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DISSERTATION ABSTRACT
Ilan Weinschelbaum
Doctor of Philosophy
Department of Mathematics
June 2022

Title: Modules with Good Filtrations over Generalized Schur Algebras

In this dissertation we examine generalized Schur algebras, as defined by
Kleshchev and Muth. Given a quasi-hereditary superalgebra A, Kleshchev and
Muth proved that for n > d, the generalized Schur algebra T4 (n, d) is again quasi-
hereditary. They described the bisuperalgebra struture on 74(n) := @, 74 (n, d).
In particular, there is a coproduct which gives us a way to take a T(n, d)-module
V and T (n,r)-module W and produce a T4(n,d + r)-module V @ W. We will
prove that if V' and W each have standard (resp. costandard) filtrations, then
so does V' ® W. In the last chapter we will use this result to prove that in the
case that A is the extended zigzag algebra Z, the extended zigzag Schur algebra
T?%(n,d) is Ringel self-dual for all n > d.

This dissertation contains previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1. Introduction

This dissertation contains previously unpublished co-authored material. The
main results of this dissertation are the main results of [I], 2]. Those papers are
joint work with Alexander Kleshchev, who served as the author’s advisor. The
material from these papers appears in chapters III, IV, and V of this dissertation.
Chapter III contains material from both [I] and [2]. Chapter IV consists of
material from [I]. Lastly, chapter V consists of material from [2].

Let n € Zso and d € Z>q. Let S(n,d) be the classical Schur Algebra as in
[3]. It is well-known (see [4]) that S(n,d) is quasi-hereditary. In fact, it is based
quasi-hereditary in the sense of [5]. So, S(n,d)-mod is a Highest Weight Category
in the sense of [6]. Furthermore, there is a coproduct on S(n) = @45, S(n,d),

which restricts to a map

S(n,r) — GB S(n,r) @ S(n,rs)

r1+ro=r

and thus if V' € S(n,d)-mod and W € S(n,r)-mod then V ® W is an S(n,d + r)-
module via the coproduct.

It follows from the work of Donkin [7], Mathieu [§], and Wang [9] that if V'
and W both have standard filtrations (in the sense of [0]), then V' ® W does as
well.

Let R be a principal ideal domain of characteristic 0 and let F be a field
which is an R-module. In [10] and [I1], Kleschev and Muth generalized a
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construction of Turner [12] 13|, T4], in which they take a based quasi-hereditary
F-superalgebra A with an R-form Ag and conforming heredity data I, X,Y (see
§ for details), and define the generalized Schur Algerbas

T4(n)p = @ T (n,d)r @x F.

d>0

Crucially, we must first define these algebras over R, and then extend scalars
to F - so it is vital that A has the R-form Ag. In chapter 4, we generalize the
aforementioned standard filtration result to these algebras.

Another classic result of Donkin (see [I5]) is that the classical Schur algebra

is a Ringel dual for itself (see §[2.3.3)). This leads us to conjecture:

Conjecture 1.1. Let n € Z-y and d € N with n > d. Let A be a based quasi-
hereditary algebra and d < n. If A’ is a Ringel dual of A, then a Ringel dual of

TA(n,d) is of the form T4 (n,d) for some canonical choice of a’.

We check this conjecture in the case A = Z, the extended zigzag algebra. We
do so by first proving that Z is Ringel self-dual, and then proving that T%(n, d)r is
Ringel self-dual.

The dissertation is organized as follows. The rest of chapter I is dedicated
to preliminaries. In chapter II, we recap the definitions and results of Kleshchev
and Muth about based quasi-hereditary algebras. In chapter III, we define the
generalized Schur algebras, and describe several important results. In chapter IV,
we prove that the tensor product of modules with standard filtrations again has
a standard filtration (and analogously for modules with costandard filtrations).

Lastly, in chapter V, we prove that T%(n, d)g is Ringel self-dual.



1.2. General Notation

For m,n € Z, we denote [m,n] :={k € Z | m <k <n}. If n € Z-, we also
denote [n] :={1,2,...,n}.

Throughout the paper, I denotes a finite partially ordered set. We often
identify I with the set {0,1,...,¢} for £ = |I| — 1, so that the standard total order
on integers refines the partial order on I.

For a set S, we often write elements of S as words 8 = s;---s4 with
S1,...,5¢ € S. The symmetric group &, acts on the right on S¢ by place

permutations:

(81"'8(1)0-:80-1"'80—[1.

An (arbitrary) ground field is denoted by F. Often we will also need to work
over a characteristic 0 principal ideal domain R such that [F is a R-module, so
that we can change scalars from R to F (in all examples of interest to us, one can
use R = Z). When the nature of the ground ring is not important, we will use
k to denote either R or F. On the other hand, when it is important to emphasize
whether we are working over R or F, we will use lower indices; for example for an
R-algebra Ai and an Az-module Vg, after extending scalars we have that Vp :=
F ®gr Vg is a module over Ap := F ®r Ar. We always assume R is purely even as

an R-supermodule.

1.3. Superlinear Algebra

Let V' = €D.czo Ve be a k-supermodule. If v € V. \ {0} for e € Z/2, we
say v is homogeneous, write |v| = ¢, and refer to € as the parity of v. In particular,

when |v] = 0 we say v is even and when |v| = 1 we say that v is odd. If S C



V', we denote S5 := SN Vjand S := S N Vi If S consists of homogeneous
elements then S = S5 LI S1. Let V and W be superspaces. For § € Z/2, a parity ¢
(homogeneous) linear map f : V' — W is a linear map satisfying f(V.) C W, for
all £. Superlinear maps follow the same even/odd conventions as vectors: if |f| = 0
we say f is even and if |f| = 1 we say f is odd.

Let d € Z~y. The group &4 acts on V®¢ on the right with automorphisms,

such that for all homogeneous vy,...,v54 € V and 0 € &,4, we have
(01 ® - ®vg)” = (=1)" 51 @ -+ @ Vga, (1.2)
where, setting v := v, ---vg € V¢, we have put:
(o:v) = 8{(k, 1) € [d)? | k<, 0 'k > o', and vy, v, € Vi}. (1.3)

For 0 < ¢ < d, let (“®=9 9 be the set of shortest coset representatives for

(6, X G4_)\&y. Given wy € V¥ and wy, € VE@=9) we define the star product

Wy * Wo := Z (wy @ wy)? € yed, (1.4)

celed=c) g

Let V and W be superspaces, d € Zsg, and v = vy ---vy € V¢and w =

wy - --wyg € W9 be d-tuples of homogeneous elements. We denote
(v,w) = 4{(k,1) € [d* | k> I, v € Vi, wi € Wi} (1.5)

Let now A be a unital k-superalgebra. As usual, the tensor product

A®? s a superalgebra with respect to the following product: for homogeneous



ai,...,aq,b1,...,b € A, we set @ :=ay---ag, b := by ---by and define the product

of (homogeneous) pure tensors via:
(a1 Q- ad)(bl X... bd) = (—1)<“’b>albl R R Gdbd,

and extend linearly.

For any superspace V', we consider the subspace of invariants
v .= (V®d)6d ={w e V¥ |w” =w for all ¢ € G} (1.6)

If A is a superalgebra, then I'?A inherits the structure of a superalgebra from

the tensor product A®¢ of superalgebras. If V is an A-supermodule then V®? is

a supermodule over A®¢ with the following action: for homogeneous a4, ...,a; € A
and v1,...,u9 € V,weset a := a;---aq, v := v1---vg and define the action of

(homogeneous) pure tensors via:
(1@ ®@ag)(v1 @ ...v9) = (=1 a0, @ - - - ® agug,
Furthermore, observe that for all o € &,, we have that
(av)” =a’v” and ((1® - ®a)(11®...17)" = (1@ ®ay) (V1 ®...v)".

So 'V is a supermodule over I'A.

Let A be a unital k-superalgebra and V, W be A-supermodules. A
homogeneous A-supermodule homomorphism f : V — W is a homogeneous linear
map f : V — W satisfying f(av) = (—1)l9laf(v) for all (homogeneous) a,v. Let

Homy (V, W)5 be the k-module of even A-supermodule homomorphisms V' — W,
5



and let Hom, (V, W)1 be the k-module of odd A-supermodule homomorphisms
from V to W. Then the k-supermodule of all A-supermodule homomorphisms

V' — W has the following superstructure:

Hom 4 (V, W) = Hom 4 (V, W)5 @& Hom 4 (V, W)5.

We denote by A-mod the category of all finitely generated (left) A-
supermodules and all A-supermodule homomorphisms. We denote by ‘=" an
isomorphism in this category and by ‘~’ an even isomorphism in this category.

We have the parity change functor Il on A-mod: for V€ A-mod we have
IIV € A-mod with (IIV). = V_,1 for all ¢ € Z/2 and the new action a - v =
(=1)lelqy for a € A,v € V. We have V = IV via the (odd) identity map.

For any A-supermodule V', and simple A-supermodule L, we denote by [V :
L] the multiplicity of L or TIL as a composition factor of V', without distinguishing
between the two. For example [L & IIL : L] = 2. Note that if A = Ajg is a purely
even superalgebra, it is just an algebra in the traditional sense - so this notation
will also be used in the non-super setting.

All subspaces, ideals, submodules, etc. are assumed to be homogeneous. For
example, given homogeneous elements v, ..., v, of an A-supermodule V', we have

the A-submodule A(vy,...,vx) €V generated by vy, ..., vg.

1.4. Combinatorics

In this section we establish several combinatorial definitions and facts that

we will use later in the text. See especially § and §



Partitions and compositions

We denote by A, the set of all partitions. For A € A, we have the conjugate

partition X', see [16], p.2]. The Young diagram of \ is

A :=={(r,s) € Zso X Zso | s < A} (1.7)

We refer to (r,s) € [A] as the nodes of A.

For A\, u,v € A, we denote by cﬁ"y the corresponding Littlewood-Richardson
coefficient, see [16], §1.9].

Let n € Zso. We denote A(n) = 7%, and interpret it as the set of
compositions A = (A1,...,\,) with n non-negative parts. For A, u € A(n), we
define

)‘+/*L: <)‘1+,u177)\n+/fbn)

For 1 <r < n, we denote

gr:=1(0,...,0,1,0,...,0) € A(n) (1.8)

with 1 in position r. For A = (Ay,..., \,) € A(n), set |A] ;== A\ 4+ -+ A,

Denote

Ar(n):={A=A1,...; ) €An) | A\ = > A\ )

Sometimes we collect equal parts of A € A, (n) to write it as

A= (L1 (1.9)



forly > -+ > 1, > 0anday,...,a, > Owithay + --- + ar = n. For
example, if A = (3,3,2,2,1,0,0,0) in the traditional notation, we would write
A = (3%2,2211.0%) when equal parts are collected. We interpret A, (n) as a subset

of Ay in the obvious way. For d € Z>, let
A(n,d)={Ne€ An) ||\ =d} and Ai(n,d)={Xe€ A (n)]| |\ =d}.

Let S be a finite set. We will consider the set of S-multicompositions and

S-multipartitions

A(n) = An)¥ ={A=(A\D)es | A®) € A(n) for all s € S},

Af(n) = Ar(n)® = {A=(\D)yes | AP € Ap(n) for all s € S}.

For A, € A(n) we define A + p to be v € A%(n) with ) = X&) + 4 for all

s € S. For A € A%(n), we define its Young diagram to be [A] := | |..¢[\*)]. For

SES

each s € S, we refer to A®) as the (s)-component of A, and refer to [A\*)] as the

(s)-component of [A]. We also set
I = (A )ses € 2,
For d € Z>, we set

A%(n,d) = {X € A%(n) | 2,eslA| = d},

AS(n,d) = (A € AS(n) | 5N = ).



In the special case S = I = {0,...0,¢}, we also write A = (A(© ... \®)

instead of A = (A®);c; € Al(n). Fori € I, and A € A(n,d), define

ti(A) :=(0,...,0,1,0,...,0) € Al(n,d), (1.10)

with A\ in the ¢th position.

Let < be a partial order on S. We have a partial order <g on the set Zio
with (as)ses s (bs)ses if and only if ths a; < ths b, for all s € S. Let < be
the usual dominance partial order on A(n,d), i.e. A < pif and only if Y7 A, <
S e forall s = 1,...,n. We have a partial order <5 on A®(n,d) defined as
follows: A <g p if and only if either ||| <ig ||/, or [|A]] = |||l and A& < () for

all s € S.

Symmetric functions

Let Sym be the ring of symmetric functions over Z in infinitely many
variables z1, z9,..., and let {sy € Sym | A € A, } be the basis of Schur functions,
see [16].

In [16], Macdonald proves that Sym is a Hopf algebra with coproduct

A: Sym — Sym ® Sym, sy —> Z clj\yy 8, ® sy,

HVEAL

where ¢ are the Littlewood-Richardson coefficients, see [16, §1.5].

123
Forn € Zsg, let Sym(n) = Z[z,...,2,|%" be the ring of symmetric
polynomials in zy, ..., z,. There is a canonical homomorphism p,, : Sym — Sym(n)

which sets 2z, = 0 for all r > n, see [16, p.18]. For A € Ay (n), let sx(21,...,2,) =

pu(sx) € Sym(n).



For a finite set S, we introduce S-fold tensor products Sym® := Sym®® and

Sym®(n) := Sym(n)®%. We have the canonical homomorphism
pS = p2% : Sym® — Sym?(n). (1.11)

Sym(n), and therefore Sym®(n) are Zsq-graded by the degree of the polynomials.
For d € 7=y, we denote by Sym®(n, d) the degree d component of Sym®(n).

Given v = (11¥),c5 € AY, we have an element

S, = ® S, € Syms.

tes

If v € A%(n), we set

su(21,. .., 2) i= p3(s,) € Sym®(n).

If m = |S|, iterating the coproduct (and using coassociativity and

cocommutativity) we get the algebra homomorphism
A™ ! Sym — Sym®, (1.12)

with A? interpreted as the identity map, see again [16] for details. For A € A, and

v € (A,)%, we define the iterated Littlewood-Richardson coefficient ¢;, from

A (sy) = chs,. (1.13)

v

s
vEAY
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CHAPTER II

QUASIHEREDITARY ALGEBRAS

In [6], Cline, Parshall and Scott defined the notions of Quasihereditary
Algebras and Highest Weight Categories. These ideas are related by a simple idea:
if A is a quasi-hereditary algebra, then A-mod is a Highest Weight Category. In
this chapter, we present a (brief) treatment of Highest Weight Categories, closely
mirroring the presentation given by Donkin in the appendix of [I7]. We will vary
the ground ring in this chapter. We mostly care about the context when k = F,

a field. But to properly construct the Generalized Schur Algebras in the next
chapter, we will need to work with k = R, a commutative principal ideal domain of

characteristic 0. So both will be used at different times in this section.

