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DISSERTATION ABSTRACT

Ilan Weinschelbaum

Doctor of Philosophy

Department of Mathematics

June 2022

Title: Modules with Good Filtrations over Generalized Schur Algebras

In this dissertation we examine generalized Schur algebras, as defined by

Kleshchev and Muth. Given a quasi-hereditary superalgebra A, Kleshchev and

Muth proved that for n ≥ d, the generalized Schur algebra TA(n, d) is again quasi-

hereditary. They described the bisuperalgebra struture on TA(n) :=
⊕

d T
A(n, d).

In particular, there is a coproduct which gives us a way to take a TA(n, d)-module

V and TA(n, r)-module W and produce a TA(n, d + r)-module V ⊗ W . We will

prove that if V and W each have standard (resp. costandard) filtrations, then

so does V ⊗ W . In the last chapter we will use this result to prove that in the

case that A is the extended zigzag algebra Z, the extended zigzag Schur algebra

T Z(n, d) is Ringel self-dual for all n ≥ d.

This dissertation contains previously unpublished co-authored material.

iv



CURRICULUM VITAE

NAME OF AUTHOR: Ilan Weinschelbaum

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR
Wesleyan University, Middletown, CT

DEGREES AWARDED:
Doctor of Philosophy, Mathematics, 2022, University of Oregon
Bachelor of Arts, Mathematics and Economics, 2015, Wesleyan University

AREAS OF SPECIAL INTEREST:
Representation Theory

PROFESSIONAL EXPERIENCE:

Graduate Employee, University of Oregon, 2015-2022

PUBLICATIONS:

A. Kleshchev and I. Weinschelbaum. Good filtrations for generalized Schur
Algebras. Arxiv preprint. arxiv:2202.08866, 2022.

A. Kleshchev and I. Weinschelbaum. Ringel duality for extended zigzag
Schur algebra. in progress.

v



ACKNOWLEDGEMENTS

First I would like to thank my advisor, Alexander Kleshchev. Your advice,

both mathematical and non-mathematical, was crucial to my development in

graduate school.

To my parents, my brother, my niece, my grandmother, and the rest of my

family: thank you for everything. Your unflinching support, your boundless love,

and your overwhelming confidence in me have been vital in getting to this place.

To my colleagues and friends from my time at the University of Oregon:

thank you for traversing the muddy academic waters with me. Our time spent

avoiding mathematics was just as helpful as our time spent discussing it. I would

especially like to thank Daniel Hothem and Elijah Bodish for our fascinating

algebraic conversations. To Fill Staley and Matt Lukac: I will forever remember

our heated games of Catan as some of the sweetest memories of my time in

graduate school.

To my cat, Brisket: you are a fierce troublemaker and a proud advocate for

yourself. Thank you for reminding me that sometimes in life you must take risks.

Lastly, I thank my fierce, wonderful partner, Ellen Kress. Your extraordinary

generosity, your indomitable spirit, and your laser-sharp focus are an inspiration

to me. Your love and support have been a rejuvenating force when the academic

struggles left me exhausted.

vi



Para mi t́ıo Gaby. Te extraño.

vii



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION AND PRELIMINARIES . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Superlinear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. QUASIHEREDITARY ALGEBRAS . . . . . . . . . . . . . . . . . . . . 11

2.1. Highest Weight Categories . . . . . . . . . . . . . . . . . . . . . 11

2.2. Based Quasihereditary Algebras . . . . . . . . . . . . . . . . . . 16

2.3. Example: The Classical Schur Algebra . . . . . . . . . . . . . . . 22

III. GENERALIZED SCHUR ALGEBRAS . . . . . . . . . . . . . . . . . . 27

3.1. Definition and Properties . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Special Elements and Characters . . . . . . . . . . . . . . . . . . 33

3.3. Quasi-hereditary structure on T (n, d) . . . . . . . . . . . . . . . 38

3.4. Modified Divided Powers . . . . . . . . . . . . . . . . . . . . . . 44

viii



Chapter Page

IV. TENSOR PRODUCTS OF STANDARD MODULES . . . . . . . . . . 56

4.1. Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2. The Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3. The Case of Small n . . . . . . . . . . . . . . . . . . . . . . . . . 65

V. EXAMPLES OF RINGEL DUALITY . . . . . . . . . . . . . . . . . . 68

5.1. The Extended Zigzag Algebra . . . . . . . . . . . . . . . . . . . . 68

5.2. The Extended Zigzag Schur Algebra . . . . . . . . . . . . . . . . 73

5.3. Extended Zigzag Schur Algebra is Ringel Self-Dual . . . . . . . . 79

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



LIST OF FIGURES

Figure Page

1. Extended Zigzag Quiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1. Introduction

This dissertation contains previously unpublished co-authored material. The

main results of this dissertation are the main results of [1, 2]. Those papers are

joint work with Alexander Kleshchev, who served as the author’s advisor. The

material from these papers appears in chapters III, IV, and V of this dissertation.

Chapter III contains material from both [1] and [2]. Chapter IV consists of

material from [1]. Lastly, chapter V consists of material from [2].

Let n ∈ Z>0 and d ∈ Z≥0. Let S(n, d) be the classical Schur Algebra as in

[3]. It is well-known (see [4]) that S(n, d) is quasi-hereditary. In fact, it is based

quasi-hereditary in the sense of [5]. So, S(n, d)-mod is a Highest Weight Category

in the sense of [6]. Furthermore, there is a coproduct on S(n) :=
⊕

d≥0 S(n, d),

which restricts to a map

S(n, r)→
⊕

r1+r2=r

S(n, r1)⊗ S(n, r2)

and thus if V ∈ S(n, d)-mod and W ∈ S(n, r)-mod then V ⊗W is an S(n, d + r)-

module via the coproduct.

It follows from the work of Donkin [7], Mathieu [8], and Wang [9] that if V

and W both have standard filtrations (in the sense of [6]), then V ⊗ W does as

well.

Let R be a principal ideal domain of characteristic 0 and let F be a field

which is an R-module. In [10] and [11], Kleschev and Muth generalized a
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construction of Turner [12, 13, 14], in which they take a based quasi-hereditary

F-superalgebra A with an R-form AR and conforming heredity data I,X, Y (see

§ 3.1.1 for details), and define the generalized Schur Algerbas

TA(n)F :=
⊕
d≥0

TA(n, d)R ⊗R F.

Crucially, we must first define these algebras over R, and then extend scalars

to F - so it is vital that A has the R-form AR. In chapter 4, we generalize the

aforementioned standard filtration result to these algebras.

Another classic result of Donkin (see [15]) is that the classical Schur algebra

is a Ringel dual for itself (see § 2.3.3). This leads us to conjecture:

Conjecture 1.1. Let n ∈ Z>0 and d ∈ N with n ≥ d. Let A be a based quasi-

hereditary algebra and d ≤ n. If A′ is a Ringel dual of A, then a Ringel dual of

TAa (n, d) is of the form TA
′

a′ (n, d) for some canonical choice of a′.

We check this conjecture in the case A = Z, the extended zigzag algebra. We

do so by first proving that Z is Ringel self-dual, and then proving that T Z(n, d)F is

Ringel self-dual.

The dissertation is organized as follows. The rest of chapter I is dedicated

to preliminaries. In chapter II, we recap the definitions and results of Kleshchev

and Muth about based quasi-hereditary algebras. In chapter III, we define the

generalized Schur algebras, and describe several important results. In chapter IV,

we prove that the tensor product of modules with standard filtrations again has

a standard filtration (and analogously for modules with costandard filtrations).

Lastly, in chapter V, we prove that T Z(n, d)F is Ringel self-dual.
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1.2. General Notation

For m,n ∈ Z, we denote [m,n] := {k ∈ Z | m ≤ k ≤ n}. If n ∈ Z>0, we also

denote [n] := {1, 2, . . . , n}.

Throughout the paper, I denotes a finite partially ordered set. We often

identify I with the set {0, 1, . . . , `} for ` = |I| − 1, so that the standard total order

on integers refines the partial order on I.

For a set S, we often write elements of Sd as words s = s1 · · · sd with

s1, . . . , sd ∈ S. The symmetric group Sd acts on the right on Sd by place

permutations:

(s1 · · · sd)σ = sσ1 · · · sσd.

An (arbitrary) ground field is denoted by F. Often we will also need to work

over a characteristic 0 principal ideal domain R such that F is a R-module, so

that we can change scalars from R to F (in all examples of interest to us, one can

use R = Z). When the nature of the ground ring is not important, we will use

k to denote either R or F. On the other hand, when it is important to emphasize

whether we are working over R or F, we will use lower indices; for example for an

R-algebra AR and an AR-module VR, after extending scalars we have that VF :=

F ⊗R VR is a module over AF := F ⊗R AR. We always assume R is purely even as

an R-supermodule.

1.3. Superlinear Algebra

Let V =
⊕

ε∈Z/2 Vε be a k-supermodule. If v ∈ Vε \ {0} for ε ∈ Z/2, we

say v is homogeneous, write |v| = ε, and refer to ε as the parity of v. In particular,

when |v| = 0̄ we say v is even and when |v| = 1̄ we say that v is odd. If S ⊆
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V , we denote S0̄ := S ∩ V0̄ and S1̄ := S ∩ V1̄. If S consists of homogeneous

elements then S = S0̄ t S1̄. Let V and W be superspaces. For δ ∈ Z/2, a parity δ

(homogeneous) linear map f : V → W is a linear map satisfying f(Vε) ⊆ Wε+δ for

all ε. Superlinear maps follow the same even/odd conventions as vectors: if |f | = 0̄

we say f is even and if |f | = 1̄ we say f is odd.

Let d ∈ Z>0. The group Sd acts on V ⊗d on the right with automorphisms,

such that for all homogeneous v1, . . . , vd ∈ V and σ ∈ Sd, we have

(v1 ⊗ · · · ⊗ vd)σ = (−1)〈σ;v〉vσ1 ⊗ · · · ⊗ vσd, (1.2)

where, setting v := v1 · · · vd ∈ V d, we have put:

〈σ;v〉 := ]{(k, l) ∈ [d]2 | k < l, σ−1k > σ−1l, and vk, vl ∈ V1̄}. (1.3)

For 0 ≤ c ≤ d, let (c,d−c)D be the set of shortest coset representatives for

(Sc ×Sd−c)\Sd. Given w1 ∈ V ⊗c and w2 ∈ V ⊗(d−c), we define the star product

w1 ∗ w2 :=
∑

σ∈(c,d−c)D

(w1 ⊗ w2)σ ∈ V ⊗d. (1.4)

Let V and W be superspaces, d ∈ Z≥0, and v = v1 · · · vd ∈ V d and w =

w1 · · ·wd ∈ W d be d-tuples of homogeneous elements. We denote

〈v,w〉 := ]{(k, l) ∈ [d]2 | k > l, vk ∈ V1̄, wl ∈ W1̄}. (1.5)

Let now A be a unital k-superalgebra. As usual, the tensor product

A⊗d is a superalgebra with respect to the following product: for homogeneous
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a1, . . . , ad, b1, . . . , bd ∈ A, we set a := a1 · · · ad, b := b1 · · · bd and define the product

of (homogeneous) pure tensors via:

(a1 ⊗ · · · ⊗ ad)(b1 ⊗ . . . bd) = (−1)〈a,b〉a1b1 ⊗ · · · ⊗ adbd,

and extend linearly.

For any superspace V , we consider the subspace of invariants

ΓdV :=
(
V ⊗d

)Sd = {w ∈ V ⊗d | wσ = w for all σ ∈ Sd}. (1.6)

If A is a superalgebra, then ΓdA inherits the structure of a superalgebra from

the tensor product A⊗d of superalgebras. If V is an A-supermodule then V ⊗d is

a supermodule over A⊗d with the following action: for homogeneous a1, . . . , ad ∈ A

and v1, . . . , vd ∈ V , we set a := a1 · · · ad, v := v1 · · · vd and define the action of

(homogeneous) pure tensors via:

(a1 ⊗ · · · ⊗ ad)(v1 ⊗ . . . vd) = (−1)〈a,v〉a1v1 ⊗ · · · ⊗ advd,

Furthermore, observe that for all σ ∈ Sd, we have that

(av)σ = aσvσ and
(
(a1⊗ · · ·⊗ ad)(v1⊗ . . . vd)

)σ
= (a1⊗ · · ·⊗ ad)σ(v1⊗ . . . vd)σ.

So ΓdV is a supermodule over ΓdA.

Let A be a unital k-superalgebra and V,W be A-supermodules. A

homogeneous A-supermodule homomorphism f : V → W is a homogeneous linear

map f : V → W satisfying f(av) = (−1)|f ||a|af(v) for all (homogeneous) a, v. Let

HomA(V,W )0̄ be the k-module of even A-supermodule homomorphisms V → W ,
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and let HomA(V,W )1̄ be the k-module of odd A-supermodule homomorphisms

from V to W . Then the k-supermodule of all A-supermodule homomorphisms

V → W has the following superstructure:

HomA(V,W ) = HomA(V,W )0̄ ⊕ HomA(V,W )1̄.

We denote by A-mod the category of all finitely generated (left) A-

supermodules and all A-supermodule homomorphisms. We denote by ‘∼=’ an

isomorphism in this category and by ‘'’ an even isomorphism in this category.

We have the parity change functor Π on A-mod: for V ∈ A-mod we have

ΠV ∈ A-mod with (ΠV )ε = Vε+1̄ for all ε ∈ Z/2 and the new action a · v =

(−1)|a|av for a ∈ A, v ∈ V . We have V ∼= ΠV via the (odd) identity map.

For any A-supermodule V , and simple A-supermodule L, we denote by [V :

L] the multiplicity of L or ΠL as a composition factor of V , without distinguishing

between the two. For example [L ⊕ ΠL : L] = 2. Note that if A = A0̄ is a purely

even superalgebra, it is just an algebra in the traditional sense - so this notation

will also be used in the non-super setting.

All subspaces, ideals, submodules, etc. are assumed to be homogeneous. For

example, given homogeneous elements v1, . . . , vk of an A-supermodule V , we have

the A-submodule A〈v1, . . . , vk〉 ⊆ V generated by v1, . . . , vk.

1.4. Combinatorics

In this section we establish several combinatorial definitions and facts that

we will use later in the text. See especially § 3.3.2 and § 5.3.
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Partitions and compositions

We denote by Λ+ the set of all partitions. For λ ∈ Λ+, we have the conjugate

partition λ′, see [16, p.2]. The Young diagram of λ is

[λ] := {(r, s) ∈ Z>0 × Z>0 | s ≤ λr}. (1.7)

We refer to (r, s) ∈ [λ] as the nodes of λ.

For λ, µ, ν ∈ Λ+, we denote by cλµ,ν the corresponding Littlewood-Richardson

coefficient, see [16, § I.9].

Let n ∈ Z>0. We denote Λ(n) = Zn≥0 and interpret it as the set of

compositions λ = (λ1, . . . , λn) with n non-negative parts. For λ, µ ∈ Λ(n), we

define

λ+ µ := (λ1 + µ1, . . . , λn + µn).

For 1 ≤ r ≤ n, we denote

εr := (0, . . . , 0, 1, 0, . . . , 0) ∈ Λ(n) (1.8)

with 1 in position r. For λ = (λ1, . . . , λn) ∈ Λ(n), set |λ| := λ1 + · · ·+ λn.

Denote

Λ+(n) := {λ = (λ1, . . . , λn) ∈ Λ(n) | λ1 ≥ · · · ≥ λn}.

Sometimes we collect equal parts of λ ∈ Λ+(n) to write it as

λ = 〈la1
1 , . . . , l

ak
k 〉 (1.9)
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for l1 > · · · > lk ≥ 0 and a1, . . . , ak > 0 with a1 + · · · + ak = n. For

example, if λ = (3, 3, 2, 2, 1, 0, 0, 0) in the traditional notation, we would write

λ = 〈32, 22, 11.03〉 when equal parts are collected. We interpret Λ+(n) as a subset

of Λ+ in the obvious way. For d ∈ Z≥0, let

Λ(n, d) = {λ ∈ Λ(n) | |λ| = d} and Λ+(n, d) = {λ ∈ Λ+(n) | |λ| = d}.

Let S be a finite set. We will consider the set of S-multicompositions and

S-multipartitions

ΛS(n) := Λ(n)S = {λ = (λ(s))s∈S | λ(s) ∈ Λ(n) for all s ∈ S},

ΛS
+(n) := Λ+(n)S = {λ = (λ(s))s∈S | λ(s) ∈ Λ+(n) for all s ∈ S}.

For λ,µ ∈ ΛS(n) we define λ + µ to be ν ∈ ΛS(n) with ν(s) = λ(s) + µ(s) for all

s ∈ S. For λ ∈ ΛS(n), we define its Young diagram to be [λ] :=
⊔
s∈S[λ(s)]. For

each s ∈ S, we refer to λ(s) as the (s)-component of λ, and refer to [λ(s)] as the

(s)-component of [λ]. We also set

‖λ‖ := (|λ(s)|)s∈S ∈ ZS≥0.

For d ∈ Z≥0, we set

ΛS(n, d) := {λ ∈ ΛS(n) |
∑

s∈S|λ
(s)| = d},

ΛS
+(n, d) := {λ ∈ ΛS

+(n) |
∑

s∈S|λ
(s)| = d}.
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In the special case S = I = {0, . . . 0, `}, we also write λ = (λ(0), . . . , λ(`))

instead of λ = (λ(i))i∈I ∈ ΛI(n). For i ∈ I, and λ ∈ Λ(n, d), define

ιi(λ) := (0, . . . , 0, λ, 0, . . . , 0) ∈ ΛI(n, d), (1.10)

with λ in the ith position.

Let ≤ be a partial order on S. We have a partial order �S on the set ZS≥0

with (as)s∈S �S (bs)s∈S if and only if
∑

t≥s at ≤
∑

t≥s bt for all s ∈ S. Let � be

the usual dominance partial order on Λ(n, d), i.e. λ � µ if and only if
∑s

r=1 λr ≤∑s
r=1 µr for all s = 1, . . . , n. We have a partial order ≤S on ΛS(n, d) defined as

follows: λ ≤S µ if and only if either ‖λ‖ �S ‖µ‖, or ‖λ‖ = ‖µ‖ and λ(s) � µ(s) for

all s ∈ S.

