian grid, using an explicit, second-order

accurate method. Each cell stores three values: energy, density, and pressure.

A velocity vector is stored at each cell corner. This arrangement of data, with

some quantities at cell centers, and others at cell corners is known as a staggered

grid. CloverLeaf currently solves the equations in two dimensions, but a 3D

implementation has been started in CloverLeaf3D.

One of the key kernels of Cloverleaf is PdV which computes changes

in energy and density in each cell. The kernel consists of a double nested loop

iterating over some subset of the volume. We built our baseline, PdV SIMD,

with compiler options encouraging vectorization. Next, we applied a blocking

optimization to try to improve cache performance (PdV BlockSize4). Table 18

show the results from these experiments.

109

Table 18. Cloverleaf PdV kernel data

A64FX CAS
Original Block Size 4 Original Block Size 4

Overall Performance
Time (s) 33.12 75.46 14.67 16.72

flops/s (Gflops/s) 24.17 16.57 45.49 42.69
IPC 0.56 0.52 0.10 0.28

Data Movement
LS Bytes (GB) 2,600 5,350 6,250 8,830
L2 Bytes (GB) 9,300 2,620 2,810 4,080
L3 Bytes (GB) NA NA 3,790 2.28E+12

Mem Bytes (GB) 3,490 3,540 2,870 2,790
Cache Efficiency

L1 MR 0.040 0.039 0.45 0.18
L2 MR 0.25 0.10 1.35 0.56
L3 MR NA NA 0.61 0.998
L2 / LS 3.58 4.90 0.45 0.46
L3 / LS NA NA 0.61 0.26

Mem / LS 1.34 0.66 0.46 0.322
LD ins / ST ins 8.60 6.80 11.03 6.17

Computation
flops 0.80E12 1.25E12 0.67E12 0.71E12

flops/fpins 2.00 1.67 7.99... 3.19
Computation Data Ratios

AI 0.31 0.23 0.11 0.081
flops/LD ins 2.47 1.80 7.45 2.40
flops/ST ins 21.23 12.21 82.20 14.81

flops/LD Bytes 0.34 0.27 0.12 0.094
flops/ST Bytes 2.92 1.95 1.28 0.58

In this case, our attempt at optimization was unsuccessful; the overall

metrics clearly show that the performance slows with the blocking we did here.

Note that we tried several block sizes, and all performed worse than the baseline

case. The data can help us understand the performance of the baseline case better

by revealing which aspects are most important to the performance. Often we will

achieve a performance goal with optimization (such as a lower miss rate), but cause

different problems creating a negative overall impact.

110

Considering the data movement metrics, we note that the LS Bytes and L2

Bytes for both systems increase with the change, while the Mem Bytes remain

steady. The L3 Bytes is reduced on the Cascade Lake. Increased data traffic

between the L1 caches and the CPU is a likely culprit for performance degradation,

but there may be other impacts to consider.

At the L1 level, the L1 MR is far higher on the Cascade Lake than on the

A64FX. We suspect this is the product of increased memory movement between L1

and CPU since both LS Bytes and L2 Bytes rise. The other miss rates also go

down for both applications. Improved cache efficiency is a goal of blocking, but the

increase in total data movement suggests that the improved efficiency is misleading.

The total computation (flops) increases for both systems, but more so for

A64FX. The user could look to assembly language or compiler reports to attempt

to diagnose the source of new operations. Notably, there is a dramatic reduction

in SIMD instruction use for the Cascade Lake. The lack of SIMD is partially due

to the size of the blocks (i.e. smaller than the SIMD registers), but the additional

complexity of the blocked loops also hinders the compiler’s use of SIMD operations.

Overall, the efforts at blocking have resulted in far less efficient computation on

both systems.

Finally, the comparative rates show that less computation is performed

relative to data moved for both systems. These results are confirmation of the

others indicating less efficiency all around.

Finding a path forward from these results can be frustrating. These results

give us the impression that we need to approach the systems completely differently.

First, the A64FX has relatively good cache performance with PdV SIMD, but

poor SIMD performance. In contrast, the Cascade Lake vectorizes fairly well but

111

misses half of the L1 cache accesses. In our next experiments, we would explore

optimizations that can improve vectorization on the A64FX while we seek methods

of improving cache use without sacrificing SIMD operations on the Cascade Lake.

6.1.4 PENNANT. PENNANT [59] is a physics mini-app based

on unstructured mesh data structures and physics algorithms adapted from the

LANL rad-hydro code FLAG. It is useful for studying the performance of similar

algorithms on new systems without the burden of running FLAG as a whole.

One simple, but effective method of performance improvement is to explore

the numerous settings available in an application. In this case, PENNANT is

using shared memory threads with OpenMP which has a variety of options for the

arrangement and scheduling of the threads. For example, chunk size determines

how many sequential iterations are allocated to each thread. We compare a larger

chunk size of 64 and a smaller size of 4.

Looking at the overall performance metrics, we see that the smaller chunk

size is faster on both systems and that is reflected in the flops/s as well as the

time. The IPC falls with the improved version, which we find surprising.

LS Bytes on A64FX is reduced by about half when the chunk size is

reduced. Cascade Lake LS Bytes not reduced significantly. Otherwise, the data

movement is not impacted very much by the change in chunk size.

112

Table 19. PENNANT doCycle kernel data with different OpenMP chuck sizes

A64FX CAS
chunk 64 chunk 4 chunk 64 chunk 4
Overall Performance

Time (s) 71.6 44.8 10.57 7.65
flops/s (Gflops/s) 10.7 17.1 119 165

IPC 1.29 0.60 1.05 0.93
Data Movement

LS Bytes (GB) 10,700 5,420 13,300 13,200
L2 Bytes (GB) 8,170 8,130 2,590 2,590
L3 Bytes (GB) NA NA 915 1,010

Mem Bytes (GB) 1,440 1,320 961 1,120
Cache Efficiency

L1 MR 0.011 0.016 0.075 0.13
L2 MR 0.086 0.096 0.41 0.39
L3 MR NA NA 0.37 0.53
L2 / LS 0.76 1.50 0.19 0.20
L3 / LS NA NA 0.069 0.076

Mem / LS 0.13 0.24 0.072 0.085
LD ins / ST ins 7.39 4.926 6.30 4.90

Computation
flops 0.77E12 0.77E12 1.26E12 1.26E12

flops/fpins 1.06 1.06 5.11 5.11
Computation Data Ratios

AI 0.072 0.14 0.095 0.095
flops/LD ins 0.42 1.25 2.99 4.69
flops/ST ins 3.13 6.16 18.84 23.02

flops/LD Bytes 0.084 0.18 0.11 0.11
flops/ST Bytes 0.50 0.74 0.56 0.56

Similarly, the cache efficiency metrics show only minimal change. The one

exception is the L1 MR on the Cascade Lake which rises despite the improved

overall performance. Notably, L2/LS does not increase with the miss rate. This

discrepancy could be explained because the miss rates are based on instruction

counts while the L2/LS is based on bytes. The cache metrics show us that the

memory performance may be the cause of the change, but are not conclusive.

113

For the computation, both flops and flops/s show no difference between the

two versions. We note that the Cascade Lake does vectorize partially while A64FX

has essentially no SIMD operations. Knowing that SIMD use is possible, we could

confidently target those operations on A64FX in future optimizations.

Finally, understanding the computation data ratios helps us develop a

convincing hypothesis about the improved runtime of the smaller chunk size. The

A64FX has increased ratios in all cases, as expected with the constant flops and

reduced LS bytes. However the flops/[LD,ST] bytes both increase slower than

the flops/[LD,ST] ins. On Cascade Lake, the flops/[LD,ST] ins is higher with

the smaller chunks, but the flops/[LD,ST] bytes remain constant. Based on

these ratios, the lower IPC, and the cache metrics, we expect that the load-store

operations are using SIMD operations which load multiple elements at a time when

the chunk size is reduced. This change will allow the CPU to more efficiently use

the bandwidth between the CPU and L1 cache.

We are not entirely satisfied with our theories on PENNANT performance.

More information, such as comparisons of instruction mixes, thread coordination,

and stalls could all be useful. We will explore such metrics in future work.

6.1.5 VPIC. VPIC [60, 61, 62, 63] is a 3D relativistic,

electromagnetic particle-in-cell plasma simulation code. The 3D grid is a structured

Cartesian mesh with uniform grid spacing. Most of the computational work in

a time step is done in a series of loops over either particles or grid cells. VPIC

uses single-precision floating-point arithmetic to optimize the use of the available

memory bandwidth. Our inputs are for the case of a few hundred particles per cell,

but they can range from a few tens to a few thousand.