2.1. Highest Weight Categories

The main reference in this section is [I7]. We present results in slightly more
generality, but the proof is essentially the same as in [I7] in every case. Let A be
a k-(super)algebra which is free of finite rank as a k-module. Let I be a finite,
partially ordered set such that {L(i) | i« € I} is a complete set of irreducible
A-modules (up to isomorphism). We assume that for any simple A-module L,
End4(L) = k. Observe that if k = I, these assumptions are all satisfied if A is a
finite-dimensional k-algebra. For a free k-module V', we will freely use the notation
dim V' to refer to either the rank of V' (if k = R), or the dimension of V' (if k = )
- the distinction will not come up in this section. We note that we will use the
traditional form of dimension, and not a superized version - i.e. k and Ilk are both

1-dimensional, as opposed to (1,0)- or (0,1)-dimensional. Denote by < the partial

11



order on /. For each i € I let P(i) be fixed minimal projective cover of L(i), and

J (i) be a fixed minimal injective envelope of L(7).

Definitions and Classical Results

For each 2 C I, and each A-supermodule V', there is a unique maximal
submodule, U C V such that if [U : L(j)] > 0, then j € Q. Denote this submodule
by Oq(V). Similarly, there is a unique minimal submodule U C V such that: if
[V/U : L(j)] > 0, then j € €. Denote this submodule by O%(V). Following
the proof of [I7, A1], we see that that Oq, O define functors from A-mod to the
category of k-supermodules, with Oq being left-exact, and O being right-exact.

Foreachi € I,let Q(i) = {j € I | j < i}. Fixi € I. Let M(i) be the
unique maximal submodule of P(i), and let K (i) := O%®(M(i)). We define the ith
Standard Module by

A7) == P(i)/K(7) (2.1)

Explicitly, A(7) is the largest quotient of P(7) such that all of its composition
factors are of the form L(j) or IIL(j) for j <i and [A(7) : L(i)] = 1.

The Costandard modules are defined similarly, with the roles of submodules
and quotients swapped. More specifically, we define the ¢th Costandard Module,

V(), via the formula

V(i) /L(i) = Oqa)(J (i) /L(i)) (2.2)

and using the Correspondence Theorem. Explicitly, V(i) is the largest submodule
of J(i) such that all of its composition factors are of the form L(j) or IIL(j) for
j<iand [V(i): L()] =1.

12



Even without further assumptions, the modules {A(:)} and {V(i)} have

several amenable properties. The following are all proved in [I7, Appendix A1l].
Proposition 2.3. (i) Foralli € I, Enda(A(i)) = Enda(V(i)) = k.
(ii) Fori,j e I, dimHomu(A(7), V(j)) = d;j.

(iii) The Grothendieck group of A-mod has Z-bases:

{L@Iiely, {[A@]iel}, and {[V@)]]iel}

Where we observe that in the Grothendieck group of A-mod, we equate
[L(7)] and [IIL(4)] for all 4, as L(¢) and IIL(7) are isomorphic in A-mod (via an
odd isomorphism).

Furthermore, by Proposition for each A-supermodule V' and each i € I,

we can define integers (V : A(7)) and (V : V(7)) from the equations

VI=) (V:A@)AG] and  [V]=) (V: V@)V

iel iel

Let V € A-mod. A standard filtration of V' is an A-supermodule filtration
0=Wy, C Wy C--- C W, = V such that for every r = 1,...,l, we have
W, /W,_1 =2 A(i,) for some i, € I. We refer to A(iy),...,A(i;) as the factors of the
filtration, and to A(i1) (resp. A(4;)) as the bottom (resp. top) factor.

Let V € A-mod. A costandard filtration of V' is an A-supermodule filtration
0=W, C W, C--- C W, = V such that for every r = 1,...,l, we have
W,./W,_1 = V(i,) for some i, € I. We again refer to V(iy,..., V(i) as factors of

the filtration, with V(i) (resp. V(4;)) called the bottom (resp. top) factor.

13



Definition 2.4. [I7, Definition A2.1] We say that A-mod is a Highest Weight

Category (with respect to the ordering <) if the following holds for all i € I:
(i) J(i)/V (i) has a costandard filtration;
(ii) If (J(i)/V(i) : V(j)) # 0 for any j € I, then i < j.

Later on, in §[2.2] we will explain why A(i) and V(i) are necessarily free k-
modules when A is based quasi-hereditary. In particular, modules with standard
or costandard filtrations will also be free as k-modules, so we may discuss their

rank/dimension. We can now record the following important result.
Proposition 2.5. [I7, Proposition A2.2] Let VW € A-mod and i,j € J.

(i) If V has a standard filtration and W has a costandard filtration, then

- SdV AW VG if § =0
dim Ext’, (V, W) =

0 otherwise

(ii) V has a standard (resp. costandard) filtration if and only if Exty(V,V (i) =

0 (resp. Ext'(A(>:),V) =0) for alli € I.

(iii) (P(i) - AG)) = [V(5), L] and (J(0) : V(7)) = [A(), L))

Observe that if V' has a standard filtration and W has a costandard
filtration, then for each ¢ € I, (V : A(d)), and (W : V(i)) do not depend on

the choice of filtration, by Proposition . In fact, by Propositon [2.5((1), we have

(V1 A(i)) = dim Homy (V, V(4)), and (W :V(i)) = dim Hom4(A(i), W). (2.6)

14



Tilting Modules and Ringel Duality

Again let A be a quasi-hereditary algebra over k.

Definition 2.7. Let T' € A-mod. We say T is tilting if T has both a standard and

a costandard filtration.

As proven in [17, A4], there is a very pleasing classification for tilting

modules in A-mod.

Proposition 2.8. [I7, Theorem A4.2] For each i € I, there is a unique (up to
isomorphism) indecomposable tilting module T (i), such that [T(z) : L(i)] = 1

and [T(i) : L(j)] > 0 implies j < i. We call T(i) the partial tilting module of
highest weight i. Furthermore, every tilting module is a direct sum of partial tilting

modules.

We remind the reader that we allow odd isomorphisms in A-mod. So, we

have that T(z) = 1T (), but T(i) 2 I T(%).

Definition 2.9. Let T be a tilting module such that every T(i) appears at least
once as a summand. Then we say that T is a full tilting module. Furthermore, we

call A’ :=End,(T) a Ringel Dual of A.

It is important to note that A’ is not uniquely defined up to isomorphism.
However, it is well known that A’ is defined up to (super) Morita equivalence.

As an easy example: if A =k =T, then we may take any k®" as a full tilting
module for any n, each of which results in a different endomorphism algebra, and

thus a different Ringel dual A’.
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2.2. Based Quasihereditary Algebras

In this section, k may be F or R, and both versions will be used in the text.

The main reference here in this section is [5]. Let A be a k-superalgebra.

Heredity Data

Definition 2.10. [5, Definition 2.4] Let I be a finite partially ordered set (with
order <) and let X = | |,., X (i) and Y = | |,.; Y'(¢) be finite sets of homogeneous
elements of A with distinguished elements e; € X (i) N Y (i) for each ¢ € I. For each
i €1, weset A" :=span{ay | j > i,z € X(j), y € Y(j)}. We say that I, X,Y is

heredity data if the following axioms hold:
(a) B:={xy|iel,x € X(i),y€Y(i)}is a basis of A;

(b) Forallie I,z € X(i), y € Y(i) and a € A, we have

ar = Z I%,(a)r’ (mod A”") and ya = Z r(a)y’  (mod A7)
2’ e X (i) 240
for some 1% (a),r,(a) € k;

Y

(c) Foralli,j eI and z € X(i), y € Y (i) we have

xre; =&, e = 5z,eix’ Y=y, ye;, = 5y,eiy

ejv =z or 0, ye; =y or 0.

If A is endowed with heredity data I, X,Y, we call A based quasi-hereditary,

and refer to B as a heredity basis of A. Furthermore, it follows by (c) that €? = ¢;
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for all i € I. So we refer to the idempotents e; as the standard idempotents of the

heredity data.

From now on, A is a based quasi-hereditary superalgebra with heredity data

I,X,Y. Set

By :={zy|iel,x € X(i)g,y € Y(i)s}, Be:={xy|iecl,ze X(i),y € Y (i)}

Then,

By, = B, U B,, (2.11)

and we may also write B = B Ll Bj.
The heredity data I, X,Y of A is called conforming if B, spans a unital

subalgebra of A.

Lemma 2.12. [5 Lemmas 2.7, 2.8] Leti,j € I and x € X (i), y € Y (4).
(i) eje; =0, e;
(i) If j £ 1, then e;x = ye; = 0.

Corollary 2.13. We have X NY = {e; | i € I}.

Proof. Let z € X NY. As z € X we have z € X (i) so ze; = z for some i € I. As
z €Y, we have z € Y(j) so ejz = z for some j € I. By Lemma m(ii), j =1, and
the result follows from Definition [2.10(c). O

It is shown in [5] that if k is noetherian, and the algebra A is known to be
finitely generated and projective as a k-module, then the existence of heredity
data for A implies that A is quasi-hereditary in the sense of [I8]. Observe that if

k = F, then it is automatically noetherian, and A is automatically projective as
17



an F-supermodule. So in this case, the existence of heredity data implies that A is
finitely generated (in fact, finite-dimensional) as an F-supermodule. Thus, if k =,
then the existence of heredity data for A implies that A is quasi-hereditary in the
sense of [6].

We can then take this further. Combining with [I7, Proposition A3.7(ii)], we

have

Proposition 2.14. Letk = F, and A be a finite dimensional F-algebra. If A
has heredity data (I,X,Y"), with I partially ordered by <, then A-mod is a highest

weight category with respect to the ordering <.

Standard and Costandard Modules

Definition 2.15. Let 0 # V € A-mod and i € I. We call V' a highest weight
module (of weight i) if there exists a homogeneous v € V such that e;V is spanned
by v, Av = V, and j > i implies e;V = 0. In this case we refer to v as a highest

weight vector of V.

Lemma 2.16. Leti € I,0 # V € A-mod and v € V be a homogeneous vector.
Suppose that e;v = v, Av =V, and yv =0 for ally € Y \ {e;}. Then V is a highest

weight module of weight 1.

Proof. Since A is based quasi-hereditary, it follows from the assumption yv = 0 for
ally € Y \ {e;} that V is spanned by {zv | v € X(i)}. Forany j € I,if e;VV # 0
then there is some © € X (i) such that e;z # 0. By Definition [2.10|(c), this implies
that e;o = 2. But then Lemma [2.12{ii) implies that j < i. So, in particular, if

J > 1, then e;V = 0, completing the proof. ]

18



Fix ¢ € I. Observe that A>" is the ideal in A generated by {e; | j > i} and
denote A := A/A> G :=a+ A" € A for a € A. By inflation, A-supermodules will

be automatically considered as A-supermodules. In particular, the standard module

is considered as an A-module. The modules {A(z) | i € I} are the (left)
standard modules of A-mod in the sense of § 2.1.1 So we may use these to speak
of standard filtrations for A-supermodules, as in § again.

We have that A(7) is a free k-module with basis {v, := Z | z € X (i)} and the

action avy = e v ly/(a)vw, cf. [5, §2.3]. Denoting

v 1= v, € A(1),

we have e;v; = v;, and e;A(7) # 0 implies j < 4 thanks to Lemma Moreover,
for all for all € X (i) we have zv; = v, and e;v, = d,,,v,. In particular, A(7) is a
highest weight module of weight 7 in the sense of Definition [2.15] (with even highest
weight vector). If V' € A-mod is isomorphic to A(i), then using the fact that e;V is
free of rank 1 as a k-module, it is easy to see that either V' ~ A(7) or V' ~ IIA(3).

We also have the right standard A-module

AP (i) = &A,

and by symmetry every result we have about A(7) has its right analogue for

A°P(3), for example A°(7) is a free k-module with basis {w, = 7 | y € Y(9)}.
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These are the modules we use to define right standard filtrations similarly to the
standard filtrations defined above.

Suppose now until the end of the subsection that k = . Then each
L(i) := head A(4) is irreducible, and {L(i) | i € I} is a complete set of non-
isomorphic irreducible A-supermodules. We also have that L°P(i) := head A°P(7)
is an irreducible right module, and {L°P(i) | i € I} is a complete set of non-
isomorphic irreducible right A-supermodules. These align with the modules we
expect from § 2.1.1]

By [5, Lemma 3.3], A is quasi-hereditary in the sense of Cline, Parshall and
Scott, and A-mod is a highest weight category with standard modules {A(7) |
i € I}, see [6, Theorem 3.6]. In particular, the projective cover P(i) of L(i) has
a standard filtration with the top factor A(i) and all other factors of the form
A(j) or ITA(j) for j > i. Moreover, A(7) is the largest quotient of P(i) such that

[A(7) : L(i)] = 1 and [A(7) : L(j)] # 0 implies j < 1.

Proposition 2.17. (Universality of standard modules) Letk = F, i € I, and
V' be a highest weight module of weight v with highest weight vector v. Then there
is an homogeneous surjection A(i)—V of parity |v|; in particular e;V # 0 implies
j<i
Proof. Let e;V be spanned by v € V. There is a homogeneous surjective A-
supermodule homomorphism ¢ : Ae;—V, ae; — av of parity || = |v|. As e;L(i) is
1-dimensional and e;L(j) # 0 implies ¢ < j, we have that Ae; = P(i) & P, where P
is a direct sum of supermodules isomorphic to P(j) with j > 1.

Note that Hom4(A(7),V) = 0 for any j > i, so Homa(P(j),V) = 0 for all
j > i, and we deduce Hom (P, V) = 0. Since each P(j) has a standard filtration

with factors isomorphic to A(r) for » > j > 4, the map ¢ factors through P(i) to
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give a surjection P(i)—V. Moreover, P(i) has a standard filtration with top factor
A(i) and other factors isomorphic to A(j) with j > i, so the map further factors

through the surjection A(:7)—V. O
The following is a useful criterion for V' to have a standard filtration.

Corollary 2.18. Letk =F, V € A-mod, vy ...,v; € V be homogeneous elements,

and set Vi := Avy,...,vs) for s = 1,...,t. Suppose that the following conditions
hold:

(2) for each s = 1,...,t there exists iy € I such that e; vs — vs € Vi1 and

yvs € Vi_q for ally € Y \ {e;, };
(3) dimV =YL, dim A(4y).

Then Vi /Ve_1 ~ TI%IA(iy) for all s = 1,...,t. In particular, V has a standard

filtration.