Symmetric functions

Let Sym be the ring of symmetric functions over Z in infinitely many

variables z1, z2, . . . , and let {sλ ∈ Sym | λ ∈ Λ+} be the basis of Schur functions,

see [16].

In [16], Macdonald proves that Sym is a Hopf algebra with coproduct

∆ : Sym→ Sym⊗ Sym, sλ 7→
∑

µ,ν∈Λ+

cλµ,ν sµ ⊗ sν ,

where cλµ,ν are the Littlewood-Richardson coefficients, see [16, §I.5].

For n ∈ Z>0, let Sym(n) = Z[z1, . . . , zn]Sn be the ring of symmetric

polynomials in z1, . . . , zn. There is a canonical homomorphism ρn : Sym→ Sym(n)

which sets zr = 0 for all r > n, see [16, p.18]. For λ ∈ Λ+(n), let sλ(z1, . . . , zn) :=

ρn(sλ) ∈ Sym(n).

9



For a finite set S, we introduce S-fold tensor products SymS := Sym⊗S and

SymS(n) := Sym(n)⊗S. We have the canonical homomorphism

ρSn = ρ⊗Sn : SymS → SymS(n). (1.11)

Sym(n), and therefore SymS(n) are Z≥0-graded by the degree of the polynomials.

For d ∈ Z≥0, we denote by SymS(n, d) the degree d component of SymS(n).

Given ν = (ν(s))s∈S ∈ ΛS
+, we have an element

sν :=
⊗
t∈S

sν(t) ∈ SymS.

If ν ∈ ΛS
+(n), we set

sν(z1, . . . , zn) := ρSn(sν) ∈ SymS(n).

If m = |S|, iterating the coproduct (and using coassociativity and

cocommutativity) we get the algebra homomorphism

∆m−1 : Sym→ SymS, (1.12)

with ∆0 interpreted as the identity map, see again [16] for details. For λ ∈ Λ+ and

ν ∈ (Λ+)S, we define the iterated Littlewood-Richardson coefficient cλν from

∆m−1(sλ) =
∑
ν∈ΛS+

cλνsν . (1.13)

10



CHAPTER II

QUASIHEREDITARY ALGEBRAS

In [6], Cline, Parshall and Scott defined the notions of Quasihereditary

Algebras and Highest Weight Categories. These ideas are related by a simple idea:

if A is a quasi-hereditary algebra, then A-mod is a Highest Weight Category. In

this chapter, we present a (brief) treatment of Highest Weight Categories, closely

mirroring the presentation given by Donkin in the appendix of [17]. We will vary

the ground ring in this chapter. We mostly care about the context when k = F,

a field. But to properly construct the Generalized Schur Algebras in the next

chapter, we will need to work with k = R, a commutative principal ideal domain of

characteristic 0. So both will be used at different times in this section.

2.1. Highest Weight Categories

The main reference in this section is [17]. We present results in slightly more

generality, but the proof is essentially the same as in [17] in every case. Let A be

a k-(super)algebra which is free of finite rank as a k-module. Let I be a finite,

partially ordered set such that {L(i) | i ∈ I} is a complete set of irreducible

A-modules (up to isomorphism). We assume that for any simple A-module L,

EndA(L) = k. Observe that if k = F, these assumptions are all satisfied if A is a

finite-dimensional k-algebra. For a free k-module V , we will freely use the notation

dimV to refer to either the rank of V (if k = R), or the dimension of V (if k = F)

- the distinction will not come up in this section. We note that we will use the

traditional form of dimension, and not a superized version - i.e. k and Πk are both

1-dimensional, as opposed to (1,0)- or (0,1)-dimensional. Denote by ≤ the partial
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order on I. For each i ∈ I let P (i) be fixed minimal projective cover of L(i), and

J(i) be a fixed minimal injective envelope of L(i).

Definitions and Classical Results

For each Ω ⊆ I, and each A-supermodule V , there is a unique maximal

submodule, U ⊆ V such that if [U : L(j)] > 0, then j ∈ Ω. Denote this submodule

by OΩ(V ). Similarly, there is a unique minimal submodule U ⊆ V such that: if

[V/U : L(j)] > 0, then j ∈ Ω. Denote this submodule by OΩ(V ). Following

the proof of [17, A1], we see that that OΩ, OΩ define functors from A-mod to the

category of k-supermodules, with OΩ being left-exact, and OΩ being right-exact.

For each i ∈ I, let Ω(i) = {j ∈ I | j < i}. Fix i ∈ I. Let M(i) be the

unique maximal submodule of P (i), and let K(i) := OΩ(i)(M(i)). We define the ith

Standard Module by

∆(i) := P (i)/K(i) (2.1)

Explicitly, ∆(i) is the largest quotient of P (i) such that all of its composition

factors are of the form L(j) or ΠL(j) for j ≤ i and [∆(i) : L(i)] = 1.

The Costandard modules are defined similarly, with the roles of submodules

and quotients swapped. More specifically, we define the ith Costandard Module,

∇(i), via the formula

∇(i)/L(i) = OΩ(i)(J(i)/L(i)) (2.2)

and using the Correspondence Theorem. Explicitly, ∇(i) is the largest submodule

of J(i) such that all of its composition factors are of the form L(j) or ΠL(j) for

j ≤ i and [∇(i) : L(i)] = 1.
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Even without further assumptions, the modules {∆(i)} and {∇(i)} have

several amenable properties. The following are all proved in [17, Appendix A1].

Proposition 2.3. (i) For all i ∈ I, EndA(∆(i)) = EndA(∇(i)) = k.

(ii) For i, j ∈ I, dim HomA(∆(i),∇(j)) = δij.

(iii) The Grothendieck group of A-mod has Z-bases:

{[L(i)] | i ∈ I}, {[∆(i)] | i ∈ I}, and {[∇(i)] | i ∈ I}

Where we observe that in the Grothendieck group of A-mod, we equate

[L(i)] and [ΠL(i)] for all i, as L(i) and ΠL(i) are isomorphic in A-mod (via an

odd isomorphism).

Furthermore, by Proposition 2.3, for each A-supermodule V and each i ∈ I,

we can define integers (V : ∆(i)) and (V : ∇(i)) from the equations

[V ] =
∑
i∈I

(V : ∆(i))[∆(i)] and [V ] =
∑
i∈I

(V : ∇(i))[∇(i)].

Let V ∈ A-mod. A standard filtration of V is an A-supermodule filtration

0 = W0 ⊆ W1 ⊆ · · · ⊆ Wl = V such that for every r = 1, . . . , l, we have

Wr/Wr−1
∼= ∆(ir) for some ir ∈ I. We refer to ∆(i1), . . . ,∆(il) as the factors of the

filtration, and to ∆(i1) (resp. ∆(il)) as the bottom (resp. top) factor.

Let V ∈ A-mod. A costandard filtration of V is an A-supermodule filtration

0 = W0 ⊆ W1 ⊆ · · · ⊆ Wl = V such that for every r = 1, . . . , l, we have

Wr/Wr−1
∼= ∇(ir) for some ir ∈ I. We again refer to ∇(i1, . . . ,∇(il) as factors of

the filtration, with ∇(i1) (resp. ∇(il)) called the bottom (resp. top) factor.
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Definition 2.4. [17, Definition A2.1] We say that A-mod is a Highest Weight

Category (with respect to the ordering ≤) if the following holds for all i ∈ I:

(i) J(i)/∇(i) has a costandard filtration;

(ii) If (J(i)/∇(i) : ∇(j)) 6= 0 for any j ∈ I, then i < j.

Later on, in § 2.2, we will explain why ∆(i) and ∇(i) are necessarily free k-

modules when A is based quasi-hereditary. In particular, modules with standard

or costandard filtrations will also be free as k-modules, so we may discuss their

rank/dimension. We can now record the following important result.

Proposition 2.5. [17, Proposition A2.2] Let V,W ∈ A-mod and i, j ∈ J .

(i) If V has a standard filtration and W has a costandard filtration, then

dim ExtjA(V,W ) =


∑

i∈I(V : ∆(i))(W : ∇(i)) if j = 0

0 otherwise

(ii) V has a standard (resp. costandard) filtration if and only if Ext1
A(V,∇(i)) =

0 (resp. Ext1(∆(i), V ) = 0) for all i ∈ I.

(iii) (P (i) : ∆(j)) = [∇(j), L(i)] and (J(i) : ∇(j)) = [∆(j), L(i)].

Observe that if V has a standard filtration and W has a costandard

filtration, then for each i ∈ I, (V : ∆(i)), and (W : ∇(i)) do not depend on

the choice of filtration, by Proposition 2.3. In fact, by Propositon 2.5(i), we have

(V : ∆(i)) = dim HomA(V,∇(i)), and (W : ∇(i)) = dim HomA(∆(i),W ). (2.6)
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Tilting Modules and Ringel Duality

Again let A be a quasi-hereditary algebra over k.

Definition 2.7. Let T ∈ A-mod. We say T is tilting if T has both a standard and

a costandard filtration.

As proven in [17, A4], there is a very pleasing classification for tilting

modules in A-mod.

Proposition 2.8. [17, Theorem A4.2] For each i ∈ I, there is a unique (up to

isomorphism) indecomposable tilting module T(i), such that [T(i) : L(i)] = 1

and [T(i) : L(j)] > 0 implies j ≤ i. We call T(i) the partial tilting module of

highest weight i. Furthermore, every tilting module is a direct sum of partial tilting

modules.

We remind the reader that we allow odd isomorphisms in A-mod. So, we

have that T(i) ∼= Π T(i), but T(i) 6' Π T(i).

Definition 2.9. Let T be a tilting module such that every T(i) appears at least

once as a summand. Then we say that T is a full tilting module. Furthermore, we

call A′ := EndA(T) a Ringel Dual of A.

It is important to note that A′ is not uniquely defined up to isomorphism.

However, it is well known that A′ is defined up to (super) Morita equivalence.

As an easy example: if A = k = F, then we may take any k⊕n as a full tilting

module for any n, each of which results in a different endomorphism algebra, and

thus a different Ringel dual A′.
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2.2. Based Quasihereditary Algebras

In this section, k may be F or R, and both versions will be used in the text.

The main reference here in this section is [5]. Let A be a k-superalgebra.

Heredity Data

Definition 2.10. [5, Definition 2.4] Let I be a finite partially ordered set (with

order ≤) and let X =
⊔
i∈I X(i) and Y =

⊔
i∈I Y (i) be finite sets of homogeneous

elements of A with distinguished elements ei ∈ X(i) ∩ Y (i) for each i ∈ I. For each

i ∈ I, we set A>i := span{xy | j > i, x ∈ X(j), y ∈ Y (j)}. We say that I,X, Y is

heredity data if the following axioms hold:

(a) B := {xy | i ∈ I, x ∈ X(i), y ∈ Y (i)} is a basis of A;

(b) For all i ∈ I, x ∈ X(i), y ∈ Y (i) and a ∈ A, we have

ax ≡
∑

x′∈X(i)

lxx′(a)x′ (mod A>i) and ya ≡
∑

y′∈Y (i)

ryy′(a)y′ (mod A>i)

for some lxx′(a), ryy′(a) ∈ k;

(c) For all i, j ∈ I and x ∈ X(i), y ∈ Y (i) we have

xei = x, eix = δx,eix, eiy = y, yei = δy,eiy

ejx = x or 0, yej = y or 0.

If A is endowed with heredity data I,X, Y , we call A based quasi-hereditary,

and refer to B as a heredity basis of A. Furthermore, it follows by (c) that e2
i = ei
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for all i ∈ I. So we refer to the idempotents ei as the standard idempotents of the

heredity data.

From now on, A is a based quasi-hereditary superalgebra with heredity data

I,X, Y . Set

Ba := {xy | i ∈ I, x ∈ X(i)0̄, y ∈ Y (i)0̄}, Bc := {xy | i ∈ I, x ∈ X(i)1̄, y ∈ Y (i)1̄}.

Then,

B0̄ = Ba tBc, (2.11)

and we may also write B = B0̄ tB1̄.

The heredity data I,X, Y of A is called conforming if Ba spans a unital

subalgebra of A.

Lemma 2.12. [5, Lemmas 2.7, 2.8] Let i, j ∈ I and x ∈ X(i), y ∈ Y (i).

(i) eiej = δi,jei

(ii) If j 6≤ i, then ejx = yej = 0.

Corollary 2.13. We have X ∩ Y = {ei | i ∈ I}.

Proof. Let z ∈ X ∩ Y . As z ∈ X we have z ∈ X(i) so zei = z for some i ∈ I. As

z ∈ Y , we have z ∈ Y (j) so ejz = z for some j ∈ I. By Lemma 2.12(ii), j = i, and

the result follows from Definition 2.10(c).

It is shown in [5] that if k is noetherian, and the algebra A is known to be

finitely generated and projective as a k-module, then the existence of heredity

data for A implies that A is quasi-hereditary in the sense of [18]. Observe that if

k = F, then it is automatically noetherian, and A is automatically projective as
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an F-supermodule. So in this case, the existence of heredity data implies that A is

finitely generated (in fact, finite-dimensional) as an F-supermodule. Thus, if k = F,

then the existence of heredity data for A implies that A is quasi-hereditary in the

sense of [6].

We can then take this further. Combining with [17, Proposition A3.7(ii)], we

have

Proposition 2.14. Let k = F, and A be a finite dimensional F-algebra. If A

has heredity data (I,X, Y ), with I partially ordered by ≤, then A-mod is a highest

weight category with respect to the ordering ≤.

Standard and Costandard Modules

Definition 2.15. Let 0 6= V ∈ A-mod and i ∈ I. We call V a highest weight

module (of weight i) if there exists a homogeneous v ∈ V such that eiV is spanned

by v, Av = V , and j > i implies ejV = 0. In this case we refer to v as a highest

weight vector of V .

Lemma 2.16. Let i ∈ I, 0 6= V ∈ A-mod and v ∈ V be a homogeneous vector.

Suppose that eiv = v, Av = V , and yv = 0 for all y ∈ Y \ {ei}. Then V is a highest

weight module of weight i.

Proof. Since A is based quasi-hereditary, it follows from the assumption yv = 0 for

all y ∈ Y \ {ei} that V is spanned by {xv | x ∈ X(i)}. For any j ∈ I, if ejV 6= 0

then there is some x ∈ X(i) such that ejx 6= 0. By Definition 2.10(c), this implies

that ejx = x. But then Lemma 2.12(ii) implies that j ≤ i. So, in particular, if

j > i, then ejV = 0, completing the proof.
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Fix i ∈ I. Observe that A>i is the ideal in A generated by {ej | j > i} and

denote Ã := A/A>i, ã := a + A>i ∈ Ã for a ∈ A. By inflation, Ã-supermodules will

be automatically considered as A-supermodules. In particular, the standard module

∆(i) := Ãẽi

is considered as an A-module. The modules {∆(i) | i ∈ I} are the (left)

standard modules of A-mod in the sense of § 2.1.1. So we may use these to speak

of standard filtrations for A-supermodules, as in § 2.1.1 again.

We have that ∆(i) is a free k-module with basis {vx := x̃ | x ∈ X(i)} and the

action avx =
∑

x′∈X(i) l
x
x′(a)vx′ , cf. [5, §2.3]. Denoting

vi := vei ∈ ∆(i),

we have eivi = vi, and ej∆(i) 6= 0 implies j ≤ i thanks to Lemma 2.12. Moreover,

for all for all x ∈ X(i) we have xvi = vx and eivx = δx,eivx. In particular, ∆(i) is a

highest weight module of weight i in the sense of Definition 2.15 (with even highest

weight vector). If V ∈ A-mod is isomorphic to ∆(i), then using the fact that eiV is

free of rank 1 as a k-module, it is easy to see that either V ' ∆(i) or V ' Π∆(i).

We also have the right standard A-module

∆op(i) := ẽiÃ,

and by symmetry every result we have about ∆(i) has its right analogue for

∆op(i), for example ∆op(i) is a free k-module with basis {wy := ỹ | y ∈ Y (i)}.
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These are the modules we use to define right standard filtrations similarly to the

standard filtrations defined above.

Suppose now until the end of the subsection that k = F. Then each

L(i) := head ∆(i) is irreducible, and {L(i) | i ∈ I} is a complete set of non-

isomorphic irreducible A-supermodules. We also have that Lop(i) := head ∆op(i)

is an irreducible right module, and {Lop(i) | i ∈ I} is a complete set of non-

isomorphic irreducible right A-supermodules. These align with the modules we

expect from § 2.1.1

By [5, Lemma 3.3], A is quasi-hereditary in the sense of Cline, Parshall and

Scott, and A-mod is a highest weight category with standard modules {∆(i) |

i ∈ I}, see [6, Theorem 3.6]. In particular, the projective cover P (i) of L(i) has

a standard filtration with the top factor ∆(i) and all other factors of the form

∆(j) or Π∆(j) for j > i. Moreover, ∆(i) is the largest quotient of P (i) such that

[∆(i) : L(i)] = 1 and [∆(i) : L(j)] 6= 0 implies j ≤ i.

Proposition 2.17. (Universality of standard modules) Let k = F, i ∈ I, and

V be a highest weight module of weight i with highest weight vector v. Then there

is an homogeneous surjection ∆(i)�V of parity |v|; in particular ejV 6= 0 implies

j ≤ i.

Proof. Let eiV be spanned by v ∈ V . There is a homogeneous surjective A-

supermodule homomorphism ϕ : Aei�V, aei 7→ av of parity |ϕ| = |v|. As eiL(i) is

1-dimensional and eiL(j) 6= 0 implies i ≤ j, we have that Aei = P (i)⊕ P , where P

is a direct sum of supermodules isomorphic to P (j) with j > i.

Note that HomA(∆(j), V ) = 0 for any j > i, so HomA(P (j), V ) = 0 for all

j > i, and we deduce HomA(P, V ) = 0. Since each P (j) has a standard filtration

with factors isomorphic to ∆(r) for r > j > i, the map ϕ factors through P (i) to
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give a surjection P (i)�V . Moreover, P (i) has a standard filtration with top factor

∆(i) and other factors isomorphic to ∆(j) with j > i, so the map further factors

through the surjection ∆(i)�V .

The following is a useful criterion for V to have a standard filtration.

Corollary 2.18. Let k = F, V ∈ A-mod, v1 . . . , vt ∈ V be homogeneous elements,

and set Vs := A〈v1, . . . , vs〉 for s = 1, . . . , t. Suppose that the following conditions

hold:

(1) Vt = V ;

(2) for each s = 1, . . . , t there exists is ∈ I such that eisvs − vs ∈ Vs−1 and

yvs ∈ Vs−1 for all y ∈ Y \ {eis};

(3) dimV =
∑t

s=1 dim ∆(is).

