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THESIS ABSTRACT 

 

Rasti Yaseen Hasan 

 

Master of Science 

 

Department of Computer and Information Science 

 

June 2022 

 

Title: Exploring the Reformulation of NLP Tasks as Text Generation Tasks 

 

 

In recent years, NLP classification tasks have been reformulated as text 

generation tasks in the form of text-to-text transformer-based models that achieve state-

of-the-art performance by better utilizing pre-trained language models. This work 

provides a historical background, a taxonomy based on the output structures of these 

methods, an exploration of aspects of such models with several representative works, and 

discusses the current state and future of these models. 
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CHAPTER I 

INTRODUCTION 

 

Recent works on various Natural Language Processing (NLP) tasks have utilized Pre-

Trained language Models (PTMs1) such as BERT [1], GPT-2 [2], BART [3], and T5 [4]. PTMs 

have been shown to be very useful in improving performance on many NLP tasks [5, 6, 7] since 

models designed for downstream tasks can leverage the latent knowledge PTMs have about 

language. Language modelling (predicting the likelihood of tokens in text sequences) does not 

require labeled data, so the main reason for utilizing PTMs is that finding large-scale labeled 

corpora for any specific task can be rather challenging, while constructing unlabeled corpora to 

train PTMs is much more of manageable goal [8]. Consequently, models that utilize PTMs are 

easier to compute, and do not have to be trained on massive amounts of labeled data to achieve 

good performance. A major caveat that should be noted is that PTMs themselves are much more 

complex and time-consuming to compute [9]. 

Many state-of-the-art (SOTA) systems have generally treated NLP tasks such as semantic 

role labeling and other information extraction subtasks (e.g., named entity recognition, 

coreference resolution, and event extraction) as classification problems where a discriminative 

model is trained to identify which labels/classes input sequences belong to. However, it can be 

difficult for these discriminative models to take full advantage of the benefits that pre-trained 

models provide through their latent knowledge. Most notably, discriminative models interact 

with labels as numbers rather than natural language words that can have relevant semantic 

information about certain tasks [10]. 

Over the past few years, several works have proposed reformulating these tasks as text-

to-text translation systems where the input is transformed into deterministically decodable 

textual output formats and the task is encoded into a predefined natural language structure. In 

this new paradigm, a generative transformer-based model is then trained to learn the new 

representation and extract desired output structures from the augmented text [10, 11, 12]. For 

brevity, we refer to this paradigm as the “reformulation paradigm” in this work. An advantage of 

 
1 As pointed out in [8], we refer to “pre-trained language models” as “PTMs” instead of “PLMs” to avoid confusion 

with “probabilistic language models”. 
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this approach is that the pre-trained models only need to incorporate the new structure to 

understand what it represents. This process is analogous to a translation or sometimes a 

summarization objective [13, 14]. Additionally, the labels of sequences are incorporated into the 

generation task itself whereby PTMs can have a better understanding of what the model is trying 

to achieve [4, 11, 15]. This incorporation of the label semantics into the prediction task has led to 

systems becoming very successful at achieving SOTA results on various NLP tasks. 

Commonly used PTMs in this paradigm are BART [3] and T5 [4]. These PTMs are 

sequence-to-sequence encoder-decoder models that can, like BERT, take advantage of the full 

context in their encoder, but also, like GPT, be used for generation tasks with an autoregressive 

decoder as shown in Figure 1. 

 

Figure 1. Basic representation of BART and T5. Encoder-decoder with bidirectional encoder and autoregressive 

decoder. 

 

Systems that reformulate NLP tasks as generation tasks can be divided into four 

categories based on their output structure: 

1- Augmented text: Output is a copy of the input text augmented with labels and 

structure indicators. 

2- Linearized text: Output is a predefined structure that can be deterministically 

decoded2 into task structures. 

3- Templates with placeholders: Output is a predefined template that implicitly 

informs the PTM of the types of desired output and contains placeholders for the 

system to fill with the outputs. 

 
2 This structure decoding is not to be confused with the decoding process in the transformer decoder.  
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4- Index Generation: Output is word indexes corresponding to, and limited to, words in 

the input. 

 

TANL [10] (Translation between Augmented Natural Languages) generates augmented 

text named “augmented natural language” for structured prediction tasks where, for each specific 

task, brackets and vertical bars are used as structure indicators for the model. For example, in 

semantic role labeling, given an input with a predicate, the output is expected to contain a list of 

arguments and the semantic role for each argument within said structure indicators. GENRE [14] 

uses a similar approach to perform entity linking where, given an input text, an augmented 

output is generated with identified entities and their links as Wikipedia articles. 

For event extraction, DEGREE [16] (Data-Efficient Generative Event Extraction) and a 

model proposed by Li et al. [17] (referred to as “BART-Gen” in this work) generate templates 

with placeholders from which a language model learns the event extraction process. DEGREE 

and BART-Gen generate whole sentences from templates that correspond to event types (e.g. 

Justice:Sue, Movement:Transport) [16]. These templates contain placeholders that the model is 

trained to fill in. The final prediction is then made by comparing the template and output text to 

extract the spans that were filled in, and search for matches in the original text. 

With TempGen [18], instead of creating whole sentences, a structure linearized text 

format is generated for document-level entity-based extraction where several special tags are 

used as structure indicators to form a template that can be decoded to fill the final extraction 

template. In GenIE [19], four special tokens are used to indicate the structure of the subject, 

relation, and object triplets for closed information extraction. REBEL [13] is another model in 

this family that addresses the joint entity and relation extraction task. This model is similar to the 

others in terms of its architecture but differentiates itself from both by utilizing a more compact 

output structure that can represent multiple relations with a single clause. 