114

VPIC uses asynchronous MPI as the top level of parallelism, pthreads

or OpenMP as the middle level of parallelism, and vectorization at the lowest

level. The granularity of work assigned to a thread is relatively large. The

computation is vectorized in a lightweight C++ vector wrapper class that wraps

intrinsic function implementations of basic math operations. We use 512-bit SIMD

operations on both the Cascade Lake and A64FX nodes. There is also a portable

reference implementation that does no explicit vectorization but instead leaves the

vectorization task to the compiler.

In the base version of VPIC (which we call AoS), both the particle data

and the grid data are organized in an Array of Structures format that is aligned

along the appropriate word boundaries. Data is read and stored using SIMD loads

and stores and is then transposed on the fly so it can be used in SIMD operations.

The original particle advance iterates over all of the particles, calculating their next

time step and storing the particle back to the appropriate cell. The second version

(AoSoA cell) uses an Array of Structures of Arrays data format to simplify the

vectorization. Additionally, AoSoA cell advances all the particles within one cell

before moving onto the next cell. This optimization is designed to improve the

cache use because the particles within a cell need similar data from the particle

advance calculation. The focus on cells also limits the number of atomic operations

which must be used when the new positions are written and helps keep the particle

lists sorted from one time step to another. Table 20 shows the results from both

versions.

115

Table 20. VPIC Data for the center p kernel

A64FX CAS
AoS AoSoA cell AoS AoSoA cell

Overall Performance
Time (s) 23.50 9.55 21.12 15.25

flops/s (Gflops/s) 275 684 289 404
IPC 0.71 0.55 0.43 0.20

Data Movement
LS Bytes (GB) 13,800 5,220 22,400 3,900
L2 Bytes (GB) 6,770 9,600 2,050 1,590
L3 Bytes (GB) NA NA 2,750 2,630

Mem Bytes (GB) 4,590 5,890 4,090 2,930
Cache Efficiency

L1 MR 0.041 0.097 0.091 0.41
L2 MR 0.26 0.27 1.34 1.65
L3 MR NA NA 0.74 0.81
L2 / LS 0.49 1.84 0.091 0.41
L3 / LS NA NA 0.12 0.69

Mem / LS 0.33 1.13 0.18 0.75
LD ins / ST ins 5.12 2.06 8.26 3.91

Computation
flops 6.46E+12 6.53E+12 6.11E+12 6.16E+12

flops/fpins 23.37 23.37 15.99... 15.99...
Computation Data Ratios

AI 0.47 1.25 0.27 1.58
flops/LD ins 35.90 117.66 19.57 126.95
flops/ST ins 183.99 242.66 161.68 496.31

flops/LD Bytes 0.56 1.87 0.31 1.98
flops/ST Bytes 2.87 3.80 2.53 7.75

Our VPIC results (Table 20) clearly show that the AoSoA cell version

performs better on both systems than the AoS version. Similarly to PENNANT,

the time and flops/s both improve, but IPC does not.

The AoSoA cell version uses about half of the LS bytes relative to the AoS

version. If there is a corresponding reduction in the load and store instructions,

then this could be a good explanation for both the improved time and the reduced

IPC. In contrast to the reduced LS bytes, we note that the L2 bytes and Mem

116

bytes increase from AoS to AoSoA cell on the A64FX. The LS byte reduction

is a good start; more improvement may be found by reducing the bytes moved at

lower levels as well.

The cache efficiency metrics show less efficiency at every level. The

reduction in data needed is the main culprit since it lowers the denominator of

the efficiency metrics. The LD ins/ST ins ratio also falls. We suspect the change

comes from fewer loads, perhaps more reuse of data in registers, but we have yet

to develop metrics to verify the theory. Now that the overall data movement is

reduced, looking to improve cache efficiency could be an effective optimization for

this part of VPIC.

The L2 MR and L2/LS for Cascade Lake are identical. The load and store

instructions for the kernel are loading the same number of bytes as the cache line

moves, so the LS bytes and L2 Bytes have the same ratio as the L1 accesses

and misses. This only occurs when nearly all the loads and stores are full SIMD

operations. A64FX has a different cache line size than its SIMD register size, so the

same phenomenon is not observed on that system.

The computation metrics are hard to improve upon. Since the application is

in single precision, there can be up to 16 elements per 512 bit register. Therefore,

with FMAs, flops/fp ins can be as high as 32 for A64FX. VPIC falls short of that

because not all operations can be paired to use FMAs. The Cascade Lake manages

to hit the perfect 16 flops/fpins since the counters on that system doesn’t

differentiate FMAs the same way as A64FX. The computational performance can

only be improved by reducing the amount of work performed.

117

6.2 Summary

In this chapter, we apply the metrics presented in Chapter V to a range of

mini-applications and computational kernels. For each of the examples, we explore

several optimizations allowing us to show that the metrics are able to guide and

evaluate the performance of computational kernels on our two architectures. In

doing so, we show that our set of hardware counter metrics can provide useful

performance information on different CPU types. We will not claim that our set of

metrics is complete, but it represents a proof, by example, that empirical hardware

counter performance metrics can be unified across different micro-architectures

while providing actionable information about the target applications.

118

CHAPTER VII

A CASE STUDY OF THE PAGOSA MULTI-PHYSICS APPLICATION

This chapter provides a detailed performance case study of the Pagosa

hydrodynamics application on two systems [64]. We use Pagosa as a case

study to demonstrate how our methods and metrics can be applied to large

applications. Applying the hardware counter-based analysis to Pagosa gives

a better understanding of how optimizations impact the performance of the

application. This case study uses empirically measured rooflines (see Chapter IV)

to provide context for the performance, while looking at the detailed hardware use

through our hardware counter metrics (Chapter V). This case study brings together

the work from all the other chapters to show that our performance method can be

applicable to large scientific applications.

7.1 Target Application

Pagosa is a 3D multi-physics continuum mechanics simulation application.

It uses a 3D structured Cartesian mesh which is distributed evenly across MPI

ranks. This distribution facilitates load balancing. Pagosa solves the physics

model equations using explicit time integration which avoids more complex matrix

solving methods. The computation is dominated by loops iterating over the three

dimensions of the mesh which results in contiguous memory operations. These

features make Pagosa a useful case study of our methods.

We use a “hotspots” analysis (Fig. 52) of Pagosa to compare the execution

time of key functions in Pagosa. This analysis does not show a single function that

takes up most of the execution time. Many scientific applications, and especially

mini-applications, are dominated by one or two kernels of computation that take up

most of the runtime. In contrast, Pagosa has several kernels that each take around

119

5% of the runtime and one that takes approximately 22%. This application profile

forces us to consider multiple kernels in our analysis since an improvement to an

individual kernel will have only a limited impact on the overall application.

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

pag
osa

ses_eva
l

str
ength

1

str
ength

2

gra
dvo

f
vo

fid

ad
ve

ct_
ce

ll
other

Ti
m

e
(s

)

A64FX CascadeLake

Figure 52. Hotspots of Pagosa. Compares the execution time of key functions in
the application to identify which are most time-consuming.

For the case study, we select three functions that make up approximately

35% of the runtime for a given simulation timestep. The first function is Vofid

(Section 7.2) which previous work has 2.7× and 7.7× speedup on the A64FX and

Cascade Lake. The second two, Strength 1 and Strength 2 (Section 7.3), are very

similar to each other. From the original version to the final optimization we see

approximately 2.5× speedup on A64FX and an average of 3.7× speedup on the

Cascade Lake. For both functions, we discuss the progression of optimizations,

what impacts are expected from those optimizations, and then the results that we

see from the hardware counters and how those compare to the expectations.

120

7.2 Vofid

Our first optimization target is the Vofid function which contains multiple

kernels each of which iterates over the entire mesh to perform computations. These

computations are confined to individual mesh points, so MPI communication can

be avoided. In total there are four groups of operations (see Alg. 17), three of

which are contained in separate function calls. The optimizations presented here

center around the manipulation of these kernels to improve the cache use and

vectorization of the function.

Algorithm 17 Vofid Algorithm

3D mesh operations group A (as subroutine call)
3D mesh operations group B (as subroutine call)
3D mesh operations group C (as array syntax)
3D mesh operations group D (as subroutine call)

7.2.1 Versions. We look at the original version and five optimizations

of the Vofid function, to explore how the changes impact the application

performance on our two architectures. Note that these optimizations were

implemented by various collaborators and some of the work is explained in [65],

but the analysis of the work is presented here for the first time.