Then Vs/Vs−1 ' Π|vs|∆(is) for all s = 1, . . . , t. In particular, V has a standard

filtration.

Proof. Observe that assumption (2) implies that each Vs/Vs−1 is a highest weight

module of weight is. Then, by Lemma 2.16 and Proposition 2.17, each Vs/Vs−1 is a

quotient of Π|vs|∆(is). The result now follows by dimensions.

The highest weight category A-mod comes with costandard modules {∇(i) |

i ∈ I}. Let J(i) be the injective hull of L(i) in A-mod for i ∈ I. As explained

in § 2.1.1, one can define ∇(i) as the largest submodule of J(i) such that [∇(i) :

L(i)] = 1 and [∇(i) : L(j)] > 0 implies j ≤ i (c.f. [17, Appendix A1]). Using the

heredity data of A, we may construct the module ∇(i), using the right standard

modules above and dualizing.
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Indeed: given a right A-supermodule V , there is a (left) A-supermodule

structure on V ∗ with af(v) = (−1)|a||f |+|a||v|f(va) for a ∈ A, f ∈ V ∗, v ∈ V .

For example, note that Lop(i)∗ is irreducible, eiL
op(i)∗ 6= 0, and ejL

op(i)∗ 6= 0

implies j ≤ i; therefore Lop(i)∗ ' L(i). Denoting by P op(i) the projective cover of

Lop(i), we deduce that P op(i)∗ ' J(i). This in turn implies easily:

∇(i) ' ∆op(i)∗. (2.19)

2.3. Example: The Classical Schur Algebra

One of the most important examples of a quasi-hereditary algebra is the

(classical) Schur Algebra. The main references for this are [3] and [4].

Definitions

Let n, d ∈ Z≥0 with n > 0. Then we may consider the algebra Mn(k) as

a (purely even) superalgebra over k. Recalling the action of the symmetric group

(1.2), and the space of invariants (1.6), the classical Schur Algebra is defined as

S(n, d) := ΓdMn(k)

This algebra was first introduced by Issai Schur in his thesis [19]. Our approach is

inspired by the results of [4], but will mimic the approach in Chapter 3, originally

laid out by Kleshchev and Muth in [10],

For r, s ∈ [n], we let ξr,s be the matrix unit with 1 in the (r, s) position

and 0’s elsewhere. Recall (1.2) and the action of Sd on [n]d from § 1.2 For r =

r1, . . . , rd, s = s1, . . . , sd ∈ [n]d, let Sr,s be the stabilizer of (r, s) for the diagonal
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action of Sd on [n]d × [n]d. Let r,sD be the set of shortest coset representatives for

Sr,s\Sd. We define the element

ξr,s =
∑
σ∈D

(ξr1,s1 ⊗ ξr2,s2 ⊗ · · · ⊗ ξrd,sd)σ

Fix a set, Z, of orbit representatives for the action of Sd on [n]d × [n]d]. It is

a result of Schur (see [3]) that {ξr,s | (r, s) ∈ Z} is a basis for S(n, d). However,

this is not a heredity basis in the sense of Definition 2.10.

Heredity Data

Recall (1.4). For each composition λ = (λ1, . . . , λn) ∈ Λ(n, d) let lλ =

(1, . . . , 1, 2, . . . , 2, . . .) ∈ [n]d where there are λ1 1’s, λ2 2’s, etc. We have the weight

idempotent ξλ defined by

ξλ := ξlλ,lλ = ξ⊗λ1
1,1 ∗ ξ⊗λ2

2,2 ∗ · · · ∗ ξ⊗λnn,n ∈ S(n, d)

It is shown in [3] that the irreducible S(n, d) modules are indexed by

Λ+(n, d) - the set of partitions of d with at most n parts. So, certainly Λ+(n, d)

will be the partially ordered set in our heredity data for S(n, d), with partial

order given by the dominance order E. As expected, the weight idempotents

{ξλ | λ ∈ Λ+(n, d)} will be the standard idempotents of the heredity data.

The heredity basis will be the basis of bideterminants defined by Green in

[4]. For λ ∈ Λ+(n, d) recall the Young Diagram [λ] from (1.7). A λ-tableaux is

a function T : [λ] → [n]. For a λ-tableau T , for each i ∈ [n], define [T : i] =
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#{(r, s) ∈ [λ] | T (r, s) = i}. The content of T is the composition

α(T ) :=
(
[T : 1], [T : 2], . . . , [T : n]

)
∈ Λ(n) (2.20)

A λ-tableau T is called standard if the following holds for all (r, s), (r′, s′) ∈ [λ]:

(a) if s = s′ and r < r′ then T (r, s) ≤ T (r′, s′);

(b) if r = r′ and s, s′ then T (r, s) < T (r′, s′).

We fix an arbitrary bijection f : [λ]
∼−→ [d]. For each r ∈ [n]d we can

interpret r as a function [d] → [n] by i 7→ ri for i ∈ [d]. Then for each r ∈ [n]d we

define T (r) := f ◦ r (where r is considered as a function [d] → [n] as above). For

λ ∈ Λ+(n, d) we say that r ∈ [n]d is λ-standard if T (r) is standard.

Define the set

B := {(λ, r, s) | λ ∈ Λ+(n, d), and r, s are both λ-standard}

And for λ ∈ Λ+(n, d) and r, s ∈ [n]d, define the bideterminant Y λ
r,s by

Y λ
r,s = ξr,lλ , ξlλ,s.

We have the following theorem of Green:

Theorem 2.21. [4, (16)] the set {Y λ
r,s | (λ, r, s) ∈ B} is a basis for S(n, d).

For λ ∈ Λ+(n, d), let X(λ) = {ξr,lλ | r is λ-standard} and Y (λ) = {ξlλ,r |

r is λ-standard}. Furthermore, set X = tλ∈Λ+(n,d)X(λ) and Y = tλ∈Λ+(n,d)Y (λ).

Then it can be checked directly that (Λ+(n, d), X, Y ) is heredity data for S(n, d).

In fact, checking this is a special case of [11, Theorem 6.6] where A = k.
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The standard and costandard modules for S(n, d) are described extensively

in both [3] and [4]. We omit this here, as we will discuss the standards and

costandard modules for Generalized Schur Algebras at length in chapter 3; with

the classical Schur algebra being a special case.

Motivating Results

Fix n ∈ Z≥0 and define S(n) :=
⊕

d≥0 S(n, d). There is a coproduct on

S(n) which it inherits from
⊕

d≥0Mn(k)⊗d. Namely, on Mn(k)⊗d this coproduct is

defined on pure tensors by

Mn(k)⊗d →
d⊕
c=0

Mn(k)⊗c ⊗Mn(k)Mn(k)⊗(d−c)

ξ1 ⊗ ξd 7→
∑

0≤c≤d

(ξ1 ⊗ · · · ⊗ ξc)⊗ (ξc+1 ⊗ · · · ⊗ ξd)

We will discuss this coproduct more in Chapter III, generalizing it to the

Generalized Schur Algebras defined therein. In that chapter, we will discuss the

coproduct in significantly more detail. Most importantly, if we take an S(n, d)-

module V and an S(n, r)-module W , we may consider V ⊗W as an S(n, d + r)-

module via the coproduct described above.

In [9], Wang proves:

Theorem 2.22. If V is an S(n, d)-module with a standard (resp. costandard)

filtration, and W is an S(n, r)-module with a standard (resp. costandard) filtration,

then V ⊗W has a standard (resp. costandard) filtration.

The main theorem of chapter IV is a generalization of Wang’s result, relating

to Generalized Schur Algebras.
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In chapter V, we will take inspiration from Donkin. Namely, in [15] proves

Theorem 2.23. There is a tilting module, T for S(n, d) such that End(T ) ∼=

S(n, d).

This result inspires our main conjecture of chapter V. Namely, as stated in

the introduction, we conjecture:

Conjecture 2.24. Let n ∈ Z>0 and d ∈ N with n ≥ d. Let A be a based quasi-

hereditary algebra and d ≤ n. If A′ is a Ringel dual of A, then a Ringel dual of

TAa (n, d) is of the form TA
′

a′ (n, d) for some canonical choice of a′.

We will prove this conjecture in the case A = Z, the extended zigzag algebra.
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CHAPTER III

GENERALIZED SCHUR ALGEBRAS

In this chapter, we define the generalized Schur algebras, and describe some

of their properties. In the last section, we re-examine the construction from a more

linear algebraic perspective, defining new tools that will be used in Chapter V.

This chapter contains previously unpublished co-authored material that appears in

[1, 2].

3.1. Definition and Properties

Throughout the section, we fix n ∈ Z>0. We also fix a based quasi-hereditary

superalgebra AR over R with conforming heredity data I,X, Y .

Definition

Let S be a set and d ∈ Z≥0. Recall that the symmetric group Sd acts on

Sd by place permutations. For s, t ∈ Sd, we write s ∼ t if sσ = t for some

σ ∈ Sd. If S1, . . . , Sm are sets, then Sd acts on Sd1 × · · · × Sdm diagonally. For

(s1, . . . , sm), (t1, . . . , tm) ∈ Sd1 × · · · × Sdm, we write (s1, . . . , sm) ∼ (t1, . . . , tm) if

(s1, . . . , sm)σ = (t1, . . . , tm) for some σ ∈ Sd. If U ⊆ Sd1×· · ·×Sdm is a Sd-invariant

subset, we denote by U/Sd a complete set of the Sd-orbit representatives in U and

we identify U/Sd with the set of all Sd-orbits on U .

Let H = H0̄ t H1̄ be a set of non-zero homogeneous elements of AR. Define

TriH(n, d) to be the set of all triples

(a, r, s) = (a1 · · · ad, r1 · · · rd, s1 · · · sd) ∈ Hd × [n]d × [n]d
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such that for all 1 ≤ k 6= l ≤ d we have (ak, rk, sk) = (al, rl, sl) only if ak ∈ H0̄.

Then TriH(n, d) ⊆ Hd × [n]d × [n]d is a Sd-invariant subset, so we can choose

a set TriH(n, d)/Sd of Sd-orbit representatives and identify it with the set of all

Sd-orbits on TriH(n, d) as in the previous paragraph.

Sometimes we use a preferred choice of representatives for TriH(n, d)/Sd

defined as follows. Fix a total order < on H × [n] × [n]. We have a lexicographic

order on TriH(n, d): (a, r, s) < (a′, r′, s′) if and only if there exists l ∈ [d] such

that (ak, rk, sk) = (a′k, r
′
k, s
′
k) for all k < l and (al, rl, sl) < (a′l, r

′
l, s
′
l). Denote

TriH0 (n, d) = {(a, r, s) ∈ TriH(n, d) | (a, r, s) ≤ (a, r, s)σ for all σ ∈ Sd}. (3.1)

For (a, r, s) ∈ TriH(n, d) and σ ∈ Sd, we define

〈a, r, s〉 := ]{(k, l) ∈ [d]2 | k < l, ak, al ∈ H1̄, (ak, rk, sk) > (al, rl, sl)}. (3.2)

Specializing to H = B, let (b, r, s) ∈ TriB(n, d). For b ∈ B and r, s ∈ [n], we

denote

[b, r, s : b, r, s] := ]{k ∈ [d] | (bk, rk, sk) = (b, r, s)},

and, recalling (2.11), we set

[b, r, s]!c :=
∏

b∈Bc, r,s∈[n]

[b, r, s : b, r, s]!. (3.3)

Let Mn(AR) = Mn,0(AR) be the superalgebra of n × n matrices with entries

in AR. For a ∈ AR, we denote by ξar,s ∈ Mn(AR) the matrix with a in the position

(r, s) and zeros elsewhere. By definition, for all homogeneous a ∈ A, |ξar,s| = |a|.
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For each d ∈ Z≥0 we have a superalgebra structure on Mn(AR)⊗d, and thus on⊕
d≥0Mn(AR)⊗d as well.

It is proben in [20, §4.1], that
⊕

d≥0Mn(AR)⊗d is a bisuperalgebra with the

coproduct
∆

defined by

∆
: Mn(AR)⊗d →

d⊕
c=0

Mn(AR)⊗c ⊗Mn(AR)⊗(d−c)

ξ1 ⊗ · · · ⊗ ξd 7→
d∑
c=0

(ξ1 ⊗ · · · ⊗ ξc)⊗ (ξc+1 ⊗ · · · ⊗ ξd)

and product obtained from the tensor product of matrix superalgebras. Moreover,

recalling (1.4),
⊕

d≥0Mn(AR)⊗d is also a bisuperalgebra with respect to
∆

and ∗,

see [20, Lemma 3.12].

According to (1.2) Sd acts on Mn(AR)⊗d with superalgebra automorphisms,

and using the notation (1.6), we have the subsuperalgebra of invariants

ΓdMn(AR) ⊆Mn(AR)⊗d. For (a, r, s) ∈ TriH(n, d), we have elements

ξar,s :=
∑

(c,t,u)∼(a,r,s)

(−1)〈a,r,s〉+〈c,t,u〉ξc1t1,u1
⊗ · · · ⊗ ξcdtd,ud ∈ ΓdMn(AR).

We have the following R-basis of ΓdMn(AR):

{ξbr,s | (b, r, s) ∈ TriB(n, d)/Sd}. (3.4)

For (b, r, s) ∈ TriB(n, d), we also set

ηbr,s := [b, r, s]!c ξ
b
r,s,
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and

T (n, d)R = TA(n, d)R := spanR
{
ηbr,s | (b, r, s) ∈ TriB(n, d)

}
⊆ ΓdMn(AR).

Let

T (n)R :=
⊕
d≥0

T (n, d)R.

By [10, Proposition 3.12, Lemma 3.10], T (n, d)R is a unital R-

subsuperalgebra of Mn(AR)⊗d with R-basis

{
ηbr,s | (b, r, s) ∈ TriB(n, d)/Sd

}
. (3.5)

Moreover, by in [10], Kleshchev and Muth prove that there are two different

bisuperalgebra structures on T (n)R. We have the following lemmas.

Lemma 3.6. [10, Corollary 3.24] T (n)R is a sub-bisuperalgebra of
⊕

d≥0Mn(AR)⊗d

with respect to
∆

and the usual product.

Lemma 3.7. [10, Corollary 4.4] T (n)R is a sub-bisuperalgebra of
⊕

d≥0Mn(AR)⊗d

with respect to the coproduct
∆

and the product ∗

Extending scalars from R to F, we now define the F-superalgebra

T (n, d)F = TA(n, d)F := F⊗R T (n, d)R.

We denote 1F ⊗ ηbr,s ∈ T (n, d)F again by ηbr,s, the map idF⊗
∆

again by
∆
, etc. In

fact, when working over the field, we will often drop the index and write simply

T (n, d) := T (n, d)F. (3.8)
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If W1 is a T (n, d1)-supermodule and W2 is a T (n, d2)-supermodule, we

consider W1 ⊗W2 as a T (n, d1 + d2)-supermodule via the coproduct
∆
.

Properties of Product and Coproduct

In this section we work over R. Define the structure constants κba,c ∈ R of

AR from ac =
∑

b∈B κ
b
a,cb for a, c ∈ AR. More generally, for b = (b1, . . . , bd) ∈

Bd and a = (a1, . . . , ad), c = (c1, . . . , cd) ∈ AdR, we define

κba,c := κb1a1,c1
· · ·κbdad,cd ∈ R.

Recall the notation (3.2), (1.5). The following generalization of [3, (2.3b)] follows

from [20, (6.14)], cf. [10, Proposition 3.6].

Proposition 3.9. Let (a,p, q), (c,u,v) ∈ TriB(n, d). Then in T (n, d)R we have

ηap,q η
c
u,v =

∑
[b,r,s]∈TriB(n,d)/Sd

gb,r,sa,p,q;c,u,v η
b
r,s

where

gb,r,sa,p,q;c,u,v =
[a,p, q]!c · [c,u,v]!c

[b, r, s]!c

∑
a′,c′,t

(−1)〈a,p,q〉+〈c,u,v〉+〈a
′,r,t〉+〈c′,t,s〉+〈a′,c′〉 κba′,c′ ,

the sum being over all a′, c′ ∈ Bd and t ∈ [n] such that (a′, r, t) ∼ (a,p, q) and

(c′, t, s) ∼ (c,u,v).

Lemma 3.10. [10, Lemma 4.6] Let q ∈ Z>0, d1, . . . , dq ∈ Z≥0 with d1 + · · · +

dq = d, and for m = 1, . . . , q, we have (bm, rm, sm) ∈ TriB(n, dm) with bm =

bm1 · · · bmdm , r
m = rm1 · · · rmdm , s

m = sm1 · · · smdm. If (bmt , r
m
t , s

m
t ) 6= (blu, r

l
u, s

l
u) for all
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1 ≤ m 6= l ≤ q, 1 ≤ t ≤ dm and 1 ≤ u ≤ dl, then

ηb
1···bq
r1···rq ,s1···sq = ηb

1

r1,s1 ∗ · · · ∗ ηb
q

rq ,sq .

To describe
∆

on basis elements, let T = (b, r, s) ∈ TriB0 (n, d). We write

ηT := ηbr,s and T σ := (b, r, s)σ for σ ∈ Sd. We have that the stabilizer ST := {σ ∈

Sd | T σ = T } is a standard parabolic subgroup. Let TD be the set of the shortest

coset representatives in ST \Sd. We also set

[T ]!c := [b, r, s]!c. (3.11)

If d = d1 + d2, T 1 = (b1, r1, s1) ∈ TriB(n, d1) and T 2 = (b2, r2, s2) ∈ TriB(n, d2), we

denote T 1T 2 := (b1b2, r1r2, s1s2) ∈ Bd × [n]d × [n]d. Recall the notation (3.1). For

T ∈ TriB0 (n, d) define

Spl(T ) :=
⊔

0≤c≤d

{
(T 1, T 2) ∈ TriB0 (n, c)× TriB0 (n, d− c) | T 1T 2 ∼ T

}
.

