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DISSERTATION ABSTRACT

Elijah Bodish

Doctor of Philosophy

Department of Mathematics

June 2022

Title: Diagrammatic Representation Theory of the Rank Two Symplectic Group

We study the diagrammatic representation theory of the group Sp4 and the

quantum group Uq(sp4), expanding on the previous results of Kuperberg about

type B2 = C2 webs. In particular, we construct a basis for an integral form of

Kuperberg’s web category. Using this basis we prove that the Karoubi envelope of

the C2 web category is equivalent to the category of tilting modules Tilt(Uq(sp4)).

We also use the basis to give recursive formulas for the idempotent projecting

to a top summand in a tensor product of fundamental representations. Finally,

using our result about the equivalence between Kuperberg’s web category and

Tilt(Uq(sp4)), we prove that when [3] = 0 or [4] = 0, the semisimple quotient of

Uq(sp4) is equivalent to Rep(O(2)).

This dissertation contains previously published material.
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CHAPTER I

INTRODUCTION

This chapter contains previously published material. The material in Section

1.1. appeared in [11]. The material in Section 1.2. appeared in [12]. Also, Section

1.4. contains material from [11, 12].

1.1. Diagrammatics for Tilting Modules

Let g be a complex semisimple Lie algebra and let Rep(g) denote the

category of finite dimensional modules for g. By Weyl’s theorem on complete

reducibility Rep(g) is a semisimple category, so as an abelian category Rep(g) is

determined by the number of its simple objects. Since isomorphism classes of finite

dimensional irreducible g-modules are in bijection with the countably infinite set of

dominant integral weights X+, Rep(g) ∼= Rep(g′) as abelian categories, for any two

semisimple Lie algebras.

A Lie algebra acts on the tensor product of two representations, so Rep(g)

is a monoidal category. Viewing Rep(g) as a monoidal semisimple category, we

capture much more information about g (the amount of information can be made

precise through Tannaka–Krein duality). One then may ask for a presentation by

generators and relations of the monoidal category (Rep(g),⊗). A modern point of

view on this problem is to find a combinatorial replacement for Rep(g) and then

use planar diagrammatics to describe the combinatorial replacement by generators

and relations.

By combinatorial replacement, we mean a full subcategory of Rep(g)

monoidally generated by finitely many objects, such that all objects in Rep(g)
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are direct sums of summands of objects in the subcategory. We will focus on

the combinatorial replacement Fund(g), which is the full subcategory of Rep(g)

monoidally generated by the irreducible modules V ($) of highest weight $ for all

fundamental weights $. Note that Fund(g) is not an additive category.

We use the terminology g-webs to refer to a diagrammatic category equivalent

to Fund(g). The history of g-webs begins with the Temperley–Lieb algebra

[40, 48] for sl2 and Kuperberg’s “rank two spiders” [31] for sl3, sp4
∼= so5, and

g2. D. Kim gave a conjectural presentation for sl4-webs [29], and then Morrison

gave a conjectural description of sln-webs [36]. Proving that the diagrammatic

category was equivalent to Fund(sln) proved difficult, but was eventually carried

out by Cautis, Kamnitzer, and Morrison using skew Howe duality [16]. Recently a

conjectural description of sp6-webs has appeared in a preprint by Rose and Tatham

[39].

The Lie algebras g for which there are g-web categories which are known to

be equivalent to Fund(g) are

g ∈ {sln, gln, sp4
∼= so5, g2}.

Each of these g-web categories has a q-deformed integral form, which we denote by

Dg, over Z[q, q−1] (or some localization). On the representation theory side we have

Lusztig’s divided powers form of the quantum group, denoted UZq (g). This algebra

has modules V Z($), which are lattices inside V ($), for each fundamental weight.

One should keep in mind that these lattices may not be irreducible after scalar

extension to a field. The full subcategory monoidally generated by the modules

V Z($) will be denoted Fund(UZq (g)).
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Let k be a field and let q ∈ k×. We can specialize the integral versions of

both the diagrammatic category and the combinatorial replacement category to k.

It is natural to ask if these two categories are equivalent [5, 5A.4]. Taking all sums

of summands of objects in Fund(k ⊗ UZq (g)), one obtains the category of tilting

modules Tilt(k ⊗ UZq (g)). So a positive answer to this question means we have

found generators and relations for the monoidal category of tilting modules.

For g = gln an answer to this question appears in a paper of Elias [7]. Using

ideas from Libedinsky’s work [34] on constructing bases for maps between Soergel

bimodules, Elias constructs a set of diagrams, denoted LL and referred to as double

ladders, in the Z[q, q−1]-linear category Dgln . There are two main arguments in [7].

First, a diagrammatic argument shows that LL spans the category over Z[q, q−1].

Second, Elias describes a functor Γ : Dgln → Fund(UZq (gln)) and proves that Γ(LL)

is linearly independent. After observing that the ranks of homomorphism spaces in

Fund(k ⊗ UZq (gln)) are equal to #LL [19], it follows that the diagrams k ⊗ LL are

a basis for k⊗Dgln and the functor k⊗ Γ is an equivalence.

The category we focus on in is the sp4 web category, which we denote by Dsp4 .

We recall the definition here using the convention that [n]v :=
vn − v−n

v − v−1
and [n] :=

[n]q ∈ Z[q±1].

Definition 1.1..1. The category Dsp4 is the strict pivotal Z[q, q−1, [2]−1]-linear

category generated by two self dual objects, with morphisms generated by

(1.1..1)

subject to the following relations.

3



= − [6][2]

[3]
(1.1..2)

=
[6][5]

[3][2]
(1.1..3)

= 0 (1.1..4)

= −[2] (1.1..5)

= 0 (1.1..6)

=
1

[2]
+ − 1

[2]
(1.1..7)

We will refer to these relations as the circle relations, the monogon, bigon,

and trigon relation, and the H ≡ I relation.

Kuperberg proved [31] there is a monoidal equivalence k ⊗ Dsp4 → Fund(k ⊗

Uq(sp4)), when k = C(q) and when k = C and q = 1. Our goal is to prove this

equivalence with as few restrictions on k and q as possible.

The arguments in Chapter II are completely indebted to Elias’s approach, and

the basis we construct for Kuperberg’s Dsp4 webs is the analogue of Elias’s light

ladder basis for sln-webs in [7]. However, our arguments take less effort, since we

can use Kuperberg’s result [31] that non-elliptic webs span Dsp4 over Z[q, q−1], and

are a basis for Dsp4 over C, when q = 1. Most of our work is to carefully construct

an explicit functor Ξ : Dsp4 → UZq (sp4)−mod.

The following theorem is our first main result in Chapter II.
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Theorem 1.1..2. If k is a field and q ∈ k× is such that q + q−1 6= 0, then the

functor

Ξ : k⊗Dsp4 −→ Fund(k⊗ UZq (sp4)).

is a monoidal equivalence, and therefore induces a monoidal equivalence between the

Karoubi envelope of k⊗Dsp4 and the category Tilt(k⊗ UZq (sp4)).

Remark 1.1..3. The reader who is already well acquainted with [31] may wonder

why we are talking about type C2 and sp4, instead of type B2 and so5. This

certainly makes no difference classically, since sp4(C) ∼= so5(C). For the purposes

of this paper there is no difference over other fields either. Under our hypothesis

that q + q−1 6= 0 (note that this includes the possibility that q = 1 and k is

not characteristic two), there is an isomorphism k ⊗ UZq (sp4) ∼= k ⊗ UZq (so5), as

well as an equivalence between k ⊗ Dsp4 and the base change from Z[q, q−1] to k of

Kuperberg’s B2 spider category.

We chose C2 over B2 hoping it would prevent confusion, since the defining

relations in Dsp4 are slightly different than the relations in Kuperberg’s B2 spider.

The following result is a consequence of Theorem (1.1..2), and is new even if

k = C and q = 1 or if k = C(q).

Theorem 1.1..4. Let k be a field and let q ∈ k× so that q + q−1 6= 0. The double

ladder diagrams defined in Section 2.6. form a basis for the morphism spaces in

k⊗Dsp4.

Remark 1.1..5. As we have already mentioned, Kuperberg’s B2 web category is

spanned by the same non-elliptic diagrams over Z[q, q−1]. The work of Sikora–

Westbury [43] proves that these diagrams are linearly independent whenever
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q + q−1 6= 0. Although their techniques are quite different than ours and certainly

are worth studying, their result is a consequence of ours.

Suppose that one could show that either double ladder diagrams span or are

linearly independent. Since the number of double ladders is equal to the number of

non-elliptic webs, the result from [43] would imply that the double ladder diagrams

are a basis.

However, it is not possible to obtain Theorem (1.1..2) with just their

result. Even though their paper and some basic representation theory imply the

dimensions of homomorphism spaces in k ⊗ Dsp4 and Fund(k ⊗ UZq (sp4)) are

equal, it is not enough to deduce that k ⊗ Ξ is an equivalence. The difficulty is

best illustrated via analogy: the lattice Z becomes a one-dimensional vector space

after base change to any field, but the map Z x7→2x−−−→ Z is not an isomorphism after

tensoring with a field of characteristic two. We really need to know that the map

k ⊗ Ξ is an isomorphism and to do this we must explicitly construct and analyze

the functor Ξ.

1.2. Triple Clasp Formulas

Let g be a semisimple Lie algebra. Fix a dominant integral weight λ. We

can uniquely write λ =
∑

$ λ$$, where the $ are fundamental weights. The

irreducible representation with highest weight λ, denoted V (λ), occurs with

multiplicity one as a direct summand in the tensor product

⊗
$

V ($)⊗λ$ , (1.2..1)
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and all other irreducible summands are isomorphic to V (µ), with µ < λ in

the dominance order. Moreover, the isomorphism class of the tensor product is

unaffected by the order of the tensor factors in Equation (1.2..1). For any sequence

of fundamental weights: $i1 , $i2 , . . . , $id , we refer to

V ($i1 +$i2 + . . .+$id) ⊂ V ($i1)⊗ V ($i2)⊗ . . .⊗ V ($id) (1.2..2)

as the top summand.

We will use Kuperberg’s type B2 = C2 webs to give a recursive description

of the idempotent projecting to the top summand in an arbitrary tensor product of

fundamental representations of sp4. Our formulas are the sp4 analogue of Elias’s

conjectural recursive formulas describing the idempotent projecting to the top

summand for sln [7].

Given a tensor product of fundamental representations so that V ($1)

occurs a times and V ($2) occurs b times, we will write V (a, b) to denote the top

summand. In [30], Kim gives formulas for the sp4 clasps projecting to V (a, 0) and

V (0, b). The main result of Chapter III is a recursive triple clasp formula for the

idempotent projecting to V (a, b).

7



Theorem 1.2..1. Let an oval with (a, b) label denote the idempotent with image

V (a, b), then

a+ 1, b = a, b − 1

κ(a,b),(−1,1)

a, b

a, b

a− 1, b+ 1

− 1

κ(a,b),(1,−1)

a, b

a, b

a+ 1, b− 1 − 1

κ(a,b),(−1,0)

a, b

a, b

a− 1, b

(1.2..3)
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and

a, b+ 1 = a, b − 1

κ(a,b),(−2,1)

a, b

a, b

a− 2, b+ 1

− 1

κ(a,b),(0,0)

a, b

a, b

a, b − 1

κ(a,b),(2,−1)

a, b

a, b

a+ 2, b− 1

− 1

κ(a,b),(0,−1)

a, b

a, b

a, b− 1

(1.2..4)

where

κ(a,b),(−1,1) = − [a+ 1]

[a]
(1.2..5)

κ(a,b),(1,−1) =
[a+ 2b+ 3][2b+ 2]

[a+ 2b+ 2][2b]
(1.2..6)

κ(a,b),(−1,0) = − [2a+ 2b+ 4][a+ 2b+ 3][a+ 1]

[2a+ 2b+ 2][a+ 2b+ 2][a]
(1.2..7)

and

κ(a,b),(−2,1) = − [a+ 1][2a+ 2b+ 4]

[a− 1][2a+ 2b+ 2]
(1.2..8)

κ(a,b),(0,0) =
[a+ 2][a+ 2b+ 4]

[2][a][a+ 2b+ 2]
(1.2..9)
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κ(a,b),(2,−1) = − [2b+ 2]

[2b]
(1.2..10)

κ(a,b),(0,−1) =
[2a+ 2b+ 4][a+ 2b+ 3][2b+ 2]

[2a+ 2b+ 2][a+ 2b+ 1][2b]
(1.2..11)

Using the double ladder basis for homomorphism spaces in Dsp4 [11], and the

ideas from Elias’s work on clasps for type A webs [7], we can argue that such a

recursive formula exists without knowing the κ’s explicitly. The recursive nature

of the clasp formula implies recursive relations among the κ’s. Our theorem then

follows from showing that these relations force the κ’s to be the values specified in

Theorem (1.2..1).

1.3. Semisimplification of the Category of Tilting Modules

Suppose that k = C and q = eiπ/` for some integer ` > 4. There is a well

known construction of a C-linear fusion category as the quotient of Tilt(Uk
q (sp4))

by the ideal of negligible morphisms [1]. One may ask for a generators and relations

presentation of these quotient categories. Since we have a presentation of the

category of tilting modules, it remains to find relations which generate the ideal

of negligible morphisms, denoted N . In general the ideal of negligible morphisms

is not the monoidal ideal generated by the identity morphisms of all negligible

objects. However, the hypothesis ` > 4 guarantees that the non-negligible tilting

modules are such that dim Hom(T k(λ), T k(µ)) = δλ,µ. It follows that the quotient

by the ideal generated by the negligible objects is a semisimple category. Since the

ideal of negligible morphisms is the only monoidal ideal with semisimple quotient,

the ideal of negligible morphisms coincides with the monoidal ideal generated by

the negligible objects.

10



There is a ρ shifted and ` dilated affine Weyl group action on the weight

lattice X. Extending this action to R ⊗ X allows us to partition the dominant

weights by their relationship to alcoves in R ⊗ X. The weights in the interior of

the lowest alcove in the cone −ρ + R≥0 · X+ are exactly the highest weights of the

indecomposable non-negligible tilting modules. In particular, the indecomposable

tilting modules with highest weight on the upper closure of the lowest alcove is

negligible. Furthermore, each indecomposable negligible tilting module is a direct

summand of a tensor product of some tilting module and an indecomposable tilting

module with highest weight on the upper closure of the lowest alcove. Thus, the

indecomposable negligible tilting modules are contained in the monoidal ideal

generated by the indecomposable tilting modules on the upper closure of the lowest

alcove.

The tilting modules on the upper closure of the lowest alcove are

T k

(
2k,

`− 3

2
− k
)
, for k = 0, . . . , `− 3 (1.3..1)

when ` is odd, and

T k

(
k,
`− 4

2
− k
)
, for k = 0, . . . ,

`− 4

2
(1.3..2)

when ` is even. Let K denote the monoidal ideal in Dk
sp4

generated by the λ clasps

for all λ on the upper closure of the lowest alcove. We may conclude that there is a

monoidal functor

Dk
sp4
−→ Tilt(Uk

q (sp4))/N , (1.3..3)
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with kernel K. Furthermore, the induced functor

Kar(Dk
sp4
/K) −→ Tilt(Uk

q (sp4))/N (1.3..4)

is an equivalence.

Example 1.3..1. Let g = sp4. In the following diagrams the dots represent the

dominant integral weights and the gray line represents the upper wall in the closure

of the fundamental Weyl alcove. The bold dots then are the dominant integral

weights λ so that the indecomposable tilting module of highest weight λ is non-zero

in the negligible quotient.

−ρ

` = 5

−ρ

` = 6

If ` = 5, then the ideal of negligible morphisms is generated by idTk(0,1)

and idTk(2,0). The quotient category is equivalent to Rep(Z/2), where the sign

representation corresponds to T k(1, 0).

If ` = 6, then the ideal of negligible morphisms is generated by idTk(1,0) and

idTk(0,1). Thus, the quotient category is equivalent to VecC.

Example 1.3..2. It is a pleasant exercise to use the diagrammatic category T L

to show that if ` = 8, the negligible quotient of Tilt(Uk
q (sp4)) is equivalent to

12



Tilt(C(eiπ/4)⊗ UZq (sl2))/N . Note that if q = eiπ/8, then

− [6]q[2]q
[3]q

= −[2]q2 . (1.3..5)

The case when the size of the negligible quotient is controlled by the weights

in the fundamental Weyl alcove is particularly well studied since it is related to the

construction of modular tensor categories [42]. However, the negligible quotient of

tilting modules makes sense for all `. The case of the reductive algebraic group

GLn in characteristic p is completely understood [14]. It also seems likely that

similar techniques could handle the case of the quantum group for gln for all `.

However, it seems that very little is known for general g when ` is small. We will

focus on sp2n, for which the cases of interest are when `′ ≤ 2n.

The main result in Chapter IV is the following.

Theorem 1.3..3. The semisimplification of the category of tilting modules for

(quantum) sp4 is equivalent to Rep(O(2)) when q = ζ2·2 and when q = ζ2·(2+1).

The proof of this theorem uses Kuperberg’s C2 webs [31], Deligne’s category

Rep(O(T )) [17], and our results connecting C2 webs with tilting modules for

quantum sp4 [11].

Remark 1.3..4. Theorem (1.3..3) implies that when n = 2, the bold dots are exactly

corresponding to the indecomposable tilting modules which do not have dimension

13



zero.

−ρ

` = 3

−ρ

` = 4

We recall the notion of a principal graph of a self dual object V in a

semisimple rigid tensor category C. For simplicity we assume that all irreducible

objects in C appear as a summand of some tensor power of V . The principal graph

of V , denoted ΓV is the graph with vertices the isomorphism classes of irreducibles

appearing in some tensor power of V , and the number of edges between [S1] and

[S2] is equal to the multiplicity of S2 in S1 ⊗ V , which by the self-duality of V is a

symmetric relation.

Let Gu := C× o Z/2, where the Z/2 action on C× is x 7→ x−1. Also, let

H := C×, and V := IndGuH (C). Victor Ostrik made two observations about the bold

dots in the diagrams above (personal communication, December 2019). This first

is that the bold dots appear in the same configuration as the principal graph ΓV ,

making it appear that principal graph ΓT ($1) is the same as ΓV . The second is that

the alcoves in this picture are the alcoves in the two highest antispherical Kazhdan-

Lusztig cells. The lowest of these two cells is the unique reduced expression cell.

Moreover, under Lusztig’s bijection between antispherical cells and nilpotent

orbits [35, Theorem 4.8] the nilpotent orbit corresponding to the unique reduced

expression cell has centralizer with maximal reductive part isomorphic to C× oZ/2.

These two pieces of evidence led to the conjecture that the negligible quotient of

the category of tilting modules is equivalent to Rep(Gu).
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Note that O(2) ∼= Gu
1. The McKay subgroup of SU(2) of type D∞ is the

unique subgroup (up to conjugacy) in SU(2) with principal graph of the restriction

of the natural module for SU(2) given by the D∞ Coxeter graph. The D∞ McKay

group is a non-split extension of C× with Z/2 quotient and is not isomorphic to the

group O(2). However, O(2) is isomorphic to the image of D∞ in the (non-faithful)

representation S2(C2).

Remark 1.3..5. We claim that a correct generalization of Ostrik’s conjecture for all

n is the following.

Conjecture 1.3..6. The semisimplification of the category of tilting modules for

(quantum) sp2n is equivalent to Rep(O(2)) when q = ζ2·2n and when q = ζ2·(n+1).

In order to study these semisimple quotient categories for small roots of

unity it will be useful to be able to understand the category of tilting modules

via generators and relations. The category of tilting modules is generated as a

monoidal category by the fundamental Weyl modules as long as ` is not too small.

Unfortunately the literature is not clear for exactly which ` this is the case, but

for the analogous case of reductive algebraic groups in characteristic p the answer

is given in [27]. Note that for type Cn, they observe that the fundamental Weyl

modules are tilting modules whenever p > n. Thus, we expect that for sp2n the

most accessible cases which are still interesting are when n+ 1 ≤ `′ ≤ 2n.

The natural generalization of our proof of Theorem (1.3..3) to a proof

of Conjecture (1.3..6) would replace C2 webs with the following diagrammatic

category.

1We expect that the reductive part of the centralizer of the subregular nilpotent orbit is
isomorphic to O(2), but cannot prove this.
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Definition 1.3..7. [9, Definition 1.1] Let Web(sp2n) be the C(q)-linear pivotal

category defined by the following presentation. The objects are generated

monoidally by self-dual objects {1, . . . , n}. In addition to the cap/cup unit/counit

morphisms implicit in the pivotal structure, the morphisms are generated by

1 k

k+1

,

k 1

k+1

(1.3..6)

for k ∈ {1, . . . , n− 1}. One then takes the quotient by the tensor ideal generated by

the following (local) relations:

1 = − [n][2n+ 2]

[n+1]
, (1.3..7a)

2

= 0 , (1.3..7b)

k

k−11

k

= [k]

k

, (1.3..7c)

1k1

k+2

=

1 k 1

k+2

, (1.3..7d)

k

1

k

1

k+1 =

k k
k−1

1 1

2 − [n−k]

[n−k+1]
k

1

k

1

k−1 +
[n−k]

[n]
k

1

. (1.3..7e)

The category Kar Web(sp2n) is known to be equivalent to the category

of finite dimensional type 1 representations of Uq(sp2n) [9, Theorem 1.4]. It is

conjectured that when ` > n, the category KarC ⊗q=eiπ/` Web(sp2n) is equivalent
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to the category of tilting modules for C ⊗q=eiπ/` UZq (sp2n) [9, Remark 3.8]. We give

sketches of arguments below that will prove Conjecture (1.3..6) once the conjectural

relationship between Web(sp2n) and tilting modules is established.

1.4. Potential Applications

Remark 1.4..1. If we take k to be an algebraically closed field of characteristic p

and let q = 1, then Tilt(k⊗UZq (sp4)) is equivalent to the category of tilting modules

for the reductive algebraic group Sp4(k) [26, H.6]. Very little is known about tilting

modules for reductive groups in characteristic p > 0, and our results apply in this

setting as well for all p > 2.

Remark 1.4..2. If q + q−1 = 0, then the fundamental representation k ⊗ V Z($2) is

not tilting. So if one is interested in tilting objects the category Fund(g) is not the

correct category to study. Also, the category Dsp4 is not defined when q + q−1 = 0,

because some relations have coefficients with q + q−1 in the denominator. One could

clear denominators in the relations and obtain a category which is defined when

q + q−1 = 0. However, we do not know what this diagrammatic category would

describe.

Let k = C and let q = eπi/`. Soergel conjectured [45] and then proved [46] a

formula for the character of a tilting module for k ⊗ UZq (g) when ` > h, where h is

the Coxeter number of g.

In Section 2.24..4, we will prove that the category Dsp4 is a strictly object

adapted cellular category [21]. Thus, the discussion in [22, 11.5] allows one to adapt

the algorithm in [32] from the context of Soergel bimodules to sp4-webs. Using this

algorithm, which we outline in Section 2.25., one can compute tilting characters for

the quantum group at a root of unity as long as ` ≥ 3 (the ` = 2 case is ruled out
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by the assumption in our theorem that q + q−1 6= 0). The Coxeter number of sp4

is h = 4. This means that when ` = 3, Soergel’s conjecture for tilting characters

does not apply but the diagrammatic category k ⊗ Dsp4 does still describe tilting

modules.

There may be a conjecture for the characters of tilting modules of quantum

groups that includes ` ≤ h, along the lines of [8, Section 8.1] and [44, Theorem 1.6].

Ideally, the conjecture would relate tilting characters for the quantum group at a

root of unity to singular, antispherical Kazhdan-Lusztig polynomials. One could use

sp4 webs to check such a conjecture for small weights.

With applications to modular representation theory in mind, there has been

some work on writing the idempotents projecting to all indecomposable tilting

modules in terms of the double ladder basis for SL2(Fp) [15] [50]. Such idempotents

have been referred to as p-Jones-Wenzl projectors. Since nobody knows the

characters of tilting modules for rank two groups in positive characteristic, this

question is not appropriate in our setting. However, the tilting characters are

known for the quantum group at a root of unity [46, Section 8]. A key first step

in determining the formulas for the p-Jones-Wenzl projectors is to argue that if the

characteristic p tilting module is simple, then the characteristic zero clasp can be

reduced modulo a maximal ideal to obtain the projector in characteristic p. We are

careful to point out how this works for the case of Dsp4 in Section 3.5..9, but do not

explore the topic further in this dissertation.

It remains an open problem to adapt the arguments in [7] to prove that

double ladder diagrams span Dsp4 without using Kuperberg’s results about

non-elliptic webs. The first steps in this adaptation would be to rewrite every

composition of elementary light ladder diagrams of the form Lµ ◦ (id⊗Lν) as a
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linear combination of double ladder diagrams. This is an easy exercise which may

convince the reader that such an adaptation is possible. The second step is to prove

that any diagram of the form (id⊗Lµ ⊗ id) ◦ N ◦ (id⊗D(Lν) ⊗ id), where N is an

arbitrary neutral diagram, is a linear combination of double ladder diagrams. The

case when N is the identity is another easy exercise, and considering the case of

arbitrary N may help convince the reader that writing a complete adaptation of [7]

would be non-trivial.

It is work in progress of Victor Ostrik and Noah Snyder to find the precise

relationship between Kuperberg’s G2 webs and tilting modules.

Work in progress of Ben Elias and Geordie Williamson uses Dsp4 to extend

the quantum algebraic Satake equivalence [20] to type B2/C2. As a consequence

our results may have implications in geometric representation theory.

Lastly, we mention that in joint work with Haihan Wu, we solved the problem

of finding triple clasp formulas for g2 [13].
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CHAPTER II

DIAGRAMMATICS FOR TILTING MODULES

This chapter contains previously published material. The material in this

chapter originally appeared in [11].

2.1. Outline

Section 2: We discuss how to decompose tensor products of representations

for sp4. Then use the plethysm patterns to describe an algorithm for light ladder

diagrams. Finally we define the double ladder diagrams. Section 3: We define an

evaluation functor from the diagrammatic category to the representation theoretic

category. After reviewing some of the theory of tilting modules for quantum

groups/reductive algebraic groups, we interpret the image of the evaluation functor

as an integral form of the category of tilting modules. Then we argue that the

main theorem follows from linear independence of the image of the double ladder

diagrams. Section 4: We argue that the double ladder diagrams are linearly

independent. Then we deduce that Dk
sp4

is an object adapted cellular category, and

describe an algorithm to compute tilting characters.