Proof. Observe that assumption (2) implies that each V/V;_; is a highest weight
module of weight is. Then, by Lemma and Proposition [2.17], each V,/V, 4 is a

quotient of TI**/A(4,). The result now follows by dimensions. O

The highest weight category A-mod comes with costandard modules {V(i) |
i € I}. Let J(i) be the injective hull of L(i) in A-mod for ¢ € I. As explained
in § 2.1.1] one can define V(i) as the largest submodule of J(¢) such that [V (i) :
L(7)] = 1and [V(z) : L(j)] > 0 implies j < i (c.f. [I7, Appendix Al]). Using the
heredity data of A, we may construct the module V(i), using the right standard

modules above and dualizing.
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Indeed: given a right A-supermodule V', there is a (left) A-supermodule
structure on V* with af(v) = (—1)llfI+lelvlf(pa) fora € A, f € V¥ € V.
For example, note that L°P(z)* is irreducible, e;L°P(i)* # 0, and e;L°P(i)* # 0
implies j < i; therefore L°P(i)* ~ L(i). Denoting by P°P(i) the projective cover of

L°P(7), we deduce that P°P(i)* ~ J(i). This in turn implies easily:
V(i) = A%(i)*. (2.19)

2.3. Example: The Classical Schur Algebra

One of the most important examples of a quasi-hereditary algebra is the

(classical) Schur Algebra. The main references for this are [3] and [4].

Definitions

Let n,d € Zso with n > 0. Then we may consider the algebra M, (k) as

a (purely even) superalgebra over k. Recalling the action of the symmetric group

(1.2), and the space of invariants (|1.6)), the classical Schur Algebra is defined as
S(n,d) :=T*M, (k)

This algebra was first introduced by Issai Schur in his thesis [I9]. Our approach is
inspired by the results of [4], but will mimic the approach in Chapter 3, originally
laid out by Kleshchev and Muth in [I0],

For ;s € [n], we let & s be the matrix unit with 1 in the (r, s) position
and 0’s elsewhere. Recall and the action of G4 on [n]¢ from § For r =

TlyeeoyTdy 8 = S1,...,84 € [n]% let &, 5 be the stabilizer of (r,s) for the diagonal
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d

action of &4 on [n]? x [n]?. Let ,s2 be the set of shortest coset representatives for

Sy s\S4. We define the element

gr,s = Z(€T1,81 @ 67‘2,52 K- frd,sd)a

S

Fix a set, Z, of orbit representatives for the action of &4 on [n]?¢ x [n]¢]. It is
a result of Schur (see [3]) that {&.s | (r,s) € Z} is a basis for S(n,d). However,

this is not a heredity basis in the sense of Definition [2.10}

Heredity Data

Recall (1.4). For each composition A = (Ay,...,\,) € A(n,d) let I* =
(1,...,1,2,...,2,...) € [n]? where there are \; 1’s, Ay 2s, etc. We have the weight

idempotent & defined by
i=Epp = fﬁi\l * 558,2A2 Kook 5;?12" € S(n,d)

It is shown in [3] that the irreducible S(n,d) modules are indexed by
Ay (n,d) - the set of partitions of d with at most n parts. So, certainly A, (n,d)
will be the partially ordered set in our heredity data for S(n,d), with partial
order given by the dominance order <. As expected, the weight idempotents
{& | A € Ay(n,d)} will be the standard idempotents of the heredity data.

The heredity basis will be the basis of bideterminants defined by Green in
[4]. For A € Ai(n,d) recall the Young Diagram [A] from (L.7). A A-tableauz is

a function T : [A\] — [n]. For a A-tableau T, for each i € [n], define [T : i] =
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#{(r,s) € [\] | T(r,s) =i}. The content of T is the composition
oT) = ([T :1),[T:2],...,[T:n]) € A(n) (2.20)

A A-tableau T is called standard if the following holds for all (r,s), (v',s") € [\]:
(a) if s =" and r < 7’ then T'(r,s) < T(r',s');

(b) if r =" and s, s’ then T'(r,s) <T(1',s).

~

We fix an arbitrary bijection f : [\] — [d]. For each r € [n]? we can
interpret r as a function [d] — [n] by i = r; for i € [d]. Then for each r € [n]? we
define T'(r) := f o r (where 7 is considered as a function [d] — [n] as above). For
A € Ay (n,d) we say that r € [n]? is A\-standard if T'(r) is standard.

Define the set
B :={(\r,s)| A€ Ai(n,d), and r, s are both A\-standard}

And for A € Ay (n,d) and 7, s € [n]?, define the bideterminant Y, by

A
K‘,s - g’r,l>‘7§l>‘73'

We have the following theorem of Green:
Theorem 2.21. [4, (16)] the set {Y;), | (\,7,8) € B} is a basis for S(n,d).

For A € Ay(n,d), let X(A\) = {{,,» | 7is A-standard} and Y (\) = {p . |
r is A-standard}. Furthermore, set X = Lyca, (na)X(A) and Y = Ujyea, ()Y (A).
Then it can be checked directly that (A (n,d), X,Y) is heredity data for S(n,d).

In fact, checking this is a special case of [I1, Theorem 6.6] where A = k.
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The standard and costandard modules for S(n,d) are described extensively
in both [3] and [4]. We omit this here, as we will discuss the standards and
costandard modules for Generalized Schur Algebras at length in chapter 3; with

the classical Schur algebra being a special case.

Motivating Results

Fix n € Zq and define S(n) := @ ., 5(n,d). There is a coproduct on
S(n) which it inherits from @ -, M, (k)®?. Namely, on M, (k)®? this coproduct is

defined on pure tensors by

M, (k)" — é M, (k)®* @ M, (k) M, (k)®*)

=0
§R& Y (L@ @E) B (L1 @ ® &)
0<c<d
We will discuss this coproduct more in Chapter III, generalizing it to the

Generalized Schur Algebras defined therein. In that chapter, we will discuss the
coproduct in significantly more detail. Most importantly, if we take an S(n, d)-
module V' and an S(n,r)-module W, we may consider V'@ W as an S(n,d + r)-
module via the coproduct described above.

In [9], Wang proves:

Theorem 2.22. [fV is an S(n,d)-module with a standard (resp. costandard)
filtration, and W is an S(n,r)-module with a standard (resp. costandard) filtration,

then V@ W has a standard (resp. costandard) filtration.

The main theorem of chapter IV is a generalization of Wang’s result, relating

to Generalized Schur Algebras.
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In chapter V, we will take inspiration from Donkin. Namely, in [I5] proves

Theorem 2.23. There is a tilting module, T for S(n,d) such that End(T") =
S(n,d).

This result inspires our main conjecture of chapter V. Namely, as stated in

the introduction, we conjecture:

Conjecture 2.24. Let n € Z-g and d € N with n > d. Let A be a based quasi-
hereditary algebra and d < n. If A’ is a Ringel dual of A, then a Ringel dual of

T4 (n,d) is of the form T4 (n,d) for some canonical choice of a'.

We will prove this conjecture in the case A = Z, the extended zigzag algebra.
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CHAPTER III

GENERALIZED SCHUR ALGEBRAS

In this chapter, we define the generalized Schur algebras, and describe some
of their properties. In the last section, we re-examine the construction from a more
linear algebraic perspective, defining new tools that will be used in Chapter V.
This chapter contains previously unpublished co-authored material that appears in

I, 2.

3.1. Definition and Properties

Throughout the section, we fix n € Z~y. We also fix a based quasi-hereditary

superalgebra Ar over R with conforming heredity data I, X,Y".

Definition

Let S be a set and d € Z>(. Recall that the symmetric group &, acts on
S by place permutations. For s,t € S% we write s ~ tif so = t for some
o€ 6, IfS, ..., S, are sets, then G4 acts on S x --- x S¢ diagonally. For
(81,..,8m), (t1,. .., ty) € S x - x S% we write (81,...,8m) ~ (t1,...,tn) if
(81,..,8m)0 = (t1,...,t,) for some o0 € Gy If U C S¢x---x 5% is a Gy-invariant
subset, we denote by U/S, a complete set of the &4-orbit representatives in U and
we identify U/&, with the set of all &4-orbits on U.

Let H = Hg LI Hy be a set of non-zero homogeneous elements of Ar. Define

Tri" (n, d) to be the set of all triples

d

(a,r,8) = (a1---aq, 1174, 51+ 54) € H* x [n]? x [n]?
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such that for all 1 < k # [ < d we have (ag, 7k, sx) = (a;, 71, 8;) only if a;, € Hjp.
Then Tri"(n,d) € H? x [n]¢ x [n]? is a Gy-invariant subset, so we can choose
a set Tri (n, d) /&4 of G4-orbit representatives and identify it with the set of all
G4-orbits on Tri” (n, d) as in the previous paragraph.

Sometimes we use a preferred choice of representatives for Tri” (n, d)/ &,
defined as follows. Fix a total order < on H x [n] x [n]. We have a lexicographic
order on Tri (n,d): (a,r,s) < (a’,7',s') if and only if there exists [ € [d] such

that (ag,rx, sx) = (a1, sy) for all k <1 and (a1, s) < (aj,7],s)). Denote
Trit (n,d) = {(a,r,s) € Tri” (n,d) | (a,r,s) < (a,r,s)o for all 0 € G4}. (3.1)
For (a,r,s) € Tri” (n,d) and o € G4, we define
(a,r,s) :=t{(k,1) € [d? | k<, ap,a; € Hy, (ax, 75, 5%) > (ar,71,5)}. (3.2)

Specializing to H = B, let (b,r,s) € Tri®(n,d). For b € B and r, s € [n], we
denote

b,r,s:b,r s :=8{kel[d]| (b, 7k, sx) = (b,1,9)},

and, recalling (2.11)), we set

b, 7, s]. = H b,r,s:b,r s (3.3)

bE B¢, 1,s€[n]

Let M,,(Ar) = M, 0(Agr) be the superalgebra of n x n matrices with entries
in Ag. For a € Ag, we denote by £ € M, (Ag) the matrix with a in the position

(7, 5) and zeros elsewhere. By definition, for all homogeneous a € A, |{ | = |al.
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For each d € Z>( we have a superalgebra structure on M, (Ar)®?, and thus on
Do Mn(Ar)®? as well.
It is proben in [20, §4.1], that @, M,(Ag)® is a bisuperalgebra with the

coproduct V defined by

d
v - Mn(AR)®d . @Mn(AR)®C Q Mn<AR)®(d_C)

c=0

d
R @& = Y (L0 BE)B (L @ DE)
c=0

and product obtained from the tensor product of matrix superalgebras. Moreover,
recalling , &P 450 M, (Ag)®? is also a bisuperalgebra with respect to V and ,
see [20, Lemma 3.12].

According to S, acts on M, (Ar)®? with superalgebra automorphisms,
and using the notation , we have the subsuperalgebra of invariants

M, (Ag) C M, (AR)®. For (a,r,s) € Tri” (n,d), we have elements

gg,s = Z (_1)<a,r,s)+(c,t,u>§§11’ul Q- gtcjyud S FdMn(AR>
(e,t,u)~(a,r,s)
We have the following R-basis of T*M,,(Ag):
{€ | (b,7,5) € Tri%(n, d)/Ga}. (3.4)

For (b,r,s) € Tri®(n, d), we also set

773,3 = [bv r, S]Ic 53,57
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and
T(n,d)g = T*(n,d)p := spang { 77,1373 | (b,7,s) € Tri”(n,d) } CT'M,(Ag).

Let
T(n)r == T(n,d)s.

d>0
By [10, Proposition 3.12, Lemma 3.10], T'(n, d)g is a unital R-

subsuperalgebra of M, (Ag)®? with R-basis
{772,3 | (b,r,s) € TriB(n, d)/S, } (3.5)

Moreover, by in [10], Kleshchev and Muth prove that there are two different

bisuperalgebra structures on 7'(n)z. We have the following lemmas.

Lemma 3.6. [10, Corollary 3.24] T'(n)g is a sub-bisuperalgebra of @ o Mn(Ar)®*

with respect to V and the usual product.

Lemma 3.7. [10, Corollary 4.4] T'(n)g is a sub-bisuperalgebra of @ = M,(Ar)®?

with respect to the coproduct V and the product x

Extending scalars from R to F, we now define the F-superalgebra
T(n, d)]F = TA(n, d)]F =F SR T(n, d)R

We denote 1g @ 02, € T(n,d)r again by 7?2, the map idg ® V again by V, etc. In

fact, when working over the field, we will often drop the index and write simply

T(n,d) == T(n,d)s. (3.8)
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If Wy is a T'(n, dy)-supermodule and Ws is a T'(n, dy)-supermodule, we

consider Wy ® Wy as a T'(n, d; + dg)-supermodule via the coproduct V.

Properties of Product and Coproduct

In this section we work over R. Define the structure constants ., € R of

Ap from ac = >, 5 /ﬁfwb for a,c € Ag. More generally, for b = (by,...,bq) €

B? and a = (ay,...,aq), c=(c1,...,cq) € A%, we define
b b ba
,{/G,,C I{al’cl K‘/ad7cd E R

Recall the notation (3.2)), (1.5). The following generalization of [3, (2.3b)] follows

from [20, (6.14)], cf. [10, Proposition 3.6].

Proposition 3.9. Let (a,p,q), (c,u,v) € Tri®(n,d). Then in T(n,d)r we have

a c __ b,r,s b
p,q uw = Z Yap,gcup r.s
[b,r,s]€Tri® (n,d)/ &4

where
! !
gb,r,s _ [aﬂp, q]c ) [67“” v]c § : (_1)(a,paQ)-l—(C,u,v)+(a/,’f‘7t>+(C'7t,3>+<a',0'> kb
a’p?q;c7u7v - ! a/7cl’
[b, 7, s].

a’,ct

the sum being over all a’,c¢ € B and t € [n] such that (a’,r,t) ~ (a,p,q) and

(c,t,s) ~ (c,u,v).

Lemma 3.10. [I0, Lemma 4.6] Let ¢ € Zq, di,...,d; € Zso withdy + -+ +
d, = d, and form = 1,...,q, we have (b™, 7™, s™) € Tri®(n,d,,) with b™ =

byt - b, ™ =t 8™ = s sy If (b7 rr, si) # (bl 7l sl) for all

wrtu Tu
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1<m#1<q,1<t<d, and1 <u<d, then

ngi:::gz,sl---sq = 7721,51 Kook ngg,sq‘
To describe V on basis elements, let T = (b,r,8) € Trif (n,d). We write
nr:=nls and To := (b,r,s)o for 0 € ;. We have that the stabilizer &7 := {0 €
S, | To = T} is a standard parabolic subgroup. Let 72 be the set of the shortest

coset representatives in &7\&,;. We also set

[ﬂ'c = [b7r73]!c' (3.11)

Ifd=d, +dy, T' = (b', 7', s") € Tvi®(n,d,) and T2 = (b*, 72, s?) € Tri® (n, ds), we
denote 7172 := (b'b?, rir?, s's?) € B? x [n]? x [n]?. Recall the notation (3.1). For
T € Trif (n, d) define

SpUT) == | | {(T".T?) € Thif (n,¢) x Trif (n,d — ) | T'T* ~ T }.

