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DISSERTATION ABSTRACT

Zachary Kiefer

Doctor of Philosophy

Department of Economics
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Title: Three Essays on the Cost of Internet Communications: Measurement and
Implications for International Economic Flows

I develop new measures of Internet communication costs that hold

advantages over similar measures previously used in the economics literature: they

are more solidly based on the technical nature of the Internet, easier to compute,

and/or more suitable to use in international economics. To do this, I introduce a

pair of novel data sources that describe distinct aspects of Internet communication.

I further demonstrate that my developed measures possess explanatory power when

used to explain patterns of trade in goods and in services, as well as cross-border

portfolio investment.
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CHAPTER I

INTRODUCTION

In the last four decades, an increasing fraction of communication has taken

place by way of the Internet, thanks to email, Voice Over Internet Protocol (VoIP)

phone systems, and now the widespread use of videoconferencing. As the Internet

has matured, it has become an important factor in many areas with relevance

to economics: access to the Internet means access to amenities including instant

communication, education, financial and commodity markets, and others. This

makes Internet access into a plausible reducer of information frictions as barriers to

trade and other international economic flows.

Internet access can be measured along multiple margins: the simplest to

measure is likely the extensive margin, i.e. the number of people with any degree of

Internet access, but there is also the intensive margin (the degree to which people

with Internet access use that access) and what might be called the cost and quality

margins, measuring the effectiveness of the available Internet services. Each of

these margins potentially affects economic variables in distinct ways: for example,

expansion of Internet access along the extensive margin may give a wider segment

of the population access to human capital development via e-learning, but seems

unlikely to result in an expansion of a country’s tech industry unless accompanied

by improvements along the intensive or quality margins.

Unfortunately, it has proven difficult to measure any of these margins of

Internet access, or the costs economic agents face in using the Internet–especially

in ways that are familiar and useful to economists. Particularly in the international

economics literature, it is most useful to measure communication costs bilaterally,

i.e. pertaining to communication between sender-receiver pairs. Historically, it was
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more straightforward to do this, as the dominant communication technologies were

telegraph or telephone. Both technologies were billed on a per-unit, bilateral basis,

making it as simple as looking up the published rate for telegrams or phone calls

between a pair of locations. The Internet, however, is generally billed on only a

unilateral basis, with rates that do not vary depending on where a user intends to

communicate with.

Complicating this further is the fact that due to the decentralized nature of

the Internet, there is no singular authority that collects data on the entire Internet.

Existing measures of Internet access exhibit notable flaws: the largest datasets

describing Internet access and cost are survey-based, and suffer from the issue

of comparability across locations or time periods. Non-survey-based datasets are

not common, and do not generally cover wide areas, and while proxies for Internet

access and cost exist, many are outdated due to technical changes, while others

require heroic efforts to collect.

The problem facing economists is thus two-part: firstly, since the Internet

is now the dominant communications technology, we need to develop a way of

measuring a bilateral Internet communication cost. Secondly, we ideally need

for this new measure to be readily generated from the fragmentary data that is

available.

In this dissertation, I develop novel sources of data which I use to construct

measures of Internet access, focusing on the extensive, cost and quality margins.

These data are publicly available and are based on fundamental technical aspects

of how the Internet is run, making them unlikely to become obsolete any time soon.

The processes I use to construct my measures are designed to be computationally

2



accessible (requiring only modest computational resources to compute and

estimate), and I show that they can be used to answer research questions including:

– Does expanded Internet access result in a reduction of barriers to trade?

– Do specific economic sectors’ trading behaviors respond differently to changes

in Internet access?

– Does cross-border portfolio investment respond to improved Internet access in

the same way as trade?

In the first chapter, I first demonstrate the explanatory power in these data

by constructing simple, unilaterally-varying measures of communication cost which

I apply in replications of earlier work from the literature (Freund and Weinhold

(2004) and Allen (2014)). In the second chapter, I expand on these measures,

adapting a structural model of physical transportation in such a way as to estimate

a bilateral Internet communication cost analogous to iceberg trade costs. In this

and the third chapter, I demonstrate the explanatory power of the estimated

communication costs in gravity models of trade and portfolio investment. Results

of the replication and gravity models show that these measures contain explanatory

power comparable with previous measures used in the literature. The results of my

gravity models also confirm results seen in Keller and Yeaple (2013).

3



CHAPTER II

ROUTING DATA AS A MEASURE OF INTERNET ACCESS: AN

INTRODUCTION TO THE DATA AND ITS EXPLANATORY POWER

2.1 Introduction

In this chapter, I introduce the first of my novel data sources, the Internet

routing data compiled by the Oregon Route Views Project. Based on this

data, I propose a pair of new measures of Internet access. These measures are

straightforward to compute, and can be computed at varying levels of geographic

detail with little added effort. I then demonstrate empirically that these measures

perform comparably to measures previously used in the literature by adapting the

work of Freund and Weinhold (2004) and Allen (2014), and that the two measures

capture largely separate aspects of Internet access.

2.2 Literature Review

Perhaps the earliest available measure of Internet access is the UN Statistics

Division’s measure of “Internet Users per 100 Inhabitants,” which is available at

the country-year level starting in 1990. However, this measure is compiled from

surveys administered by the statistical agencies of many different nations, and

therefore suffers from comparability issues. The metadata for this data series states

upfront that there may be discrepancies when the age scope of national surveys

differs1), when the survey administrators use different definitions of “Internet

user2,” or when the number of Internet users is estimated from a number of

Internet subscriptions. Other survey-based measures suffer from similar limitations,

or are limited in scope to single countries.

1Did the survey include minors, who use the Internet with greater intensity than, e.g., senior
citizens?

2Is someone who gets email but does not browse websites an Internet user?
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Similar surveys used in the literature include the World Bank Investment

Climate Surveys, which measure the percentage of manufacturers with Internet

access, and the surveys used by the International Telecommunications Union

(Clarke and Wallsten (2006)). These surveys suffer from the same issues of

comparability across countries. In studies of a smaller scope, such as those limited

to a single country, the issue of comparability is less problematic, as it becomes

possible to use single surveys which are presumably administered in a uniform

manner (Fan and Salas Garcia (2018)).

In order to avoid issues of comparability on a global scale, Freund and

Weinhold (2004) uses a proxy for Internet access, consisting of a count of web

hosts3 attributed to each country. This approach has flaws, as the authors are

aware: hosts which end in generic domains such as “.com,” “.edu,” etc. cannot

be attributed to any particular country, and additionally, even hosts with country-

specific domains could be physically located anywhere: the country-specific domain

only indicates the audience that the website is aimed at.

Also, since the publication of Freund and Weinhold, the Internet

Corporation for Assigned Names and Numbers (ICANN), an NGO non-profit which

regulates some aspects of the Internet, has greatly expanded the set of top-level

domains to include such generic suffixes as “.community” and “.horse.” These

generic suffixes likewise cannot be attributed to a particular country, and it is

likely that a growing proportion of webhosts will use these domains in the future.

If so, this limits the usefulness of the webhost-counting measure of Internet access

moving forward.

3Such as www.bbc.co.uk, registered in the United Kingdom, or www.amazon.nl, registered in
the Netherlands.

5



Allen (2014), while not directly focusing on Internet access, deals with the

related topic of information frictions, using a measure derived from data on cell

phone tower construction in the Philippines. This data appears to no longer be

available: the Asia Pacific Policy Center (APPC), the NGO which compiled this

data, seems to have closed its doors, and I have been unable to determine the

current custodian of its data.

Even if this data were available, Allen states that the APPC expended

“substantial effort” in digitizing the registration records of the universe of

Philippine cell towers, and this dataset is, naturally, limited to the Philippines.

This approach to measuring information frictions does not appear to be scalable to

analyses of wider scope.

Finally, all of these measures address only how widely Internet (or cell

phones) are available in a country: there are few measures which address the

quality of Internet access, as described by latency, reliability, or cost. One proxy for

quality of access used in the literature is whether a firm subscribes to broadband

Internet (Grimes, Ren, and Stevens (2012)), but this is merely a coarse proxy4, and

again relies on a micro-survey approach.

In looking for an objective measure of Internet access, I have been inspired

by the approach taken in Chen and Nordhaus (2011), in which the authors use

luminosity data as a proxy for economic activity. The advantage of this approach

is that, despite being only an indirect measure of economic activity, the luminosity

data is easily obtained, easily processed, and objective: it is measured in the same

way in every country, and thus serves as an excellent proxy when more accurate

and detailed data are not available. Given that this is a similar situation, in which

4“Broadband Internet” can refer to a range of technologies with different qualities, not to
mention costs.
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detailed and/or accurate data on Internet access are not always available, a similar

approach is justifiable here.

2.3 Data

This chapter centers on two novel measures of Internet access which can be

computed from a previously unused, publicly available source of data on Internet

routing—the process by which information is transmitted via the Internet. Before

defining these measures, I will first briefly summarize how Internet routing works in

order to provide context for the two measures which I propose.

2.3.1 Routing Data. The Oregon Route Views Project (ORVP),

hosted at the University of Oregon, hosts an archive of routing data from sources

around the world. This data is output from the Border Gateway Protocol (BGP),

the algorithm which Internet-connected devices use to share routing information

with each other, and describes the routes that select collectors would use to send

communication to destinations around the world.

The Internet is not a uniform network; rather, it is comprised of many

smaller networks linked together into a whole. These networks include Internet

Service Providers, telecommunication companies, Internet-based companies like

Google and Amazon, and in fact any collection of network infrastructure run

as a cohesive unit by a single organization. These networks can of course route

communication between their own users, but in order to communicate outside of

their own boundaries, they must send communication through other networks; to

do this effectively, they must communicate information about good routes to use.

Internet Exchange Points (IXPs) are points at which many networks are connected

together and exchanging routing information, resulting in the IXP being highly-

informed about the best routes available. The routing data hosted by the ORVP
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is collected by select IXPs, and because of their highly-connected nature, these

collectors provide an unusually good viewpoint on Internet routing.

The unit of observation in this routing data is a route, defined here as a

sequence of networks that can be used to pass communication from the collector to

a target device elsewhere in the Internet. Routes generally serve a block of devices

identified by their Internet Protocol (IP) addresses. There are commonly multiple

routes that serve a single block, and there are cases in the data where one route

serves a block that is a subset of another block with its own set of routes.

There are around 30 collectors contributing to the ORVP, some of which

have been contributing observations taken every two hours since 2003. Rather

than process the entirety of this vast body of data, I take samples from the first

of each month at three collectors: PAIX, the Palo Alto Internet eXchange, EQIX,

the Equinix-Ashburn exchange, and LINX, the London InterNet eXchange, chosen

for their size and long-running contribution to the ORVP.

2.3.2 Internet Routing in Action. Every Internet-connected device

possesses an IP address, a number which uniquely identifies the device to other

Internet-connected devices. IP addresses are allocated to Internet Service Providers

(ISPs) and other entities, which in turn assign addresses to consumer devices.

When an Internet-connected device needs to communicate with another, it

consults its internal routing table, which contains instructions for communication

with other devices. These instructions take the form of a table of identifying

numbers (Internet Protocol or IP addresses) for other devices, along with a

sequence of other devices that can act as intermediaries to forward communication

to those devices. This sequence of devices can be described as a route or path.
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In the case of most consumer devices, the routing table is not particularly

detailed, and does not contain specific instructions for a large number of other

devices: when attempting to communicate with devices that are not directly

connected to them, they instead instruct the device to forward its communication

to an Internet router with a more complete routing table and let it take over. The

router may forward it again, to a better-connected router, as may the next, and so

on, until the communication reaches a router that actually does have instructions in

its routing table that enable it to send the communication to its actual destination.

A typical consumer device’s routing table will only contain a handful of

entries, since it only needs to communicate with a handful of other devices: the

next hop in virtually all of its routes will be a router operated by the user’s ISP.

However, highly-connected devices, such as the routers in Internet Exchange

Points (IXPs) where multiple ISPs connect their networks together, have much

more detailed routing tables. At very large IXPs, devices’ routing tables may have

detailed information on how to communicate with ∼95% of the roughly 4 billion IP

addresses in existence.

To use an analogy, the routing table is similar to a set of instructions for

sending physical mail: when a typical consumer wishes to send a letter or package,

they do not need to know the exact route that it will take to reach the recipient.

All they need to know is how to get the package to the post office, after which it is

up to the postal service to get the package to its recipient. The postal service, on

the other hand, needs to have detailed instructions about how to get the package

from any given point A to point B5.

5These detailed instructions need not even be available at individual post offices: each
post office only needs to know where to send the package next, based on its destination, and
this is similar to how Internet routing works in practice. However, somewhere, perhaps at a
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Extending this analogy, if one were to obtain the post office’s master list of

instructions for how to ship packages between any origin and destination, one could

draw conclusions about where people who used the post office were located, based

on where there were concentrations of post offices, or approximate the speed of mail

service between towns A and B based on how many steps were in the instructions.

The measures of Internet access I develop in this chapter are based on a similar line

of thinking, in that the routing data possessed by large IXPs conveys information

about where Internet users are located and how good their Internet access is.

2.3.3 Counting IP Addresses. The first measure which this data

allows me to construct is a simple count of how many IP addresses are in use

in any given country or province. This can be done in other ways–for instance,

by consulting the official registry of IP addresses allocated to each country, or a

geolocation database that maps IP addresses to provinces. However, the official

registry only captures the number of IP addresses allocated, and it is relatively

common for addresses to be allocated but not assigned (attached to an end-user

who is using it to actively communicate). Geolocation databases face a similar

issue, in that they are commonly based on the blocks of IP addresses allocated

to ISPs, without consideration for whether those addresses are assigned. Counts of

IP addresses based on these data sources can thus only be interpreted as an upper

bound on the number of IP addresses actually assigned and in use.

I attempt to refine these approaches by coupling a commercial geolocation

database (Maxmind) with routing data. Because the collectors which provide

my routing data are located in highly-connected IXPs, any routes listed in their

routing data are valid, and can actually be used to reach the block of IP addresses

headquarters, the authority responsible for distributing instructions to post offices must have a
master list of instructions, and this is analogous to the data I actually use.
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associated with it.6 The IP addresses observed in in this routing data can therefore

be viewed as the set of all IP address blocks which have recently been observed in

use by the collector. While not a perfect measure–it is still only an upper bound

on the number of assigned IP addresses, since blocks may include some unassigned

IP addresses–when coupled with geolocation data it provides a tighter and thus

superior bound than a count based purely on the geolocation data.

In constructing this measure, I begin by constructing an exhaustive list

of each unique IP address block for which the routing data contains at least one

route7. Then, using the Maxmind geolocation database8 I identify each block’s

location at the country and province level. This enables me to construct a variable

tracking the number of IP addresses in use, again at the country or province level,

over the time period from 2003 to 2018. Having done this for all three of the

collectors I draw data from, I then take the mean of the three values.

This measure does not directly capture the extent of Internet access, defined

as the number or percentage of residents in an area that have Internet access. It

is complicated by multiple factors: since users may be associated with multiple IP

addresses (one at their home and one at their place of work, for example), it does

not map one-to-one into a count of Internet users, and the ratio of Internet users

to IP addresses is likely to vary across countries. This is further complicated by

the unobserved presence of unassigned IP addresses; both factors would be likely

6Without going into excessive technical detail, the Border Gateway Protocol ensures that when
an IP address block can no longer be reached via a route, that knowledge propagates rapidly and
the route is struck from the routing table.

7As the address blocks may overlap, I process them to form a set of disjoint blocks while
preserving the associated route data.

8This is the same kind of database used by websites and advertisers to determine the location
of webpage visitors: if you’ve ever visited a webpage that appeared to know where you were, it
was probably using a similar database.
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to cause measurement error and thus attenuation bias when I apply these measures

in my empirical section. The measure also does not directly capture the intensity

of Internet access, defined as the volume of communication that an area produces.

However, it is plausibly correlated with both of these quantities: ceteris paribus,

one would expect a region with more IP addresses to have more residents with

Internet access, and to generate more Internet communication.

2.3.3.1 Descriptive Statistics. Table 1 presents descriptive statistics

for the IP address count at two different levels of aggregation: the country-level,

and the province-level within the Philippines.9

Table 1. Descriptive Statistics: IP Address Count

Statistic N Mean St. Dev. Min Max

World, by Country 10,337 11,726,450 78,863,537 256 2,172,239,716
Philippines, by Province 3,053 54,366 132,317 256 1,000,448

There is substantial variation in the IP address count across time and

location. Part of this is due to variation in national population size, but much of

the variation remains in the per-capita IP address count: Figure 1 shows the per-

capita IP addresses in the median country over time, as observed from the three

collectors, while Figure 2 shows per-capita IP address counts around the world in

2004, 2010, and 2016.

The three collectors which I use data from report highly-correlated IP

address counts. The correlation coefficient is 0.952 between the values reported

by EQIX and PAIX, 0.862 between EQIX and LINX, and 0.904 between PAIX and

LINX, indicating a high degree of consistency between collectors.

9I have chosen the Philippines in particular because of relevance to Allen (2014).
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Figure 1. Median National Per-Capita IP Addresses

2.3.4 Measuring Route Length. The second of my proposed

measures is Aggregate Route Length (ARL). This is a measure of how complicated

it is to send data from a major IXP to a target location.

One of the variables in the routing data is the Autonomous System Path

(ASP)10, an ordered list of all the networks that a route would pass through. It can

be thought of as a list of all the organizations whose cooperation is necessary to

use the route. I use this as a measure of route length, and for the purposes of this

paper, any references to “route length” refer specifically to the length of the ASP.

Route length is plausibly correlated with several factors relating to the quality of

Internet access experienced by the IP addresses in the block:

– The cost of using a route is plausibly positively correlated with the route’s

length. Each network incurs costs (monetary costs such as electricity

and wear and tear on equipment, and opportunity costs that may be

incurred from congestion if a network is heavily trafficked) to carry Internet

10“Autonomous System” being the formal name for what I am otherwise referring to as a
“network.”
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Figure 2. Per-Capita IP Addresses Around the World

(a) Year: 2004 (b) Year: 2010

(c) Year: 2016

communication to its destination: economically, we would only expect the

network to do so if it can extract some benefit from doing so. This benefit

may be monetary (an access fee), reciprocity (an agreement with another

network to carry each others’ traffic), or some other form, but in each

case, every network in a route adds some cost to the route. To phrase this

differently, if it were possible to remove a network from a route without

altering the rest of the route11, the modified route would be expected to be

lower-cost. Assuming that networks only participate in a route if they can

recoup their costs, these costs would thus be passed on to the end-user who

11Specifically, if it were hypothetically possible to remove network B from a route “A-B-C”,
without altering the points at which the route left A and entered C.
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pays for the service. Under this assumption, regions that are served by longer

routes would be expected to have costlier Internet access.

– The latency (time required to transmit communication) of Internet access

through a route is plausibly positively correlated with the route’s length.

Each network in the route represents additional computational steps that

slow the transmission of communication.

– The reliability (percent uptime, rate of successful communication, etc.) of

Internet access through a route is plausibly negatively correlated with the

route’s length. In addition to adding computational steps, each network in

a route adds more potential points of failure to the route. These include

opportunities for hardware failure (severed cables or crashed servers) that

shut down routes and transmission errors (dropped or corrupt packets) that

prevent communication from being successfully delivered.

Route length can thus be used as a measure of the quality margin of

Internet access, although it is not readily possible to disentangle it further into

cost, latency, and reliability. As IP address blocks can be served by multiple routes,

the cost, latency, and reliability of Internet access to a block are thus plausibly

correlated with some aggregate (a simple mean, for example) of the lengths of the

routes serving the block.

Figure 3 shows a simple section of Internet, with a particular route marked

out in green. Its associated ASP is indicated by the light green boxes, with each

such box representing one network.

However, I am unable to observe these routes directly, as the routing data I

use contains only routes that terminate in the three collectors I work with. Instead
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Figure 3. A Sample Route

of seeing a route directly from A to B, I am only able to observe routes from a

third, outside location to A and B, such as those illustrated in Figure 4. The routes

from the Exchange to devices A and B shown in this diagram each have length 2,

and I infer the existence (if not necessarily the optimality) of a route with length 5

that connects A and B via the Exchange. Such an inferred route could be used as

the basis a bilateral measure of route length (and indeed I do use such a measure

in some of my empirical models), but the route length taken from such a route

would provide only an upper bound on the shortest-length route, as there might

easily exist shorter routes that do not pass through the exchange and are thus

unobserved.