Other works break the process down into two parts. A PTM is utilized to generate token 

embeddings with the encoder and the decoder uses a pointer mechanism to generate the next 

index [20, 21, 22]. Yang et. al [20] use this method to tackle flat, nested, and discontinuous 

named entity recognition. In this work, an input sentence is provided to the model, and the 

decoder autoregressively generates the index of the next token in the original sentence to 

generate an output text composed of consecutive entity-tag pairs. For simplicity, we refer to this 
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work as “BARTNER”. While index generation is not strictly a text-to-text system, these models 

are architecturally very similar. In fact, the main reason this approach is used instead of direct 

text generation is to constrain the outputs to valid task structures. 

While these new models achieve SOTA or very competitive results on various tasks, it is 

not very clear what their outstanding performances can be attributed to. Can these results be 

attributed to the underlying PTMs they use? Are the results reproduceable with different types 

and sizes of PTMs? How much do their specific output formats contribute to or limit 

performance? 

In the next sections, the NLP task reformulation paradigm is defined and the historical 

context and progression towards them is highlighted. Next, a discussion of the categorization 

based on output structures is provided. Then, a discussion of the advantages and disadvantages of 

these systems is provided. Before concluding, the questions posed here will be analyzed. To 

summarize, our main contributions in this work are as follows: 

1- We provide a detailed definition for the reformulation paradigm and provide a 

historical context. 

2- We provide a taxonomy for this new paradigm based on their output structures. 

3- We provide detailed analysis and conduct various tests to identify the reasons for the 

success of this paradigm.
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CHAPTER II 

BACKGROUND 

 

Models that use the new paradigm of reformulating or redefining NLP tasks, that have 

traditionally been framed as classification problems, as generation tasks are generative models 

that learn deterministically decodable output formats corresponding to target tasks in the training 

phase and apply that format to new data. In this work, we focus on models that utilize 

transformer-based PTMs such as BERT [1], BART [3], and T5 [4] since these models 

outperform traditional convolutional and recurrent neural network based models due to their 

ability to capture global dependencies [23]. 

PTMs have been successful primarily because they are transfer learning tools which 

extract knowledge from one or more tasks/domains and apply it to a target task/domain [8, 24, 

25]. Although there are several types of transfer learning such as domain adaptation, cross-

lingual learning, and multi-task learning [8], we highlight transfer learning with PTMs and fine-

tuning models for target tasks. This concept is the underlying idea that makes this paradigm 

effective for NLP tasks [10, 26]. 

 

A. Language Representation 

The main benefit of pre-training is learning universal language representations that will 

be useful in downstream tasks [27] since better model initialization leads to faster convergence 

on target tasks [28]. Erhan et al. [29] argue that this is because pre-training is a form of 

regularization. The initial attempts at representing natural language involved word embeddings. 

Later, contextual representations were proposed, and they have become the predominant way in 

which languages are represented [30]. 

 

1. Word Embeddings 

Representing words as feature vectors has been a common approach where, ideally, a 

similarity function can accurately capture the syntactic and/or semantic similarity between words 

through their vector representations. Bengio et al. [31] proposed a method for generating feature 

vectors using a deep neural network. They called these vectors “distributed representations for 
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words”. Collobert et al. [27] showed that converting words into feature vectors can increase 

performance on various downstream NLP tasks such as part-of-speech tagging, semantic role 

labeling, and chunking. These initial findings spawned a great number of subsequent research 

into different ways of representing language such that they capture useful information about 

downstream NLP tasks. 

Mikolov et al. [32] proposed Continuous Bag-of-Words (CBOW) and Skip-gram for 

efficient estimation of word representations that did not require deep learning (there are no non-

linear hidden layers). CBOW predicts the current word from a window of surrounding words 

before and after it without regard for the order of words. Conversely, the Skip-gram model 

predicts a window of surrounding words based on the current word. A simple method for 

representing phrases, where word order matters, was proposed later for both models as well as 

other methods to increase their speed and accuracy [33]. These models were the learning 

mechanisms for Word2Vec. Another popular model in this category is GloVe which is inspired 

by Skip-gram and learns word representations based on global word-word co-occurrence 

statistics [34].  

While word embeddings can capture semantic and syntactic similarities, they suffer from 

several limitations: 

- They do not capture higher-level linguistic concepts such as polysemous disambiguation, 

syntactic structures, semantic roles, and anaphora [8]. 

- Traditional word embedding models like Word2Vec and GloVe, do not have a way to 

deal with out-of-vocabulary (OOV) words. However, a possible way to handle OOV 

words is sub-word-level embeddings like fastText [35]. 

- Reducing words into single points in vector space provides limited semantic 

understanding [36] which is why several works propose different representations such as 

Gaussian embeddings [37], hyperbolic space embeddings [38], and multimodal 

embeddings [39]. 

 

2. Contextual Representations 

To solve some of the issues inherent to word embeddings, several works started 

incorporating representations from the hidden layers of deep learning models to contextualize 

text representations. 
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Dai and Le [5] proposed two recurrent models. The first was a Recurrent Neural Network 

(RNN) based language model [40] that was trained to predict the next word based on previous 

words in a sequence. The second model was a sequence autoencoder inspired by the sequence-

to-sequence (Seq2Seq) encoder-decoder LSTM from Sutskever et al. [41], utilized as an 

unsupervised model whose purpose was to reconstruct the input sequence itself. A supervised 

LSTM model was tested with random initialization and the two recurrent models: Language 

Model initialization (LM-LSTM) and Sequence Autoencoder initialization (SA-LSTM). LM-

LSTM and SA-LSTM both outperformed random initialization and were either competitive with 

or outperformed previous work in sentiment analysis (SA) on IMDB [42] and Rotten Tomatoes 

[43] data sets, as well as text classification tasks on 20 Newsgroups [44] and DBpedia [45] 

(character-level) data sets. 