The Original version of the kernel was written in Fortran array syntax.

This syntax allows Fortran developers to write operations that occur on each array

element as a single line of code. For Vofid, this effectively means writing a series of

operations that are applied to each mesh point. Array Syntax is relatively easy to

use and understand but is compiled as a long series of 3D loop nests (see Algorithm

18 for an example loop nest), which can be challenging for the compiler to improve.

In particular, the array syntax causes the kernel to iterate over the mesh many

times, undermining the ability of the cache to reuse data effectively.

121

Algorithm 18 A loop nest over a 3D mesh.

for x dimension
for y dimension

for z dimension
computations on data at a single mesh point

The first step in improving the performance, OPT 1A, is to remove the

array syntax. Array syntax allows developers to easily manipulate Fortran Arrays

but effectively separates each operation into its own loop nest which prevents data

reuse in the caches [66]. Recognizing the limits of array syntax, the developers

removed it from Vofid and the subroutines called from it.

Removing array syntax is a three-step process. First, the array syntax is

transformed into a series of nested loops. This step has limited impact on the

performance but is necessary to enable the next two. Second, the loop nests are

fused into a single nest which can reuse the data in the caches. Finally, array

temporaries which are necessary for array syntax can be converted into scalar

temporaries. The fusion of loop nests allows the application to make better use

of the cache and the transformation of array temporaries into scalar temporaries

reduces the total amount of data required.

In the case of Vofid and its subroutines, the arrays are 3 dimensional, so

the loop nests that result have three for loops each and the temporary arrays

that are removed are 3D as well. After the three steps are followed to remove the

array syntax, Vofid has four loop nests which correspond to the four groups of

computation in Algorithm 17. This aim of removing array syntax for OPT 1A is

to reduce the total amount of data movement and improve the cache efficiency of

Vofid.

122

In optimization OPT 1B, we take an incremental step to reduce the

depth and complexity of callpaths. In the Original version, Vofid calls three

subroutines each of which select from a set of other subroutines to complete the

operation. However, Vofid only uses one of the possible options for each of the

calls. Identifying this limited choice, the developers adjusted Vofid to directly call

the subroutines which complete the operations required. Removing unnecessary

potential paths can be an effective way to assist compilers’ optimization efforts.

Additionally, some of the array temporaries in Vofid were not removed in

version OPT 1A, so version OPT 1B completes the process.

Table 21. Versions of the Vofid kernel

Version Description
Original Vofid before changes

Production The production version of the code, which is similar to the original
OPT 1A Remove array syntax, fuse loops, eliminate array temporaries
OPT 1B additional array temps removed, direct calls to functions
OPT 1C Manual inlining of functions
OPT 2A Fusing of loops
OPT 2B Collapse Triple loop into a single loop

OPT 1C is a second incremental step in the process of optimization. The

developers manually inlined the three subroutines into Vofid. This step turns

the Vofid kernels into a set of four 3D loop nests without costly function calls.

Removing function calls can reduce overheads, but the main goal of the change

is to enable the changes that follow.

Once the subroutines are inlined, Vofid is a sequence of 3D loops each of

which iterates over the whole of the mesh. The primary change in OPT2A is

to fuse the four loop nests into a single loop nest. Previously, the data for each

mesh point would need to be reloaded once for each of the loop nests. By fusing

the loops in OPT2A, we can eliminate more temporary arrays to reduce memory

123

footprint size. This smaller data volume is designed to improve performance by

reducing the amount of time spent waiting on data being loaded. These changes are

similar to the process of removing array syntax, so we expect that they will reduce

the amount of data movement necessary and improve cache efficiency.

After fusing the loops, the developers apply an optimization known as scalar

replacement (Algorithm 19). This optimization replaces repeated array accesses to

the same element with a single access and a temporary scalar variable. It sounds

similar to removing the temporary arrays, but it replaces single accesses. The

purpose of the change is to help the compiler keep important variables in registers

which reduces unnecessary load and store operations.

Algorithm 19 An example of a loop without and with scalar replacement. The
optimization is more useful when data elements are used several times, but this
example illustrates the concept.

for some i . without scalar replacement
A(i) = B(i) ∗ C(i)

for some i . with scalar replacement
Ai = A(i)
Bi = B(i)
Ci = C(i)
Ai = Bi ∗ Ci

A(i) = Ai

The most recent modification to the Vofid kernel, OPT 2B, collapses the 3D

triple loop into a single loop that iterates over the total number of mesh points.

It also Fortran’s default memory layout allows this change to be made to loops

without modification to the data structure. In theory, such a modification should

simplify the memory access pattern to improve performance.

7.2.2 Results. For each of the versions of the Vofid Kernel, we collect

hardware counter data to produce the metrics presented in Chapter V. The results

124

are displayed in Tables 22 and 23. For an overall picture of performance, we show

the roofline and application points of the kernel (Figures 53 and 54), as discussed in

Chapter IV. The combination of roofline and Hardware Counter Metrics provides

an overview of the performance of the kernel and detailed information on the

hardware use.

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP32 SVE GFLOPs 5522.6 GFLOPs/s

FP32 Scalar GFLOPs 172.58 GFLOPs/s

L1 5703.5 GB/s

L2 2096.9 GB/s

STREAM HBM 669.8 GB/s Label
production
Original
OPT 1A
OPT 1B
OPT 1C
OPT 2A
OPT 2B

Figure 53. Vofid roofline on the A64FX. The Original and Production versions
have similar floating point rates. OPT 1A, 1B, and 1C form another performance
grouping, while OPT 2A and 2B form a third grouping. All of the points sit just
below the main memory ceiling which implies that memory bandwidth may be a
limiting factor in the performance.

Starting with the A64FX roofline (Figure 53), we note that the rate of

computation increases with each level of optimization. This trend is confirmed by

looking at the Overall metrics in Table 22. Optimizations OPT 1A, OPT 1B, and

OPT 1C all complete in about 8 seconds, while OPT2A and OPT 2B complete in

about 6.25 seconds.

125

The application points on the roofline run along the Main Memory line

which implies that the main memory bandwidth may be a limiting factor of the

performance. The optimizations can move the kernel above one of the floating-

point ceilings, so it may be limited by floating-point operations as well as memory

operations. The hardware counter metrics (Table 22) can help us make sense of the

placement of the application points on the roofline.

Our hardware counter metrics on the A64FX (Table 22) confirm the

expectations we have from our knowledge of the optimizations and the roofline

analysis. Removing array syntax and loop fusion is similar in the sense that both

enable the kernel to perform all the operations on a mesh point before moving

to the next point. The impact is seen in all of the data movement metrics. LS,

L2, and Mem Bytes all decrease with the changes, which shows that the kernel is

reusing more data in the CPU and at each level of cache. Additionally, the L1 and

L2 MR and the L2 and Mem / LS measurements show improved efficiency. This

combination of impacts shows that the optimizations are both using fewer data and

using the caches more efficiently.

The floating-point metrics show less improvement than the data movement

metrics. The Production version currently makes less use of SIMD operations than

the other variations, but the original is as well vectorized as the optimized versions.

The flops / fp ins metrics hovers around 14 for each variation. A64FX with single

precision can have a ratio as high as 32 if 512-bit SVE and fused-multiply-add

operations are fully utilized. Analysis of the assembly language or the optimization

reports would help the developers identify if these operations are being left out

unnecessarily.

126

We note that there is almost no change in the IPC for any of the versions

on A64FX. This metric implies that the pipeline efficiency is not improved by the

optimizations. On benchmarks (see Chapter VI), the IPC regularly rises above

2, so there is plenty of space for improvement. The low IPC may be the result of

numerous conditional statements in the innermost loop, but more experimentation

would be required to verify this hypothesis.

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP32 Vector GFLOPs FMA 6999.8 GFLOPs/s

FP32 Vector GFLOPs 3499.9 GFLOPs/s

FP32 Scalar GFLOPs FMA 437.5 GFLOPs/s

FP32 Scalar GFLOPs 218.7 GFLOPs/s
L1 12433.5 GB/s

L2 3651.2 GB/s

L3 910.2 GB/s

DRAM 204.9 GB/s

Label
Production
Original
OPT 1A
OPT 1B
OPT 1C
OPT 2A
OPT 2B

Figure 54. Vofid roofline on the Cascade Lake. The Original is slightly worse than
Production on the Cascade Lake. OPT 1A, 1B, and 1C form another performance
grouping, while OPT 2A and 2B form a third grouping. All of the points sit just
below the L2 Cache bandwidth ceiling which implies that memory bandwidth may
be a limiting factor in the performance.