2.2. C2-Webs

We use the convention that the quantum integers in Z[q, q−1] are defined as

[n]q =
qn − q−n

q − q−1
, for n ∈ Z. (2.2..1)

Let A = Z[q, q−1, [2]−1
q ], the ring Z[q, q−1] localized at [2]q.
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Definition 2.2..1. Let D be the A-linear monoidal category defined by generators

and relations. The generating objects are 1 and 2, the generating morphisms are

the following diagrams.

(2.2..2)

The relations are the following local relations on diagrams.

= = (2.2..3)

= = (2.2..4)

= = (2.2..5)

Remark 2.2..2. Our convention is that diagrams are read as morphisms from the

bottom boundary to the top boundary. Composition of morphisms is vertical

stacking. The monoidal structure on objects is concatenation of words and

the monoidal unit is the empty word. The monoidal product on morphisms is

horizontal concatenation of diagrams, and the identity morphism of the empty word

is the empty diagram.

Notation 2.2..3. The defining relations in D imply the following equalities of

morphisms in HomD(12, 1).
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= = (2.2..6)

We will denote any one of these morphisms by the following trivalent vertex

diagram in HomD(12, 1).

(2.2..7)

There are similar equalities for every possible vertical and horizontal

reflection, and we will write the corresponding trivalent morphisms as follows.

(2.2..8)

Thanks to this notation, we may now view morphisms in D as A-linear

combinations of isotopy classes of trivalent graphs.

Example 2.2..4. The identity morphism of 1211 and a morphism from 12111 to

1122 are drawn as follows.

(2.2..9)

Definition 2.2..5. The A-linear monoidal category Dsp4 is the quotient of D by

the following local relations.

= − [6]q[2]q
[3]q

(2.2..10)
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=
[6]q[5]q
[3]q[2]q

(2.2..11)

= 0 (2.2..12)

= −[2]q (2.2..13)

= 0 (2.2..14)

=
1

[2]q
+ − 1

[2]q
(2.2..15)

Notation 2.2..6. When k is an A-algebra, we can base change the category Dsp4

to k, denoted k⊗ Dsp4 . The category k⊗ Dsp4 has the same objects as Dsp4 and we

apply k ⊗A (−) to homomorphism spaces. We may also write Dk
sp4

:= k ⊗ Dsp4 for

short.

Remark 2.2..7. The coefficients in the circle relations are written as fractions but

are actually elements of A, as can be observed in the following quantum number

calculations.

[5]q − [1]q =
([5]q − [1]q) [3]q

[3]q
=

[7]q + [5]q + [3]q − [3]q
[3]q

=
[6]q[2]q

[3]q
. (2.2..16)

[7]q − [5]q + [3]q =
[8]q + [2]q

[2]q
=

[10]q + [8]q + [6]q + [4]q + [2]q
[3]q[2]q

=
[6]q[5]q
[3]q[2]q

. (2.2..17)

Remark 2.2..8. The category Dsp4 is almost the B2 spider category in [31]. But

we replaced q with q2 and rescaled the trivalent vertex by [2]
−1/2
q . The trivalent
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vertex in Dsp4 may seem less natural since the relations now require us to insist

[2]q is invertible, but when we connect the diagrammatic category to representation

theory the rescaled trivalent vertex in Dsp4 will be more natural.

2.3. Decomposing Tensor Products in Rep(sp4(C))

We now recall some basic facts about sp4(C) and its representation theory.

Some of this is worked out in detail in [24, Lecture 16]. Then we will record some

formulas describing the decomposition of certain tensor products in Rep(sp4).

Let X = Zε1 ⊕ Zε2 be the weight lattice for sp4(C). The weights $1 = ε1 and

$2 = ε1 + ε2 are called the fundamental weights, and X+ = Z≥0$1 ⊕ Z≥0$2 is the

set of dominant weights.

Let Fund(sp4(C)) be the full monoidal subcategory of Rep(sp4(C)) generated

by V ($1) and V ($2). The decomposition

V ($1)⊗ V ($1) ∼= V (2$1)⊕ V ($2)⊕ V (0). (2.3..1)

implies there is a one-dimensional space of maps between V ($1) ⊗ V ($1) and

V ($2). We will later prove that there is a choice for this map so that sending

the trivalent vertex to the chosen map gives a well-defined monoidal functor from

C⊗Dsp4 to Fund(sp4(C)). We will then show that this functor is full and faithful.

For now we will take the equivalence on faith, and use it to guide our

intuition for constructing a basis for Hom spaces in Dsp4 . Let λ and µ be dominant

integral weights. There is a direct sum decomposition

V (λ)⊗ V (µ) ∼=
⊕

ν∈X(λ,µ)⊂wt(V (µ))

V (λ+ ν), (2.3..2)
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where wt(V (µ)) is the multiset of weights in V (µ) and X(λ, µ) is a submultiset.

Our goal is to determine the set X(λ, µ).

To simplify notation, we may write V (a, b) in place of V (a$1 + b$2). The

following formulas are easy to work out using classical theory. For example, one can

use [38, 2.16].

V (a, b)⊗V (1, 0) ∼=



V (1, 0), if a = b = 0

V (a+ 1, 0)⊕ V (a− 1, 1)⊕ V (a− 1, 0), if a ≥ 1, b = 0

V (1, b)⊕ V (1, b− 1), if a = 0, b ≥ 1

V (a+ 1, b)⊕ V (a− 1, b+ 1)⊕ V (a− 1, b)⊕ V (a+ 1, b− 1),

if a ≥ 1, b ≥ 1

(2.3..3a)

V (a, b)⊗V (0, 1) ∼=



V (0, 1), if a = b = 0

V (0, b+ 1)⊕ V (2, b− 1)⊕ V (0, b− 1), if a = 0, b ≥ 1

V (1, 1)⊕ V (1, 0), if a = 1, b = 0

V (1, b+ 1)⊕ V (1, b)⊕ V (3, b− 1)⊕ V (1, b− 1), if a = 1, b ≥ 1

V (a, 1)⊕ V (a, 0)⊕ V (a− 2, 1), if a ≥ 2, b = 0

V (a, b+ 1)⊕ V (a+ 2, b− 1)⊕ V (a, b− 1)⊕ V (a, b)⊕ V (a− 2, b+ 1),

if a ≥ 2, b ≥ 1

(2.3..3b)

Notation 2.3..1. We will write V (1) = V ($1) = V (1, 0) and V (2) = V ($2) =

V (0, 1) as well as wt 1 = $1 and wt 2 = $2. Also, for a sequence w = (w1, . . . , wn),
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wi ∈ {1, 2} we will write V (w) = V (w1) ⊗ . . . ⊗ V (wn), wtw = wtw1 + wtw2 +

. . .wtwn, and w≤k = (w1, w2, . . . , wk).

Definition 2.3..2. Let w = (w1, . . . , wn) with wi ∈ {1, 2}. A sequence (µ1, . . . , µn)

where µi ∈ wt(V (wi)) is a dominant weight subsequence of w if:

1. µ1 is dominant;

2. V (µ1 + . . .+ µi−1 + µi) is a summand of V (µ1 + . . .+ µi−1)⊗ V (wi).

We write E(w) for the set of all dominant weight subsequences of w and

E(w, λ) := {(µ1, . . . , µn) ∈ E(w) : µ1 + . . .+ µn = λ} (2.3..4)

for all λ ∈ X+.

Lemma 2.3..3. Let w = (w1, . . . , wn), wi ∈ {1, 2}, then

V (w) ∼=
⊕

(µ1,...,µn)∈E(w)

V (µ1 + . . .+ µn). (2.3..5)

Moreover, if we denote the multiplicity of V (λ) as a summand of V (w) by [V (w) :

V (λ)], then

[V (w) : V (λ)] = #E(w, λ). (2.3..6)

Proof. If we begin with V (∅) = C and tensor with V (w1), there is only one

irreducible summand. This summand corresponds to the dominant weight in

wtV (w1), which we record as µ1. Then we tensor V (w1) by V (w2) and note that

V (w1) ⊗ V (w2) contains V (µ1) ⊗ V (w2) as a summand. Choose a summand of

V (µ1) ⊗ V (w2). The chosen summand is isomorphic to V (µ1 + µ2) for some weight

µ2 ∈ wtV (w2), and we record this choice of summand by the weight µ2 ∈ wtV (w2).
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Next, we tensor V (w1) ⊗ V (w2) by V (w3), observe that V (w1) ⊗ V (w2) ⊗ V (w3)

contains a summand isomorphic to V (µ1 + µ2) ⊗ V (w3), and choose a summand

of this summand. The chosen summand is isomorphic to V (µ1 + µ2 + µ3) and we

record the choice by the weight µ3 ∈ wtV (w3). Iterating this procedure, we end

up with a sequence of weights (µ1, . . . , µn), which is a dominant weight subsequence

of w, and a summand in V (w) isomorphic to V (µ1 + . . . + µn). Furthermore, all

summands of V (w) can be realized uniquely as the end result of the process we just

described.

Lemma 2.3..4. Let u = (u1, . . . , un) be a sequence with ui ∈ {1, 2}, then

dim Homsp4(C)(V (w), V (u)) =
∑
λ∈X+

[V (w) : V (λ)][V (u) : V (λ)]. (2.3..7)

Proof. Thanks to Lemma (2.3..3), this is consequence of Schur’s lemma.

2.4. Motivating the Light Ladder Algorithm

We outline a well-known construction of a basis of homomorphism spaces in

the category Fund(sp4(C)).

Suppose that (µ1, . . . , µm) ∈ E(w, λ). For i = 1, . . . ,m there is a projection

map P(µ1,...,µi) : V (w1)⊗ . . .⊗ V (wi) −→ V (µ1 + . . . + µi). The map P(µ1,...,µi) is the

projection P(µ1,...,µi−1) : V (w1)⊗ . . .⊗ V (wi−1) −→ V (µ1 + . . .+ µi−1) postcomposed

with the projection pµi : V (µ1 + . . .+ µi−1)⊗ V (wi) −→ V (µ1 + . . .+ µi).

Let (ν1, . . . , νn) ∈ E(v, λ). Now, for i = 1, . . . , n there are inclusion maps

I(ν1,...,νi) : V (ν1 + . . . + νi) −→ V (u1) ⊗ . . . ⊗ V (ui). Composing the projection with

the inclusion we get a map I(ν1,...,νn) ◦ P(µ1,...,µm) : V (w) −→ V (u), factoring through

V (λ).

27



Since [V (λ) : V (w)] = E(w, λ) and [V (λ) : V (u)] = E(u, λ), the maps

⋃
λ∈X+

(µ1,...,µm)∈E(w,λ)
(ν1,...,νn)∈E(u,λ)

{I(ν1,...,νn) ◦ P(µ1,...,µm)} (2.4..1)

form a basis in Homsp4(C)(V (w), V (u)).

The maps P(µ1,...,µn) are built inductively out of the pµi ’s in a way that is

analogous to how we will define light ladder diagrams in terms of elementary light

ladder diagrams. The inclusion map I(ν1,...,νn) : V (λ) −→ V (u) is analogous to

what we will call upside down light ladder diagrams. We will define double ladder

diagrams as the composition of a light ladder diagram and an upside down light

ladder diagram, in analogy with the I ◦ P ’s. Then our work will be to argue that

double ladder diagrams are a basis.

Remark 2.4..1. The projection and inclusion maps we discuss here are not the

image of the light ladder diagrams under a functor Dsp4 −→ Fund(sp4(C)). There

are at least two reasons for this. The first being that the object V (λ) is not in the

category Fund(sp4(C)), so we have to construct light ladder maps not from V (w)

to V (λ), but from V (w) to V (x) where wtx = λ.

The second reason is that we want to construct a basis for the diagrammatic

category which descends to a basis in Fund for fields other than C. Over other

fields the representation theory is no longer semisimple so V (λ) may not be a

summand of V (w). There will still be the same number of maps from V (w) to a

suitable variant of V (λ) but they may not be inclusions and projections.

2.5. Light Ladder Algorithm

Now we define some morphisms in the diagrammatic category.
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Definition 2.5..1. An elementary light ladder diagram is one of the following

diagrams in Dsp4 . We will say that Lµ is the elementary light ladder diagram of

weight µ.

L(−1,0) = L(1,−1) = L(−1,1) = L(1,0) = (2.5..1)

L(0,−1) = L(−2,1) = L(0,0) = L(2,−1) = L(0,1) =

(2.5..2)

Remark 2.5..2. If Lµ : u∗ → w, for ∗ ∈ {1, 2}, then µ ∈ wtV (∗) and wtw = wtu+µ.

Definition 2.5..3. A neutral diagram is any diagram which is the horizontal

and/or vertical composition of identity maps and the following basic neutral

diagrams.

N21
12 = N12

21 = (2.5..3)

Example 2.5..4. A neutral diagram from 112221 to 221211.

(2.5..4)

Definition 2.5..5. Fix an object w = (w1, . . . , wn) in Dsp4 , a dominant weight

subsequence ~µ = (µ1, . . . , µn) ∈ E(w), and an object v = (v1, . . . vm) in Dsp4 such

that wt v = µ1 + . . . + µn. We will describe an algorithm, which we will refer to

29



as the light ladder algorithm, to construct a diagram in Dsp4 with source w and

target v. This diagram will be denoted LLvw,~µ and we will call it a light ladder

diagram.

We define the diagrams inductively, starting by defining LL∅∅,(∅) to be the

empty diagram. Suppose we have constructed LLuw≤n−1,(µ1,...,µn−1), where wt(u) =

µ1 + . . .+ µn−1. Then we define

LLvw,(µ1,...,µn) = N v
? ◦ (id⊗Lµn) ◦

(
N ?
u ⊗ id

)
◦
(
LLuw≤n−1,(µ1,...,µn−1) ⊗ idwn

)
(2.5..5)

where N ?
? is a neutral diagram with appropriate source (subscript) and target

(superscript).

Example 2.5..6. A schematic for the inductive definition of a light ladder diagram

LLw,(µ1,...,µn).

N v
?

id⊗Lµn

N ?
u

LLuw≤n−1,(µ1,...,µn−1)

u

?

?

w≤n−1 wn

v

(2.5..6)
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To further aid the readers understanding of the light ladder construction we

give an example and some clarifying comments.

Example 2.5..7. A light ladder diagram LL11
21212,((0,1),(1,−1),(0,1),(−1,0),(2,−1))

(2.5..7)

Our convention of rectangles and trapezoids is to indicate whether a diagram is a

neutral diagram or a diagram of the form id⊗ elementary light ladder diagram. We

omitted the first and third steps corresponding to µ = (0, 1).

The elementary light ladder diagrams have fixed source and target. As a

result one can construct LLuw≤n−1,(µ1,...,µn−1), and then see that V (µn) is a summand

of V (µ1 + . . .+ µn−1)⊗ V (wn). The reader may wonder if there really is an object y

in Dsp4 such that ywn is the source of id⊗Lµn .

Example 2.5..8. An example of what can go wrong without neutral diagrams.

(2.5..8)
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Basic neutral diagrams encode isomorphisms 12 → 21 and 21 → 12, while

arbitrary neutral diagrams encode isomorphisms w → w′.

Remark 2.5..9. The reason we use basic neutral diagrams instead of the braiding is

the latter is a non-trivial linear combination of diagrams in Dsp4 , while the former is

a single diagram in Dsp4 .

Lemma 2.5..10. Given two sequences w and w′ such that wtw = wtw′, there is a

neutral diagram connecting w to w′.

Proof. Suppose that wtw = a$1 + b$2 = wtw′. Connect both w and w′ via

colored neutral diagrams to the standard sequence 1⊗a ⊗ 2⊗b and then compose

the neutral diagram from w to the standard sequence with the vertical flip of the

neutral diagram from the standard diagram to w′.

The following lemma uses this observation to fix the problem, in the light

ladder algorithm, of elementary diagrams having fixed source and target.

Lemma 2.5..11. Let (µ1, . . . , µn) ∈ E(w) (in particular, V (µn) is a summand of

V (µ1 + . . .+µn−1)⊗V (wn)). Suppose we have constructed LLuw≤n−1,(µ1,...,µn−1). There

is an object y in Dsp4 and a neutral map N
y
w≤n−1

such that y ⊗ wn is the source of

id⊗Lµn.

Proof. We will argue this for the elementary diagram L(1,−1), so µn = (1,−1) and

wn = 1. The arguments for the rest of the cases follow the same pattern. From

the tensor product decomposition formulas (2.3..3) we see that V (1,−1) being a

summand of V (µ1 + . . . + µn−1) implies that, if µ1 + . . . + µn−1 = a$1 + b$2, then

b ≥ 1. Thus, in the sequence u = (u1, . . . , uk) there is some k such that uk = 2.

By Lemma (2.5..10) there is a neutral diagram from the sequence u to a sequence
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which ends in 2. The target of this neutral diagram will be an object y such that

y ⊗ 1 is the source of id⊗L(1,−1).

Example 2.5..12. Using a neutral map to fix the problem.

(2.5..9)

Comparing the tensor product decompositions in (2.3..3) with the elementary

light ladder diagrams it is apparent that dominant weight subsequences always

produce a light ladder diagram. However, neutral diagrams from one word to

another are not unique. The choice of neutral diagram could result in several

different light ladder diagrams for a given dominant weight subsequence.

Remark 2.5..13. For any w and u such that wtw = wtu, there is a distinguished

choice of neutral diagram corresponding to the minimal coset representative in the

symmetric group realizing the shuffle from one sequence to the other. However, we

do not require that we choose particular elements as our neutral diagrams in the

light ladder algorithm.

2.6. Double Ladders

We define a contravariant endofunctor D on the category Dsp4 by requiring

that D fixes objects and turns diagrams upside down. Note that D2 = idDsp4
, so D

is a duality (i.e. a contravariant functor Dsp4 −→ Dsp4 , which is an equivalence and

squares to id) on the category.
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Definition 2.6..1. Let LLvw,~µ be a light ladder diagram. The associated upside

down light ladder diagram is defined to be

D(LLvw,~µ). (2.6..1)

Example 2.6..2. An upside down light ladder diagram

D(LL121
112121,((1,0),(1,0),(−2,1),(1,0),(2,−1),(−1,1))).

(2.6..2)

For each dominant weight λ fix a word xλ in the alphabet {1, 2}

corresponding to a sequence of fundamental weights which sum to λ. For all words

w and for each dominant weight subsequence ~µ ∈ E(w, λ), we choose one light

ladder diagram from w to xλ. If w = xλ and each µi is dominant, then we choose

the identity diagram. From now on we denote this chosen light ladder diagram by

Lw,~µ.

Remark 2.6..3. The choice of LLxλ,~λ
= idxλ when the λi are all dominant is not

essential for our arguments, but does ensure our construction is aligned with other

conventions. For example this is required in the definition of an object adapted

cellular category in [21].

Definition 2.6..4. If w and u are fixed words in {1, 2} and λ is a dominant weight,

then for ~µ ∈ E(w, λ) and ~ν ∈ E(u, λ) we obtain a double ladder diagram
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(associated to our choices of xλ’s and our choices of light ladder diagrams)

LLu,~νw,~µ = D(LLu,~ν) ◦ LLw,~µ. (2.6..3)

Remark 2.6..5. One reason for fixing an xλ for all λ is so the composition on the

right hand side of (2.6..3) is well defined.

Example 2.6..6. A schematic for a double ladder diagram:

LLu,~νw,~µ =

LLw,~µ

D(LLu,~ν)

(2.6..4)

Remark 2.6..7. Note that light ladder diagrams ending in xλ are double ladder

diagrams, where the upside-down light ladder happens to be the identity diagram.

Definition 2.6..8. We define the set of all double ladder diagrams from w to u

factoring through λ (associated to our choice of xλ’s and light ladder diagrams) to

be

LLuw(λ) =
{
LLu,~νw,~µ : ~µ ∈ E(w, λ), ~ν ∈ E(u, λ)

}
, (2.6..5)

and define the set of all double ladder diagrams from w to u (associated to our

choice of xλ’s and light ladder diagrams) to be

LLuw =
⋃
λ∈X+

LLuw(λ) (2.6..6)

Remark 2.6..9. Anytime we write LLu,~νw,~µ or LLuw, we have already fixed choices of

xλ’s and choices of light ladder diagrams. The notation does not account for these
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choices, but we will not be comparing double ladders for different choices so the

notation should not lead to confusion.

2.7. Relating Non-Elliptic Webs to Double Ladders

Our next goal is to define an evaluation functor from Dsp4 to the category

Fund(sp4), and then to prove that the functor is an equivalence. That the functor

is an equivalence will follow from showing that double ladder diagrams span the

category Dsp4 , and map to a set of linearly independent morphisms in Fund(sp4).

This approach is modeled on the work on type A webs in [7], where most of the

work goes into showing that double ladder diagrams span the diagrammatic

category. Checking linear independence is comparatively easy once you know the

functor explicitly. But for Dsp4 , the extra work to show double ladders span can be

circumvented by bootstrapping known results about B2 webs which we recall below.

Kuperberg’s paper [31, pp. 14-15] introduces a tetravalent vertex in the B2

web category which can be used to remove all internal double edges. Let B be the

set of B2 diagrams with no internal double edges and with no faces having one,

two, or three adjacent edges. These diagrams are called non-elliptic in [31]. There

are local relations in the B2 category (now including the tetravalent vertex) which

can be used to reduce triangular faces, bigons, monogons, and circles to sums of

diagrams with fewer crossings (i.e. B is the set of irreducible webs with respect to

the relations). It follows that the set B spans the B2 category over Z[q, q−1]. Let

Bw be the set of diagrams in B with w on the boundary. One of the main results of

[31] is that

#Bw = dimV (w)sp4(C). (2.7..1)
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Notation 2.7..1. If we work in the A-linear category Dsp4 , there is an analogous

90 degree rotation invariant morphism, which we will call the tetravalent vertex, in

EndDsp4
(11).

:= − 1

[2]q
(2.7..2)

There is an augmented graphical calculus in which the generating diagrams

are the cups, caps, and trivalent vertices in the definition of Dsp4 along with the

tetravalent vertex (2.7..2). For the remainder of this section when we say a diagram

in Dsp4 we mean a diagram in the augmented graphical calculus.

Since [2]q is invertible in our ground ring, we can use this tetravalent vertex

to remove all internal green labelled edges in any diagram in Dsp4 . The tetravalent

vertex satisfies the following relations in Dsp4

=
[6]q
[3]q

(2.7..3)

= −[2]q (2.7..4)

= −[2]q − [4]q
[2]q

(2.7..5)

= + + + [2]q (2.7..6)

= + (2.7..7)

= (2.7..8)
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Remark 2.7..2. Due to the identity [2n]q/[n]q = [n+ 1]q − [n− 1]q, the coefficients in

these relations all lie in the ring Z[q, q−1].

Definition 2.7..3. A closed component of a diagram in Dsp4 is a connected

component of the diagram which does not touch the boundary. A circle

component in a diagram in Dsp4 is a closed component which contains no vertices.

Definition 2.7..4. A face of a diagram in Dsp4 is a simply connected component

of the complement of the diagram, which does not touch the boundary.

Definition 2.7..5. A non-elliptic diagram in Dsp4 is a diagram such that all

faces have more than three sides (i.e a diagram with no triangular faces, bigons,

monogons, or circles).

Definition 2.7..6. An internal 2 edge of a diagram in Dsp4 is a 2 edge in the

diagram which does not connect to the boundary.

Example 2.7..7. An example of a non-elliptic web with internal 2 edges

in Dsp4 . This diagram is a light ladder for the dominant weight sequence

((1, 0), (−1, 1), (1, 0)).

(2.7..9)

Example 2.7..8. An example of an elliptic web with internal 2 edges in Dsp4 . The

only face is the interior of the 2 circle.

(2.7..10)
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Example 2.7..9. An example of a non-elliptic web with no internal 2 edges in

Dsp4 . There is only one face and it has five sides.

(2.7..11)

Definition 2.7..10. The set D is the collection of all non-elliptic diagrams

in Dsp4 with no internal 2 edges, and the set Du
w is the set of diagrams in D ∩

HomDsp4
(w, u).

Lemma 2.7..11. Let D be a diagram in Dsp4 with no internal 2 edges. Then D is

in the span of D.

Proof. Given a diagram X with no internal 2 edges, write |X|v to denote the total

number of 3-valent and 4-valent vertices in X, and write |X|c to denote the total

number of circle components.

We leave it as an exercise to classify the possible faces with less than four

sides in a diagram with no internal 2 edges, verifying the following claims. Any

face with one edge will be one of the left hand side of Equation (2.2..10), (2.2..12),

or (2.7..3). Any face with two edges will be one of the left hand side of Equation

(2.2..13), (2.7..4), or (2.7..5). Any face with three edges will be one of the left hand

side of Equation (2.2..14), (2.7..6), (2.7..7), or (2.7..8). Note that applying these

relations to a diagram with no internal 2 edges will result in a linear combination of

diagrams with no internal 2 edges.

Given two diagrams X and Y with no internal 2 edges, we write X → Y

if there is a face with less than or equal to three sides in X, and applying one of

the above relations to remove the face from X results in a linear combination of

diagrams, one of which is Y . Observe that if X → Y , then |X|v ≥ |Y |v, with
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equality if and only if we removed a circle using Equation (2.2..10), but in that case

|X|c > |Y |c.

Let S(k,m) be the statement: “If A is a diagram in Dsp4 with no internal 2

edges, at most k vertices, and at most m circle components, then A is in the span

of D.”