Figure 4. Routes Through an Exchange

Based on these three assumptions, the length of the route contains

information about the quality of Internet access for the end-users of the IP
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addresses at the end of a route. It should be noted, however, that the exact

relation between route length and these metrics does not appear to have ever

been quantified in the computer science literature: there appears to be a general

consensus that path length is positively correlated with latency, but the computer

science literature does not concern itself with quantifying this relationship in a way

which economists would find satisfactory. (Da Lozzo, Di Battista, and Squarcella

(2014); Doan, Bajpai, Ott, and Pajevic (2019))

I construct the ARL measure by the following steps:

– Firstly, because IXPs maintain records of multiple routes to many target IP

address blocks, I select the route of minimal length (i.e. the route with the

fewest networks) to each destination block. While this is a simplistic selection

criterion, it is heavily used: in practice, route selection is carried out by

automated processes that generally place high importance on route length:

to cite some examples, the default selection algorithm on Cisco routers ranks

route length as the fourth of eleven criteria, while Juniper ranks it fifth of

fifteen and Huawei ranks it sixth of fourteen. (Cisco (2016), Juniper Networks

(2020), Huawei (2019)) The higher-ranking criteria are generally values

set by network administrators (such as a manually-set “local preference”

attribute) and do not appear in my routing data. Thus, I treat the length

of this minimal-length route as the route length for the associated IP address

block.

– I then aggregate to the province or country level, using the Maxmind

geolocation database to determine the location of the IP addresses in

the block. Because IP addresses are reassigned periodically—they “move

around” over time—I use a set of historical Maxmind databases from
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different time periods, so that the geolocation data is as close as possible to

contemporaneous with the routing data. Because IP address blocks may be of

wildly different sizes, I construct a mean of the route length for devices within

a region, weighting by the size of the IP address block so that each individual

IP address receives equal weight. This is the ARL for a given location.

– Finally, having performed this aggregation using routing data from all three

of the EQIX, PAIX, and LINX IXPs, I take the mean of the Aggregated

Route Length across the three collectors, in order to obtain a measure which

is more representative of access to the global Internet, as opposed to access to

a particular IXP.

In essence, ARL captures how difficult or complex it is for Internet users

to receive data from a non-local Internet Exchange Point (and by extension, how

difficult it is to send data back). This is the major bottleneck in sending data

to geographically distant destinations: much of the difficulty in sending data

internationally is in getting the data from the sender to an IXP, and then from

an IXP to the recipient. In the middle (between IXPs), the data can often be sent

via an Internet Backbone, a high-speed, high-bandwidth, international connection.

This approach is limited by two factors: firstly, my method of identifying the

actual route used to reach a block is limited by the available data: there are criteria

in route selection that would outweigh route length, and without data on the

higher-ranking criteria, this may not be accurately measuring the route length of

the actual routes used. Secondly, my approach to geolocating IP address blocks is

only as accurate as the Maxmind database–which certainly has its flaws, especially

when trying to geolocate at the province-level or below outside of its ”favored”

countries, as described in Poese, Uhlig, Kaafar, Donnet, and Gueye (2011).
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Table 2. Descriptive Statistics: Aggregate Route Length

Statistic N Mean St. Dev. Min Max

World, by Country 10,337 3 1 1 14
Philippines, by Province 3,053 3 1 2 9

Figure 5. Median National Aggregate Route Length

2.3.4.1 Descriptive Statistics. Table 2 presents descriptive statistics

for the ARL measure at the same two levels of aggregation.

There is again significant variation across time and location, as seen in

Tables 5 and 6. However, this ARL measure contains noticeably more noise, both

year-to-year and between collectors. Notably, while PAIX and EQIX report similar

median ARL values, LINX reports a significantly lower median.

Much as with the IP address count, there is a positive correlation between

the ARL values reported by different collectors, with coefficients of 0.667 between

EQIX and PAIX values, 0.865 between EQIX and LINX, and 0.663 between PAIX

and LINX. These correlations are somewhat weaker for Aggregate Route Length

than for the IP address count—as would be expected, since the route to a target

location would be heavily influenced by the location of the collector. Again, LINX
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Figure 6. Aggregate Route Length Around the World

(a) Year: 2004

(b) Year: 2010

(c) Year: 2016
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reports shorter routes than PAIX, which may be due to London’s advantageous

position at the end of multiple undersea cables, allowing for shorter routes to many

distant locations.

2.3.5 Limitations to Geolocation Data. While the Maxmind

geolocation data used in the computation of both of these measures appears

reliable on the country level, it is less reliable at the province level—particularly in

developing countries. In the Philippines, the reported accuracy radii are sufficiently

large (in many cases, greater than 50 km), and the provinces are sufficiently small,

that the true location of an IP address block may lie in neighboring provinces.

Additionally, there are indications that the location attributed to IP address blocks

is based on the location of the ISP or other organization which owns them, rather

than the location of end-users.

The practical effect of this limitation is that there exist some Philippine

provinces which, according to this geolocation data, contain no IP addresses (and

thus, no Internet users) at all. This seems improbable, but in the absence of better

alternatives, I have proceeded to use this data in my empirical work. This flaw does

not appear when working at the country level, but to the extent that it does exist,

it would cause attenuation bias due to measurement error.

There exists a commercial version of the free datasets which I use in this

process, which purports to offer greater accuracy at the province level and below. It

may therefore be possible to refine the province-level geolocation process in future

work.

2.3.6 Economic and Other Data. My empirical work

demonstrating the value of these measures revolves around replications of two

papers: Freund and Weinhold (2004) and Allen (2014). Where possible, I have
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obtained economic and demographic data from the same sources as the original

authors: in the case of Freund and Weinhold, I use trade-flow data from the IMF

Direction of Trade Statistics, as well as other economic and demographic data series

from the IMF. In the case of Allen, I use the data provided by the author in his

replication files.

2.4 Empirical Results

2.4.1 Freund and Weinhold Replication. I begin by closely

replicating the trade-growth models from Table 3 of Freund and Weinhold (2004),

substituting my proposed measures of Internet access. In this replication, I take

trade data from UN Comtrade (United Nations (2003)) as well as control variables

from the Penn World Table (Zeileis (2021)). First, I estimate a baseline model

gExportsijt = β0ln(Exportij)04 + β1(gGDPj)t + β2log(Distanceij) + (2.1)

FEt + εijt

Here, i indexes origin (exporting) countries, j indexes destination (importing)

countries, and t indexes year. gExportsijt is the growth in exports from i to j

between years t − 1 and t, (gGDPj)t is the growth in j’s GDP and log(Distanceij)

is the log of the distance between the centroids of i and j. Results of this

estimation are reported as Model (1) in Table 3.

I next introduce my IP address count, using the specification

gExportsijt = β0(gNumIPsi)t−1 + β1(gNumIPsj)t−1 + β2ln(NumIPsi)04 + (2.2)

β3ln(NumIPsj)04 + β5ln(Exportij)04 + β6(gGDPj)t +

β7log(Distanceij) + FEt + εijt

where (gNumIPsi)t−1 and (gNumIPsj)t−1 are the growth in the count of

IP addresses contained in countries i and j, respectively. ln(NumIPsi)04 and
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Table 3. Freund and Weinhold Replication Using IP Address Count

Dependent variable:

Growth of exports from country 1 to country 2

(1) (2) (3) (4) (5)

Lag Orig. IP Growth 0.074∗∗∗ 0.031 0.028 0.029
(0.029) (0.019) (0.020) (0.020)

Lag Dest. IP Growth 0.016 0.032∗ 0.031∗ 0.020
(0.023) (0.018) (0.018) (0.016)

Log 2004 Orig. IPs 0.009∗∗∗ 0.005∗∗ 0.007 0.008
(0.003) (0.002) (0.005) (0.005)

Log 2004 Dest. IPs 0.007∗∗∗ 0.005∗∗ 0.007∗ 0.011∗∗∗

(0.003) (0.002) (0.004) (0.004)
Log 2004 Exports −0.011∗∗∗ −0.013∗∗∗ −0.009∗∗∗ −0.012∗∗∗ −0.025∗∗∗

(0.002) (0.004) (0.003) (0.003) (0.003)
Dest. GDP Growth 0.300∗∗∗ 0.313∗∗∗ 0.322∗∗∗ 0.250∗∗∗ 0.238∗∗∗

(0.064) (0.067) (0.053) (0.056) (0.054)
Log Distance 0.002 −0.005 −0.0004 −0.008 −0.021∗∗∗

(0.006) (0.007) (0.006) (0.006) (0.006)
Orig. Real Exch. Rate Growth −0.123∗∗ −0.154∗∗∗

(0.060) (0.059)
Dest. Real Exch. Rate Growth −0.057 −0.141∗∗∗

(0.051) (0.050)
Log 2004 Orig. GDP −0.006 0.002

(0.008) (0.007)
Log 2004 Dest. GDP −0.005 −0.007

(0.007) (0.007)
Log 2004 Orig. Pop. 0.014∗∗∗ 0.020∗∗∗

(0.004) (0.004)
Log 2004 Dest. Pop 0.012∗∗∗ 0.021∗∗∗

(0.004) (0.004)
Lag Export Growth −0.333∗∗∗

(0.009)

Fixed Effects t t t t t
Observations 48,125 42,657 42,091 41,605 41,652
R2 0.013 0.015 0.022 0.024 0.178
Adjusted R2 0.013 0.015 0.022 0.024 0.177

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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ln(NumIPsj)04 are the logged count of IP addresses in those countries in 2004,

the first year of the sample, used as a control for initial conditions. This model

is reported as Model (2) in Table 3, and Model (3) of that table is the same

specification but estimated after deleting all observations which had a residual more

than four standard deviations from zero in model (2).12

In Models (4-5) of Table 3, I introduce additional controls, making the

specification

gExportsijt = β0(gNumIPsi)t−1 + β1(gNumIPsj)t−1 + β2ln(NumIPsi)04 + (2.3)

β3ln(NumIPsj)04 + β5ln(Exportij)04 + β6(gGDPj)t +

β7log(Distanceij) + β8Xijt + FEt + εijt

For Model (4), I introduce controls for economic factors, including fluctuations

in each country’s USD exchange rate, initial GDP, and initial population. For

Model (5) I additionally introduce a lag of the dependent variable to control for

autocorrelation.

Table 4 reports results from re-estimating the models from Table 3, but

substituting ARL for the IP address count. ARL is non-significant at the 5% level

in all models, although it should be noted that the signs on the growth of ARL in

the origin country are exactly opposite the signs on their counterpart measure from

Table 3. This is consistent with the hypothesis that larger numbers of IP addresses

are representative of easier access to the Internet (and a corresponding easing of

information frictions), while longer routes represent more difficult access.

In both sets of regressions, which closely follow the models used by Freund

and Weinhold, much of the models’ explanatory power appears to come from

12A step taken by Freund and Weinhold, which in my data deletes about 1.3% of the sample.
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Table 4. Freund and Weinhold Replication Using Aggregate Route Length

Dependent variable:

Growth of exports from country 1 to country 2

(1) (2) (3) (4) (5)

Orig. ARL Growth −0.090 −0.064 −0.049 −0.078∗

(0.059) (0.043) (0.043) (0.041)
Dest. ARL Growth 0.032 0.038 0.051 0.051

(0.053) (0.039) (0.039) (0.037)
Log 2004 Orig. ARL −0.018 −0.015 −0.022 −0.006

(0.031) (0.024) (0.025) (0.024)
Log 2004 Dest. ARL 0.011 −0.001 −0.010 −0.004

(0.023) (0.019) (0.019) (0.018)
Log 2004 Exports −0.011∗∗∗ −0.006∗∗∗ −0.004∗∗∗ −0.012∗∗∗ −0.024∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.003)
Dest. GDP Growth 0.300∗∗∗ 0.287∗∗∗ 0.316∗∗∗ 0.261∗∗∗ 0.261∗∗∗

(0.064) (0.065) (0.052) (0.056) (0.054)
Log Distance 0.002 0.009 0.007 −0.005 −0.017∗∗∗

(0.006) (0.006) (0.005) (0.006) (0.005)
Lag Orig. Real Exch. Rate Growth −0.106∗ −0.153∗∗∗

(0.059) (0.057)
Lag Dest. Real Exch. Rate Growth −0.053 −0.143∗∗∗

(0.051) (0.050)
Log 2004 Orig. GDP 0.004 0.011∗∗∗

(0.004) (0.004)
Log 2004 Dest. GDP 0.004 0.008∗∗

(0.004) (0.003)
Log 2004 Orig. Pop. 0.012∗∗∗ 0.017∗∗∗

(0.003) (0.003)
Log 2004 Dest. Pop 0.010∗∗∗ 0.016∗∗∗

(0.003) (0.003)
Lag Export Growth −0.332∗∗∗

(0.009)

Fixed Effects t t t t t
Observations 48,125 42,657 42,092 41,606 41,651
R2 0.013 0.015 0.022 0.024 0.177
Adjusted R2 0.013 0.014 0.022 0.024 0.176

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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variables which control for initial conditions (e.g. Log(EXPORT12)95) and the lag

of the dependent variable introduced in model (5) to account for the time-series

nature of the data. When the measures of Internet penetration are significant, it is

mainly the variables which account for initial conditions (e.g. Log(NumIPs2)95 in

Table 3).

2.4.1.1 Comparison to Freund and Weinhold. It is easiest

to compare Table 3 to the results of Freund and Weinhold, as the count of IP

addresses is similar to their measure of Internet usage, which was a count of

registered webhosts. I find that the estimated coefficients in my models (3)-(5)

are comparable in size to their counterparts in Freund and Weinhold, but far less

significant. In fact, in model (5), only one variable (Log(NumIPsj)04) derived from

the IP address count is at all significant, and it is a variable which controls for

initial conditions—not year-to-year growth.

Comparing Table 4 to Freund and Weinhold is considerably harder, as they

do not use any variables analogous to the ARL. I can draw no direct comparisons

between the coefficients on ARL variables, other than to point out that I find them

to be far less significant in these models than Freund and Weinhold’s measures of

Internet access.

2.4.2 Freund and Weinhold Adaptation. In Table 5, I now modify

the original Freund model to use origin-destination fixed effects as a substitute for

the variables controlling for initial conditions. Adapted models (1)-(3) in this table

are of the form

gExportsijt = β0(gNumIPsi)t−1 + β1(gNumIPsj)t−1 + βXijt + (2.4)

FEij + FEt + εijt.
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Table 5. Freund and Weinhold Adaptation Using IP Address Count

Dependent variable:

Growth in exports

(1) (2) (3) (4) (5)

Lag Orig. IP Growth 0.087∗∗∗ 0.086∗∗∗ 0.051
(0.029) (0.029) (0.032)

Lag Dest. IP Growth 0.013 0.009 −0.004
(0.030) (0.029) (0.030)

Lag Joint IP Growth 0.047 0.046
(0.082) (0.084)

Dest. GDP Growth 0.155 0.184
(0.122) (0.142)

Lag Orig. Real Exch. Rate Growth −0.083 −0.136
(0.154) (0.158)

Lag Dest. Real Exch. Rate Growth −0.063 −0.035
(0.120) (0.135)

Lag Export Growth −0.400∗∗∗ −0.407∗∗∗

(0.011) (0.011)

Fixed Effects ij, t ij, t ij, t it, jt, ij it, jt, ij
Observations 44,238 44,238 44,238 44,238 44,238
R2 0.091 0.091 0.238 0.143 0.286
Adjusted R2 −0.039 −0.039 0.128 −0.014 0.155

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Here, FEij is an origin-destination fixed effect, while all other variables are defined

as they were previously.

Model (1) is a baseline model, including no controls. Model (2) introduces

controls for destination GDP and the real USD exchange rates in the origin and

destination countries. Model (3) introduces a lag of the dependent variable.

As can be seen here, it is only the growth in IP addresses within the origin

country which are significant13—and that significance is lost with the introduction

of the lagged dependent variable, suggesting that the count of IP addresses largely

captures some underlying economic trend.

Models (4) and (5), instead of using separate variables for the growth of the

IP address count in origin and destination countries, use the growth of the total

13This is similar to the result found by Freund and Weinhold.
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number of IP addresses in both countries combined:

gExportsijt = β0(gNumIPsTotalij)t−1 + βXijt + FEij + FEit + FEjt + εijt.

Here, (gNumIPsTotalij)t−1 is the lagged growth of total IP addresses in i and

j combined. FEit, FEjt, and FEij are origin-year, destination-year, and origin-

destination fixed effects, respectively. It is only possible to use the origin-year and

destination-year fixed effects in this specification because there is bilateral variation

in (gNumIPsTotalij)t−1; however, this metric makes no distinction between growth

in the origin vs. destination countries. Model (4) includes no controls; model (5)

introduces a lag of the dependent variable similar to model (3).

Even with the use of additional control variables, there is no gain in

significance for the joint measure of IP address growth. This is likely because,

as seen in models (1) and (2), it is only the count of IP addresses in the origin

province which matter.

Table 6 repeats the models from Table 5, substituting the ARL measure

for the count of IP addresses. Here, the measure of Internet access only becomes

significant after introducing the lagged dependent variable—suggesting that part of

the noise in the measure is based upon underlying trends—but again, it is only the

route length in the origin province which is at all significant.

Finally, Table 7 includes both measures of Internet access simultaneously.

These models demonstrate that the results from using each measure independently

do not suffer from including both together, and indeed, there is a small gain of

significance for the origin-country count of IP addresses. This suggests that the

two measures capture largely different aspects of Internet access, although in this

context, it appears that the ARL remains the more useful measure.
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Table 6. Freund and Weinhold Adaptation Using Aggregate Route Length

Dependent variable:

Growth in exports

(1) (2) (3) (4) (5)

Orig. ARL Growth −0.113 −0.113 −0.126∗∗

(0.073) (0.073) (0.063)
Dest. ARL Growth 0.042 0.039 0.058

(0.068) (0.067) (0.059)
Lag Joint ARL Growth 1.044 0.598

(0.980) (0.712)
Dest. GDP Growth 0.152 0.175

(0.122) (0.141)
Lag Orig. Real Exch. Rate Growth −0.104 −0.148

(0.152) (0.156)
Lag Dest. Real Exch. Rate Growth −0.069 −0.041

(0.119) (0.134)
Lag Export Growth −0.400∗∗∗ −0.407∗∗∗

(0.011) (0.011)

Fixed Effects ij, t ij, t ij, t it, jt, ij it, jt, ij
Observations 44,238 44,238 44,238 44,238 44,238
R2 0.091 0.091 0.238 0.143 0.286
Adjusted R2 −0.040 −0.039 0.128 −0.014 0.155

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7. Freund and Weinhold Adaptation Using Both Measures

Dependent variable:

Growth in exports

(1) (2) (3) (4) (5)

Lag Orig. IP Growth 0.089∗∗∗ 0.088∗∗∗ 0.053∗

(0.027) (0.028) (0.030)
Lag Dest. IP Growth 0.014 0.010 −0.003

(0.029) (0.028) (0.029)
Orig. ARL Growth −0.120∗ −0.120∗ −0.130∗∗

(0.067) (0.067) (0.062)
Dest. ARL Growth 0.044 0.040 0.057

(0.069) (0.068) (0.059)
Lag Joint IP Growth 0.047 0.046

(0.082) (0.084)
Lag Joint ARL Growth 1.042 0.596

(0.977) (0.709)
Dest. GDP Growth 0.150 0.176

(0.120) (0.140)
Lag Orig. Real Exch. Rate Growth −0.083 −0.136

(0.156) (0.161)
Lag Dest. Real Exch. Rate Growth −0.067 −0.040

(0.119) (0.134)
Lag Export Growth −0.400∗∗∗ −0.407∗∗∗

(0.011) (0.011)

Fixed Effects ij, t ij, t ij, t it, jt, ij it, jt, ij
Observations 44,238 44,238 44,238 44,238 44,238
R2 0.091 0.091 0.238 0.143 0.286
Adjusted R2 −0.039 −0.039 0.128 −0.014 0.155

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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In all of these models, the coefficients on ARL growth, where significant,

hold the opposite sign compared to the coefficients on the count of IP addresses,

which is again consistent with the hypothesis that longer routes indicate more

difficult or costly Internet access.

Also of note is that, while the lag of the dependent variable still accounts

for a large fraction of the explained variation when it is introduced in each table’s

model 3, these models can explain much more of the variation without relying on

the persistent trends.

From Tables 5 and 6, I conclude that, while Internet access does have an

impact on trade, it does so largely through a channel associated with the origin

country. (This is also what Freund and Weinhold found.) A possible explanation

for the differential impact on origin and destination countries is that exporters

(origin countries) use the Internet to publicize information about products available

for export, while importers (destination countries) use the Internet to view this

information. Reliable and cheap Internet access is therefore more beneficial to

exporters, who must constantly maintain a website or other Internet presence,

while importers only require occasional Internet access when searching for product

information—and are thus less impacted by unreliable or expensive Internet access.