McCann et al. [28] showed that using the output of Seq2Seq LSTM encoders pre-trained 

on machine translation data sets, can improve performance on downstream tasks such as 

sentiment analysis, question answering, entailment, and classification (specifically, question 

classification). They called these output embeddings Context Vectors (CoVe). Peters et al. [6] 

further improved the performance of contextual representations with ELMo (Embeddings from 

Language Models) by combining the internal states (i.e., combining word representations at each 

layer) of a bidirectional LSTM. Their approach was inspired by research that suggests different 

layers of bidirectional RNNs and LSTMS encode different types of information [46, 47]. 

The generations of GPT [2, 7, 48] and BERT [1] have shown that pre-trained 

transformer-based models are very effective at capturing context since they are not limited to a 

shorter range compared to LSTM-based models [7]. The main architectural difference between 

GPT and BERT is that GPT models are all autoregressive (i.e., only attend to previous context 

by masking out future context), while BERT performs masked language modelling where 

attention is bidirectional. Other PTMs can have different training objectives and architectures 

that are not addressed in this work. 

Even though transfer learning with fine-tuned PTMs have shown great results, there are 

two issues with this approach: 

- Different NLP tasks have different output classes, which limits generalizability over 

multiple tasks [8, 10, 26, 49]. For example, in sentiment analysis, a typical approach is to 

have a binary classifier signifying a positive or negative sentiment in the input. On the 
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other hand, in the entailment task, a multi-class model will classify input as “entail”, 

“contradict” or “neither” [26]. 

- PTMs do not have semantic knowledge of the labels (i.e., classes are represented as 

numbers that correspond to a dictionary of labels). For example, in the sentence “George 

R. R. Martin’s first novel, Dying of the Light, was published in 1977.”, for the joint entity 

and relation extraction task (Figure 2), if the model had knowledge that the “person” 

entity can write a “book”, learning the “author” relation could have been easier [10]. 

 

Raffel et al. [4] proposed a text-to-text framework that is closely related in concept to the 

new paradigm of reformulating or redefining NLP tasks as generation tasks. Their unsupervised 

pre-trained T5 (Text-to-Text Transfer Transformer) model can be considered as part of the 

family of new models that utilize this new paradigm when it is fine-tuned on downstream tasks. 

This approach alleviates the issues with traditional PTMs, but since T5 only differentiates 

between tasks with prefixed inputs (e.g., summarize: text, translate from German to English: text 

for summarization and translation tasks respectively), it is not clear how it can be trained for 

tasks, such as named entity recognition and event extraction, that require rich output structures to 

encapsulate necessary information [11, 26]. 

This paradigm is part of a larger movement that cast NLP tasks that have traditionally 

been approached with discriminative frameworks into a common format or task to facilitate 

multi-task learning. Examples include unifying tasks as question answering [50] or span 

extraction [51]. Generative models have shown great promise in this regard [10, 48]. 

 

B. Motivations for Utilizing the Reformulation Paradigm 

Due to their reliance on PTMs, models in this new paradigm have three important and 

unique features: 

1. They are data-efficient since they attempt to fully utilize the pre-existing language 

understanding of LMs. 

2. They have very expressive output format structures and can encapsulate a variety of 

potentially desired output structures for different tasks with relative ease compared to 

discriminative models. 
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3. They are able to better capture inter-dependencies between tasks during training. For 

example, on joint entity and relation extraction, entity labels facilitate better relation 

extraction (see Figure 2). 

 

Figure 2. Example of joint entity and relation extraction demonstrating the relevance of the semantic meaning of 

entity labels to relation extraction. 

 

For the rest of this section, we detail how these features are the reasons that have 

motivated research into this new paradigm. 

 

1. Low-Resource Settings 

The majority of NLP research is concerned with a handful of languages that enjoy an 

abundance of data, including high-quality annotated data for many NLP tasks. That said, there 

are several domains and tasks that do not have a great deal of high-quality data even in very data-

rich languages such as English. A way to deal with this issue is though transfer learning and, in 

NLP, a popular transfer learning technique is to use PTMs [52]. Additionally, PTMs are helpful 

in low-resource languages where unlabeled data is available, but high-quality annotated data for 

specific NLP tasks are not [25]. 

Relying on PTMs that have been trained on massive amounts of unlabeled data results in 

much greater data-efficiency on downstream tasks. Text2Event [11], TANL [10], and DEGREE 

[16] are all able to perform well in low-resource settings. For example, TANL achieves SOTA in 

few-shot relation classification on FewRel data set. It also outperforms previous SOTA on 

CoNLL04 in low-resource setting where only 0.8% to 6% of the training data is used. DEGREE 

shows that a great deal of the success of the model is due to its ability to make use of label 

semantics which is also the reason that the model performs well in zero-shot and few-shot 

scenarios. 
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2. Multi-Task Learning 

Multi-task learning is a very popular field in NLP and machine learning as a whole. This 

field studies ways to improve both model performance and generalizability. The success of 

transformer based PTMs has generated more interest in this field among NLP practitioners [4]. 

One of the reasons for the construction of the T5 model was to enhance the ability of users to 

perform multiple tasks with the same framework without the need for careful input and output 

engineering. Furthermore, due to the incredible parameter scaling of T5, it achieved SOTA on 

multiple tasks using the “pre-train then fine-tune” paradigm without any specific architectural 

design. 

Work in this new paradigm borrows the text-to-text design of T5 and adds more specific 

and richer output structures to maintain some of the multi-task learnability and improve on 

SOTA in more specific areas. TANL is the most comprehensive model in this domain that 

utilizes T5 and achieves SOTA on multiple structure prediction tasks while enjoying an 

incredible ability to generalize over many tasks. In fact, TANL has demonstrated that fine-tuning 

on multiple tasks at once increases the performance on many tasks [10]. This shows that models 

in this paradigm can capture task inter-dependencies.
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CHAPTER III 

TAXONOMY OF THE PARADIGM 

 

In this section, we provide a taxonomy of models that utilize this approach based on their 

output structures inspired by Min et al. [52]. For certain models and tasks, the input can also 

have specific structures. Table 1 provides a summary of the models described in this section 

along with some examples. 