We claim that S(k,m) implies S(k,m+ 1). To see this, assume S(k,m) is true

and let A be a diagram with |A|v ≤ k and |A|c ≤ m + 1. If |A|c < m + 1, then we

are done. Suppose |A|c = m + 1. Our assumptions imply that there is at least one

circle, denoted O, in A. Let S be the subdiagram of A which is contained in the

region bounded by O. Note that |S|v ≤ |A|v ≤ k and |S|c < |A|c = m + 1. Since we

assumed S(k,m) is true, it follows that S is in the span of D. Also, S is contained

in the region bounded by O so S has empty boundary. Since the only diagram in

D with empty boundary is the empty diagram, it follows that S is equal to a scalar

multiple of the empty diagram. Thus, A is a scalar multiple of a diagram B, such

that B is the same outside of O, but now has O bounding a face. We can apply

Equation (2.2..10) to remove O from B and obtain a diagram C such that B is a

scalar multiple of C. Thus, A is a scalar multiple of C, and |C|v = |B|v ≤ |A|v = k

and |C|c = |B|c − 1 ≤ |A|c − 1 = m. By our inductive hypothesis, C is in the span

of D, and therefore A is in the span of D.

We claim that S(k,m) for all m implies S(k + 1, 0). Assume that S(k,m) is

true for all m, and let A be a diagram with no internal 2 edges, such that |A|v =

k + 1 and |A|c = 0. If A all of A’s faces have more than three sides (this includes

the case of A having no faces), then A ∈ D and we are done. Suppose that A has

a face with less than or equal to three sides. Since |A|c = 0, it must be possible

to remove this face using one of the relations discussed in the first paragraph other
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than Equation (2.2..10) i.e. “circle removal”. Therefore, A is a linear combination

of diagrams: A =
∑
ξiBi, for some scalars ξi. For each Bi, since A → Bi, and

since we did not use Equation (2.2..10), we have |Bi|v < |A|v = k + 1 (although

it is possible that |Bi|c > 0). Since we assume S(k,m) for all m, each Bi may be

expressed as a linear combination of diagrams in D. Thus, A is in the span of D.

To see that S(0, 0) is true, observe that a diagram with no vertices or

circles must necessarily have no faces (in fact this is just the empty diagram). By

induction it follows that S(k,m) is true for all m and k. Thus, we may conclude

that D can be expressed as a linear combination of diagrams in D.

Lemma 2.7..12. The set D spans Dsp4 over A.

Proof. Let D be an arbitrary diagram in Dsp4 . We will argue that D is a linear

combination of non-elliptic webs with no internal 2 edges. If a 2 edge does not

connect to a trivalent vertex, then you can use the bigon relation to introduce one.

Thus, every 2 edge either connects to the boundary of D, or connects two trivalent

vertices. Using the tetravalent vertex to remove all pairs of trivalent vertices, we

can rewrite D as a linear combination of diagrams with no internal 2 edges. Thus,

we may assume that D is a diagram with no internal 2 edges, and the claim follows

from Lemma (2.7..11).

Remark 2.7..13. In order to introduce a trivalent vertex, we used the bigon relation

backwards, which required [2]−1
q ∈ A.

Lemma 2.7..14. Let k be a field and let q ∈ k× be such that q + q−1 6= 0. Then

dim Homk⊗Dsp4
(w, u) ≤ dim Homsp4(C)(V (w), V (u)). (2.7..12)
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Proof. There is an obvious bijection between the set B and the set D. The result

then follows from Equation (2.7..1).

Remark 2.7..15. We sketch a more direct argument to deduce the inequality

(2.7..12). The dimension of the sp4(C) invariants in V (1)⊗2n is known to be equal

to the number of matchings of 2n points on the boundary of a disc such that

there is no 6-point star in the matching [47][31, 8.4]. One can argue that the local

condition of being non-elliptic implies the global condition of having no six point

star. Then, noting that non-elliptic diagrams have a unique representative up

to isotopy (there are no potential Reidemeister moves), it follows that there is a

bijection between non-elliptic diagrams and matchings without a 6-point star. This

proves that the inequality (2.7..12) holds when w = 1⊗a and u = 1⊗b for some

a, b ∈ Z≥0. Since 2 is a direct summand of 11 it follows that (2.7..12) holds for any

words w and u in the alphabet {1, 2}.

We have defined a set LLuw of double ladders in Dsp4 . It follows from the

construction of LLuw and (2.3..7) that

#LLuw =
∑
λ∈X+

#E(w, λ)#E(u, λ) = dim Homsp4(C)(V (w), V (u)). (2.7..13)

We want to show linear independence of the set of double ladders, or equivalently

that the inequality of dimensions in (2.7..12) is in fact an equality, for a general

choice of base ring k. To this end we will define an evaluation functor from the

diagrammatic category Dk
sp4

to the representation theoretic category Fund(k ⊗

UAq (sp4)), and interpret the image of the evaluation functor in terms of tilting

modules. If we can show that the image of the double ladder diagrams under the

evaluation functor is a linearly independent set, then the double ladder diagrams
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must be linearly independent in Dsp4 (a dependence relation in Dsp4 would map to

a dependence relation). This implies that the inequality in (2.7..12) is an equality,

and it follows that the evaluation functor maps bases to bases, so is fully faithful.

Remark 2.7..16. Since D spans Dk
sp4

and is in a non-canonical bijection with the set

of double ladder diagrams (for fixed choices of xλ and fixed choices of light ladders),

linear independence of the double ladder diagrams over k implies that both sets are

bases.

Note that double ladders have many internal 2 label edges while the diagrams

in D will have none. On the other hand, sometimes the double ladder diagrams

will be non-elliptic webs with no internal 2 edges. A good exercise for the reader is

to rewrite the diagram in Example (2.7..9) as a double ladder diagram. A hint is

that a double ladder diagram in HomDsp4
(2⊗5, ∅) will just be a light ladder diagram

LL∅2⊗5,?.

2.8. Defining the Evaluation Functor on Objects

We are now going to be more precise about what category of representations

associated to sp4 we are considering. The discussion below is well-known, but we

reproduce it here to help the reader follow certain calculations which come later.

Our main reference for quantum groups is Jantzen’s book [25]. Recall that

sp4(C) gives rise to a root system Φ and a Weyl group W . We choose simple roots

∆ = {αs = ε1 − ε2, αt = 2ε2}. There is a unique W invariant symmetric form (−,−)

on the root lattice ZΦ such that the short roots pair with themselves to be 2. This

is the form (εi, εj) = δij, restricted to the root lattice. For α ∈ Φ we define the

coroot α∨ = 2α/(α, α), in particular α∨s = αs and α∨t = αt/2 and the Cartan matrix
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((α∨i , αj)) is α∨s (αs) α∨s (αt)

α∨t (αs) α∨t (αt)

 =

 2 −2

−1 2

 .

Define the algebra Uq(sp4) as the Q(q) algebra given by generators

Fs, Ft, K
±1
s , K±1

t Es, Et

and relations

– KsK
−1
s = 1 = KsK

−1
s , KtK

−1
t = 1 = K−1

t Kt, KsKt = KtKs

– KtEt = q4EtKt, KtEs = q−2EsKt

– KsEt = q−2EtKs, KsEs = q2EsKs

– KtFt = q−4FtKt, KtFs = q2FsKt

– KsFt = q2FtKs, KsFs = q−2FsKs

– EtFs = FsEt, EsFt = FtEs

– EtFt = FtEt +
Kt −K−1

t

q2 − q−2

– EsFs = FsEs +
Ks −K−1

s

q − q−1

– E2
tEs −

[4]q
[2]q

EtEsEt + EsE
2
t = 0

– E3
sEt − [3]qE

2
sEtEs + [3]qEsEtE

2
s − EsE3

t

Our convention is [n]q :=
qn − q−n

q − q−1
and [n]q! = [n]q[n− 1]q . . . [2]q[1]q.
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Recall that A = Z[q, q−1, [2]−1
q ]. Let UAq (sp4) be the unital A-subalgebra of

Uq(sp4) spanned by K±1
s , K±1

t , and the divided powers

E(n)
s =

En
s

[n]q!
, F (n)

s =
F n
s

[n]q!
, E

(n)
t =

Et
[n]q2 !

, F
(n)
t =

Ft
[n]q2 !

for all n ∈ Z≥1. So UAq (sp4) is Lusztig’s divided powers quantum group [3].

Let V A($1) denote the free A module with basis

v(1,0), v(−1,1), v(1,−1), v(−1,0), (2.8..1)

and action of UAq (sp4) given by:

v(−1,0)

Es=1−−−→←−−−
Fs=1

v(1,−1)

Et=1−−−→←−−−
Ft=1

v(−1,1)

Es=1−−−→←−−−
Fs=1

v(1,0). (2.8..2)

Also, let V A($2) denote the free A module with basis

v(0,1), v(2,−1), v(0,0), v(−2,1), v(0,−1), (2.8..3)

and action of UAq (sp4) given by:

v(0,−1)

Et=1−−−→←−−−
Ft=1

v(−2,1)

Es=1−−−→←−−−−−
Fs = [2]q

v(0,0)

Es=[2]q−−−−→←−−−
Fs=1

v(2,−1)

Et=1−−−→←−−−
Ft=1

v(0,1). (2.8..4)

The elements Kα act on the basis vectors by

Ks · v(i,j) = qiv(i,j) and Kt · v(i,j) = q2jv(i,j). (2.8..5)

45



Our convention is that whenever we do not indicate the action of Eα or Fα

they act by zero. The action of higher divided powers on these modules can be

extrapolated from the given data. For example, F
(2)
s v(2,−1) = v(−2,1).

Remark 2.8..1. Why are we using A instead of Z[q, q−1]? When [2]q = 0, the Weyl

module k ⊗ V A($2) is not irreducible and the correct choice of combinatorial

category seems to be the Z[q1/2, q−1/2]-linear monoidal category generated by Vq

and Λ2(Vq). The module Λ2(Vq) has the Z[q1/2, q−1/2]-basis

v(0,1), v(2,−1), X0, Y0, v(−2,1), v(0,−1), (2.8..6)

and action of UAq (sp4) given by:

v(0,−1)

Et=1−−−→←−−−
Ft=1

v(−2,1)

Es−→←−
Fs

X0 ⊕ Y0

Es−→←−
Fs

v(2,−1)

Et=1−−−→←−−−
Ft=1

v(0,1). (2.8..7)

where

Es · Y0 = q−1/2v(2,−1) Es ·X0 = q1/2v(2,−1)

Es · v(−2,1) = q1/2X0 + q−1/2Y0

Fs · Y0 = q−1/2v(−2,1) Fs ·X0 = q1/2v(−2,1)

Fs · v(2,−1) = q1/2X0 + q−1/2Y0.

(2.8..8)

The module V A($2) can be defined over Z[q1/2, q−1/2]. There is a map from

V A($2) into Λ2(Vq), such that v(0,0) 7→ q1/2X0 + q−1/2Y0. Moreover, the cokernel of

this inclusion map will be isomorphic to the trivial module. Thus, Λ2(Vq) is filtered

by Weyl modules, and the filtration splits when [2]q 6= 0. If [2]q = 0, then Λ2(Vq) is
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indecomposable with socle and head isomorphic to the trivial module, and middle

subquotient isomorphic to the irreducible module of highest weight $2.

The algebra Uq(sp4) is a Hopf algebra with structure maps (∆, S, ε) defined on

generators by

– ∆(Eα) = Eα ⊗ 1 +Kα ⊗ Eα,∆(Fα) = Fα ⊗K−1
α + 1⊗ Fα,∆(Kα) = Kα ⊗Kα

– S(Eα) = −K−1
α Eα, S(Fα) = −FαKα, S(Kα) = K−1

α

– ε(Eα) = 0, ε(Fα) = 0, ε(Kα) = 1.

Furthermore, the algebra UAq (sp4) is a sub-Hopf-algebra of Uq(sp4) [3]. Therefore,

UAq (sp4) will act on the tensor product of representations through the coproduct ∆.

Using the antipode S, we can define an action of UAq (sp4) on

V A($1)∗ = HomA(V A($1),A) (2.8..9)

by

− q4v∗(1,0)

Es=1−−−→←−−−
Fs=1

q3v∗(−1,1)

Et=1−−−→←−−−
Ft=1

− qv∗(1,−1)

Es=1−−−→←−−−
Fs=1

v∗(−1,0), (2.8..10)

and on

V A($2)∗ = HomA(V A($2),A) (2.8..11)

by

q6v∗(0,−1)

Et=1−−−→←−−−
Ft=1

− q4v∗(−2,1)

Es=1−−−→←−−−−−
Fs = [2]q

q2[2]qv
∗
(0,0)

Es=[2]q−−−−→←−−−
Fs=1

− q2v∗(2,−1)

Et=1−−−→←−−−
Ft=1

v∗(0,1). (2.8..12)

Comparing (2.8..2) and (2.8..10) we see there is an isomorphism of UAq (sp4)

modules

ϕ1 : V A($1)→ V A($1)∗ (2.8..13)
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such that basis elements in (2.8..2) are sent to the basis elements in (2.8..10). By

comparing (2.8..4) and (2.8..12) we similarly obtain an isomorphism

ϕ2 : V A($2)→ V A($2)∗ (2.8..14)

sending basis elements in (2.8..4) to the basis elements in (2.8..12).

In Section 2.11. we will define a monoidal functor from Dsp4 to UAq (sp4)−mod.

The functor will send 1 to V A($1) and 2 to V A($2). The dual modules V A($1)∗

and V A($2)∗ will not be in the image of the functor Ξ. However, the maps ϕ1 and

ϕ2 are fixed isomorphisms of these dual modules with modules which are in the

image of the functor.

2.9. Caps and Cups

Lemma 2.9..1. If V is any finite rank A lattice with basis ei, define maps:

A u−→ V ⊗ HomA(V,A)
c−→ A (2.9..1)

A u′−→ HomA(V,A)⊗ V c′−→ A (2.9..2)

where u(1) =
∑
ei ⊗ e∗i , u′(1) =

∑
e∗i ⊗ ei, c(v ⊗ f) = f(v), and c′(f ⊗ v) = f(v).

Then

(idV ⊗c′) ◦ (u⊗ idV ) = idV = (c⊗ idV ) ◦ (idV ⊗u′) (2.9..3)

and

(idV ∗ ⊗c) ◦ (u′ ⊗ idV ∗) = idV ∗ = (c′ ⊗ idV ∗) ◦ (idV ∗ ⊗u). (2.9..4)
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Proof. We will show that

(idV ⊗c′) ◦ (u⊗ idV ) = idV

the arguments to establish the other three equalities in (2.9..3) and (2.9..4) are

similar.

Let v ∈ V . Since ei is a basis for V we can write v =
∑
viei for some vi ∈ A.

Thus,

(idV ⊗c′) ◦ (u⊗ idV )(v) = (idV ⊗c′)(
∑

ei ⊗ e∗i ⊗ v) =
∑

ei · e∗i (v) =
∑

viei = v.

Lemma 2.9..2. Fix an isomorphism ϕ : V → V ∗ and write cap = c′ ◦ (ϕ⊗ id) and

cup = (id⊗ϕ−1) ◦ u. Then

(idV ⊗cap) ◦ (cup⊗ idV ) = idV = (cap⊗ idV ) ◦ (idV ⊗cup). (2.9..5)

Proof. Using ϕ ◦ ϕ−1 = id = ϕ−1 ◦ ϕ, (2.9..5) follows easily from (2.9..3) and

(2.9..4).

The A-linear maps

A
cupi:=(id⊗ϕ−1

i )◦ui−−−−−−−−−−−→ V A($i)⊗ V A($i)
capi:=c

′
i◦(ϕi⊗id)

−−−−−−−−−−→ A, for i = 1, 2, (2.9..6)

are actually maps of UAq (sp4) modules, where A is the trivial module. The functor

Ξ will send the cups and caps from the diagrammatic category to the maps cupi

and capi.
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The module V A($1) has basis

{v(1,0), v(−1,1) = Fsv(1,0), v(1,−1) = FtFsv(1,0), v(−1,0) = FsFtFsv(1,0)}, (2.9..7)

and the module V A($2) has basis

{v(0,1), v(2,−1) = Ftv(0,1), v(0,0) = FsFtv(0,1), v(−2,1) = F (2)
s Ftv(0,1), v(0,−1) = FtF

(2)
s Ftv(0,1)}.

(2.9..8)

With respect to these bases, we can write cup1 : A → V A($1)⊗ V A($1) as

1 7→ −q−4v(1,0)⊗v(−1,0)+q
−3v(−1,1)⊗v(1,−1)−q−1v(1,−1)⊗v(−1,1)+v(−1,0)⊗v(1,0), (2.9..9)

and cup2 : A → V A($2)⊗ V A($2) as

1 7→ q−6v(0,1)⊗v(0,−1)−q−4v(2,−1)⊗v(−2,1)+
q−2

[2]q
v(0,0)⊗v(0,0)−q−2v(−2,1)⊗v(2,−1)+v(0,−1)⊗v(0,1).

(2.9..10)

To record the maps capi in our basis we use the matrices

cap1(vi ⊗ vj) =

v(−1,0) v(1,−1) v(−1,1) v(1,0)



v(−1,0) 0 0 0 −q4

v(1,−1) 0 0 q3 0

v(−1,1) 0 −q 0 0

v(1,0) 1 0 0 0

(2.9..11)
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and

cap2(vi ⊗ vj) =

v(0,−1) v(−2,1) v(0,0) v(2,−1) v(0,1)



v(0,−1) 0 0 0 0 q6

v(−2,1) 0 0 0 −q4 0

v(0,0) 0 0 q2[2]q 0 0

v(2,−1) 0 −q2 0 0 0

v(0,1) 1 0 0 0 0

.

(2.9..12)

Example 2.9..3. We give two calculations to clarify how we arrived at these

formulas:

cap2(v(0,0) ⊗ v(0,0)) = c′2 ◦ (ϕ2 ⊗ id)(v(0,0) ⊗ v(0,0)) = c′2(q2[2]qv
∗
(0,0) ⊗ v(0,0)) = q2[2]q

and

cup1(1) = (id⊗ϕ−1
1 ) ◦ u1(1)

= v(−1,0) ⊗ ϕ−1
1 (v∗(−1,0)) + v(1,−1) ⊗ ϕ−1

1 (v∗(1,−1))

+ v(−1,1) ⊗ ϕ−1
1 (v∗(−1,1)) + v(1,0) ⊗ ϕ−1

1 (v(1,0))

= −q−4v(1,0) ⊗ v(−1,0) + q−3v(−1,1) ⊗ v(1,−1) − q−1v(1,−1) ⊗ v(−1,1) + v(−1,0) ⊗ v(1,0).

The maps cupi and capi in UAq (sp4) − mod are going to correspond to the

colored cap and cup maps in Dsp4 . In which case, the equation (2.9..5) corresponds
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to the isotopy relations.

= = (2.9..13)

= = (2.9..14)

2.10. Trivalent Vertices

Consider the module V A($1)⊗V A($1). We observe that the vector q−1v(1,0)⊗

v(0,1) − v(0,1) ⊗ v(1,0) is annihilated by Es and Et. The action of Ks scales this vector

by 1 and the action of Kt scales the vector by q2. There is an A-linear map

i : V A($2)→ V A($1)⊗ V A($1)

v(0,1) 7→ q−1v(1,0) ⊗ v(−1,1) − v(−1,1) ⊗ v(1,0)

v(2,−1) 7→ q−1v(1,0) ⊗ v(1,−1) − v(1,−1) ⊗ v(1,0)

v(0,0) 7→ q−1v(1,0) ⊗ v(−1,0) + q−2v(−1,1) ⊗ v(1,−1)

− v(1,−1) ⊗ v(−1,1) − q−1v(−1,0) ⊗ v(1,0)

v(−2,1) 7→ q−1v(−1,1) ⊗ v(−1,0) − v(−1,0) ⊗ v(−1,1)

v(0,−1) 7→ q−1v(1,−1) ⊗ v(−1,0) − v(−1,0) ⊗ v(1,−1).

(2.10..1)

Using the explicit description of V A($2) in (2.8..4), one checks that i is a map

of UAq (sp4)-modules by computing the action of the generators of UAq (sp4) on

the vectors appearing on the right hand side of (2.10..1). The morphism i will

correspond to the following diagram.

(2.10..2)
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One can also check the equality of the following two elements of

HomUAq (sp4)(V
A($1)⊗ V A($1), V A($2)):

(id⊗ cap1) ◦ (id⊗ id⊗ cap1⊗ id) ◦ (id⊗ i⊗ id⊗ id) ◦ (cup2⊗ id⊗ id) (2.10..3)

and

(cap1⊗ id) ◦ (id⊗ cap1⊗ id⊗ id) ◦ (id⊗ id⊗ i⊗ id) ◦ (id⊗ id⊗ cup2). (2.10..4)

Then we will unambiguously denote both maps by p. In the graphical calculus this

corresponds to the following.

(2.10..3)

=

p

=

(2.10..4)

(2.10..5)

The equality of (2.10..3) and (2.10..4) follows from verifying that both maps act on

a basis as follows.

p : V A($1)⊗ V A($1)→ V A($2). (2.10..6)

v(1,0) ⊗ v(1,0) 7→ 0 v(−1,1) ⊗ v(1,0) 7→ qv(0,1)

v(1,0) ⊗ v(−1,1) 7→ −v(0,1) v(−1,1) ⊗ v(−1,1) 7→ 0

v(1,0) ⊗ v(1,−1) 7→ −v(2,−1) v(−1,1) ⊗ v(1,−1) 7→
−1

[2]q
v(0,0)

v(1,0) ⊗ v(−1,0) 7→
−q
[2]q

v(0,0) v(−1,1) ⊗ v(−1,0) 7→ −v(−2,1)
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v(1,−1) ⊗ v(1,0) 7→ qv(2,−1) v(−1,0) ⊗ v(1,0) 7→
q

[2]q
v(0,0)

v(1,−1) ⊗ v(−1,1) 7→
q2

[2]q
v(0,0) v(−1,0) ⊗ v(−1,1) 7→ qv(−2,1)

v(1,−1) ⊗ v(1,−1) 7→ 0 v(−1,0) ⊗ v(1,−1) 7→ qv(0,−1)

v(1,−1) ⊗ v(−1,0) 7→ −v(0,−1) v(−1,0) ⊗ v(−1,0) 7→ 0

Remark 2.10..1. We sketch a method to compute (2.10..3) evaluated on v(−1,1) ⊗

v(1,−1), the other calculations follow the same pattern. The cap1’s in the definition

of (2.10..3) are only non-zero on basis vectors of the form vµ ⊗ v−µ. Also, in the

formula for i (2.10..1) the only basis vector with a tensor of the form v(−1,1) ⊗ v(1,−1)

is v(0,0). Therefore, (2.10..3) acts as

v(−1,1) ⊗ v(1,−1) 7→ (id⊗ cap1) ◦ (id⊗ id⊗ cap1⊗ id)◦(
q−2

[2]q
v(0,0) ⊗ i(v(0,0))⊗ v(−1,1) ⊗ v(1,−1)

)
= q−2 cap1(v(1,−1) ⊗ v(−1,1)) cap1(v(−1,1) ⊗ v(1,−1))

q−2

[2]q
v(0,0)

= q−2q3(−q)q
−2

[2]q
v(0,0)

=
−1

[2]q
v(0,0).

(2.10..7)

2.11. The Definition of the Evaluation Functor

Theorem 2.11..1. There is a monoidal functor

Ξ : Dsp4 → UAq (sp4)−mod.
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defined on objects by defining Ξ(1) = V A($1) and Ξ(2) = V A($2) and then

extending monoidally. The functor Ξ is defined on morphisms by first defining

7→ cap1 7→ cap2 7→ p (2.11..1)

7→ cup1 7→ cup2 7→ i (2.11..2)

and then extending A-linearly so that horizontal concatenation of diagrams

corresponds to tensor product of morphisms in UAq (sp4) − mod and vertical

composition of diagrams corresponds to composition of morphisms in UAq (sp4)−mod.

Example 2.11..2. We illustrate how Ξ is defined on objects and on morphisms:

Ξ(122) = V A(122) = V A($1)⊗ V A($1)⊗ V A($2) (2.11..3)

1

[2]q
+ − 1

[2]q
7→ 1

[2]q
id⊗ id− i ◦p +

1

[2]q
cup1 ◦ cap1 .

(2.11..4)

2.12. Checking Relations

Since Dsp4 is defined by generators and relations, in order to verify the

theorem we must check that the diagrammatic relations hold in UAq (sp4)−mod.

Proof of Theorem 2.11..1. The isotopy relations follow from (2.9..5) and the

equality of (2.10..3) and (2.10..4).
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To verify the relation

= − [6]q[2]q
[3]q

(2.12..1)

it suffices to show that

cap1 ◦ cup1(1) = − [6]q[2]q
[3]q

. (2.12..2)

Using (2.9..9) and (2.9..11) we find

cap1 ◦ cup1(1) = −q−4 ·1+q−3 · (−q)−q−1 ·q3 +1 · (−q4) = − ([5]q − [1]q) . (2.12..3)

The desired equality (2.12..2) comes from the quantum number calculation in

(2.2..16).

One can similarly argue that the relation

=
[6]q[5]q
[3]q[2]q

(2.12..4)

is satisfied. Use (2.9..10) and (2.9..12) to compute

cap2 ◦ cup2(1) = q−6 + q−2 + 1 + q2 + q6 = [7]q − [5]q + [3]q, (2.12..5)

then use (2.2..17) to deduce

cap2 ◦ cup2(1) =
[6]q[5]q
[3]q[2]q

. (2.12..6)

To check the monogon relation

= 0 (2.12..7)
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and the bigon relation

= −[2]q (2.12..8)

we need to show cap1 ◦ i = 0 and p ◦ i = −[2]q id respectively. Since the module

V A($2) is generated by the highest weight vector v(0,1) it suffices to show that

cap1 ◦ i(v(0,1)) = 0 and p ◦ i(v(0,1)) = −[2]qv(0,1). The calculations go as follows:

cap1 ◦ i(v(0,1))
(2.10..1)

= cap1(q−1v(1,0) ⊗ v(−1,1) − v(−1,1) ⊗ v(1,0))

(2.9..9)
= 0.

(2.12..9)

and

p ◦ i(v(0,1))
(2.10..1)

= p(q−1v(1,0) ⊗ v(−1,1) − v(−1,1) ⊗ v(1,0))

(2.10..6)
= −q−1v(0,1) + qv(0,1)

= −[2]qv(0,1).

(2.12..10)

Verifying the trigon relation

= 0 (2.12..11)

is left as an exercise (Hint: apply (p⊗p) ◦ (id⊗ cup1⊗ id) ◦ i to the vector v(0,1)

and use (2.10..1) and (2.9..9) and (2.10..6)).