2.4.2.1 Comparison to Freund and Weinhold. Again, the

coefficients on growth in IP address count can be directly compared to their

counterparts in the original Freund and Weinhold paper. I find that growth in

origin-country IP addresses has a noticeably larger effect on growth in exports than

Freund and Weinhold’s measure—in Model (3) of Table 7 (where the coefficient is

marginally significant after the introduction of controls), the coefficient is roughly

twice as large as its Freund and Weinhold counterpart.
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However, what I find more interesting is that changes in origin ARL have an

effect of similar magnitude to changes in destination GDP (which is used to control

for the size of the importing market): a 1% decrease in ARL is estimated to cause

roughly 2/3 the increase in exports that a 1% increase in importer GDP would.

This is a considerably larger effect than any which Freund and Weinhold found,

which may be due to the fact that typical values of ARL lie within a relatively

small band: a small percentage change in ARL can therefore have a large impact.

2.4.3 Allen Replication. Allen (2014) analyzes several unusual

patterns in trade of agricultural products among provinces of the Philippines.

I adapt his methodology (and much of his original data, provided as part of his

replication files) using my measures of Internet access.

2.4.3.1 Simultaneous Import and Export. The first of these

patterns is that many Philippine provinces simultaneously import and export the

same product. Allen demonstrated that this market failure can be partly explained

by information frictions; specifically, he found that provinces which contained cell

phone towers were less likely to simultaneously import and export.

In Table 8, I perform the same analysis, using Internet access as the proxy

for information frictions instead of cell phone access. In this table, all models are of

the form

ImpExpitc = βNetworkAccessit + FEi + FEc + εitc. (2.5)

Here, i represents province or port, t represents year, and c represents agricultural

commodity. ImpExpitc is an indicator variable which takes the value 1 if location

i both imported and exported commodity c in year t. NetworkAccessit is an

indicator variable which takes the value 1 if province i had at least one IP address

in year t. FEi and FEc are location and commodity fixed effects.
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Table 8. Allen Replication: Simultaneous Import/Export Using IP Address Count

Dependent variable:

Simultaneously imported and exported

Prov.-prov., annual Port-port, 4th quarter

(1) (2) (3) (4)

Has IP Addresses -0.036** -0.064* -0.020*** -0.061**
(0.018) (0.032) (0.007) (0.025)

Sample Provinces/Ports All Trading All Trading
Fixed Effects i, c i, c i, c i, c
Mean of dep. variable 0.263 0.406 0.059 0.201
R-squared 0.497 0.445 0.411 0.440
Observations 5181 3361 14407 4224

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Models (1) and (2) of Table 8 are estimated at the province level. Model (1)

includes all provinces, while Model (2) excludes provinces which neither imported

nor exported commodity c in year t. Models (3) and (4) repeat this exercise at the

port level.

The data used to estimate these models, as well as those of Tables 9 to 13,

represent the period from 2004 to 2009, which is the period in which my routing

data overlaps with the data provided in Allen’s replication files.

As can be seen from Table 8, Internet access makes it substantially less

likely that a province will experience this type of market failure.

In Table 9, I incorporate the ARL measure into this analysis. Here, I restrict

the sample to only those location-years for which NetworkAccessit = 1, and

estimate the additional impact which route length has upon this market failure.

In this table, all models are of the form

ImpExpitc = βARLit + FEi + FEc + εitc. (2.6)
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Table 9. Results: Simultaneous Import/Export in Internet-Connected Provinces

Dependent variable:

Simultaneously imported and exported

Prov.-prov., annual Port-port, 4th quarter

(1) (2) (3) (4)

ARL 0.041** 0.047** 0.019*** 0.043**
(0.017) (0.024) (0.006) (0.019)

Sample Provinces/Ports All Trading All Trading
Fixed Effects i, c i, c i, c i, c
Mean of dep. variable 0.336 0.514 0.064 0.199
R-squared 0.516 0.432 0.409 0.449
Observations 2622 1715 8905 2865

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Here, ARLit is the ARL from the PAIX exchange in San Francisco14 to province

i (or the province containing port i). All other variables are defined as in Table 8,

and the models follow the same order as before.

I find that longer routes make a location substantially more likely to

simultaneously import and export a commodity. In fact, in some models this effect

is large enough to completely offset the benefit of gaining Internet access in the first

place. It is counterintuitive to think that poor Internet access (as defined by having

longer routes) is worse than no Internet access at all, and so I suspect that part of

this finding is driven by limitations to my geolocation data, in particular the fact

that it identifies many provinces as lacking any IP addresses at all.

2.4.3.2 Price Pass-Through. Allen next investigates the effect

which information frictions have upon price pass-through. Again using cell tower

access as a proxy for information frictions, Allen finds that price pass-through is

14Chosen because it is the closest collector to the Philippines.
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substantially more complete in origin-destination province pairs which have a cell

phone connection (i.e. which both contain a cell tower).

Table 10. Results: Internet Access and Price Pass-through

Dependent variable:

Change in log destination price ratio

(1) (2) (3) (4)

OLS 2SLS OLS 2SLS

Change in Log Orig. PR 0.828*** 0.752*** 0.831*** 0.762***
(0.053) (0.117) (0.053) (0.113)

Change in Log Orig. PR × Has IP Addresses -0.125 -0.110
(0.188) (0.188)

Fixed Effects t t t t
R-squared 0.645 0.641 0.645 0.643
Observations 229 229 229 229

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As before, I first replicate Allen’s models, substituting my measure of

Internet access for the cell tower data. Results are shown in Table 10: models (1)

and (2) are of the form

dLogDestPRijt = βdLogOrigPRijt + FEt + εijt (2.7)

and models (3) and (4) are of the form

dLogDestPRijt = β0dLogOrigPRijt + β1dLogOrigPRijt × Connectionijt + (2.8)

FEt + εijt

In both forms of the model, i represents origin province, j represents destination

province, and t represents year. dLogDestPRijt is the change in the log price ratio

of corn to rice in the destination province; dLogOrigPRijt is the same quantity

measured in the origin province. Connectionijt is an indicator variable which takes

the value 1 if both provinces i and j each have at least one IP address in year t.
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Models (1) and (3) are estimated using OLS. Models (2) and (4) are

estimated using 2SLS: as in the original Allen paper, the change in origin price

ratio is instrumented with a vector of changes in origin-province rainfall. These

weather variables are likely to affect prices in the origin province itself—via their

impact on crop yields—but are plausibly uncorrelated with the price ratio in other

(destination) provinces.

Table 11. Results: Internet Access and Price Pass-through Using Aggregate Route
Length

Dependent variable:

Change in log destination price ratio

(1) (2)

2SLS 2SLS

Change in Log Orig. PR 0.764*** 0.682***
(0.113) (0.113)

Change in Log Orig. PR × Has IP Addresses -0.726
(1.996)

Change in Log Orig. PR × ARL 0.105
(0.338)

Change in Log Orig. PR × Has IP Addresses 1.483**
(0.631)

Change in Log Orig. PR × ARL -0.271
(0.190)

Change in Log Orig. PR × Has IP Addresses 1.031
(1.562)

Change in Log Orig. PR × ARL -0.626
(0.569)

Fixed Effects t t
R-squared 0.643 0.665
Observations 229 229

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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In Table 11, I next incorporate ARL into this analysis. Here, model (1) is of

the form

dLogDestPRijt = β0dLogOrigPRijt + β1dLogOrigPRijt × Connectionijt+ (2.9)

β2dLogOrigPRijt × ARLijt + FEt + εijt

and model (2), which draws upon results from my earlier replication of Freund and

Weinhold, is of the form

dLogDestPRijt = β0dLogOrigPRijt + β1dLogOrigPRijt × Connectionit+ (2.10)

β2dLogOrigPRijt × ARLit + β3dLogOrigPRijt × Connectionjt+

β4dLogOrigPRijt × ARLjt + FEt + εijt

As in my results from adapting Freund and Weinhold, I find that my

measures of Internet access are most significant when split into separate measures

of the origin and destination provinces, and that when this is done, only Internet

access in the origin province is significant. ARL remains non-significant in both

provinces, although the signs of both coefficients are as predicted. ARL does

become more significant in model (2)—and again, the measure in the origin

province is more significant than that in the destination province.

Because even the non-significant coefficients in these models have the

expected signs, I suspect that my measures of Internet access are noisy. Also,

since this was not an issue with my adaptation of Freund and Weinhold, which

used country-level data, I would conclude that this noise is more prevalent on the

province level. I again suspect that this may be due to inaccuracies in my province-

level geolocation data.

Complete price pass-through, in which shocks to the price of a commodity in

the origin province are fully felt in destination provinces, would result in the total
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coefficient on LogQuantity and its appropriate interactions being equal to 1. I use

a one-sided test here, because in some cases the total coefficient is so much greater

than 1 that a two-sided test rejects the null hypothesis due to passthrough being

“more than complete.”

Table 12. Results: Tests of Complete Passthrough

p-values

H0 : Complete pass-through between provinces. . . 2004 2008 Overall

. . . with no IP addresses 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

. . . with 95th percentile ARL 0.028∗∗ 0.039∗∗ 0.043∗∗

. . . with 75th percentile ARL 0.025∗∗ 0.025∗∗ 0.028∗∗

. . . with 50th percentile ARL 0.027∗∗ 0.026∗∗ 0.026∗∗

. . . with 25th percentile ARL 0.027∗∗ 0.026∗∗ 0.050∗∗

. . . with 5th percentile ARL 0.300 0.179 0.428

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All tests performed using model (2) of Table 11.

All tests are one-sided.

As can be seen from the table, it is possible to reject the hypothesis of

complete (or more than complete) pass-through at the 5% level for provinces which

contain no IP addresses, as well as those which have ARL in the 95th, 75th, 50th,

and 25th percentiles.15 In the case of provinces with ARL in the 5th percentile,16 it

is not possible to reject this hypothesis.

2.4.3.3 Farmer Trade Search. The final part of Allen’s analysis

that I replicate here is the analysis of farmer trading behavior. Allen found that

larger farmers were more likely to incur freight costs (i.e. “trade”), but that access

15It is important to remember that longer routes suggest worse Internet access; provinces
with ARL above the 95th percentile are therefore the 5% of provinces with the worst Internet
connection by this measure.

16i.e. the 5% of provinces which have the best Internet access by this measure.
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Table 13. Results: Internet Access and Farmer Search Patterns

Dependent variable:

Farmer seached for trade

(1) (2) (3) (4)

Log Quantity 0.017∗∗∗ 0.024∗∗∗ 0.028∗∗∗ 0.114∗∗∗

(0.001) (0.003) (0.002) (0.044)
Has IP Addresses 0.112∗∗∗

(0.025)
Log Quantity × Has IP Addresses −0.026∗∗∗ −0.042∗∗∗

(0.004) (0.003)
Log Quantity × 5th-24th Percentile ARL −0.081∗

(0.046)
Log Quantity × 25th-49th Percentile ARL −0.128∗∗∗

(0.044)
Log Quantity × 50th-74th Percentile ARL −0.109∗∗

(0.044)
Log Quantity × 75th-95th Percentile ARL −0.146∗∗∗

(0.044)
Log Quantity × 95th+ Percentile ARL −0.129∗∗∗

(0.045)

Fixed Effects pymc pyc, mc pymc pyc, mc
Sample Provinces All All All Connected
Dep. Var. Mean 0.139 0.139 0.139 0.065
Observations 365,297 365,297 365,297 84,809
R2 0.672 0.635 0.674 0.555
Adjusted R2 0.655 0.628 0.656 0.529

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

to mobile phones closed the gap between small and large farmers. I adapt Allen’s

methodology and display the results in Table 13.

Model (1) is a baseline model, not incorporating any measurements of

Internet access, of the form

FarmerTradediymc = β0logQuantityiymc + FEpymc + εiymc. (2.11)

Here, i describes farmers, y and m describe year and month, c describes

agricultural commodities, and p describes the province in which farmer i operates.

FarmerTradediymc is an indicator variable which takes the value 1 if farmer i

incurred freight costs for commodity c in year y and month m. logQuantityiymc is
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the log of the quantity of commodity c that farmer i produced in year y and month

m. FEpymc is a province-commodity-time fixed effect.

Model (2) is of the form

FarmerTradediymc = β0logQuantityiymc + β1InternetAccesspym+ (2.12)

β2logQuantityiymc × InternetAccesspym + FEpyc + FEmc + εiymc

in which InternetAccesspym is an indicator variable which takes the value

1 if province p contains at least one IP address. FEpyc and FEmc are province-

commodity-year and commodity-month fixed effects, respectively.

Model (3) is of the form

FarmerTradediymc = β0logQuantityiymc+ (2.13)

β2logQuantityiymc × InternetAccesspym + FEpymc + εiymc.

In Model (4), I restrict the sample to farmers in provinces which contain

at least one IP address, and examine the effect of ARL. Rather than attempt to

interact the two continuous variables for log-quantity and ARL, I instead generate

indicator variables which take the value 1 if ARL is within a specified percentile

range, and interact these with the log-quantity:

FarmerTradediymc = β0logQuantityiymc+ (2.14)

β1logQuantityiymc × Pct05 24pym+

β2logQuantityiymc × Pct25 49pym+

β3logQuantityiymc × Pct50 74pym+

β4logQuantityiymc × Pct75 94pym+

β5logQuantityiymc × Pct95Pluspym+

FEpymc + εiymc
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In the first three models, I find that Internet access has a stronger effect

than Allen found for cell phone access. Where Allen’s results suggest that smaller

farmers are less likely to trade, even with access to cell phones, I find that Internet

access completely removes this difference (as in Model (2)), or even reverses it, so

that it is in fact smaller farmers who are more likely to trade (as in model (3)).

When I incorporate ARL into this analysis in model (4), it appears to be the

provinces where ARL is above the 25th percentile which drive this result: below the

25th percentile, larger farmers are more likely to trade; above the 25th percentile,

larger farmers appear no more likely to trade, or possibly even less likely (as in the

75th-94th percentiles).

It is difficult to explain why small farmers export more than large farmers

when given poor Internet access, but not when given good Internet access, or no

Internet access at all. A possible explanation might be that, when Internet access

is of poor quality, it still suffices to ease the information frictions experienced by

small farmers. This would allow them to compete in the export market—but as the

quality of Internet access improves (offering lower latency, for example), it offers

some competitive advantage which only large farmers are able to exploit: this

might result from some economy of scale, or it might be that it requires a greater

degree of literacy or human capital associated with larger, more prosperous farmers.

2.4.3.4 Comparison to Allen. My proposed measures of

Internet access perform comparably to the cell tower data used as measures of

information friction in Allen (2014). The IP address count functions well as a

direct replacement for the cell tower count, and the use of ARL offers an additional

dimension by which to measure Internet access, which allows me to explain

additional variation among Internet-connected locations.
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However, based on a lack of significance in some models—primarily the

models of price pass-through—I remain concerned about the precision of my

method of geolocating IP addresses at the province level. There exists commercial

data which purports to offer greater accuracy, and it is possible that with this

additional data, I may be able to remove some of the noise from my measures.

2.5 Conclusions

Based on the empirical results from adapting previous papers, I conclude

that my proposed measures possess similar or greater explanatory power when

compared to previously-used measures of Internet access. Additionally, these

measures may be computed over large geographic areas, at a finer level of detail,

using an automated script, making the measures far easier to compute and use in a

variety of models.

This is not to say that these measures are a perfect measure of Internet

access: they are intended to serve as proxies when more reliable data is not

available (a state of affairs which is unfortunately common). In this role, the

measures already appear to serve well.

There remains some room for improvement, naturally: it is quite likely that

the computed measures contain noise due to lack of precision in the geolocation

data used for aggregation, which may be fixable with the use of commercial data.
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CHAPTER III

THE COSTS OF INTERNATIONAL INTERNET COMMUNICATION:

MEASUREMENT AND IMPLICATIONS FOR TRADE

3.1 Introduction

Information frictions are a significant component of barriers to international

trade. These barriers include the costs of locating buyers or suppliers, arranging

the transportation and delivery of goods, and monitoring foreign market conditions,

among others. An important driver of information frictions are communication

costs, which are reduced by advances in communications technology allowing

traders to exchange information more easily. Advances in communication

technology began in the 19th century with the invention of the telegraph, and

especially with the installation of trans-Atlantic telegraph cables. Per Steinwender

(2018), this advance reduced the trans-Atlantic information lag from 10 to 1.3 days,

by making it possible to communicate information without sending a physical

message aboard ship. Further advances, such as the telephone and fax machine,

further reduced this and other information lags, while the decreasing cost of these

technologies allowed smaller and smaller traders to acquire them. The Internet

is now the primary medium of communication in most of the world, and it is

increasingly important that economists be able to measure the costs of Internet

communication effectively.

In this chapter, I develop a methodology to estimate bilateral Internet

communication costs on a country-to-country network, by adapting the model of

network transportation costs of Allen and Arkolakis (2019). The structure of the

Internet is a network sufficiently similar to the environment of this model that it

is easily adaptable, and by coupling this model with novel data sources describing
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the volume of Internet communication sent through a large communication hub,

and the routing of that communication as described in II, I am able to extract

measures of communication costs analogous to the iceberg trade costs already

in wide use in the trade literature. I further demonstrate that these extracted

communication costs possess explanatory power when applied in gravity models

of trade, and produce results similar to those previously seen in Keller and Yeaple

(2013). The data used in this methodology are publicly accessible without requiring

the significant data-gathering efforts necessary for previous approaches to modeling

information frictions, such as Allen (2014), and the methodology requires only

modest computational resources to process the data and estimate the model.

Despite its obvious importance for understanding economic transactions,

particularly on the international level, the cost of communication is difficult to

measure. In particular, it is difficult to measure bilateral costs of communication,

especially Internet communication. We are currently seeing the Internet expand

explosively into new markets: cellular Internet, which provides “last-mile”

connections via cellular phone towers and their accompanying infrastructure,

allows for Internet access to households and businesses without a landline phone

connection, or even access to an electrical grid: a cellular phone can access the

Internet from anywhere with a cell tower nearby, and can be charged from a

gasoline generator or solar panel. In the near future, satellite Internet constellations

such as the Starlink project promise to remove even the need for cellular towers.

However, unlike telegraph or telephone communication, for which bilateral rates

were readily available (such as used in Fink, Mattoo, and Neagu (2005)), Internet

communication is commonly billed on a per-month or per-gigabyte basis that

obscures the bilateral costs that would be most useful in the trade literature.
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Further complicating the matter, the Internet lacks a central authority

that compiles cost, traffic, or infrastructure data, meaning that no single dataset

covering the entire global Internet exists. My methodology overcomes this

restriction by using data gathered at a single point, the Chicago Equinix Internet

Exchange Point, to produce estimates of bilateral Internet communication costs on

a global country-to-country network. The two datasets from Chicago Equinix that

I use provide a viewpoint on how much communication passes through that facility,

and how it is routed. From this single, incomplete viewpoint, I am able to impute

the amount of traffic generated by this communication on the links of a country-to-

country network. While Chicago Equinix is the only readily-available source of the

paired datasets necessary to perform this imputation, this single source is sufficient

to apply the resultant traffic distribution to the model adapted from Allen and

Arkolakis (2019), and additional sources of data could only improve the accuracy of

estimation.

This methodology also avoids several flaws present in earlier approaches

to information frictions in the literature: the data sources I use are based on

fundamental aspects of the Internet, and are unlikely to become obsolete in the

near future, as has already occurred to the measures of Internet access in Freund

and Weinhold (2004). The data sources, being publicly available with minimal

fixed costs of access, do not require significant data-gathering efforts, as were

reported in Allen (2014), and are unlikely to become inaccessible, as also appears

to have happened to the data sources of Allen (2014). Finally, the model of Allen

and Arkolakis (2019) is scalable, and can be applied to scopes ranging from the

province-level to the global Internet; this allows it to be used in the context of
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international trade, but it can also be scaled down to contexts as detailed as those

found in Leuven, Akerman, and Mogstad (2018), using micro-survey data.

3.2 Literature Review

My work in this chapter connects three threads of the economic literature:

one examining the effects that communications technology has on trade, and

a second which examines the costs of trade on a network of ports or countries.

However, rather than apply this transport network literature directly to trade flows,

I adapt this literature to apply it to the costs of communication on a network. This

work is also informed by some elements of the computer science literature.

3.2.1 Communication Costs and Trade. Previous work has

addressed the effects that expanding access to Internet and other communications

technologies have had on trade, but largely take the approach of measuring

communication costs via some easily-attainable proxy. Work in this vein includes

Freund and Weinhold (2004), Allen (2014), and Leuven et al. (2018), which use

counts of registered webhosts, cell tower access, and broadband Internet access,

respectively, to proxy for communications costs. A further branch of this literature

represented by Fink et al. (2005), Lew and Cater (2006), Ejrnæs and Persson

(2010), and Steinwender (2018) focuses on historic contexts and the costs of

communication by what are now obsolete technologies (the telegraph and, arguably,

the landline telephone) for which costs were more readily measurable. I depart from

both these branches of the literature by developing a model which can estimate

otherwise unobservable or difficult-to-observe communications costs, as an “iceberg

communication cost” analogous to the iceberg trade costs already widely known

in the trade literature. Further, the data used in this model are generated by

processes which are fundamental to the functioning of the Internet, and so are
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unlikely to become outdated (as has arguably happened to Freund and Weinhold

(2004)’s count of webhosts), relatively straightforward to obtain (unlike the cell

tower data painstakingly gathered in Allen (2014)), and more universally applicable

(unlike the Norwegian micro-survey data used in Ejrnæs and Persson (2010)).