 

Table 1. Models in the reformulation paradigm. 

 
Model Task(s) 

Example 

Input Output 

A
u

g
m

en
te

d
 T

ex
t 

A
th

iw
ar

at
k

u
n

 

et
 a

l.
 [

2
6

] 

Named Entity 

Recognition 

George R. R. Martin’s first novel, Dying of the Light, 

was published in 1977. 

[ George R. R. Martin | person ]’s first novel, [ Dying of 

the Light | book ], was published in 1977. 

Slot Filling Find me a movie by Steven Spielberg 
((FindMovie)) Find me a [ movie | genre ] by [ Steven 

Spielberg | directed by ] 

T
A

N
L

 [
1

0
] 

Joint Entity and 

Relation Extraction 

George R. R. Martin’s first novel, Dying of the Light, 

was published in 1977. 

[ George R. R. Martin | person ]’s first novel, [ Dying of 

the Light | book | author = George R. R. Martin ], was 

published in 1977. 

Named Entity 

Recognition 

George R. R. Martin’s first novel, Dying of the Light, 

was published in 1977. 

[ George R. R. Martin | person ]’s first novel, [ Dying of 

the Light | book ], was published in 1977. 

Relation Classification 

[Ramon] , [21], excelled in the prestigious pilot training 

course, the military said. The relationship between [ 

Ramon ] and [ 21 ] is 

relationship between [ Ramon ] and [ 21 ] = age 

Semantic Role 

Labeling 

The situation on our side and the enemy's side [ was ] 

intertwined. 

[ The situation on our side and the enemy's side | ARG1 

] was intertwined. 

Event Extraction 

Trigger detection input: Two soldiers were attacked 

and injured yesterday. 

Argument extraction input (1): Two soldiers were [ 

attacked | attack ] and injured yesterday. 

Argument extraction input (2): Two soldiers were 

attacked and [ injured | injury ] yesterday. 

Trigger detection output: Two soldiers were [ attacked 

| attack ] and [ injured | injury ] yesterday. 

Argument extraction output (1): [ Two soldiers | 

individual | target = attacked ] were attacked and injured 

[ yesterday | time | attack time = attacked ]. 

Argument extraction output (2): [ Two soldiers | 

individual | target = injured ] were attacked and injured [ 

yesterday | time | attack time = injured ]. 

Coreference 

Resolution 

Barack Obama nominated Hillary Rodham Clinton as 

his secretary of state on Monday. He chose her because 

she had foreign affairs experience as a former First 

Lady. 

[ Barack Obama ] nominated [ Hillary Rodham Clinton ] 

as [ his | Barack Obama ] [ secretary of state | Hillary 

Rodham Clinton ] on Monday. [ He | Barack Obama ] 

chose [ her | Hillary Rodham Clinton ] because [ she | 

Hillary Rodham Clinton ] had foreign affairs experience 

as a former [ First Lady | Hillary Rodham Clinton ]. 
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Table 1. (continued). 

 Model Task(s) Input Output 

  

Dialogue State 

Tracking 

[ user ] : I am looking for a place to stay that has cheap 

price range it should be in a type of hotel [ agent ] : 

okay, do you have a specific area you want to stay in? [ 

user ] : no, i just need to make sure it s cheap. oh, and i 

need parking 

[ belief ] hotel area not given, hotel book day not given, 

hotel book people not given, hotel book stay not given, 

hotel internet not given, hotel name not given, hotel 

parking yes, hotel price range cheap, hotel stars not 

given, hotel type hotel [ belief ] 

G
A

S
-A

N
N

O
T

A
T

IO
N

 [
5
3

] 

Aspect Opinion Pair 

Extraction 
Salads were fantastic, our server was also very helpful. 

[Salads | fantastic] were fantastic here, our [server | 

helpful] was also very helpful. 

Unified Aspect-based 

Sentiment Analysis 
Salads were fantastic, our server was also very helpful. 

[Salads | positive] were fantastic here, our [server | 

positive] was also very helpful. 

Aspect Sentiment 

Triplet Extraction 
The Unibody construction is solid, sleek and beautiful. 

The [Unibody construction | positive | solid, sleek, 

beautiful] is solid, sleek and beautiful 

Target Aspect 

Sentiment Detection 

A big disappointment, all around. The pizza was cold 

and the cheese wasn’t even fully melted. 

A big disappointment, all around. The [pizza | food 

quality | negative] was cold and the [cheese | food 

quality | negative] wasn’t even fully melted [null | 

restaurant general | negative]. 

G
E

N
R

E
 [

1
4

] 

End-to-End Entity 

Linking 

SOCCER − RESULT IN SPANISH FIRST DIVISION. 

MADRID 1996−08−31 Result of game played in the 

Spanish first division on Saturday: Deportivo Coruna 1 

Real Madrid 1. 

SOCCER − RESULT IN [SPANISH] (Spain) FIRST 

DIVISION [MADRID] (Madrid) 1996−08−31 Result of 

game played in the [Spanish] (Spain) first division on 

Saturday: Deportivo Coruna 1 [Real Madrid] (Real 

Madrid C.F.) 1. 

L
in

ea
ri

ze
d

 T
ex

t 

T
ex

t2
E

v
en

t 

[1
1

] 

Event Extraction Two soldiers were attacked and injured yesterday. 

((attack attacked (individual Two soldiers) (time 

yesterday)) 

 (injury injured (individual Two soldiers) (time 

yesterday))) 

R
E

B
E

L
 [

1
3

] 

 

“This Must Be the Place” is a song by new wave band 

Talking Heads, released in November 1983 as the 

second single from its fifth album “Speaking in 

Tongues” 

<triplet> This Must Be the Place <subj> Talking Heads 

<obj> performer <subj> Speaking in Tongues <obj> part 

of <triplet> Talking Heads <subj> new wave <obj> 

genre <triplet> Speaking in Tongues <subj> Talking 

Heads <obj>performer 

T
em

p
G

en
 [

1
8

] 

Role-filler Entity 

Extraction 

Two U.S. mormon missionaries -- aged 19 and 21 -- 

were shot to death last night by a group of terrorists from 

the Zarate Wilka Armed Forces of Liberation (FAL). ... 

blew up the lines providing power to La Paz, ... the U.S. 

citizens -- Todd Ray Wilson Burdenson and Jeffrey 

Brent Ball -- .... they were killed with two bursts of 

machinegun fire. ... 