Now we endeavor to check the H = I relation.

=
1

[2]q
+ − 1

[2]q
(2.12..12)
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Precomposing with id⊗ cup1 is an A-linear map

HomUAq (sp4)(V
A($1)⊗2, V A($1)⊗2) −→ HomUAq (sp4)(V

A($1), V A($1)⊗3), (2.12..13)

while postcomposing with id⊗ id⊗ cap1 is an A-linear map in the other direction.

From (2.9..5) it follows that the two maps are mutually inverse isomorphisms of

A-modules, so we can instead check the following relation.

[2]q − [2]q = − (2.12..14)

From the discussion in Remark (2.2..3) it follows that we need to show

[2]q(id⊗ i) ◦ (id⊗p) ◦ (cup1⊗ id)− [2]q(i⊗ id)(p⊗ id) ◦ (id⊗ cup1) (2.12..15)

is equal to

id⊗ cup1− cup1⊗ id . (2.12..16)

Since V A($1) is generated by the vector v(1,0) it suffices to check that (2.12..15)

and (2.12..16) send v(1,0) to the same vector in V A($1)⊗ V A($1)⊗ V A($1).

From (2.9..9), (2.10..6), and (2.10..1) it follows that

[2]q(id⊗ i) ◦ (id⊗p) ◦ (cup1⊗ id)(v(1,0))− [2]q(i⊗ id)(p⊗ id) ◦ (id⊗ cup1)(v(1,0))

(2.12..17)
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is equal to

−q−3v(1,0)⊗ i(v(0,0)) + q−2[2]qv(−1,1) ⊗ i(v(2,−1))− [2]qv(1,−1) ⊗ i(v(0,1))

+ q−3[2]q i(v(0,1))⊗ v(1,−1) − q−1[2]q i(v(2,−1))⊗ v(−1,1) + q i(v(0,0))⊗ v(1,0)

(2.12..18)

Using (2.9..9), we also find that

id⊗ cup1(v(1,0))− cup1⊗ id(v(1,0)) (2.12..19)

is equal to

v(1,0) ⊗ (−q−4v(1,0) ⊗ v(−1,0) + q−3v(−1,1) ⊗ v(1,−1)−

q−1v(1,−1) ⊗ v(−1,1) + v(−1,0) ⊗ v(1,0))

− (q−4v(1,0) ⊗ v(−1,0) − q−3v(−1,1) ⊗ v(1,−1)

+ q−1v(1,−1) ⊗ v(−1,1) − v(−1,0) ⊗ v(1,0))⊗ v(1,0)

(2.12..20)

Using (2.10..1) to show that (2.12..18) = (2.12..20) is left as an exercise.

2.13. Background on Tilting Modules

Let k be a field and let q ∈ k× be such that q + q−1 6= 0. We will write

Uk
q (sp4) = k ⊗ UAq (sp4), and Uk

q (sp4) − mod for the category of finite dimensional

Uk
q (sp4) modules which are direct sums of their weight spaces and such that Kα

acts on the µ weight space as q(µ,α∨).

Everything we say in this section is well-known to experts, but the results

are essential for our arguments so we include some discussion for completeness.

Two excellent references are Jantzen’s book [26] (only the second edition contains
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the appendix on representations of quantum groups and the appendix on tilting

modules) and the eprint [4]. To deal with specializations when q is an even root of

unity we will also need some results from [41] and [28].

For each λ ∈ X+ there is a dual Weyl module of highest weight λ, denoted

∇k(λ), which is defined as an induced module [26, H.11]. The dual Weyl modules

are a direct sum of their weight spaces and therefore have formal characters. Recall

that we wrote V (λ) for the irreducible module sp4(C) module of highest weight λ.

We will write [V (λ)] for the formal character of V (λ) in Z[X], the group algebra

of the weight lattice. It is known that a q-analogue of Kempf’s vanishing holds for

any k [41]. This implies that dual Weyl modules have formal character [V (λ)] [3,

Theorem 5.12].

The dual Weyl module always has a unique simple submodule with highest

weight λ. We will denote this module by Lk(λ). The module Lk(λ) should not be

thought of as a base change of V (λ). In fact quite often the two modules will have

distinct formal characters.

Since Uk
q (sp4) is a Hopf-algebra, it acts on the dual vector space of any finite

dimensional representation. Then we define the Weyl module of highest weight λ

by V k(λ) = ∇k(−w0λ)∗ [26, H.15]. The dual Weyl module V k(λ) has the same

formal character as ∇k(λ), i.e. [V (λ)], and V k(λ) has a unique simple quotient

isomorphic to Lk(λ).

Remark 2.13..1. In type C2 the longest element w0 acts on the weight lattice as −1.

Therefore V k(λ) = ∇k(λ)∗.

Definition 2.13..2. A tilting module is a module which has a (finite) filtration

by Weyl modules, and a (finite) filtration by dual Weyl modules. The category of
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tilting modules, denoted Tilt(Uk
q (sp4)), is the full subcategory of Uk

q (sp4) − mod

where the objects are tilting modules.

Proposition 2.13..3. The tensor product of two Weyl modules

V k(λ1)⊗ V k(λ2)

has a filtration by Weyl modules.

Proof. That this holds over k follows from [28] where the result is shown to hold

integrally using the theory of crystal bases.

Corollary 2.13..4. The tensor product of two tilting modules is a tilting module.

Proof. Since (−)∗ is exact, it follows from Proposition (2.13..3) that the tensor

product of dual Weyl modules

V k(λ1)∗ ⊗ V k(λ2)∗

has a filtration by dual Weyl modules. Thus the tensor product of two tilting

modules will have a Weyl filtration and a dual Weyl filtration and is therefore a

tilting module.

Proposition 2.13..5. Let λ, µ ∈ X+. Then dimk Exti(V k(λ),∇k(µ)) = δi,0δλ,µ for

all i ≥ 0.

Proof. A standard argument [4, Proof of Claim 3.1] shows that the vanishing of

higher extension groups follows from Kempf’s vanishing [41].

Proposition 2.13..6. The category Tilt(Uk
q (sp4)) is closed under direct sums,

direct summands, and tensor products. The isomorphism classes of indecomposable
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objects in the category are in bijection with X+. We will write T k(λ) for the

indecomposable tilting module corresponding to the dominant integral weight λ. The

module T k(λ) is characterized as the unique indecomposable tilting module with a

one dimensional λ highest weight space.

Proof. [26, E.3-E.6].

Lemma 2.13..7. Weyl modules or dual Weyl modules give a basis for the

Grothendieck group of the category Uk
q (sp4)−mod.

Proof. Both V k(λ) and ∇k(λ) have the same formal character: [V (λ)]. In

particular V k(λ) and ∇k(λ) both have one dimensional λ weight spaces.

For a tilting module T , we will write (T : V k(λ)) to denote the filtration

multiplicity. Formal character considerations also imply that (T : V k(λ)) = (T :

V k(λ)∗) [26, E.10].

Lemma 2.13..8. The following are equivalent.

1. The Weyl module V k(λ) is simple.

2. V k(λ) ∼= ∇k(λ)

3. The Weyl module V k(λ) is a tilting module.

Proof. It is not hard to see (1) implies (2) implies (3) [26, E.1]. That (3) implies

(2) follows from Lemma (2.13..7), along with the equality of formal characters

[V k(λ)] = [∇k(λ)]. To see that (2) implies (1), observe that the composition

Lk(λ)→ ∇k(λ)
∼−→ V k(λ)→ Lk(λ)
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is non-zero on the λ weight space. So the composition is a non-zero endomorphism

of a simple module and therefore is an isomorphism. Thus, Lk(λ) is a direct

summand of ∇k(λ). Since ∇k(λ) has a simple socle, we may conclude that ∇k(λ) ∼=

Lk(λ).

Lemma 2.13..9. 1. If X has a filtration by Weyl modules, then for all λ ∈ X+

dim HomUk
q (sp4)(X,∇k(λ)) = (X : V k(λ)).

2. If Y has a filtration by dual Weyl modules, then for all λ ∈ X+

dim HomUk
q (sp4)(V

k(λ), Y ) = (Y : ∇k(λ)).

Proof. Both claims follow from Proposition (2.13..5) and a long exact sequence

argument.

Proposition 2.13..10. If T and T ′ are tilting modules, then

dim HomUk
q (sp4)(T, T

′) =
∑
λ∈X+

(T : V k(λ))(T ′ : V k(λ)). (2.13..1)

Proof. Since T has both Weyl and dual Weyl filtrations, this follows from 2.13..9

and the fact that (T ′ : ∇k(λ)) = (T ′ : V k(λ)).

2.14. The Image of the Evaluation Functor and Tilting Modules

We continue with our assumption that k is a field and q ∈ k× such that

q + q−1 6= 0.
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Definition 2.14..1. The category Fund(Uk
q (sp4)) is the full subcategory of

Rep(Uk
q (sp4)) with objects

V k(w) = V k(w1)⊗ V k(w2)⊗ . . .⊗ V k(wn),

where w = w1w2 . . . wn and wi ∈ {1, 2}.

After changing coefficients to k, the functor from Theorem (2.11..1) becomes

k⊗ Ξ : Dk
sp4
−→ Fund(Uk

q (sp4)) (2.14..1)

We will abuse notation and write Ξ for k⊗ Ξ.

Lemma 2.14..2. The modules V k(w) are tilting modules.

Proof. From the description of the integral forms of the modules in (2.8..2) and

(2.8..4), it is easy to see that V k($1) and V k($2) are irreducible with highest

weight $1 and $2. They also have the same formal character as [V ($1)] and

[V ($2)] respectively. So (2.13..8) implies that V k(w) is a tensor product of tilting

modules and therefore is a tilting module.

Remark 2.14..3. If q + q−1 = 0, then the Weyl module V k($1) is still simple and

therefore tilting but the Weyl module V k($2) is not. In particular, V k($2) has two

Jordan–Hölder factors, a simple socle isomorphic to Lk(0) and the simple quotient

Lk($2).

Lemma 2.14..4. For all w and u

dimk HomUk
q (sp4)(V

k(w), V k(u)) = dimC Homsp4(C)(V (w), V (u)). (2.14..2)
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Proof. Suppose that

V (w) ∼=
⊕
λ

V (λ)mλ , (2.14..3)

so we have an equality of formal characters [V (w)] =
∑
mλ[V (λ)]. Since [V k(w)] =

[V (w)] and [V k(λ)] = [V (λ)] it follows that (V k(w) : V k(λ)) = mλ. The claim then

follows from Proposition (2.13..10) and (2.3..7)

Theorem 2.14..5. The functor

Ξ : Dk
sp4
−→ Fund(Uk

q (sp4)).

is a monoidal equivalence.

Proof. The functor Ξ is monoidal and essentially surjective, so it suffices to prove Ξ

is full and faithful.

Let w and u be objects in Dsp4 . In the next section we will prove that Ξ(LLuw)

is a linearly independent set of homomorphisms in Fund(Uk
q (sp4)).

Since

#LLuw = dimC Homsp4(C)(V (w), V (u)) = dimk HomUk
q (sp4)(V

k(w), V k(u)), (2.14..4)

the linear independence of Ξ(LLuw) implies that Ξ maps LLuw to a basis in

Fund(Uk
q (sp4)). These observations imply that LLuw is a linearly independent

set of homomorphisms in Dk
sp4

. From the inequality in Lemma (2.7..14) we

deduce that LLuw is a basis. So Ξ maps a basis to a basis and HomDsp4
(w, u)

Ξ−→

HomUk
q (sp4)(V

k(w), V k(u)) is an isomorphism.

Corollary 2.14..6. The functor Ξ induces a monoidal equivalence between the

Karoubi envelope of Dk
sp4

and the category Tilt(Uk
q (sp4)).

65



Proof. Tensor products and direct summands of tilting modules are tilting modules.

Therefore, Lemma (2.14..2) implies that every direct summand of V k(w) is a tilting

module.

Let λ ∈ X+, so λ = a$1 + b$2 for a, b ∈ Z≥0. The module V k(1⊗a ⊗ 2⊗b)

has a one dimensional λ highest weight space and all other non-zero weight spaces

in X+ are less than λ. From (2.13..6) we deduce that V k(1⊗a ⊗ 2⊗b) must contain

T k(λ) as a direct summand. Therefore every indecomposable tilting module is a

direct summand of some V k(w).

2.15. Outline of Proof that Double Ladders are Linearly Independent

In this section we will finish the proof of Theorem (2.14..5) by arguing that

the set Ξ(LLuw) is linearly independent for all words w and u.

The idea of the proof is best illustrated as follows. Suppose we just wanted to

prove that the image of light ladder diagrams from w to ∅ are linearly independent.

Recall that E(w, 0) is the set of dominant weight subsequences ~µ = (µ1, µ2, . . . , µn),

such that
∑
µi = 0. Assume that for each dominant weight subsequence in

E(w, 0), we have fixed a choice of light ladder LL~µ and a vector v~µ ∈ V k(w). Since

~µ ∈ E(w, 0) is such that
∑
µi = 0, the light ladder L~µ will map under Ξ to a

homomorphism V k(w)→ V k(∅) = k. If the following matrix of elements in k

(Ξ(LL~µ)(v~ν))~µ,~ν∈E(w,0) (2.15..1)

is upper triangular with invertible elements on the diagonal, then a non-trivial

linear dependence among the maps Ξ(LL~µ) will give rise to a non-zero vector in

the kernel of the matrix (2.15..1).
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In the following subsections we will fix a choice of vectors associated to

dominant weight subsequences. Then, since we want to argue double ladder

diagrams are linearly independent, we must consider the image of the dominant

weight subsequence vectors under both light ladders and upside down light ladders.

The inductive construction of light ladders allows us to reduce these calculations to

elementary light ladders, neutral ladders, and upside down elementary light ladders.

In the end we still deduce linear independence of double ladder diagrams from an

upper triangularity argument.

2.16. Subsequence Basis

Recall that the modules V k(1) (2.9..7) and V k(2) (2.9..8) both have a fixed

basis of weight vectors vν for ν ∈ wtV k(1) ∪ wtV k(2).

Definition 2.16..1. Fix w = (w1, . . . , wn), a word in the alphabet {1, 2}, and let

S(w) := {(ν1, . . . νn) : νi ∈ wtV k(wi)}. (2.16..1)

We set

vw,+ := vw1 ⊗ vw2 ⊗ . . .⊗ vwn (2.16..2)

where v1 = v(1,0) and v2 = v(0,1). Also, for any sequence of weights ~ν = (ν1, ..., νn) ∈

S(w), we define

vw,~ν := vν1 ⊗ . . .⊗ vνn ∈ V k(w). (2.16..3)

The subsequence basis of V k(w) is the set

{v~ν : ~ν ∈ S(w)}. (2.16..4)
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Lemma 2.16..2. The subsequence basis of V k(w) is a basis of V k(w).

Proof. This is clear.

Definition 2.16..3. Let χ ∈ X+. The χ weight space of V k(w), denoted

V k(w)[χ], is the k-span of the subsequence basis vectors v~ν such that
∑
νi = χ.

Note that E(w) ⊂ S(w). In particular, for each ~ν ∈ E(w) we get a

subsequence basis vector vw,~ν . In the special case that the dominant weight

subsequence is such that νi = wtwi for all i, then vw,~ν = vw,+. Also, there is a

partition of the set of dominant weight subsequences of w:

E(w) =
⋃
λ∈X+

E(w, λ), (2.16..5)

where ~ν ∈ E(w) is in E(w, λ) whenever
∑
νi = λ or equivalently vw,~ν ∈ V k(w)[λ].

Definition 2.16..4. Recall that our choice of simple roots was ∆ = {αs, αt}. There

is a partial order on the set of weights defined by µ ≤ ν if ν − µ ∈ Z≥0 · ∆. If we

restrict this partial order to the set wtV A(1) ∪ wtV A(2), the resulting order is:

(−1, 0) < (1,−1) < (−1, 1) < (1, 0) (2.16..6)

(0,−1) < (−2, 1) < (0, 0) < (2,−1) < (0, 1). (2.16..7)

The lexicographic order gives a total order on the set S(w). We will transport

this total order to give a total order on the subsequence basis.

Example 2.16..5. In the image of E(2121, (2, 0)) −→ V k(2121)[(2, 0)] we have,

v((0,1),(1,0),(2,−1),(−1,0)) > v((0,1),(1,0),(0,−1),(1,0)) > v((0,1),(1,−1),(0,0),(1,0)).
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Lemma 2.16..6. If wtw � χ, then V k(w)[χ] = 0.

Proof. If ~ν ∈ S(w) is such that νi ∈ wtV k(wi), then
∑
νi ≤ wtw. The subsequence

basis spans V k(w), so whenever V k(w)[χ] 6= 0, we must have χ ≤ wtw.

2.17. The Evaluation Functor and Elementary Diagrams

Notation 2.17..1. In the remainder of the section, we will use the same notation

for diagrammatic morphisms and their image under the functor Ξ. But instead of

saying diagram we will say map, for example the image of a light ladder diagram

under Ξ will be referred to as a light ladder map.

To further simplify some of the statements below, our convention is that w

and u are words in the alphabet {1, 2} and ξ represents an invertible element of k.

Recall that for each weight µ ∈ wtV k(1) ∪ wtV k(2) there is an elementary

light ladder diagram. The images of the elementary light ladder diagrams under the

evaluation functor are the following elementary light ladder maps:

L(1,0) = id : V k(1)→ V k(1)

L(−1,1) = p : V k(11)→ V k(2)

L(1,−1) = (id⊗ cap1) ◦ (i⊗ id) : V k(21)→ V k(1)

L(−1,0) = cap1 : V k(11)→ k

L(0,1) = id : V k(2)→ V k(2)

L(2,−1) = (id⊗ cap2⊗ id) ◦ (i⊗ i) : V k(22)→ V k(11)

L(0,0) = (cap1⊗ id) ◦ (id⊗ i) : V k(12)→ V k(1)

L(−2,1) = p ◦(id⊗ cap1⊗ id) ◦ (id⊗ id⊗ i) : V k(112)→ V k(2)

L(0,−1) = cap2 : V k(22)→ k.
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There are two simple neutral diagrams, and their images under the evaluation

functor are the simple neutral maps:

N21
12 = (p⊗ id) ◦ (id⊗ i) : V k(12)→ V k(21)

N12
21 = (id⊗p) ◦ (i⊗ id) : V k(21)→ V k(12).

Lemma 2.17..2. If f : V k(w) −→ V k(u) is a morphism which is in the image of

the functor Ξ, then f : V k(w)[χ] −→ V k(u)[χ], for all χ ∈ X.

Proof. It is well known that every Uk
q (sp4) module homomorphism between finite

dimensional modules will preserve weight spaces. But we could also deduce this

from observing that the maps id, i, and the cap and cup maps all preserve weight

spaces and that any map in the image of Ξ is a linear combination of vertical and

horizontal compositions of these basic maps.

Recall that to construct light ladder diagrams and double ladder diagrams we

need to fix a word xλ in 1 and 2 for all λ ∈ X+, and we need to make choices of

neutral diagrams in the algorithmic construction. We now fix an xλ for all λ ∈ X+

and fix a light ladder diagram LLw,(µ1,...,µm) for all w and all (µ1, . . . , µm) ∈ E(w).

This allows us to construct double ladder diagrams. The double ladder maps are

the image of these double ladder diagrams under the evaluation functor.

Remark 2.17..3. The form of the arguments below do not depend on our choice of

light ladder maps.

2.18. Pairing Vectors and Neutral Maps

Lemma 2.18..1. If N : V k(w) → V k(u) is a neutral map, then N(vw,+) = ξ · vu,+.

Furthermore, if (µ1, . . . , µn) is a sequence of weights such that µi ∈ wtV k(wi),
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and N(vw,(µ1,...,µn)) has a non-zero coefficient for vu,+ after being written in the

subsequence basis, then vw,(µ1,...,µn) = vw,+.

Proof. Neutral maps are vertical and horizontal compositions of identity maps,

and the basic neutral maps N21
12 and N21

12 . The lemma will follow from verifying its

validity for the two basic neutral maps.

The following maps factor through V k(1):

I21
12 := D(L(1,−1)) ◦ L(0,0) and I12

21 := D(L(0,0)) ◦ L(1,−1). (2.18..1)

Since V k(1) contains no vectors of weight $1 +$2, it follows that

I21
12 (v(1,0) ⊗ v(0,1)) = 0 and I12

21 (v(0,1) ⊗ v(1,0)) = 0. (2.18..2)

It is easy to use the diagrammatic relations to compute that the maps

b21
12 = qN21

12 + q−1I21
12 (2.18..3)

and

b12
21 = q−1N12

21 + qI12
21 (2.18..4)

are mutual inverses.

Both b21
12 and b12

21 are isomorphisms so they restrict to isomorphisms of weight

spaces. Since the $1 +$2 weight spaces of V k(12) and V k(21) are one dimensional,

it follows that N21
12 sends the vector v(1,0) ⊗ v(0,1) to a non-zero scalar multiple of

v(0,1) ⊗ v(1,0) and N21
12 sends v(0,1) ⊗ v(1,0) to a non-zero multiple of v(1,0) ⊗ v(0,1).

Furthermore, the only subsequence basis vector which N21
12 sends to a non-zero
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multiple of v(0,1) ⊗ v(1,0) is v(1,0) ⊗ v(0,1), and the only subsequence basis vector

which N12
21 sends to a non-zero multiple of v(1,0) ⊗ v(0,1) is v(0,1) ⊗ v(1,0).

2.19. Pairing Vectors and Light Ladders

Lemma 2.19..1. Let ∗ ∈ {1, 2} and µ ∈ wtV k(∗). Then the map id⊗Lµ : V k(w)⊗

V k(∗)→ V k(u), is such that for all ν ∈ wt(V k(∗)),

id⊗Lµ(vw,+ ⊗ vν) =


0 if ν > µ

ξ · vu,+ if ν = µ.

(2.19..1)

Proof. It suffices to check the claim for Lµ and not all id⊗Lµ. The claim is obvious

for L(1,0) and L(0,1). For the rest of the cases, the claim follows from the calculation

in Section 2.22.. Note that in the Lµ step of the calculation, the first non-zero entry

is vµ 7→ ξ · vu,+.

Let ~µ = (µ1, . . . , µn) ∈ E(w, λ). The light ladder map LLw,~µ : V k(w) →

V k(xλ) restricts to a map

LLw,~µ : V k(w)[λ] −→ V k(xλ)[λ]. (2.19..2)

Moreover, V k(xλ)[λ] = k · vxλ,+. There is also a totally ordered set of linearly

independent vectors in V k(w)[λ], namely vw,~ν for all ~ν = (ν1, . . . , νn) ∈ E(w, λ).

Proposition 2.19..2.

LLw,~µ(vw,~ν) =


0 if ~ν > ~µ

ξ · vxλ,+ if ~ν = ~µ.

(2.19..3)
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Proof. By the inductive definition of the light ladder map LLw,~µ and of the vector

vw,~ν , this proposition follows from repeated use of Lemmas (2.19..1) and (3.4..6).

2.20. Pairing Vectors and Upside Down Light Ladders

In the results of the previous subsection we found the lexicographic order

on sequences of weights was adapted to light ladders. There is another order on

weights which is convenient for upside down light ladders.

Definition 2.20..1. Fix w and let ~µ = (µ1, . . . , µn) and ~ν = (ν1, . . . , νn) be

sequences of weights such that µi, νi ∈ wtV k(wi). Define a total order <D on weight

sequences by setting ~ν <D ~µ if (νn, . . . , ν1) < (µn, . . . , µ1) in the lexicographic order.

We may also transport this order to give a total order on the subsequence basis.

Lemma 2.20..2. Let ∗ ∈ {1, 2} and µ ∈ wtV k(∗). Then the map id⊗D(Lµ) :

V k(w)→ V k(u)⊗ V k(∗) is such that

id⊗D(Lµ)(vw,+) = ξ · vu,+ ⊗ vµ +
∑

c~τ · vu,~τ ⊗ vν , c~τ ∈ k, (2.20..1)

where vu,~τ ⊗ vν is a subsequence basis vector, vν > vµ, and vu,~τ < vu,+.

Proof. It suffices to check the claim for D(Lµ) and not all id⊗D(Lµ). The claim is

obvious for D(L(1,0)) and D(L(0,1)). The rest of the cases follow from the calculation

in Section 2.23.. Note that the first line in the D(Lµ) calculation is vw,+ 7→ ξ · vu,+⊗

vµ, while the remaining terms are of the form vu,~τ ⊗ vν where ν > µ.
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Let ~µ = (µ1, . . . , µn) ∈ E(w, λ). The associated upside down light ladder map

D(LLw,~µ) : V k(xλ) −→ V k(w) restricts to a map

D(LLw,~µ) : V k(xλ)[λ] −→ V k(w)[λ]. (2.20..2)

Proposition 2.20..3.

D(LLw,~µ)(vxλ,+) = ξ · vw,~µ +
∑

c~τ · vw,~τ , c~τ ∈ k, (2.20..3)

where vw,~µ <
D vw,~τ .

Proof. By the inductive definition of the light ladder map LLw,(µ1,...,µn), this

proposition follows from repeated use of Lemmas (2.20..2) and (3.4..6).

2.21. Proof of Linear Independence

Theorem 2.21..1. The set

LLuw =
⋃
λ∈X+

LLuw(λ) (2.21..1)

is a linearly independent subset of HomUk
q (sp4)(V

k(w), V k(u)).

Proof. Let ∑
λ

∑
~µ∈E(w,λ)
~ν∈E(u,λ)

λc~ν~µ · LL
u,~ν
w,~µ = 0, λc~ν~µ ∈ k (2.21..2)

be a non-trivial linear relation. There is at least one λ0 ∈ X+ with λ0c~ν~µ 6= 0 such

that if λc~ν~µ 6= 0 then λ ≯ λ0. Lemma (2.16..6) implies that for all λ 6= λ0 with

λc~ν~µ 6= 0, V k(xλ)[λ0] = 0. If v0 ∈ V k(w)[λ0], then since light ladder maps preserve
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the weight of a vector (2.17..2)

0 =
∑
λ

∑
~µ,~ν

λc~ν~µ · LL
u,~ν
w,~µ(v0) =

∑
~µ,~ν

λ0c~ν~µ · LL
u,~ν
w,~µ(v0). (2.21..3)

Note that for ~µ ∈ E(w, λ0), vw,~µ ∈ V k(w)[λ0].