0<c<d

For (T, 7?%) € Spl(T), let o7, 1» be the unique element of 72 such that

ToT. - = T'T?. Recalling the notation (1.3)), we have:

Lemma 3.12. [10, Corollary 3.24] If T = (b, 7, s) € Trig (n,d) then

|
v(nT) _ Z (_1)<U;1,T2;b> 1[7ch : - ® Nye.
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3.2. Special Elements and Characters

In this section, we define the formal characters for 74 (n, d)-modules, and
describe several important elements we use to study them. To do this, we first
describe the combinatorics of colored tableaux.

Throughout the section, let A be a k-superalgebra with (not necessarily

conforming) heredity data I, X,Y as in § .

Tableaux

We introduce colored alphabets
ax = [n| x X and xg = [n] x X(i).

so that @/x = | |,c; @x()- An element ([,x) € &x is often written as [*. If L =

[* € oy, we denote color(L) := z. For all i € I, we fix arbitrary total orders ‘<’ on

the sets @y ;) such that for r,s € [n], if r < s (in the standard order on [n]) then

r* < s® for all z € X(i). All definitions of this subsection which involve X have

obvious analogues for Y, for example, we have the colored alphabets .2 and 2 (;).
Let A = (MO ... X®) € Al(n,d). Fixi € I. Recall the Young diagram

of a partition from . A standard X (i)-colored A -tableau is a function T :

[AD] — (i) such that the following two conditions are satisfied for any pair of

nodes (r, s), (r',s') € [A\D]:
(R) If r =" and s < &, then T'(r,s) < T'(1',s"), and the equality is allowed only
if color(7'(r, s)) € X (i)g.

(C) If s = s’ and r < 7/, then T'(r,s) < T(r', '), and equality is allowed only if

color(T'(r,s)) € X(i)1.
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We denote by Std™®(A?) the set of all standard X (i)-colored A\)-tableaux.
Recalling the idempotents e; € X (i) N Y (i), the initial A -tableau T is given
by

™. [)\(i)] — @x@y, (1)) =1

Note that 72 is in both StdX@(A®) and Std* @ (X))

Let T € StdX@(A®). Denote d; := |\?|. Reading the entries of T" along the
rows from left to right starting from the first row, we get a sequence 7" - - - lzj" €
527;([1'(1.). (Fixing this reading is analogous to choosing a fixed bijection [d] — [)] as
we did for the classical Schur algebra in section § ) We denote 17 := 1y -1,
and £ =114,

For a function T : [A] — & andi € I, we set T = T'|\@; to be the
restriction of T' to [A?]. We write T = (T, ..., T®), keeping in mind that
the restrictions 7" determine T uniquely. A standard X -colored A-tableau is a
function T : [A] — x such that T® € Std¥X@(\®) for all i € I. We denote by
Std* () the set of all standard X-colored A-tableaux. For example, we have the

mitial X-tableau
™ = (T, . T") € $td¥(A) N Std” (A).
For T € Std™(X), we denote
=1 e ), 2T =2 2™ e x4, and =17

The sequence yT for T € Std” (A) is defined similarly to 27 .
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Let A € Al (n,d) and T € Std*(X), with IT =1, ---l; and 2T = 2, z,.
Suppose that there exist 1,...,iq € [ such that e;;z1 = z1, ..., €;,74 = 4.

Recalling ([1.8]) and (1.10)), we define the left weight of T' to be

d
a(T) =3 ui(er,) € A(n, ).
c=1
cf. (2.20). For p € Af(n,d), we denote

Std¥ (A, ) == {T € Sta¥(\) | a(T) = p}. (3.13)

Idempotents and Characters

Let A € A(n,d). Set I* := 1" ... n*_ For an idempotent e € A we have an

idempotent 7§ = nlef” € T(n,d). Let eg,...,e; € A be the standard idempotents.

For each A = (A@, ... \9) € Al(n,d), we have the idempotent
= ni?m Kook nitzz) € TA(na d).

Where the fact that gy € T4(n,d) follows because each standard idempotent

e; € B,. The idempotents 7, are obviously orthogonal.

Definition 3.14. For any 7% (n, d)-supermodule V, p € AL (n,d) and 0 # v € V,

we say that v is a weight vector of weight p if v € 7, V.

For A\ = (A1,...,\n) € A(n), define the monomial 2 := 2} ... 2\ €
Z|z1, ..., 2n). For X € Al(n), we now set
A=2"9 e 02" ¢ Zlz,. .., 2%
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Following [10, §5A], see especially [10, Lemma 5.9], for a T'(n, d)-module V', we

define its formal character

chV := Z (dim 7, V)z* € Sym’(n,d).
peA (n,d)
If . crei = 1a, then lpag, o = ZAEAI(n,d) 7, but we do not need to assume this.
So in general we might have ) pe (nd) n.V € V. It is worth noting that later
on it will be shown that each simple supermodule has nonzero character. So, it is
impossible for this character to 'miss’ a simple factor. This character also has the

property we value most, namely:

Lemma 3.15. [10, Lemma 5.10] If Wy € T'(n,d;)-mod and Wy € T'(n,dy)-mod,
then Ch(Wl X WQ) = Ch(Wl) Ch(WQ)

Other Important Elements

The group &,, acts on A(n) on the left via
X = Mooity ey Agotn). (3.16)

The group &/ := [[;c; &, acts on Al(n) via oA := (cOAO . oONO) for
o= (09 ...,00) e and X = (N9 ... AD)c Al(n). Fora € Aand o € &,

let &2 =", oy € Mu(A). For o = (c©@ ... 0®) € &L, we set

Glo) = D (€)% x % (65,)%% € TA(n, d). (3.17)

do+-+dy=d

where the fact that each £;(ar) € T*(n,d) again follows because each standard

idempotent e; € B,.
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These elements will play a role analogous to the Weyl group in classical type-
A Lie theory, cf. [21]. In particular, they have some amenable properties. Namely,

it allows us to move between weights as we expect. More precisely, we have:

Lemma 3.18. [10, Lemmas 5.6, 5.7] For all o,7 € & and X\ € A(n,d), we have

€a(0)€a(T) = &a(oT) and La(o)na&a(0™") = Ton.
An immediate result of this Lemma is the following.

Corollary 3.19. Foro € &L, X € Al(n,d) and V € T(n,d)-mod, we have

fd(0'> TD\V = naAV~

Lemma 3.20. For o € &, we have V(&y(a)) = S0 (o) @ Eu_o(o).

n’

Proof. By definition,

By Lemma 3.7, we have

v(fd(a)) = Z v((fsgo))®d0) koeew ok v((’f?éé))(@dl)a

and the result follows. O

We end the subsection collecting some results that are useful for the case n <
d. In that case, we choose a large N and truncate using the following idempotents.

For N > n, set EY := 3" ¢! € My(A) and consider the idempotent
m (d) = (E)))*" € TA(N, d). (3.21)
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We get the following lemmas, which will be used to examine the n < d case

in § @3]

Lemma 3.22. [10, Lemma 5.15] Let N > n. Then we have a unital superalgebra
1somorphism

T(n,d) = n ()T (N,d)nn (d), n2, 2,

Lemma 3.23. [10, Proposition 5.19] Let dy,dy € Z>¢ with di+dy =d, n < N, Vj €
T(N,dy)-mod and Vo € T(N,dy)-mod. Then there is a functorial isomorphism of
T(n,d)-modules ny (d)(Vi @ Va) 2= () (d1)V1) @ (1 (d2)Va).

3.3. Quasi-hereditary structure on 7'(n,d)

Throughout the section, let A be a based quasi-hereditary superalgebra with
conforming heredity data I, X, Y. Throughout this section, we assume that d < n.

Then, by [11, Theorem 6.6], T'(n,d) = T%(n,d) is a based quasi-hereditary algebra.

Heredity Data and Standard Modules

We now describe the heredity data AL (n,d), X(n,d), Y(n,d) for T'(n,d)
following [11} §6]. We have already defined the partially ordered set A (n, d)
of I-multipartitions with partial order <;, see § . For A € Al (n,d) the
corresponding sets X' (A) = {Xs | § € Std¥(A)} and Y(A) = {Vr | T € Std* (\)}
are labeled by the standard X-colored and Y-colored A-tableaux, respectively.

Recalling the notation %, 1%, etc. from § for § € Std¥(\) and T €

Std” (M), we define the elements Xg and Yy as follows:

. N Tk
XS = /r]lSJ)\) and yT = nl>‘ 1T
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For any A € AL(n,d), we have Xpa = Vpa = ma, 50 X(A) N Y(A) = {m}, and
{nx | A € AL (n,d)} are the standard idempotents of the heredity data.

Let A € AL(n,d). Following § the standard module A(A) has basis
{vp := Xpua | T € Std¥ (N}, (3.24)

where vy, is the (unique up to scalar) vector of weight A in A(X). Moreover, if

T € Std™* (X, p) for some p € Al(n,d), see (3.13)), then
vr € NuA(N) (3.25)

i.e. vy is a weight vector of weight .

Corollary immediately implies:

Lemma 3.26. For o € &) and A € Al (n,d) such that eX = X, we have

fd(a)v)\ = :l:U)‘.

If follows from [I1, Theorem 6.6] that the formal character of the standard

module A(A) is of the form

chAX) = 2> + Z cut. (3.27)

n<iA
This implies:

Lemma 3.28. The formal characters {ch A(X) | X € Al (n,d)} are linearly

independent. In particular:
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(i) fV € T(n,d)-mod has a standard filtration and chV =
> xenl(na) M Ch A(X) then every A(X) appears as a subquotient of the

filtration exactly my times.

(ii) if X € AL(n,d), p € AL (n,c) and A(X) @ A(p) has a standard filtration, then
A(X + p) appears in this filtration once and all other subquotients A(v) of

the filtration satisfy v <; A+ v.

One other easy consequence of this is the aforementioned result that no
simple module has zero character. Indeed, for A € AL (n,d), L(\) is the head of
A(A), and thus has exactly one (up to scalar) weight vector of weight X, which
must appear in the character of L(A).

Another, less obvious consequence is the following useful criterion.

Lemma 3.29. Let X € AL (n,d), r,s € [n]* and y1,...,yq € Y with at least one
yr & X. Suppose that v € 1n,A(X) for some v € Al (n,d) with ||v|| = ||M||. Then

e = 0.

Proof. Suppose nyl;%4v # 0. Then ny;%in, = nii; ¥, So there exist iy,...,iq € I
such that yie;, =y, ..., Yaei, = yq and for all i € I we have #{k | iy =i} = || =
IA®]. On the other hand, there exist ji, ..., jq such that ejy1 = v1, ..., €j,Ya = Ya.
By Lemma [2.12) j; > 4y1,...,j4 > 14, and by the assumption that at least one

y, € X, we have that at least one j, > i,. So nfl;"%v € n,A(A) for p satisfying

|ell &1 [|A]]s hence po >; A, which contradicts (3.27]). O

Character Formula

Throughout the subsection we continue to assume that d < n. Recall(|1.10)).

We will rely heavily on the following fundamental result of [I1].
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Lemma 3.30. [11, Theorem 6.17(i)] Let X = (A\);c; € AL (n,d). Then

~ X) AL (A

For each 7,5 € I, set
;X () :={r € X(i) | ejx = x}.

Note that ;X (i) # @ only if j < 4. For v = 0®),cxq € Af(i) and j € I, we
define

x i X
V= (V( ))xer(i) S Aﬂ_ (

Fix ¢ € [ until the end of the subsection. We define an algebra

homomorphism

Yosym', Q) L2 ]

x€X (7) JeI xe; X (1)

y : Sym*®

cf. [I1l (7.41)]. By the Littlewood-Richardson rule, for v € Ai((i), we have

()= [[cn sy (3.31)

I
YEAL Jjel

For a multipartition v € Af(i) (n,d), we define its superconjugate

multipartition

v = (ﬂ(m))zeX(iy
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where 7(®) := (@ if 1 is even and 7*) is the conjugate partition (v®)" if x is odd.

Using [16], (2.7),(3.8)], we have the algebra homomorphism
con : Sym™ @ — SymX@ s, 5 Sy eon.

Let t := |X(i)]. By choosing a total order on X (i) we will identify Af(i)
with A’ Sym™ @ with Sym®?, etc. In particular, we have a well-defined map con :

Sym®* — Sym®’. Recalling ((1.11)) and - we now have:

Theorem 3.32. Let d € Z>o, n € Zso, withd < n, and A\ € Ay (n,d) C Ay and
1€ 1. Then

ch A(1;(N)) = p! o x ocono A !(sy).

Proof. By [11], Proposition 7.45], we have

ch A(e;(A Z Z ,,con<H 7(:))5.,(21,...,2”)

‘YGAI (n) U€A+ ’I”L)t je[

(Z > (I ))

WEAI veAl,

- pfl oX( Z Ciconsu>
veA!,
:péoxoCOﬂ( Z cisy>

t
vEA]

= ploxoconod T (sy),

where we have used (3.31)) for the third equality and ((1.13)) for the last equality.
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Theorem 3.33. Let A € Ay(n,d), p€ Ay(n,e) andi € 1. If d+e <n then

ch (AL @A) = S el ch Al ).

veAi(n,d+e)

Proof. By Lemma |3.15 Theorem [3.32| and the Littlewood-Richardson rule, we

have the following:

e (AG() @ Alws(u))) = (ch A(V) (ch Alen)
= (poxocono"(sy)) (ph o xocononT(s,))

= pl oxoconon!(sys,)

= pfoxoconon™? ( Z Cf,ﬁ’/)
)

veAy (n,d+e

= > chA@),

veA (n,d+e)
as required. O

For A = (\9);c; € AL(n,d), p = (1), € AL(n,e) and v = (VW))er €
AL (n,d + e) we define

v L)
Cap 7= OO (3.34)
jerl

Corollary 3.35. Let A € Al (n,d) and p € A (n,e). If d+e <n then
ch(AN) @ A(w) = > X, chA(v).
VGAi(n,d-l-e)

Proof. This follows from Theorem [3.33] and Lemma [3.30] O
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3.4. Modified Divided Powers

We can also view the construction of the algebra 7% (n, d) as an application
of another construction - namely the Modified Divided Power. In this section
we will develop this construction, explore some of its amenable properties, and
ultimately recover T%(n, d)r by applying the construction in a special situation.
In the last chapter, we will revisit these tools to construct modules for T%(n,d) :=
T%(n,d)r ®r F where Z is the Extended Zig-Zag algebra, see §

Throughout this section, d € Z> is fixed.