A separate section of this literature deals with substitution patterns related

to communications costs, as exemplified Keller and Yeaple (2013), Cristea, Anca D.

(2015) and Gokan, Kichko, and Thisse (2019). These papers concern the choices of

multinational firms when undertaking production overseas from their headquarters;

a pattern that emerges is that expensive communication leads multinationals to

engage in “embodied knowledge transfer,” in the terminology of Keller and Yeaple,

or the use of local knowledge to produce complex goods which are then physically

transported (as an alternative to communicating that knowledge directly).

Diverging slightly from the topic of trade, Blonigen, Cristea, and Lee

(2020) finds that information frictions, specifically monitoring costs, resulting

from physical and cultural distance have significant negative impacts on cross-

border merger and acquisition (M&A) activity. The effect is less pronounced in

the manufacturing sector, owing to the lesser importance of monitoring activity,

which is an important factor in the disproportionate emphasis on manufacturing in

such M&A. Costs of communication are a major factor in these monitoring costs,

as modern communications technology can potentially reduce the importance of

physical distance when available. Such costs, however, are difficult to measure

directly.

3.2.2 Trade Costs on Networks. Another thread in the literature

addresses the estimation of trade costs on networks. This is relevant to my work,

not because I will be estimating a network trade cost directly, but because the
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Internet is ultimately a similar kind of network. Specifically, the Internet is a

communication network structured with strong similarities to the global trade

networks seen in these papers, and the costs of communication on this network

can be estimated using similar methodologies to those developed to estimate the

costs of trade on a global trade network.

Kikuchi (2002) provides a theoretical model predicting that countries with

communications networks that are interconnected (or, by extension, interconnected

to a greater degree) will have a comparative advantage in the trade of business

services.

Anderson and van Wincoop (2004) lay out a basic framework for the

estimation of trade costs using a gravity model, or from purchasing power parity

data. They also present a summary of available data on trade costs, derived from

records, surveys of national non-tariff barriers, and other sources. However, this

primarily addresses “tangible” costs and barriers to trade, leaving out intangibles

such as communication costs and information frictions.

An entire sub-thread of this literature deals with transportation over a

defined network, with an emphasis on enabling detailed counterfactuals: notable

studies in this vein include Donaldson and Hornbeck (2016), S. Redding (2016),

Nagy (2016), Sotelo (2015), and Ganapati, Wong, and Ziv (2020). Most relevant

is Allen and Arkolakis (2014), which establishes a very general framework for

modeling economic activity on surfaces with highly-adaptable topology; applying

this framework, Allen and Arkolakis (2019) provides a more specific framework for

estimating the costs of each link in a transportation network, which is applied to

the context of inter-city trade along the US highway network. The structure of the

highway network is similar to that of the Internet, and the structure of this model
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is convenient to adapt to cases where complete traffic data (i.e. data describing the

entire universe of traffic throughout a network) is hard to come by.

3.2.3 Endogenous Trade Costs. I also take some inspiration from

the literature on endogenous trade costs, in which the costs of trading are part

of an equilibrium and are determined partly by the distribution of trade flows.

As with the literature of trade costs on networks, this chapter will apply models

of endogenous trade costs to the related problem of endogenous communication

costs, and demonstrate that with minimal adaptations these models can be used to

produce useful results in this novel context. Works central to this literature include

Anderson and van Wincoop (2004), Head and Mayer (2014), Hummels (2007), and

Limão and Venables (2001).

Additional works model determinants of endogenous trade costs that have

analogues in the context of communication costs. Specific examples include search

frictions between exporters and bulk carrier ships as modeled by Brancaccio,

Kalouptsidi, and Papageorgiou (2020), analogous to similar frictions between

local ISPs and the telecom companies that operate the global Internet backbone,

and port efficiency as modeled by Clark, Dollar, and Micco (2004) and Blonigen

and Wilson (2008), analogous to efficiencies at large Internet Exchange Points.

Other papers with contributions in this vein include Kleinert and Spies (2011),

Behrens and Picard (2011), Jonkeren, Demirel, van Ommeren, and Rietveld (2011),

Brancaccio, Kalouptsidi, Papageorgiou, and Rosaia (2020), Gruber and Marattin

(2010), S. J. Redding and Turner (2014), and Hummels, Lugovskyy, and Skiba

(2009). This subset of the literature provides additional justification for the use of

models from the endogenous trade cost literature, on the basis that communication

costs via the Internet are influenced by a range of analogous determinants.
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Also of note is Duranton and Storper (2008), which uses a model of industry

location with endogenous transaction costs to explain a juxtaposition between

rising total trade costs and falling transport costs. This model suggests that due

to increased use of complex, specialized machinery, transaction costs in the form of

extensive communication between machinery manufacturer and client have offset

the reduced cost of actual transport. In addition to contributing to the endogenous

trade costs literature, this also motivates interest in communication costs—which

are likely much lower now than in 2008, thanks to further advancements in Internet

infrastructure and communication technologies.

3.2.4 Relevant Computer Science Literature. One of the key

components of my approach is geolocation of Internet end-users as well as networks.

Precisely identifying a network’s geographic footprint remains a thorny problem,

but Rasti, Magharei, Rejaie, and Willinger (2010) provides a novel method of

doing so. However, this method creates what is in effect a probabilistic mapping

of networks to countries, which vastly complicates the process of approximating

global Internet traffic as discussed in section 3.3.5 of this chapter. The increase

in computational complexity has proven difficult to surmount without using

advanced computing resources (i.e. without a supercomputing cluster or intensive

use of cloud computing) and so I have opted to use a simpler and more accessible

methodology. Appendix C.3 contains a brief discussion of an alternate methodology

based on Rasti et al. (2010), which could be implemented given sufficiently-long

time constraints or an abundance of computing power.

3.3 Data

In order to estimate the costs of communication, it is first necessary

to somehow measure the amount of communication which takes place–ideally,
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the amount of communication activity generated by an international trade

transaction. This is a complex problem: at the micro level, there is little data

measuring how many emails or phone calls a trading firm sends in the process

of arranging a trade, and at the macro level, it is not feasible to separate trade-

related communication from other communications. Therefore, a novel approach

to measuring communication will be necessary. My solution combines two novel

datasets that describe Internet routing and Internet communication as observed

from the same position within the Internet.

3.3.1 Analogy to Physical Transportation. It is perhaps

easiest to explain what this data captures by first establishing an analogy to the

transportation of physical goods. A common question in the trade literature is

how to determine the costs of trade among various locations in a transportation

network: this may be country-to-country, port-to-port, or even city-to-city,

depending on context. Perhaps the ideal dataset for such an application consists

of two parts: measurements of trade (where goods start out, where they end

up, and how valuable they are), and measurements of shipping (the value of the

goods transported along various links in the network, irrespective of origin and

destination).

Given these two pieces of information, it is possible to draw conclusions

about the costs of the links in the transportation network. To give the simplest

possible example, if there are only two routes which connect nodes A and B in the

network, and the majority of goods shipped from A to B are sent along the first

route, one can reasonably conclude that the first route is the less costly to use. If

similar behavior can be observed for many pairs of A and B nodes, then one can
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begin to draw conclusions about the factors which make routes costly by comparing

the characteristics of the less-used routes.

The data in this ideal dataset could be obtained from commerce and

transportation authorities, such as UN COMTRADE, the US Department

of Commerce (DOC), and/or the US Department of Transportation (DOT).

Unfortunately, there is no analogue to these authorities when it comes to data

on Internet communication: the many distinct networks comprising the Internet

may collect relevant data within their own borders, but there is no central

authority which aggregates this data or ensures that the entities collecting it use

a standardized process. Therefore, in this analogy, suppose that there is no federal

DOT or DOC.

Even with this restriction, it is possible to get a partial picture of where

road traffic occurs by conducting a survey of drivers in a single location. Suppose

that I survey drivers as they leave Eugene, Oregon, asking each one where they

are driving to. I can then get directions to their destination from Google Maps,

Apple Maps, or a variety of other sources, and record the sections of road which

these directions say to drive on. Having done this for a large number of drivers, I

can then count the number of times that a driver from Eugene will (probably) use

each section of road in the US highway network. While this would only produce

a measurement of traffic resulting from drivers passing through Eugene, a more

complete picture could be obtained by repeating the procedure in a densely-

populated, centrally-located, or heavily-traveled area, e.g. Portland, Chicago or

New York.

3.3.2 Internet Routing and Routing Data. Briefly, “routing

data” as used in this chapter refers to records of the routes that can be used to
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transmit communication over the Internet, analogous to driving directions on a

road network. In its typical format, each observation of this data describes a route

that can be used by a sending device (typically the device recording the data) to

communicate with a contiguous block of receiving devices. Sending and receiving

devices are uniquely identified by Internet Protocol (IP) addresses. The route is

described as a sequence of unique identifying numbers for the distinct networks

that it passes through. A sample of what this data may look like is provided in

Appendix A.1.

The Internet is not monolithic: rather, as described in Chapter II, it is

composed of many distinct computer networks that have developed protocols for

cooperating and connecting with each other. Each of these networks, or rather their

administrators, independently select a set of routes that they prefer to use to send

their users’ communication to its destination. In highly-connected locations such

as Internet Exchange Points (IXPs), which are datacenters where many networks

connect to each other, routing data is very detailed, and very complete: it contains

listings of routes which can be used to communicate with the vast majority of

Internet-connected devices in the world. It can generally be assumed that at an

IXP, the network has effectively perfect information about the routes available to

them, and has chosen the best possible route (i.e. there exist no routes which an

IXP would strictly prefer to use but does not know about).

A network’s administrators do not manually select routes, for reasons of

scale: rather, administrators design a metric based on multiple criteria by which a

computer can select the “best” route to a block of IP addresses. The most widely-

used criterion is the directness of the route. In the vast majority of cases, the

selected route will be the most direct one: not necessarily the physically shortest
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route, but rather the route which passes through the fewest intermediary networks.

The exceptions occur as a result of idiosyncratic variations which are not observable

in this data: to give a simple hypothetical, if the administrator of network A has

an old college friend at network B, they may be able to get favorable terms making

routes passing through network B less costly even if they are not the most direct.

It is common that the selected routes observed in routing data contain a

multiplicity of routes that can reach the same block of IP addresses: this is partly

a precaution against service disruptions, e.g. a route being cut off due to a backhoe

hitting a buried cable.

I once again use routing data compiled by the Oregon Route Views Project

(ORVP), previously discussed in Chapter II. In my empirical exercise, I this time

focus on routing data from one particular collector, that being the Equinix Chicago

IXP, due to a conveniently-available set of complementary communication data,

discussed in the next section. Equinix Chicago is the only IXP contributing to the

ORVP for which such matching data is readily available.

3.3.3 Internet Communication and Trace Data. For information

on communication volumes, I turn to the Center for Applied Internet Data Analysis

(CAIDA)’s Anonymized1 Internet Traces Dataset. A brief description of the raw

data is presented in Appendix A.2.

To make the distinction between routing and communication data clear,

while the routing data describes the paths communication can take to reach a

destination, it does not describe how often each of those paths is used. Conversely,

1The anonymization referred to here obscures the exact identities of senders and recipients of
data, but in a way that still allows it to be geolocated. For further information, see Appendix
A.2.1.

54



this communication data describes how much communication is sent to and from a

myriad of devices, but does not describe the path used to get it there.

Since 2008, CAIDA has taken periodic “snapshots” of the traffic flowing

through select devices on the high-speed Internet backbone. This data consists of

observations of individual “packets” of information transmitted over the Internet,

including the origin IP address of the packet, the destination IP address, and the

size of the packet. Each snapshot captures roughly an hour of packets, and the

snapshots are taken irregularly, but several times per year in the period that I’m

focusing on.2

What makes this particular dataset useful is that one of the sources of this

trace data is the Equinix Chicago IXP, which is also a contributor to the ORVP.

By matching this facility’s trace data with its contemporary routing data, I can

determine which links of the network each packet would likely use, and how much

traffic they would create on those links. I can then aggregate to the link level in

order to construct measurements of the amount of traffic originating from the IXP

on each link in the network—which is a core component of my model. However,

this is also somewhat of a limitation, because similar matching datasets are

uncommon: the model I use will rely on the conjunction of routing and trace data

from the same source, or hypothetically from related sources for which it can be

argued that the routing data represents the true routing of the packets in the trace

data. It is for this reason that I assume that Equinix Chicago is representative of

the rest of the US, rather than simply using additional data sources to get a more

complete picture.

2To contextualize the size of this dataset, one snapshot takes up roughly 100 GB in its
compressed form, and contains observations of roughly 20 billion distinct packets. The content
of the packets themselves are not included in the data, merely their metadata.
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3.3.3.1 First-Party vs. Third-Party Communication Flows.

Although the Equinix Chicago IXP is located on the global Internet backbone (the

skeleton of long-distance, high-bandwidth communication lines that facilitate most

international communication), it is still a US-based facility, and communication

within the US is heavily overrepresented in the trace data. This can be seen

graphically in Figure 7a, which compares the volume of communications passing

through Equinix Chicago among a subset of five countries3. As can be seen here,

this dataset captures a much higher volume of communication between the US

and partner countries than it does among those partner countries: for example,

Chicago Equinix’s observed volume of communication from the US to Germany

or the Netherlands is more than an order of magnitude greater than that between

Germany and the Netherlands.

This result is robust to controlling for the populations of origin and

destination countries, as can be seen in Figure 7b, in which I plot communication

volume weighted by origin and destination populations.

I therefore take the data to be representative only of international

communication to and from the US: I discard observations of intra-national

communication, which is unlikely to leave the US to begin with, but I also discard

third-party communication flows (those which neither originate nor end in the

US), on the basis that they are vastly underrepresented in the dataset and cannot

thus be representative of the true sizes of those flows. This leaves me with only

communication flows arriving at Chicago Equinix from outside the US, and leaving

Chicago Equinix for destinations outside the US. This means that this data will be

3The US, the Netherlands, the UK, France, and Germany—all countries that are significant
trading partners and that the US sends significant volumes of communication to.
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Figure 7. Comparison of Observed First vs. Third-Party Communication

(a) Communication Volumes

(b) Communication Volumes adjusted for Partner
Populations

best used in a model focused on US-origin and US-destination communication, and

I focus my later empirical analysis on this context.

3.3.3.2 Use of Multiple Collectors. In reality, the US is large

enough, and contains enough IXPs comparable to Equinix Chicago, that it is

likely not completely representative of the US. There is nothing special about this

particular source, other than the fact that it makes trace and routing data from

overlapping time periods readily accessible. Thus, to obtain a more representative

dataset, similar matching datasets could be obtained in the future by partnering

with similar organizations in other countries, allowing this model to be applied in

a broader context. In the sections to come, I specify my model to explicitly allow

for the use of data from multiple collectors, each taken to be representative of a

country, indexed by the subscript c.
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3.3.4 Counting Internet Users. One straightforward way to employ

this data is to simply count the number of Internet-connected devices that a

collector has a working route to. This can be simply done by geolocating each block

of IP addresses observed in the routing data, then summing the size of each block

in a country.

This measure is not a perfect measurement of the amount of communication

originating from a country, as it can be affected by variations in the number of

devices per user (considerably higher in developed countries) and the intensity with

which a device is used (difficult to measure, but also likely higher in developed

countries). However, it has one advantage over comparable measures (such as

a count of the number of IP addresses officially registered to a country), as

only devices which have been connected to the Internet relatively recently, and

therefore have an IP address, will be observed in the data: IP addresses which

have been allocated to a country but which are not in service will not be counted.

Furthermore, a count of IP addresses per country will be necessary in constructing

my measure of Internet traffic.

Table 14 provides summary statistics for the number of Internet-connected

devices observed in the routing data, in both total and per-capita terms. Although

there are idiosyncratic variations, the general trend is for both of these measures to

increase over time.

3.3.5 Procedure for Constructing Link Traffic Measurements.

While the count of IP addresses is useful, it does not actually measure

communication, or provide insight into which links in the global Internet are

heavily used. To construct a measure of traffic, I couple the IXP’s trace and
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Table 14. Summary Statistics: Reachable IP addresses

Variable Year n Min Median Mean Max Std.Dev.
IP Addresses (thousands) 2016 55 0.3 89.2 2845.5 73850.9 10824.5

2017 55 0.5 102.4 3023.1 74454.1 11027.1
2018 55 1.0 165.2 3180.7 75994.1 11270.0
2019 55 4.1 224.6 3340.4 78533.9 11651.4
all 220 0.3 141.6 3097.4 78533.9 11122.1

IP Addresses (per 1K population) 2016 51 0.3 14.0 118.9 1280.3 277.3
2017 51 0.3 21.5 128.5 1283.3 284.5
2018 51 0.4 26.4 139.2 1445.6 300.2
2019 51 0.9 30.2 209.5 3879.2 617.3
all 204 0.3 24.0 149.0 3879.2 395.2

routing datasets together, approximating the traffic generated by that facility

across this network.

I begin by geolocating the origin and destination IP addresses of all observed

packets, using a commercial geolocation dataset by Maxmind. I then discard all

packets that are not US-origin or US-destination. I denote as IPCommcij the

total size of all the packets observed by collector c being sent from country i to

country j.4 I also let NumIPj be the number of unique IP addresses5 active in

country j and NumIPη the number of addresses in block η, located in country j

and observed in the routing data.

Absent any observable characteristics distinguishing IP addresses, I assume

that each IP address in a country receives an equal share of communication bound

for that country. I therefore assign each unique block of IP addresses in the routing

data an amount of communication from c as follows:

BlockCommcη = CountryCommcij ×
NumIPη
NumIPj

(3.1)

4Because I discard all third-party communication, in all observations of IPCommcij , either i
or j will be the country represented by c.

5Computed as described in Section 3.3.4.
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I now couple this dataset with the matching routing data: For each block

of destination IP addresses η, I identify the set of routes Rcη which c would use

to reach it. Since there are frequently a multiplicity of usable routes in Rcη, I

cut down this set using the most-direct-route criterion mentioned previously, and

denote the set of most-direct routes (those with fewest intermediary networks)

as Rmin
cη . Further, as I only observe routes from the collector to other devices, I

make the assumption that if communication from c to j uses a particular route,

communication from j to c uses the same route in reverse.

Having identified the routes which are the most direct way of reaching η, it

is now necessary to divide the volume of communication sent to η among them.

In cases where there is only one most-direct route, this is trivial, but in many

cases there is a multiplicity of most-direct routes. As the routing data does not

identify which routes are chosen, and does not contain values which can be used to

condition on, I simply assign each route an equal share of communication from c to

each most-direct route as follows:

RouteCommrcη =


BlockCommcη
|Rmincη |

if r ∈ Rmin
cη

0 otherwise

(3.2)

where |Rmin
cη | is the size of Rmin

cη , or the multiplicity of most-direct routes serving η.

Since this volume of communication will be sent over each link in the route,

I next denote as Traffickl(c, η, r) the amount of traffic across link kl generated by

communication from the IXP to η over route r:

Traffickl(c, η, r) =


RouteCommrcη if kl ∈ r

0 otherwise

(3.3)
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Finally, the amount of traffic originating from c, and present on link kl, is

given by summing over blocks η and routes r:

TotalTrafficckl =
∑
η

∑
r

Traffickl(c, η, r) (3.4)

Illustrated toy examples of this procedure’s application can be found in

Appendix B. A more precise method of performing this construction, which has

proven vastly more computationally intensive and therefore infeasible, is discussed

in Appendix C.2.

3.4 Model

I adapt the framework developed in Allen and Arkolakis (2019) (from here

on, referred to as the “AA framework”) to estimate two sets of communication

costs (the costs of using individual country-to-country links, tkl, and the expected

costs of end-to-end communication between countries, τij) using this data. This

framework is well-suited to this application due to the generic nature of the trade

network which it models: while previous applications include road and ocean

transportation networks, the structure of the Internet is sufficiently similar that

it requires minimal modifications.

This model relies on two key components: a measurement of end-to-end

communication between countries, and a measurement of traffic (either total traffic,

or only the traffic which ultimately originates from a particular node) flowing

across each link in the network. Communication can be measured by summing

the total size of all packets exchanged by a pair of countries, while the traffic

measurement can be constructed as described earlier.