For (T 1, T 2) ∈ Spl(T ), let σTT 1,T 2 be the unique element of TD such that

T σTT 1,T 2 = T 1T 2. Recalling the notation (1.3), we have:

Lemma 3.12. [10, Corollary 3.24] If T = (b, r, s) ∈ TriB0 (n, d) then

∆
(ηT ) =

∑
(T 1,T 2)∈Spl(T )

(−1)
〈σT
T 1,T 2 ;b〉 [T ]!c

[T 1]!c[T 2]!c
ηT 1 ⊗ ηT 2 .
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3.2. Special Elements and Characters

In this section, we define the formal characters for TA(n, d)-modules, and

describe several important elements we use to study them. To do this, we first

describe the combinatorics of colored tableaux.

Throughout the section, let A be a k-superalgebra with (not necessarily

conforming) heredity data I,X, Y as in § 2.2.

Tableaux

We introduce colored alphabets

AX := [n]×X and AX(i) := [n]×X(i).

so that AX =
⊔
i∈I AX(i). An element (l, x) ∈ AX is often written as lx. If L =

lx ∈ AX , we denote color(L) := x. For all i ∈ I, we fix arbitrary total orders ‘<’ on

the sets AX(i) such that for r, s ∈ [n], if r < s (in the standard order on [n]) then

rx < sx for all x ∈ X(i). All definitions of this subsection which involve X have

obvious analogues for Y , for example, we have the colored alphabets AY and AY (i).

Let λ = (λ(0), . . . , λ(`)) ∈ ΛI(n, d). Fix i ∈ I. Recall the Young diagram

of a partition from (1.7). A standard X(i)-colored λ(i)-tableau is a function T :

[λ(i)] → AX(i) such that the following two conditions are satisfied for any pair of

nodes (r, s), (r′, s′) ∈ [λ(i)]:

(R) If r = r′ and s < s′, then T (r, s) ≤ T (r′, s′), and the equality is allowed only

if color(T (r, s)) ∈ X(i)0̄.

(C) If s = s′ and r < r′, then T (r, s) ≤ T (r′, s′), and equality is allowed only if

color(T (r, s)) ∈ X(i)1̄.
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We denote by StdX(i)(λ(i)) the set of all standard X(i)-colored λ(i)-tableaux.

Recalling the idempotents ei ∈ X(i) ∩ Y (i), the initial λ(i)-tableau T λ
(i)

is given

by

T λ
(i)

: [λ(i)]→ AX(i), (r, s) 7→ rei .

Note that T λ
(i)

is in both StdX(i)(λ(i)) and StdY (i)(λ(i)).

Let T ∈ StdX(i)(λ(i)). Denote di := |λ(i)|. Reading the entries of T along the

rows from left to right starting from the first row, we get a sequence lx1
1 · · · l

xdi
di
∈

A di
X(i). (Fixing this reading is analogous to choosing a fixed bijection [d] → [λ] as

we did for the classical Schur algebra in section § 2.3.) We denote lT := l1 · · · ldi

and xT := x1 · · ·xdi .

For a function T : [λ] → AX and i ∈ I, we set T (i) := T |[λ(i)] to be the

restriction of T to [λ(i)]. We write T = (T (0), . . . , T (`)), keeping in mind that

the restrictions T (i) determine T uniquely. A standard X-colored λ-tableau is a

function T : [λ] → AX such that T (i) ∈ StdX(i)(λ(i)) for all i ∈ I. We denote by

StdX(λ) the set of all standard X-colored λ-tableaux. For example, we have the

initial λ-tableau

T λ = (T λ
(0)

, . . . , T λ
(`)

) ∈ StdX(λ) ∩ StdY (λ).

For T ∈ StdX(λ), we denote

lT := lT
(0) · · · lT (`) ∈ [n]d, xT := xT

(0) · · · xT (`) ∈ Xd, and lλ := lT
λ

.

The sequence yT for T ∈ StdY (λ) is defined similarly to xT .
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Let λ ∈ ΛI
+(n, d) and T ∈ StdX(λ), with lT = l1 · · · ld and xT = x1 · · ·xd.

Suppose that there exist i1, . . . , id ∈ I such that ei1x1 = x1, . . . , eidxd = xd.

Recalling (1.8) and (1.10), we define the left weight of T to be

α(T ) :=
d∑
c=1

ιic(εlc) ∈ ΛI(n, d).

cf. (2.20). For µ ∈ ΛI(n, d), we denote

StdX(λ,µ) := {T ∈ StdX(λ) | α(T ) = µ}. (3.13)

Idempotents and Characters

Let λ ∈ Λ(n, d). Set lλ := 1λ1 · · ·nλn . For an idempotent e ∈ A we have an

idempotent ηeλ := ηe
d

lλ,lλ
∈ T (n, d). Let e0, . . . , e` ∈ A be the standard idempotents.

For each λ = (λ(0), . . . , λ(`)) ∈ ΛI(n, d), we have the idempotent

ηλ := ηe0
λ(0) ∗ · · · ∗ ηe`λ(`) ∈ TA(n, d).

Where the fact that ηλ ∈ TA(n, d) follows because each standard idempotent

ei ∈ Ba. The idempotents ηλ are obviously orthogonal.

Definition 3.14. For any TA(n, d)-supermodule V , µ ∈ ΛI
+(n, d) and 0 6= v ∈ V ,

we say that v is a weight vector of weight µ if v ∈ ηµV .

For λ = (λ1, . . . , λn) ∈ Λ(n), define the monomial zλ := zλ1
1 · · · zλnn ∈

Z[z1, . . . , zn]. For λ ∈ ΛI(n), we now set

zλ := zλ
(0) ⊗ zλ(1) ⊗ · · · ⊗ zλ(`) ∈ Z[z1, . . . , zn]⊗I .
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Following [10, §5A], see especially [10, Lemma 5.9], for a T (n, d)-module V , we

define its formal character

chV :=
∑

µ∈ΛI(n,d)

(dim ηµV )zµ ∈ SymI(n, d).

If
∑

i∈I ei = 1A, then 1TA(n,d) =
∑
λ∈ΛI(n,d) ηλ, but we do not need to assume this.

So in general we might have
∑
µ∈ΛI(n,d) ηµV ( V . It is worth noting that later

on it will be shown that each simple supermodule has nonzero character. So, it is

impossible for this character to ’miss’ a simple factor. This character also has the

property we value most, namely:

Lemma 3.15. [10, Lemma 5.10] If W1 ∈ T (n, d1)-mod and W2 ∈ T (n, d2)-mod,

then ch(W1 ⊗W2) = ch(W1) ch(W2).

Other Important Elements

The group Sn acts on Λ(n) on the left via

σλ := (λσ−11, . . . , λσ−1n). (3.16)

The group SI
n :=

∏
i∈I Sn acts on ΛI(n) via σλ := (σ(0)λ(0), . . . , σ(`)λ(`)), for

σ = (σ(0), . . . , σ(`)) ∈ SI
n and λ = (λ(0), . . . , λ(`)) ∈ ΛI(n). For a ∈ A and σ ∈ Sn,

let ξaσ :=
∑n

r=1 ξ
a
σ(r),r ∈Mn(A). For σ = (σ(0), . . . , σ(`)) ∈ SI

n, we set

ξd(σ) :=
∑

d0+···+d`=d

(ξe0
σ(0))

⊗d0 ∗ · · · ∗ (ξe`
σ(`))

⊗d` ∈ TA(n, d). (3.17)

where the fact that each ξd(σ) ∈ TA(n, d) again follows because each standard

idempotent ei ∈ Ba.
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These elements will play a role analogous to the Weyl group in classical type-

A Lie theory, cf. [21]. In particular, they have some amenable properties. Namely,

it allows us to move between weights as we expect. More precisely, we have:

Lemma 3.18. [10, Lemmas 5.6, 5.7] For all σ, τ ∈ SI
n and λ ∈ ΛI(n, d), we have

ξd(σ)ξd(τ ) = ξd(στ ) and ξd(σ)ηλξd(σ
−1) = ησλ.

An immediate result of this Lemma is the following.

Corollary 3.19. For σ ∈ SI
n, λ ∈ ΛI(n, d) and V ∈ T (n, d)-mod, we have

ξd(σ) ηλV = ησλV .

Lemma 3.20. For σ ∈ SI
n, we have

∆
(ξd(σ)) =

∑d
c=0 ξc(σ)⊗ ξd−c(σ).

Proof. By definition,

∆
((ξei

σ(i))
⊗di) =

di∑
ci=0

(
(ξei
σ(i))

⊗ci
)
⊗
(
(ξei
σ(i))

⊗di−ci
)
.

By Lemma 3.7, we have

∆
(ξd(σ)) =

∑
d0+···+d`=d

∆(
(ξe0
σ(0))

⊗d0
)
∗ · · · ∗ ∆

(
(ξe`
σ(`))

⊗d`
)
,

and the result follows.

We end the subsection collecting some results that are useful for the case n <

d. In that case, we choose a large N and truncate using the following idempotents.

For N ≥ n, set EN
n :=

∑n
r=1 ξ

1
r,r ∈MN(A) and consider the idempotent

ηNn (d) := (EN
n )⊗d ∈ TA(N, d). (3.21)
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We get the following lemmas, which will be used to examine the n < d case

in § 4.3.

Lemma 3.22. [10, Lemma 5.15] Let N ≥ n. Then we have a unital superalgebra

isomorphism

T (n, d)
∼−→ ηNn (d)T (N, d)ηNn (d), ηbr,s 7→ ηbr,s

Lemma 3.23. [10, Proposition 5.19] Let d1, d2 ∈ Z≥0 with d1+d2 = d, n ≤ N , V1 ∈

T (N, d1)-mod and V2 ∈ T (N, d2)-mod. Then there is a functorial isomorphism of

T (n, d)-modules ηNn (d)(V1 ⊗ V2) ' (ηNn (d1)V1)⊗ (ηNn (d2)V2).

3.3. Quasi-hereditary structure on T (n, d)

Throughout the section, let A be a based quasi-hereditary superalgebra with

conforming heredity data I,X, Y . Throughout this section, we assume that d ≤ n.

Then, by [11, Theorem 6.6], T (n, d) = TA(n, d) is a based quasi-hereditary algebra.

Heredity Data and Standard Modules

We now describe the heredity data ΛI
+(n, d),X (n, d),Y(n, d) for T (n, d)

following [11, §6]. We have already defined the partially ordered set ΛI
+(n, d)

of I-multipartitions with partial order ≤I , see § 1.4.1. For λ ∈ ΛI
+(n, d) the

corresponding sets X (λ) = {XS | S ∈ StdX(λ)} and Y(λ) = {YT | T ∈ StdY (λ)}

are labeled by the standard X-colored and Y -colored λ-tableaux, respectively.

Recalling the notation xS, lS, etc. from § 3.2.1, for S ∈ StdX(λ) and T ∈

StdY (λ), we define the elements XS and YT as follows:

XS := ηx
S

lS ,lλ
, and YT := ηy

T

lλ,lT
.
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For any λ ∈ ΛI
+(n, d), we have XTλ = YTλ = ηλ, so X (λ) ∩ Y(λ) = {ηλ}, and

{ηλ | λ ∈ ΛI
+(n, d)} are the standard idempotents of the heredity data.

Let λ ∈ ΛI
+(n, d). Following § 2.2, the standard module ∆(λ) has basis

{vT := XT vλ | T ∈ StdX(λ)}, (3.24)

where vλ is the (unique up to scalar) vector of weight λ in ∆(λ). Moreover, if

T ∈ StdX(λ,µ) for some µ ∈ ΛI(n, d), see (3.13), then

vT ∈ ηµ∆(λ) (3.25)

i.e. vT is a weight vector of weight µ.

Corollary 3.19 immediately implies:

Lemma 3.26. For σ ∈ SI
n and λ ∈ ΛI

+(n, d) such that σλ = λ, we have

ξd(σ)vλ = ±vλ.

If follows from [11, Theorem 6.6] that the formal character of the standard

module ∆(λ) is of the form

ch ∆(λ) = zλ +
∑
µ<Iλ

cµz
µ. (3.27)

This implies:

Lemma 3.28. The formal characters {ch ∆(λ) | λ ∈ ΛI
+(n, d)} are linearly

independent. In particular:
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(i) if V ∈ T (n, d)-mod has a standard filtration and chV =∑
λ∈ΛI(n,d) mλ ch ∆(λ) then every ∆(λ) appears as a subquotient of the

filtration exactly mλ times.

(ii) if λ ∈ ΛI
+(n, d), µ ∈ ΛI

+(n, c) and ∆(λ)⊗∆(µ) has a standard filtration, then

∆(λ + µ) appears in this filtration once and all other subquotients ∆(ν) of

the filtration satisfy ν <I λ+ ν.

One other easy consequence of this is the aforementioned result that no

simple module has zero character. Indeed, for λ ∈ ΛI
+(n, d), L(λ) is the head of

∆(λ), and thus has exactly one (up to scalar) weight vector of weight λ, which

must appear in the character of L(λ).

Another, less obvious consequence is the following useful criterion.

Lemma 3.29. Let λ ∈ ΛI
+(n, d), r, s ∈ [n]d and y1, . . . , yd ∈ Y with at least one

yr 6∈ X. Suppose that v ∈ ην∆(λ) for some ν ∈ ΛI(n, d) with ‖ν‖ = ‖λ‖. Then

ηy1···yd
r,s v = 0.

Proof. Suppose ηy1···yd
r,s v 6= 0. Then ηy1···yd

r,s ην = ηy1···yd
r,s . So there exist i1, . . . , id ∈ I

such that y1ei1 = y1, . . . , ydeid = yd and for all i ∈ I we have ]{k | ik = i} = |ν(i)| =

|λ(i)|. On the other hand, there exist j1, . . . , jd such that ej1y1 = y1, . . . , ejdyd = yd.

By Lemma 2.12, j1 ≥ i1, . . . , jd ≥ id, and by the assumption that at least one

yr 6∈ X, we have that at least one jr > ir. So ηy1···yd
r,s v ∈ ηµ∆(λ) for µ satisfying

‖µ‖�I ‖λ‖, hence µ >I λ, which contradicts (3.27).

Character Formula

Throughout the subsection we continue to assume that d ≤ n. Recall(1.10).

We will rely heavily on the following fundamental result of [11].
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Lemma 3.30. [11, Theorem 6.17(i)] Let λ = (λ(i))i∈I ∈ ΛI
+(n, d). Then

∆(λ) '
⊗
i∈I

∆(ιi(λ
(i))).

For each i, j ∈ I, set

jX(i) := {x ∈ X(i) | ejx = x}.

Note that jX(i) 6= ∅ only if j ≤ i. For ν = (ν(x))x∈X(i) ∈ Λ
X(i)
+ and j ∈ I, we

define

jν = (ν(x))x∈jX(i) ∈ ΛjX(i)
+ .

Fix i ∈ I until the end of the subsection. We define an algebra

homomorphism

χ : SymX(i) → SymI ,
⊗
x∈X(i)

fx 7→
⊗
j∈I

∏
x∈jX(i)

fx,

cf. [11, (7.41)]. By the Littlewood-Richardson rule, for ν ∈ Λ
X(i)
+ , we have

χ (sν) =
∑
γ∈ΛI+

∏
j∈I

cγ
(j)

jν
sγ . (3.31)

For a multipartition ν ∈ Λ
X(i)
+ (n, d), we define its superconjugate

multipartition

νcon := (ν̃(x))x∈X(i),
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where ν̃(x) := ν(x) if x is even and ν̃(x) is the conjugate partition (ν(x))′ if x is odd.

Using [16, (2.7),(3.8)], we have the algebra homomorphism

con : SymX(i) → SymX(i), sν 7→ sνcon .

Let t := |X(i)|. By choosing a total order on X(i) we will identify Λ
X(i)
+

with Λt
+, SymX(i) with Sym⊗t, etc. In particular, we have a well-defined map con :

Sym⊗t → Sym⊗t. Recalling (1.11) and (1.12), we now have:

Theorem 3.32. Let d ∈ Z≥0, n ∈ Z>0, with d ≤ n, and λ ∈ Λ+(n, d) ⊆ Λ+ and

i ∈ I. Then

ch ∆(ιi(λ)) = ρIn ◦ χ ◦ con ◦ ∆t−1(sλ).

Proof. By [11, Proposition 7.45], we have

ch ∆(ιi(λ)) =
∑

γ∈ΛI+(n)

∑
ν∈Λ+(n)t

cλνcon

(∏
j∈I

cγ
(j)

jν

)
sγ(z1, . . . , zn)

= ρIn

( ∑
γ∈ΛI+

∑
ν∈Λt+

cλνcon

(∏
j∈I

cγ
(j)

jν

)
sγ

)

= ρIn ◦ χ

( ∑
ν∈Λt+

cλνconsν

)

= ρIn ◦ χ ◦ con

( ∑
ν∈Λt+

cλνsν

)

= ρIn ◦ χ ◦ con ◦ ∆t−1(sλ),

where we have used (3.31) for the third equality and (1.13) for the last equality.
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Theorem 3.33. Let λ ∈ Λ+(n, d), µ ∈ Λ+(n, e) and i ∈ I. If d+ e ≤ n then

ch
(
∆(ιi(λ))⊗∆(ιi(µ))

)
=

∑
ν∈Λ+(n,d+e)

c νλ,µ ch ∆(ιi(ν)).

Proof. By Lemma 3.15, Theorem 3.32 and the Littlewood-Richardson rule, we

have the following:

ch
(
∆(ιi(λ))⊗∆(ιi(µ))

)
=
(

ch ∆(ιi(λ))
)(

ch ∆(ιi(µ))
)

=
(
ρIn ◦ χ ◦ con ◦ ∆t−1(sλ)

) (
ρIn ◦ χ ◦ con ◦ ∆t−1(sµ)

)
= ρIn ◦ χ ◦ con ◦ ∆t−1(sλsµ)

= ρIn ◦ χ ◦ con ◦ ∆t−1

( ∑
ν∈Λ+(n,d+e)

c νλ,µsν

)

=
∑

ν∈Λ+(n,d+e)

c νλ,µ ch ∆(ιi(ν)),

as required.

For λ = (λ(j))j∈I ∈ ΛI
+(n, d), µ = (µ(j))j∈I ∈ ΛI

+(n, e) and ν = (ν(j))j∈I ∈

ΛI
+(n, d+ e) we define

cνλ,µ :=
∏
j∈I

c ν
(j)

λ(j),µ(j) . (3.34)

Corollary 3.35. Let λ ∈ ΛI
+(n, d) and µ ∈ ΛI

+(n, e). If d+ e ≤ n then

ch(∆(λ)⊗∆(µ)) =
∑

ν∈ΛI+(n,d+e)

cνλ,µ ch ∆(ν).