Modified Divided Power I'¢V

Definition 3.36. A calibrated k-supermodule is a free k-supermodule V' of finite
rank, with a fixed supermodule decomposition V5 = V, @& V. such that V,, V; are

also free k-supermodules.

Except for the final subsection, in this section we will exclusively work with
the case k = R, as we need characteristic 0 to construct several things in this
subsection.

Let V. = V, & V, @ Vi be a calibrated R-supermodule. Choose bases BY
for Vg, BY for V;, and BY for Vi, so that By := By U BY is a basis of V5 and
BY = BY UBY UBY is a basis of V.

For b € (BY)4, we define
<b> = ﬂ{(k,l) S [d]2 ‘ k<l b,b € B¥, by > bl}
Setting

b:b] == t4{k € [d] | by = b} (3.37)
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for all b € B, we let [b]. := [Lyepy(b: 0], cf. .

Define Seq(BY, d) to be the set of all d-tuples b = by ---bg € (BY)? such that
by = by for some 1 < k # | < donlyif b, € BY. Then Seq(B",d) C (BY)"is
a Sg4-invariant subset, so we can choose a corresponding set Seq(BY, d) /&4 of G4-
orbit representatives and identify it with the set of all &4-orbits on Seq(BY,d), cf.
§[3.1.1] Fix a total order < on BY.

Recall the invariant space I'?V from § For b = b, ---b; € Seq(BY,d), we

have elements

wpi= Y (DN @@ eV and g i=[bllay € TV
b':bllmbiiwb

We define the modified divided power T4V by
TV = spang{ys | b € Seq(B",d)} C V.

Note that {z, | b € Seq(BY,d)/S} is a basis of 'V and {yp | b €
Seq(BY,d)/&,} is a basis of [9V. We point out that in general I'*V depends on
V. An argument as in [I0, Proposition 4.11] shows that it does not depend on V,

but we are not going to need this fact.

Remark 3.38. In general, if we start with a calibrated F-supermodule, Vg, simply
applying the same construction over F is not always possible. If 0 < char F < d,
then several of the definitions don’t make sense. So, to avoid these issues we define
DV = deR ®pr F, where Vj is a calibrated R-supermodule such that Vg, =

Via QrF, Vi = Vg @rF, and Vp1 = Vg1 @R F.
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If V and W are calibrated R-supermodules, then we make V' & W into a
calibrated supermodule by taking (V & W), ==V, & W, and (V& W), :=V, & W,.

One immediate result of this construction is the following.

Lemma 3.39. For calibrated R-supermodules V.W, and d € Zs(, we have an

isomorphism of R-supermodules

P T V)e@Ew) STV ew), yoy = yxy.

di+do=d

Proof. Observe that BY®" = BY U BY, and similarly for BY®W and By " It
follows that 1,1 * Y2 = yp1p2 for all b' € Seq(BY, d,), b* € Seq(B",dy). Comparing

bases then gives the result. ]

Bilinear Form on I'*V

We continue with the assumptions of the previous subsection. In particular,
V is a calibrated R-supermodule. Suppose in addition that V' has an (R-valued)
even non-degenerate bilinear form (-,-) and a dual basis BY* = {b* | b€ B} for V
such that (b, c*) = &, for all b,c € BY, such that the following conditions hold:
e BY* = BY* LU BY"* LU B{"* where BY* is a basis for V,, BY* is a basis for V,

and B¥’* is a basis for Vi;
e b€ BY if and only if b* € BY*;
e b BY if and only if b* € BY*;
e b€ BY if and only if b* € B{™".

Observe that this implies that (-, ) restricts to a perfect pairing on V, x V,, on

Ve x Vg, and on V7 x V.
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The form extends to the form (-, -)g on V&

(1@ Qg wy ® -+ D wy)g = (—1) % (v, w1) - - - (vg, W) (3.40)

for all v, w € V4. Note that for any o € &, we have

((Ul®"'®Ud>a7(w1®“‘®wd)a)®: (’U1®...®Ud7w1®...®wd)®_ (341)

Moreover, for b € (BY)? and ¢ € (BY)?, we have

(0@ @bg, ¢, @ @) g = (—1) 6. (3.42)

Lemma 3.43. Let b,c=c;---cq € Seq(BY,d). Then ¢* :=c}---c} € Seq(B"*,d),

and (Yp, Ye+ ) = £d! Opmc-

Proof. By (3.42)), (yb,Yer)o # 0 only if b ~ ¢. So we may assume that ¢ = b and
that the stabilizer G, is a standard parabolic subgroup. As no odd element repeats

in b, we have

&= (TLe:a)(TTm:0) =TT v I

beBY beBY beBY beBY
= ( H [ ) ( H [b:b]).
ceBY* beBY
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So, using (3.41)) and ({3.42)), we have that (yp, ye-)e equals

beBY ceBY*
=(([[®:0]) > o) ( [[l:d) Y (¢Ge--adg)),
beBY 0€64/6p ceBY* 0€6,4/6p
=([Jo:0)( ] [ :d)®a: Sl @ @ba,¢; @+ @ i)
beBY ceBY*
= +d
which completes the proof. O

In view of the lemma, we have (z,w)g is divisible by d! for all z,w € T?V. So

we can define a new form on IV by setting

a(z, w)g (3.44)

for all v,w € T?V. The following is now clear from the lemma:

Proposition 3.45. The bilinear form (-,-) on T4V is even and non-degenerate.

Moreover, it is supersymmetric (resp. skew-supersymmetric) if (-,-) is so.

IV as a module over T'¢A

Let A = Apg be a based quasi-hereditary algebra over R with conforming
heredity data I, X,Y. In particular we have a unital subalgebra a C Az and
heredity basis B = B, U B. U Bi. Observe that A = a & ¢ @ Aj is a calibrated

R-supermodule, so we may speak of Seq(B, d), etc. as in the previous subsections.
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Using this data, it is easy to see that T74 = T4(1,dR), as in § . In particular,
[9A is an R-superalgebra.

Let V = V, ® V. & V7 be a calibrated R-supermodule as in the previous
subsection, and assume in addition that V is an A-supermodule. Then IV is
naturally a I'*A-supermodule, see § . So upon restriction to the subalgebra
[9A C A, we view TV as a ['*A-supermodule. In this subsection we show that
under a natural additional assumption, T?V C I'%V is a T A-subsupermodule.

For a € Aand b,c € BY, we define the structure constants «} , from ac =
> penv Kocb, f § . Fora = a;---aq € Seq(B,d) and b = by---bg,c =
c1---cq € Seq(BY,d), we also set k0 . := &t - kb4 . We want to describe the

structure constants f¢ . defined from

faﬂfc = Z cl:,cxb'

beSeq(BY ,d) /G4

Recall the stabilizer G from § The following lemma is an analogue of [10,
Corollary 3.7], and its proof is essentially the same as the n = 1 case of that

Corollary:

Lemma 3.46. Let a € Seq(B,d) and b,c € Seq(BY,d). Let X be the set of all
pairs (@', ') € Seq(B,d) x Seq(BY,d) such that a’ ~ a, ¢ ~ ¢ and |a,| +|c}| = |bx]
forallk = 1,...,d. We fiz a set X/Sy of orbit representatives for the diagonal

action of Gy on X. Then

(ZC = Z <_1)<a>+<al>+<c>+<C,>+<U/,C/> [Gb : (Gb N Ga’ N 60’)]52/70
(a/,c")eX/6y
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Proof. Clearly, we have

a,c a’,c»

b Z(_1)<a>+(a’)+<0)+<C’>+<a’16’),{b

the sum being over all (a’,¢’) € Seq(B,d) x Seq(BY,d) such that a’ ~ a and
c ~ ¢, cf. [20, (3.14)]. It remains to note that %, , = 0 unless (a’,¢') € X, and
for (@', ), (a",c") € X in the same Gp-orbit the corresponding summands are

equal to each other, cf. the proof of [10), Corollary 3.7]. ]

We now introduce our reasonable assumptions on the calibrated R-

supermodules.

Definition 3.47. Suppose A is an R-superalgebra with an even subalgebra a C
Ag. Let V be a calibrated R-supermodule that is also an A-supermodule. If aV, C

V, then we say that V is a (left) (A, a)-calibrated supermodule.

There is of course a right-sided analogue to this definition, and all of the left-
sided results of this section have right-sided analogues whose proofs are the same.
Once the left-sided results are proven, we will freely use the right-sided results as

well.

Lemma 3.48. If V is an (A, a)-calibrated supermodule, then TV C TV is a

' A-submodule.

Proof. We briefly work over the field of quotients of R, as we do not a priori know
that we can divide these coefficients. For each a € Seq(B,d) and ¢ € Seq(BY,d),

we have:

nye = ([a]i¢*)([c]\ee) = CHEREE Y

beSeq(BY ,d) /64 beSeq(BY ,d)/64
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So in view of Lemma m it suffices to prove that for fixed @ € Seq(B,d), b, c €

Seq(BY,d) and (a/,c’) € X satisfying 2, , # 0, the integer

a’,c

Mg . = lal[c][6y : (6N G N Ee)]

is divisible by [b]}, where X consists of all pairs (a’,c) € Seq(B,d) x Seq(BY,d)
such that @’ ~ a, ¢ ~ ¢, and |a},| + |c}| = |bg| for all k € [d].

For a € B and b,c € BY, let
mz,c = #{k < [17d] | a;c = CL,CZ =c by = b}

Then, recalling the notation (3.37)), we have

|6b N Ga/ N 60/| = H mZﬁ!,
a€B,b,ceBY
. . LB b
la:a] = my . [e: ] mb . [b:b] = Mg -
b,ce BY a€B,beBY a€B,ce BY

In particular, for all b,c € BY and a € B, we have integers

[b: 0! . [c: ]! o la : al!

b '7 c b |7 a <
HaeB,ceBV Mg e HaeBa,beBY Mg e

Zb =
b |
HbEBCV,CGB%/ ma,c

Denoting C' = [[,cgvi,pv 2, We have
a 1

[Gb . Gb N 6; N 6’0] = HbEBV ! H Zp = C H Zp-

V -
HaEB b,ceB beBV beBY

Let b € BY. Ifa € Bjorc € By, thenm!, < 1 because there are no

repeated odd elements in tuples in Seq(B, d) or Seq(BY,d). Also observe that if
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a € Byand ¢ € BY, then ac € V, by assumption, so, since b € B!, we have

kg . = 0, hence mf . = 0. So

[b: 0!
<Haer,ceBé/ mg,c!> (HaeBu,CEBCV mg,c!>

2y =

Thus we have

MZ,c=<H[a:a]!)<H[c;c]g>.cn b 0]l

a€B. ceBY beBY (HaeB,,ceBY mé’w!) (HaGBa,CGBY mg,c!>
la : al! [c: ]!
=C [b: 0!
(ag [lseny, ceBY mg, cg" [acn,peny Mo bgc

el

which completes the proof. [

Let e € a be an idempotent such that be = b or be = 0 for all b € B. (In this
case, as in [10, §5], we say that B is right e-admissible.) Let Be = {b € B | be = b},
Bye :={b € B, | be = b} and Bee := {b € B, | be = b}. We have an idempotent
ne" = e® ¢ T?A. In the special case where V = Ae, we always take V, := ae with
basis B,e and V. := ce with basis B,. In this case we can describe the ' A-module

9V explicitly as follows:

Lemma 3.49. Let e € a be an idempotent such that the basis B is right e-
admissible. Then T%(Ae) = (T4A)n<"

Proof. Note that, since B is right e-admissible, ['*(Ae) has basis {y» | b €

Seq(Be,d)/&4} and (T%A)n” has basis {n® | b € Seq(Be,d)/S,}. There is a
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I'? A-module map ¢ : (D?A)ne" — T(Ae) with ¢(n®") = y.q. It remains to notice

that ¢(n®) = yp for all b € Seq(Be,d)/S,. O

It follows from the discussion at the start of this subsection that ®gsol¢A =
Da>0T4(1,d)g. In fact, for (A, a)-calibrated supermodules V and W, (I'V) ®
(T2W) is a Th % A-supermodule, see § Recalling the isomorphism from

Lemma [3.39, we now obtain:

Lemma 3.50. If V.W are (A, a)-calibrated, then we have an isomorphism of [9A-
modules

P V)o@ W) STV ew), yoy —yxy.

di+do=d
Proof. The fact this is a homomorphism of T? A modules follows from Lemma .

Bijectivity follows from Lemma [3.39| [

Suppose there is an even anti-involution 7 : A — A, where we adopt the
convention 7(ab) = 7(b)7(a) (no sign). Then 7 is an isomorphism A — A°P, where
A°P is defined via a * b := ba (no sign again). We make the additional assumption
that 7(a) = a, in which case 7®% restricts to an anti-involution 74, on I'VA, see [10,
(4.12)].

Given W e TI'A-mod, its 74-dual W™ is defined as W* with the action
(zf)(w) = f(ra(z)w) for all f € W*, w € W,z € T?A. Note that W ~ W™ if
and only if there is a non-degenerate 74-contravariant form (-, -) on W, where 74-
contravariance follows the convention (zv,w) = (—1)*I"(v, 74(z)w) for all 2z € T?A
and v,w € W.

Let V' be an (A, a)-calibrated supermodule. Suppose that V' has an even,
non-degenerate, T-contravariant form (-,-) For homogeneous @ = a;---aq € A?

and v = vy ---vy € V9, weset @ v = (ayvy)--- (aqug) € V¢ Then (—1)lavw) =
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(—1)fewi+{vw) Using this, it is easy to establish that (-, ) is a 7%%-contravariant

form on V®? cf. (3.40). Recalling Proposition we deduce:

Lemma 3.51. Let (-,-) be an even non-degenerate T-contravariant bilinear form
on the A-module V' as above, which upon restriction yields perfect pairings on V, X
Ve and V. x V. Then (-, )~ is a non-degenerate Tq4-contravariant form on the [9A-

module T4V .

From A to M, (A)

Throughout the subsection n € Z- is fixed.

In this subsection we will need to be careful with the ground ring and write
R or F in the indices for algebras and modules when necessary. So let again Ag be
a based quasi-hereditary algebra over R with conforming heredity data 7, X, Y, in
particular we have a subalgebra arp C Agp and heredity basis B = B, U B, L Bj.
Taking the R-supermodule decomposition M, (Agr) = M, (ar)® M, (cr)® M,(Ar1),
we see that this is a calibrated R-supermodule, and we recover T4 (n, d)g as
TIM, (Ag).