3.4.1 The Nature of Costs. The τij and tkl estimated from this

model are analogous to the iceberg trade costs in common usage in the trade

literature. If the cost of transmitting a single unit of communication within a single
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network (i.e. from one device to another on the same ISP’s network) is normalized

to 1, then tkl represents the cost of transmitting that same unit directly (without

intermediary networks) from a network in country k to a network in country l.6

The expected end-to-end communication cost τij is likewise the expected cost of

transmitting that unit all the way from a network in country i to one in country j,

by whatever routes are optimal.

These costs do not represent costs directly paid by Internet users, but

rather costs paid by ISPs, which are aggregated and passed on indirectly to

users. In order to provide Internet access to their subscribers, ISPs must be

able to connect subscribers to any other device on the Internet. If a subscriber

wishes to communicate with another device on the same ISP’s network, this is

straightforward—but since ISPs are small, relative to the size of the entire Internet,

it is far more common that an ISP must connect a subscriber with a device outside

of their network. An ISP must therefore form some sort of agreements with other

networks, to be allowed to send data outside of their own network. Such an

agreement requires that the ISP pay a cost: this may be a monetary cost (an access

fee to use a high-speed, long-distance cable, for example), or it may be an implicit

cost: reciprocity agreements (akin to a barter transaction, in which a pair of ISPs

simply agree to carry each other’s communication) are common, but these come

with added demands on an ISP’s hardware and infrastructure, and thus indirectly

impose a cost on each partner in the agreement.

Additionally, such costs need not be purely monetary: it may be more

accurate to describe these costs as the cost of successfully transmitting information:

if a link is unreliable, requiring repeated attempts to transmit a packet without

6In the special case where k = l, this is the cost of transmitting the unit from one network to
another in the same country, which is observed to happen in the data.
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errors, or high-latency, making it difficult to transmit time-sensitive information,

this too will be captured in tkl and τij. However, these link cost measures do not

map directly into a monetary cost such as “price per gigabyte” any more than

iceberg trade costs map immediately into “price per 40-foot container.”

The costs of constructing and maintaining an Internet link scale with

distance. Longer cables naturally cost more to purchase and then install, and a

longer cable also means more places that it can suffer damage from being hit by a

backhoe (Poulsen (2006)), severed by a dropped anchor (Limer (2016)), or bitten

into by a shark (Carter et al. (2009)).

τij represents the cost to an ISP in i of transmitting information, on behalf

of a user, to a recipient in j. It is uncommon for ISPs to price-discriminate on

the basis of the destination of a user’s communication; ISPs more commonly

charge a lump-sum periodic subscription fee or a per-unit rate which does not vary

depending on where information is sent. The costs ultimately faced by an Internet

user in i could potentially be indexed by

Ci =
∑
j

(
τij ×

CountryCommij

TotalCommi

)
(3.5)

where TotalCommi =
∑

j CountryCommij. This is the expected cost of

transmitting a unit of information from i, given the distribution of destinations

for traffic originating in i. However, the different market conditions (competition,

regulation, etc) in each country likely obfuscate these costs by inducing varying

degrees of markup, which would make it difficult to draw a direct comparison

between this index and data on Internet prices.

3.4.2 Model Environment. Let there exist a network of nodes

(representing countries) connected by links (an aggregation of cables and other lines

of communication). There exist a continuum of “traders”, who seek to transmit
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information from an origin node i to a destination node j. To accomplish this,

traders seek out the lowest-cost route from i to j.

A route p consists of a series of nodes pn, n = 0, 1, 2, . . . , N . A route from i

to j begins at p0 = i and ends at pN = j. The baseline cost of such a route is the

product of the costs tkl associated with each link along the route,

τ̃p =
N∏
n=1

tknln (3.6)

where kn = pn−1 and ln = pn.

However, each trader also has a personal cost of using each route, which is

determined by the baseline cost and an idiosyncratic multiplicative cost factor εp,ν ,

so that the cost to trader ν of using route p is

τp,ν = τ̃pεp,ν (3.7)

Allen and Arkolakis show that, when this idiosyncratic multiplier is Frechet

distributed with shape parameter θ, the traders’ routing choice problem yields an

analytical solution for the traffic generated by a set of link costs tkl. Let A be the

matrix [t−θkl ], and let B = (I − A)−1, the Leontief Inverse7 of A. Finally, let X be

a matrix of observed communication flows. Then, the volume of traffic induced by

these costs and communication flows is given by

Ξ = A�B′(X �B)B′ (3.8)

7In order to compute the Leontief Inverse, it is necessary for the spectral radius of A, i.e. the
supremum of the absolute values of its eigenvalues, to be less than 1. In practice, this condition
may be violated when the traffic matrix contains a large number of zero elements on its diagonal.
The method of computing link traffic detailed earlier is not guaranteed to produce a traffic matrix
with an adequate number of non-zero diagonal values, but in my experience, it has never failed to
do so. This results from the fact that a sufficient number of most-direct routes in the data include
“domestic” links connecting networks within a single country; enough traffic passes over these
links to result in sufficient non-zero diagonal values that the spectral radius requirement is met.
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where the � and � operators represent Hadamard (element-wise) multiplication

and division, respectively. Here, the element Ξkl is the volume of traffic flowing

along link kl in the communication network.

As I am using measurements of traffic from only a single origin in the US,

it is now necessary to extract from the Ξ matrix a similar measure of single-origin

traffic. Allen and Arkolakis provide a convenient formula for the fraction of trade,

or in this context communication, from i to j which is routed across a link kl,

denoted by πij,kl:

πij,kl = (ρ
τij

τiktklτlj
)θ, (3.9)

where ρ ≡ Γ
(
θ−1
θ

)
. Using this formula, I am able to compute the amount of

Chicago-origin traffic across links kl, given communication costs τij and tkl, and

volumes Xcj:

Ξc
kl =

∑
j

[
Xcj(ρ

τcj
τcktklτlj

)θ
]
. (3.10)

Link costs tkl can be parameterized as a function of observable

characteristics and potentially traffic levels, if congestion is expected to affect costs.

Due to the significantly different factors affecting link costs in a communications

network, I impose the functional form

tθkl = min

[
δ̃kl, α +

δ̃kl − α
γ̃kl

Traffickl

]
(3.11)

Here, δ̃kl ≡ δZcost
kl is a “baseline” cost of using link kl. This cost applies as

long as the volume of traffic is less than γ̃kl ≡ γZcap
kl , the rated capacity of the link.

Beyond this capacity, the cost of the link increases above the baseline cost, scaling
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linearly as illustrated in Figure 8. Zcost
kl and Zcap

kl are observables related to the cost

and capacity of a link, respectively.8 The parameters δ and γ are to be estimated.

Figure 8. Costs vs. Traffic

Given a functional form and a set of cost parameters ρ, there exists a single

traffic matrix Ξpred(ρ) which is rational given the costs which it induces. This

traffic matrix can be found using a fixed-point algorithm which is iterated until the

full traffic matrix Ξpred(ρ) converges, at which point the single-origin traffic matrix

Ξc
pred(ρ) can be extracted.

The cost parameters can then be calibrated by an outer loop which searches

the parameter space to minimize the distance between observed and predicted

single-origin traffic,

|Ξc
pred(ρ)− Ξc

obs(ρ)| (3.12)

8In an ideal world, they would be actual measurements of link cost and capacity, but no
sufficiently complete dataset is readily available.
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Furthermore, this operation can be repeated for multiple time periods t, in order to

make use of panel data, so that the objective function to be minimized is∑
t

|Ξc,t
pred(ρ)− Ξc,t

obs(ρ)| (3.13)

3.5 Estimation

I initially estimate this model using routing and trace data from Equinix

Chicago in 2015-2016. Due to the well-connectedness of large IXPs like this one,

I make the assumption that the routes seen from this IXP are representative of

the United States as a whole. However, owing to concerns that this IXP may not

accurately capture the volume of “third-party” communication flowing between

pairs of countries that are not the US, I restrict the dataset to only US-origin and

US-destination communication.9 The available data is sufficient to work with 171

partner countries, and covers the time periods February 2015 (the earliest available

period for which routing and trace data are both available), January 2016, and

April 2016 (the latest available).

3.5.1 Link Cost Parameterization. For the observables Zcost
klt

used in the parameterization of link cost, I use data on border adjacency and the

presence of undersea cables, further interacted with geographical distance (as the

distance crossed by a link will naturally increase its construction and maintenance

costs). The undersea cable data I obtain from a GitHub repo made available by

TeleGeography (TeleGeography (2020)). Zcost
kl is thus parameterized as

δ̃klt = δdist(distkl) + δadjdist(adjkl × distkl) + δcabledist(cableklt × distkl) + δdom(domkl)

(3.14)

9A method for bypassing this restriction, given appropriate covariates, is presented in
Appendix C.1
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where distkl is the centroid distance between countries k and l, adjkl is an indicator

taking the value 1 if k and l share a land border, cablekl is an indicator taking

the value 1 if k and l are connected to the same undersea cable, and domkl is

an indicator taking the value 1 when k = l (used to set a cost for domestic

links). Intuitively, the cost of an international link will depend in large part on

the distance that the link must cover: the presence of a shared border (allowing

a terrestrial cable to run directly from k to l without passing through a third

country) or an undersea cable (which have generally lower maintenance costs owing

to the lack of backhoes at the bottom of the ocean) merely alters the effect of

distance on link cost.

Due to the scarcity of similarly detailed data on international bandwidth

availability10, I initially parameterize the bandwidth constant γ̃kl simply as a

constant, i.e. γ̃kl = γ.

I also initially allow these parameters to remain constant over time. The

only cost variable which is time-varying is cableklt, owing to a small number of new

undersea cables which came online during this time period.

3.5.2 Initial Values and Estimates. The Nelder-Mead variant used

to solve the minimization problem requires a set of initial values, and unfortunately,

the fixed-point algorithm in the inner loop results in an objective function with a

multitude of local minima. As a result, the minimization is sensitive to the choice

of initial values. In an early version of the estimation procedure, I first selected

initial values by initially iterating through a discretized parameter space and

selecting what were the sole set of initial values from this space which produced

parameter and cost estimates satisfying two minimally-restrictive criteria:

10The TeleGeography dataset does include some information on cable bandwidth, which is
unfortunately too incomplete to rely on.
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– γdist > 0, γdist+γadjdist > 0, γdist+γcabledist > 0, and γdist+γadjdist+γcabledist > 0

so that the cost of a link between any pair of countries is increasing in

distance.

– The link costs tkl are all less than 10. This condition was chosen on the

basis that initial runs of the model using randomly-chosen initial parameters

tended to produce either costs less than 10, or extremely high values (in

excess of 1000) that strained credulity in the context of iceberg costs, with

little middle ground.

I have used the same initial values in successive versions of the procedure with

results of similar quality in all cases.

The coefficients estimated by the model (using only US-origin and US-

destination communication) are reported in Table 16, in the Baseline column.

The γ and α parameters scale with the units that Traffickl is measured in (e.g.

converting from bytes (B) to megabytes (MB = 1 × 106B) would allow the γ

parameters to be scaled up and the α down by 106.

Table 16. Coefficient Estimates

Parameter Baseline Varying Gamma Discounted Parameters

δdist 1.189e+ 12 1.186e+ 12 1.186e+ 12
δadjdist −1.181e+ 12 −1.178e+ 12 −1.178e+ 12
δcabledist −7.279e+ 09 −7.718e+ 09 −7.718e+ 09
δdom −1.556e+ 06 −1.556e+ 06 −1.556e+ 06
γ̃ 4.274e+ 06 4.358e+ 06

γ̃Feb2016 4.358e+ 06
γ̃Jan2016 4.358e+ 06
γ̃Apr2016 4.358e+ 06

α 38.84 38.84 38.84
θ 27.335 28.085 28.085
λ 0.129
κ 1.05
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3.5.2.1 Model Fit. This model achieves a 0.796 correlation coefficient

between observed and model-predicted log-traffic levels along US-adjacent links,

which is where the model is expected to be the most accurate, owing to the US-

centric nature of the data. Overall, the model achieves a 0.159 correlation between

observed and predicted link traffic levels.

As seen in the scatter plot in Figure 9, the model accurately predicts

volumes of traffic along a visually-distinguishable subset of links (recognizable

in the plot as those which are close to the diagonal “45-degree” line), but vastly

underestimates the traffic across other links. The links on which traffic is accurately

predicted include most US-adjacent links as well as a subset of non-US-adjacent

links. There is no discernable pattern which explains which links are accurately

predicted: the geographical distance covered by these links varies widely, and

there are links in this set that have shared land borders, undersea cables, both,

or neither.

The interpretation which emerges from these results is that this model over-

costs some links in the network, resulting in the drastic underprediction of traffic

on those links. Given the sparseness of the cost parameterization, I now begin to

examine alternate parameterizations:

3.5.2.2 Estimated Costs. The distribution of link and expected

communications costs estimated using this data are shown in Figure 10a. As can

be seen, expected communications costs are only slightly greater than link costs,

indicating that it is rare for a route to be significantly more expensive (taking into

account the Frechet-distributed idiosyncratic route cost multiplier) than the direct

connection with no intermediate nodes.
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Figure 9. Observed vs. Predicted Traffic (Log Scale)

(a) US-Adjacent Links Only

(b) All Links
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Additionally, it can be seen that expected communication costs for domestic

links (seen at the far left of the diagrams, with costs only slightly larger than 1) are

in fact less than the corresponding link costs. The interpretation of this result is

that there must be some agents in this model whose draw of the idiosyncratic cost

multipliers makes the cost of sending purely domestic communication out of and

then back into the country less expensive than routing it purely within the country.

(Or to phrase it differently, if the least-costly route for domestic communication

were always the purely domestic route, the expected communication costs would

be distributed with their mean at the domestic link cost.) While counterintuitive,

this is actually a recognized phenomenon in Internet routing, called tromboning. It

occurs when networks are not sufficiently interconnected for a direct domestic route

to be cheaper than the most direct international route.

Figure 10b shows the distribution of link costs for just the “connected” links

between countries with shared land borders or cable connections. As seen there,

these costs fall into three rough categories: the category with lowest costs consists

largely of links with both a shared border and a cable, the middle category consists

mostly of links with only a shared border, and the high-cost category, which

includes the right tail of the distribution, consists of those links with neither shared

border or cable connection. (Links with only a cable connection are scattered

throughout the middle and upper groups, but are relatively rare.) Figures 10c and

10d illustrate these breakdowns further. It should be noted that the fat right tail

of the distribution, in which the costs are greater than 4, is largely composed of

transoceanic links to and from the US, which are expensive due to sheer distance.

3.5.3 Time-Varying Bandwidth. As a robustness check, I examine

whether allowing the cost parameters to vary over time impacts the results
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Figure 10. Distributions of Link and Expected Communication Costs

(a) Overall Distributions

(b) Connected Links Only

(c) Link Costs, Breakdown by Border Adjacency

(d) Link Costs, Breakdown by Cable Existence
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of the model. Admittedly, 2015 to 2016 is not a wide time interval, but given

Moore’s Law11, it seems plausible that there could be significant reductions in

communication costs year-to-year. I first allow the gamma parameter, representing

the bandwidth cap of undersea cables, to vary over time, using the specification

tθklt = min

[
δ̃kl, α +

δ̃kl − α
γ̃klt

Trafficklt

]
(3.15)

Parameters are reported in Table 16 under the Varying Gamma column. The

γ̃ parameters are extremely similar, but not completely identical; interestingly,

allowing the gamma parameters to vary over time using the same initial values

has resulted in a slightly higher estimate of θ. A comparison of estimated costs and

predicted traffic is shown in Figure 11: as seen here, the change of specification

has little impact on predicted traffic volumes, but slightly reduces link costs from

their values in the baseline estimation. Correlation between observed and predicted

traffic levels is similar to that in the baseline model.

3.5.4 Time as Proxy for Quality of Connection. While data on

the operation cost or rated capacity of undersea cables does exist, it is not complete

enough to apply in this context. However, it can be assumed that the quality of

Internet infrastructure improves over time, while the cost of such infrastructure

decreases. Since the data on undersea cables from TeleGeography does include the

date of activation for each cable, it is possible to use the time since the last cable

on a link became active as a proxy for the quality of the link. This allows me to

redefine the δ̃ and γ̃ parameters, from the original parameterization, as follows:

δ̃klt = δdist(distkl)+δadjdist(adjkl×distkl)+λt−t
′
δcabledist(cableklt×distkl)+δdom(domkl)

(3.16)

11An informal but widely-accepted observation that computing power tends to halve in cost, or
double in effectiveness holding cost constant, every one to two years
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Figure 11. Baseline vs. Varying-Gamma Cost Specifications

(a) Comparison of Log Predicted Traffic

(b) Comparison of Link Costs
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γ̃klt =


κt−t

′
γ if cableklt = 1 and adjkl = 0

γ otherwise

(3.17)

Here, κ and λ are constants between 0 and 1, and t−t′ is the elapsed time, in years,

between the time period t and the time at which the last undersea cable serving the

link was constructed, t′. The κ and λ factors apply geometric discounting to the

constants governing cost of a link equipped with an undersea cable and the rated

bandwidth of such a link, respectively. This allows for operating cost to increase

and rated bandwidth to decrease for links where the cables are older. This rests

upon the assumption that for connections other than undersea cables, there is

constant small-scale investment keeping the connection’s technology up-to-date,

as opposed to undersea cables which require significant lump-sum investment to

build, replace, or update.

Parameters are reported in Table 16 under the Discounted Parameters

column. The δ̃ parameters are similar to those already estimated, but are closest

to those estimated for the time-varying Gamma model. Interestingly, the discount

factor λ is quite small at 0.129, indicating that the value of an undersea cable

connection drops off rapidly after coming into service—far more rapidly, indeed,

than conventional wisdom such as Moore’s Law12 would suggest. The 0.129

estimate would suggest that the effectiveness of undersea cable technology to

reduce communication costs doubles every 4 months, such that a 1-year old cable is

roughly 1/8 as effective as a modern equivalent, which is difficult to believe, since it

vastly exceeds the commonly-accepted rate of technological advancement suggested

by Moore’s Law.

12A observation by noted engineer and former Intel CEO Gordon Moore that the number of
transistors on a silicon chip doubles every 1-2 years, but often generalized to mean that computing
power or the general effectiveness of computing technology doubles in that period.
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Figure 12. Baseline vs. Discounted-Parameters Cost Specifications

(a) Comparison of Log Predicted Traffic

(b) Comparison of Link Costs

A comparison of estimated costs and predicted traffic is shown in Figure

12: as seen here, the change of specification still has little impact on predicted

traffic volumes, but due to the introduced discounting factors, vastly increases the

estimated costs of the links in a nonlinear fashion. Despite this, correlation between

observed and predicted traffic levels is similar to that in the baseline model.

3.5.5 Underprediction of Traffic. All of these cost specifications

produce very similar predictions of traffic, and these predictions understate the

amount of traffic on a large number of links. This, in turn, implies that the costs
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of these links are overestimated. Why is this the case in all three specifications?

Consider the following possibilities:

1. Omitted variables in the cost parameterization: At its core, the

functional form I use for link costs contains few variables, owing to the

scarcity of complete data on the infrastructure associated with these links.

There may be important cost-reducing factors which I do not have data

for. In particular, the cost parameterization would be improved by a more

complete dataset on undersea cable bandwidth, or even better, the bandwidth

of terrestrial cables crossing land borders. Such data would allow for γ,

the parameter governing link bandwidth, to be given a more nuanced

functional form than the constant or discounted-constant value it takes in

my specifications.

2. Flawed assignment of communication to redundant routes:

Recall that when a multiplicity of routes exists, I assign an equal share of

communication to each route, as visualized in Figure B.2b. I do this due

to a lack of observable characteristics upon which to base a more nuanced

division of traffic (and, also, because it would take a prohibitive amount of

time to parameterize this split and search for the ideal parameter values

in my estimation process). However, it may be the case that, by assigning

communication in this simplistic way, I am creating an observed traffic

dataset which overstates the amount of traffic among some links, by assigning

too much communication to routes which are only in the routing data as a

redundant backup. With more detailed information about how a route is

selected, it would be possible to refine the method by which communication is

assigned to routes.
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3. Internet entities undercost some links: A third possibility, and one

that I do not place any particular emphasis on, is that the routes chosen

by Internet entities are not necessarily optimal, or are optimal given some

constraint which I do not model. If the routes observed in the routing data

are not themselves optimal for the simplified environment I model, then the

traffic I compute from it would also not be an optimal distribution of traffic.

This, again, might be fixable with improved information from the providers

of the routing data, as it might be possible to model the factors which affect

routing choice as part of the cost function.

Each of these possibilities represents a hypothesis which is non-trivial to test, owing

to their reliance on data which is so far not readily available. I therefore consider

the hypotheses to be fertile avenues for further research.