Let ~µ0 be the largest ~µ, in the lexicographic order, such that λ0c~ν~µ 6= 0. Taking

v0 = vw, ~µ0 in (2.21..3) results in

0 =
∑
~µ,~ν

λ0c~ν~µ · LL
u,~ν
w,~µ(vw, ~µ0) =

∑
~µ,~ν

λ0c~ν~µ · D(LLu,~ν) ◦ LLw,~µ(vw, ~µ0). (2.21..4)

Proposition (2.19..2) implies

0 =
∑
~ν

λ0c~ν~µ0 · D(LLu,~ν) ◦ LLw, ~µ0(vw, ~µ0) =
∑
~ν

λ0c~ν~µ0ξ · D(LLu,~ν)(vxλ,+). (2.21..5)

Let ~ν0 be the smallest ~ν, in the <D order, such that λ0c~ν~µ0 6= 0. Proposition

(2.20..3) implies

0 = λc ~ν0~µ0ξ · D(LLu, ~ν0)(vxλ,+) +
∑
~ν0<D~ν

λ0c~ν~µ0ξ · D(LLu,~ν)(vxλ,+)

= λ0c ~ν0~µ0ξ · vu, ~ν0 + “higher terms”,

(2.21..6)

where “higher terms” is a linear combination of subsequence basis vectors all of

which are greater than vu, ~ν0 in the <D order. Since the subsequence basis vectors

are linearly independent, we must have λ0c ~ν0~µ0ξ = 0, which is a contradiction.
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2.22. Elementary Light Ladder Calculations

L(−1,1)(v(1,0) ⊗ (−)) :



v(1,0) 7→ 0

v(−1,1) 7→ −v(0,1)

v(1,−1) 7→ −v(2,−1)

v(−1,0) 7→
−q
[2]q

v(0,0),

(2.22..1)

L(1,−1)(v(0,1) ⊗ (−)) :



v(1,0) 7→ 0

v(−1,1) 7→ 0

v(1,−1) 7→ −v(1,0)

v(−1,0) 7→ −v(−1,1),

(2.22..2)

L(−1,0)(v(1,0) ⊗ (−)) :



v(1,0) 7→ 0

v(−1,1) 7→ 0

v(1,−1) 7→ 0

v(−1,0) 7→ 1,

(2.22..3)

L(2,−1)(v(0,1) ⊗ (−)) :



v(0,1) 7→ 0

v(2,−1) 7→ v(1,0) ⊗ v(1,0)

v(0,0) 7→ v(1,0) ⊗ v(−1,1) + q−1v(−1,1) ⊗ v(1,0)

v(−2,1) 7→ v(−1,1) ⊗ v(−1,1)

v(0,−1) 7→ −v(1,0) ⊗ v(−1,0) + v(−1,1) ⊗ v(1,−1),

(2.22..4)
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L(0,0)(v(1,0) ⊗ (−)) :



v(0,1) 7→ 0

v(2,−1) 7→ 0

v(0,0) 7→ −q−1v(1,0)

v(−2,1) 7→ −v(−1,1)

v(0,−1) 7→ −v(1,−1),

(2.22..5)

L(−2,1)(v(1,0) ⊗ v(1,0) ⊗ (−)) :



v(0,1) 7→ 0

v(2,−1) 7→ 0

v(0,0) 7→ 0

v(−2,1) 7→ v(0,1)

v(0,−1) 7→ v(2,−1),

(2.22..6)

L(0,−1)(v(0,1) ⊗ (−)) :



v(0,1) 7→ 0

v(2,−1) 7→ 0

v(0,0) 7→ 0

v(−2,1) 7→ 0

v(0,−1) 7→ 1.

(2.22..7)

2.23. Upside Down Elementary Light Ladder Calculations

D(L(−1,1)) : v(0,1) 7→ q−1v(1,0)⊗v(−1,1)

−v(−1,1)⊗v(1,0)

(2.23..1)
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D(L(1,−1)) : v(1,0) 7→ −q−3v(0,1)⊗v(1,−1)

+q−1v(2,−1)⊗v(−1,1)

− q

[2]q
v(0,0)⊗v(1,0)

(2.23..2)

D(L(−1,0)) : 1 7→ −q−4v(1,0)⊗v(−1,0)

+q−3v(−1,1)⊗v(1,−1)

−q−1v(1,−1)⊗v(−1,1)

+v(−1,0)⊗v(1,0),

(2.23..3)

D(L(2,−1)) : v(1,0) ⊗ v(1,0) 7→ −q−2v(0,1)⊗v(2,−1)

+v(2,−1)⊗v(0,1)

(2.23..4)

D(L(0,0)) : v(1,0) 7→
−q−3

[2]q
v(1,0)⊗v(0,0)

+q−2v(−1,1)⊗v(2,−1)

−v(1,−1)⊗v(0,1)

(2.23..5)
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D(L(−2,1)) : v(0,1) 7→ −q−4v(1,0) ⊗ v(1,0)⊗v(−2,1)

+
q−2

[2]q
v(1,0) ⊗ v(−1,1)⊗v(0,0) +

q−3

[2]q
v(−1,1) ⊗ v(1,0) ⊗ v(0,0)

−q−2v(−1,1) ⊗ v(−1,1)⊗v(2,−1)

−q−1v(1,0) ⊗ v(−1,0)⊗v(0,1) + v(−1,1) ⊗ v(1,−1) ⊗ v(0,1)

(2.23..6)

and

D(L(0,−1)) : 1 7→ q−6v(0,1)⊗v(0,−1)

−q−4v(2,−1)⊗v(−2,1)

+
q−2

[2]q
v(0,0)⊗v(0,0)

−q−2v(−2,1)⊗v(2,−1)

+v(0,−1)⊗v(0,1).

(2.23..7)

2.24. Object Adapted Cellular Category Structure

We refer to [21, Definition 2.4] for the definition of a strictly object adapted

cellular category or SOACC.

Let k be a field and let q ∈ k× such that q + q−1 6= 0. In this section we will

show that Dk
sp4

is an SOACC. It follows that the endomorphism algebras in Dk
sp4

are cellular algebras. Since we proved that Dk
sp4

is equivalent to Fund(Uk
q (sp4)), the

result about cellular algebras also follows from [5] and the result about Dk
sp4

being

an SOACC follows from [2, Proposition 2.4]. For more discussion about the relation

between our work and [5] we recommend [7, p. 6] (but replace sln webs with Dsp4).
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For each λ ∈ X+, choose an object xλ in Dk
sp4

such that wt xλ = λ. The set

Λ = {xλ}λ∈X+ is in bijection with X+, and we define a partial order on Λ by setting

xλ ≤ xµ whenever λ ≤ µ i.e. µ− λ ∈ Z≥0Φ+.

For any object w in Dk
sp4

and for all ~µ ∈ E(w, λ) we fix a light ladder diagram

LL~µ := LLw,~ν ∈ HomDk
sp4

(w, xλ) and an upside down light ladder diagram

D(LL~ν) := D(LLw,~ν) ∈ HomDk
sp4

(xλ, w).

If xλ = x1x2 . . . xn where xi ∈ {1, 2}, then the set E(xλ, λ) contains a single

element, ~λ = (wtx1,wtx2 . . .wtxn). Recall that in our definition of double ladder

diagrams we choose LL~λ = idxλ = D(LL~λ).

For ~µ ∈ E(w, λ) and ~ν ∈ E(u, λ) we set

LLλ~µ,~ν := D(LL~ν) ◦ LL~µ ∈ HomDk
sp4

(w, u). (2.24..1)

It follows from our main theorem that {LLλ~µ,~ν}λ∈X+ forms a basis for

HomDk
sp4

(w, u).

Remark 2.24..1. In the definition of an SOACC, one fixes the data of two sets,

E(w, λ) and M(w, λ), which are in a fixed bijection. We are choosing to ignore the

set M(w, λ).

Definition 2.24..2. Fix λ ∈ X+. Let (Dk
sp4

)<λ be the k-linear subcategory whose

morphisms are spanned by LLχ~µ,~ν with χ < λ.

Lemma 2.24..3. Let f ∈ HomDk
sp4

(w, u) and let ~µ ∈ E(u, λ). Then

LL~µ ◦ f ≡
∑

~ν∈E(w,λ)

∗ · LL~ν modulo (Dk
sp4

)<λ, (2.24..2)

where ∗ represents an element of k.
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Proof. Writing LL~µ ◦ f in the double ladder basis, we find that

LL~µ ◦ f =
∑
χ∈X+

~ν∈E(w,χ)
~τ∈E(xλ,χ)

∗ · LLχ~ν,~τ

≡
∑

~µ∈E(w,λ)
~τ∈E(xλ,λ)

∗ · LLλ~ν,~τ modulo (Dk
sp4

)<λ

≡
∑

~ν∈E(w,λ)

∗ · LL~ν modulo (Dk
sp4

)<λ

(2.24..3)

The second equality follows from the observation that if χ ∈ X+ and E(xλ, χ) 6= ∅,

then χ ≤ λ. The third equality follows from recalling that E(xλ, λ) = {~λ} and

LL~λ = idxλ .

Corollary 2.24..4. The category Dk
sp4

with fixed choices of xλ and light ladder

diagrams is an SOACC.

2.25. Tilting Character Algorithm

We will describe a way to compute the filtration multiplicities (T k(λ), V k(µ))

for all λ, µ ∈ X+ using the light ladder diagrams in Dk
sp4

. The ideas in this

section are standard, and we follow [22, 32]. The reader may also wish to consult

[5, Appendix 4B] and compare our discussion with the theory of cell modules for

cellular algebras.

Lemma 2.25..1. The indecomposable tilting module T k(λ) has a local

endomorphism ring, and if J is the Jacobson radical of the ring EndUk
q (sp4)(T

k(λ)),

then

EndUk
q (sp4)(T

k(λ))/J
∼−→ k · id, (2.25..1)
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where ϕ+ J = cϕ id +J 7→ cϕ id.

Proof. Restriction to T k(λ)[λ] is a k-linear ring homomorphism

EndUk
q (sp4)(T

k(λ))→ Endk(T k(λ)[λ]) = k · id . (2.25..2)

Since id acts on the λ weight space as multiplication by 1, this ring homomorphism

is surjective. Also, T k(λ) is indecomposable so its endomorphism ring is local, and

therefore the kernel of the ring homomorphism in (2.25..2) is J .

Lemma 2.25..2. Let w be an object in Dk
sp4

such that wtw = λ. Then

V k(w) = T k(λ)⊕
⊕
µ<λ

T k(µ)rw,µ (2.25..3)

and rw,µ is the rank of the pairing

κw,µ : HomUk
q (sp4)(V

k(w), T k(µ))× HomUk
q (sp4)(T

k(µ), V k(w))→ k · id

(f, g) 7→ cf◦g · id .

Proof. The claim about the decomposition of V k(w) follows from character

considerations. The second claim about computing multiplicities using the rank

of the composition pairing is standard [22, Lemma 11.65].

Remark 2.25..3. The pairing κw,wtw will always have rank 1.

Lemma 2.25..4. The light ladder diagrams {LL~ν}~ν∈E(w,µ) form a basis for

HomDk
sp4

(w, xµ)/(Dk
sp4

)<µ,
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and the upside down light ladder diagrams {D(LL~ν)}~ν∈E(w,µ) form a basis for

HomDk
sp4

(xµ, w)/(Dk
sp4

)<µ.

For all pairs ~χ, ~ν ∈ E(w, µ) there is a scalar c~ν~χ ∈ k such that

LL~ν ◦ D(LL~χ) = c~ν~χ idxµ +(Dk
sp4

)<µ,

which is computed as the coefficient of the identity in the double ladder basis. The

rank of the matrix (c~ν~χ)~χ,~ν∈E(w,µ) is equal to the rank of the pairing κw,µ.

Proof. Since Dk
sp4

is an object adapted cellular category, this follows from the

discussion in [22, Appendix 11.5].

Proposition 2.25..5. The character of the indecomposable tilting module with

highest weight λ ∈ X+ is

[T k(λ)] = [V k(λ)] +
∑
µ<λ

#E(xλ, µ)[V k(µ)]−
∑
µ<λ

rkk(c~ν~χ)~χ,~ν∈E(xλ,µ)[T
k(µ)]. (2.25..4)

Proof. Since (V k(xλ) : V k(µ)) = #E(xλ, µ), the claim follows from Lemma (2.25..2)

and Lemma (2.25..4).

Remark 2.25..6. Since the sums on the right hand side of (2.25..4) are indexed over

µ < λ, and the partially ordered set (X+, <) has the descending chain condition,

one can determine [T k(λ)] by computing #E(xχ, ν) and rxχ,ν for all 0 ≤ ν ≤ χ ≤ λ.

Remark 2.25..7. Calculations of tilting module characters can be made completely

within the diagrammatic category Dk
sp4

. The quantity #E(xλ, µ) is equal to the

number of light ladder diagrams from xλ to xµ, and rxλ,µ is equal to the rank of the

83



matrix (c~ν~χ)~χ,~ν∈E(w,µ). Moreover, these matrices can be computed in Dsp4 . If M ⊂ A

is a maximal ideal and k = A/M , then the rank of the mod M reduction of the

matrix (c~ν~χ)~χ,~ν∈E(w,µ) is equal to (V k(w) : T k(λ)).
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CHAPTER III

TRIPLE CLASP FORMULAS

This chapter contains previously published material. The material in this

chapter originally appeared in [12].

3.1. Outline

Elias’s formulas in type A and our formulas in type B2 were inspired by

Wenzl’s recursive formula for sl2. The sl2 case so well illustrates the arguments

used to derive our main Theorem (1.2..1) that we recall Wenzl’s recursion below.

Section 2: We recall some facts about the double ladders basis for sp4 webs and

deduce the triple clasp formula. Section 3: The recursive formulas for the local

intersection forms are stated, and then derived via diagrammatic calculations. We

prove the main theorem by showing the conjectured formulas satisfy the recursion.

Lastly, we explain how to generalize Elias’s clasp conjecture and show that our

main theorem verifies this conjecture in type C2.

3.2. Wenzl’s Triple Clasp Formula for A1 Webs

Let C2 be the two dimensional defining representation of sl2(C). The tensor

powers (C2)⊗d carry an action of sl2(C) and the module Sd(C2) is an irreducible

quotient of (C2)⊗d. The finite dimensional irreducible representations of sl2 are in

bijection with Z≥0 via d 7→ Sd(C2) and the composition factors of the kernel of the

map (C2)⊗d −→ Sd(C2) are all of the form Sk(C2) for k < d.

Let Rep(sl2(C)) denote the abelian monoidal category of finite dimensional

representations of sl2(C). Since Rep(sl2(C)) is semisimple and has simple
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objects in bijection with the nonnegative integers, it is equivalent to ⊕Z≥0
VecC,

and is therefore uninteresting as an abelian category. However, a semisimple

monoidal category contains much more information than just the number of simple

objects. For example, by the general theory of Tannakian reconstruction [18] one

can recover the group SL2(C) as the automorphisms of the monoidal functor

Fund(sl2(C)) −→ VecC.

Define Fund(sl2(C)) to be the full monoidal subcategory of Rep(sl2(C)) with

objects arbitrary tensor products of C2. Since each irreducible finite dimensional

representation of sl2(C) is a direct summand of a tensor power of the defining

representation, there is an equivalence of monoidal categories:

Kar(Fund(sl2(C))) ∼= Rep(sl2(C)).1

Threfore, the study of Rep(sl2(C)) as a monoidal category is reduced to the study

of idempotents in Fund(sl2(C)).

Let T L be the strict, pivotal, and C-linear category generated by one

self dual object of dimension −2. It is well known that T L is equivalent to the

monoidal category Fund(sl2(C)) [40, 48]. Thus, we are led to consider the problem

of using the category T L to describe the idempotent in Endsl2(C)((C2)⊗d) which

projects to Sd(C2). Wenzl found a recursive description of these idempotents [51].

Using the usual graphical calculus for T L and using a d labelled oval to represent

1The Karoubi envelope of a category C, denoted Kar(C) is the category with objects pairs:
(X, e), where X is an object in C and e ∈ EndC(X) is an idempotent. The morphisms
(X, e) −→ (Y, f) in Kar(C) are all morphisms of the form f ◦ ϕ ◦ e, where ϕ : X −→ Y in C.
When C is a monoidal category, Kar(C) is also naturally a monoidal category. Moreover, if A is a
semisimple monoidal category, C ⊂ A is a full monoidal subcategory, and every irreducible object
in A is a direct summand of an object in C, then there is a monoidal equivalence Kar(C) −→ A.
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the idempotent with image Sd(C2), the Wenzl recursion becomes the following.

d+ 1 = d +
d

d+ 1

d

d

d− 1 (3.2..1)

One way to think about Wenzl’s recursion, which we learned from [7], is to

first note that by Schur’s lemma there is some κd ∈ C such that the following

equality holds.

d

d− 1

d− 1

= κd d− 1 (3.2..2)

Since

Sd(C2)⊗ C2 ∼= Sd+1(C2)⊕ Sd−1(C2),

we also observe that there is a relation in Endsl2(C))(C2) of the following form.

d = d+ 1 + κ−1
d

d

d

d− 1 (3.2..3)

Where κ−1
d is the coefficient needed to make the quasi-idempotent

d

d

d− 1
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into an idempotent. Using the d 7→ d− 1 version of the relation in Equation (3.2..3)

to rewrite the middle clasp labelled d on the left hand side of Equation (3.2..2), we

find the following.

d = d− 1 − κ−1
d−1

d− 1

d− 1

d− 2 (3.2..4)

Using the relations in T L, along with the fact that post-composing the ovals

with any cap map results in zero, we can simplify the right hand side of Equation

(3.2..4) and find κd = −2− 1/κd−1. From the initial condition κ−1
0 = 0, it is easy to

verify that κd = −(d+ 1)/d.

Notation 3.2..1. The terminology of clasp was introduced in [31] to refer to

idempotents projecting to the top summand expressed in terms of the graphical

calculus. Following [7], we will refer to a recursive formula for clasps, in which

the terms on the right hand side of the recursion are three clasps linked together

by diagrammatic morphisms, as a triple clasp formula. We will refer to the

diagrammatic morphisms in the clasp formula as elementary light ladder diagrams.

Remark 3.2..2. Equation (3.2..1) is still true without the middle clasp labelled

d − 1. However, the middle clasp in the triple clasp keeps track of which summand

the morphism is factoring through and therefore has representation theoretic

meaning. Moreover, in higher rank examples, like the one considered in this

chapter, removing the middle clasp will not result in a valid identity. One would

have to also change the coefficients and we do not expect these new coefficients to

be as nice as those occurring in the triple clasp formula.
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Remark 3.2..3. The category Rep(sl2(C)) has a C(q)-linear analogue, the

category of finite dimensional type 1 representations of Uq(sl2(C)). We denote this

category by Rep(Uq(sl2(C))). Inside this category is the full monoidal subcategory

generated by the q analogue of C2, which we call Fund(Uq(sl2(C))). Finally, there

is also a q analogue of T L, denoted T Lq which is the strict pivotal C(q)-linear

category generated by a self dual object of dimension −q − q−1. Again, we have

T Lq ∼= Fund(Uq(sl2(C))) and as long as q is not a root of unity we also have

Kar(Fund(Uq(sl2(C)))) ∼= Rep(Uq(sl2(C))).

3.3. Recollection of Double Ladder Basis

In Section 2.5. and 2.6. we defined elementary light ladders, neutral ladders,

light ladders, upside down light ladders, and double ladders. Let us recall the

important aspects of these constructions below.

Start by associating an elementary light ladder diagram in Dsp4 to each weight

in a fundamental representation: µ 7→ Lµ. For a dominant weight subsequence

~µ ∈ E(w), there are light ladder diagrams LLw,~µ. The elementary light ladder

diagrams for µi are the building blocks of the light ladder diagram LLw,~µ, but in

order to make light ladder diagrams out of elementary light ladders we also require

neutral diagrams which are used to shuffle words in 1 and 2. The ability to freely

choose neutral diagrams means that for a given dominant weight subsequence there

may be many choices of light ladder diagrams.

There is a duality D on the diagrammatic category, which takes a diagram

and flips it upside down. We define upside down light ladders as the image, under

D, of usual light ladders.
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When defining the double ladder basis, we first fix, for each dominant weight

λ, a choice of object xλ ∈ Dsp4 satisfying wt(xλ) = λ. Then for each object w and

each ~µ ∈ E(w) we fix a choice of light ladder LL~µ such that if wt ~µ = λ, then

the target of the diagram is xλ. Moreover, for each λ there is a unique ~µ ∈ E(xλ)

such that wt ~µ = λ and we insist the chosen light ladder is the identity. The double

ladder basis LL is then constructed by composing all light ladders with all upside

down light ladders.

We refer to the image of these various diagrams under Ξ as maps, e.g. Ξ

applied to a neutral ladder is a neutral map.

Suppose we have fixed a choice of xλ for all λ ∈ X+ and then fixed a choice of

light ladders for all w and ~µ ∈ E(w). We write LL to denote the associated double

ladder basis, LLxw to denote LL ∩ HomDsp4
(w, x), and LLxw(λ) for the collection of

double ladders of the form D(LLx,~ν) ◦ LLw,~µ, where ~ν ∈ E(x, λ) and ~µ ∈ E(w, λ).

Thus,

LLxw =
⋃
λ∈X+

LLxw(λ). (3.3..1)

Note that the middle of a diagram in LLxw(λ) is the identity of xλ. We say that

such diagrams factor through λ.

Definition 3.3..1. Fix λ ∈ X+. Let (Dk
sp4

)<λ be the k-linear subcategory whose

morphisms are spanned by all double ladders in LLvu(χ) for all u and v and all χ <

λ.

Lemma 3.3..2. Fix λ ∈ X+. The subcategory (Dk
sp4

)<λ is an ideal, i.e. if D ∈

(Dk
sp4

)<λ, then g ◦D ◦ f ∈ (Dk
sp4

)<λ for all f, g.
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Proof. See [21, Lemma 2.8]. Note that D induces a bijection on homomorphisms

spaces in Dsp4 and preserves the basis LL. Thus, the claim follows from Lemma

(2.24..3).

3.4. Downward Diagrams and Neutral Coefficients

Definition 3.4..1. Let D ∈ HomDk
sp4

(w, x) be an arbitrary diagram. Suppose

that there is a horizontal cross section of D which intersects D in the word y. If

wt y < wtw, then we say D is a downward diagram. Suppose that there is a

horizontal cross section of D which intersects D in the word y. If wt y < wtx, then

we say D is an upward diagram.

Example 3.4..2. Any elementary light ladder Lν , for ν /∈ {$1, $2}, is a downward

diagram. Any light ladder LLw,~µ is a downward diagram, unless µi = wtwi for all i.

Remark 3.4..3. The duality D induces a bijection between upward diagrams and

downward diagrams.

Lemma 3.4..4. If D ∈ HomDk
sp4

(w, x) is a downward diagram then D ∈ (Dk
sp4

)<wtw.

Proof. Suppose that D is a downward diagram, in particular there is some y with

wt y < wtw such that D = A ◦ B for A ∈ HomDk
sp4

(y, x) and B ∈ HomDk
sp4

(w, y).

If we write A in terms of the double ladder basis, then it is easy to see that A is a

linear combination of diagrams in (Dk
sp4

)<wtw. Then from Lemma (3.3..2) it follows

that D ∈ (Dk
sp4

)<wtw.

Lemma 3.4..5. Any downward map from w to x will send vw,+ to zero.

Proof. Since homomorphisms of Uk
q (sp4) modules preserve weight spaces, this

follows from the observation that if wt y < wtw, then V k(y)[wtw] = 0.
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Lemma 3.4..6. If N : V k(w) → V k(u) is a neutral map, then N(vw,+) = vu,+.

Furthermore, if vw,~µ is a subsequence basis element, and N(vw,~µ) has a non-zero

coefficient for vu,+ after being written in the subsequence basis, then vw,~µ = vw,+.

Proof. Since V k(w)[wtw] = k · vw,+, the second claim follows from the fact that

maps of Uk
q (sp4) modules preserve weight spaces. Neutral maps are compositions

and tensor products of identity maps, N21
12 , and N12

21 . So to to verify the first claim

we just need to check that N21
12 (v12,+) = v21,+ and N12

21 (v21,+) = v12,+. From the

calculations in Sections 2.22. and 2.23., we find

N21
12 (v12,+) = L(−1,1) ⊗ id(v1,+ ⊗ D(L(−1,1))(v2,+)) = v21,+ (3.4..1)

and

N12
21 (v21,+) = id⊗L(−1,1)(D(L(−1,1))(v2,+)⊗ v1,+) = v12,+. (3.4..2)

Remark 3.4..7. We rescaled the generating trivalent vertex in the B2 spider from

[31]. Explicitly our trivalent vertex is equal to
1√
[2]

times Kuperberg’s trivalent

generator. One reason our choice may be preferable to the original, is that using

Kuperberg’s trivalent vertex the neutral maps have ξ = [2] instead of ξ = 1.

Let λ ∈ X+ and let w and x be such that wt(w) = λ = wt(x). Then LLxw(λ)

contains a single diagram. Denote this diagram by Ixw. After applying Ξ, it follows

from Lemma (3.4..6) that Ixw sends vw,+ to vx,+.

Suppose we made another choice of x′λ for each dominant weight λ

(along with choices of all the necessary neutral maps) and then constructed a

double ladder basis LL′. Again, there is a unique double ladder diagram I
′x
w ∈
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HomDsp4
(w, x) which maps vw,+ to vx,+. Since LL′ is a basis, we can express Ixw as a

linear combination of diagrams in LL′

Ixw = c · I ′xw + (Dk
sp4

)<wtw. (3.4..3)

Looking at how both sides of (3.4..3) act on vw,+ we deduce that c = 1.

Definition 3.4..8. Let f ∈ HomDk
sp4

(w, x). We define the neutral coefficient of f to

be the coefficient of Ixw when f is expressed in the basis LL.

Lemma 3.4..9. If wtw = wtx, then the neutral coefficient of f ∈ HomDk
sp4

(w, x) is

c if and only if f(vw,+) = c · vx,+.