<SOT><SOSN>PerpInd<EOSN><SOE>group of 

terroists<EOE><SOSN>PerpOrg<EOSN><SOE>Zarate 

Wilka Armed Forces of 

Liberation<EOE>...<SOSN>Weapon<EOSN><SOE>m

achinegun<EOE><EOT> 

Relation Extraction 

Introduction: Natural language inference ( NLI ) is an 

important and significant task in natural language 

processing ( NLP ) ... 

Method: We ... denote the modified ESIM as aESIM... 

Experiments: The accuracy ( ACC ) of each method is 

measured by the commonly used precision score ... It 

also achieved 88.01 % on Quora ... 

<SOT><SOSN>Task<EOSN><SOE>Natural Language 

Inference<EOE><SOSN>Method<EOSN><SOE>aESI

M<EOE><EOT><SOT><SOSN>Material<EOSN><SO

E>Quora<EOE><SOSN>Metric<EOSN><SOE>accura

cy<EOE><EOT> 

G
A

S
-E

X
T

R
A

C
T

IO
N

 

[5
3

] 

Aspect Opinion Pair 

Extraction 
Salads were fantastic, our server was also very helpful. (Salads, fantastic); (server, helpful) 

Unified Aspect-based 

Sentiment Analysis 
Salads were fantastic, our server was also very helpful. (Salads, positive); (server, positive) 

Aspect Sentiment 

Triplet Extraction 
The Unibody construction is solid, sleek and beautiful. 

(Unibody construction, solid, positive); (Unibody 

construction, sleek, positive); (Unibody construction, 

beautiful, positive); 
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Table 1. (continued). 

 
Model Task(s) 

Example 

Input Output 

 

 

Target Aspect 

Sentiment Detection 

A big disappointment, all around. The pizza was cold 

and the cheese wasn’t even fully melted. 

(pizza, food quality, negative); (cheese, food quality, 

negative); (null, restaurant general, negative); 

T
em

p
la

te
 F

il
li

n
g

 

D
E

G
R

E
E

 [
1
6

] 

Event Extraction 

Input 1: Two soldiers were attacked and injured 

yesterday. [SEP] The event is related to conflict and 

some violent physical act. [SEP] Similar triggers such as 

war, attack, terrorism [SEP] Event trigger is <Trigger> 

[SEP] some attacker attacked some facility, someone, or 

some organization by some way in somewhere at some 

time.3 

Input 2: ... [SEP] … life and someone is injured. [SEP] 

… injure, wounded, hurt [SEP] Event trigger is 

<Trigger> [SEP] somebody or some organization led to 

some victim injured by some way in somewhere at some 

time. 

Output 1: Event trigger is attacked [SEP] some attacker 

attacked Two soldiers by some way in somewhere at 

yesterday.3 

Output 2: Event trigger is injured [SEP] somebody or 

some organization led to Two soldiers injured by some 

way in somewhere at yesterday.  

B
A

R
T

-G
en

 [
1

7
] 

Document-Level Event 

Argument Extraction 

<s> <arg1> bought, sold, or traded <arg3> to <arg2> in 

exchange for <arg4> for the benefit of <arg5> at <arg6> 

place <s></s> Elliott testified that on April 15, McVeigh 

came into the body shop and <tgr> reserved <tgr> the 

truck, to be picked up at 4pm two days later. 

Elliott said that McVeigh gave him the $280.32 in exact 

change after declining to pay an additional amount for 

insurance. 

Prosecutors say he drove the truck to Geary Lake in 

Kansas, that 4,000 pounds of ammonium nitrate laced 

with nitromethane were loaded into the truck there, and 

that it was driven to Oklahoma City and detonated. </s> 

Elliott bought, sold or traded truck to McVeigh in 

exchange for $280.32 for the benefit of <arg> at body 

shop place. 

In
d
ex

 G
en

er
at

io
n

 

B
A

R
T

N
E

R
 

[2
0

] Named Entity 

Recognition 
<s> The Lincoln Memorial </s> 

123524 

Decoded: The Lincoln Memorial <dis> Lincoln </s> 

B
A

R
T

A
B

S
A

 [
2

1
] 

Aspect Term 

Extraction 
 1, 2, 12, 12, </s> 

Opinion Term 

Extraction 
 4, 4, 7, 8, 14, 14, </s> 

Aspect-level Sentiment 

Classification 

The wine list is interesting and has good values, but the 

service is dreadful. 

1, 2 , POS, </s> 

12, 12, POS, </s> 

Aspect-oriented 

Opinion Extraction 
 

1, 2, 4, 4, 7, 8, </s> 

12, 12, 14, 14, </s> 

Aspect Term Extraction and 

Sentiment Classification 
 1, 2, POS, 12, 12, NEG, </s> 

Pair Extraction  1, 2, 4, 4, 1, 2, 7, 8, 12, 12, 14, 14, </s> 

Triplet Extraction  1, 2, 4, 4, POS, 1, 2, 7, 8, POS, 12, 12, 14, 14, POS, </s> 

R
o
n
g
al

i 
et

 a
l.