Proof. This follows from Theorem 3.33 and Lemma 3.30.
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3.4. Modified Divided Powers

We can also view the construction of the algebra TA(n, d) as an application

of another construction - namely the Modified Divided Power. In this section

we will develop this construction, explore some of its amenable properties, and

ultimately recover TA(n, d)R by applying the construction in a special situation.

In the last chapter, we will revisit these tools to construct modules for T Z(n, d) :=

T Z(n, d)R ⊗R F where Z is the Extended Zig-Zag algebra, see § 5.1.

Throughout this section, d ∈ Z≥0 is fixed.

Modified Divided Power Γ̃dV

Definition 3.36. A calibrated k-supermodule is a free k-supermodule V of finite

rank, with a fixed supermodule decomposition V0̄ = Va ⊕ Vc such that Va, Vc are

also free k-supermodules.

Except for the final subsection, in this section we will exclusively work with

the case k = R, as we need characteristic 0 to construct several things in this

subsection.

Let V = Va ⊕ Vc ⊕ V1̄ be a calibrated R-supermodule. Choose bases BV
a

for Va, B
V
c for Vc, and BV

1̄ for V1̄, so that BV
0̄ := BV

a t BV
c is a basis of V0̄ and

BV = BV
a tBV

c tBV
1̄ is a basis of V .

For b ∈ (BV )d, we define

〈b〉 := ]{(k, l) ∈ [d]2 | k < l, bk, bl ∈ BV
1̄ , bk > bl}.

Setting

[b : b] := ]{k ∈ [d] | bk = b} (3.37)

44



for all b ∈ BV , we let [b]!c :=
∏

b∈BVc [b : b]!, cf. (3.3).

Define Seq(BV , d) to be the set of all d-tuples b = b1 · · · bd ∈ (BV )d such that

bk = bl for some 1 ≤ k 6= l ≤ d only if bk ∈ BV
0̄ . Then Seq(BV , d) ⊆ (BV )d is

a Sd-invariant subset, so we can choose a corresponding set Seq(BV , d)/Sd of Sd-

orbit representatives and identify it with the set of all Sd-orbits on Seq(BV , d), cf.

§ 3.1.1. Fix a total order < on BV .

Recall the invariant space ΓdV from § 1.3. For b = b1 · · · bd ∈ Seq(BV , d), we

have elements

xb :=
∑

b′=b′1···b′d∼b

(−1)〈b〉+〈b
′〉b′1 ⊗ · · · ⊗ b′d ∈ ΓdV and yb := [b]!c xb ∈ ΓdV.

We define the modified divided power Γ̃dV by

Γ̃dV := spanR{yb | b ∈ Seq(BV , d)} ⊆ ΓdV.

Note that {xb | b ∈ Seq(BV , d)/Sd} is a basis of ΓdV and {yb | b ∈

Seq(BV , d)/Sd} is a basis of Γ̃dV . We point out that in general Γ̃dV depends on

Va. An argument as in [10, Proposition 4.11] shows that it does not depend on Vc,

but we are not going to need this fact.

Remark 3.38. In general, if we start with a calibrated F-supermodule, VF, simply

applying the same construction over F is not always possible. If 0 < char F < d,

then several of the definitions don’t make sense. So, to avoid these issues we define

Γ̃dVF := Γ̃dVR ⊗R F, where VR is a calibrated R-supermodule such that VF,a =

VR,a ⊗R F, VF,c = VR,c ⊗R F, and VF,1̄ = VR,1̄ ⊗R F.
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If V and W are calibrated R-supermodules, then we make V ⊕ W into a

calibrated supermodule by taking (V ⊕W )a := Va ⊕Wa and (V ⊕W )c := Vc ⊕Wc.

One immediate result of this construction is the following.

Lemma 3.39. For calibrated R-supermodules V,W , and d ∈ Z≥0, we have an

isomorphism of R-supermodules

⊕
d1+d2=d

(Γ̃d1V )⊗ (Γ̃d2W )
∼−→ Γ̃d(V ⊕W ), y ⊗ y′ 7→ y ∗ y′.

Proof. Observe that BV⊕W
a = BV

a t BW
a , and similarly for BV⊕W

c and BV⊕W
1̄

. It

follows that yb1 ∗ yb2 = yb1b2 for all b1 ∈ Seq(BV , d1), b2 ∈ Seq(BW , d2). Comparing

bases then gives the result.

Bilinear Form on Γ̃dV

We continue with the assumptions of the previous subsection. In particular,

V is a calibrated R-supermodule. Suppose in addition that V has an (R-valued)

even non-degenerate bilinear form (·, ·) and a dual basis BV,∗ = {b∗ | b ∈ BV } for V

such that (b, c∗) = δb,c for all b, c ∈ BV , such that the following conditions hold:

• BV,∗ = BV,∗
a t BV,∗

c t BV,∗
1̄

where BV,∗
a is a basis for Va, B

V,∗
c is a basis for Vc,

and BV,∗
1̄

is a basis for V1̄;

• b ∈ BV
a if and only if b∗ ∈ BV,∗

c ;

• b ∈ BV
c if and only if b∗ ∈ BV,∗

a ;

• b ∈ BV
1̄ if and only if b∗ ∈ BV,∗

1̄
.

Observe that this implies that (·, ·) restricts to a perfect pairing on Va × Vc, on

Vc × Va, and on V1̄ × V1̄.
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The form extends to the form (·, ·)⊗ on V ⊗d:

(v1 ⊗ · · · ⊗ vd, w1 ⊗ · · · ⊗ wd)⊗ = (−1)〈v,w〉(v1, w1) · · · (vd, wd). (3.40)

for all v,w ∈ V d. Note that for any σ ∈ Sd, we have

((v1 ⊗ · · · ⊗ vd)σ, (w1 ⊗ · · · ⊗ wd)σ)⊗ = (v1 ⊗ · · · ⊗ vd, w1 ⊗ · · · ⊗ wd)⊗. (3.41)

Moreover, for b ∈ (BV )d and c ∈ (BV )d, we have

(b1 ⊗ · · · ⊗ bd, c∗1 ⊗ · · · ⊗ c∗d)⊗ = (−1)〈b,c〉δb,c. (3.42)

Lemma 3.43. Let b, c = c1 · · · cd ∈ Seq(BV , d). Then c∗ := c∗1 · · · c∗d ∈ Seq(BV,∗, d),

and (yb, yc∗)⊗ = ±d! δb∼c.

Proof. By (3.42), (yb, yc∗)⊗ 6= 0 only if b ∼ c. So we may assume that c = b and

that the stabilizer Sb is a standard parabolic subgroup. As no odd element repeats

in b, we have

|Sb| =
( ∏
b∈BVa

[b : b]!
)( ∏

b∈BVc

[b : b]!
)

=
( ∏
b∈BVa

[c∗ : b∗]!
)( ∏

b∈BVc

[b : b]!
)

=
( ∏
c∈BV,∗c

[c∗ : c]!
)( ∏

b∈BVc

[b : b]!
)
.
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So, using (3.41) and (3.42), we have that (yb, yc∗)⊗ equals

(( ∏
b∈BVc

[b : b]!
)
xb,
( ∏
c∈BV,∗c

[c∗ : c]!
)
xc∗
)
⊗

=
(( ∏

b∈BVc

[b : b]!
) ∑
σ∈Sd/Sb

(b1 ⊗ · · · ⊗ bd)σ,
( ∏
c∈BV,∗c

[c∗ : c]!
) ∑
σ∈Sd/Sb

(c∗1 ⊗ · · · ⊗ c∗d)σ
)
⊗

=
( ∏
b∈BVc

[b : b]!
)( ∏

c∈BV,∗c

[c∗ : c]!
)
[Sd : Sb](b1 ⊗ · · · ⊗ bd, c∗1 ⊗ · · · ⊗ c∗d)⊗

= ± d!

which completes the proof.

In view of the lemma, we have (z, w)⊗ is divisible by d! for all z, w ∈ Γ̃dV . So

we can define a new form on Γ̃dV by setting

(z, w)∼ :=
1

d!
(z, w)⊗ (3.44)

for all v, w ∈ Γ̃dV . The following is now clear from the lemma:

Proposition 3.45. The bilinear form (·, ·)∼ on Γ̃dV is even and non-degenerate.

Moreover, it is supersymmetric (resp. skew-supersymmetric) if (·, ·) is so.

Γ̃dV as a module over Γ̃dA

Let A = AR be a based quasi-hereditary algebra over R with conforming

heredity data I,X, Y . In particular we have a unital subalgebra a ⊆ A0̄ and

heredity basis B = Ba t Bc t B1̄. Observe that A = a ⊕ c ⊕ A1̄ is a calibrated

R-supermodule, so we may speak of Seq(B, d), etc. as in the previous subsections.
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Using this data, it is easy to see that Γ̃dA = TA(1, dR), as in § 3.1.1. In particular,

Γ̃dA is an R-superalgebra.

Let V = Va ⊕ Vc ⊕ V1̄ be a calibrated R-supermodule as in the previous

subsection, and assume in addition that V is an A-supermodule. Then ΓdV is

naturally a ΓdA-supermodule, see § 1.3. So upon restriction to the subalgebra

Γ̃dA ⊆ ΓdA, we view ΓdV as a Γ̃dA-supermodule. In this subsection we show that

under a natural additional assumption, Γ̃dV ⊆ ΓdV is a Γ̃dA-subsupermodule.

For a ∈ A and b, c ∈ BV , we define the structure constants κba,c from ac =∑
b∈BV κ

b
a,cb, cf § 3.1.2. For a = a1 · · · ad ∈ Seq(B, d) and b = b1 · · · bd, c =

c1 · · · cd ∈ Seq(BV , d), we also set κba,c := κb1a1,c1
· · ·κbdad,cd . We want to describe the

structure constants fba,c defined from

ξaxc =
∑

b∈Seq(BV ,d)/Sd

fba,cxb.

Recall the stabilizer Ss from § 1.2. The following lemma is an analogue of [10,

Corollary 3.7], and its proof is essentially the same as the n = 1 case of that

Corollary:

Lemma 3.46. Let a ∈ Seq(B, d) and b, c ∈ Seq(BV , d). Let X be the set of all

pairs (a′, c′) ∈ Seq(B, d)× Seq(BV , d) such that a′ ∼ a, c′ ∼ c and |a′k|+ |c′k| = |bk|

for all k = 1, . . . , d. We fix a set X/Sb of orbit representatives for the diagonal

action of Sb on X. Then

fba,c =
∑

(a′,c′)∈X/Sb

(−1)〈a〉+〈a
′〉+〈c〉+〈c′〉+〈a′,c′〉[Sb : (Sb ∩Sa′ ∩Sc′)]κ

b
a′,c′
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Proof. Clearly, we have

fba,c =
∑

(−1)〈a〉+〈a
′〉+〈c〉+〈c′〉+〈a′,c′〉κba′,c′ ,

the sum being over all (a′, c′) ∈ Seq(B, d) × Seq(BV , d) such that a′ ∼ a and

c′ ∼ c, cf. [20, (3.14)]. It remains to note that κba′,c′ = 0 unless (a′, c′) ∈ X, and

for (a′, c′), (a′′, c′′) ∈ X in the same Sb-orbit the corresponding summands are

equal to each other, cf. the proof of [10, Corollary 3.7].

We now introduce our reasonable assumptions on the calibrated R-

supermodules.

Definition 3.47. Suppose A is an R-superalgebra with an even subalgebra a ⊆

A0̄. Let V be a calibrated R-supermodule that is also an A-supermodule. If aVa ⊆

Va then we say that V is a (left) (A, a)-calibrated supermodule.

There is of course a right-sided analogue to this definition, and all of the left-

sided results of this section have right-sided analogues whose proofs are the same.

Once the left-sided results are proven, we will freely use the right-sided results as

well.

Lemma 3.48. If V is an (A, a)-calibrated supermodule, then Γ̃dV ⊆ ΓdV is a

Γ̃dA-submodule.

Proof. We briefly work over the field of quotients of R, as we do not a priori know

that we can divide these coefficients. For each a ∈ Seq(B, d) and c ∈ Seq(BV , d),

we have:

ηayc = ([a]!cξ
a)([c]!cxc) =

∑
b∈Seq(BV ,d)/Sd

[a]!c[c]
!
cf
b
a,cxb =

∑
b∈Seq(BV ,d)/Sd

[a]!c[c]
!
cf
b
a,c

[b]!c
yb.
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So in view of Lemma 3.46, it suffices to prove that for fixed a ∈ Seq(B, d), b, c ∈

Seq(BV , d) and (a′, c′) ∈ X satisfying κba′,c′ 6= 0, the integer

Mb
a,c := [a]!c[c]

!
c[Sb : (Sb ∩Sa′ ∩Sc′)]

is divisible by [b]!c, where X consists of all pairs (a′, c′) ∈ Seq(B, d) × Seq(BV , d)

such that a′ ∼ a, c′ ∼ c, and |a′k|+ |c′k| = |bk| for all k ∈ [d].

For a ∈ B and b, c ∈ BV , let

mb
a,c = #{k ∈ [1, d] | a′k = a, c′k = c, bk = b}.

Then, recalling the notation (3.37), we have

|Sb ∩Sa′ ∩Sc′| =
∏

a∈B,b,c∈BV
mb
a,c!,

[a : a] = [a′ : a] =
∑

b,c∈BV
mb
a,c; [c : c] = [c′ : c] =

∑
a∈B,b∈BV

mb
a,c; [b : b] =

∑
a∈B,c∈BV

mb
a,c.

In particular, for all b, c ∈ BV and a ∈ B, we have integers

zb :=
[b : b]!∏

a∈B,c∈BV m
b
a,c!

, Zc :=
[c : c]!∏

a∈Ba,b∈BVc m
b
a,c!

, Za :=
[a : a]!∏

b∈BVc ,c∈BV0̄
mb
a,c!

.

Denoting C =
∏

b∈BVa tBV1̄
zb, we have

[Sb : Sb ∩S′a ∩S′c] =

∏
b∈BV [b : b]!∏

a∈B,b,c∈BV m
b
a,c!

=
∏
b∈BV

zb = C
∏
b∈BVc

zb.

Let b ∈ BV
c . If a ∈ B1̄ or c ∈ BV

1̄ , then mb
a,c ≤ 1 because there are no

repeated odd elements in tuples in Seq(B, d) or Seq(BV , d). Also observe that if
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a ∈ Ba and c ∈ BV
a , then ac ∈ Va by assumption, so, since b ∈ BV

c , we have

κba,c = 0, hence mb
a,c = 0. So

zb =
[b : b]!(∏

a∈Bc,c∈BV0̄
mb
a,c!
)(∏

a∈Ba,c∈BVc m
b
a,c!
) .

Thus we have

Mb
a,c =

( ∏
a∈Bc

[a : a]!

)( ∏
c∈BVc

[c : c]!

)
· C

∏
b∈BVc

[b : b]!(∏
a∈Bc,c∈BV0̄

mb
a,c!
)(∏

a∈Ba,c∈BVc m
b
a,c!
)

= C

( ∏
a∈Bc

[a : a]!∏
b∈BVc ,c∈BV0̄

mb
a,c!

)( ∏
c∈BVc

[c : c]!∏
a∈Ba,b∈BVc m

b
a,c!

)( ∏
b∈Bc

[b : b]!

)

= C

( ∏
a∈Bc

Za

)( ∏
c∈BVc

Zc

)
[b]!c,

which completes the proof.

Let e ∈ a be an idempotent such that be = b or be = 0 for all b ∈ B. (In this

case, as in [10, §5], we say that B is right e-admissible.) Let Be = {b ∈ B | be = b},

Bae := {b ∈ Ba | be = b} and Bce := {b ∈ Bc | be = b}. We have an idempotent

ηe
d

= e⊗d ∈ Γ̃dA. In the special case where V = Ae, we always take Va := ae with

basis Bae and Vc := ce with basis Bc. In this case we can describe the Γ̃dA-module

Γ̃dV explicitly as follows:

Lemma 3.49. Let e ∈ a be an idempotent such that the basis B is right e-

admissible. Then Γ̃d(Ae) ∼= (Γ̃dA)ηe
d
.

Proof. Note that, since B is right e-admissible, Γ̃d(Ae) has basis {yb | b ∈

Seq(Be, d)/Sd} and (Γ̃dA)ηe
d

has basis {ηb | b ∈ Seq(Be, d)/Sd}. There is a
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Γ̃dA-module map ϕ : (Γ̃dA)ηe
d → Γ̃d(Ae) with ϕ(ηe

d
) = yed . It remains to notice

that ϕ(ηb) = yb for all b ∈ Seq(Be, d)/Sd.

It follows from the discussion at the start of this subsection that ⊕d≥0Γ̃dA =

⊕d≥0T
A(1, d)R. In fact, for (A, a)-calibrated supermodules V and W , (Γ̃d1V ) ⊗

(Γ̃d2W ) is a Γ̃d1+d2A-supermodule, see § 3.1.2. Recalling the isomorphism from

Lemma 3.39, we now obtain:

Lemma 3.50. If V,W are (A, a)-calibrated, then we have an isomorphism of Γ̃dA-

modules ⊕
d1+d2=d

(Γ̃d1V )⊗ (Γ̃d2W )
∼−→ Γ̃d(V ⊕W ), y ⊗ y′ 7→ y ∗ y′.

Proof. The fact this is a homomorphism of Γ̃dAR modules follows from Lemma 3.7.

Bijectivity follows from Lemma 3.39.

Suppose there is an even anti-involution τ : A → A, where we adopt the

convention τ(ab) = τ(b)τ(a) (no sign). Then τ is an isomorphism A → Aop, where

Aop is defined via a ∗ b := ba (no sign again). We make the additional assumption

that τ(a) = a, in which case τ⊗d restricts to an anti-involution τd on Γ̃dA, see [10,

(4.12)].

Given W ∈ Γ̃dA-mod, its τd-dual W τd is defined as W ∗ with the action

(xf)(w) = f(τd(x)w) for all f ∈ W ∗, w ∈ W,x ∈ Γ̃dA. Note that W ' W τd if

and only if there is a non-degenerate τd-contravariant form (·, ·) on W , where τd-

contravariance follows the convention (xv, w) = (−1)|x||v|(v, τd(x)w) for all x ∈ Γ̃dA

and v, w ∈ W .