Proof. Follows from Lemma (3.4..5) and Lemma (3.4..6).

Remark 3.4..10. The discussion given above ensures that the neutral coefficient is

independent of any choices that are made in the light ladder algorithm.

3.5. Definition and Basic Properties of Clasps

Our exposition is based on [7] and [22, Chapter 11].

Definition 3.5..1. We say that a morphism in HomDk
sp4

(w, x) is a clasp, if it is

killed by postcomposition with any downward diagram and has neutral coefficient

1. If wt(w) = λ = wt(x), then we may call such a map a λ-clasp.

Lemma 3.5..2. Let C ∈ HomDk
sp4

(w, x) have neutral coefficient equal to 1. Then

the following are equivalent:

1. C is a clasp,

2. C is killed by postcomposition with any diagram in (Dk
sp4

)<wtw,
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3. C is killed by postcomposition with any diagram of the form (id⊗Lµ ⊗ id) ◦N

where N is a neutral diagram and Lµ is an elementary light ladder diagram

for µ /∈ {$1, $2}.

Proof. Since a diagram in (Dk
sp4

)<wtw is a linear combination of downward

diagrams, (1) implies (2). The diagram (id⊗Lµ ⊗ id) ◦ N in (3) is a downward

diagram, thanks to the assumption on µ, so (1) implies (3). From Lemma (3.4..4)

we deduce that (2) implies (1).

By the definition of double ladders as the composition of light ladders and

upside down light ladders, and since light ladders are in particular double ladders

where the upside down double ladder is the identity, we see that C is killed by

postcomposition with (Dk
sp4

)<wtw if and only if C is killed by postcomposition with

any light ladder of the form LLw,~µ where wt ~µ < wtw. Then from the inductive

definition of light ladders, we see (3) implies (2).

Proposition 3.5..3. If a clasp exists then it is unique, and it is also characterized

as the map with neutral coefficient 1 which is killed by precomposition with any

upward diagram. The composition of a clasp with a neutral ladder is a clasp (so if

any λ-clasp exists, then all λ-clasps exist), the composition of two clasps is a clasp,

and clasps are preserved by D.

Proof. We leave it as an exercise to adapt the proof in [7, Proposition 3.2] to our

setting.

Graphically we will depict λ-clasps as ovals labelled by λ with source w and

target x. In writing we will denote it by Cλ.
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Cλ = λ

w

x

(3.5..1)

Proposition (3.5..3) says that the composition of a clasp with a neutral ladder

is a clasp, we will refer to this as neutral absorption, depicted diagrammatically as

follows.

w

x

λ = λ

w

x

w

x

λ = λ

w

x

(3.5..2)

We also observe that Proposition (3.5..3) says the composition of two

clasps is a clasp, which is what we will call clasp absorption. This is expressed

diagrammatically as follows.

w

x

λ

µ

=

w

x

λ (3.5..3)
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Finally, note that postcomposing a clasp with a non-identity elementary light

ladder results in zero. We will refer to this phenomenon as clasp orthogonality, and

it can be expressed diagrammatically as follows.

w

x

λ

Lν

= 0 (3.5..4)

Remark 3.5..4. The λ clasps give a compatible system of idempotents [7, Definition

3.3], and therefore represent an object in the Karoubi envelope of Dk
sp4

. This object

is a common summand of the objects w such that wt(w) = λ.

Notation 3.5..5. Given an idempotent e ∈ Endk⊗Dsp4
(w) we get an object (w, e) in

Kar(Dk
sp4

). The object in the Karoubi envelope which corresponds to (w,Cλ) will be

denoted by λ, for all w such that wtw = λ.

Recall that in the Karoubi envelope we have

HomKar(Dk
sp4

)((w, e), (x, f)) = f Homk⊗Dsp4
(w, x)e. (3.5..5)

Corollary 3.5..6. Suppose the λ and χ clasps both exist. Then HomKar(Dk
sp4

)(λ, χ)

is spanned by the identity if λ = χ and is zero otherwise.

Proof. Compare with [7, Corollary 3.6]. Let D ∈ LLxχxλ . From clasp orthogonality it

follows that Cχ ◦D ◦ Cλ = 0 unless D = I
xχ
xλ . If λ 6= χ, then every diagram in LL

xχ
xλ

is strictly lower, so HomKar(Dk
sp4

)(λ, χ) = 0. Thanks to neutral absorption (3.5..2) we
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have Cχ ◦ I
xχ
xλ ◦ Cλ = Cχ ◦ id ◦Cλ. Then from clasp absorption (3.5..3) it follows that

Cχ = Cχ ◦ id ◦Cλ = Cλ.

Lemma 3.5..7. The λ clasp exists in Dk
sp4

if and only if V k(λ) is a direct

summand of V k(xλ). Moreover, when the λ clasp exists we have Cλ = Ξ−1(eλ)

where eλ is the endomorphism of V k(xλ) projecting to V k(λ).

Proof. Suppose that the λ clasp does exist. Consider the idempotent eλ ∈

End(V k(xλ)) which is the image under Ξ of the λ clasp in EndDk
sp4

(xλ). The map

eλ projects to a direct summand of V k(xλ), and by Corollary (3.5..6) the summand

has endomorphism ring k · id. Since V k(xλ)[λ] = k · vxλ,+ and the lambda

clasp preserves the λ weight vector vxλ,+, the object im(eλ) has a one dimensional

lambda weight space. An object with a one-dimensional λ weight space and a

local endomorphism ring must be the indecomposable tilting module of highest

weight λ. Since the endomorphism ring of a tilting module is k · id if and only if

the indecomposable tilting module is an irreducible Weyl module, it follows that

im(eλ) ∼= V k(λ).

Suppose V k(λ) is a summand of V k(xλ), so there is an idempotent eλ ∈

EndUk
q (sp4)(V

k(xλ)) which projects to V k(λ). Since V k(λ)[λ] is one dimensional,

it follows that im(eλ)[λ] = V k(xλ)[λ] = k · vxλ,+ . Restricting eλ to the λ weight

space induces an isomorphism. Hence, eλ(vxλ,+) = ξvxλ,+ for some ξ ∈ k×. Since

eλ is idempotent, ξ = 1, so eλ has neutral coefficient one. By Lemma (3.4..5),

postcomposing eλ with a downward map induces a map V k(λ) → V k(y) which

has V k(λ)[λ] in its kernel, and therefore is zero. We conclude that eλ is a clasp.

Remark 3.5..8. Since the finite dimensional representations of sp4(C) are completely

reducible, it follows that when k = C and q = 1, λ clasps exist for all λ ∈ X+. If K

is any field and q ∈ K is transcendental, then λ clasps exist over K for all λ ∈ X+.
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Remark 3.5..9. We argue that if V k(λ) is a direct summand of V k(xλ), i.e. the λ

clasp exists over k, then the characteristic zero clasp can be used to compute the k

clasp.

Let A = Z[q, q−1, [2]−1
q ]. When we say “all fields” we mean all pairs k and

q ∈ k such that q + q−1 6= 0. Any quotient of A by a maximal ideal will give such a

pair.

From [31] we know that the set D of non-elliptic webs spans Dsp4 over A, and

we know from Theorem (2.14..5) that LL is linearly independent over all fields k.

It follows that the coefficients of a linear dependence among double ladders over A

must all be contained in every maximal ideal of A. But the Jacobson radical of A

is zero. So LL is linearly independent over A. Furthermore, from Theorem (2.14..5)

it follows that the sets D and LL both give bases of Dk
sp4

for all fields k.

Fix objects w, u ∈ Dsp4 . Consider the matrix which expresses a double ladder

in terms of the spanning set D

Auw : ALLuw −→ ABu
w = HomDsp4

(w, u). (3.5..6)

This matrix is an isomorphism over k, for all fields k, so the determinant is not

contained in any maximal ideal in A. Thus, detAuw is a unit in A, and Auw is

invertible over A. Hence, LL spans Dsp4 over A.

Let O be a complete discrete valuation ring, which is an A algebra, and such

that O/m = k. Assume that the field K = Frac(O) is characteristic zero and q ∈ K

is transcendental. Suppose that V k(λ) is a summand of V k(xλ), i.e. there is a clasp

ekλ ∈ Endk⊗Dsp4
(xλ). The endomorphism ekλ is an idempotent so it can be lifted to

eOλ ∈ EndO⊗Dsp4
(xλ). Since LL is a basis of Dsp4 over A, it follows that LL is a
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basis of the category O ⊗Dsp4 . Therefore,

eOλ = x id +(O ⊗Dsp4)<λ.

Since eOλ specializes to ekλ, which in turn sends vxλ,+ to vxλ,+, there is some m ∈ m

such that x = 1 − m. Also, eOλ is an idempotent and (O ⊗ Dsp4)<λ is an ideal in

O ⊗Dsp4 so

x id +(O ⊗Dsp4)<λ =
(
x id +(O ⊗Dsp4)<λ

)2
= x2 id +(O ⊗Dsp4)<λ.

Comparing neutral coefficients, we find x = x2. It follows that 1 −m = (1 −m)2 =

1− 2m+m2, which implies m2 = m. Since m ∈ m, we may conclude that m = 0.

From the fact that LL is a basis over O it follows that the homomorphism

spaces in O ⊗Dsp4 are free and finitely generated O-modules. Thus, the O module

eOλ HomO⊗Dsp4
(xλ)e

O
λ (3.5..7)

is a finitely generated projective O module. Since O is local, one can use

Nakayama’s lemma to show that projective and finitely generated implies free of

finite rank. A consequence is the equality

rkO e
O
λ EndO⊗Dsp4

(xλ)e
O
λ = dimk e

k
λ Endk⊗Dsp4

(xλ)e
k
λ. (3.5..8)

We know ekλ Endk⊗Dsp4
(xλ)e

k
λ = k·ekλ, so we may deduce that eOλ HomO⊗Dsp4

(xλ)e
O
λ =

O · eOλ .

On the other hand, we know there is a characteristic zero clasp, eKλ ∈

EndK⊗Dsp4
(xλ). Using that eKλ has neutral coefficient one and is orthogonal
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to all downward diagrams, we may conclude that eOλ e
K
λ e
O
λ = eKλ , so eKλ ∈

eOλ EndK⊗Dsp4
(xλ)e

O
λ = KeOλ . By comparing neutral coefficients we see that

eKλ = eOλ .

Over K the λ clasp exists for all λ ∈ X+, so to compute eKλ we are free to use

the recursion from our main theorem to expand this clasp in terms of the basis LL.

The argument we just sketched implies that the coefficients, of the double ladders,

in the expanded clasp actually lie in O. So we can reduce eKλ modulo a maximal

ideal to obtain ekλ.

3.6. Intersection Forms and Triple Clasp Formulas

Let a ∈ {1, 2}. If k = C and q = 1, we know that Ξ(λ ⊗ a) = V (λ) ⊗ V ($a)

decomposes as described Equation (2.3..3).

Definition 3.6..1. Let a ∈ {1, 2} and let λ ∈ X+. Define the set Sλ,a to be the

collection of weights µ ∈ wtV (a) such that V (λ+ µ) is a direct summand of V (λ)⊗

V (a). Since each weight in wtV (a) is multiplicity one,

V (λ)⊗ V (a) ∼=
⊕
µ∈Sλ,a

V (λ+ µ). (3.6..1)

Lemma 3.6..2. V k(λ) ⊗ V k(a) has a filtration by the Weyl modules V k(λ + µ) for

µ ∈ Sλ,a.

Proof. The tensor product of Weyl filtered modules has a Weyl module filtration.

Since V k(χ) has the same character as V (χ), the filtration multiplicities are

determined by the character of the Weyl filtered module. Therefore, the claim

follows from Equation (3.6..1).
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Definition 3.6..3. Let µ ∈ Sλ,a. Suppose the λ and λ + µ clasps exist over k.

There is an elementary light ladder Lµ which induces a map

Cλ+µ ◦ (id⊗Lµ) ◦ (Cλ ⊗ ida) : λ⊗ a→ λ+ µ.

We denote this map by Eλ,µ and depict it diagrammatically by

Eλ,µ =

a

λ

λ+ µ

Lµ (3.6..2)

Proposition 3.6..4. Suppose the λ clasp exists and that the λ + µ clasp exists.

Then {Eλ,µ} is a basis for HomKarDk
sp4

(λ⊗ a, λ+ µ).

Proof. Since double ladders are a basis, it follows that after postcomposing with

Cλ+µ and precomposing with Cλ ⊗ ida the double ladders LLxλ+µxλa will span

HomKarDk
sp4

(λ⊗ a, µ).

Let D ∈ LLxλ+µxλa . By the definition of double ladders, there are dominant

weight sequences ~ν ∈ E(xλ+µ) and ~χ = (χ1, . . . χn) ∈ E(xλa) such that D =

D(LLxλ+µ,~ν) ◦LLxλa,~χ. Due to clasp orthogonality (3.5..4), Cλ+µ ◦D ◦ (Cλ⊗ ida) = 0

unless ~ν ∈ E(xλ+µ, λ+µ) and (χ1, . . . χn−1) ∈ E(xλ, λ). Using the neutral absorption

property of clasps (3.5..2), we now see that

Eλ,µ = Cλ+µ ◦ LL
xλ+µ
xλa ◦ (Cλ ⊗ ida).

Therefore, Eλ,µ spans HomKarDk
sp4

(λ⊗ a, λ+ µ).
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The λ + µ clasp exists, so V k(λ + µ) is an irreducible Weyl module, and

therefore V k(λ+ µ) ∼= V k(λ+ µ)∗. Since V k(λ+ µ) occurs exactly once in the Weyl

filtration of V k(λ)⊗ V k(a), it follows from Lemma (2.13..9) that

dim HomKarDk
sp4

(λ⊗ a, λ+ µ) = dim HomUk
q (sp4)(V

k(λ)⊗ V k(a), V k(λ+ µ)∗) = 1.

Thus Eλ,µ spans a one dimensional vector space and therefore is a basis.

Definition 3.6..5. The map Kλ,µ := Eλ,µ ◦ DEλ,µ is an endomorphism of λ + µ,

and this endomorphism space is spanned by the identity map. We define the local

intersection form κλ,µ to be the neutral coefficient of Eλ,µ ◦ DEλ,µ.

Kλ,µ =
λ

λ+ µ

Lµ

λ

λ+ µ

D(Lµ)

= κλ,µ λ+ µ (3.6..3)

Lemma 3.6..6. Suppose that both the λ clasp and the λ + µ clasp exist. If the

local intersection form κλ,µ is nonzero, then
1

κλ,µ
DEλ,µ ◦ Eλ,µ is an idempotent in

EndKar(Dk
sp4

)(λ ⊗ a) which projects to V k(λ + µ). If the local intersection form is

zero, then V k(λ+ µ) is not a summand of V k(λ)⊗ V k(a).

Proof. If κλ,µ 6= 0, then
1

κλ,µ
DEλ,µ ◦Eλ,µ is a non-zero idempotent factoring through

V k(λ + µ). Since the λ + µ clasp exists, the module V k(λ + µ) is irreducible. Thus,

the idempotent has image isomorphic to V k(λ+ µ).
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Since Eλ,µ is a basis for HomDk
sp4

(λ ⊗ a, λ + µ) it follows that D(Eλ,µ) is a

basis for HomDk
sp4

(λ + µ, λ ⊗ a). If κλ,µ = 0, then every pair of projection V k(λ) ⊗

V k(a) → V k(λ + µ) and inclusion V k(λ + µ) → V k(λ) ⊗ V k(a) compose to be

0 ∈ EndUk
q (sp4)(V

k(λ + µ)). Thus, V k(λ + µ) is not a direct summand of V k(λ) ⊗

V k(a).

Remark 3.6..7. By working modulo the ideals (Dk
sp4

)<λ instead of with clasps, one

can show that the indecomposable tilting module T k(λ + µ) is a direct summand of

V k(λ)⊗ V k(a) if and only if κλ,µ 6= 0.

Proposition 3.6..8. Suppose that the λ clasp exists. Also assume the λ + µ clasps

exist and the κλ,µ are invertible in k, for all µ ∈ Sλ,a−{$a}. Then the λ+$a clasp

exists and

Cλ+$a = Cλ ⊗ ida−
∑

κ−1
λ,µDEλ,µ ◦ Eλ,µ, (3.6..4)

where the sum is over all µ ∈ Sλ,a − {$a}.

Proof. Lemma (3.6..6) implies that V k(λ+µ) is a direct summand of V k(λ)⊗V k(a)

for all µ ∈ Sλ,a − {$a}. So

V k(λ)⊗ V k(a) = X
⊕

µ∈Sλ,a−{$a}

V k(λ+ µ), (3.6..5)

where X is a direct summand with highest weight λ + $a. Direct summands of

Weyl filtered modules have a Weyl filtration, so X is filtered by Weyl modules.

Comparing characters of both sides of (3.6..5) implies that X ∼= V k(λ + $a). The

decomposition in (3.6..5) gives rise to the following equality in the endomorphism
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algebra of V k(λ)⊗ V k(a):

idV k(λ)⊗ idV k(a) =
∑
µ∈Sλ,a

eλ+µ, (3.6..6)

where eλ+µ is the projection to the summand isomorphic to V k(λ+ µ). The module

V k(λ) is a direct summand of V k(xλ), the image of Cλ, so V k(λ)⊗ V k(a) is a direct

summand of V k(xλa), the image of Cλ ⊗ ida. Precomposing and postcomposing

Equation (3.6..6) with Cλ⊗ ida yields the desired equality from Equation (3.6..4), in

the endomorphism algebra of V k(xλa).

3.7. Deriving the Recursive Formula for Clasp Coefficients

We will compute recursive formulas for the local intersection forms κλ,µ using

the graphical calculus for Dsp4 .

Notation 3.7..1. To simplify notation, we will write (a, b) for a$1 + b$2. We will

also leave off labels of clasps when the highest weight is understood. Furthermore,

we will often leave off extra strands below (above) clasps which are on the bottom

(top) of the diagram, as well as strands to the left of a diagram which has a clasp

at the top or bottom. This is justified because all clasps with the same highest

weight are transformed to one another by applying neutral diagrams on the top and

bottom (in other contexts this could be nontrivial to verify, but it is easy to see

that any two words in 1 and 2 of the same weight differ by a neutral diagram). We

also freely use clasp absorption (3.5..3) to simplify formulas. For example (3.6..3)

becomes
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Kλ,µ =

Lµ

D(Lµ)

= κλ,µ (3.7..1)

and

a, b− 1

a, b

a, b

(3.7..2)

becomes the following.

(3.7..3)

We define κλ,$a = 1 for all λ ∈ X+ and a ∈ {1, 2}. Whenever µ /∈ S(a,b),$,

we set κ−1
(a,b),µ equal to zero. This results in the following initial conditions for our

recursion:

κ−1
(a,b),(1,−1) = 0 when b = 0, (3.7..4)

κ−1
(a,b),(−1,0) = κ−1

(a,b),(−1,1) = 0 when a = 0, (3.7..5)
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κ−1
(a,b),(0,0) = 0 when a = 0, (3.7..6)

κ−1
(a,b),(−2,1) = 0 when a = 0 or 1, (3.7..7)

and

κ−1
(a,b),(0,−1) = κ−1

(a,b),(2,−1) = 0 when b = 0. (3.7..8)

Proposition 3.7..2. The κλ,µ’s satisfy the following relations.

κ(a,b),(1,0) = 1 (3.7..9)

κ(a,b),(0,1) = 1 (3.7..10)

κ(a,b),(−1,1) = −[2]− 1

κ(a−1,b),(−1,1)

(3.7..11)

κ(a,b),(2,−1) = − [4]

[2]
− 1

κ(a,b−1),(2,−1)

(3.7..12)

κ(a,b),(0,0) =
[5]

[2]
−
κ(a−2,b+1),(2,−1)

κ−1
(a−1,b),(−1,1)

− 1

κ(a−1,b),(1,−1)

(3.7..13)

κ(a,b),(1,−1) =
[5]

[2]
−
κ(a+2,b−2),(−1,1)

κ(a,b−1),(2,−1)

− 1

[2]2κ(a,b−1),(0,0)

(3.7..14)

κ(a,b),(−2,1) =
[5]

[2]
κ(a−1,b),(−1,1) − (−[2]− 1

κ(a−2,b),(−1,1)

)
κ(a−1,b),(−1,1)

κ(a−1,b),(−1,0)

−
κ(a−2,b+1),(0,0)

κ2
(a−2,b),(−1,1)κ(a−1,b),(−1,1)

(3.7..15)

κ(a,b),(−1,0) = − [6][2]

[3]
− 1

κ(a−1,b),(−1,0)

−
κ(a−2,b+1),(1,−1)

κ(a−1,b),(−1,1)

−
κ(a,b−1),(−1,1)

κ(a−1,b),(1,−1)

(3.7..16)

κ(a,b),(0,−1) =
[6][5]

[3][2]
− 1

κ(a,b−1),(0,−1)

−
κ(a+2,b−2),(−2,1)

κ(a,b−1),(2,−1)

−
κ(a,b−1),(0,0)

κ(a,b−1),(0,0)

−
κ(a−2,b),(2,−1)

κ(a,b−1),(−2,1)

(3.7..17)
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Proof. We will use the established properties of clasps to derive the recursion

relations. Recall that κλ,µ is the coefficient of the neutral map in Kλ,µ.

Kλ,µ =

λ+ µ

Lµ

λ

λ+ µ

D(Lµ)

(3.7..18)

Using the equation

λ = (λ−$)⊗$ −
∑

ν∈wtV ($)−{$}

κ−1
λ−$,νDEλ−$,ν ◦ Eλ−$,ν (3.7..19)

to rewrite the λ clasp, and then using clasp absorption (3.5..3), we can rewrite Kλ,µ

as the following.

Kλ,µ =

λ+ µ

Lµ

λ−$

λ+ µ

D(Lµ)

−
∑

ν∈wtV ($)−{$}

κ−1
λ−$,ν

λ+ µ

Lµ

λ−$

λ+ µ

D(Lµ)

Lν

D(Lν)

(3.7..20)

Having established the general pattern one follows to derive these recursive

formulas, we proceed to apply it for each κ(a,b),µ.
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To compute κ(a,b),(−1,1), we resolve the (a, b) clasp in K(a,b),(−1,1) as in (3.7..20).

Since strictly lower diagrams are orthogonal to clasps (3.5..4), we find

= 0 (3.7..21)

and

= 0. (3.7..22)

So after expanding the (a, b) clasp in K(a,b),(−1,1) the only ν ∈ wtV (1) which

contributes to the sum in (3.7..20) is (−1, 1). This means we can rewrite K(a,b),(−1,1)

as follows.

= − κ−1
(a−1,b),(−1,1) (3.7..23)

Using neutral ladder absorption (3.5..2) and clasp absorption (3.5..3), we deduce

κ(a,b),(−1,1) = −[2]− κ−1
(a−1,b),(−1,1).
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We proceed similarly with the remaining Kλ,µ. It is useful to note that from

the H ≡ I relation (1.1..7) we have the following ”clasped” relation.

=
1

[2]
(3.7..24)

Similarly, using the H ≡ I relation (1.1..7), orthogonality to clasps (3.5..4),

and neutral map absorption (3.5..2) we can also deduce the following.

= = (3.7..25)

For κ(a,b),(2,−1), we begin by observing that by clasp orthogonality (3.5..4)

= 0, (3.7..26)

and by (3.7..24) and clasp orthogonality (3.5..4),

= 0. (3.7..27)
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Using these observations and (3.7..25), K(a,b),(2,−1) can be resolved as follows.

= − κ−1
(a,b−1),(2,−1) (3.7..28)

Then we apply the H ≡ I relation (1.1..7) to find

= − 1

[2]
(3.7..29)

Here the vanishing of the third term is due to clasp orthogonality (3.5..4). If we

apply the H ≡ I relation (1.1..7) again, then by the monogon relation (1.1..4) and

clasp orthogonality (3.5..4) we can rewrite the right hand side as follows.

+
1

[2]
− [5]

[2]2
(3.7..30)
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Finally, using the bigon relation and the clasped H ≡ I relation (1.1..7) we can

rewrite (3.7..30) as

− [2]
1

[2]
+

1

[2]2
− [5]

[2]2
= − [4]

[2]
(3.7..31)

times the clasp, and then conclude that

κ(a,b),(2,−1) = − [4]

[2]
− κ−1

(a,b−1),(2,−1). (3.7..32)

To compute κ(a,b),(0,0) we will expand the middle clasp in K(a,b),(0,0).

K(a,b),(0,0) = (3.7..33)

Since

= 0, (3.7..34)

we can rewrite K(a,b),(0,0) as follows.

−κ−1
(a−1,b),(−1,1) −κ−1

(a−1,b),(1,−1) (3.7..35)
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Observing that the second term in (3.7..35) is K(a−2,b+1),(2,−1), and then using

neutral map absorption (3.5..2) and clasp absorption (3.5..3) for the third term

in (3.7..35), we deduce that

κ(a,b),(0,0) =
[5]

[2]
− κ−1

(a−1,b),(−1,1)κ(a−2,b+1),(2,−1) − κ−1
(a−1,b),(1,−1). (3.7..36)

To compute κ(a,b),(1,−1) we expand the middle clasp in K(a,b),(1,−1).

(3.7..37)

We begin by using the H ≡ I relation (1.1..7) and clasp orthogonality (3.5..4),

followed by neutral absorption (3.5..2), to calculate the following.

= = (3.7..38)

Clasp orthogonality (3.5..4) implies

= 0, (3.7..39)
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and the H ≡ I relation followed by clasp orthogonality (3.5..4) implies that

= 0. (3.7..40)

Therefore, we can rewrite K(a,b),(1,−1) as follows.

− κ−1
(a,b−1),(2,−1) − κ−1

(a,b−1),(0,0)

1

[2]2

(3.7..41)

Identifying the second term in (3.7..41) as K(a+2,b−2),(−1,1), we deduce that

κ(a,b),(1,−1) =
[5]

[2]
− κ−1

(a,b−1),(2,−1)κ(a+2,b−2),(−1,1) −
1

[2]2
κ−1

(a,b−1),(0,0). (3.7..42)

Remark 3.7..3. Note that at this point we could start solving these recursive

relations, as the local intersection forms for the weights (−1, 1) and (2,−1) are

linked only to themselves in their recursion relation. While the local intersection

forms for the weights (0, 0) and (1,−1) have recursions which link them to

themselves, each other, and the local intersection forms for the weights (−1, 1) and

(2,−1).
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Continuing with our derivation of recursive relations for local intersection

forms, we expand the middle clasp in

K(a,b),(−1,0) = (3.7..43)

and apply clasp absorption (3.5..3) to deduce the following.