Figure 54 shows the Vofid application points on the Cascade Lake roofline.

This plot along with the overall performance metrics in Table 23 show that the

performance trend on Cascade Lake are similar to what we’ve seen on A64FX.

127

Optimizations OPT 1A, OPT 1B, and OPT 1C complete in 6.6 seconds while

optimizations OPT2A and OPT 2B complete in between 2 and 3 seconds.

There are some noticeable differences in the performance of the A64FX.

OPT 2B has negligible impact on A64FX, but it shows a 1.27× speedup on

Cascade Lake when compared to OPT 2B. This speedup is at least in part due

to the reduction in LS Bytes and flops seen between OPT2A and OPT 2B. These

work metrics are reduced by the flattening of the loop nest into a single loop, but

most of the ratio metrics remain unchanged.

Additionally, the Cascade Lake application points reside along the L2 Cache

ceiling rather than Main Memory Ceilings as on the A64FX. This difference is

likely related to the cache size; A64FX has a 32 MiB L2 cache while Cascade Lake

has a 48 MiB L2 and 35.75 MiB L3 cache. Experimentation with different input

decks may provide additional evidence of the benefits of larger caches.

A final difference from the A64FX results is that the optimizations improve

the IPC on the Cascade Lake system. This metric implies that the kernel is

making better use of the CPU pipeline with each change.

7.2.3 Takeaways. Our analysis method reveals how the optimizations

applied to the kernel have improved memory performance and how they have been

unsuccessful in improving floating-point performance. This information is vital for

understanding the performance of kernels but can be expanded further. Careful

examination of the instruction mix or stall counts may provide some insight into

the lack of IPC improvement. Comparing measurements of this kernel on the

new systems could reveal which new metrics are related to the IPC and which

are not. Alternatively, a benchmark could be based on the kernel to produce similar

performance patterns. Such work is a target for future exploration.

128

Table 22. Counter results for the Vofid kernel on A64FX

Production Original OPT 1A OPT 1B OPT 1C OPT2A OPT 2B
Overall Performance

Time (s) 18.3 16.6 8.09 8.08 8.07 6.28 6.24
flops/s (Gflops/s) 140.27 136.70 248.69 249.15 249.21 319.46 321.54

IPC 0.65 0.53 0.57 0.57 0.56 0.64 0.65
Data Movement

LS Bytes (GB) 8,538.04 8,497.08 4,018.64 3,997.47 3,993.49 2,828.07 2,828.22
L2 Bytes (GB) 2,648.85 10,664.80 2,643.57 2,640.66 2,639.27 584.78 581.64

Mem Bytes (GB) 1,652.74 6,739.96 1,652.45 1,652.82 1,651.90 361.41 360.41
Cache Efficiency

L1 MR 0.0065 0.033 0.022 0.023 0.022 0.0078 0.0073
L2 MR 0.28 0.30 0.28 0.28 0.28 0.28 0.28
L2 / LS 0.31 1.26 0.66 0.66 0.66 0.21 0.21

Mem / LS 0.19 0.79 0.41 0.41 0.41 0.13 0.13
LD ins / ST ins 1.76 2.90 2.00 1.89 1.95 2.50 2.58

Computation
flops (Gflops) 2,568.02 2,266.14 2,012.72 2,012.73 2,011.61 2,004.7 2,005.81

flops/fpins 10.80 14.38 13.99 13.99 14.08 14.29 14.20
Computation Data Ratios

AI 0.30 0.267 0.50 0.50 0.50 0.71 0.71
flops/LD ins 13.69 14.26 33.48 36.26 34.53 40.34 39.34
flops/ST ins 24.03 41.35 66.90 68.41 67.45 100.84 101.52

flops/LD Bytes 0.47 0.40 0.82 0.82 0.83 1.05 1.02
flops/ST Bytes 0.84 0.81 1.30 1.30 1.29 2.18 2.19

129

Table 23. Counter results for the Vofid kernel on Cascade Lake

Production Original OPT 1A OPT 1B OPT 1C OPT2A OPT 2B
Overall Performance

Time (s) 11.20 16.90 6.61 6.61 6.63 2.80 2.19
flops/s (Gflops/s) 251.00 167.00 422.00 421.00 420.00 998.00 1,070.00

IPC 0.59 0.54 0.74 0.75 0.75 1.33 1.39
Data Movement

LS Bytes (GB) 25,712.60 26,210.50 15,021.70 15,595.20 15,049.50 9,792.19 8,315.37
L2 Bytes (GB) 1,591.43 3,798.14 1,129.24 1,127.93 1,146.16 221.44 215.34
L3 Bytes (GB) 1,555.57 4,645.86 1,418.29 1,419.86 1,419.93 275.34 275.46

Mem Bytes (GB) 1,621.59 3,168.31 1,093.90 1,096.34 1,098.92 232.09 231.39
Cache Efficiency

L1 MR 0.062 0.15 0.075 0.073 0.076 0.023 0.026
L2 MR 0.98 1.22 1.26 1.26 1.24 1.24 1.28
L3 MR 0.61 0.41 0.44 0.45 0.44 0.54 0.54
L2 / LS 0.062 0.14 0.075 0.072 0.076 0.023 0.026
L3 / LS 0.060 0.18 0.094 0.091 0.094 0.028 0.033

Mem / LS 0.063 0.12 0.073 0.070 0.073 0.024 0.028
LD ins / ST ins 2.83 2.39 2.89 3.02 2.84 3.92 3.97

Computation
flops (Gflops) 2,815.58 2,818.34 2,785.22 2,785.22 2,785.22 2,799.02 2,339.42

flops/fpins 16 16 16 16 16 16 16
Computation Data Ratios

AI 0.11 0.11 0.19 0.18 0.19 0.29 0.28
flops/LD ins 9.49 9.76 15.97 15.22 16.02 22.96 22.55
flops/ST ins 26.83 23.33 46.21 45.90 45.48 90.03 89.42

flops/LD Bytes 0.15 0.15 0.25 0.24 0.25 0.36 0.35
flops/ST Bytes 0.42 0.36 0.72 0.72 0.71 1.41 1.40

130

7.3 Strength 1 and Strength 2

The Strength 1 function computes the impact of stresses, shears, and other

factors on the materials in the simulation. This function advances these factors

through the first half of the time step. The Strength 2 function completes the

computation of stresses, shears, and other factors that impact the materials in the

simulation. In both functions, the computation is focused on individual materials

and at each point in the mesh. Therefore, like vofid, the kernel does not require

MPI communication between ranks. In contrast to Vofid, there is an extra loop

required to iterate over the materials in the simulation.

7.3.1 Versions. In this section, we analyze four versions of the

Strength functions. The optimizations are similar to Vofid, but with some

variations specific to these functions. A major difference from Vofid is that

Strength 1 and 2 use different computation types with different materials. For

this reason, there are many instances of conditional logic which determine how

the function proceeds. Several optimizations focus on more efficient handling of the

conditional logic in Strength 1, Strength 2, and the subroutine.

In the Original version of both Strength 1 and Strength 2, the kernel uses

array syntax to process the 3D arrays similar to Vofid. The functions also make

several calls to other subroutines to handle different material cases and aspects of

the computation. Those subroutines have additional array syntax and conditional

logic to handle particular materials.

The first step in optimization is now included in the Production version of

Pagosa. The developers removed the array syntax in the Strength1, but not the

subroutines called from it. The Optimization 0 version is similar to the Production

version, but with compiler directives that collapse the nested loops. This directive

131

only works with the compilers on the A64FX, so Production and Optimization 0

are equivalent on the Cascade Lake.

Optimization 1 builds on these changes by fusing additional loops within

the Strength functions function which enables removing temporary arrays. The

loop fusing is aimed at using caches more efficiently, while fewer temporary arrays

reduce the total amount of memory needed.

Optimization 2 applies the optimizations from the Strength functions to two

of the most influential subroutines called from those functions. These subroutines

contribute a significant amount of the computation time, so applying the same

optimizations to them is a necessary step to maximize the performance of the

Strength functions.

Finally, in Optimization 3 the developers inline the two subroutines that

were improved in Optimization 2. Inlining can help some compilers improve the

optimization and reduce the overhead from numerous calls to subroutines. In this

case, the conditional logic in the Strength functions and the subroutines complicate

the process of inlining by requiring the developers to handle various special cases.