Let V be an (A, a)-calibrated supermodule. Suppose that V has an even,

non-degenerate, τ -contravariant form (·, ·) For homogeneous a = a1 · · · ad ∈ Ad

and v = v1 · · · vd ∈ V d, we set a · v := (a1v1) · · · (advd) ∈ V d. Then (−1)〈a·v,w〉 =
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(−1)〈a,w〉+〈v,w〉. Using this, it is easy to establish that (·, ·)⊗ is a τ⊗d-contravariant

form on V ⊗d, cf. (3.40). Recalling Proposition 3.45, we deduce:

Lemma 3.51. Let (·, ·) be an even non-degenerate τ -contravariant bilinear form

on the A-module V as above, which upon restriction yields perfect pairings on Va ×

Vc and Vc × Va. Then (·, ·)∼ is a non-degenerate τd-contravariant form on the Γ̃dA-

module Γ̃dV .

From A to Mn(A)

Throughout the subsection n ∈ Z>0 is fixed.

In this subsection we will need to be careful with the ground ring and write

R or F in the indices for algebras and modules when necessary. So let again AR be

a based quasi-hereditary algebra over R with conforming heredity data I,X, Y , in

particular we have a subalgebra aR ⊆ AR,0̄ and heredity basis B = Ba t Bc t B1̄.

Taking the R-supermodule decomposition Mn(AR) = Mn(aR)⊕Mn(cR)⊕Mn(AR,1̄),

we see that this is a calibrated R-supermodule, and we recover TA(n, d)R as

Γ̃dMn(AR).

Let VR be an (AR, aR)-calibrated supermodule with R-basis BV = BV
a tBV

c t

BV
1̄ , as in Lemma 3.48. The superspace of column vectors Coln(VR) = V ⊕nR is a left

supermodule over Mn(AR) in a natural way. If VR is a right AR-module, we will

also consider the right Mn(AR)-module Rown(VR) = V ⊕nR of row vectors. We will

always take Coln(VR)a := Coln(VR,a) and Coln(VR)c := Coln(VR,c) and analogously

for Rown(VR), making Coln(VR) a (Mn(AR),Mn(aR))-calibrated supermodule,

and Rown(Vr) a right (Mn(AR),Mn(aR))-calibrated supermodule. Then by

Lemma 3.48, we have Γ̃d Coln(VR) is a left TA(n, d)R-module. Extending scalars

to F we get the left module Γ̃d Coln(VR)F over TA(n, d) = F ⊗R TA(n, d)R. Note
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that in general Γ̃d Coln(VR)F is not the same as Γ̃d Coln(VF), where VF = F ⊗R VR,

cf. Remark 3.38. Similarly, we have a right TA(n, d)R-module Γ̃d Rown(VR) and a

right TA(n, d)-module Γ̃d Rown(VR)F.

Lemma 3.52. Let e ∈ aR be an idempotent such that the basis B is right e-

admissible. Then Γ̃d(Coln(ARe)) ' T (n, d)Rη
ed

1d,1d
.

Proof. First notice that Coln(ARe) ' Mn(AR)ξe1,1 as Mn(AR)-supermodules. The

result now follows by applying Lemma 3.49.
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CHAPTER IV

TENSOR PRODUCTS OF STANDARD MODULES

This chapter contains previously unpublished co-authored material, which

appears in [1].

We again fix a based quasi-hereditary superalgebra AR over R with

conforming heredity data I,X, Y . Recalling the convention (3.8), we have

the F-superalgebra T (n, d) := TA(n, d)R ⊗R F. Under the assumption

d ≤ n, this superalgebra is based quasi-hereditary with heredity data

ΛI
+(n, d),X (n, d),Y(n, d), see § 3.3. We present all results of this section in terms

of left modules. However the analogous results for right modules (and bimodules)

are also true, and are proven in a nearly identical manner.

The main goal of this section is to prove the following.

Theorem 4.1. Let n ∈ Z>0 and c, d ∈ Z≥0 such that d + c ≤ n. Let λ ∈ ΛI
+(n, c)

and µ ∈ ΛI
+(n, d). The T (n, d + c)-module ∆(λ) ⊗ ∆(µ) has a standard filtration,

and the T (n, d+ c)-module ∇(λ)⊗∇(µ) has a costandard filtration.

In fact, we will be able to handle the case of small n as well, but we cannot

guarantee that TA(n, d) is quasi-hereditary in this case, see § 4.3.

4.1. Reduction

We begin to prove Theorem 4.1 by reducing to the case of ‘one color’ and

‘fundamental dominant weights’, cf. [9, (3.5)], [7, Proposition 3.5.4(i)], [21]. For

integer 0 ≤ c ≤ n, recalling (1.8), we define

ωc := ε1 + · · ·+ εc ∈ Λ+(n, c).
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Proposition 4.2. Suppose that for all n ∈ Z>0, d, c ∈ Z≥0 with d + c ≤ n,

λ ∈ Λ+(n, d), and i ∈ I, the tensor product ∆(ιi(λ)) ⊗ ∆(ιi(ωc)) has a standard

filtration. Then for all n ∈ Z>0, d, c ∈ Z≥0 with d + c ≤ n, λ ∈ ΛI
+(n, d),

µ ∈ ΛI
+(n, c), the tensor product ∆(λ)⊗∆(µ) has a standard filtration.

Proof. We apply induction on the total degree d + c, the base case d + c = 0 being

trivial, since T (n, 0) ∼= F. Let d + c > 0. Take λ = (λ(0), . . . , λ(`)) ∈ ΛI
+(n, d) and

µ = (µ(0), . . . , µ(`)) ∈ ΛI
+(n, c). For all i ∈ I, set di = |λ(i)| and ci := |µ(i)|. By

Theorem 3.30, we have

∆(λ)⊗∆(µ) '
⊗
i∈I

(
∆(ιi(λ

(i)))⊗∆(ιi(µ
(i)))

)
. (4.3)

Suppose there exist distinct j, k ∈ I with dj, dk > 0. Then di < d

for all i ∈ I. By the inductive assumption, for all i ∈ I, we then have that

∆(ιi(λ
(i))) ⊗ ∆(ιi(µ

(i))) has a standard filtration. It follows from Lemma 3.28

and Theorem 3.33 that in this filtration only subquotients of the form ∆(ιi(ν
(i)))

with ν(i) ∈ Λ+(n, di + ci) appear. Hence the right hand side of (4.3) has a filtration

with subquotients of the form
⊗

i∈I ∆(ιi(ν
(i))) ' ∆(ν), where the isomorphism is

given by Lemma 3.30.

Thus we may assume that there exists a unique i with di = d and dk = 0 for

all k 6= i, i.e. λ = ιi(λ) for some i ∈ I and λ ∈ Λ+(n, d). Similarly we may assume

that µ = ιj(µ) for some j ∈ I and µ ∈ Λ+(n, c). Moreover, we may assume that

j = i since otherwise ∆(λ) ⊗ ∆(µ) = ∆(ιi(λ)) ⊗ ∆(ιj(µ)) is a standard module,

again by Lemma 3.30.

We now also apply induction on the dominance order on µ. If µ is minimal

in the dominance order, then µ = ωc and we are done by assumption. Otherwise,
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we can write µ = γ + ωr for γ ∈ Λ+(n, s) with 0 < s, r < c. By the inductive

assumption on the degree, we have that ∆(ιi(γ)) ⊗ ∆(ιi(ωr)) has a standard

filtration. By Lemma 3.28 and Theorem 3.33, in this filtration ∆(ιi(µ)) appears

once and other standard subquotients are of the form ∆(ιi(ν)) with ν � µ. By [17,

Proposition A2.2(i)], there is a short exact sequence

0→ ∆(ιi(µ))→ ∆(ιi(γ))⊗∆(ιi(ωr))→ Q→ 0,

where Q has a standard filtration with subquotients of the form ∆(ιi(ν)) with

ν � µ. Tensoring with ∆(ιi(λ)) we get a short exact sequence

0→ ∆(ιi(λ))⊗∆(ιi(µ))→ ∆(ιi(λ))⊗∆(ιi(γ))⊗∆(ιi(ωr))→ ∆(ιi(λ))⊗Q→ 0.

By induction on the dominance order, ∆(ιi(λ)) ⊗ Q has a standard filtration.

By induction on the degree, using Lemma 3.28 and Theorem 3.33, we have that

∆(ιi(λ))⊗∆(ιi(γ)) has a standard filtration with subquotients of the form ∆(ιi(κ))

with κEλ + γ. Hence by inductive assumption, the middle term has a standard

filtration So by [17, Proposition A2.2(v)], ∆(ιi(λ)) ⊗ ∆(ιi(µ)) has a standard

filtration.

4.2. The Filtration

In view of Proposition 4.2, we now fix i ∈ I, λ ∈ Λ+(n, d), c ∈ Z>0 such that

d+ c ≤ n, and set

λ := ιi(λ), µ := ιi(ωc).

We have highest weight vectors vλ ∈ ∆(λ) and vµ ∈ ∆(µ).
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Recalling the action of Sn on Λ(n) from (3.16), we denote

Sλ := {σ ∈ Sn | σλ = λ}

Recall the notation 1.9. If λ = 〈la1
1 , . . . , l

ak
k 〉 for l1 > · · · > lk ≥ 0 and a1, . . . , ak > 0

with a1 + · · ·+ ak = n then Sλ = Sa1 × · · · ×Sak .

Let Ω := {P ⊆ [n] | |P | = c}. The group Sn acts on Ω via σP =

{σp1, . . . , σpc} for P = {p1, . . . , pc} ∈ Ω and σ ∈ Sn. Denote

εP := εp1 + · · ·+ εpc ∈ Λ(n, c).

Note that σ(εP ) = εσP for all σ ∈ Sn and P ∈ Ω. We denote

Ωλ := {P ∈ Ω | λ+ εP ∈ Λ+(n, d+ c)}.

Given P = {p1, . . . , pc} and Q = {q1, . . . , qc} in Ω, with 1 ≤ p1 < · · · < pc ≤ n

and 1 ≤ q1 < · · · < qc ≤ n, we write P < Q if and only if (p1, . . . , pc) < (q1, . . . , qc)

lexicographically. This yields the total order on Ω. Let Ωλ = {P1, P2, . . . , Pt} with

P1 = {1, 2, . . . , c} < P2 < · · · < Pt.

The following is easy to see:

Lemma 4.4. Let 1 ≤ r ≤ t. Then

(i) Pr is the minimal element of the orbit Sλ · Pr;

(ii) Ω =
⊔t
r=1 Sλ · Pr.
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Proof. Collecting equal parts, write λ = 〈la1
1 , . . . , l

ak
k 〉 for l1 > · · · > lk ≥ 0

and a1, . . . , ak > 0 with a1 + · · · + ak = n, so that Sλ = Sa1 × · · · × Sak and

A1 := [1, a1], A2 := [a1 + 1, a1 + a2], . . . , Ak := [n− ak + 1, n] are the orbits of Sλ on

[n]. Now P,Q ∈ Ω are in the same Sλ-orbit if and only if |P ∩ As| = |Q ∩ As| for

all s = 1, . . . , k, and it is clear that each orbit has a unique element from Ωλ which

is the lexicographically minimal element of the orbit.

Let P = {p1, . . . , pc} ∈ Ω with p1 < · · · < pc. There is a unique tableau

T P ∈ StdX(µ) with lT
P

= p1 · · · pc and xT
P

= eci . We denote the corresponding

standard basis vector

wP := vTP = η
eci
p1···pc,12···c vµ ∈ ∆(µ),

see (3.24). Note that the vectors wP do not exhaust the standard basis of ∆(µ).

Lemma 4.5. Let ν ∈ Λ(n, c). If ηιi(ν)∆(µ) 6= 0, then ν is of the form εP and wP

spans ηιi(ν)∆(µ).

Proof. By (3.24), (3.25), the weight space ηιi(ν)∆(µ) 6= 0 is spanned by the basis

elements vT such that T ∈ StdX(µ, ιi(ν)). As µ = ιi(ωc), we deduce, using the

property (c) of Definition 2.10, that T = T P for some P ∈ Ω, i.e. vT = wP .

For σ ∈ Sn denote

ιi(σ) := (1, . . . , 1, σ, 1, . . . , 1) ∈ SI
n,

with σ in the ith position. Recalling (3.17), we have an element

ξc(ιi(σ)) = (ξeiσ )⊗c ∈ TA(n, c).
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Lemma 4.6. Let P = {p1, . . . , pc} ∈ Ω with p1 < · · · < pc, and σ ∈ Sn such that

σp1 < · · · < σpc. Then ξc(ιi(σ))wP = wσP .

Proof. By definition of ξeiσ , we have in T (n, c):

(ξeiσ )⊗c η
eci
p1···pc,12···c = η

eci
σp1···σpc,12···c.

So

ξc(ιi(σ))wP = (ξeiσ )⊗c η
eci
p1···pc,12···c vµ = η

eci
σp1···σpc,12···c vµ = wσP ,

as required.

Corollary 4.7. Let P ∈ Ω. Then T (n, c)wP = ∆(µ).

Proof. Write P = {p1, . . . , pc} with p1 < . . . pc. Take σ ∈ Sn with σ(pa) = a for

a = 1, . . . , c. By Lemma 4.6, we have ξc(ιi(σ))wP = w{1,...,c} = vµ, and the result

follows since T (n, c)vµ = ∆(µ).

Lemma 4.8. We have T (n, d+ c)(vλ ⊗ wPt) = ∆(λ)⊗∆(µ).

Proof. Returning to our normal notation, write λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥

λn ≥ 0. Let h be maximal with λh > 0, so lλ = 1λ1 · · ·hλh . Since n ≥ d + c, we

have Pt = {h+ 1, . . . , h+ c}.

By (3.24), ∆(λ) is spanned by elements of the form ηx
r,lλ

vλ for (x, r, lλ) ∈

TriX(n, d). Let T ′ ∈ TriX0 (n, d) with T ′ ∼ (x, r, lλ), see (3.1). Then

[T ′]!c = 1, (4.9)

since x = xei ∈ Ba for all x ∈ X(i), see (2.11) and (3.11).
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On the other hand, for (b, t,u) ∈ TriB(n, c), we have that ηbt,uwPt = 0 unless

ηbt,uηιi(εPt ) = ηbt,u, and, in view of Corollary 4.7, ∆(µ) is spanned by all ηbt,uwPt with

u ∼ (h+ 1) · · · (h+ c).

Let (x, r, lλ) ∈ TriX(n, d) and (b, t,u) ∈ TriB(n, c) satisfy u ∼ (h +

1) · · · (h + c), and T ∈ TriB0 (n, d + c) be the initial triple with T ∼ (xb, rt, lλu).

Let (T 1, T 2) ∈ Spl(T ) with T 1 ∈ TriB0 (n, d) and T 2 ∈ TriB0 (n, c). Suppose

T 1 = (a,v, s) 6∼ (x, r, lλ). Since lλ = 1λ1 · · ·hλh and u ∼ (h + 1) · · · (h + c),

we necessarily have that sk ∈ {h + 1, . . . , h + c} for some 1 ≤ k ≤ d. Hence

ηT 1vλ = 0. Now, by Lemma 3.12 and (4.9),

ηxb
rt,lλu

(vλ ⊗ wPt) = (ηx
r,lλ

vλ)⊗ (ηbt,uwPt),

which implies the lemma.

For r = 0, 1, . . . , t, we denote

Mr := T (n, d)〈vλ ⊗ wPs | 1 ≤ s ≤ r〉 ⊆ ∆(λ)⊗∆(µ).

In view of Lemma 4.8, we have a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mt = ∆(λ)⊗∆(µ). (4.10)

Our goal is to show that Mr/Mr−1 ' ∆(ιi(λ + εPr)) for all r = 1, . . . , t, to get the

required standard filtration of ∆(λ)⊗∆(µ).

Lemma 4.11. If 1 ≤ r ≤ t and P ∈ Sλ · Pr, then vλ ⊗ wP ∈Mr.
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Proof. Write P = {p1, . . . , pc} with p1 < · · · < pc. Let σ ∈ Sλ be such that

σPr = P and σp1 < · · · < σpc. Note using Lemmas 3.26, 4.6 and 3.20 that

vλ ⊗ wP = ±(ξd(ιi(σ))vλ)⊗ (ξc(ιi(σ))wPr) = ±ξd+c(ιi(σ))(vλ ⊗ wPr) ∈Mr,

as required.

Lemma 4.12. Let 1 ≤ r ≤ t and E ∈ Y(n, d + c). If E(vλ ⊗ wPr) 6∈ Mr−1

then E = ηιi(λ+εPr ). In particular, Mr/Mr−1 is a highest weight module of weight

ιi(λ+ εPr).

Proof. Suppose E(vλ ⊗ wPr) 6∈ Mr−1. Write E = YT := ηy
T

lν ,lT
, with T ∈ StdY (ν)

for some ν ∈ ΛI
+(n, d + c). By Lemma 3.12,

∆
(ηy

T

lν ,lT
) is a linear combination of

elements of the form ηyr,s ⊗ η
y′

r′,s′ such that yy′ ∼ yT . By Lemma 3.29, ηyr,svλ 6= 0

only if y = edi , and ηy
′

r′,s′wPr 6= 0 only if y′ = eci . We conclude that yT = ed+c
i , and

so E can be written in the form E = η
ed+ci
r,s with rk ≤ sk for all k.

If rk < sk for some k, then in view of Lemma 3.12 and Lemma 4.5, E(vλ ⊗

wPr) is a multiple of vλ ⊗ wP for some P < Pr. By Lemma 4.4, P ∈ Sλ · Ps for

some s < r, hence vλ ⊗ wP ∈ Ms ⊆ Mr−1 by Lemma 4.11, giving a contradiction.

So rk = sk for all k. Then E is of the form ην , and E(vλ ⊗ wPr) 6= 0 implies

ν = ιi(λ+ εPr).

The second statement now follows from Lemma 2.16.