Let Vg be an (Ag, ag)-calibrated supermodule with R-basis BY = BY U BY U
B%/ , as in Lemma w The superspace of column vectors Col,(Vz) = V5" is a left
supermodule over M, (Ag) in a natural way. If Vy is a right Ag-module, we will
also consider the right M, (Ag)-module Row, (Vz) = VF™ of row vectors. We will
always take Col,(Vg)q := Col,(Vrq) and Col, (Vi) := Col,(Vg,) and analogously
for Row,,(Vg), making Col,(Vg) a (M, (Agr), M,(ag))-calibrated supermodule,
and Row,,(V;.) a right (M,,(Ag), M, (ag))-calibrated supermodule. Then by
Lemma , we have I'? Col,, (Vi) is a left T4(n, d)g-module. Extending scalars
to F we get the left module 'Y Col,, (Vg)r over T4(n,d) = F @z T*(n,d)s. Note
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that in general I'? Col,,(Vg)r is not the same as I Col,,(Vr), where Vg = F ®g Vg,
cf. Remark [3.38 Similarly, we have a right 7 (n, d) g-module T'¢ Row,, (V) and a
right 74(n, d)-module T'¢ Row,, (V).

Lemma 3.52. Let e € ag be an idempotent such that the basis B is right e-

admissible. Then T%(Col,(Age)) ~ T(n, d)Ran La-

Proof. First notice that Col,(Agre) ~ M,(Agr){7, as M, (Ag)-supermodules. The

result now follows by applying Lemma [3.49| [
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CHAPTER IV

TENSOR PRODUCTS OF STANDARD MODULES

This chapter contains previously unpublished co-authored material, which
appears in [I].

We again fix a based quasi-hereditary superalgebra Ar over R with
conforming heredity data I, X,Y. Recalling the convention , we have
the F-superalgebra T'(n,d) := T%(n,d)r ®p F. Under the assumption
d < n, this superalgebra is based quasi-hereditary with heredity data
AL (n,d), X(n,d), Y(n,d), see § . We present all results of this section in terms
of left modules. However the analogous results for right modules (and bimodules)
are also true, and are proven in a nearly identical manner.

The main goal of this section is to prove the following.

Theorem 4.1. Let n € Z~o and ¢,d € Z>q such that d +c¢ < n. Let A € AL (n,c)
and p € A (n,d). The T(n,d + ¢)-module A(X) ® A(p) has a standard filtration,

and the T'(n,d + c)-module V(X) @ V(p) has a costandard filtration.

In fact, we will be able to handle the case of small n as well, but we cannot

guarantee that 7% (n,d) is quasi-hereditary in this case, see § .

4.1. Reduction

We begin to prove Theorem by reducing to the case of ‘one color’ and
‘fundamental dominant weights’, cf. [0, (3.5)], [7, Proposition 3.5.4(i)], [21]. For

integer 0 < ¢ < n, recalling (1.8, we define

We:=¢e1+ - +e. €A (n,c).
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Proposition 4.2. Suppose that for alln € Zso, d,c € Z>o withd + ¢ < n,
A € Ai(n,d), and i € I, the tensor product A(t;(N\)) @ A(ei(w.)) has a standard
filtration. Then for alln € Zwo, d,c € Zso withd + ¢ < n, X € Al (n,d),

€ AL(n,c), the tensor product A(X) @ A(p) has a standard filtration.

Proof. We apply induction on the total degree d + ¢, the base case d 4+ ¢ = 0 being
trivial, since T'(n,0) 2 F. Let d 4+ ¢ > 0. Take A = (A, ... X9) € Al (n,d) and
po=(pO, . u®) e Al(n,c). Foralli € I, set d; = [A?] and ¢; := |u¥|. By

Theorem [3.30, we have

AN @A) = Q) (AwO) @A), (4.3)

iel

Suppose there exist distinct j,& € [ with dj,di, > 0. Thend; < d
for all i € I. By the inductive assumption, for all ¢ € I, we then have that
A(t;(AD)) @ At (™)) has a standard filtration. It follows from Lemma
and Theorem m that in this filtration only subquotients of the form A(z;(v™))
with v € A, (n,d; + ¢;) appear. Hence the right hand side of has a filtration
with subquotients of the form @), ; A(e;(1?)) ~ A(v), where the isomorphism is
given by Lemma [3.30}

Thus we may assume that there exists a unique ¢ with d; = d and dj, = 0 for
all k # 4, i.e. A =¢;(A) for some i € [ and A € Ay (n,d). Similarly we may assume
that o = ¢;(p) for some j € I and p € A (n,c). Moreover, we may assume that
j = i since otherwise A(A) ® A(p) = A(e;(N)) ® A(ej(p)) is a standard module,
again by Lemma |3.30

We now also apply induction on the dominance order on p. If p is minimal

in the dominance order, then © = w. and we are done by assumption. Otherwise,
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we can write = vy + w, for v € A (n,s) with 0 < s,r < ¢. By the inductive
assumption on the degree, we have that A(¢;(77)) ® A(ei(w,)) has a standard
filtration. By Lemma and Theorem [3.33] in this filtration A(e;(p)) appears
once and other standard subquotients are of the form A(¢;(v)) with v < p. By [17,

Proposition A2.2(i)], there is a short exact sequence

0= Alei(p) = Aei(v)) © Alei(wr)) = Q@ =0,

where () has a standard filtration with subquotients of the form A(¢;(v)) with

v < p. Tensoring with A(¢;(X)) we get a short exact sequence

0= A(u(A) @ Alei(p) = Al(N) © Alei(7) @ Aleilwr)) = All(A) ® Q = 0.

By induction on the dominance order, A(¢;(A)) ® @ has a standard filtration.

By induction on the degree, using Lemma [3.28| and Theorem [3.33] we have that
A(L;(N)®@A(Li(y)) has a standard filtration with subquotients of the form A(¢;(k))
with kK <\ + . Hence by inductive assumption, the middle term has a standard
filtration So by [I7, Proposition A2.2(v)], A(¢;(N\)) ® A(e;(p)) has a standard

filtration. ]

4.2. The Filtration

In view of Proposition we now fix i € I, A € Ay(n,d), ¢ € Z~ such that
d+ c <n, and set

A=A, po=(w,e).

We have highest weight vectors vy € A(X) and v, € A(p).
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Recalling the action of &,, on A(n) from (3.16)), we denote

Gr={0e6,|ocA=)}

Recall the notation. A=, .. ) forly >--- > 1, >0and ay,...,a, >0
with a; + -4+ ap =n then 6y =G, X -+ X G,,.
Let Q := {P C [n] | |P| = ¢}. The group &,, acts on {2 via oP =

{op1,...,0p.} for P ={py,...,p.} € Q and 0 € &,,. Denote

Epi=¢€p + -+ ep € A(n,c).

Note that o(ep) = e,p for all 0 € G,, and P € Q. We denote

W ={PeQ|A+ecpeAi(nd+c)}.

Given P ={py1,...,p.} and Q = {q1,...,q.} iIn Q, with 1 <p; <---<p.<n
and 1 < ¢ < -+ < q. < n, wewrite P < @ if and only if (p1,...,p:) < (q1,---,Gc)

lexicographically. This yields the total order on Q. Let Q\ = {Py, P», ..., P,} with

P ={1,2,...;c} < P<---<P.

The following is easy to see:
Lemma 4.4. Let 1 <r <t. Then
(i) P, is the minimal element of the orbit Sy - P,;
(i) Q=]_, &P,

29



Proof. Collecting equal parts, write A\ = (I{*,...,[*) for l; > -+ > [, > 0

and ay,...,a, > O witha; +--- +a, = n, so that 6, = G,, x --- x G,, and
Ay =1, 4], Ag :==[a1 + 1,a1 + asl, ..., Ay := [n — ai, + 1, n] are the orbits of &, on
[n]. Now P, @ € Q are in the same Sy-orbit if and only if |P N Ay| = |Q N Ay for
all s =1,...,k, and it is clear that each orbit has a unique element from €2, which

is the lexicographically minimal element of the orbit. [

Let P = {p1,...,pc} € Qwith p; < --- < p.. There is a unique tableau
T" ¢ Std™(u) with ™" = p - pand 2T = e$. We denote the corresponding

standard basis vector
e¢
Wp = Upp = npll---pc,12---c UIJ € A(#’)7

see ([3.24). Note that the vectors wp do not exhaust the standard basis of A(pu).

Lemma 4.5. Let v € A(n,c). If n,,o)A(p) # 0, then v is of the form ep and wp

spans Ny, ) A(p).

Proof. By (3.24)), (3.25), the weight space 7,,,)A(p) # 0 is spanned by the basis

elements v such that T € Std™ (p,¢;(v)). As p = ¢;(w.), we deduce, using the

property (c) of Definition [2.10| that T' = T'p for some P € €, i.e. vp = wp. O

For 0 € G,, denote
ti(o):=(1,...,1,0,1,...,1) € &L,
with o in the ith position. Recalling (3.17]), we have an element

E(ti(0)) = (€)% € T (n,c).
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Lemma 4.6. Let P = {py,...,p.} € Q withp; < -+ < p., and 0 € &,, such that

opy < -+ < 0Pec. Then gc(l’i(o—))wP = Wgop-

Proof. By definition of £, we have in T'(n, ¢):

c

(561‘)®c ef —
o nplmpc,lch - 770'p1"'0'p5,12'“c'

So

c

) c :
fc(Li<U))WP = (6?)(80 77;;~~pc712~~c Uﬂ = 770})1~-Upc,12--~c UH = Wop,

as required. O
Corollary 4.7. Let P € Q. Then T'(n,c)wp = A(p).

Proof. Write P = {p1,...,p.} with p; < ...p.. Take 0 € &,, with o(p,) = a for
a=1,...,c. By Lemma we have & (¢i(0))wp = wp
follows since T'(n, c)v, = A(p). O

¢} = Uy, and the result

.....

Lemma 4.8. We have T'(n,d+ ¢)(vx @ wp,) = A(A) @ A(p).

Proof. Returning to our normal notation, write A\ = (Ay,...,\,) with A\ > -+ >
A, > 0. Let h be maximal with A\, > 0, so I* = 1M ... h*. Since n > d + ¢, we

have P, ={h+1,...,h+c}.

By (3.24), A(A) is spanned by elements of the form nZ svx for (z,r, M e

Tri* (n,d). Let T' € Trig (n,d) with 7" ~ (z,7,1%), see (3.1). Then

(7] =1, (4.9)

since x = xe; € B, for all x € X (i), see (2.11)) and (3.11]).
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On the other hand, for (b,t,u) € Tri®(n, c), we have that e wp, = 0 unless
8 whi(ep,) = Mo, and, in view of Corollary 4.7, A(p) is spanned by all 7 ,wp, with
u~ (h+1)---(h+c).

Let (x,7,01) € Tri*(n,d) and (b,t,u) € Tri®(n,c) satisfy u ~ (h +
1)---(h+c¢),and T € Trif(n,d + ¢) be the initial triple with 7 ~ (xb, rt, [*u).
Let (7%, 72) € Spl(T) with T € TriZ (n,d) and T2 € TriZ (n,c). Suppose
T' = (a,v,8) # (z,r,1*). Since I* = 1M -..p» andu ~ (h+1)---(h + ¢),
we necessarily have that s, € {h+1,...,h + ¢} for some 1 < k < d. Hence

nriva = 0. Now, by Lemma and (4.9)),
nfgl)‘u(IUA ® wpt) = (nilkv)\) ® (n'guwpt>7

which implies the lemma. O]

For r =0,1,...,t, we denote
M, :=T(n,d){(vxQ@wp, |1 <s<r) CAAN)A(p).
In view of Lemma [4.8| we have a filtration
0=MyC M C--CM=AN®AQ). (4.10)

Our goal is to show that M, /M,_1 ~ A(¢;(A +€p,)) for all r = 1,...,¢, to get the

required standard filtration of A(X) ® A(p).

Lemma 4.11. If 1 <r <t and P € G, - P,, then vy ® wp € M,.
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Proof. Write P = {p1,...,p.} with p; < -+ < p.. Let 0 € &, be such that

oP, = P and op; < --- < op.. Note using Lemmas [3.26], and that
ox @ wp = £(&a(ti(0))va) ® (€e(ei(0))wp,) = £are(ti(0))(va @ wp,) € M,,

as required. O

Lemma 4.12. Let1 < r < tand E € Y(n,d+ ¢). If E(uvx @ wp,) & M,_4
then E = 1, (ztep)- In particular, M,/M,_; is a highest weight module of weight

Lz<>\ + &TPT).

Proof. Suppose E(vx @ wp,) & M,_1. Write E = Yp = ni{,TlT, with T € Stdy(u)

for some v € Al(n,d + ¢). By Lemma (3.12] V(nlzf,TlT) is a linear combination of

elements of the form nY ; ® 773{,/73, such that yy’ ~ y?. By Lemma [3.29] nésux # 0

only if y = e?, and 773;78,pr # 0 only if y' = €. We conclude that y¥ = ef*¢ and

d+c
so E can be written in the form F = nifs with r, < s, for all k.

If r, < s for some k, then in view of Lemma and Lemma E(vy ®
wp,) is a multiple of vy ® wp for some P < P,.. By Lemma P e S, P, for
some s < r, hence vy ® wp € My C M,_1 by Lemma , giving a contradiction.
So 1, = sg for all k. Then E is of the form 7, and E(vy ® wp,) # 0 implies
v=1t(Aep).

The second statement now follows from Lemma [2.16] O

Theorem 4.13. We have a filtration of T'(n,d + ¢)-modules

such that M,/M,_1 ~ A(t;(A+¢€p,)) forallr=1,...,t.
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Proof. We consider the filtration (4.10). By Lemma [4.12} each M, /M, _; is a
highest weight module of weight ¢;(A + €p.). Moreover, recalling that A = ¢;(\)
and p = ¢;(w.), by Theorem [3.33] we have

ch (AN @A) = > ¢l chALv) =) chAQi(A+ep,)),

veAy (n,d+e) r=1

where we have used Pieri’s rule for the last equality. Therefore, using linear

independence of characters, we get
t
dim (AA) @ A(p)) = > dim A(ei(A +ep,)).
r=1
An application of Corollary yields that each M, /M,_; must be isomorphic to

A(i(A+€p.)). O

Recall (2.6) and ((3.34)).