K(a,b),(−1,0) = − κ−1
(a−1,b),(−1,1)

− κ−1
(a−1,b),(1,−1) − κ−1

(a−1,b),(−1,0)

(3.7..44)

By identifying the second and third terms on the right hand side of (3.7..44) as

K(a−2,b+1),(1,−1) and K(a,b−1),(−1,1) respectively, we find

κ(a,b),(−1,0) = − [6][2]

[3]
−
κ(a−2,b+1),(1,−1)

κ(a−1,b),(−1,1)

−
κ(a,b−1),(−1,1)

κ(a−1,b),(1,−1)

− 1

κ(a−1,b),(−1,0)

. (3.7..45)
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Remark 3.7..4. Again, we could stop here and solve the recursive relations since the

local intersection form for the weight (−1, 0) involves the weights (−1, 0) and the

weights we have computed recursions for previously.

The antidominant weight in V ($2) is (0,−1). A calculation similar to the

derivation of the recursion for κ(a,b),(−1,0) results in

κ(a,b),(0,−1) =
[6][5]

[3][2]
−−

κ(a−2,b),(2,−1)

κ(a,b−1),(−2,1)

−
κ(a,b−1),(0,0)

κ(a,b−1),(0,0)

−
κ(a+2,b−2),(−2,1)

κ(a,b−1),(2,−1)

− 1

κ(a,b−1),(0,−1)

.

(3.7..46)

The last local intersection form to resolve is K(a,b),(−2,1). Recall that

k⊗ Ξ : Dk
sp4
−→ Fund(Uk

q (sp4)) (3.7..47)

is an equivalence. Also, we know that if a Weyl module k⊗V k(λ) is simple, then we

can compute the dimension of homomorphism spaces involving that Weyl module

in characteristic zero. Thus, from Equation (2.3..3) we see that

dim Homk⊗Dsp4
((a− 2, b+ 1), (a, b− 1)⊗ 2) =

dim Homsp4(C)(V (a− 2, b+ 1), V (a, b− 1)⊗ V ($2)) = 0,

and it follows that

= 0. (3.7..48)
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When we expand the (a, b) clasp in K(a,b),(−2,1), one of the terms has (3.7..48)

as a sub-diagram and therefore is zero, so we get the following three terms.

− κ−1
(a−1,b),(−1,0) − κ−1

(a−1,b),(−1,1) (3.7..49)

The first term in (3.7..49) simplifies to

[5]

[2]
κ(a−1,b),(−1,1). (3.7..50)

We need to resolve the second and third terms on the right hand side of

(3.7..49). Both terms contain the following sub-diagram.

a− 1, b

(3.7..51)

Expanding the (a − 1, b) clasp and using clasp orthogonality (3.5..4) and neutral

absorption (3.5..2), we can rewrite (3.7..51) as follows.

a− 1, b

=

a− 2, b

− κ−1
(a−2,b),(−1,1)

a− 2, b

(3.7..52)
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Then, from the relation (3.7..52), we have

a− 1, b
= − κ−1

(a−2,b),(−1,1)

a− 2, b
(3.7..53)

and

a− 1, b
= − κ−1

(a−2,b),(−1,1)

a− 2, b
(3.7..54)

Applying these local relations to the second and third term on the right hand side

of (3.7..49), and simplifying diagrams using the defining relations of Dsp4 , we obtain

the next two equations.

= −
(

[2] + κ−1
(a−2,b),(−1,1)

)
(3.7..55)
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= κ−2
(a−2,b),(−1,1) (3.7..56)

Note that the diagram on the right hand side of (3.7..55) is K(a−1,b),(−1,1).

Moreover, after applying neutral absorption (3.5..2) the diagram on the right hand

side of (3.7..56) is K(a−2,b+1),(0,0). Therefore, we can use (3.7..50), (3.7..55), and

(3.7..56) to rewrite (3.7..49), then deduce that

κ(a,b),(−2,1) =
[5]

[2]
κ(a−1,b),(−1,1) − (−[2]− κ−1

(a−2,b),(−1,1))
κ(a−1,b),(−1,1)

κ(a−1,b),(−1,0)

−
κ(a−2,b+1),(0,0)

κ2
(a−2,b),(−1,1)κ(a−1,b),(−1,1)

.

(3.7..57)

3.8. Solving the Recursion

Proposition 3.8..1. The recursive relations in Proposition (3.7..2) together with

the initial conditions in Equations (3.7..4), (3.7..5), (3.7..6), (3.7..7), and (3.7..8)

are uniquely solved by

κ(a,b),(1,0) = 1 (3.8..1)

κ(a,b),(0,1) = 1 (3.8..2)

κ(a,b),(−1,1) = − [a+ 1]

[a]
(3.8..3)

κ(a,b),(2,−1) = − [2b+ 2]

[2b]
. (3.8..4)
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κ(a,b),(0,0) =
[a+ 2][a+ 2b+ 4]

[2][a][a+ 2b+ 2]
. (3.8..5)

κ(a,b),(1,−1) =
[a+ 2b+ 3][2b+ 2]

[a+ 2b+ 2][2b]
. (3.8..6)

κ(a,b),(−2,1) = − [a+ 1][2a+ 2b+ 4]

[a− 1][2a+ 2b+ 2]
. (3.8..7)

κ(a,b),(−1,0) = − [2a+ 2b+ 4][a+ 2b+ 3][a+ 1]

[2a+ 2b+ 2][a+ 2b+ 2][a]
. (3.8..8)

κ(a,b),(0,−1) =
[2a+ 2b+ 4][a+ 2b+ 3][2b+ 2]

[2a+ 2b+ 2][a+ 2b+ 1][2b]
(3.8..9)

Proof. There is a recursive relation for each non-dominant weight in a fundamental

representation. We say that the right hand side of a relation involves the weight µ

if κ?,µ appears in the right hand side of the recursion.

That relation (3.7..11) (with the specified initial conditions) is solved by

(3.8..3) is easily seen to be equivalent to showing that

− [a+ 1] = −[2][a] + [a− 1]. (3.8..10)

This is a well known identity for quantum numbers, but we will describe a different

way to derive (3.8..10). First, we multiply equation (3.8..10) by (q − q−1), resulting

in

−
(
qa+1 − q−(a+1)

)
= −(q + q−1)

(
qa − q−a

)
+
(
q(a−1) − q(−(a−1)

)
. (3.8..11)

Second, we temporarily replace qa with the variable A, so (3.8..11) becomes the

following.

Aq − A−1q−1 = −(q + q−1)(A− A−1) + (Aq−1 − A−1q) (3.8..12)
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Equation (3.8..12) is easily seen to be true in Z[A±1, q±1], then specializing A to

qa we find that (3.8..11) holds as well. To see that relation (3.7..12) is solved by

(3.8..3) is similar, and we leave it as an exercise.

By using

κ(a,b),(−1,1) = − [a+ 1]

[a]
and κ(a,b),(2−1) = − [2b+ 2]

[2b]
, (3.8..13)

we can simplify (3.7..13) and (3.7..14) as follows.

κ(a,b),(0,0) =
[5]

[2]
− [a− 1]

[a]

[2b+ 4]

[2b+ 2]
− κ−1

(a−1,b),(1,−1) (3.8..14)

κ(a,b),(1,−1) =
[5]

[2]
− [2b− 2]

[2b]

[a+ 3]

[a+ 2]
− 1

[2]2
κ−1

(a,b−1),(0,0) (3.8..15)

Then by induction our claim that (3.7..13) is solved by (3.8..5) and (3.7..14) is

solved by (3.8..6) follows from verifying the following two equalities.

[a+ 2][a+ 2b+ 4]

[2][a][a+ 2b+ 2]
=

[5]

[2]
− [a− 1][2b+ 4]

[a][2b+ 2]
− [a+ 2b+ 1][2b]

[a+ 2b+ 2][2b+ 2]
(3.8..16)

[a+ 2b+ 3][2b+ 2]

[a+ 2b+ 2][2b]
=

[5]

[2]
− [a+ 3][2b− 2]

[a+ 2][2b]
− 1

[2]2
[2][a][a+ 2b]

[a+ 2][a+ 2b+ 2]
(3.8..17)

We focus on the quantum number calculation needed to verify the first of

these two equalities. After clearing denominators the desired equality (3.8..16) will

follow from the following identity.

[a+ 2][2b+ 2][a+ 2b+ 4] = [5][a][2b+ 2][a+ 2b+ 2]

− [2][a− 1][2b+ 4][a+ 2b+ 2]− [2][a][2b][a+ 2b+ 1].

(3.8..18)
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Multiplying through by (q − q−1)3 and replacing qa with A and qb with B, we find

the desired quantum number identity is a consequence of the following identity in

Z[A±1, B±1, q±1].

(Aq2 − A−1q−2)(B2q2 −B−2q−2)(AB2q4 − A−1B−2q−4) =

(q4 + q2 + 1 + q−2 + q−4)(A− A−1)(B2q2 −B−2q−2)(AB2q2 − A−1B−2q−2)

−(q + q−1)(Aq−1 − A−1q)(B2q4 −B−2q−4)(AB2q2 − A−1B−2q−2)

−(q + q−1)(A− A−1)(B2 −B−2)(AB2q − A−1B−2q−1)

(3.8..19)

We leave the details of checking (3.8..19) by hand as an exercise for the reader.

Then replacing A with qa and B with qb we may deduce the equality (3.8..18).

The calculations needed to verify (3.8..17) are omitted, as are the rest of the

details of the quantum number calculations. We simply outline the remainder of

the proof below.

Once the first four relations are solved, we can simplify the fifth relation so

the simplified recursion only involves the weight (−1, 0). By using induction we

reduce proving the recursion relation (3.7..15) is solved by (3.8..7) to a quantum

number calculation. The sixth recursion relation only involves the previous five

weights, so we can use these solutions to simplify the right hand side of (3.7..16).

A quantum number calculation will verify that the right hand side is in fact equal

to (3.8..8). After using the first six solutions to simplify the last recursion, (3.7..17)

only involves the weight (0,−1) and so can be solved by induction and a quantum

number calculation.
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Remark 3.8..2. The point of writing (3.8..10) in the form (3.8..12) and (3.8..16) in

the form (3.8..19) is that it makes it possible (and in fact easy) to have a computer

verify the desired quantum number identities [10].

3.9. Relation to Elias’s Clasp Conjecture

In the following, we will reinterpret Elias’s type A clasp conjecture [7] in

type C2. We then discuss how we expect Elias’s conjecture generalizes to a type

independent statement.

Recall that the Weyl group for the C2 root system, which we denote simply

by W , acts on the weight lattice X by

s($1) = −$1 +$2 and s($2) = $2 (3.9..1)

while

t($1) = $1 and t($2) = 2$1 −$2. (3.9..2)

For a weight µ, we will denote by dµ the minimal length element in W which

when takes µ to a dominant weight. Thus,

d$1 = 1 = d$2 (3.9..3)

and

d−$1+$2 = s, d2$1−$2 = t, d$1−$2 = st, d−2$1+$2 = ts, d−$1 = sts, and d−$2 = tst.

(3.9..4)
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We then define the set Φµ = {α ∈ Φ+ | dµ(α) ∈ Φ−}. Thus,

Φ−$1+$2 = {αs} (3.9..5)

Φ2$1−$2 = {αt} (3.9..6)

Φ$1−$2 = {αt, t(αs)} (3.9..7)

Φ−2$1+$2 = {αs, s(αt)} (3.9..8)

Φ−$1 = {αs, s(αt), st(αs)} (3.9..9)

Φ−$2 = {αt, t(αs), ts(αt)} (3.9..10)

Let (−,−) be the standard inner product on X so the εi are an orthonormal

basis. Recall that α∨ = 2α/(α, α), and that ρ is the sum of the fundamental

weights. We define qα = q when α is a short root and qα = q2 when α is a long

root.

Corollary 3.9..1. In type C2, if µ is an (extremal) weight in a fundamental

representation and λ ∈ X+, then

κλ,µ = ±
∏
α∈Φµ

[(α∨, λ+ ρ)]qα
[(α∨, λ+ µ+ ρ)]qα

(3.9..11)

Proof. Using the formula
[2n]v
[2]v

= [n]v2 it is an easy exercise to use (3.8..1) and our

description of Φµ to check the corollary.

It is natural to expect Elias’s clasp conjecture to generalize as follows. Let

Φ be an irreducible root system with associated simple Lie algebra g. Let (−,−)

be the W invariant bilinear form on Φ so that (α, α) = 2 for all short roots α ∈
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Φ. Fix a fundamental weight $ and a weight µ ∈ wtV ($) which is in the Weyl

group orbit of $. Let dµ be the minimal length element in the Weyl group such

that dµ(µ) = $. Set

Φ+(µ) = {α | dµ(α) ∈ Φ−}.

Conjecture 3.9..2. There is an elementary light ladder map Lµ, which is a

morphism of Uq(g) modules, and for each dominant weight λ a map Eλ,µ (which

may be zero) which is a composition of the clasps Cλ and Cλ+µ with Lµ as in

Equation (3.6..2). Moreover, there is a duality D on Fund(g) which, interpreted

in the graphical calculus, is flipping a diagram upside down. Finally, we expect that

Eλ,µ ◦ D(Eλ,µ) =
∏

α∈Φ+(µ)

[(α∨, λ+ ρ)]qα
[(α∨, λ+ ρ+ µ)]qα

Cλ, (3.9..12)

where qα = q(α,α)/2.

We can already conjecture the general form of one of the recursive relations

satisfied by the local intersection forms. The local intersection form calculations

in type C2 show that every weight in V ($) appears in this recursion for the local

intersection form of κλ,−$. In arbitrary type, −$ ∈ wtV (−w0($)) ∼= V ($)∗.

Conjecture 3.9..3. There is an elementary light ladder map

L−$ : V ($)⊗ V (−w0($))→ C(q).

Moreover, if

Eλ,−$ ◦ D(Eλ,−$) = κλ,−$ · Cλ,
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then

κλ,−$ = dimq V ($)−
∑

µ∈wtV ($)

κλ−$+µ,−µ

κλ−$,µ
. (3.9..13)

One might hope to prove Conjecture (3.9..2) by finding a combinatorial

description of the recursive formulas themselves, then proving these recursions are

both given by calculations with webs and solved uniquely by Equation (3.9..12).

Remark 3.9..4. The conjecture in type A only deals with κλ,µ when µ is in the Weyl

group orbit of a dominant fundamental weight. In type C2, we cannot currently

explain the local intersection form for the weight (0, 0) in a way that suggests any

generalization. However, we do expect there is a general formula which, for any

simple Lie algebra g and any fundamental weight $, computes κλ,µ for all µ ∈

wtV ($) in terms of the root system Φ.
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CHAPTER IV

SEMISIMPLIFICATION OF TILTING MODULE CATEGORY

4.1. Outline

We give details about semisimplifying diagrammatic categories. Then we

recall Deligne’s diagrammatic description of Rep(O(n)) and the classification of

braidings on Rep(O(2)). We then also recall Kuperberg’s type C2 webs and state

precisely the relationship with tilting modules. We show that when q2 has order 4

there is a full and essentially surjective functor from Rep(O(2)) to the category

of tilting modules for UZq (sp4), and we show that when q2 has order 3 there is

a full and essentially surjective functor from the category of tilting modules to

Rep(O(2)). We then deduce the desired equivalences. Lastly, we generalize these

arguments to the case of sp2n, modulo the conjectural relationship between Cn webs

and tilting modules.

4.2. Diagrammatics for Spherical Categories

Notation 4.2..1. Let k be a field. We write k〈〈O | M | R〉〉 to denote the k-linear

monoidal category generated by objects O, morphisms M , modulo the relations R.

We always will assume that this category is spherical. In particular, the

category is rigid so there is an involution on the set of generating objects O,

denoted o 7→ o∗ and extended to tensor products such that o1 ⊗ o2 7→ o∗1 ⊗ o∗2.

Rigidity also implies that there is an involution on the set M such that if m ∈

Hom(A,B), then m∗ ∈ Hom(B∗, A∗). Moreover, for all o ∈ O, there are morphisms
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in M :

capRo : o⊗ o∗ → k, capLo : o∗ ⊗ o→ k,

cupLo : k→ o⊗ o∗, and cupRo : k→ o∗ ⊗ o

which satisfy the following relations.

(capRo ⊗ ido) ◦ (id⊗cupRo ) = ido = (ido⊗capRo ) ◦ (cupRo ⊗ ido)

(ido⊗capLo ) ◦ (cupLo ⊗ ido) = ido = (capLo ⊗ ido) ◦ (ido⊗cupLo )

These cup and cap maps also give rise to traces on the category:

Tr? : Hom(B,A)× Hom(A,B)→ End(k) (f, g) 7→ cap?
A ◦ (f ◦ g ⊗ idA∗) ◦ cup?

A,

(4.2..1)

for ? ∈ {L,R}. The assumption that our category is spherical implies that these

two traces agree and therefore we are justified in simply writing Tr. We will also

omit from our notation the superscript L or R on the cup and cap maps when

computing this trace.

In this paper, all generators and relations monoidal categories will be

described using planar diagrams. In this language, the cup and cap maps will be

drawn as cups and caps, and the relations above are the “zig-zag” relations.

= = (4.2..2)

= = (4.2..3)
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One can think of Tr in the diagrammatic notation as follows.

Tr(f, g) = f ◦ g (4.2..4)

If End(k) = k · idk, then we define the dimension of an object X to be Tr(idX) ∈ k.

Definition 4.2..2. A category C is Karoubian if for all objects X and for all

idempotent endomorphisms e ∈ EndC(X), there is an object Y ∈ C and projection

and inclusion morphisms π : X → Y and ι : Y → X such that π ◦ ι = idY and

ι ◦ π = e.

Definition 4.2..3. Let C be a category. We define the Karoubi envelope of C,

denoted Kar C as the category with objects: pairs (X, e) where X is an object in

C and e ∈ EndC(X) is an idempotent, and morphisms:

HomKar(C)((X, e), (Y, f)) = f ◦ HomC(X, Y ) ◦ e.

In the case that C is additive, k-linear, and monoidal then Kar(C) is as well, with

tensor product of objects defined as (X, e)⊗ (Y, f) := (X ⊗ Y, e⊗ f).

The Karoubi envelope is a Karoubian category. Moreover, every functor from

C to a Karoubian category factors through Kar(C).

4.3. Ideal of Negligible Morphisms in Spherical Categories

We recall some well known-results which appear in [14], [17], [6], and [23].

Let k be an algebraically closed field.

Definition 4.3..1. Let C be an k-linear, spherical tensor category, with EndC(k) =

k · idk. The negligible ideal in C is the subcategory N (C) ⊂ C with objects the same
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as C and morphisms

HomN (C)(X, Y ) = {f ∈ HomC(X, Y ) | Tr(f ◦ g) = 0 for all g : Y → X}

Lemma 4.3..2. [6, Theorem 2.9] The subcategory N (C) forms a monoidal ideal in

C.

Notation 4.3..3. Since N (C) is a monoidal ideal, it follows that C := C/N (C) is a

monoidal category and πC : C → C is a monoidal functor.

The objects in C are the same as the objects in C, but we will denote them

by o when considered as objects in C. We also write f for the image in C of a

morphism f ∈ C.

Definition 4.3..4. A category is Krull-Schmidt if every object in the category

decomposes into a finite direct sum of indecomposable objects, and every

indecomposable object has a local endomorphism ring.

Lemma 4.3..5. A k-linear Karoubian category with finite dimensional

homomorphism spaces is Krull-Schmidt.

Proof. See [22, 11.4.2].

Definition 4.3..6. A category C is semisimple if it is abelian and every object is

isomorphic to a finite direct sum of simple objects.

Lemma 4.3..7. [14, Lemma 2.4] Let C be an k-linear, Karoubian, spherical tensor

category, with finite dimensional homomorphism spaces, and such that EndC(k) =

k · idk. Assume that every nilpotent endomorphism in C has trace zero.

Let X be an indecomposable object in C.
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1. If dimX 6= 0, then the negligible endomorphisms of X coincide with the

Jacbobson radical of EndC(X).

2. If dimX = 0, then all endomorphisms of X are negligible.

3. If Y is an indecomposable object in C and Y is not isomorphic to X, then all

homomorphisms from X to Y are negligible.

Proof. See [14], proof of Lemma 2.4.

Lemma 4.3..8. [14, Theorem 2.5] Let C be a k-linear, Karoubian, spherical tensor

category, with finite dimensional homomorphism spaces, and such that EndC(k) =

k · idk.

1. If every nilpotent endomorphism in C has trace zero, then C is semisimple.

2. The irreducible objects in C are the (image under πC of) indecomposable

objects in C of non-zero dimension.

3. Two irreducible objects in C are isomorphic if and only if the corresponding

indecomposable objects of non-zero dimension are isomorphic.

Proof. See [14], proof of Theorem 2.5.

Lemma 4.3..9. [17, Section 6] Let C be a k-linear, spherical tensor category.

If C is semisimple, has a simple unit object, and the endomorphism rings of all

simple objects are spanned over k by the identity, then C has no nonzero negligible

morphisms.

Proof. We give a proof sketch based on the discussion in [17] Proposition 5.7 and

Section 6.
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Let f : X → Y be negligible. Since C is semisimple, we can fix decompositions

X ∼= ⊕Xi and Y ∼= ⊕Yj where each Xi and Yj are simple, and thus can view f as

⊕fij : ⊕Xi → ⊕Yj. For each Xi
∼= Yj fix an isomorphism ϕij : Yj → Xi. Note

that if no Xi is isomorphic to Yj, then f = 0. Write g(ij) : Y → Yj
ϕij−→ Xi → X.

Then since f is negligible 0 = Tr(f ◦ g(ij)) = Tr(fij ◦ g(ij)) = cij dim(Xi) for

some nonzero scalar cij ∈ k. Thus, to show that f = 0 it suffices to show that the

dimensions of simple objects in C are nonzero.

Let S be a simple object in C, we will show that dimS 6= 0. Since C is rigid it

follows that dim HomC(k, S ⊗ S∗) = 1. Since C is semisimple and k is simple, this

implies that k is a direct summand of S ⊗ S∗. Then Equation (4.2..2), along with

S 6= 0 implies that the coevaluation map, cupS, must be a nonzero element of, and

hence a basis for, HomC(k, S ⊗ S∗). Similarly, the evaluation map, capS, is a basis

for HomC(S ⊗ S∗,k). Thus, if 0 = dimS = Tr(idS) = capS ◦ cupS, then k cannot be

a summand of S ⊗ S∗.

Remark 4.3..10. Since we assume that k is algebraically closed throughout, it will

always be the case that endomorphisms of simple objects in semisimple categories

are spanned over k by the identity.

4.4. Semisimplification of Diagrammatic Spherical Categories

Definition 4.4..1. The k-linear category k〈〈O |M |R〉〉 is semisimplifiable if the

space of endomorphisms of the empty word (the monoidal unit in the category)

is spanned, over k, by the empty diagram, all homomorphism spaces are finite

dimensional, and the trace of any nilpotent endomorphism is zero.

Lemma 4.4..2. Let C = Kar k〈〈O | M | R〉〉 and let C ′ = Kar k〈〈O′ | M ′ | R′〉〉.

Suppose that there are objects F (o) ∈ C ′, for all o ∈ O, and morphisms F (m) ∈ C ′,
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for all m ∈ M , such that modulo the ideal N (C ′) the morphisms F (m) satisfy all

the relations in R. Then there is a monoidal functor F : C → C ′, extending the

mapping F .

Proof. The fact that there is a monoidal functor F : C → C ′ such that o 7→ o and

m 7→ m follows from a generators and relations check using our hypotheses, along

with the universal property of Kar.

Lemma 4.4..3. Let C = Kar k〈〈O | M | R〉〉 and let C ′ = Kar k〈〈O′ | M ′ | R′〉〉.

Assume that k〈〈O | M | R〉〉 and k〈〈O′ | M ′ | R′〉〉 are semisimplifiable (4.4..1).

Let F : C → C ′ be a monoidal functor. If F is full, then kerF = N (C).

Proof. We will first establish that kerF ⊂ N (C). Let f : X → Y ∈ ker(F ) and let

g : Y → X. Since F is monoidal, F sends the unit object to the unit object, A∗ to

F (A)∗, and capA to capF (A). Since F is k-linear we have

F (c · idkC) = c · idkC′
.

Thus,

Tr(f ◦ g) · idkC′
= F (Tr(f ◦ g) · idkC)

= F (capY ◦ (f ◦ g ⊗ idY ∗) ◦ cupY )

= capF (Y ) ◦ (F (f) ◦ F (g)⊗ idF (Y )∗) ◦ capF (Y )

= 0,
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where the last equality follows from knowing F (f) = 0. We assumed that C ′ is

semisimple, so in particular is nonzero. It follows that we can deduce that Tr(f ◦

g) = 0. Hence, f ∈ N (C).

It remains to show that N (C) ⊂ kerF . Suppose that f : X → Y is a

negligible morphism in C. If we can show that F (f) ∈ N (C ′), then since C ′ is

semisimple it follows from Lemma (4.3..9) that F (f) = 0.

To see that F (f) is negligible, let g : F (Y ) → F (X). Since F is full, there is

g′ : Y → X such that F (g′) = g. This allows us to compute

Tr(F (f) ◦ g) · idkC′
= Tr(F (f) ◦ F (g′)) · idkC′

= capF (Y ) ◦ (F (f) ◦ F (g)⊗ idF (Y )∗) ◦ cupF (Y )

= F (capY ◦ (f ◦ g ⊗ idY ∗) ◦ cupY )

= F (Tr(f ◦ g))

= F (0)

= 0,

where the second to last equality is a consequence of f being negligible.

Proposition 4.4..4. Let C = Kar k〈〈O | M | R〉〉 and let C ′ =

Kar k〈〈O′ | M ′ | R′〉〉. Assume that k〈〈O | M | R〉〉 and k〈〈O′ | M ′ | R′〉〉 are

semisimplifiable (4.4..1).