Theorem 4.13. We have a filtration of T (n, d+ c)-modules

0 = M0 ⊆M1 ⊆ · · · ⊆Mt = ∆(λ)⊗∆(µ)

such that Mr/Mr−1 ' ∆(ιi(λ+ εPr)) for all r = 1, . . . , t.
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Proof. We consider the filtration (4.10). By Lemma 4.12, each Mr/Mr−1 is a

highest weight module of weight ιi(λ + εPr). Moreover, recalling that λ = ιi(λ)

and µ = ιi(ωc), by Theorem 3.33, we have

ch
(
∆(λ)⊗∆(µ)

)
=

∑
ν∈Λ+(n,d+e)

c νλ,ωc ch ∆(ιi(ν)) =
t∑

r=1

ch ∆(ιi(λ+ εPr)),

where we have used Pieri’s rule for the last equality. Therefore, using linear

independence of characters, we get

dim
(
∆(λ)⊗∆(µ)

)
=

t∑
r=1

dim ∆(ιi(λ+ εPr)).

An application of Corollary 2.18 yields that each Mr/Mr−1 must be isomorphic to

∆(ιi(λ+ εPr)).

Recall (2.6) and (3.34).

Corollary 4.14. Let n ∈ Z>0, d, c ∈ Z≥0 with d + c ≤ n, λ ∈ ΛI
+(n, d), µ ∈

ΛI
+(n, c) and ν ∈ ΛI

+(n, d + c). Then the tensor product ∆(λ) ⊗ ∆(µ) has a

standard filtration, and

(∆(λ)⊗∆(µ) : ∆(ν)) = cνλ,µ.

Proof. The first statement follows from Proposition 4.2 and Theorem 4.13. The

second statement now follows from Corollary 3.35 using linear independence of

formal characters.

By a symmetric argument (switching the roles of X and Y everywhere), we

also have the right module version of Corollary 4.14, which claims that the right
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T (n, d + c)-module ∆op(λ) ⊗ ∆op(µ) has a ∆op-filtration. In view of (2.19), by

dualizing, we now get:

Corollary 4.15. Let n ∈ Z>0, d, c ∈ Z≥0 with d + c ≤ n, λ ∈ ΛI
+(n, d), µ ∈

ΛI
+(n, c) and ν ∈ ΛI

+(n, d + c). Then the tensor product ∇(λ) ⊗ ∇(µ) has a

costandard filtration.

Remark 4.16. Note that in Theorem 4.13, the factors of the standard filtration

are isomorphic to standard modules via even isomorphisms. Using this fact and

(an appropriate strengthening of) Proposition 4.2, one can similarly strengthen

Corollaries 4.14 and 4.15.

4.3. The Case of Small n

Let d ∈ Z≥0 and n ∈ Z>0. If n < d, the algebra T (n, d) does not have to

be quasi-hereditary, but it still has a natural family of ‘standard’ and ‘costandard’

modules which play an important role. For example, if A has a standard anti-

involution then T (n, d) is cellular with ‘standard’ modules being the cell modules,

see [11, Lemma 6.25]. These ‘standard’ (resp. ‘costandard’) modules are obtained

by an idempotent truncation from the standard modules ∆(λ) (resp. costandard

modules ∇(λ)) over T (N, d) for any N ≥ d. This section explores this case.

Throughout the subsection we assume that N ≥ n. In view of Lemma 3.22,

we now always identify the algebras T (n, d) and ηNn (d)T (N, d)ηNn (d). For

any T (N, d)-module V , we consider ηNn (d)V as a module over T (n, d) =

ηNn (d)T (N, d)ηNn (d).

We always consider ΛI
+(n, d) as a subset of ΛI

+(N, d) by adding N − n

zeroes to every component λ(i) of λ = (λ(0), . . . , λ(`)) ∈ ΛI
+(n, d). Note that this

embedding is a bijection if n ≥ d. However, when we consider λ ∈ ΛI
+(n, d) as an
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element of ΛI
+(N, d) the set StdX(λ) of standard X-colored λ-tableaux changes, so

in this subsection we will use the more detailed notation StdXn (λ) to indicate that

the entries of the tableaux are of the form rx with r ∈ [n]. We will also use the

more detailed notation ∆n(λ) for the standard T (n, d)-module ∆(λ) which so far

has only been defined for all λ ∈ ΛI
+(n, d) when n ≥ d. Recall from (3.24) that for

n ≥ d we have that ∆n(λ) has basis {vT := XT vλ | T ∈ StdXn (λ)}.

Let N ≥ d. Fix λ ∈ ΛI
+(N, d). Recall the idempotent ηNn (d) of (3.21). It is

easy to see that for T ∈ StdXN(λ), we have

ηNn (d)vT =

 vT if T ∈ StdXn (λ),

0 otherwise.
(4.17)

If n ≥ d it follows from (4.17) that dim ∆n(λ) = dim ηNn (d)∆N(λ). Since the

T (n, d)-module ηNn (d)∆N(λ) is easily seen to be a highest weight module of weight

λ, Proposition 2.17 now yields an isomorphism of T (n, d)-modules

∆n(λ) ' ηNn (d)∆N(λ). (4.18)

Now for n < d ≤ N and λ ∈ ΛI
+(N, d), we define the ‘standard’ module

∆n(λ) := ηNn (d)∆N(λ).

By (4.18), this definition does not depend on the choice of N ≥ d. However, note

that some of the ∆n(λ)’s might be zero. Define

PX
+ (n, d) := {λ ∈ ΛI

+(N, d) | StdXn (λ) 6= ∅}.
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Note that PX
+ (n, d) does not depend on the choice of N ≥ d. Moreover,

ΛI
+(n, d) ⊆PX

+ (n, d) ⊆ ΛI
+(N, d),

with containments being equalities when n ≥ d. By (4.17), we have:

Lemma 4.19. Let N ≥ d > n and λ ∈ ΛI
+(N, d). Then ∆n(λ) 6= 0 if and only if

λ ∈PX
+ (n, d).

The story for the costandard modules ∇n(λ) := ηNn (d)∇N(λ) is entirely

similar, the non-zero ones being labeled by PY
+ (n, d) := {λ ∈ ΛI

+(N, d) |

StdYn (λ) 6= ∅}.

Theorem 4.20. Let λ ∈ PX
+ (n, d) and µ ∈ PX

+ (n, c). Then the T (n, d + c)-

module ∆n(λ) ⊗ ∆n(µ) has a filtration with factors of the form ∆n(ν) with ν ∈

PX
+ (n, d + c). Similarly for λ ∈ PY

+ (n, d) and µ ∈ PY
+ (n, c), the T (n, d + c)-

module ∇n(λ) ⊗ ∇n(µ) has a filtration with factors of the form ∇n(ν) with ν ∈

PY
+ (n, d+ c).

Proof. We prove the result for the ∆’s, the proof for ∇’s being similar. Choose

N ≥ d + c. By Corollary 4.14, ∆N(λ) ⊗∆N(µ) has a filtration with factors of the

form ∆N(ν) with ν ∈ ΛI
+(N, d+ c). Applying the exact functor

T (N, d+ c)-mod→ T (n, d+ c)-mod, V 7→ ηNn (d)V

to this filtration and using Lemma 3.23, we get the required result.
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CHAPTER V

EXAMPLES OF RINGEL DUALITY

In this chapter, we will prove that the extended zigzag Schur algebra is

Ringel self-dual. This chapter contains previously unpublished co-authored

material that appears in [2].

5.1. The Extended Zigzag Algebra

In this subsection we work over k. Fix ` ≥ 1 and set I := {0, 1, . . . , `},

J := I\{`}. Let Γ be the quiver with vertex set I and arrows {aj,j+1, aj+1,j | j ∈ J}

as in the figure below:

FIGURE 1. Extended Zigzag Quiver

0 1 2 · · · ` − 1 `

a1,0 a2,1 a3,2 a`−2,`−1 a`,`−1

a0,1 a1,2 a2,3 a`−2,`−1 a`−1,`

The extended zigzag algebra Z is the path algebra kΓ modulo the following

relations:

1. All paths of length three or greater are zero.

2. All paths of length two that are not cycles are zero.

3. All length-two cycles based at the same vertex are equivalent.

4. a`,`−1a`−1,` = 0.
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Length zero paths yield the standard idempotents {ei | i ∈ I} with eiai,jej = ai,j for

all admissible i, j. The algebra Z is graded by the path length:

Z = Z0 ⊕ Z1 ⊕ Z2.

We consider Z as a superalgebra with

Z0̄ = Z0 ⊕ Z2 and Z1̄ = Z1.

Define cj := aj,j+1aj+1,j for all j ∈ J . The algebra Z has an anti-involution τ with

τ(ei) = ei, τ(aij) = aji, τ(cj) = cj.

We consider the total order on I given by 0 < 1 < · · · < `. For i ∈ I, we set

X(i) :=

 {ei, ai−1,i} if i > 0,

{e0} if i = 0,
Y(i) :=

 {ei, ai,i−1} if i > 0,

{e0} if i = 0.
(5.1)

With respect to this data we have:

Lemma 5.2. [5, Lemma 4.14] The graded superalgebra Z is a basic based quasi-

hereditary with conforming heredity data I,X,Y and standard anti-involution τ .

For the corresponding heredity basis B we have B1̄ = {aj,j+1, aj+1,j | j ∈ J}, Ba =

{ei | i ∈ I}, Bc = {cj | j ∈ J}.

For i ∈ I, let L(i) = k · vi with |vi| = 0̄ and the action eivi = vi, bvi = 0 for

all b ∈ B \ {ei}. This makes L(i) a Z-supermodule, and, up to isomorphism, {L(i) |

i ∈ I} is a complete set of irreducible Z-supermodules (recall that we allow for

odd isomorphisms). The standard modules ∆(i) have similarly explicit description:

∆(0) = L(0), and for i > 0, ∆(i) has basis {vi,wi−1} with |vi| = 0̄, |wi−1| = 1̄
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and the only non-zero actions of elements of B are: eivi = vi, ei−1wi−1 = wi−1,

ai−1,ivi = wi−1. Dually, ∇(0) = L(0), and for i > 0, ∇(i) has basis {v∗i ,w∗i−1} with

|v∗i | = 0̄, |w∗i−1| = 1̄ and the only non-zero actions of elements of B are: eiv
∗
i = v∗i ,

ei−1w
∗
i−1 = w∗i−1, ai,i−1w

∗
i−1 = v∗i .

Moreover recalling Proposition 2.8, we may describe the partial tilting

modules as well. We have T(0) = L(0) = ∆(0) = ∇(0) and we claim that

T(i) = ΠZei−1 for i > 0. We will prove the following

Lemma 5.3. For i > 0, there is an even isomorphism of Z supermodules Zei−1 '

ΠT(i).

Proof. Observe that Ze0 has basis {e0, a1,0, c0}; and, for i > 1, Zei−1 has basis

{ei−1, ai−2,i−1, ai,i−1ci−1}. With these bases it is easy to see that for all i ≥ 1, Zei−1

has a standard filtration with Π∆(i) ⊆ ΠT(i) and ΠT(i)/Π∆(i) ' ∆(i − 1); and

a costandard filtration with ∇(i − 1) ⊆ ΠT(i) and ΠT(i)/∇(i − 1) ' Π∇(i). For

example, Π∆(i) = spank{ai,i−1, ci−1} for i > 1, and this easily checked to be a

submodule. The other subquotients are all found similarly.

So, Zei−1 is a tilting module, and since it is indecomposable, it is a partial

tilting module. Since the largest j such that (Zei−1 : ∆(j)) > 0 is j = i, it

follows that Zei−1 is isomorphic to T(i). However, T(i) has ∆(i) as a submodule,

not Π∆(i). Hence Zei−1 ' ΠT(i).

It will actually be more convenient for us to work with the tilting modules

ΠT(i). Thus ΠT(0) = ΠL(0) is 1-dimensional with basis {v0} where |v0| = 1̄, and

for i > 0, we fix the basis for ΠT(i) from the proof of Lemma 5.3.
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We have a full tilting module

T :=
⊕
i∈I

ΠT(i) (5.4)

and the Ringel dual algebra Z′ := EndZ(T)op. For any i ∈ I, let ιi : ΠT(i) → T

and πi : T → ΠT(i) be the natural embedding and projection. Observe that for

all i, ιi and πi are even homomorphisms. We have the right multiplication maps

ρci : Zei → Zei, ρaij : Zei → Zej, which are odd homomorphisms. Let f : ΠT(0) =

ΠL(0) ↪→ΠT(1) = Ze0 be the embedding given by v0 7→ c0, and let g : ΠT(1) =

Ze0�ΠT(0) = ΠL(0) be the surjection such that e0 7→ v0. Observe that both f

and g are odd homomorphisms. Define the following elements of Z′:

• e′i := π`−i for all i ∈ I;

• c′i := ι`−i ◦ ρc`−i−1
◦ π`−i for all i ∈ J ;

• a′i+1,i := ι`−i ◦ ρa`−i−2,`−i−1
◦ π`−i−1 and a′i,i+1 := ι`−i−1 ◦ ρa`−i−1,`−i−2

◦ π`−i, for

all i = 0, . . . , `− 2;

• a′`,`−1 := ι1 ◦ f ◦ π0 and a′`−1,` := ι0 ◦ g ◦ π1.

Notice that for all admissible i, the e′i and c′i are even homomorphisms, and the

ai±1,i are odd.

Observe that Z′ has basis given by

{e′i | i ∈ I} t {a′i,i+1, a
′
i+1,i, c

′
i | i ∈ J}

The following is now easy to check:
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Lemma 5.5. Mapping ei 7→ e′i, ai,j 7→ a′i,j, ci 7→ c′i is an isomorphism of

superalgebras Z
∼−→ Z′. In other words, Z is Ringel self-dual.

We now aim to describe the structure of T as a right Z′-module, which will

be fundamental in proving the Ringel self-duality of the extended zigzag Schur

algebra, see § 5.3.

We use the isomorphism Z
∼−→ Z′ of Lemma 5.5 to transport the heredity

data I,X,Y from Z onto a heredity data I ′,X′,Y′ for Z′ so that I ′ = I with the

same order, and

X′(i) :=

 {e
′
i, a
′
i−1,i} if i > 0,

{e′0} if i = 0,
Y′(i) :=

 {e
′
i, a
′
i,i−1} if i > 0,

{e′0} if i = 0.

(We point out that this heredity structure on the Ringel dual is different from the

one coming from [17, A4] where the partial order on I is opposite to the original

one.) With this hereditary data, we have the right modules L′(i),∆′(i),∇′(i) and

T′(i). For example, T′(0) ' L′(0) (with e′j acting as δij id) and T′(i) ' Πe′i−1Z
′ for

i > 0. Then it is easy to check that, as a right Z′-module, T decomposes as follows:

TZ′ =
⊕
i∈I

ΠT′(i),

where the summands are defined explicitly as follows:

• ΠT′(0) = k · a`,`−1 ⊆ Ze`−1 = ΠT(`) ⊆ T;

• ΠT′(`) = spank(v0, e0, c0, a0,1) ⊆ ΠT(0)⊕ ΠT(1)⊕ ΠT(2) ⊆ T (dropping a0,1 if

` = 1);

72



• for for i /∈ 0, `, we set ΠT′(i) = spank(e`−i, a`−i,`−i−1, a`−i,`−i+1, c`−i) ⊆

ΠT(`− i+ 1)⊕ ΠT(`− i)⊕ ΠT(`− i+ 2) ⊆ T (dropping a`−i,`−i+1 if i = 1).

Obviously T is an (Z,Z′) bimodule. Recall the subalgebra a = span(Ba) =

spank(ei | i ∈ I) ⊆ Z0̄ and the analogous subalgebra a′ = spank(e
′
i | i ∈ I) ⊆ Z′0̄.

We have k-module decomposition T0̄ = Ta ⊕ Tc where Ta = spank(ej | j ∈ J) and

Tc = spank(cj | j ∈ J), making T into a calibrated k-supermodule. Then it is clear

from the explicit construction above that

a · (Ta) · a′ ⊆ Ta. (5.6)

And so, Ta is both a left (Z, a)-calibrated supermodule and a right (Z′, a′)-

calibrated supermodule. For any i ∈ I, we make ΠT(i) into an (Z, a)-calibrated

supermodule by setting

ΠT(i)a := ΠT(i) ∩ Ta and ΠT(i)c := ΠT(i) ∩ Tc.

Similarly, we make ΠT′(i) into an (Z′, a′)-calibrated supermodule by setting

ΠT′(i)a := ΠT′(i) ∩ Ta and ΠT′(i)c := ΠT′(i) ∩ Tc.

5.2. The Extended Zigzag Schur Algebra

Throughout the rest of the chapter, fix d ∈ Z≥0 and n ∈ Z>0 with d ≤ n.

In this section we will need to work over R and F at different times, so we will

be specific about the base ring, using subscripts. First we work integrally, so we

begin with the algebra ZR over R and its tilting module TR constructed in § 5.1.
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Applying the construction of § 3.1.1 to the algebra ZR (and extending scalars to F)

we get the extended zigzag Schur Algebra T Z(n, d) := F⊗R T Z(n, d)R.

As per § 3.3, T Z(n, d) is based quasi-hereditary. We will now construct a full

tilting module for T Z(n, d) using the tools of § 3.4.

Recall that TR is also a right module over the Ringel dual Z′R, and recall

the constructions of § 3.4.4. In particular, we have the left Mn(ZR)-module

structure on Coln(TR) and a right Mn(Z′R)-module structure on Rown(TR). As in

§ 3.4.4, we make these into calibrated R-supermodules by setting. Coln(TR)a :=

Coln(TR,a) and Rown(TR)a := Rown(TR,a). In fact, by (5.6), we have that

Mn(a) Coln(TR)a ⊆ Coln(TR)a and Rown(TR)aMn(a) ⊆ Rown(TR)a. Thus

Coln(TR) is a left (Mn(ZR),Mn(aR))-calibrated supermodule, and Rown(TR) is a

right (Mn(Z′R),Mn(a′R))-calibrated supermodule.

So by Lemma 3.48 (and its right module analogue), the modified divided

power Γ̃d Coln(TR) is a left module over T Z(n, d)R and the modified divided

power Γ̃d Rown(TR) is a right module over T Z′(n, d)R. Similarly, for every i ∈ I,

we have left T Z(n, d)R-modules Γ̃d Coln(ΠT(i)R) and right T Z′(n, d)R-modules

Rown(ΠT′(i)R). Extending scalars, we have a left module

T d
i := F⊗R Γ̃d Coln(ΠT(i)R)

over T Z(n, d). These modules will be vital in constructing a left full tilting module

for T Z(n, d). However, all subsequent left-sided results about column modules have

right-sided analogues for row modules, which are proven in an identical way. We

will not prove these results, but we will mention them when they are needed.