Corollary 4.14. Letn € Z~, d,c € Zso withd +c¢ < n, X € A (n,d), p €
Al(n,c) andv € AL(n,d + ¢). Then the tensor product A(A) @ A(p) has a

standard filtration, and
(A @ A(p) - Av)) = X -

Proof. The first statement follows from Proposition 4.2] and Theorem [4.13| The
second statement now follows from Corollary using linear independence of

formal characters. O]

By a symmetric argument (switching the roles of X and ) everywhere), we

also have the right module version of Corollary which claims that the right
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T(n,d + c¢)-module A°P(A) ® A°(u) has a A°P-filtration. In view of (2.19)), by

dualizing, we now get:

Corollary 4.15. Letn € Z~g, d,c € Zso withd +c¢ < n, X € AL (n,d), p €
AL (n,c) andv € AL(n,d + ¢). Then the tensor product V(A) @ V() has a

costandard filtration.

Remark 4.16. Note that in Theorem the factors of the standard filtration
are isomorphic to standard modules via even isomorphisms. Using this fact and

(an appropriate strengthening of) Proposition , one can similarly strengthen
Corollaries .14 and .15

4.3. The Case of Small n

Let d € Zso and n € Z-y. If n < d, the algebra T'(n,d) does not have to
be quasi-hereditary, but it still has a natural family of ‘standard’ and ‘costandard’
modules which play an important role. For example, if A has a standard anti-
involution then T'(n,d) is cellular with ‘standard’ modules being the cell modules,
see [I1, Lemma 6.25]. These ‘standard’ (resp. ‘costandard’) modules are obtained
by an idempotent truncation from the standard modules A(X) (resp. costandard
modules V(X)) over T'(N,d) for any N > d. This section explores this case.

Throughout the subsection we assume that N > n. In view of Lemma |3.22
we now always identify the algebras T'(n,d) and 1Y (d)T'(N,d)n™ (d). For
any T'(N,d)-module V', we consider 77 (d)V as a module over T'(n,d) =
' ()TN, d)nyy (d).

We always consider AL (n,d) as a subset of AL (N, d) by adding N — n
zeroes to every component A of XA = (A@, ... A®) € AL(n,d). Note that this

embedding is a bijection if n > d. However, when we consider A € Al (n,d) as an
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element of AL (N,d) the set Std™ (X) of standard X-colored A-tableaux changes, so
in this subsection we will use the more detailed notation Std:X (X) to indicate that
the entries of the tableaux are of the form r* with r» € [n]. We will also use the
more detailed notation A, (X) for the standard T'(n, d)-module A(X) which so far
has only been defined for all A € AL (n,d) when n > d. Recall from that for
n > d we have that A, () has basis {vy := Xpvy | T € Std:X (A)}.

Let N > d. Fix A € AL(N,d). Recall the idempotent n) (d) of . It is
casy to see that for T € Stda (M), we have

vp if T € StdX(N),
W der =4 A (4.17)

0 otherwise.

If n > d it follows from (4.17) that dim A, (A) = dim %’ (d)Ax(X). Since the
T (n, d)-module nY (d)Axn(A) is easily seen to be a highest weight module of weight

A, Proposition now yields an isomorphism of 7'(n, d)-modules
An(A) =17, () An(N). (4.18)
Now for n < d < N and A € AL (N, d), we define the ‘standard’ module
An(A) =5 (d)An(N).

By (4.18)), this definition does not depend on the choice of N > d. However, note

that some of the A,(A)’s might be zero. Define
P (n,d) == {X € AL(N,d) | StdY () # @},
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Note that 2 (n,d) does not depend on the choice of N > d. Moreover,
AL (n,d) € 2% (n,d) C AL(N, d),

with containments being equalities when n > d. By (4.17]), we have:

Lemma 4.19. Let N > d > n and A € AL(N,d). Then A,(X) # 0 if and only if
A€ 2¥(n,d).

The story for the costandard modules V,,(A) := 1’ (d)Vx(A) is entirely
similar, the non-zero ones being labeled by &Y (n,d) = {A € AL(N,d) |

StdY (\) # @}.

Theorem 4.20. Let A € P (n,d) and p € P (n,c). Then the T(n,d + c)-
module A, (X) @ A, () has a filtration with factors of the form A, (v) with v €
PE(n,d + c). Similarly for X € P (n,d) and p € P (n,c), the T(n,d + c)-
module V,(X) @ V() has a filtration with factors of the form V,(v) with v €
PY (n,d+c).

Proof. We prove the result for the A’s, the proof for V’s being similar. Choose
N > d + c. By Corollary .14 An(A) ® An(p) has a filtration with factors of the

form Ay (v) with v € AL(N,d+ ¢). Applying the exact functor
T(N,d+ c)-mod — T(n,d + c)-mod, V + nXN(d)V

to this filtration and using Lemma [3.23] we get the required result. ]
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CHAPTER V
EXAMPLES OF RINGEL DUALITY
In this chapter, we will prove that the extended zigzag Schur algebra is

Ringel self-dual. This chapter contains previously unpublished co-authored

material that appears in [2].

5.1. The Extended Zigzag Algebra

In this subsection we work over k. Fix ¢ > 1 and set [ := {0,1,... ¢},
J :=1I\{l}. Let I' be the quiver with vertex set I and arrows {a; +1,a;41; | J € J}

as in the figure below:

FIGURE 1. Extended Zigzag Quiver

4—2,0—1 a,e—1

a1,0 32,1 a3,2
0e 1@ 20

L—-1@ A ]

D A A N D P

ap,1 a1,2 a3 Y—2.4—1 ag—1,e

The extended zigzag algebra Z is the path algebra kI' modulo the following

relations:
1. All paths of length three or greater are zero.
2. All paths of length two that are not cycles are zero.
3. All length-two cycles based at the same vertex are equivalent.

4. agp_1a-10=0.
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Length zero paths yield the standard idempotents {e; | ¢ € I} with e;a; je; = a; ; for

all admissible ¢, 7. The algebra Z is graded by the path length:

Z1=72"07'¢ 7>

We consider Z as a superalgebra with

Zo=2®7> and Z7=7"

Define c; := aj 113,41, for all j € J. The algebra Z has an anti-involution 7 with
T(ei) = €, T(aij) = aji, T(Cj) = Cj.
We consider the total order on I given by 0 <1 < --- < {. For € I, we set
{ei, ai,Li} if 7 > 0, {ei, 31'71;1} if i > O,

X(i) == Y (i) = (5.1)
{eo} if 1 = 0, {eo} if 1 =0.

With respect to this data we have:

Lemma 5.2. [5, Lemma 4.14] The graded superalgebra Z is a basic based quasi-
hereditary with conforming heredity data I,X,Y and standard anti-involution 7.
For the corresponding heredity basis B we have B1 = {a; 11,341, | 7 € J}, Ba =

{e;liel}, Bi={c;|je J}

For i € I, let L(7) = k - v; with |v;| = 0 and the action e;v; = v;, bv; = 0 for
all b € B\ {e;}. This makes L(i) a Z-supermodule, and, up to isomorphism, {L(i) |
i € I} is a complete set of irreducible Z-supermodules (recall that we allow for
odd isomorphisms). The standard modules A(7) have similarly explicit description:
A(0) = L(0), and for i > 0, A(z) has basis {v;,w;_1} with |v;] = 0, |w;_4| = 1
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and the only non-zero actions of elements of B are: e;v; = v;, ;_1w;_ 1 = w;_q,
a;—1,V; = w;—1. Dually, V(0) = L(0), and for ¢ > 0, V(¢) has basis {v;,w_;} with
[vi| = 0, [wi_;| = 1 and the only non-zero actions of elements of B are: e;v} = v},
€1W;_1 = W;_q, 3j,—1W;_1 = V;.

Moreover recalling Proposition 2.8] we may describe the partial tilting
modules as well. We have T(0) = L(0) = A(0) = V(0) and we claim that

T(i) = [1Ze;_; for i > 0. We will prove the following

Lemma 5.3. Fori > 0, there is an even isomorphism of Z supermodules Ze; 1 >~

T (i).

Proof. Observe that Zey has basis {ep,a1,0,¢o}; and, for i > 1, Ze;_; has basis
{ei—1,3i-24-1,3;i-1¢;_1}. With these bases it is easy to see that for all i > 1, Ze;
has a standard filtration with IIA(:) C IIT(¢) and TIT(4)/IIA(i) ~ A(i — 1); and
a costandard filtration with V(i — 1) C IIT(¢) and IIT(2)/V(i — 1) ~ IIV (7). For
example, ITA(i) = spany{a;;—1,¢;—1} for i > 1, and this easily checked to be a
submodule. The other subquotients are all found similarly.

So, Ze;_1 is a tilting module, and since it is indecomposable, it is a partial
tilting module. Since the largest j such that (Ze;_; : A(j)) > 0isj = 4, it
follows that Ze;_; is isomorphic to T(i). However, T(i) has A(i) as a submodule,

not ITA(7). Hence Ze; 4 ~ IIT(i). O

It will actually be more convenient for us to work with the tilting modules
IT(:). Thus IIT(0) = TIL(0) is 1-dimensional with basis {vo} where |vo| = 1, and

for 7 > 0, we fix the basis for IIT (i) from the proof of Lemma[5.3]
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We have a full tilting module

T:= Pur() (5.4)

i€l

and the Ringel dual algebra Z' := Endz(T)°®. For any i € I,let ¢; : IIT(i) — T
and m; : T — IIT(i) be the natural embedding and projection. Observe that for
all ¢, ¢; and m; are even homomorphisms. We have the right multiplication maps
Pe, : Le; — Ze;, pa,, : Ze; — Ze;, which are odd homomorphisms. Let f : IIT(0) =
IIL(0) —=IIT(1) = Zey be the embedding given by vy +— cg, and let g : IIT(1) =
Zey — IIT(0) = IIL(0) be the surjection such that ey — vg. Observe that both f

and g are odd homomorphisms. Define the following elements of Z’:
o ¢ :=m_,; forall i el
® C, :=1/_;0p ., om_; foralliec J;

/ R . . / — . R
A1, 7= L—i O Pag i 5y ©Te—i—1 AN ;44 1= Lg—i—10 Pa, , ,, ; , © T, for

alli=0,...0—2

! = / —
® 3y, :=wuofomanday ;,:=1o0gom.

Notice that for all admissible i, the €, and ¢} are even homomorphisms, and the
aj+1,; are odd.

Observe that Z’' has basis given by
{eé liel}U {aé,i+laa;+1,iacli i€ J}
The following is now easy to check:
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!/

;o . .
ij» Ci P> C; s an isomorphism of

Lemma 5.5. Mapping e; — €}, a;; — a

superalgebras Z —= Z'. In other words, Z is Ringel self-dual.

We now aim to describe the structure of T as a right Z’-module, which will
be fundamental in proving the Ringel self-duality of the extended zigzag Schur
algebra, see §[5.3

We use the isomorphism Z — Z’ of Lemma to transport the heredity
data I, X,Y from Z onto a heredity data I’, X", Y’ for Z’ so that I' = I with the

same order, and

OTEE S RV P Bl
{et} ifi =0, {eb} if i =0.

(We point out that this heredity structure on the Ringel dual is different from the
one coming from [I7, A4] where the partial order on I is opposite to the original
one.) With this hereditary data, we have the right modules L'(3), A’(:), V'(i) and
T'(i). For example, T'(0) >~ L'(0) (with €} acting as d;;id) and T'(i) ~ Ilej_,Z’ for

i > 0. Then it is easy to check that, as a right Z’-module, T decomposes as follows:

Ty = @ T (i),

iel
where the summands are defined explicitly as follows:
o IIT'(0) =k-agey CZepy =IIT(C) C T;

e IIT'(¢) = spany(vo, €9, Co,a01) C IT(0) @ IIT(1) @ IIT(2) C T (dropping ap; if
t=1);
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o for fori ¢ 0,4, we set IIT'(i) = spany(es—;, ap—io—i—1,a0—i—i+1,Co—i) <

NTl—i+ 1)@ IIT{ —i) @ IUT( —i+2) C T (dropping as_; s+ if i = 1).

Obviously T is an (Z,Z’) bimodule. Recall the subalgebra a = span(B,) =
spany(e; | ¢ € I) € Zg and the analogous subalgebra a’ = spany (e} | i € I) C Zj,.
We have k-module decomposition Tg = T, & T, where T, = span,(e; | j € J) and
T, = span(c; | j € J), making T into a calibrated k-supermodule. Then it is clear

from the explicit construction above that

a-(T.) - C T (5.6)

And so, T, is both a left (Z, a)-calibrated supermodule and a right (Z’, a')-
calibrated supermodule. For any ¢ € I, we make IIT(7) into an (Z, a)-calibrated

supermodule by setting

OT(i)g :==UT(i)NT, and IT(:) :=1T3GE)NT..

Similarly, we make IIT'(7) into an (Z’, a’)-calibrated supermodule by setting

IT(i)e =T ()N Te and HOT(i) ;= OT'()) N Te.

5.2. The Extended Zigzag Schur Algebra

Throughout the rest of the chapter, fix d € Z>g and n € Z-y with d < n.
In this section we will need to work over R and F at different times, so we will

be specific about the base ring, using subscripts. First we work integrally, so we

begin with the algebra Zg over R and its tilting module Tg constructed in § [5.1}
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Applying the construction of § to the algebra Zp (and extending scalars to )
we get the extended zigzag Schur Algebra T?(n,d) :=F @z T?(n, d)g.

As per § , T%(n,d) is based quasi-hereditary. We will now construct a full
tilting module for T%(n, d) using the tools of § .

Recall that Tg is also a right module over the Ringel dual Z/,, and recall
the constructions of § . In particular, we have the left M, (Zg)-module
structure on Col,,(Tg) and a right M, (Z%)-module structure on Row,,(Tg). As in
§ , we make these into calibrated R-supermodules by setting. Col,,(Tg)q :=
Col,(Tg,e) and Row,(Tg)a = Row,(Tga). In fact, by (5.6)), we have that
M,(a)Col,,(Tg)es € Col,(Tg)s and Row,(Tgr)sM,(a) € Row,(Tg),. Thus
Col,(Tg) is a left (M,(Zg), M, (ag))-calibrated supermodule, and Row,(Tg) is a
right (M,,(Z);), M, (a’y))-calibrated supermodule.