 

[2
2
] 

Slot Filling Play top hits country 
PlayMusicIntent SortType( @ptr1 )SortType 

MediaType(@ptr2)MediaType 

 

 
3 The original templates in DEGREE do not contain a time aspect. We have added this part for illustration. 
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We define the paradigm as techniques that take, as input, natural language text, and have, 

as their output, decodable task specific structures. For models in this paradigm, the direct output 

is made up of structured text that can be deterministically decoded into target task structures 

apart from models in the index generation category where the output is indexes decoded into the 

target task structure. For example, works by Yan et al. [20] and Rongali et al. [22] generate word 

indexes for aspect-based sentiment analysis and semantic parsing respectively. These methods 

are architecturally very similar as they all utilize PTMs for their generative prediction process 

(Figure 3). 

 

Figure 3 - General output structure of models in the reformulation paradigm. Natural language input is provided to a 

bidrectional transformer-based encoder, and an autoregressive decoder outputs structured natural language. Natural 

language input could include triggers for tasks such as event triggers for event argument extraction or 

appended/prepended with predefined templates. Structured natural language output can be some augmented form of 

the input or a predifined structure that encapsulates the target task output. For index generation, this block is a set of 

indexes representing structured natural language. Final decoded task structure is used to detrmine the efficacy of the 

model. 

 

It should be noted that certain NLP tasks such as machine translation and text 

summarization are already text generation tasks, but this work focuses only on works that 

reformulate discriminative tasks as text or index generation. That said, language models have 

been shown to learn text generation tasks without any supervision [2]. Hence, it could be 

hypothesized that reformulating discriminative tasks as generation tasks could also benefit from 

the prior language understanding of language models. To this end, the reformulation process of a 

discriminative task into a generative task is a three-step process: 

1. Given an input sequence 𝑥, design an output sequence 𝑦 such that it includes the 

necessary information about desired labels for the input sequence. 

2. Train a PTM to generate y conditioning on the input 𝑥; modeling 𝑃(𝑦|𝑥). 

3. Decode 𝑦 to retrieve the desired labels for a given task. 
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The last step in the above process is in the form of an algorithm whose purpose is to 

extract the final desired task structures. To retrieve these structures, it is essential that y be 

designed such that labels are decodable in a deterministic manner. 

In the following subsections, models are divided into four categories based on their 

output structures: augmented text, linearized text, template filling, and index generation. 

 

A. Augmented Text 

The output structure of models that use this method is a copy of the input text augmented 

with labels, structure indicators, and parts of the input text (when tokens are related in some 

manner). The reason that all input text is copied is that it improves performance and reduces 

ambiguities when the input contains multiple instances of the same entity [10]. 

Augmented text outputs were first explored by Athiwaratkun et al. [26] on named entity 

recognition as well as slot labeling and intent classification tasks. TANL [10] extends this to 

various structured prediction tasks. Both these works utilize T5 PTMs to generate the augmented 

text. To decode this augmented text structure, they use the Needleman-Wunsch dynamic 

programming (DP) based alignment algorithm to identify tokens that match the input text. This 

strategy has the added benefit of being able to correctly identify slightly misspelled words in the 

generated augmented text, which their ablation studies show to be very beneficial to the overall 

performance of their model. 

GENRE [14] is a model that performs entity retrieval in an autoregressive manner. It is 

used for entity disambiguation, document retrieval, and end-to-end entity linking. For the 

disambiguation and retrieval tasks, the output is only a set of candidate titles from the knowledge 

base. For entity linking, the output is an augmented representation of the input text where 

mentions followed by their links, the title in the knowledge base, are each enclosed using special 

tokens. GENRE ensures that the generated output only contains valid entities using a constrained 

beam search strategy where a trie specifies all the possible continuations conditioned on the 

tokens generated prior to the next step. 

GAS [53] applies a TANL-like format to aspect-based sentiment analysis. Instead of 

using DP alignment, this model uses a prediction normalization strategy where a list of valid 

outputs is constructed corresponding to the input text and labels for each subtask tackled in the 
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work. Then, if a predicted token does not correspond to any valid output, it is transformed into a 

valid output token that has the smallest Levenshtein distance to it. In addition to this approach 

that they call “annotation-style”, they also use an “extraction-style” which is a structure 

linearized text output with aspect, opinion, and sentiment polarity triplets similar to approaches 

discussed in section B below. 

 

B. Linearized Text 

Tasks that have more complex prediction structures such as event extraction and joint 

entity and relation extraction often require decomposing the task into multiple subtasks that are 

predicted and combined to create the finalized output structure [54, 55]. However, these 

approaches suffer from two issues: (1) they need annotated data for each subtask, and (2) they 

suffer from error propagation from one subtask to another [11]. To solve these issues, some end-

to-end models propose using a linearized output structure that corresponds to the whole task 

structure. 

In Text2Event [11] The decoder is trained to predict the output (a linearized event 

structure) for event extraction with decoder state in cross-attention with encoder state (as is the 

case with traditional encoder-decoder machine translation). The linearized event structure is 

different from a natural sentence structure. The output does not follow syntax constraints of 

regular sentences and contains many "(" and ")" as structure indicators that do not appear as 

frequently in other contexts. So, curriculum learning is employed to mitigate this issue. The 

model is first pre-trained on a simpler similar task (only predicts label and span), and it is trained 

on the actual task afterwards. This approach significantly improves the model’s accuracy. To 

construct a linearized format from an event record, the record is first converted into specially 

constructed tree structures, and depth-first traversal is used (to linearize the tree) such that at 

each level of depth, the order of the linearized event structure is the same order in which token 

spans appear in the input. Like GENRE, this model uses trie based constrained decoding. 

REBEL [13] is architecturally similar to Text2Event. However, this model does not use 

any strategy to deal with issues observed in Text2Event when training on complex and highly 

structured tasks. Instead, they pre-train their model on a large dataset called the REBEL dataset. 