Recall that for d ≤ n, the algebra T Z(n, d) is quasi-hereditary with respect

to the poset ΛI
+(n, d) with partial order ≤I , so it has its own standard modules
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{∆(λ) | λ ∈ ΛI
+(n, d)}, costandard modules {∇(λ) | λ ∈ ΛI

+(n, d)}

and indecomposable tilting modules {T(λ) | λ ∈ ΛI
+(n, d)}. Moreover, by

[11, Proposition 6.20], the anti-involution τ on Z extends to the anti-involution

τn,d : T Z(n, d) → T Z(n, d), ηbr,s 7→ η
τ(b)
s,r where for b = b1 · · · bd ∈ Bd we denote

τ(b) := τ(b1) · · · τ(bd). We then have for all λ:

∆(λ)τn,d ' ∇(λ) (5.7)

Since τn,d(ηµ) = ηµ for all µ ∈ ΛI(n, d), we deduce:

Lemma 5.8. For all λ ∈ ΛI
+(n, d), we have ch ∆(λ) = ch∇(λ).

Proposition 5.9. The left T Z(n, d)-module T d
i is tilting and has highest weight

ιi(1
d) (with respect to ≤I).

Proof. Suppose first that i = 0. Since ι0(1d) is minimal in Λ+
I (n, d) it follows that

T(ι0(1d)) ' ∆(ι0(1d)) ' L(ι0(1d)). Using the assumption d ≤ n, we note that T d
0

is a highest weight module of weight ι0(1d) (see Definition 2.15), and thus using

Proposition 2.17 we deduce that

T d
0
∼= T(ι0((1d))) ' ∆(ι0((1d))). (5.10)

We point out the parity of isomorphism T d
0

∼−→ T(ι0((1d))) depends on the parity

of d. Indeed, the highest weight vector in T d
0 is v⊗d0 , whose parity is the same as

the parity of d.

Let now i > 0. Since ΠT(i)R = ZRei−1, we have Coln(ΠT(i)R) ' Mn(ZR)ξ
ei−1

1,1 ,

and so by Lemma 3.52, we have

T d
i ' T Z(n, d)η

edi−1

1d,1d
= T Z(n, d)ηιi−1(d). (5.11)
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In particular, T d
i is projective, and thus has a standard filtration. To prove that

T d
i also has a costandard filtration, it suffices to show that it is τn,d-self-dual, or

equivalently possesses a non-degenerate τn,d-contravariant bilinear form.

To construct this form we work over R, and apply the tools of § 3.4.2.

Recall that for i > 1, we have ΠT(i)R = ZRei−1 has basis BΠT(i) :=

{ei−1, ci−1, ai−2,i−1, ai,i−1}. Consider the bilinear form (·, ·) on ΠT(i)R such that

(ei−1, ci−1) = −(ci−1, ei−1) = (ai−2,i−1, ai−2,i−1) = (ai,i−1, ai,i−1) = 1

and all the other pairings of basis elements are 0.

Note that that this form is non-degenerate and τ -contravariant (and

superskewsymmetric). Extending this form in the obvious way to Coln(ΠT(i)R)

results in a non-degenerate τn,1-contravariant form again denoted (·, ·).

Notice that setting B
ΠT(i)
a = {ei−1}, BΠT(i)

c = {ci−1}, and B
ΠT(i)

1̄
=

{ai−2,i−1, ai,i−1}, the basis BΠT(i) = B
ΠT(i)
a t BΠT(i)

c t BΠT(i)

1̄
satisfies the hypotheses

of Lemma 3.51 with respect to the form (·, ·).

Denote by vbr ∈ Coln(ΠT(i)R) the column vector with b ∈ ΠT(i)R in the rth

position and 0s elsewhere. Then the set {vbr | r ∈ [n], b ∈ BΠT(i)} is a basis for

Coln(ΠT(i)R). It is clear that this also satisfies the hypotheses of Lemma 3.51 with

respect to the extended form (·, ·).

So applying Lemma 3.51, we see that (·, ·)∼ is a superskewsymmetric, non-

degenerate, τn,d-contravariant form on Γ̃d Coln(ΠT(i)R). Extending the scalars

to F, we deduce that, T d
i is τn,d-self-dual. In particular, this proves that T d

i is a

tilting module.

To see that the highest weight of T d
i is as claimed, observe that the highest

weight vector ai,i−1 ∈ ΠT(i)R is odd, and so the vector v
ai,i−1

1 ∗ · · · ∗ vai,i−1

d ∈
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Γ̃d Coln(ΠT(i)R) of weight ιi(1
d) has the highest left weight possible among the

weight vectors of Γ̃d Coln(ΠT(i)R). This completes the i > 1 case.

The case i = 1 is similar to the case i > 1 but ΠT(1)R = ZRe0 has basis

BΠT(1) := {e0, c0, a1,0}, and we use the form such that

(e0, c0) = −(c0, e0) = (a1,0, a1,0) = 1

are the only non-trivial pairings of basis elements. From here, the proof is identical

to the above case.

Now consider Mn(TR) as an (Mn(ZR),Mn(Z′R))-bimodule in the obvious way.

Taking Mn(TR)a := Mn(TR,a) and Mn(TR)c := Mn(TR,c) we make Mn(TR) into

both a left (MnZR,Mn(aR))-calibrated supermodule and a right (MnZ
′
R,Mn(a′R))-

calibrated supermodule. Since the left action of Mn(ZR) and the right action of

Mn(Z′R) commute, in view of Lemma 3.48 (and its right module analogue), the

modified divided power Γ̃dMn(TR) is a (T Z(n, d)R, T
Z′(n, d)R)-bimodule. We now

extend the scalars from R to F to get the (T Z(n, d), T Z′(n, d))-bimodule

T := F⊗R Γ̃dMn(TR).

The rest of this section is dedicated to proving that T is a left full tilting module

for T Z(n, d). However, we recall that all of the left-sided results have right-sided

analogues, so our proofs will also serve to show that T is a right full tilting

module for T Z′(n, d).

For each composition µ ∈ Λ(n, d) define T µ
i := T µ1

i ⊗· · ·⊗T µn
i . Furthermore,

for each multicomposition µ = (µ(0), . . . , µ(`)) ∈ ΛI(n, d) define T µ := T µ(0)

0 ⊗· · ·⊗

T µ(`)

` .
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Recall that TR '
⊕

i∈I ΠT(i)R. So, as left modules over T Z(n, 1)R = Mn(ZR),

we have

Mn(TR) ' Coln(TR)⊕n '
⊕
i∈I

Coln(ΠT(i)R)⊕n.

Now, using Lemma 3.50 and the decomposition 5.4, and extending scalars, we have

as left T Z(n, d)-modules:

T '
⊕

µ∈ΛI(n,d)

T µ. (5.12)

For λ = (λ(0), . . . , λ(`)) ∈ ΛI
+(n, d), we define the conjugate multipartition

λ′ := ((λ(0))′, . . . , (λ(`))′) ∈ ΛI
+(n, d). (5.13)

Proposition 5.14. As a left T Z(n, d)-module, T is a full tilting module.

Proof. Note that each T µ is tilting by Proposition 5.9 and Theorem 4.1. So

T is tilting by (5.12). To show that T is full tilting, it suffices for each λ ∈

Λ+
I (n, d) to find a summand T µ in (5.12) which has highest weight λ. Fix

λ = (λ(0), . . . , λ(`)) ∈ Λ+
I (n, d) and take µ = λ′. By Proposition 5.9 again, the

highest weight of T s
i is ιi(1

s) for each s ∈ Z>0. So

∑̀
i=0

n∑
r=1

ιi(1
µ

(i)
r ) =

∑̀
i=0

ιi(λ
(i)) = λ

is the highest weight of T µ.

Corollary 5.15. As a left T Z(n, d)-module and as a right T Z′(n, d)-module, T is

faithful.

Proof. As a left T Z(n, d)-module, T is faithful since it is full tilting by

Proposition 5.14 (a full tilting module is faithful for example by [22, Lemma 6]).
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The second statement follows similarly from the right module analogue of that

proposition.

We point out the right-sided formulation in Corollary 5.15 because we will

need it in the next section.

5.3. Extended Zigzag Schur Algebra is Ringel Self-Dual

In view of Corollary 5.15, we have an embedding of T Z′(n, d) into

EndT Z(n,d)(T )op. To prove that this embedding is an isomorphism, we now count

the dimension of EndT Z(n,d)(T ).

Recalling (3.13), for λ ∈ ΛI
+(n, d) and µ ∈ ΛI(n, d), let

kλ,µ := | StdX(λ,µ)|.

By (3.24), (3.25) and Lemma 5.8, we have

kλ,µ = dim ηµ∆(λ) = dim ηµ∇(λ). (5.16)

Let i ∈ I. If i 6= 0, we define

βi(d, s) := ιi−1((s)) + ιi((1
d−s)) ∈ ΛI

+(n, d)

for all 0 ≤ s ≤ d We also define

β0(d, 0) := ι0((1d)).
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We define by Ξd,i to be the set of all βi(d, s)’s, i.e.

Ξd,i :=

 {βi(d, s) | 0 ≤ s ≤ d} if i 6= 0,

{β0(d, 0)} if i = 0.

Lemma 5.17. Let β ∈ ΛI
+(n, d) and i ∈ I. Then

(T d
i : ∆(β)) =


1 if β ∈ Ξd,i,

0 otherwise.

Proof. By (5.10), we have T d
0
∼= ∆(ι0((1d))), so we may assume that i 6= 0. Then

by (5.11), we have T d
i ' T (n, d)ηιi−1((d)). Now, using (2.6) and (5.16), we get

(T d
i : ∆(β)) = dim HomT (n,d)(T

d
i ,∇(β))

= dim HomT (n,d)(T (n, d)ηιi−1((d)),∇(β))

= dim ηιi−1((d))∇(β)

= kβ,ιi−1((d)).

It remains to observe that kβ,ιi−1((d)) = 1 if β = βi(d, s) for some 0 ≤ s ≤ d and

kβ,ιi−1((d)) = 0 otherwise.

Let 0 ≤ r ≤ d. Recalling (3.34), our next goal is to compute the Littlewood-

Richardson coefficient cλα,β for all λ ∈ ΛI
+(n, d), α ∈ ΛI

+(n, d− r) and β ∈ Ξr,i. Let

i ∈ I and β = βi(r, s) ∈ Ξr,i, in particular, 0 ≤ s ≤ r, and s = 0 if i = 0. We define

Ωλβ to be the set of all α = (α(0), . . . , α(`)) ∈ ΛI
+(n, d − r) such that α(j) = λ(j) for

all j /∈ {i− 1, i}, [α(i−1)] is obtained from [λ(i−1)] by removing s nodes from distinct
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columns, and [α(i)] is obtained from [λ(i)] by removing r − s nodes from distinct

rows (if i = 0, then the condition on [α(i−1)] should be dropped).

Lemma 5.18. Let 0 ≤ r ≤ d, i ∈ I, λ ∈ ΛI
+(n, d), α ∈ ΛI

+(n, d− r) and β = Ξr,i.

Then

cλα,β =


1 if α ∈ Ωλβ

0 otherwise.

Proof. Recall these Littlewood-Richardsoon coefficients from (3.34). The result is

an immediate consequence of the Littlewood-Richardson rule.

For each µ ∈ ΛI(n, d), define ←−µ = (←−µ (0), . . . ,←−µ (`)) ∈ ΛI(n, d) by setting

←−µ (i) := µ(`−i) for all i ∈ I. Recall the conjugate multipartition from (5.13).

Proposition 5.19. Let λ ∈ ΛI
+(n, d) and µ ∈ ΛI(n, d). Then (T µ : ∆(λ)) =

k←−
λ ′,←−µ .

Proof. We proceed by induction on the number of non-zero parts of µ. To start

the induction, we suppose that µ has only one row, in which case T µ ∼= T d
i for

some i, and the result follows from Lemma 5.17. So we may assume that µ has at

least two rows (possibly in different colors).

Now let i be maximal such that µ(i) 6= ∅ and pick the largest t such that

µ
(i)
t 6= 0. Denote r := µ

(i)
t . Let ν(i) be µ(i) with last non-zero row removed, i.e.:

ν(i) := (µ
(i)
1 , . . . , µ

(i)
t−1, 0, . . . , 0) ∈ Λ(n, |µ(i)| − r),

and ν(j) := µ(j) for all j 6= i. Set ν := (ν(0), . . . , ν(`)) ∈ ΛI(n, d − r). Then by

definition, T µ ∼= T ν ⊗T r
i .
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By (5.1), we have X(0) = {e0} and X(i) = {ei, ai−1,i} for i 6= 0. Recalling

§ 3.2.1, for i 6= 0, we put the total order on AX(i) given by: 1ei < · · · < nei <

1ai−1,i < · · · < nai−1,i . And we endow AX(0) with the order 1e0 < · · · < ne0 .

By Corollary 4.14, the inductive hypothesis, Lemma 5.17, and Lemma 5.18

we have

(T µ : ∆(λ)) = (T ν ⊗T r
i : ∆(λ))

=
∑

α∈ΛI+(n,d−r)

∑
β∈ΛI+(n,r)

cλα,β(T ν : ∆(α))(T r
i : ∆(β))

=
∑

α∈ΛI+(n,d−r)

∑
β∈Ξr,i

cλα,βk←−α ′,←−ν

=
∑
β∈Ξr,i

∑
α∈Ωλβ

k←−α ′,←−ν

=
∑
β∈Ξr,i

∑
α∈Ωλβ

| StdX(←−α ′,←−ν )|.

Since k←−
λ ′,←−µ = | StdX(

←−
λ ′,←−µ )| it remains to prove that there is a bijection

⊔
β∈Ξr,i

⊔
α∈Ωλβ

StdX(←−α ′,←−ν )
∼−→ StdX(

←−
λ ′,←−µ ).

Suppose i = 0. Recall that Ξr,0 = {ι0(1r)}. Observe that Ωλι0(1r) is the set

of all α ∈ ΛI
+(n, d) such that α = ι0(α), for α ∈ Λ+(n, d) with [α] obtained from

[λ(0)] by removing r nodes from distinct rows. This condition is met if and only if

the (`)-component of [←−α ′] is obtained from the (`)-component of [
←−
λ ′] by removing

r nodes from distinct columns. So the bijection

⊔
β∈Ξr,i

⊔
α∈Ωλβ

StdX(←−α ′,←−ν ) =
⊔

α∈Ωλ
ι0(1r)

∼−→ StdX(
←−
λ ′,←−µ ).
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follows from the classical argument. We don’t repeat it here, since it is an easier

version of the argument that follows for the i > 0 case. So we move on to the next

case.

Now suppose i > 0. Let β ∈ Ξr,i, α ∈ Ωλβ and T ∈ StdX(←−α ′,←−ν ).

By definition, β is of the form βi(r, s). Moreover, the Young diagram [α] is

obtained by removing s nodes from distinct columns of the (i − 1)-component

[λ], and removing r − s nodes from distinct rows of the (i)-component [λ(i)] of

[λ]. Therefore [←−α ′] is obtained by removing s nodes N1, . . . , Ns from distinct

rows of the (` − i + 1)-component of [
←−
λ ′] and r − s nodes M1, . . . ,Mr−s from

distinct columns of the (` − i)-component of [
←−
λ ′]. Now extend T to the tableau

T̂ ∈ StdX(
←−
λ ′,←−µ ) by setting

T̂ (N1) = · · · = T̂ (Ns) = ta`−i,`−i+1 and T̂ (M1) = · · · = T̂ (Mr−s) = te`−i .

The tableaux T̂ is indeed standard since, by maximality of i and t, we have

T (N) < ta`−i,`−i+1 for all N in the (` − i + 1)-component of [←−α ′] and T (N) < te`−i

for all N in the (` − i)-component of [←−α ′]. The map T 7→ T̂ is clearly injective.

To see that it is surjective, it suffices to show that for any S ∈ StdX(
←−
λ ′,←−µ ) there

exists β ∈ Ξr,i and α ∈ Ωλβ with

[
←−
λ ′] \ {N | S(N) ∈ {te`−i , ta`−i,`−i+1}} = [←−α ′].
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Indeed, there are exactly ←−µ (`−i)
t = µ

(i)
t = r nodes N in the Young diagram

[
←−
λ ′] such that S(N) ∈ {te`−i , ta`−i,`−i+1}. So for some 0 ≤ s ≤ r, we can write

{N ∈ [
←−
λ ′] | S(N) = ta`−i,`−i+1} = {N1, . . . , Ns},

{N ∈ [
←−
λ ′] | S(N) = te`−i} = {M1, . . . ,Mr−s}.

By maximality of i and t, we have that the nodes N1, . . . , Ns are at the ends of

distinct rows of the (` − i + 1)-component of [
←−
λ ′] and the nodes M1, . . . ,Mr−s are

at the ends of distinct columns of the (`− i)-component of [
←−
λ ′]. It remains to note

that removing these nodes produces a shape [←−α ′] with α ∈ Ωλβi(r,s).

Theorem 5.20. Let d ≤ n. We have EndT Z(n,d)(T )op ∼= T Z(n, d). In particular,

T Z(n, d) is Ringel self-dual.

Proof. By Corollary 5.15, T Z(n, d) embeds into EndT Z(n,d)(T )op. So it suffices to

show that dimT Z(n, d) = dim EndT Z(n,d)(T ).
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In view of (5.7), we have that each T µ is τn,d-self-dual and (T µ : ∆(λ)) =

(T µ : ∇(λ)) for all λ ∈ ΛI
+(n, d). We now have:

dim EndT Z(n,d)(T ) =
∑

µ,ν∈ΛI(n,d)

dim HomT (n,d)(T
µ,T ν)

=
∑

λ∈ΛI+(n,d)

∑
µ,ν∈ΛI(n,d)

(T µ : ∆(λ))(T ν : ∇(λ))

=
∑

λ∈ΛI+(n,d)

∑
µ,ν∈ΛI(n,d)

(T µ : ∆(λ))(T ν : ∆(λ))

=
∑

λ∈ΛI+(n,d)

∑
µ,ν∈ΛI(n,d)

k←−
λ ′,←−µk←−λ ′,←−ν

=
∑

λ∈ΛI+(n,d)

∑
µ,ν∈ΛI(n,d)

kλ,µkλ,ν

= dimT Z(n, d),

where we have used (5.12) for the first equality, (2.6) for the second equality,

Proposition 5.19 for the fourth equality and [11, Theorem 5.17] for the last

equality.
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