So by Lemma m (and its right module analogue), the modified divided
power I'? Col,,(TR) is a left module over T%(n, d)z and the modified divided
power T Row,,(Tx) is a right module over 7% (n, d)g. Similarly, for every i € I,
we have left TZ(n, d) g-modules T'* Col,,(ITT () g) and right T% (n, d) z-modules

Row,, (IIT'(i)gr). Extending scalars, we have a left module

T :=F @5 4 Col,(IIT(i)r)

over T%(n, d). These modules will be vital in constructing a left full tilting module
for T#(n,d). However, all subsequent left-sided results about column modules have
right-sided analogues for row modules, which are proven in an identical way. We
will not prove these results, but we will mention them when they are needed.
Recall that for d < n, the algebra T%(n,d) is quasi-hereditary with respect

to the poset AL (n,d) with partial order <;, so it has its own standard modules
74



{AN) | X e Al(n,d)}, costandard modules {V(A) | A € Al(n,d)}

and indecomposable tilting modules {T(A) | A € Al (n,d)}. Moreover, by
[T, Proposition 6.20], the anti-involution 7 on Z extends to the anti-involution
Tna @ T?(n,d) — T%(n,d), n2, — na?) where for b = by ---by € B? we denote

7(b) := 7(by) - - - 7(bg). We then have for all A:
A(A)™4 ~ V(A) (5.7)

Since Tp.a(nu) = n, for all p € Al(n,d), we deduce:
Lemma 5.8. For all X € AL (n,d), we have ch A(X) = ch V().

Proposition 5.9. The left T?(n,d)-module F,¢ is tilting and has highest weight

Li(1%) (with respect to <;).

Proof. Suppose first that i = 0. Since ¢o(1¢) is minimal in A} (n,d) it follows that
T(e0(1%)) =~ A(eo(1%)) =~ L(to(1%)). Using the assumption d < n, we note that F;?
is a highest weight module of weight ¢o(1%) (see Definition [2.15), and thus using

Proposition we deduce that
o' 2= T(w((1)) = Alw((1))- (5.10)

We point out the parity of isomorphism J¢ — T(to((1¢))) depends on the parity
of d. Indeed, the highest weight vector in .7 is v§'?, whose parity is the same as
the parity of d.

Let now i > 0. Since IIT(i)g = Zge;—1, we have Col,(IIT(i)g) ~ Mn(Zr)&1 ",

and so by Lemma [3.52] we have

yd ~ TZ d eg—l _ TZ d
i <n7 )nldﬂd - (nu )nbifl(d)' (511)
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In particular, 7% is projective, and thus has a standard filtration. To prove that
Zd also has a costandard filtration, it suffices to show that it is 7, 4-self-dual, or
equivalently possesses a non-degenerate 7, 4-contravariant bilinear form.

To construct this form we work over R, and apply the tools of § [3.4.2]
Recall that for i > 1, we have [IT(i)s = Zge;_; has basis B'T(®

{ei~1,¢i—1,3;-24-1,3;,-1}. Consider the bilinear form (-,-) on IIT(i)g such that
(61717 Cifl) = _(Ciflyeifl) = (aifZ,ifla 3172,171) = (ai,ifla ai,i71> =1

and all the other pairings of basis elements are 0.

Note that that this form is non-degenerate and 7-contravariant (and
superskewsymmetric). Extending this form in the obvious way to Col, (IIT(i)g)
results in a non-degenerate 7, j-contravariant form again denoted (-, -).

Notice that setting Bi ') = {ei_1}, BITO — {c;_1}, and B?T(i) =
{a; 94 1,3;51}, the basis BUT® = BEW) L BT B?T(i) satisfies the hypotheses
of Lemma with respect to the form (-, -).

Denote by v® € Col,(IIT(i)) the column vector with b € IIT(i)g in the rth
position and Os elsewhere. Then the set {v® | r € [n],b € BYT®} is a basis for
Col,(IIT(i)g). It is clear that this also satisfies the hypotheses of Lemma with
respect to the extended form (-, -).

So applying Lemma , we see that (-, -). is a superskewsymmetric, non-
degenerate, 7, 4-contravariant form on I' Col,, (TIT(i)g). Extending the scalars
to F, we deduce that, 7% is 7, 4-self-dual. In particular, this proves that Z% is a
tilting module.

To see that the highest weight of 7% is as claimed, observe that the highest

. . . QA i— g i—
weight vector a;;—; € IIT(i)g is odd, and so the vector v;"" ™" % -+ % v

76

S



I Col, (IIT(7) g) of weight ¢;(1?) has the highest left weight possible among the
weight vectors of I'Y Col,, (IIT(i)z). This completes the i > 1 case.
The case i = 1 is similar to the case ¢ > 1 but IIT(1)g = Zgey has basis

BT = fey, ¢y, a1}, and we use the form such that

(€0, o) = —(co,€0) = (a1,0,a10) =1

are the only non-trivial pairings of basis elements. From here, the proof is identical

to the above case. O]

Now consider M, (Tg) as an (M,(Zg), M,,(Z’;))-bimodule in the obvious way.
Taking M, (Tg)s == My(Tgra) and M, (Tg). := M, (Tg,) we make M, (Tg) into
both a left (M, Zg, M,(ag))-calibrated supermodule and a right (M, Z, M, (a%;))-
calibrated supermodule. Since the left action of M,(Zg) and the right action of
M,,(Z;) commute, in view of Lemma [3.4§ (and its right module analogue), the
modified divided power ['YM,,(Tg) is a (T%(n, d) g, T% (n, d) g)-bimodule. We now

extend the scalars from R to F to get the (T%(n,d), T% (n, d))-bimodule
y =T QR fdMn(TR)

The rest of this section is dedicated to proving that .7 is a left full tilting module
for T%(n, d). However, we recall that all of the left-sided results have right-sided
analogues, so our proofs will also serve to show that .7 is a right full tilting
module for 7% (n, d).

For each composition p € A(n,d) define 7" .= 7" ®---®.Z"". Furthermore,
for each multicomposition g = (u@, ..., u®) € Al(n,d) define TH := 90“(0) R ®

gn
g .
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Recall that Tr ~ @, IIT(i)r. So, as left modules over T%(n, 1)gr = M,,(Zr),

we have

M, (Tr) ~ Col,(Tx)®" ~ &5 Col,, (IT (i) )"

iel
Now, using Lemma [3.50| and the decomposition [5.4] and extending scalars, we have

as left T%(n, d)-modules:

T~ B T~ (5.12)

pEA! (n,d)

For A= (A® ... \®) ¢ AL (n,d), we define the conjugate multipartition
N o= ((AOY L (A9Y) € AL (n, d). (5.13)

Proposition 5.14. As a left T*(n,d)-module, 7 is a full tilting module.

Proof. Note that each J* is tilting by Proposition [5.9 and Theorem [4.1] So

T is tilting by . To show that .7 is full tilting, it suffices for each A €
AF(n,d) to find a summand Z* in (5.12)) which has highest weight A. Fix
A=A A9) € Af(n,d) and take p = X'. By Proposition again, the

highest weight of .7 is ¢;(1°) for each s € Z~,. So

is the highest weight of J#. ]

Corollary 5.15. As a left T?(n, d)-module and as a right T% (n, d)-module, 7 is
faithful.

Proof. As a left T%(n,d)-module, .7 is faithful since it is full tilting by

Proposition (a full tilting module is faithful for example by [22 Lemma 6]).
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The second statement follows similarly from the right module analogue of that

proposition. O]

We point out the right-sided formulation in Corollary because we will

need it in the next section.

5.3. Extended Zigzag Schur Algebra is Ringel Self-Dual

In view of Corollary [5.15 we have an embedding of 7% (n,d) into

Endrz(, 4)(7)°. To prove that this embedding is an isomorphism, we now count
the dimension of Endyzz, (7).
Recalling (3.13)), for A € AL (n,d) and p € Al(n,d), let

Faw = | St (A, )]
By , and Lemma , we have
kx,p = dimn,A(X) = dimn,V(A). (5.16)
Let 7 € I. If i # 0, we define
Bi(d, ) := vima((s) + ((177)) € AL(n,d)

for all 0 < s < d We also define

Bo(d, 0) := ¢o((1%)).
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We define by Z4; to be the set of all 3,(d, s)’s, i.e.

{Bi(d,s) | 0<s<d} ifi#0,
{50(d> 0)} if¢ = 0.

—_

=
S =

Lemma 5.17. Let 3 € Al (n,d) andi € I. Then

L if B eZay

0  otherwise.

Proof. By (5.10), we have Z% = A(1o((1%))), so we may assume that i # 0. Then

by , we have 7% ~ T'(n,d)n,, (). Now, using and , we get

(Z%: A(B)) = dim Homy, q)(Z, V(B))
= dim Homy, 0y (T'(n, d)1,_ (2, V(B))
= dimn,,_, (4 V(B)

= K1 ((a))-

It remains to observe that kg,, ,(q) = 1if B8 = B;(d, s) for some 0 < s < d and

k,@,bi_l((d)) = 0 otherwise. O

Let 0 < r < d. Recalling (3.34)), our next goal is to compute the Littlewood-
Richardson coefficient ¢} 4 for all X € Al (n,d), a € A} (n,d—r) and B € Z,;. Let
i€l and B =0(rs) € Z,,, in particular, 0 < s <r, and s = 0 if i = 0. We define
Q3 to be the set of all a = (@, a®) € AL(n,d — r) such that o) = A\ for

all j ¢ {i —1,i}, [@%Y] is obtained from [A*~V] by removing s nodes from distinct
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columns, and [a(?] is obtained from [A®)] by removing r — s nodes from distinct

rows (if i = 0, then the condition on [a("~1] should be dropped).

Lemma 5.18. Let 0 <r <d,i € I, A € AL (n,d), a € N (n,d—7r) and B =Z,,.
Then

- A
B I ifaeQy
Coap =
0 otherwise.

Proof. Recall these Littlewood-Richardsoon coefficients from (3.34)). The result is

an immediate consequence of the Littlewood-Richardson rule. O]

For each p € A (n,d), define @ = (Z©,... . %5 ®) € Al(n,d) by setting

@ = ) for all i € I. Recall the conjugate multipartition from (5.13).

Proposition 5.19. Let X € Al (n,d) and p € A (n,d). Then (T : A(N)) =

k’i,fﬁ .

Proof. We proceed by induction on the number of non-zero parts of p. To start
the induction, we suppose that u has only one row, in which case # = 74 for
some 4, and the result follows from Lemma [5.17 So we may assume that p has at
least two rows (possibly in different colors).

Now let i be maximal such that ¥ # @ and pick the largest ¢ such that

ugi) # (0. Denote r := ugi). Let v® be u® with last non-zero row removed, i.e.:
v @ i= (i, .0, 0) € Aln, || = r),

and v\ = pW for all j # 4. Set v := (v©,... v®¥) € Al(n,d — r). Then by

definition, T* = 7Y ® J;".
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By (5.1)), we have X(0) = {eo} and X(i) = {e;,a;-1,} for i # 0. Recalling
§ , for i # 0, we put the total order on @%; given by: 1% < ... < nf <
1Pi-ti < oo < p®-tis And we endow @ (o) with the order 1% < ... < n®.

By Corollary the inductive hypothesis, Lemma and Lemma [5.18

we have

(TF:AN) =(T"® T A(N))

= > D AT A@)(TAB)

aeAl (n,d—r) BeAl (n,r)

= Z Z Cg,gka',v

o¢6/\£L (n,d—r) BEEr;

- Y X ke

ﬁEET,i aEQg

=Y > Istd¥(a’, v).

ﬁEEr,i ang

%
Since kg, & = | Std*( A, §z)| it remains to prove that there is a bijection

L] | ] sta(&, ) = s (X', ).

i A
Be X OLEQB

Suppose @ = 0. Recall that =,.o = {¢o(1")}. Observe that Qf})(lr) is the set
of all & € Al (n,d) such that a = ¢o(e), for @ € Ay (n,d) with [o] obtained from
[AO] by removing r nodes from distinct rows. This condition is met if and only if
the (¢)-component of [&'] is obtained from the (£)-component of [i’] by removing

r nodes from distinct columns. So the bijection

L] ] st¥&@. %)= || s\, ).
BEE,; cxeflg acOr

to(17)
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follows from the classical argument. We don’t repeat it here, since it is an easier
version of the argument that follows for the ¢ > 0 case. So we move on to the next
case.

Now suppose ¢ > 0. Let 8 € =, a € Qg and T € Stdx(a’, t)
By definition, 3 is of the form 8,(r, s). Moreover, the Young diagram [c] is
obtained by removing s nodes from distinct columns of the (i — 1)-component
[A], and removing 7 — s nodes from distinct rows of the (i)-component [A®)] of
[A]. Therefore [&'] is obtained by removing s nodes Ny, ..., N, from distinct
rows of the (¢ — i + 1)-component of [i’] and r — s nodes My, ..., M,_ from
distinet columns of the (¢ — i)-component of [i’ ]. Now extend T to the tableau

S <
T € Std*( X/, <ﬁ) by setting
T(Nl) — .. = T(NS) — $30—il—it1 and T(Ml) = ... = T(Mr—s) — i

The tableaux T is indeed standard since, by maximality of ¢ and ¢, we have

T(N) < t2-ie=i+t for all N in the (¢ — i + 1)-component of [&'] and T(N) < t*-
for all N in the (¢ — i)-component of [&’]. The map T + T is clearly injective.
To see that it is surjective, it suffices to show that for any S € Stdx(i’ , fE) there

exists B € Z,;, and a € Qg with

NNV S(N) € i, ey = &)
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Indeed, there are exactly %yﬂ') = ,ugi) = r nodes N in the Young diagram

%
A'] such that S(N) € {te-i, t>-it=i+1}. So for some 0 < s <7, we can write

[

(N € [N]| S(N) = -1} = [N, ..., N},

(N e[N]|S(N) =t} = {M,, ..., M,_,)}.

By maximality of 7 and ¢, we have that the nodes Ny, ..., N are at the ends of
H
distinct rows of the (¢ — i + 1)-component of [A’] and the nodes M, ..., M,_, are
%
at the ends of distinct columns of the (¢ — i)-component of [ A’]. It remains to note

that removing these nodes produces a shape [E’] with a € Qg

'L(Tvs).

Theorem 5.20. Let d < n. We have Endyz(, 4(7)° = T%(n,d). In particular,

T%(n,d) is Ringel self-dual.

Proof. By Corollary [5.15, T#(n, d) embeds into Endzz, 4)(7)°. So it suffices to

show that dim T%(n, d) = dim Endrz(, 4 (7).
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In view of (5.7), we have that each T* is 7, 4-self-dual and (T* : A(X)) =
(T V(X)) for all X € AL (n,d). We now have:

dim Endyzq) ()= > dimHomgq(T*, 7)

IJ,J/EAI (Tb,d)

= Y 3 (T AT V)

AeAl (n,d) prer(n,d)

= Y3 (7 AT AW)

AeAl (n,d) p.reA! (n,d)

=D DR D e ops

AeAL (n,d) preAT (n,d)

= > > kaukaw

AeAl (n,d) pveN (n,d)

= dim T%(n, d),

where we have used (5.12)) for the first equality, (2.6]) for the second equality,
Proposition for the fourth equality and [I1, Theorem 5.17] for the last

equality.
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