Such changes are currently intractable for compilers to perform automatically and

harm the maintainability of the application for human developers. Conducting

performance evaluations on these changes informs developers of this, and other,

applications about which optimization is sufficiently performant to justify increased

code complexity. Compiler teams can also use these evaluations to identify and

prioritize areas of improvement for their compilers.

7.3.2 Results. The Original version of Strength 1 performs most of

the computation in array syntax and several subroutines that are called for each

of the materials in use (25 for our input deck). We plot the Strength 1 variations

132

Table 24. Versions of the Strength functions.

Version Description
Production Removes array syntax

Original Strength functions before changes
Optimization 0 Similar to the production version, but

with additional compiler pragmas
Optimization 1 Additional loop fusion and removal of temporary arrays
Optimization 2 Subroutines have array syntax removed

and resulting loops fused together
Optimization 3 Subroutines are inlined

on rooflines in Figures 55 and 56 and the Strength 2 application points in Figures

55 and 56. On both systems, there is limited change in the application point

placement for the versions except Optimization 3 which outperforms the others.

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec

FP32 SVE GFLOPs 5522.6 GFLOPs/s

FP32 Scalar GFLOPs 172.58 GFLOPs/s

L1 5703.5 GB/s

L2 2096.9 GB/s

STREAM HBM 669.8 GB/s
Label
Production
Original
Optimization 0
Optimization 1
Optimization 2
Optimization 3

Figure 55. Strength 1 roofline on the A64FX. The AI improves consistently along
with the computational rate for each optimization. The consistent placement of the
application points below the main memory ceiling indicates that improving cache
efficiency could improve the overall performance.

133

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec
FP32 Vector GFLOPs FMA 6999.8 GFLOPs/s

FP32 Vector GFLOPs 3499.9 GFLOPs/s

FP32 Scalar GFLOPs FMA 437.5 GFLOPs/s

FP32 Scalar GFLOPs 218.7 GFLOPs/s
L1 12433.5 GB/s

L2 3651.2 GB/s

L3 910.2 GB/s

DRAM 204.9 GB/s

Label
Production
Original
opt 0
opt 1
opt 2
opt 3

Figure 56. Strength 1 roofline on the Cascade Lake. There is limited change
in the AI from the Original version, but consistent improvement in the rate
of computation with each optimization. Optimization 3 break above the L2
cache bandwidth line and could be limited by data movement or computation
bottlenecks.

We show the hardware counter results for Strength 1 in Table 25 (A64FX)

and Table 26 (Cascade Lake). The overall metrics show similar results to the

roofline plots; the optimizations slowly improve performance until a larger increase

with version Optimization 3. Much like Vofid, the improvement is seen in the

execution time and the flops/s, but generally not in the IPC.

One unique point on the A64FX is that WDN V02 has a 1.13× speedup

compared to WDN V00, but the flops/s is less than 1% different between the

two. In this case, the optimizations reduce the number of flops, so the overall

performance is improved without impacting the rate of computation.

134

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec
FP32 SVE GFLOPs 5522.6 GFLOPs/s

FP32 Scalar GFLOPs 172.58 GFLOPs/s

L1 5703.5 GB/s

L2 2096.9 GB/s

STREAM HBM 669.8 GB/s
Label
Production
Original
Optimization 0
Optimization 1
Optimization 2
Optimization 3

Figure 57. Strength 2 roofline on the A64FX. The AI improves consistently along
with the computational rate for each optimization. The consistent placement of the
application points below the main memory ceiling indicates that improving cache
efficiency could improve the overall performance.

The data movement results show some similarities and differences between

the two systems. Overall the optimizations result in less data movement at each

level of the memory and more efficient use of the caches. The details of how much

change occurs at each level differ between the systems.

The LS Bytes of the two systems differ dramatically. In the Production

version, the A64FX load and store instructions move approximately 2,663.32 GB of

data while the Cascade Lake moves 13,578.50. On both systems, the optimizations

reduce the amount of data moved by a consistent amount, so the difference

consistently remains around 10,000 GB. A similar difference in the data volume is

135

10
2

10
1

10
0

10
1

10
2

Arithmetic Intensity

10
0

10
1

10
2

10
3

10
4

G
flo

ps
/S

ec
FP32 Vector GFLOPs FMA 6999.8 GFLOPs/s

FP32 Vector GFLOPs 3499.9 GFLOPs/s

FP32 Scalar GFLOPs FMA 437.5 GFLOPs/s

FP32 Scalar GFLOPs 218.7 GFLOPs/s
L1 12433.5 GB/s

L2 3651.2 GB/s

L3 910.2 GB/s

DRAM 204.9 GB/s

Label
Production
Original
Optimization 0
Optimization 1
Optimization 2
Optimization 3

Figure 58. Strength 2 roofline on the Cascade Lake. There is limited change
in the AI from the Original version, but consistent improvement in the rate of
computation with each optimization. Optimization 3 breaks above the L2 cache
line and may be limited by data movement or computation bottlenecks.

observed in the Vofid functions and the Strength 2 function, but not in the kernels

and mini-apps that we evaluated in Chapter VI.

Having identified the discrepancy between the two systems, we have two

questions. First, why does the Cascade Lake load so much additional data? It

could be that there are more register spills in the Cascade Lake version of the

application, or the compiler may be repeatedly re-loading the array indexes. The

second question is; do we think this is a major factor in the performance of the

kernel? Compared to the Cascade Lake, Strength 1 has a faster execution time on

A64FX, but Vofid has a slower execution. Both kernels move far more data when

running on the Cascade Lake, but Strength 1 uses vector operations less efficiently

136

on Cascade Lake than it does on A64FX. These trends are not proof that the use of

SIMD instructions is more important than the number of load and store operations,

but it does offer another direction of study.

Additional experiments could be designed using different data sizes and

compilers on both systems. These experiments could assess the performance

impact of register spills compared to caches and of the data movement compared

to floating-point operations.

At the cache level, we observe that the L2 Bytes is lower for the Cascade

Lake than for the A64FX. This trend holds across all of the optimization versions.

We find this result surprising because the L1 cache on Cascade Lake is smaller

than in A64FX and because it contrasts with the difference in L1 cache accesses

mentioned above. Based on this observation and the L2 Bytes/LS Bytes metric,

we can conclude that the Cascade Lake is using the L1 cache very efficiently despite

the numerous extra accesses to it.

For both systems, the optimizations have two major successes. Removing

array syntax, fusing loops, and transforming temporary arrays into scalars reduced

data use considerably. The L2 Bytes is reduced by a factor of 6.3× on A64FX

and 6.9× on Cascade Lake from the original code version to the final version in

this study. Additionally, the optimizations reduce the number of floating-point

operations required by factors of 1.2× on A64FX and 1.4× on Cascade Lake.

Strength 1 on the A64FX also sees a significant improvement in the AI

since more data movement is eliminated than floating-point operations. The rise

in AI could allow the kernel to utilize more of the computational potential of the

CPU and SIMD instructions if it can keep those resources supplied with data to

be processed. Due to the extra memory operations on the Cascade Lake, the same

137

improvement to the AI does not occur on that system. Therefore, the kernel may

be prevented from achieving higher performance by the L1 cache rather than the

lower levels of the memory hierarchy as on the A64FX.

7.3.3 Take Aways. For both systems, SIMD operations offer an area

for potential improvement. Both systems fall considerably short of the potential

flops/fp ins, and the optimizations have had only a limited impact on that metric

so far. The bandwidth of data between the CPU and the L1 cache is also improved

with the use of SIMD instructions. Compiler options, pragmas, or the simplification

of conditional logic could all have an impact on the vectorization.

Unfortunately, Strength 1 cannot fully utilize the SIMD operations if the

data cannot be loaded in quickly enough. The cache efficiency metrics show that

on A64FX the kernel fills a significant fraction of the loads and stores from the

main memory or the L2 cache which prevents full utilization of the computational

resources. In contrast, the kernel’s loads and stores are nearly all filled from the L1

cache on the Cascade Lake, but there is far too much data moved for each floating-

point operation to utilize the computational resources effectively.

Therefore, on Cascade Lake, identifying and eliminating the extra loads and

stores should be the next priority. On A64FX, the lack of cache efficiency needs to

be addressed so that more data is available in the L1 cache when it is needed.

Lastly, the kernel contains a significant amount of conditional logic that can

be detrimental to performance. In particular, conditionals can prevent long latency

memory operations from being properly overlapped with other operations which

increases the impact of cache misses. We currently do not have a metric to assess

the frequency of conditional operations. In future work, we aim to develop such a

metric and apply it to these kernels.