3.6 Explanatory Power Applied to Trade Volumes

With the expected communication costs estimated, I now turn to applying

them in a straightforward application: a gravity model of international trade. Using

trade data from COMTRADE (United Nations (2003)) for the years 2015-2016

and the communication costs estimated using non-adjusted data, I estimate the

following simple gravity models:

log(Tradeijt) = β0log(distij) + FEi + FEj + FEt + εijt (3.18)

log(Tradeijt) = β1τijt + FEi + FEj + FEt + εijt (3.19)

log(Tradeijt) = β0log(distij) + β1τijt + FEi + FEj + FEt + εijt (3.20)

where Tradeijt is COMTRADE’s measure of trade volume, distij is the same

centroid distance used earlier, and τijt is the expected trade cost extracted using

79



my model. This model uses the simplest possible fixed effects, comprising origin,

destination, and year. Results are shown in Table 17.

As can be seen in the table, by themselves the extracted communication

costs have an interpretation similar to that of distance, i.e. as a resistance term

in the gravity equation, while possessing somewhat less explanatory power. When

coupled together, distance absorbs much of the explanatory power of the extracted

communication cost, which is to be expected considering that distance is explicitly

a factor which contributes to link costs in my parameterization of the link cost

function. The coefficient on communication costs is highly significant in all models

where it is included, with p-values less than 2.2× e−16.

Thanks to the inclusion of multiple years of data (albeit condensing both

2016 observations into one year by taking the mean communication cost), I also

estimate the second and third models replacing the origin, destination, and year

fixed effects with origin-year and destination-year fixed effects. I omit origin-

destination fixed effects, as they would absorb the distance term, which I wish

to retain for comparison. As can be seen in columns (1-2) of Table 18, this has

very little impact on the estimated coefficients or explanatory power of the models,

indicating that the estimated communications costs do not simply proxy for other

origin-year- or destination-year-varying factors.

Columns (3-4) of Table 18 repeats this exercise with trade in services

replacing trade in goods. Results are qualitatively similar, although note that the

elasticity of trade value, with respect to either distance or communication cost, is

smaller for services than for goods.
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Table 17. Regression Results: Simple Fixed Effects

Dependent variable:

Log Trade in Goods

(1) (2) (3)

Log Distance −2.094∗∗∗ −1.976∗∗∗

(0.016) (0.021)

Log Comm. Cost −15.677∗∗∗ −1.980∗∗∗

(0.197) (0.230)

Fixed Effects i, j, t i, j, t i, j, t
Observations 33,154 33,154 33,154
R2 0.760 0.698 0.760
Adjusted R2 0.757 0.695 0.758
Residual Std. Error 2.028 (df = 32849) 2.274 (df = 32849) 2.026 (df = 32848)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6.1 Heterogeneity Analysis: Breakdown by Categories of

Goods and Services. I now turn my attention to the search for deeper patterns

of trade, specifically, for sectors of the economy which are affected more severely by

elevated communication costs.

3.6.1.1 Heterogeneity in Trade of Goods. I begin by breaking

down trade in goods in more detail: since the sheer number of goods classifications

in my COMTRADE data makes analysis on that level difficult, I instead apply the

classification of goods used in Rauch (1996), which divides goods into categories of

commodities, reference-priced products, and differentiated products. Using Rauch’s

published concordance of SITC codes to goods categories and a dataset on US

exports of goods broken down by SITC code, I estimate the models

log(Tradejtg) = β0log(τjt)× r(g) + FEj + FEt + FEr(g) + εjtg (3.21)

log(Tradejtg) = β0log(τjt)× r(g) + β1Xjt + FEj + FEt + FEr(g) + εjtg (3.22)

where the subscript g refers to goods classified by SITC code, and r(g) is a vector

of indicator variables corresponding to the three Rauch classifications, each of

which takes the value 1 if good g is of that classification, and 0 otherwise. In the

second model, Xjt is a vector of destination-year controls including real GDP

and population. I again condense both sets of 2016 communication costs into an

average cost corresponding to the 2016 trade data, limiting the analysis to two

time periods, 2015 and 2016. This specification allows for the elasticity of trade

in goods to vary depending on the degree of heterogeneity a category of goods

exhibits, represented by β0 being a vector of coefficients corresponding to Rauch

classifications. I omit physical distance, as it is absorbed by the destination-time

fixed effect. Results are somewhat counterintuitive: as seen in Table 19, exports

of commodities (about which little communication is necessary to establish the
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properties of the good) are reduced the most by increased communication costs;

exports of reference-priced goods are reduced to a lesser degree, and in the case of

differentiated goods, the effect is non-significant.

Table 19. Regression Results: Heterogeneity by Rauch Classification

Dependent variable:

Log Trade in Goods

(1) (2)

Log Comm. Cost× Commodity −1.408∗∗∗ −1.343∗∗∗

(0.170) (0.173)

Log Comm. Cost× Ref-Priced −0.434∗∗∗ −0.400∗∗

(0.162) (0.165)

Log Comm. Cost× Differentiated 0.146 0.183
(0.159) (0.162)

Log GDP 1.280∗∗∗

(0.199)

Log Population 1.127
(1.335)

Log Capital Stock −2.442∗∗∗

(0.657)

Observed Flows US Exports US Exports
Fixed Effects j, t, r(g) j, t, r(g)
Observations 467,616 466,162
R2 0.258 0.258
Adjusted R2 0.258 0.258
Residual Std. Error 2.675 (df = 467457) 2.677 (df = 466009)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This is the reverse of what conventional wisdom suggests should occur,

in which differentiated products, which may require significant amounts of

description to convey their unique product characteristics, should suffer the most

from increased communication costs. A potential explanation for this pattern

can be found in Keller and Yeaple (2013), which finds that multinational firms
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respond to greater communication costs (”disembodied knowledge transfer costs,”

in the terminology of Keller and Yeaple) by importing goods from their foreign

affiliates that require greater knowledge to produce (an increase in the “embodied

knowledge” embedded in their affiliate imports). In other words, multinational

firms may respond to increased communication costs by centralizing production of

more sophisticated, i.e. differentiated, products and importing the completed good,

rather than importing intermediate goods which are then assembled locally.

This result is robust to the inclusion of destination-year controls, as seen

from the minimal differences between the common coefficients of Models 1 and 2 in

Table 19. I therefore couple this data with a dataset measuring what is nominally

the universe of imports and exports to and from the US among related parties. 13

Using the related-party trade data allows me to estimate the regression

models

log(RelatedTradejtg) =β0log(τjt)× r(g) + FEj + FEt + FEr(g) + εjtg (3.23)

log(RelatedTradeitg) =β0log(τit)× r(g) + FEi + FEt + FEr(g) + εitg (3.24)

Here, r(g) is a vector of indicator variables corresponding to the three Rauch

classifications, each of which takes the value 1 if good g is of that classification,

and 0 otherwise.

Results are reported in Table 20. As can be seen there, the τijt cost measure

has its largest effects on related-party trade in commodities, while reference-priced

goods are not affected to a significant degree, and imports of differentiated goods

in fact increase as communication costs rise. This result is suggestive evidence in

13While the dataset does represent the universe of flows observed by the US Bureau of
Customs and Border Protection, documentation on the dataset does acknowledge that importers
and exporters do not always report the indicator that identifies a shipment as a related-party
transaction.
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favor of multinational corporations shifting away from trade in commodities and

towards trade in differentiated goods, which tend to be more complex and therefore

embody a greater concentration of knowledge. Again, these results are robust to

the addition of country-time control variables, as seen in Models 3 and 4 of Table

20.

Table 20. Regression Results: Heterogeneity in Related-Party Trade

Dependent variable:

Log Trade in Goods

(1) (2) (3) (4)

Log Comm. Cost× Commodity −3.244∗∗ −15.005∗∗∗ −2.853∗ −15.041∗∗∗

(1.481) (1.925) (1.516) (1.967)

Log Comm. Cost× Ref-Priced 0.151 −1.372 0.214 −1.481
(0.950) (1.296) (0.973) (1.341)

Log Comm. Cost× Differentiated −0.267 2.523∗∗ −0.146 2.259∗

(0.855) (1.149) (0.876) (1.194)

Log Dest. GDP 0.343
(0.667)

Log Dest. Population −3.660
(5.944)

Log Dest. Capital Stock 2.819
(2.467)

Log Orig. GDP −0.899
(0.955)

Log Orig. Population 1.017
(9.082)

Log Orig. Capital Stock 0.737
(3.714)

Observed Flows US Exports US Imports US Exports US Imports
Fixed Effects j, t, r(g) i, t, r(g) j, t, r(g) i, t, r(g)
Observations 5,685 4,715 5,408 4,541

R2 0.536 0.519 0.532 0.512

Adjusted R2 0.522 0.501 0.518 0.494
Residual Std. Error 2.312 (df = 5512) 2.910 (df = 4544) 2.323 (df = 5246) 2.917 (df = 4380)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

However, it is still possible to look deeper, and couple this related-party

trade data with the industry knowledge intensity measures used in Bahar,

Hausmann, and Hidalgo (2014) and Bahar (2019). These measures combine worker-

level information to quantity the degree of “tacit knowledge” used in industries
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classified by SITC and NAICS codes. Using this data, I estimate the regressions

log(Exportsjtg) =β0log(τjt)× r(g) + β1log(τjt)× log(Knowledgeg)× r(g) (3.25)

+ FEj + FEt + FEr(g) + εjtg

log(Exportsitg) =β0log(τit)× r(g) + β1log(τit)× log(Knowledgeg)× r(g) (3.26)

+ FEi + FEt + FEr(g) + εitg

Here, Knowledgeg is the industry-knowledge measure for industry g, taken from

the Bahar data.

Table 21. Regression Results: Heterogeneity Controlling for Knowledge-Intensity

Dependent variable:

Log Trade in Goods

(1) (2)

Log Comm. Cost× Ref-Priced 7.655∗∗∗ −0.067
(0.852) (1.306)

Log Comm. Cost× Differentiated −8.949∗∗∗ −4.299∗∗∗

(0.754) (1.085)

Log Comm. Cost× Ref-Priced× Knowledge 0.053 0.516∗∗∗

(0.124) (0.185)

Log Comm. Cost× Differentiated× Knowledge 1.728∗∗∗ 1.076∗∗∗

(0.047) (0.067)

Observed Flows US Exports US Imports
Fixed Effects j, t i, t
Observations 6,075 4,943
R2 0.651 0.607
Adjusted R2 0.640 0.593
Residual Std. Error 2.021 (df = 5902) 2.686 (df = 4772)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Unfortunately, coupling the Bahar data with the related-trade dataset

results in a highly imbalanced panel due to missing observations; there is only one

commodity good observed in the related-party trade data that can be matched to
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the knowledge data, which creates issues of multicollinearity between fixed effects.

I therefore drop the problematic commodity-goods classification. Once again I

estimate the model separately for imports and exports, with results reported in

Table 21. The estimated coefficients for differentiated goods show, firstly, that all

else equal, communication costs do negatively impact trade in differentiated goods,

but secondly, that this effect is reduced or reversed for differentiated goods from

knowledge-intensive industries. At the mean level of knowledge-intensity (weighted

by the size of the export flow), the total coefficient on log(τijt) (calculated as

β0 + β1 × log(Knowledgeg)) is 0.100 for exports and 1.308 for imports, which

confirms the earlier result suggesting that differentiated goods are traded more in

situations with greater communication costs.

This regression also provides a more nuanced analysis of effects on reference-

priced goods, which experience a net increase in trade volume from communication

costs. There is some difference between effects on exports of reference-priced goods,

which are driven primarily by communication costs with no significant effect from

knowledge-intensity, and on imports, where the reverse is true. However, in both

cases, the total coefficient on logijt at mean levels of knowledge-intensity is much

larger than the corresponding total coefficient for differentiated goods (at 7.887 for

exports and 2.595 for imports). Thus, controlling for industry knowledge-intensity,

it is now apparent that, at least with trade among related parties, communication

costs drive a shift away from trade in commodity goods and towards more complex

goods that allow for knowledge to be embodied instead of requiring difficult and

expensive international communication.

3.6.1.2 Heterogeneity in Trade of Services. A similar analysis

can be conducted with trade in services, aided by the fact that services are grouped
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into vastly fewer categories by EBOPS codes, and therefore bilateral service trade

data is much less time-intensive to acquire through COMTRADE. Using a dataset

of services trade flows reported by 133 countries, I estimate the model

log(Tradeijtg) = β0log(distij) + β1glog(τijt) + FEit + FEjt + FEg + εijtg (3.27)

which contains a wider array of fixed effects and allows me to have significantly

more observations. A summary of results is shown in Table 22.

This model again produces results which go against the conventional wisdom

that increased communication costs should have a purely negative effect on the

value of trade in services. Instead, I observe communication costs having a mixture

of positive and negative effects on trade volumes.

When I consider the types of services which experience positive or negative

effects on trade volume from communication costs, a pattern emerges.

1. One broad category of goods, which I refer to as communication-delivered

goods, includes those which can be exported using the Internet or other forms

of communication, or which are made significantly easier to export. This

type of service includes such items as health services (e.g. via telemedicine),

construction abroad (which benefits from rapid exchanges of architectural

plans, etc.), auditing, bookkeeping and tax consultation (all of which involve

by their very nature extensive exchanges of financial data). These goods

generally experience a decrease in trade value when communication costs rise.

2. A second type of service, which I refer to as communication-produced

goods, includes those which can be more easily produced with easy access to

communication: this type includes computing services (such as web hosting,

online payment processing, etc.), research and development, advertising
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Table 22. Most Heavily-Affected Service Sectors by EBOPS Code

Top 10 categories most positively affected by communication cost

Transportation/Air/Passenger 7.356∗∗∗

Other business services/Miscellaneous/Research and
development

6.443∗∗∗

Other business services/Miscellaneous/Advertising,
market research, and public opinion polling

5.005∗∗∗

Insurance services/Auxiliary services 4.93∗∗∗

Other business services/Merchanting and other trade-
related services/Other trade-related services

4.128∗∗∗

Communications services/Telecommunications services 3.935∗∗∗

Other business services/Miscellaneous/Legal,
accounting, management consulting, and public
relations/Legal services

3.851∗∗∗

Other business services/Miscellaneous/Other business
services

3.279∗∗∗

Royalties and license fees/Other royalties and license
fees

3.044∗∗∗

Insurance services/Reinsurance 2.753∗∗∗

Top 10 categories most negatively affected by communication cost

Personal, cultural, and recreational services/Other
personal, cultural, and recreational
services/Health services

−10.31∗∗∗

Transportation/Other/Passenger −8.316∗∗∗

Transportation/Other/Freight −8.173∗∗∗

Transportation/Sea transport/Passenger −7.789∗∗∗

Construction services/Construction abroad −7.087∗∗∗

Other business services/Miscellaneous/Agricultural,
mining, and on-site processing services/Waste
treatment and depollution

−6.996∗∗∗

Government services, n.i.e./Embassies and consulates −6.698∗∗∗

Personal, cultural, and recreational services/Other
personal, cultural, and recreational services/Other

−6.16∗∗∗

Transportation/Other/Other −6.024∗∗∗

Insurance services/Life insurance and pension funding −3.689∗∗∗
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and market research. These services generally experience an increase in

trade value when communication costs rise, as countries with generally high

communication costs find it difficult to produce these goods and services

for themselves and substitute towards importing. (To give one example: a

country with high communication costs would find internet hosting services

expensive to produce domestically, leading consumers in these countries to

host their websites abroad, in countries with lower communication costs.)

3. The third category of services are essentially substitutes for communication,

largely restricted to transportation and telecommunication services.

Physical transportation can be used to transport personnel in lieu of

telecommunication, or to export goods as a substitute for exporting

services, while telecommunication services naturally become more expensive

as communication costs rise; as such, it is expected for the value of

telecommunication service exports to rise with communication costs unless

there is a price effect causing volume to decrease by a large amount. The

effect of increased communication costs is erratic here, with some categories

(such as air passenger transportation) seeing large increases in volume with

increased costs, and others (such as sea passenger transport) seeing similar

decreases in volume.

Communication-delivered goods experience negative effects on trade volumes as a

result of increased communication costs—exactly what the conventional wisdom

suggests would occur, since these costs make it more expensive to export such

goods. The other two categories experience positive effects on trade volume instead,

which on close consideration seems entirely plausible:
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In the case of communication-produced goods, a country which finds itself

with expensive communications will also find it expensive to produce these goods.

To give one straightforward example, in a country with expensive communications,

web-hosting companies will face greater costs to provide a fixed level of service (as

measured by latency, reliability, etc.). Alternately, these companies may choose

to produce an inferior level of service. Neither of these options lends itself to

producing web-hosting services domestically, and in fact this country may become

a net importer of web-hosting (i.e. individuals and firms in this country may pay to

host their websites and data in countries with cheaper communications).

In the case of communication-substitute goods, the rationale behind

increasing trade volumes as a result of increasing communication costs is even

more straightforward: faced with communication costs making long-distance

communication impossible, firms may opt to send personnel between countries (to

gain first-hand experience, confer with colleagues in person, or perform complicated

procedures). This is akin to the outcome described in Duranton and Storper

(2008), in which it becomes cost-prohibitive to export complex machinery when

communication costs are high, as the amount of physical travel necessary to convey

the client’s specifications for a machine becomes significant. Alternately, countries

which have expensive communication may choose to specialize in producing goods,

not services, which also increases the quantity of transportation services necessary.

3.7 Conclusions

The approach I have described allows for measures of communication

cost to be extracted from reasonably-accessible data on Internet routing and

communication. These measures have explanatory power when used to model

trade volumes, and allow for the effect of physical distance on trade volumes to
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be separated from the effect of communication cost (which is affected by physical

distance, but incorporates other components as well).

Analysis using this data reveals trends in how communication costs affect

trade, that run counter to the conventional wisdom. Coupled with data on related-

party trade and industry knowledge-intensity, these trends can be explained

as a result of a substitution pattern: multinational firms with greater costs of

communication, rather than coordinating complex global supply chains, instead

perform a greater degree of transformational work in individual countries so that

institutional knowledge can be “embedded” into complex goods. Given that large

portions of global trade are performed by multinationals (estimates suggest values

ranging from a third to a half), this substitution pattern is a noteworthy line of

future inquiry.

There remain several avenues for further work on the estimation of

communication costs: supplemental data regarding Internet infrastructure remains

scarce, and this scarcity restricts what variables can be used to parameterize costs.

This likely contributes to the major flaw of the model, which is its tendency to

underpredict traffic along links far from the source of the Internet data. However,

neither the scarcity of supplemental data nor the underprediction problem

represent insurmountable barriers to the use of this method as a way of measuring

communication costs.
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CHAPTER IV

INTERACTIONS BETWEEN COMMUNICATION COSTS AND LANGUAGE

BARRIERS: IMPLICATIONS FOR CROSS-BORDER INVESTMENT FLOWS

4.1 Introduction

Much as communication costs and other information frictions may be

barriers to trade in goods and services, they may also be barriers to investment.

A lack of cheap or effective communication translates into greater difficulty in

judging the value of a foreign asset, greater monitoring costs, and simply greater

transaction costs to acquire an asset. All of these factors are greatly alleviated by

the rapid, low cost communication enabled by access to the Internet, meaning that

Internet access may have effects on international financial flows.

In this chapter, I employ the Internet communication costs described and

estimated in the previous chapter in an analysis of cross-border portfolio investment

flows, using the Finflows (Nardo, Ndacyayisenga, Pagano, and Zeugner (2017))

and Treasury International Capital (US Treasury (2022)) datasets. I am unable

to reject the hypothesis that the effect of communications costs on portfolio

investment is zero when using a full complement of bilateral fixed effects, but

when replacing some fixed effects with controls find that the effect is significant

and negative. This combination of results suggests that while my measure of

communication costs does not itself explain variation in cross-border portfolio

investment, it does act as a proxy for other country-pair varying factors that

do. Thus, this measure of communication costs may be useful as an explanatory

variable in contexts that do not permit the use of said origin-destination fixed

effects (such as a cross-sectional analysis without time variation).
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4.2 Literature Review

4.2.1 Information Frictions and Portfolio Investment. This

chapter builds on the literature surrounding information frictions and trade,

including the large body of work on communication costs and trade (Freund and

Weinhold (2004), Allen (2014), Leuven et al. (2018), Fink et al. (2005), Lew and

Cater (2006), Ejrnæs and Persson (2010), Steinwender (2018)). This literature

employs a wide variety of proxies for communication costs, ranging from the time

cost of communication to the costs of telegraph and telephone communication. My

previous chapter provides a method of estimating communication costs from data

on Internet communication and routing, which is a more direct measurement of the

costs of Internet communication.

The finance literature deals with similar frictions and their effects on cross-

border portfolio investment (Beneish and Yohn (2008), Berkel (2007)), specifically

as a potential explanation for home bias, the tendency for investment portfolios

to over-invest in their home countries. I therefore bring my previously-developed

measure of Internet communication cost to bear on this question; in the literature

there are widespread uses of common language, legal system, colonial backgrounds,

etc. as proxies for information frictions, but these can all be described as proxies

for the effectiveness of communication, rather than its cost.