If there is a full and essentially surjective monoidal functor F : C → C ′, then

there is a monoidal equivalence F : C → C ′ such that F ◦ πC = F .

Proof. Since F is full, Lemma (4.4..3) implies that kerF = N (C). Thus, there is an

induced functor F : C −→ C ′ such that F ◦ πC = F . Since F is essentially surjective,

so is F , and therefore F is a monoidal equivalence.
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Lemma 4.4..5. Let C and A be additive, rigid, monoidal categories with End(1) =

k · id. Suppose that A is an abelian category and that the monoidal product is exact.

If there is an additive, monoidal functor F : C −→ A, then the trace of a nilpotent

endomorphism in C is zero.

Proof. Let n ∈ EndC(X) be such that nk = 0, for some k ≥ 0. Thus, F (n) ∈

EndA(F (X)) also satisfies F (n)k = F (nk) = F (0) = 0. Since A is abelian, it follows

from [17, Lemma 3.5, Corollary 3.6] that Tr(F (n)) = 0. Thus,

Tr(n) · idkA = Tr(n) · idF (kC)

= Tr(n) · F (idkC)

= F (Tr(n) · idkC)

= F (cap ◦ (n⊗ idX) ◦ cup)

= F (cap) ◦ (F (n)⊗ idF (x)) ◦ F (cup)

= Tr(F (n)) · idkA

= 0,

so Tr(n) = 0.

4.5. Deligne’s Description of Rep(O(t)).

Definition 4.5..1. [17, Definition 9.2]

Let R be the C(T )-linear monoidal category with generating object • and the

following generating morphisms.

(4.5..1)
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The relations are the following local relations on diagrams.

= (4.5..2)

= = (4.5..3)

= (4.5..4)

= (4.5..5)

= (4.5..6)

= T (4.5..7)

Definition 4.5..2. Define Rep(O(T )) to be the Karoubi envelope of the category

R. If t ∈ C, then we also define

Rep(O(t)) := Kar(C⊗T=t R).

Let V be an n dimensional vector space equipped with a non-degenerate

symmetric bilinear form B. If ei and fi are dual bases for V with respect to B,

then element ∆ =
∑
ei ⊗ fi ∈ V ⊗ V is independent of choice of basis.

Proposition 4.5..3. [17, Theorem 9.6] The assignment • 7→ V along with

7→ (v ⊗ w 7→ w ⊗ v) (4.5..8)

135



7→ (1 7→ ∆) (4.5..9)

7→ (v ⊗ w 7→ B(v, w)) (4.5..10)

defines a full functor from Rep(O(n)) to Rep(O(V,B)). Moreover, the kernel of

this functor is the ideal of negligible morphisms in Rep(O(n)).

Remark 4.5..4. The category R does not actually appear in [17]. Instead, Deligne

worked with a category with objects {0, 1, 2, . . .} and morphism spaces having a

basis of Brauer diagrams. Then [33, Theorem 2.6] showed that Deligne’s category

of Brauer diagrams [33, Definition 2.3], denoted B(T ) by Lehrer and Zhang in loc.

cit., is equivalent to the generators and relations category R.

Lemma 4.5..5. Let n ∈ Z≥0. The category Rep(O(n)) = KarC ⊗T=n R is

semisimplifiable, see Definition (4.4..1).

Proof. That the endomorphisms of the unit are spanned by the empty diagram and

all homomorphism spaces are finite dimensional is an immediate consequence of the

homomorphism spaces in Rep(O(n)) having a basis of Brauer diagrams (4.5..4).

By considering the composition of monoidal functors

Rep(O(n)) −→ Rep(O(n)) −→ C−mod,

one can apply Lemma (4.4..5) and deduce that a nilpotent endomorphism in

Rep(O(n)) must have trace zero.

4.6. Braidings on Rep(O(2))

We want to determine all braidings on Rep(O(2)). This has already been

accomplished in [49], but we repeat the calculations here for completeness.
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In this section, for ease of notation, we write the following.

I := X := Q := (4.6..1)

Let β(−),(−) be a potential braiding on Rep(O(T )). Since {I,X,Q} is a basis

of EndR(• ⊗ •), it follows that there are scalars a, b, c ∈ C such that

β•,• = aI + bX + cQ. (4.6..2)

The hexagon equation implies that

β•,•⊗• = (β•,• ⊗ id•) ◦ (id•⊗β•,•).

Also,

β•,k = id• = βk,•.

Therefore, naturality of β implies

β

β
= (4.6..3)

which in turn implies that

β

β
= (4.6..4)
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In other words, using cups and caps to rotate β we obtain β−1. Expanding β in

Equation (4.6..4) we find that

(b2 + ac)I + (ab+ bc)X + (a2 + ab+ tac+ bc+ c2)Q = I, (4.6..5)

so in particular, b(a+ c) = 0. Thus, we have the following:

If a+ c = 0, then b2 = a2 + 1, and a2(2− t) = 0, (4.6..6)

and

If b = 0, c = a−1 6= 0, and t = −(a2 + a−2). (4.6..7)

Since β•,• is a linear combination of I,X, and Q we can deduce that β

satisfies the braid relation if and only if

β

β

?

= β

β

?

(4.6..8)

for ? ∈ {I,X,Q}. The case of ? = I is trivial, and the case of ? = Q follows from

Equation (4.6..3). A calculation shows that for the case of ? = X to hold one must

have

a2X ⊗ I + acQ⊗ I + ac(X ⊗ I) ◦ (I ⊗Q) + c2(X ⊗ I) ◦ (I ⊗Q) ◦ (Q⊗ I)

=

a2I ⊗X + acI ⊗Q+ ac(Q⊗ I) ◦ (I ⊗X) + c2(I ⊗Q) ◦ (Q⊗ I) ◦ (I ⊗X).

(4.6..9)
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Remark 4.6..1. Since partition diagrams form a basis for homomorphisms spaces

in Rep(O(T )), this calculation shows that a braidings on Rep(O(T )) would have

a = c = 0, and therefore by Equation (4.6..6) b = ±1.

In order to see which β give rise to a braiding on Rep(O(2)) we need to

specialize T to 2 and consider the image of β under a functor Rep(O(2)) →

Rep(O(2)).

Let V = Ce1 ⊕ Ce2 and let B(−,−) be the symmetric bilinear form on V

determined by

B(e1, e1) = 0 = B(e2, e2) and B(e1, e2) = 1 = B(e2, e1). (4.6..10)

By Proposition (4.5..3), there is a monoidal functor

FB : Rep(O(2)) −→ Rep(O(V,B)). (4.6..11)

Subtracting the right hand side from the left hand side in Equation (4.6..9),

applying FB, then writing the matrix with respect to the basis

{e1 ⊗ e1 ⊗ e1, e1 ⊗ e1 ⊗ e2, e1 ⊗ e2 ⊗ e1, e2 ⊗ e1 ⊗ e1,

e1 ⊗ e2 ⊗ e2, e2 ⊗ e1 ⊗ e2, e2 ⊗ e2 ⊗ e1, e2 ⊗ e2 ⊗ e2}
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results in



0 0 0 0 0 0 0 9

0 a2 − c2 c2 − a2 0 0 0 0 0

0 −(a+ c)2 0 a2 − c2 0 0 0 0

0 0 (a+ c)2 c2 − a2 0 0 0 0

0 0 0 0 c2 − a2 (a+ c)2 0 0

0 0 0 0 a2 − c2 0 −(a+ c)2 0

0 0 0 0 0 c2 − a2 a2 − c2 0

0 0 0 0 0 0 0 0



.

This matrix is identically zero if and only if c = −a.

Proposition 4.6..2. There is a bijection between the set C×〈±1〉 and braidings on

Rep(O(2))

(a, ε) 7→ a,εβ

such that

a,εβ•,• = aI + ε
√
a2 + 1X − aQ.

Proof. The preceding calculations show that the morphisms β•,• = aI + bX + cQ

(interpreted as O(2) equivariant endomorphisms of V ⊗ V ) satisfy the braid relation

and naturality if and only if c = −a and b = ±1.

The Karoubi envelope of a braided category is braided. Since Rep(O(2)) is

equivalent to the Karoubi envelope of the full monoidal subcategory generated by

V , it suffices to describe a braiding on this subcategory. Define a,εβ•⊗i,•⊗k to be

the morphism corresponding the the positive braid lift of the minimal length coset

representative for the double coset Si×Sk ·w0 ·Si×Sk, where w0 ∈ Si+k is the longest
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word, and to each crossing we assign a,εβ•,•. We leave it to the reader to verify that

this determines a braiding on the monoidal subcategory generated by V .

Remark 4.6..3. For a more detailed discussion about this instance of a braiding on

a subcategory inducing a braiding on the Karoubi envelope see [49, Section 4].

4.7. Webs and Tilting Modules

Notation 4.7..1. We write [n]q, the quantum integer n, to denote the element

qn−q−n
q−q−1 in the ring Z[q, q−1].

Let k be a field and let ξ ∈ k. Then we can specialize a quantum integer [n]q

to the element [n]ξ = ξn+ξ−n

ξ+ξ−1 .

Let A = Z[q, q−1, [2]−1
q ]. If k is a field and ξ ∈ k is such that ξ + ξ−1 6= 0, then

we can specialize the quantum numbers [m]
[2]k
∈ A to k in exactly the same way.

When the context makes it clear we will drop the subscript of q or ξ and just

write [n].

Example 4.7..2. For the present purposes we are most interested in when k =

C(ζ2n), where ζ2n = eiπ/n, for some n ∈ Z≥0. In this case we have

[k]ζ2n = [n− k]ζ2n

for all k ∈ Z.

By combining the usual tricks for working with quantum numbers, like the

identity [2][n] = [n + 1] + [n − 1], with the identity [k] = [n − k] we can explicitly

determine [k] ∈ C(ζ2·n). To illustrate this, consider the case of C(ζ2·4). Since

[1] = [4− 1] = [3] and [2]2 = [3] + [1].
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we deduce that

[2]2 = 2.

Since we chose ζ2·4 = eiπ/4, we know that [2] > 0, hence [2] =
√

2.

Notation 4.7..3. Let ζn = eiπ/n. If n ≥ 3, then we can consider C(ζn)⊗A Dsp4 , and

write

Tn := Kar(C(ζn)⊗A Dsp4)

We recall the main result of Chapter II.

Theorem 4.7..4. There is an equivalence of monoidal categories

Tn −→ Tilt(C(ζn)⊗A UAq (sp4))

such that 1 7→ V ($1), 2 7→ V ($2), and the trivalent vertex maps to a specified

intertwiner in Equation (2.10..1).

Lemma 4.7..5. The category Tn is semisimplifiable (4.4..1).

Proof. The category Tn is equivalent to the category of tilting modules for

C(ζn) ⊗A UAq (sp4). This is an additive and monoidal subcategory of the category

of finite dimensional representations of C(ζn) ⊗A UAq (sp4), and it follows that

Tilt(C(ζn)⊗A UAq (sp4)) has finite dimensional homomorphisms, the endomorphisms

of the monoidal unit are all scalar multiples of the identity, and that nilpotent

endomorphisms have trace zero.

Remark 4.7..6. [31] The category Dsp4 is braided monoidal with

β1,1 = q + +
q−2

[2]
(4.7..1)
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and the equivalence in Theorem (4.7..4) is braided monoidal with β1,1 mapping to

the usual quantum group braiding. For more details see [9, Porism 5.4].

4.8. Outline of Proof of Main Theorem

We will define a full and essentially surjective monoidal functor

Rep(O(2)) −→ T2·4. Then, we argue that the kernel of this functor is the ideal

of negligible morphisms in Rep(O(2)). Thus we have monoidal equivalences

Rep(O(2))←− Rep(O(2)) −→ T2·4 −→ Tilt(C(ζ2·4)⊗ UAq (sp4)).

From this, we may deduce the desired equivalence between Rep(O(2)) and the

negligible quotient of tilting modules. Finally, we compute that the usual braiding

on Tilt(C(ζ2·4)⊗ UAq (sp4))/N corresponds to an unusual braiding on Rep(O(2)).

Next, we argue that there is a full, essentially surjective, monoidal functor

T2·3 → Rep(O(2)). We then show that the kernel of this functor is the ideal of

negligible morphisms, and deduce monoidal equivalences

Rep(O(2))←− Rep(O(2))←− T2·3 −→ Tilt(C(ζ2·3)⊗ UAq (sp4)).

Again, we observe that the braiding on the quantum group category does not

correspond to the usual symmetric braiding on Rep(O(2)).

4.9. A Functor Rep(O(2)) −→ T2·4

We first derive a relation which holds in T2·4, but does not hold in T2·4
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Lemma 4.9..1. The following relation holds in T2·4.

= −[2] (4.9..1)

Proof. If X is indecomposable and dimX = 0, then Lemma (4.3..7) implies that

idX ∈ N . Moreover, the results of Chapter II imply that

I = and E = (4.9..2)

is a basis for EndC(ζ2·4)⊗Dsp4
A(1 ⊗ 2). Note that E2 =

[5]

[2]
I. Since [5]/[2] 6= 0 when

q = ζ2·4, there is an idempotent projecting to V ($1 +$2):

πV ($1+$2) = I − [2]

[5]
E. (4.9..3)

Moreover, the trace of this idempotent is

− [8][6]

[3]
,

which is 0 when q = ζ2·4. It follows that, πV ($1+$2) is in N . The relation in the

statement of the lemma then follows from observing that [5] = −1 if q = ζ2·4.

Notation 4.9..2. We will write a dotted crossing to represent the following linear

combination in EndDsp4
(1⊗ 1).

:= + [2] (4.9..4)
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Lemma 4.9..3. The assignment • 7→ 1 and

7→ (4.9..5)

7→ (4.9..6)

7→ . (4.9..7)

extends to a monoidal functor

F : Rep(O(2)) −→ T2·4.

Proof. We need to verify that the relations for Rep(O(2)) are satisfied by the cups,

caps, and the morphism (4.9..4) in T2·4. Note that [2] =
√

2 and −[6][2]/[3] = 2

in C(ζ2·4). By only using the relations for Dsp4 it is easy to verify the relations for

C⊗T=2 R in Equations (4.5..2), (4.5..3), (4.5..4), (4.5..6), and (4.5..7).

It remains to verify the braid relation in Equation (4.5..5). Using Equation

(1.1..7) we deduce the following.

= + [2] (4.9..8)

If we use Equation (4.9..4) to expand the dotted crossings in the following diagrams

− (4.9..9)
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and then use (4.9..8) to simplify, we obtain

+[2] − −[2]
Lemma (4.9..1)

= 0.

(4.9..10)

The braid relation in Equation (4.5..5) is an immediate consequence of the

expression in (4.9..9) being zero.

Therefore, there is a monoidal functor

C⊗T=2 R −→ T2·4.

Since the target category is Karoubian, this functor extends to a monoidal functor

F : Kar(C⊗T=2 R) −→ T2·4

with the desired action on generating objects and morphisms.

Lemma 4.9..4. The functor F is full and essentially surjective.

Proof. Let 〈1〉⊗ denote the full monoidal subcategory of Dsp4 with objects tensor

products of 1. Since 2 is a direct summand of 1 ⊗ 1 and the objects in Dsp4 are

tensor products of 1 and 2, it follows that the functor 〈1〉⊗ → T2·n induces a

monoidal equivalence Kar〈1〉⊗ → T2·n.

The functor F has image in Kar〈1〉⊗, so it suffices to show that F is full. To

this end, we consider an arbitrary morphism in 〈1〉⊗. This is a linear combination

of diagrams with no 2’s on the boundary. We also know from [31] that we can

assume that there are no closed subdiagrams. Thus, any occurrence of 2 in a given
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diagram must locally be of the form

(4.9..11)

Then by repeatedly applying Equation (4.9..4) we can write any morphism as a

linear combination of diagrams which are in the image of F .

Theorem 4.9..5. There is a monoidal equivalence of categories

F : Rep(O(2)) −→ T2·4

Proof. This follows from Lemma (4.7..5), Lemma (4.5..5), and Proposition (4.4..4).

Corollary 4.9..6. Under the equivalence in Theorem (4.9..5) the braiding on T2·4

induces the braiding a,εβ on Rep(O(2)) from Proposition (4.6..2), for a =
√
i/
√

2

and ε = 1.

Proof. First, use Equation (4.9..2) to write β1,1 in terms of the image under F of

the generators of Rep(O(2)). Then, note that ζ2
2·4 =

√
i and ζ2·4 + ζ−1

2·4 =
√

2 to see

a =
√
i/
√

2.

4.10. A Functor T2·3 −→ Rep(O(2))

Let V = Ce1 ⊕ Ce2, let B be the symmetric bilinear form in Equation

(4.6..10), and let FB be the full and essentially surjective functor KarC ⊗T=2 R →

Rep(O(V,B)) in Equation (4.6..11). Note that the group O(V,B) is generated by
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the matrices

s :=

0 1

1 0

 and tx :=

x 0

0 x−1

 , x ∈ C. (4.10..1)

This makes it apparent that the module V ⊗ V decomposes into a direct sum of

three irreducible O(V,B) modules

V ⊗ V = C{e1⊗ e1, e2⊗ e2}⊕C{e1⊗ e2− e2⊗ e1}⊕C{e1⊗ e2 + e2⊗ e1}. (4.10..2)

Lemma 4.10..1. The endomorphism

:=
1

2

(
+ −

)
(4.10..3)

maps under FB, see Equation (4.6..11), to the idempotent endomorphism which,

under the decomposition in Equation (4.10..2) projects to C{e1 ⊗ e1, e2 ⊗ e2}.

Proof. The image of (4.10..3) under FB acts as

e1 ⊗ e1 7→
1

2
(e1 ⊗ e1 + e1 ⊗ e1 + 0) = e1 ⊗ e1

e1 ⊗ e2 7→
1

2
(e1 ⊗ e2 + e2 ⊗ e1 − (e1 ⊗ e2 + e2 ⊗ e1)) = 0

e2 ⊗ e1 7→
1

2
(e2 ⊗ e1 + e1 ⊗ e2 − (e1 ⊗ e2 + e2 ⊗ e1)) = 0

e2 ⊗ e2 7→
1

2
(e2 ⊗ e2 + e2 ⊗ e2 + 0) = e2 ⊗ e2.

Notation 4.10..2. In this section we will continue to use the notation I, X, and

Q from Equation (4.6..1) to denote the three basis elements in End(• ⊗ •). We will
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also write the idempotent in Lemma (4.10..1) as

E :=
1

2
(I +X −Q) .

Lemma 4.10..3. The assignment s 7→ (•, id), t 7→ (• ⊗ •, E), and

7→ i 7→ i (4.10..4)

7→ 7→ (4.10..5)

7→ 7→ (4.10..6)

determines a monoidal functor

G : T2·3 −→ Rep(O(2)). (4.10..7)

Proof. This is a another generators and relations check. Note that if q = ζ2·3, then

[2] = 1 and −[6][2]/[3] = 2 = [6][5]/[3][2]. It is immediate from the definition of E

that all relations hold, except the relation in Equation (1.1..6).

The relation in Equation (1.1..6) is not satisfied in Rep(O(2)), but does

hold in the negligible quotient. The simplest way to verify the relation in the

negligible quotient is to use Lemma (4.10..1) to check that applying the functor

FB : Rep(O(2)) −→ Rep(O(V,B)) to the diagram

(4.10..8)
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results in a linear map which sends each basis vector in C{e1 ⊗ e1, e2 ⊗ e2} ⊂ V ⊗ V

to 0.

Lemma 4.10..4. The functor G is full and essentially surjective.

Proof. Since 1 7→ •, G is essentially surjective. The identity maps of the objects

•⊗m, the idempotent E, and the cup and cap maps are in the image of G. Since

X can be expressed in terms of I = id•⊗•, E and Q, it follows that the symmetric

crossing is also in the image of G. Thus, G is full.

Theorem 4.10..5. There is a monoidal equivalence

G : T2·3 −→ Rep(O(2)).

Proof. This follows from Lemma (4.5..5), Lemma (4.7..5), and Proposition (4.4..4).

Corollary 4.10..6. Under the equivalence in Theorem , the braiding on T2·3

induces the braiding a,εβ on Rep(O(2)) from Proposition (4.6..2) for a = ζ2·3 −
1

2

and ε = −1.

Proof. We leave this as an exercise to the reader.

4.11. Sketch of Proof of Conjecture (1.3..6)

Notation 4.11..1. Let n ∈ Z≥2. Write A := Z[q, q−1, [2]−1, [3]−1, . . . , [n]−1]. Let

WebA(sp2n) be the obvious A form of Web(sp2n). Let UAq (sp2n) be Lusztig’s

divided powers quantum group, viewed as an A algebra. Fix ` > n. Write

T`(sp2n) := Kar
(
C⊗q=e2πi/` WebA(sp2n)

)
.
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Conjecture 4.11..2. [9, Remark 3.8] There is a monoidal equivalence T`(sp2n) −→

Tilt(C⊗q=e2πi/` UAq (sp2n)).

We will assume this conjecture is true for the rest of this section.

Proof Sketch of Conjecture (1.3..6). Suppose that q = ζ2·2n. Since 2n > n,

the fundamental Weyl modules for sp2n are tilting modules. Moreover, using [9,

Proposition 2.2] we find that

dimq V ($1) = 2, dimq V ($2) = 1, and dimq V ($k) = 0 for k = 3, 4, . . . n.

Therefore, the only diagrams in C ⊗q=eiπ/2n WebA(sp2n) which survive in the

negligible quotient are those with labels 1 and 2. Using that webs with label 3

are zero, one can argue similarly to the proof of Lemma (4.9..1) that the following

relation holds in the negligible quotient.

1 2

=
2

[2]
1 2

1 2

1 (4.11..1)

Note that [n+ 1] = [2n− (n+ 1)] = [n− 1], so [2][n] = [n+ 1] + [n− 1] = 2[n+ 1].

Minor variations of the arguments given in the proofs of Lemma (4.9..3) and

Lemma (4.9..4) for sp4 will then show that the assignment

7→
1 1

− 2

[2]
1 1

1 1

2 (4.11..2)

determines a full and essentially surjective monoidal functor Rep(O(2)) −→

T2·2n(sp2n). The desired result then follows from Proposition (4.4..4).
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Let q = ζ2·(n+1). Since n + 1 > n, the fundamental Weyl modules for

Cq=zeta2(n+1)
UAq (sp2n) are tilting modules and from [9, Proposition 2.2] we also find

that

dimq V ($k) = 2 for k = 1, 2, . . . n.

We will define idempotents Ek ∈ EndRep(O(2))(•⊗k) for all n ≥ 2. Set

E1 := id, E2 := E =
1

2
(I +X −Q) ,

and for k ≥ 3

Ek := Ek−1 −
Ek−1

Ek−1

Recall, from Equation (4.6..11), the monoidal functor FB from Rep(O(2))

to Rep(O(V )), and from Equation (4.10..1), the group O(V ) is generated by

elements s and tx, for all x ∈ C. Note that the O(V ) module V ⊗k has a submodule

C{e⊗k1 , e⊗k2 } and

s(e⊗k1 ) = e⊗k2 , s(e⊗k2 ) = e⊗k1 , tx(e
⊗k
1 ) = xke⊗k1 , and tx(e

⊗k
2 ) = x−ke⊗k2 .

Since all the other basis elements in V ⊗k are acted on by tx as xi for i < k, we

see that the submodule C{e⊗k1 , e⊗k2 } has multiplicity one in V ⊗k. Thus, there is a

unique endomorphism of V ⊗k which projects to this isotypic component and is the

identity on e⊗ki . One can check that the image of Ek under FB corresponds to this

idempotent.
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It is easy to see that Ek ◦ (Ek−1 ⊗ id•) = Ek. Using that FB(Ek) is projection

to C{e⊗k1 , e⊗k2 }, and that FB : Rep(O(2)) −→ Rep(O(V )) is an equivalence, we can

also deduce that Ek ◦ (id•⊗Ek−1) = Ek.

Let λk ∈ C be such that λ2
k = [k]eiπ/(n+1) for k = 1, 2, . . . , n. We claim that

there is a functor

C⊗q=eiπ/(n+1) WebA(sp2n) −→ Rep(O(2))

such that k 7→ (•⊗k, Ek),

1 k

k+1

7→ λkEk+1 ◦ (id•⊗Ek) : • ⊗ (•⊗k, Ek) −→ (•⊗k+1, Ek+1),

and

k 1

k+1

7→ λkEk+1 ◦ (Ek ⊗ id•) : (•⊗k, Ek)⊗ • −→ (•⊗k+1, Ek+1).

If there is such a functor, it is clearly full and essentially surjective, so we

are reduced to a generators and relations check. The most interesting relation is

Relation (1.3..7e).

Note that since qn+1 = −1 we have

[n− k] = [k + 1], [n− k + 1] = [k], and [n] = 1.
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Let k ≥ 3. The left hand side of Relation (1.3..7e) maps to

λ2
k+1

k k

1 1

Ek+1 Ek+1 = [k + 1]

k k

Ek+1

which after expanding Ek+1 using our inductive definition we get

[k + 1]

k k

1 1

Ek Ek
− [k + 1]

k k

1 1

Ek Ek
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The right hand side of Relation (1.3..7e) maps to

λ2
kλ

2
2

k k

1 1

Ek Ek

E2

− [n− k]

[n− k + 1]
λ2
k

k k

1 1

Ek Ek

+
[n− k]

[n]

k k

1 1

Ek Ek

which after simplifying the coefficients becomes

[k][2]

k k

1 1

Ek Ek

E2

− [k + 1][k]

[k]

k k

1 1

Ek Ek

+
[k + 1]

[1]

k k

1 1

Ek Ek
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Thus, the result will follow if we can show that

k k

1 1

Ek Ek

E2

= 0.

When k ≥ 2 this is a consequence of the fact that C{e⊗k1 , e⊗k2 } ⊗ C{e⊗k1 , e⊗k2 } does

not have any basis vectors such that tx acts by x2, so

HomO(V )(C{e⊗k1 , e⊗k2 } ⊗ C{e⊗k1 , e⊗k2 },C{e⊗2
1 , e⊗2

2 }) = 0.
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