138

Table 25. Counter results for the Strength 1 kernel on A64FX

Production Original Optimization 0 Optimization 1 Optimization 2 Optimization 3
Overall Performance

Time (s) 7.20 5.33 5.00 4.23 3.76 2.10
flops/s (Gflops/s) 76.63 109.41 110.04 126.12 125.15 227.26

IPC 0.37 0.38 0.40 0.40 0.37 0.44
Data Movement

LS Bytes (GB) 2,741.41 2,663.32 2,638.85 2,313.23 1,850.05 1,221.3
L2 Bytes (GB) 6,162.85 4,579.48 4,154.09 3,352.47 2,832.36 720.49

Mem Bytes (GB) 1,798.96 2,034.39 1,877.17 1,366.74 1,072.55 346.38
Cache Efficiency

L1 MR 0.029 0.052 0.047 0.047 0.047 0.026
L2 MR 0.18 0.25 0.25 0.23 0.22 0.25
L2 / LS 2.25 1.72 1.57 1.45 1.53 0.59

Mem / LS 0.66 0.76 0.71 0.59 0.58 0.28
LD ins / ST ins 2.80 4.10 3.63 3.59 3.81 5.03

Computation
flops (Gflops) 551.92 583.26 550.24 533.20 470.20 476.58

flops/fpins 13.11 19.06 18.95 19.12 19.36 19.25
Computation Data Ratios

AI 0.20 0.22 0.21 0.23 0.25 0.39
flops/LD ins 7.69 10.71 11.25 14.05 14.13 21.03
flops/ST ins 21.53 43.93 40.85 50.50 53.85 105.76

flops/LD Bytes 0.27 0.29 0.28 0.31 0.34 0.48
flops/ST Bytes 0.77 0.94 0.80 0.91 0.992 2.08

139

Table 26. Strength 1 counter results on Cascade Lake

Production Original Optimization 0 Optimization 1 Optimization 2 Optimization 3
Overall Performance

Time (s) 8.64 9.96 8.65 6.78 5.70 2.74
flops/s (Gflops/s) 86.20 76.70 86.10 107.00 113.00 192.00

IPC 0.67 0.60 0.67 0.63 0.72 1.46
Data Movement

LS Bytes (GB) 13,578.50 17,203.80 13,555.10 13,318.30 12,867.90 12,006.00
L2 Bytes (GB) 1,657.35 1,989.45 1,663.31 1,381.90 1,133.14 288.39
L3 Bytes (GB) 1,826.36 2,524.23 1,826.93 1,240.71 957.34 217.58

Mem Bytes (GB) 1,644.71 1,962.94 1,645.05 1,211.23 980.914 293.125
Cache Efficiency

L1 MR 0.083 0.11 0.084 0.095 0.081 0.022
L2 MR 1.10 1.27 1.10 0.90 0.85 0.77
L3 MR 0.62 0.55 0.62 0.67 0.72 0.91
L2 / LS 0.12 0.12 0.12 0.10 0.088 0.024
L3 / LS 0.13 0.15 0.13 0.093 0.074 0.018

Mem / LS 0.12 0.11 0.12 0.091 0.076 0.024
LD ins / ST ins 2.34 2.59 2.28 2.10 2.15 2.07

Computation
flops (Gflops) 744.76 764.39 744.76 722.76 644.23 524.64

flops/fpins 10.83 14.57 10.83 14.51 14.35 14.02
Computation Data Ratios

AI 0.055 0.044 0.055 0.054 0.050 0.044
flops/LD ins 3.40 3.61 3.43 4.67 4.25 3.69
flops/ST ins 7.95 9.33 7.82 9.83 9.11 7.64

flops/LD Bytes 0.078 0.062 0.079 0.080 0.073 0.065
flops/ST Bytes 0.18 0.16 0.18 0.17 0.16 0.14

140

Table 27. Strength 2 counter results on A64FX

Production Original Optimization 0 Optimization 1 Optimization 2 Optimization 3
Overall Performance

Time (s) 10.70 6.33 5.94 5.43 4.96 2.49
flops/s (Gflops/s) 68.51 117.64 119.54 133.29 132.87 266.36

IPC 0.31 0.36 0.37 0.38 0.33 0.45
Data Movement

LS Bytes (GB) 2,942.87 2,885.69 2,789.31 2,488.92 2,045.61 1,292.96
L2 Bytes (GB) 11,725.80 5,384.28 5,030.79 3,842.94 3,362.47 935.58

Mem Bytes (GB) 1,986.97 2,328.44 2,122.05 1,469.80 1,176.07 354.69
Cache Efficiency

L1 MR 0.043 0.056 0.056 0.045 0.045 0.034
L2 MR 0.11 0.25 0.24 0.22 0.20 0.21
L2 / LS 3.98 1.87 1.80 1.54 1.64 0.72

Mem / LS 0.68 0.81 0.76 0.59 0.57 0.27
LD ins / ST ins 3.02 3.87 3.67 3.63 3.93 4.51

Computation
flops (Gflops) 733.33 744.55 710.18 723.10 658.76 662.02

flops/fpins 12.84 19.34 19.32 19.64 19.88 19.76
Computation Data Ratios

AI 0.25 0.26 0.25 0.29 0.32 0.51
flops/LD ins 8.20 12.87 13.35 16.01 15.84 28.76
flops/ST ins 24.74 49.79 49.00 58.07 62.29 129.58

flops/LD Bytes 0.34 0.34 0.35 0.40 0.45 0.65
flops/ST Bytes 0.94 1.05 0.95 1.05 1.14 2.44

141

Table 28. Counter results for the Strength 2 kernel on Cascade Lake

Production Original Optimization 0 Optimization 1 Optimization 2 Optimization 3
Overall Performance

Time (s) 9.61 11.40 9.61 7.29 6.26 2.95
flops/s (Gflops/s) 99.60 86.20 99.60 129.00 137.00 242.00

IPC 0.63 0.57 0.63 0.59 0.68 1.37
Data Movement

LS Bytes (GB) 15,256.10 18,936.50 15,145.20 13,437.70 13,245.20 14,087.80
L2 Bytes (GB) 1,922.95 2,556.05 1,920.29 1,491.70 1,241.09 300.834
L3 Bytes (GB) 2,034.08 2,912.70 2,034.15 1,252.41 969.33 223.46

Mem Bytes (GB) 1,817.53 2,242.81 1,817.45 1,270.96 1,038.47 310.47
Cache Efficiency

L1 MR 0.093 0.13 0.093 0.10 0.088 0.021
L2 MR 1.06 1.14 1.06 0.84 0.78 0.76
L3 MR 0.61 0.54 0.61 0.68 0.73 0.92
L2 / LS 0.13 0.13 0.13 0.11 0.094 0.021
L3 / LS 0.13 0.15 0.13 0.093 0.073 0.016

Mem / LS 0.12 0.12 0.12 0.095 0.078 0.022
LD ins / ST ins 2.32 2.67 2.27 2.13 2.11 2.33

Computation
flops (Gflops) 957.24 981.16 957.24 938.99 860.46 714.16

flops/fpins 11.66 14.87 11.66 14.82 14.72 14.49
Computation Data Ratios

AI 0.063 0.052 0.063 0.070 0.065 0.051
flops/LD ins 4.19 4.25 4.26 6.11 5.67 4.25
flops/ST ins 9.75 11.33 9.66 13.01 11.98 9.90

flops/LD Bytes 0.090 0.071 0.091 0.10 0.096 0.072
flops/ST Bytes 0.21 0.19 0.21 0.22 0.20 0.17

142

7.4 Summary

This chapter presents a final case study that demonstrates how our

metrics may be used in practice. We examined three functions which contribute

a significant portion of the execution time of the Pagosa application. Each of

the functions has several versions that the developers have optimized to improve

runtime. We the roofline and other hardware counter data to conduct an analysis

of these optimization attempts and compare the results to the expectations of the

developers. This analysis shows how the Roofline Model and our metrics can be

applied to a full application to improve the understanding of its performance.

143

CHAPTER VIII

CONCLUSION

For many years, Hardware Performance Monitors have offered the possibility

of deep insight into the performance of applications. Performance analysis using

hardware counters is often limited to a particular CPU. This lack of portability

comes from the counters that are available and the microarchitectural differences

in CPUs. Our research shows that hardware counters can be used to measure

performance metrics portably across different CPU types.