As discussed in Chapter III, to date there have been few options for

data that can be used to measure a cost of Internet communication, as many

of the proxies in the literature are either associated with older communications

technology, too small scale to be applied in a multi-national analysis, or too

difficult to effectively compile. This is, therefore, a novel approach to examining

the impact of Internet communication cost on cross-border investment activity.
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4.2.2 Determinants of Portfolio Investment. The literature on

the determinants of cross-border portfolio investment is well-developed: Roque and

Cortez (2014) provide an extensive summary of variables used in the literature to

analyze equity portfolios. Although I initially employ models that make extensive

use of fixed effects, I use a set of controls in alternate specifications when searching

for heterogeneity in contexts that do not allow for the full set of fixed effects.

Roque and Cortez (2014) provide broad categories of determinants of equity

investment, each containing a selection of appropriate variables used in the finance

literature. I have included a selection of controls such as returns, GDP, population

and capital stocks (Mishra (2007), Coeurdacier and Martin (2007), Faruqee and

Yan (2004), barriers to cross-border investment (Lane and Milesi-Ferretti (2008),

Ferreira and Miguel (2007), Mishra (2007)), and corruption (Daude and Fratzscher

(2008), Coeurdacier and Martin (2007), De Santis and Gérard (2006)).

Of particular interest are controls that, like my communication cost

measure, capture some aspect of information frictions. Information frictions

are a well-defined determinant of portfolio investment: prior analyses have used

geographical distance (Aggarwal, Kearney, and Lucey (2012), Daude and Fratzscher

(2008), Lane and Milesi-Ferretti (2008), etc.), cultural distance (Aggarwal et al.

(2012)), and common languages (Aggarwal et al. (2012), Daude and Fratzscher

(2008), Lane and Milesi-Ferretti (2008), Ferreira and Miguel (2007), Mishra (2007),

Coeurdacier and Martin (2007), Faruqee and Yan (2004)). My measure of bilateral

communication cost represents a new dimension of information frictions not

precisely like these or the other variables in use in the literature: neither these, nor

any of the other papers compiled by Roque and Cortez (2014) attempt to use direct

measurements or proxies for communication cost by Internet or other medium.
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Table 23. Summary Statistics: Information Friction Variables

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

tauCostEst 7,320 3.986 0.367 2.233 3.865 4.031 5.926
languageDiff 9,660 0.857 0.227 0.007 0.822 0.998 1.000
cultureDist 4,140 0.299 0.092 0.035 0.238 0.368 0.534

4.2.3 Gravity. The models I estimate employ a gravity framework,

which has been applied extensively in the finance literature (Anderson and van

Wincoop (2003), Okawa and van Wincoop (2012)). Several applications in this

literature (Aggarwal et al. (2012), Karolyi (2016)) focus on the “gravity of culture,”

using cultural differences as resistance terms in a gravity model of portfolio

investment (although in fact Aggarwal et al. (2012) finds that certain cultural

differences act as attractors, not resistors, of investment).

4.3 Data

At the center of this analysis are the estimated communication costs taken

from my previous chapter. These are bilateral values representing an ”iceberg

communication cost” analogous to the iceberg trade costs already in wide use in the

literature, estimated using data on Internet communication and routing recorded

in the United States in 2015-2016. While in theory these costs accurately measure

the costs of communication between pairs of countries around the world, in practice

they are most reliably estimated for pairs including the US. Summary statistics for

this measure are reported in Table 23. A plot of communication costs in 2015 vs.

2016 is shown in Figure 13.

Data on portfolio investment volumes is taken from the European

Commission’s Finflows database (Nardo et al. (2017)). This data comprises

bilateral portfolio investment flows among the EU countries and their trading

97



Figure 13. Year-to-Year Comparison of Estimated Communication Costs

partners, comprising 83 total countries and covering the period from 2001 onwards,

although I restrict the analysis to the period 2015-2016, when my communication

costs are most reliably estimated.

A second data source is the US Treasury’s International Capital Data,

consisting of monthly observations of portfolio transactions between US and

foreign citizens (US Treasury (2022)). This dataset is disaggregated into different

categories of asset, including US treasury bonds, federal agency bonds, US

corporate stock and bonds, and foreign stock and bonds. However, because all

observed flows are either to or from the US, this data does not contain any true

bilateral variation, and additionally, it is a much smaller dataset. The advantage

it offers is the ability to check for heterogeneity in how different asset categories

are affected by communication costs, along with the fact that my communication

costs (estimated using US-based data) are more reliably estimated for country-pairs

including the US.
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For control variables, I take data from a variety of sources. To control for a

country’s regulatory environment, I use Transparency International’s Corruption

Perceptions Index, an index of how corrupt a country’s public sector is perceived

to be. I also employ the capital controls dataset developed by Fernández, Klein,

Rebucci, Schindler, and Uribe (2016), specifically the measures of inbound and

outbound capital restrictions. Both data sources are varying at the country-year

level.

To control for variation in general economic conditions, I take several

variables from the Penn World Table (Zeileis (2021)), specifically real GDP,

population, human and physical capital stocks, and prevailing rates of return, all

varying at the country-year level.

Finally, to control for cultural differences, I use a combination of the US

International Trade Commission’s Domestic and International Common Language

Database, and Hofstede’s cultural dimensions. This latter dataset describes

national culture along six axes, termed power distance (degree to which high-

and low-power individuals are separated), individualism, masculinity, uncertainty

avoidance, long term orientation, and indulgence (degree to which individuals

are expected to seek their own interest rather than their organization’s). The six

indices are time-invariant and only vary by country, and the common-language data

also varies only at the country-pair level. I also generate a country-pair varying

“cultural distance” variable by computing the norm of the difference between a

country-pair’s cultural dimensions, |Hofstedei − Hofstedej|, for use alongside

country-time fixed effects.

Summary statistics for the information-friction variables are reported in

Table 23 alongside estimated communication cost. As the two origin-destination
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varying measures (language difference and cultural distance norm) capture elements

of information friction, there is naturally some degree of correlation among them

and the estimated communication cost at the center of this paper. Correlation

coefficients are 0.421, 0.499, and 0.496, for log-cost vs. language difference, log-cost

vs. culture distance, and language difference vs. culture distance, respectively.

4.4 Models and Results

In this section, as I discuss my models, I will in general proceed from a very

naive model, containing only the explanatory variable(s), through the addition of

control variables to the model, and finally to the introduction of fixed effects of

increasing detail, which will replace some or all of the controls.

4.4.1 Finflows Data. I begin my analysis with the Finflows data,

which due to its broader geographic scope would seem the more broadly applicable

source of data on cross-border financial transactions.

4.4.1.1 Naive Specifications. I naturally begin with the estimation

of an extremely naive model,

log(Invijt) = βlog(τijt) + εijt (4.1)

, which I follow up with a trio of alternate specifications,

log(Invijt) = βLanguageDiffij + εijt (4.2)

log(Invijt) = βCultureDiffij + εijt (4.3)

log(Invijt) = β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + εijt (4.4)

I include the specifications using only language and cultural differences as

explanatory variables to examine the differences between these and my measure of
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Table 24. Finflows Portfolio Investment: Effects of Information Frictions

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost 3.764∗∗∗ 4.677∗∗∗

(0.966) (1.042)
Language Difference −1.606∗∗∗ −1.538∗∗

(0.453) (0.601)
Culture Difference −3.921∗∗∗ −2.576∗

(1.192) (1.349)

Observations 236 236 180 180
R2 0.061 0.051 0.057 0.159
Adjusted R2 0.057 0.047 0.052 0.144
Residual Std. Error 1.853 (df = 234) 1.863 (df = 234) 1.706 (df = 178) 1.621 (df = 176)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

communication costs, but as the communication costs vary at a more detailed level1

it will, in the end, be the only one of these measures that will not be absorbed by

the introduction of an origin-destination fixed effect. Results of these models are

reported in Table 24.

Notably, communication costs have a positive, and highly significant,

coefficient in the two models that include it. This is contrary to the conventional

wisdom, that higher communication costs or information frictions in general should

impede investment flows, and is the first sign that these communication costs may

in part act as a proxy for some other quantity.

4.4.1.2 Introduction of Controls. I next introduce, step by step, a

vector of controls to my model, now specified as

log(Invijt) = β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + β3Xijt + εijt

(4.5)

Xijt here represents a vector of controls, and I estimate this model multiple times

using controls for the quality of governance and institutions, economic conditions,

1Origin-destination year, as opposed to only origin-destination in the case of language and
culture differences.
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cultural traits, and finally all three sets combined. Results of these models are

reported in Table 25.

In the first three models of this form, the coefficient on log communication

costs remains negative (although in one case non-significantly), as in the results

from estimating Equation 4.4. It is not until all three sets of controls are used

simultaneously that the more conventional result, of all three information-friction

variables having significant and negative coefficients, is achieved.

4.4.1.3 Introduction of Fixed Effects. I now introduce, in stages,

a set of fixed effects to the model in order to eliminate the possibility of omitted

variable bias. First, I incorporate simple origin, destination, and time fixed effects

in the following specification:

log(Invijt) = β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + β3Xijt+ (4.6)

FEi + FEj + FEt + εijt

Because my cultural controls are non-time varying, and vary only at the country

level, they are absorbed by FEi and FEj, and I thus omit them from this

specification. The governance and economic controls are country-time-varying, and

I retain them.

I follow this model by next using interacted fixed effects, in the specification

log(Invijt) = β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + FEit + FEjt + εijt

(4.7)

All remaining controls being country-time-varying, they are now absorbed by the

origin-time and destination-time fixed effects. These fixed effects are the most

complete set I can include without also absorbing my measures of language and

cultural difference, and so before adding the final, origin-destination fixed effect, I

examine possible interactions between my measures of information friction, using
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Table 25. Finflows Portfolio Investment: with Controls

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost 4.292∗∗∗ 0.554 3.614∗∗∗ −1.831∗∗∗

(0.532) (0.580) (0.534) (0.539)
Language Difference −2.930∗∗∗ −3.047∗∗∗ −3.129∗∗∗ −2.021∗∗∗

(0.335) (0.333) (0.345) (0.317)
Culture Difference −1.776∗∗ −1.955∗∗∗ −3.134∗∗∗ −2.403∗∗∗

(0.701) (0.660) (0.702) (0.646)
Origin Equity Restriction −1.552∗∗∗ −0.835∗∗∗

(0.179) (0.190)
Destination Equity Restriction 0.411∗ 0.974∗∗∗

(0.238) (0.234)
Origin Corruption 0.060∗∗∗ 0.066∗∗∗

(0.004) (0.005)
Destination Corruption 0.038∗∗∗ 0.043∗∗∗

(0.004) (0.006)
Origin GDP −0.847∗∗∗ −0.791∗∗∗

(0.089) (0.095)
Origin Population −0.003∗∗∗ −0.004∗∗∗

(0.0004) (0.0004)
Origin Human Capital 2.828∗∗∗ 0.279

(0.179) (0.235)
Origin Physical Capital 0.303∗∗∗ 0.308∗∗∗

(0.024) (0.025)
Origin Rates of Return 7.278∗∗∗ 3.599∗∗

(1.504) (1.486)
Destination GDP −0.450∗∗∗ −0.574∗∗∗

(0.089) (0.098)
Destination Population −0.002∗∗∗ −0.003∗∗∗

(0.0004) (0.0004)
Destination Human Capital 1.032∗∗∗ −0.238

(0.159) (0.217)
Destination Physical Capital 0.195∗∗∗ 0.239∗∗∗

(0.025) (0.027)
Destination Rates of Return 7.924∗∗∗ 6.554∗∗∗

(1.481) (1.402)
Origin Power Distance −0.024∗∗∗ −0.002

(0.004) (0.004)
Origin Individuality 0.021∗∗∗ −0.005

(0.004) (0.003)
Origin Masculinity 0.004 0.003

(0.003) (0.003)
Origin Uncertainty Aversion −0.018∗∗∗ −0.012∗∗∗

(0.003) (0.003)
Origin Long Term Orientation 0.045∗∗∗ 0.008∗∗

(0.003) (0.004)
Origin Indulgence 0.034∗∗∗ 0.004

(0.004) (0.004)
Destination Power Distance −0.0004 0.006

(0.004) (0.004)
Destination Individuality 0.024∗∗∗ 0.008∗∗

(0.004) (0.003)
Destination Masculinity 0.008∗∗∗ 0.009∗∗∗

(0.003) (0.003)
Destination Uncertainty Aversion −0.011∗∗∗ −0.012∗∗∗

(0.003) (0.003)
Destination Long Term Orientation 0.026∗∗∗ 0.012∗∗∗

(0.003) (0.004)
Destination Indulgence 0.029∗∗∗ 0.022∗∗∗

(0.004) (0.003)
Constant −4.750∗∗∗ −8.982∗∗∗ −4.246∗∗∗ −2.315∗

(0.813) (1.115) (1.017) (1.371)

Controls Governance Economic Cultural All
Observations 2,079 2,559 2,559 2,079

R2 0.339 0.313 0.288 0.531

Adjusted R2 0.336 0.309 0.284 0.524
Residual Std. Error 2.741 (df = 2071) 2.838 (df = 2545) 2.890 (df = 2543) 2.321 (df = 2049)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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the specifications

log(Invijt) =β0log(τijt) + β1LanguageDiffij + β2log(τijt)× LanguageDiffij +

(4.8)

β3CultureDiffij + FEit + FEjt + εijt

log(Invijt) =β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + (4.9)

β3log(τijt)× CultureDiffij + FEit + FEjt + εijt

Estimation results for Equations 4.6 through 4.9 are reported as the first four

models of Table 26.
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In these models, the coefficients on the three information-friction variables

all remain negative and for the most part2 significant. However, the introduction

of interactions produces an interesting result, in that the interaction between

log communication costs and cultural differences has a positive and significant

coefficient. This would suggest that the negative effect of communication costs is

decreased for pairs of countries with significant cultural differences, a result that

does not have an immediately obvious explanation. The simplest explanation,

though it is one that cannot readily be tested with this data, is a selection effect.

It may be that cultural differences drive foreign investors to select only the

most transparent assets in a country, thus making extensive communication less

necessary and by extension, making communication costs a less salient factor in the

decision to invest. (An alternate phrasing of this possibility is that communication

costs drive investors to select only the investments for which cultural differences are

least salient.)

Finally, I estimate a model with a complete set of fixed effects that absorb

all explanatory variables save for log communication costs,

log(Invijt) =β0log(τijt) + FEit + FEjt + FEij + εijt (4.10)

Results are reported as the last model of Table 26, but are disappointing: in

conjunction with the origin-destination fixed effect, log communication cost

has little significance, although it does have the negative coefficient that would

be expected of an information friction. This is a stronger indication that my

communication cost measure is in truth acting as a proxy for other origin-

destination varying factors.

2The exception being in the model interacting communication costs with language differences,
in which the coefficients are still negative but not all significant.

106



4.4.2 Likelihood of Investment Activity. I also estimate a set of

logit models to determine if the effect of communication costs on the likelihood of

cross-border investment flows may be separate from its effect on the size of flows:

log

(
p(Actijt)

1− p(Actijt)

)
= β0log(τijt) + FEit + FEjt + εijt (4.11)

log

(
p(Actijt)

1− p(Actijt)

)
= β0log(τijt) + β1languageDiffij + (4.12)

β2log(τijt)× languageDiffij + β3cultureDiffij + εijt

log

(
p(Actijt)

1− p(Actijt)

)
= β0log(τijt) + β1cultureDiffij + (4.13)

β2log(τijt)× cultureDiffij + β3languageDiffij + εijt

I omit the origin-destination fixed effects in these specifications for computational

reasons.3 Results are reported in Table 27.

Comparing the results of this estimation to those of previous models using

the same origin-time and destination-time fixed effects, it becomes apparent that

the effect of communication costs (or whatever origin-destination varying variable

it proxies for) on the likelihood of investment is opposite its effect on investment

value. On the surface, with increased communication costs leading to more-likely

but less-valuable investment, it is possible to suggest some kind of crowding-out,

in which low communication costs attract larger investors, making less frequent

investments, but driving smaller investors out of the market. However, in the

models with interactions between communication costs and other information

frictions, the average marginal effect of communication cost is in fact negative

3In previous models with origin-time, destination-time, and origin-destination fixed effects, I
was able to use the felm estimator in R, which is highly efficient at dealing with such numerous
effects. felm does not, however, permit estimation of logit models, and the addition of a third
family of fixed effects raises the complexity of the model to a point that R cannot estimate it
within a reasonable timeframe.
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Table 27. Likelihood of Finflows Portfolio Investment

Dependent variable:

activity

(1) (2) (3) (4)

log(tauCostEst) 4.979∗∗∗ 11.785∗∗∗ 22.984∗∗∗ 18.401∗∗∗

(0.245) (0.651) (1.565) (1.247)
languageDiff −6.278∗∗∗ 29.564∗∗∗ −6.230∗∗∗

(0.646) (4.056) (0.736)
cultureDist −3.977∗∗∗ −4.836∗∗∗ 124.604∗∗∗

(1.194) (1.383) (11.259)
log(tauCostEst):languageDiff −28.290∗∗∗

(3.038)
log(tauCostEst):cultureDist −95.550∗∗∗

(8.264)

Fixed Effects it, jt it, jt it, jt it, jt
Observations 11,552 5,408 5,408 5,408
Log Likelihood −2,625.123 −753.331 −646.632 −614.401
Akaike Inf. Crit. 5,856.246 1,924.663 1,713.265 1,648.802

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 28. TIC Portfolio Investment: Effects of Information Frictions

Dependent variable:

log(abs(flow))

(1) (2) (3) (4)

log(tauCostEst) 3.764∗∗∗ 4.677∗∗∗

(0.966) (1.042)
languageDiff −1.606∗∗∗ −1.538∗∗

(0.453) (0.601)
cultureDist −3.921∗∗∗ −2.576∗

(1.192) (1.349)

Observations 236 236 180 180
R2 0.061 0.051 0.057 0.159
Adjusted R2 0.057 0.047 0.052 0.144
Residual Std. Error 1.853 (df = 234) 1.863 (df = 234) 1.706 (df = 178) 1.621 (df = 176)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(-0.027 in Model 3 and -0.085 in Model 4), indicative of the more plausible case

where higher communication costs lead to smaller and less frequent investments.