The model significantly outperforms TANL and other SOTA systems only when it is trained on 

the REBEL data set. 
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TempGen [18] analogizes the linearized text outputs to summarization. Using this 

intuition, the authors of this work enhance the ability of TempGen’s underlying BART PTM to 

identify the most salient input tokens to be outputted by the decoder using a cross-attention 

guided copy mechanism. Copy mechanisms allow summarization models to copy salient words 

from the input into the output [56]. With their mechanism, only the Top-k attention heads with 

the greatest significance scores are used to compute the final probability of a word in the 

decoder. This approach allows their model to achieve SOTA on document-level entity-based 

extraction tasks. 

 

C. Template Filling 

Structured prediction tasks can be formulated as templates. In this strategy, the model has 

templates for each target structure and fills in the necessary information based on the input text. 

DEGREE [16] utilizes a predefined end-to-end template that contains special tokens to be 

predicted by the decoder. For event detection, the template only consists of Event trigger is 

<trigger> where <trigger> is the special token to be replaced by the correct sequence in the input 

text. For event argument extraction, custom templates are constructed based on the event type 

and contain placeholders that are to be replaced by the model with event arguments extracted 

from the input text. These two tasks can be combined into event extraction where the template is 

the combination of the event detection template followed by the argument extraction template. 

To decode final predictions from the output, the replaced placeholders are detected by comparing 

the raw template to the model output. These text spans are then tokenized along with the input 

text to detect the matching positions in the original input text. 

Li et al. [17] propose a very similar document-level event argument extraction method. 

BART-Gen defines a template with event argument placeholders for any given event type and 

prepends it to the raw input text. To reduce argument type mismatch, the template is appended 

with “clarifications” for each argument (<arg> is a <type>). The PTM is then used to rank the 

predicted arguments rather than using a greedy approach. This model and DEGREE both utilize 

BART as their underlying PTM. 
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D. Index Generation 

Ensuring that generative models do not output invalid identifiers is a challenge in the 

reformulation paradigm. Even though some models have competitive results with free 

generation, we have discussed several strategies that either ensure valid identifier decoding or try 

to mitigate and enhance the model’s ability to generate the least number of invalid ones possible. 

An additional strategy that ensures valid generation is to decode token indexes rather than actual 

text. 

BARTNER [20] and BARTABSA [21] implement this approach to reformulate named 

entity recognition and aspect-based sentiment analysis tasks into generation tasks respectively. 

Both systems use an encoder to generate token embeddings and a decoder that utilizes a pointer 

mechanism to generate entity and label indexes autoregressively. Pointer indexes are then 

converted back to the tokens in their respective index in the original sentence and tag indexes are 

converted back to the corresponding token(s) in the task specific label list. 

Rongali et al. [22] propose a similar approach for task-oriented semantic parsing where a 

BERT encoder creates input token embeddings. The target output of this model is a series of 

slots prepended by an intent type. Each slot starts and ends with the slot name with a series of 

indexes pointing to the tokens in the input sentence that correspond to the slot type. 
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CHAPTER IV 

EXPLORING THE REFORMULATION PARADIGM 

 

Redefining classification tasks as generation tasks has several unique qualities that 

require exploration and analysis. We conduct several experiments on different systems to explore 

this paradigm. Since we conduct these experiments in different environments and sometimes 

with different model hyperparameters, we provide the default results we have achieved for the 

models when applicable. 

 

A. Changing Input and Output Formats 

One of the main aspects of this paradigm is that the output of the system is natural 

language text. Many models in this paradigm are trained to translate input text into a predefined 

output text structure that can be decoded into the desired output structure of the task. These 

models take advantage of the presence of the target labels using the semantic understanding of 

PTMs for better predictions. Additionally, special tokens are utilized to specify or separate 

different parts of the output structure. We explore the impact of changing these structures and 

label semantics to better understand their impact on the performance of these systems. 

Specifically, we conduct experiments with TANL [10], REBEL [13], and DEGREE [16]. 

With TANL, we use a slightly different output format by changing special tokens [, |, and 

] to {, ~, and } respectively to see if the model is sensitive to different structure marker tokens. 

Additionally, we test the impact of changing entity and relation type names on CoNLL04 data set 

for joint entity and relation extraction on TANL. Entities and relation types are given their short 

names rather than their verbose counterparts. Table 2 details the label semantic changes that have 

been made. On REBEL, we conduct an experiment similar to the first with TANL by changing 

entity markers for CoNLL04 on relation extraction to natural language names rather than the 

default data set short tags based on those provided in Table 2. It should be noted that while we do 

use the short entity labels as special tokens, we are not explicitly performing entity extraction 

here. 

Results on TANL (Table 3) show that using different marker tokens and labels have 

more, generally negative, impact on entity extraction while, there is little impact on relation 
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extraction. REBEL seems to have been slightly negatively impacted in relation extraction when 

using natural entity markers. 

 

Table 2. CoNLL04 transformed entity and relation type labels from natural language to abbreviated labels. 

Default natural language labels Short labels 

Entities 

location Loc 

organization Org 

person Peop 

other Other 

Relations 

works for Work_For 

kills Kill 

organization based in OrgBased_In 

lives in Live_In 

located in Located_In 

 

Table 3. Experiments on TANL (T5 Base) and REBEL (BART Large) with changing output format and labels. 

Percentage of change in micro-F1 score from baseline for the CoNLL04 data set shows significant negative impact 

on entity extraction, but smaller impact on relation extraction. 

 
Experiment 

P R F1 % Change 

Ent. Rel. Ent. Rel. Ent. Rel. Ent. Rel. 

TANL 

Special tokens [ | ] to { ~ } 90.17 77.17 85.82 67.30 87.94 71.90 -2.65 -0.19 

Entity names 89.47 74.70 89.19 69.23 89.33 71.86 -1.11 -0.25 

Relation names 90.11 73.85 89.76 70.14 89.93 71.93 -0.44 -0.15 

Entity and relation names 89.19 75.39 89.43 68.96 89.31 72.30 -1.13 +0.36 

REBEL Relation names - 71.68 - 70.44 - 71.06 - -0.31 

 

Next, we conduct experiments on DEGREE where we provide wrong prompt 

components in the ACE05-E data set without any additional changes to the end-to-end template. 