We began the dissertation with a central hypothesis: that hardware counter

metrics can provide actionable performance information to users on a diverse set of

CPU types. In this dissertation we have shown that hypothesis to be accurate in

four steps. First (Chapter IV), we used hardware counters to support performance

analysis based on the Roofline Model. The metrics involved were common to all

modern CPUs, so we contributed a novel method of measurement using hardware

counters on two distinct CPU types. In Chapter V, we presented a set of additional

hardware counter performance metrics. We show that these metrics are measurable

on both CPUs and demonstrate those measurements with benchmark examples.

Next we apply the set of performance metrics to a variety of mini-applications

in Chapter VI. These demonstrations show that the performance metrics we

developed are useful for performance analysis of computationally intensive scientific

applications. Finally, we use the combination of roofline-based performance analysis

and the additional metrics to examine the performance of the Pagosa multi-

physics application. This case study shows that the method is applicable to full

applications.

144

Going forward, we would like to continue work on both VPIC and Pagosa.

These application have many more kernels than those analyzed in this dissertation,

and our metrics may be able to provide additional insight into those algorithms

as well. Both applications are also under active development, so there are always

new variations to consider. One important study to consider is the impact of

input types on the performance metrics. Some types of input may have different

performance characterizations than others, so we could explore such possibilities

with a selection of mini-application and the two full applications.

Our metrics could be applied automatically through an autotuner. For

example, loop blocking is designed to improve the cache efficiency of a kernel and

can be applied automatically [54]. An autotuner could collect our metrics and use

the resulting information to prune the search space. Such pruning may reduce the

amount of time required for autotuning by identifying block size more rapidly than

naive search methods.

Despite the success of our existing metrics, there are many other possibilities

to consider. We have no doubt that additional performance metrics could be

identified. For example, branching and control logic has a significant impact on

many applications, so we would like to add metrics that measure the impact of

branching on performance. Although we focus on floating point arithmetic, integer

operations can impact performance as well. These operations are often used to

compute memory addresses which can impact the ability of the application to

load data in a timely manner. Metrics based on the mix of instructions in an

application to give the user an measure of the relative impact of memory, floating

point, control, and integer operations. We hope to identify such metrics in the near

future.

145

In this dissertation, we only considered the Cache Aware Roofline Model.

Currently, we are collaborating with the developers of the Adaptive Cache Aware

Roofline Method (adCARM) [44] to use hardware counters to support their method

of tailoring rooflines to the specific application. This method provides the user with

more realistic projections of potential performance, given the types of operations

used by the kernel.

So far we have demonstrated portability between only two systems. Ideally,

we could expand to many other types of CPU; however, there is no guarantee that

portability between the CPUs discussed in this dissertation implies portability to

others. This work would proceed in stages. First, we would identify a method

to count flops and validate the counters with our benchmarks. Then we would

identify and validate the counters for LS Bytes. Once these initial measurements

are established, we can move through each metric adding counters as necessary.

Finally, we could repeat the evaluation of our benchmarks and mini-applications on

the new CPU type.

Finally, we would like to extend the methodology to GPUs and other

accelerators which are becoming vital for HPC. These types of processing units

often are paired with a CPU and have a memory subsystem that is a combination

of memory local to the processor and memory accessed through the CPU. This

arrangement is similar to the cache levels that we based these metrics on, but

it may require significant alteration to the data movement metrics to effectively

inform users about performance. For computational metrics, GPU developers use

occupancy to assess how efficient the application uses the available threads. We

would seek to measure this and other GPU metrics using hardware counters.

146

For other types of future accelerators, there are so many possibilities that

it is impossible to know just how these will be implemented and what types of

hardware counters (if any) will be available. Experiments on GPUs and NEC

Vector engines could offer some insight into the potential for portability of

accelerator measurements or into the limitations.

Current trends [8] suggest a proliferation of accelerators and unconventional

processors. Scientists, researchers, and developers working in HPC will need to

build more flexibility and portability into the tools and applications that they

develop. We hope that our work can serve as an aid to others who are seeking to

instill these features into performance analysis methodology.

147

REFERENCES CITED

[1] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data
with PAPI-C,” in Tools for High Performance Computing 2009. Springer,
2010, pp. 157–173.

[2] M. A. Heroux, P. Raghavan, and H. D. Simon, Parallel processing for scientific
computing. SIAM, 2006.

[3] T. P. Straatsma, K. B. Antypas, and T. J. Williams, Exascale scientific
applications: Scalability and performance portability. CRC Press, 2017.

[4] V. Eijkhout, Introduction to high performance scientific computing. Lulu. com,
2010.

[5] R. Robey and Y. Zamora, Parallel and High Performance Computing. Simon
and Schuster, 2021.

[6] J. Jeffers and J. Reinders, High performance parallelism pearls volume two:
multicore and many-core programming approaches. Morgan Kaufmann,
2015.

[7] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2019.

[8] J. Dean, D. Patterson, and C. Young, “A new golden age in computer
architecture: Empowering the machine-learning revolution,” IEEE Micro,
vol. 38, no. 2, pp. 21–29, 2018.

[9] W. Jalby, D. Kuck, A. D. Malony, M. Masella, A. Mazouz, and M. Popov, “The
long and winding road toward efficient high-performance computing,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1985–2003, 2018.

[10] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, 1967, pp. 483–485.

[11] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux Kongress,
vol. 18, 2010.

[12] S. S. Shende and A. D. Malony, “The TAU parallel performance system,” The
International Journal of High Performance Computing Applications, vol. 20,
no. 2, pp. 287–311, 2006.

148

[13] J. C. Linford, S. S. Shende, and A. D. Malony, “TAU Commander: An intuitive
interface for the TAU performance system,” 11 2013.

[14] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent, “HPCToolkit: Tools for performance analysis of
optimized parallel programs,” Concurrency and Computation: Practice and
Experience, vol. 22, no. 6, pp. 685–701, 2010.

[15] X. Liu and J. Mellor-Crummey, “A data-centric profiler for parallel programs,”
in High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. IEEE, 2013, pp. 1–12.

[16] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: Performance
introspection for HPC software stacks,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2016, p. 47.

[17] T. Röhl, J. Eitzinger, G. Hager, and G. Wellein, “Likwid monitoring stack: A
flexible framework enabling job specific performance monitoring for the
masses,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2017, pp. 781–784.

[18] V. M. Weaver and S. A. McKee, “Can hardware performance counters be
trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE, 2008, pp. 141–150.

[19] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan,
W. Chen, and W. Zheng, “Taming hardware event samples for FDO
compilation,” in Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 2010, pp. 42–52.

[20] A. Nowak, A. Yasin, A. Mendelson, and W. Zwaenepoel, “Establishing a base of
trust with performance counters for enterprise workloads,” in 2015
{USENIX} Annual Technical Conference ({USENIX} {ATC} 15), 2015, pp.
541–548.

[21] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount on
modern hardware performance counter implementations,” in 2013 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2013, pp. 215–224.

[22] O. R. LaMaire and W. W. White, “The contribution to performance of
instruction set usage in system/370,” in Proceedings of 1986 ACM Fall joint
computer conference, 1986, pp. 665–674.

149

[23] E. Williams, C. T. Myers, and R. Koskela, “The characterization of two
scientific workloads using the cray x-mp performance monitor,” in
Conference on High Performance Networking and Computing: Proceedings of
the 1990 ACM/IEEE conference on Supercomputing, vol. 12, no. 16, 1990,
pp. 142–152.

[24] Z. Cvetanovic and D. Bhandarkar, “Characterization of alpha axp performance
using tp and spec workloads,” in Proceedings of 21 International Symposium
on Computer Architecture. IEEE, 1994, pp. 60–70.

[25] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Performance analysis using
the mips r10000 performance counters,” in Supercomputing’96: Proceedings
of the 1996 ACM/IEEE Conference on Supercomputing. IEEE, 1996, pp.
16–16.

[26] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” ACM
SIGOPS Operating Systems Review, vol. 40, no. 5, pp. 175–184, 2006.

[27] ——, “A top-down approach to architecting CPI component performance
counters,” IEEE micro, vol. 27, no. 1, pp. 84–93, 2007.

[28] A. Nowak, D. Levinthal, and W. Zwaenepoel, “Hierarchical cycle accounting: A
new method for application performance tuning,” in 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2015, pp. 112–123.

[29] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[30] A. Yasin, A. Mendelson, and Y. Ben-Asher, “Tuning performance via metrics
with expectations,” IEEE Computer Architecture Letters, 2019.