4.4.3 Robustness Check: TIC Data. As a robustness check, I next

re-estimate Equations 4.1 through 4.5, using the Treasury International Capital

data as a substitute for the Finflows data. Results are reported, as before, in Tables

28 and 29. The results are broadly the same, though with reduced significance due

to the much smaller sample size available in the TIC data.
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Table 29. TIC Portfolio Investment: with Controls

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost 4.002∗∗∗ 0.821 −0.186 −0.081
(1.085) (0.975) (1.077) (1.002)

Language Difference −2.233∗∗∗ −1.980∗∗∗ −2.501∗∗∗ −0.976
(0.624) (0.535) (0.608) (0.689)

Culture Difference 0.505 −1.163 −6.830∗∗ −10.013∗∗∗

(1.588) (1.218) (3.159) (3.158)
Origin Equity Restriction −0.716 −0.817∗

(0.500) (0.493)
Destination Equity Restriction −0.535 −0.478

(0.651) (0.593)
Origin Corruption 0.009 0.015

(0.012) (0.013)
Destination Corruption 0.016 0.020

(0.013) (0.014)
Origin GDP −0.335 −0.696∗

(0.319) (0.372)
Origin Population −0.0005 −0.0001

(0.001) (0.001)
Origin Human Capital 1.859∗∗∗ 1.660∗∗∗

(0.433) (0.615)
Origin Physical Capital 0.158∗∗ 0.241∗∗∗

(0.071) (0.085)
Origin Rates of Return 1.503 7.013∗

(3.023) (3.673)
Destination GDP −0.339 −0.624∗

(0.317) (0.367)
Destination Population −0.001 −0.001

(0.001) (0.001)
Destination Human Capital 1.766∗∗∗ 1.218∗∗

(0.430) (0.614)
Destination Physical Capital 0.160∗∗ 0.224∗∗∗

(0.070) (0.083)
Destination Rates of Return 1.870 6.972∗

(3.024) (3.703)
Origin Power Distance 0.020∗∗ 0.031∗∗∗

(0.010) (0.011)
Origin Individuality −0.0005 −0.033∗∗

(0.012) (0.013)
Origin Masculinity −0.0005 0.001

(0.008) (0.008)
Origin Uncertainty Aversion −0.011∗ −0.006

(0.006) (0.007)
Origin Long Term Orientation 0.058∗∗∗ 0.019

(0.009) (0.012)
Origin Indulgence 0.008 0.019∗

(0.010) (0.010)
Destination Power Distance 0.024∗∗ 0.037∗∗∗

(0.010) (0.011)
Destination Individuality 0.002 −0.023∗

(0.012) (0.013)
Destination Masculinity −0.004 −0.004

(0.008) (0.008)
Destination Uncertainty Aversion −0.009 −0.005

(0.006) (0.007)
Destination Long Term Orientation 0.059∗∗∗ 0.025∗∗

(0.009) (0.012)
Destination Indulgence 0.007 0.017∗

(0.010) (0.009)
Constant 2.732 −7.709∗∗∗ 7.037∗∗ −5.977

(2.031) (2.674) (3.001) (4.248)

Controls Governance Economic Cultural All
Observations 168 180 180 168

R2 0.243 0.466 0.479 0.646

Adjusted R2 0.210 0.424 0.431 0.572
Residual Std. Error 1.557 (df = 160) 1.330 (df = 166) 1.322 (df = 164) 1.146 (df = 138)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 30. TIC Portfolio Investment: with Fixed Effects Replacing Controls

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost −0.111 −5.597∗∗ −0.582 −0.403
(1.008) (2.438) (2.094) (0.802)

Language Difference −0.968 −17.596∗∗ −0.987
(0.692) (6.785) (0.698)

Culture Difference −10.025∗∗∗ −8.248∗∗ −12.638
(3.168) (3.194) (10.654)

Log Comm. Cost × Language Difference 10.362∗∗

(4.207)
Log Comm. Cost × Culture Difference 1.869

(7.272)

Fixed Effects t t t ij,
Controls All All All Country-Time
Observations 168 168 168 200

R2 0.647 0.662 0.647 0.986

Adjusted R2 0.569 0.585 0.566 0.967
Residual Std. Error 1.150 (df = 137) 1.129 (df = 136) 1.154 (df = 136) 0.338 (df = 85)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

I also estimate analogues to the models using fixed effects in Equations 4.6

through 4.10, using the closest degrees of fixed effects possible:

log(Invijt) = β0log(τijt) + β1LanguageDiffij + β2CultureDiffij + (4.14)

β3Xijt + FEt + εijt

log(Invijt) = β0log(τijt) + β1LanguageDiffij + (4.15)

β2log(τijt)× LanguageDiffij + β3CultureDiffij + FEt + εijt

log(Invijt) = β0log(τijt) + β1LanguageDiffij + (4.16)

β2CultureDiffij + β3log(τijt)× CultureDiffij + FEt + εijt

log(Invijt) = β0log(τijt) + FEij + FEt + εijt (4.17)

Because the TIC data contains only US outflows and inflows, it is difficult

to use origin or destination fixed effects, due to multicollinearity concerns. I

instead begin with a simple time fixed effect, then proceed directly to introduce

interactions among the information friction variables, and finally introduce the

origin-destination fixed effect that absorbs all but log communication costs.

Results are broadly the same as those using Finflows data: the pattern of

negative coefficients on information frictions and positive coefficients on interactions

111



remains, although intriguingly, I note greater significance in the model interacting

communications cost with language differences than the one interacting with

culture differences. However, this seems most likely to be a matter of selection

bias (as the TIC data contains flows to different trading partners than the Finflows

data). Again, disappointingly, the introduction of an origin-destination fixed effect

absorbs the significance of log communication costs.

4.4.4 Heterogeneity by Inflows vs. Outflows. I next examine

heterogeneity in the effects of communications cost on outflows vs. inflows of

investment from and to the US. I begin by restricting the Finflows dataset to

outflows of investment from the US and estimating the models

log(abs(Invjt)) = β0log(τjt) + β1Xjt + FEt + εjt (4.18)

log(abs(Invjt)) = β0log(τjt) + β1cultureDistj + (4.19)

β2log(τjt)× cultureDistj + +β3Xjt + FEt + εjt

log(abs(Invjt)) = β0log(τjt) + β1languageDiffj + (4.20)

β2log(τjt)× languageDiffj + +β3Xjt + FEt + εjt

log(abs(Invjt)) = β0log(τjt) + FEj + FEt + εjt (4.21)

Results are reported in Table 31, showing very little significance, but coefficients

broadly consistent in sign and magnitude with the previous sets of results. Lack of

significance may easily be attributed to the sample size, which is roughly two orders

of magnitude smaller.

I next estimate similar models (replacing j subscripts with i) on a dataset of

investment inflows to the US, reported in Table 32. There is again little significance

to communications cost in the model using origin and time fixed effects, but the

models using controls produce significant coefficients consistent with prior results.
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Table 31. Regression Results: Finflows Data, US Outflows Only

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost −2.436 −7.496 −6.605 −1.846
(3.307) (8.603) (6.486) (7.711)

Language Difference −3.527∗ −16.658 −3.441
(2.009) (20.675) (2.027)

Culture Difference 5.614 7.265 −18.083
(8.874) (9.329) (32.871)

Log Comm. Cost × Language Difference 8.380
(13.132)

Log Comm. Cost × Culture Difference 16.089
(21.476)

Control Variables None All All None
Fixed Effects t t t j, t
Observations 48 48 48 80

R2 0.774 0.777 0.778 0.882

Adjusted R2 0.646 0.638 0.640 0.508
Residual Std. Error 1.607 (df = 30) 1.623 (df = 29) 1.618 (df = 29) 1.922 (df = 19)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 32. Regression Results: Finflows Data, US Inflows Only

Dependent variable:

Log Investment

(1) (2) (3) (4)

Log Comm. Cost 8.180∗∗∗ −12.073∗∗ −5.293 −2.188
(2.065) (4.598) (4.098) (3.269)

Language Difference −1.993 −37.389∗∗∗ −0.398
(1.307) (11.481) (1.573)

Culture Difference −4.914∗ 1.563 −36.680∗

(2.851) (6.229) (20.157)
Log Comm. Cost × Language Difference 23.946∗∗∗

(7.362)
Log Comm. Cost × Culture Difference 26.202∗

(13.656)

Control Variables None All All None
Fixed Effects t t t i, t
Observations 75 67 67 94

R2 0.255 0.718 0.680 0.923

Adjusted R2 0.213 0.612 0.560 0.775
Residual Std. Error 2.153 (df = 70) 1.443 (df = 48) 1.536 (df = 48) 1.118 (df = 32)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Finally, I estimate a trio of models combining both one-way datasets and

employing interactions with a direction indicator variable:

log(abs(Invpdt)) =β0log(τpdt) + β1Directiond + β2log(τpdt)×Directiond + (4.22)

β3LanguageDiffp + β4CultureDiffp + β5Xjt + εpt

log(abs(Invpdt)) =β0log(τpdt) + β1Directiond + β2log(τpdt)×Directiond + (4.23)

β3LanguageDiffp + β4CultureDiffp + β5Xjt + FEt + εpt

log(abs(Invpdt)) =β0log(τpdt) + β1Directiond + β2log(τpdt)×Directiond + (4.24)

FEp + FEt + εpt

Here, p indexes partner countries, and d indexes direction (into or out of the US).

Results are reported in Table 33, and show no significance to either the direction

indicator or its interaction with communication costs, implying a lack of differential

impact on incoming vs. outgoing investment.

4.4.5 Heterogeneity by Asset Type. I next turn this analysis to

examine the possibility of heterogeneous effects by asset category, using the TIC

data. The TIC data classifies assets into six groups: marketable US Treasury and

Federal Financing Bank bonds and notes, government corporation and federal

agency bonds, US corporate and other bonds, US corporate stock, foreign bonds4,

and foreign stock. I first re-estimate the models specified in Equations 4.10 through

4.9, substituting as the dependent variable separate measures of total purchases of

US and foreign assets. Results are reported in Table 34.

As can be seen here, there are minimal differences between the coefficients

estimated for foreign vs. US assets, and little difference from the more aggregated

model. Coefficients are broadly similar in sign, magnitude, and significance, with

4Including both public and private bonds.
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Table 33. Regression Results: Finflows Data, Interaction with Direction

Dependent variable:

Log Investment

(1) (2) (3)

Log Comm. Cost 3.357 3.451∗ 2.265
(2.029) (2.008) (3.098)

Outflow 2.668 3.450 −2.877
(4.697) (4.671) (3.537)

Log Comm. Cost × Outflow −1.853 −2.372 1.462
(2.969) (2.953) (2.296)

Language Difference −1.818 −1.811
(1.227) (1.215)

Culture Difference 0.115 0.663
(5.455) (5.408)

Control Variables All All None
Fixed Effects None t p, t
Observations 115 115 174
R2 0.594 0.606 0.784
Adjusted R2 0.518 0.528 0.622
Residual Std. Error 1.728 (df = 96) 1.710 (df = 95) 1.577 (df = 99)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

two exceptions: a greater effect of language difference on purchases of foreign

assets, and a similar greater effect of cultural difference on purchases of US assets.

In both cases, the difference is sufficient to make the effect significant, but does not

noticeably extend to the corresponding interaction terms.

Further disaggregating the TIC data, I next re-estimate the same models

separately for each of the six categories of asset, with results for language

interaction reported in Table 35 and for culture interaction in Table 36.

As before, the model interacting communications cost with language

difference produces more significance, and so I shall focus the comparisons here.

Estimated coefficients are again broadly similar in sign across the six asset

categories, but there is variation in magnitude and significance: most notably, none

of these information-friction variables has any significance in the model using US
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corporate stock investment as the dependent variable, and only log communication

cost is significant for US corporate bonds. This could be interpreted as due to the

highly diverse nature of these categories, except that there is far more significance

in the equally, if not more, diverse foreign bond and stock categories.

Additionally, the positive coefficient on the interaction term is significant

only for federal marketable bonds, foreign bonds, and foreign stock. While it

remains positive for the other three categories, it is not significant even at the 10%

level, indicating a noisier relationship with investment in these categories.
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4.5 Conclusion

Based on the results of models with exhaustive fixed effects, it does not

appear that communications costs have any significant effects on cross-border

portfolio investment, as they appear to capture an aspect of information frictions

that varies with origin and destination, but not time. It may be that this is

due to the relatively short timeframe in which the necessary data is available to

estimate the communication costs, and the small amount of temporal variation in

communication costs. However, even if communication costs truly have no effect on

portfolio investment, they may still find use in contexts that do not allow for the

use of the full set of fixed effects. Employed alongside other information-friction

controls, communication costs often have a significant and negative effect on

portfolio investment, in keeping with their interpretation as a barrier to investment.

Interactions between communication costs and other information frictions show

an intriguing pattern that suggests communication costs may be less important

between countries with greater linguistic or cultural differences, a pattern that

bears further investigation.
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CHAPTER V

CONCLUSION

As demonstrated here, technical data on Internet communication represents

a previously untapped source of data that allows economists to examine an aspect

of information frictions that previously was difficult to capture. This data presents

a low-cost and high-frequency option to measure the degree of Internet availability

within a region, as well as a simple measure of the quality of that access. These

measures perform similarly to prior measures used in the literature, as seen in my

adaptations of Freund and Weinhold (2004) and Allen (2014).

More importantly, however, this data can be employed in more sophisticated

models to extract more detailed measures of Internet communication cost. My

adaptation of Allen and Arkolakis (2019)’s structural model is only one potential

application in this vein, and the value of such models is demonstrated by the ability

of the estimated costs to explain the patterns of heterogeneity first seen in Keller

and Yeaple (2013).

Finally, while these estimated communication costs do not provide any

significance in models of cross-border financial flows when employed alongside full

complements of fixed effects, they do possess significance and explanatory power in

contexts where it is not possible to use the origin-destination fixed effect.

As Internet communication will almost certainly continue to gain

importance in the future, the ability to measure the cost and quality of said

communication will only become more crucial in international economics. These

data and the measures derived from it represent an important step forward in that

regard.
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APPENDIX A

DATA DESCRIPTIONS

A.1 Raw Routing Data

A small excerpt of relevant fields from the ORVP routing data is provided

in Table A.1: the excerpted observations are five distinct routes that the Equinix

Chicago facility could use to communicate with a block of devices located

physically near Portland, Oregon.

Table A.1. Excerpt from Routing Data (Equinix Chicago, January 1, 2018, 12:00
AM)

N IP Block Route
155044 23.206.120.0/22 53828 6939 7922 33490
155045 23.206.120.0/22 23367 6461 7922 33490
155046 23.206.120.0/22 19653 3356 7922 33490
155047 23.206.120.0/22 293 6939 7922 33490
155048 23.206.120.0/22 19016 3257 7922 33490

Taking the first row of Table A.1 as an example, this observation describes

a route which allows the collector, in this case the Equinix Chicago IXP, to send

information to the 23.206.120.0/22 block of IP addresses. (This notation is a

shorthand which is not necessary for the reader to understand; it refers to the

block from 23.206.120.0 to 23.206.123.255, containing 1024 addresses total.) This

route will, after leaving the device which collected this routing data, pass through

the networks with identifying numbers 52828, 6939, 7922, and 33490. These four

networks are CTS Telecom, Hurricane Electric, the Comcast network backbone,

and Comcast’s Portland/Spokane regional network. All four are US-based.

A.2 Raw Trace Data

A small excerpt of the relevant fields in the CAIDA trace data is provided

in table A.2. The three relevant fields are the origin and destination IP addresses,
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which can be geolocated to determine the country of origin and destination of the

observed flow, and the packet size, which measures the size of the flow in bytes.

Table A.2. Excerpt from Trace Data (Equinix Chicago, April 6, 2016, 1:00 PM
UTC)

Origin IP Address Destination IP Address Packet Size
133.87.38.108 3.137.145.218 56
70.42.44.237 65.42.255.211 530
147.73.59.126 29.188.50.86 1474
161.69.48.219 161.69.45.5 1504
137.227.47.182 221.46.221.84 1504

A.2.1 Trace Data Anonymization. The anonymization referred

to in the name of the Anonymized Internet Traces Dataset is a prefix-preserving

anonymization algorithm, which slightly perturbs the recorded origin and

destination IP addresses to preserve the privacy of the users whose communication

is being described. This prevents identifying the exact users who sent or received

the packets recorded, but, because the algorithm is prefix-preserving, allows the

users’ network to be correctly identified. To use an analogy, it is as though the

addresses of respondents to a survey were obscured by altering each respondent’s

recorded address to a random, but still extant, address on the same street or in the

same neighborhood. This is sufficiently accurate for the purposes of my model, as it

is unnecessary to identify anything beneath the network level.
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APPENDIX B

ILLUSTRATED EXAMPLES OF TRAFFIC COMPUTATION

The figures in this section provide toy examples of how the process discussed

in Section 3.3.5for computing a measure of link traffic, may be applied.

Figure B.1. Selection of Most Direct Routes

(a) All routes from IXP to an Arbitrary
Destination

There exist three routes that Equinix Chicago can use to send communication to a
particular destination.

(b) Breakdown of Routes into Links
Of these three routes, the green and red routes pass through three intermediaries
each (which can be interpreted as networks or countries depending on the scale of
the application), while the blue route passes through four.
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Figure B.2. Assignment of Communication and Traffic

(a) Only Most Direct Routes
In the absence of other distinguishing characteristics, I discard the blue route, as it
is less direct than the green or red routes (which are tied).

(b) Assignment of Communication Volumes to
Routes

Here, the remaining most-direct routes are coupled with measures of
communication, also from Chicago Equinix. There are A units of total
communication observed being sent to destination A, and as there are two routes
that this communication might take, this volume is divided evenly so that A/2
units are assigned to each of the two routes.

(c) Assignment of Traffic Volumes to Links
Each of these routes is composed of multiple links between networks. The entire
volume of communication flows across each of these links, and so each of the links
in the two most-direct routes receives A/2 units of traffic.
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Figure B.3. Aggregation of Link Traffic

(a) Assignment of Traffic Volumes to Links
This figure shows a toy example that is more complex. Here, there are three
distinct destinations, two of which belong to the same country. Communication
and traffic have been assigned to routes and links as previously described; some
links receive traffic from multiple routes.

(b) Summation of Link Traffic
Traffic across individual links is now summed to generate the measure of total
traffic across each link. Destinations within each country are also combined so
that the measure captures country-to-country traffic. For simplicity in this toy
example, each intermediary represents a distinct country, but this is not necessary
in practices.
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APPENDIX C

ALTERNATE COMPUTATIONAL METHODOLOGIES

This appendix will describe alternate methods of computing certain

measures used in my models.

C.1 Adjustments to Third-Party Communication

Because Equinix Chicago is located on the global Internet backbone, and

therefore sees significant numbers of packets which neither originate from or are

destined for Chicago and/or the US, it is not entirely unreasonable to treat this

communication data as a valid measure of such third-party flows, especially when

concerning flows among countries which are physically near the US. However, as

discussed in Section 3.3.3.1, it is likely that the monitoring devices at Equinix

Chicago do not capture a representative amount of the communication between,

e.g., Germany and the Netherlands. Adding additional communication datasets

gathered from collectors in different countries would alleviate this problem by

providing additional locations from which first-party flows could be measured, but

using multiple datasets would also allow for third-party flows to be predicted:

Consider, as an illustrative example, a situation in which there are two

communication datasets, from collectors in the US and Canada. From the

perspective of the US collector, communication from Canada to France is a third-

party communication flow that would not be accurately represented in the US

data. But this is a first-party flow which is presumably accurately measured in

the Canada data! Using flows to and from Canada, and to and from the US, it

becomes possible to create a regression model which predicts the flows which are

truly third-party (not to or from either Canada or the US) based on the doubly-

observed communication flows. An example for this simple, two-dataset situation is

126



as follows:

CommFP
ijt = β0Comm

US
ijt ×USTPijt+β1Comm

CA
ijt ×CATPijt+FEi+FEj+FEt+εijt

(C.1)

Here, CommFP
ijt is the communication observed along link ij at time t by a first-

party collector, CommUS
ijt and CommCA

ijt are the same flows as measured by the

US and Canada collectors, respectively, and USTPijt and CATPijt are indicator

variables which take the value 1 if link ij is third-party from the perspective of

the US or Canada, respectively. This allows the model to be estimated using

flows which are first-party to the US but third-party to Canada, and vice versa;

the model can then be used to predict truly third-party flows from the imperfect

measurements in one or the other of the datasets. Extensions of this approach

would include the use of an averaging mechanism, so that the predictions can

use the information contained in both datasets, additional covariates, and even

expansion to make use of three or more datasets.

C.2 Computationally-Intensive Construction of Link Traffic

The following method of computing link traffic is more detailed, as it

associates each IP address observed to receive communication with a set of

routes that reach it. However, this increased level of detail makes the procedure

impractically complex: using my computational resources, it took weeks instead of

hours to process a dataset, when it did not crash due to lack of available memory.

Instead of aggregating to the IP-block level, I instead work at the level

of individual IP addresses η. Let IPCommcη be the volume of communication

observed from the IXP to η, Rcη the set of routes the IXP would use to reach it,
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and Rmin
cη the most-direct of those routes. Then, define

RouteCommrcη =


IPCommcη
|Rmincη |

if r ∈ Rmin
cη

0 otherwise

(C.2)

where |Rmin
cη | is the size of Rmin

cη , or the multiplicity of most-direct routes serving

η. Traffic over each route is defined as in the computationally-simpler method, and

then the amount of traffic originating from the IXP and present on link kl is given

by summing over IP addresses η and routes r:

TotalTrafficckl =
∑
η

∑
r

Traffickl(c, η, r) (C.3)

C.3 Probabilistic Assignment of Autonomous Systems to Countries

Rasti et al. (2010) details an approach to geolocating networks that, while

more detailed than the one I use, adds enough computational complexity to the

processing of my communication data that I ultimately chose to leave it as an

alternate methodology in this appendix.

My approach to geolocating an autonomous system maps each network

to a single country: the one in which the plurality of its IP addresses are located

according to the MaxMind geolocation database.

The approach of Rasti et al. (2010) instead maps a network

probabilistically1 to a set of countries with probabilities based on the distribution

of its IP addresses. This can then be used to map a flow of Internet communication

between networks into a set of flows between countries:

Trafficrsij = pipjTraffic
rs (C.4)

where pri is the probability of an IP address in network r being located in country i.

Likewise psj is the probability of an address in s being located in j, and Trafficrs

1Or rather, the mapping can be interpreted probabilistically.
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is a flow of traffic observed from r to s. Trafficrsij is then the flow of traffic from

country i to j due to the traffic passing from network r to s. More sophisticated

mappings are of course possible, for example by placing additional weight on

country-pairs that are closer geographically so that a larger proportion of traffic

from r to s is mapped to links between closer countries.

However, the difficulty in employing this methodology is that, due to the

one-to-many mapping of newtork-pair flows into country-pair flows, the time

required to process a dataset rises significantly. In my small-scale test runs I

determined that this approach required 1-2 orders of magnitude longer to process

a complete set of communication traces, with indications that the effect would

be more pronounced in larger datasets. As the processing of a complete set of

communication data already took roughly a day, I instead opted for the simpler

one-to-one mapping approach.
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