[31] A. Yasin, J. Haj-Yahya, Y. Ben-Asher, and A. Mendelson, “A metric-guided
method for discovering impactful features and architectural insights for
Skylake-based processors,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 16, no. 4, pp. 1–25, 2019.

[32] F. Lebeau, “Top-down performance analysis webinar,”
https://www.brighttalk.com/webcast/17792/384060, accessed: 2020-05-03.

[33] M. Jarus and A. Oleksiak, “Top-down characterization approximation based on
performance counters architecture for amd processors,” Simulation Modelling
Practice and Theory, vol. 68, pp. 146–162, 2016.

150

https://www.brighttalk.com/webcast/17792/384060

[34] S. Manakkadu and S. Dutta, “Bandwidth based performance optimization of
multi-threaded applications,” in 2014 Sixth International Symposium on
Parallel Architectures, Algorithms and Programming. IEEE, 2014, pp.
118–122.

[35] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in Proceedings
of the 8th ACM/SPEC on International Conference on Performance
Engineering. ACM, 2017, pp. 27–38.

[36] D. Callahan, J. Cocke, and K. Kennedy, “Estimating interlock and improving
balance for pipelined architectures,” Journal of Parallel and Distributed
Computing, vol. 5, no. 4, pp. 334–358, 1988.

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual
performance model for multicore architectures,” Communications of the
ACM, vol. 52, no. 4, pp. 65–76, 2009.

[38] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the
loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 21–24, 2013.

[39] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao,
R. Gayatri, H. Shan, L. Oliker et al., “A novel multi-level integrated roofline
model approach for performance characterization,” in International
Conference on High Performance Computing. Springer, 2018, pp. 226–245.

[40] N. Denoyelle, A. Ilic, B. Goglin, L. Sousa, and E. Jeannot, “Automatic cache
aware roofline model building and validation using topology detection,” in
NESUS Third Action Workshop and Sixth Management Committee Meeting,
vol. 1, 2016.

[41] J. D. Suetterlein, J. Landwehr, A. Marquez, J. Manzano, and G. R. Gao,
“Extending the Roofline model for asynchronous many-task runtimes,” in
Cluster Computing (CLUSTER), 2016 IEEE International Conference on.
IEEE, 2016, pp. 493–496.

[42] D. Cardwell and F. Song, “An extended roofline model with
communication-awareness for distributed-memory hpc systems,” in
Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, 2019, pp. 26–35.

[43] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A Roofline model of energy,”
in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on. IEEE, 2013, pp. 661–672.

151

[44] D. Marques, A. Ilic, Z. A. Matveev, and L. Sousa, “Application-driven
cache-aware roofline model,” Future Generation Computer Systems, vol. 107,
pp. 257–273, 2020.

[45] V. C. Cabezas and M. Püschel, “Extending the roofline model: Bottleneck
analysis with microarchitectural constraints,” in 2014 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2014, pp.
222–231.

[46] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J.
Wright, M. W. Hall, and L. Oliker, “Roofline model toolkit: A practical tool
for architectural and program analysis,” in International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems. Springer, 2014, pp. 129–148.

[47] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet,
T. Malas, J.-L. Vay, and H. Vincenti, “Applying the Roofline performance
model to the Intel Xeon Phi Knights Landing processor,” in International
Conference on High Performance Computing. Springer, 2016, pp. 339–353.

[48] B. Norris, W. Spear, and A. Malony, “Performance analysis of applications in
the context of architectural rooflines,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, 2017, pp.
345–348.

[49] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Püschel,
“Applying the roofline model,” in 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2014, pp.
76–85.

[50] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

[51] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using orio,” in Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE, 2009, pp. 1–11.

[52] C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing high-level
loop transformations,” Technical Report 08-897, U. of Southern California,
Tech. Rep., 2008.

[53] B. J. Gravelle, W. D. Nystrom, D. Yokelson, and B. Norris, “Enabling
cache-aware roofline analysis with portable hardware counter metrics,” in
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems. Springer, 2021.

152

[54] B. Norris, A. Hartono, and W. Gropp, “Annotations for productivity and
performance portability,” in Petascale Computing: Algorithms and
Applications, ser. Computational Science. Chapman & Hall / CRC Press,
Taylor and Francis Group, 2007, pp. 443–462, also available as Preprint
ANL/MCS-P1392-0107. [Online]. Available:
http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf

[55] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,” IEEE
Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, 1989.

[56] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - the
development and verification of a performance abstraction for Monte Carlo
reactor analysis,” in PHYSOR 2014 - The Role of Reactor Physics toward a
Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[57] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget, and
K. Smith, “Openmc: A state-of-the-art monte carlo code for research and
development,” Annals of Nuclear Energy, vol. 82, pp. 90–97, 2015.

[58] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman, J. Levesque, and
S. A. Jarvis, “Cloverleaf: Preparing hydrodynamics codes for exascale,” The
Cray User Group, vol. 2013, 2013.

[59] “The PENNANT mini-app,” https://github.com/lanl/PENNANT, accessed:
2018-06-25.

[60] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J.
Kerbyson, “0.374 pflop/s trillion-particle kinetic modeling of laser plasma
interaction on Roadrunner,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, ser. SC ’08. IEEE Press, 2008.

[61] K. J. Bowers, B. Albright, L. Yin, B. Bergen, and T. Kwan, “Ultrahigh
performance three-dimensional electromagnetic relativistic kinetic plasma
simulation,” Physics of Plasmas, vol. 15, no. 5, p. 055703, 2008.

[62] K. J. Bowers, B. J. Albright, L. Yin, W. Daughton, V. Roytershteyn, B. Bergen,
and T. Kwan, “Advances in petascale kinetic plasma simulation with VPIC
and Roadrunner,” in Journal of Physics: Conference Series, vol. 180, no. 1.
IOP Publishing, 2009, p. 012055.

[63] “Vector particle-in-cell (VPIC) project,” https://github.com/lanl/vpic, accessed:
2019-11-05.

[64] “The 17.4 theory manual (pagosa theory manual. la-ur-20-29881).”

153

http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://github.com/lanl/PENNANT
https://github.com/lanl/vpic

[65] V. Graziano, D. Nystrom, H. Pritchard, B. Smith, and B. Gravelle, “Optimizing
a 3d multi-physics continuum mechanics code for the hpe apollo 80 system,”
Cray User Group (CUG), 2021.

[66] J. Levesque and A. Vose, Programming for Hybrid Multi/Manycore MPP
Systems. Chapman and Hall/CRC, 2017.

154

	 Introduction
	 Background
	Performance Measurement and Analysis of Applications
	Arithmetic Intensity and the Roofline Model
	Arithmetic Intensity and Data Movement
	Roofline variations

	Wrapping up the background

	 Methodology
	Systems
	Tools
	Benchmarks
	STREAM
	FP Crunch
	Cache Conflict Measurement
	Matrix Multiplication
	N-Body Simulation

	Summary

	 Empirical Rooflines with Hardware Counters
	Architectural Rooflines
	STREAM Modification
	FP Crunch

	Application Points
	Measuring Time
	Measuring Data Movement
	Measuring Floating Point Operations

	Examples
	N Body Example
	Matrix Multiplication Example

	Summary

	 A Proposed Set of Hardware Counter Metrics
	Defining Metrics
	Measuring the Metrics
	Counter Collection and Analysis for Data Movement Metircs
	Counter Collection and Analysis for Computation Metrics
	Counter Collection and Analysis for Computation Data Rate Metrics

	Detailed Metric Discussion
	Overall Performance
	Demonstration with STREAM
	Demonstration with Matrix Multiplication

	Data Movement
	Demonstration with STREAM data
	Demonstration with Loop Blocking
	Demonstration with Cache Conflicts

	Cache Efficiency
	Demonstration with Cache Conflicts
	Demonstration with Loop Blocking

	Computation
	Demonstration with STREAM
	Demonstration with Matrix Multiplication

	Computation Data Rates
	Demonstration with STREAM
	Demonstration with Matrix Multiplication

	Summary

	 Case Studies of Mini-Application Performance Using the Hardware Counter Metrics
	Kernel Examples
	N-Body Simulation
	XSBench
	Cloverleaf
	PENNANT
	VPIC

	Summary

	 A Case Study of the Pagosa Multi-Physics Application
	Target Application
	Vofid
	Versions
	Results
	Takeaways

	Strength 1 and Strength 2
	Versions
	Results
	Take Aways

	Summary

	 Conclusion
	REFERENCES CITED