This experiment allows us to get a better understanding of the impact of prompt semantics on 

predictions. We train the models using the wrong prompts in the training and test them with a set 

of incorrect prompts consistent with the wrong training prompts. We repeat this process two 

times. First, we only change the event type definitions by randomly assigning them to an event 

type in the experiment. Then, we change both the definitions and event keywords. In this setting, 

the event type definitions and keywords belong to the same event type in the correct setting but 

assigned to a random event type in the experiment. Providing false prompts to DEGREE 

significantly diminishes performance on all event extraction criteria even when the test set is 

consistently assigned the same wrong prompts as shown in Table 4. Interestingly, the model with 
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wrong event type definitions and keywords performs better overall. This is likely due to the 

model being less confused when it has more consistent prompts. 

 

Table 4. Experiments on DEGREE with wrong prompt components. Results and percentage of change in micro-F1 

scores from baseline for end-to-end model with BART Base on event extraction in ACE05-E shows significant 

negative impact on performance. 

 Changing Event Type Definitions 

 P R F1 % Change 

Trig-I 86.10 61.20 71.55 -4.56% 

Trig-C 83.13 56.78 67.47 -5.17% 

Arg-I 69.34 41.69 52.07 -4.23% 

Arg-C 66.01 39.59 49.50 -4.22% 

 Changing Event Type Definitions and Keywords 

 P R F1 % Change 

Trig-I 85.36 63.47 72.80 -2.89% 

Trig-C 81.89 59.25 68.75 -3.37% 

Arg-I 64.71 43.63 52.12 -4.14% 

Arg-C 61.03 40.98 49.04 -5.11% 

 

These results on TANL, REBEL, and DEGREE indicate that models are sensitive to the 

format and semantic meaning of the data. This means that such models can be optimized and 

tuned using different structures, labels, and prompts. Additionally, each part of the data may 

require not just specific fine-tuning but also an iterative process where different labels and tokens 

are tested together for parts of the data to achieve optimal performance. 

Finally, another aspect of these models is that they have text as inputs and outputs. This is 

very significant since many of them require very large input text and generate large outputs 

which requires more resources. However, longer tokens and output structures may not always 

lead to better results. For example, using longer, more natural, language for labels in REBEL did 

not lead to a better performance and using short labels for relation types in TANL lead to better 

performance on relation extraction with some negative impact on entity extraction. Furthermore, 

this issue of sequence length is exacerbated when dealing with tasks that inherently require much 

larger input and output sequences when using some of the models.  

An example of a model that requires very lengthy inputs and outputs is TANL, and since 

it requires that the entire sequence be generated in the output natural language, its performance 

suffers when applied to document-level tasks such as role-filler entity extraction. To explore the 

limitations with output sequence lengths, we test TANL on this task on MUC-4 [57] dataset. 

Following GRIT’s [58] formulation, the first occurrence of each entity span is found in a 
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document and assigned as the golden token spans, but we do not take those whose first 

occurrence are part of the first word (e.g. if “men” is a mention and the word “government” 

occurs before “men” in the document). We do not precisely follow GRIT’s evaluation metric for 

this task. We find the list of predictions that are in the gold labels and only take one correct 

prediction for each entity and remove all coreferent mentions in the gold labels. We use T5 Base 

with 512 token sequences. The model does not observe approximately 12.66% of entity 

occurrences due to document lengths in the dataset. We also experiment with training with 512 

input tokens and 1024 output tokens and observe a substantial amount of improvement in model 

recall due to the better entity coverage as shown in Table 5. Thus, checking the data in terms of 

the input and output lengths is necessary to achieve reasonable results. 

 

Table 5. TANL on MUC-4 for document-level role-filler event extraction. Results show that short token sequences 

result in much worse recall. 

Output Length P R F1 

512 64.26 36.59 46.63 

1024 64.47 44.03 52.33 

 

B. Changing PTM Sizes 

Since these models take advantage of PTMs for label semantic understanding and data 

efficiency, we hypothesize that their performances are heavily dependent on the underlying 

PTMs. To test this hypothesis, we experiment with different sizes of PTMs for TANL, GENRE, 

REBEL, GenIE, TempGen, BARTNER, and DEGREE. The default PTMs utilized in each work 

are used to establish the baselines. All models are tested with smaller sized variants of the PTMs 

except for TempGen where we replace BART Base with BART Large. The results of these 

experiments are shown in Table 6. The models are trained and tested in the following manner: 

 

a- TANL is trained on CoNLL04 (training and development set), GENIA, and 

CoNLL2012 separately. 

b- GENRE is trained on BLINK and tested on AIDA, MSNBC, ACE2004, AQUAINT, 

CWEB, and WIKI. 

c- REBEL is trained on CoNLL04 and NYT separately without fine-tuning on the 

REBEL data set. 
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d- GenIE is trained on the Wiki-NRE training set and tested on Wiki-NRE test set and 

Geo-NRE dataset using the small Wiki-NRE evaluation schema. 

e- BARTNER is trained on GENIA and CoNLL2003 separately. On GENIA, we train 

and test with all three entity representations proposed in the work whereas we only 

use the Word representation for CoNLL2003. 

f- DEGREE is trained on ACE05-E data set in the end-to-end configuration. 

g- TempGen is trained on MUC-4 and SCIREX separately. 

 

Table 6. Experiments on changing PTM sizes for generative models that reformulate NLP classification tasks into 

text generation tasks. F1 score pairs are provided for the system’s default PTM and the new PTM size. 

Default 

PTM 

New 

PTM 
 Task Data Set Default F1 F1 

T
5

 B
as

e 

T
5

 S
m

al
l 

TANL 

Joint Entity and 

Relation Extraction 
CoNLL04 

Ent. 90.33 87.74 

Rel. 72.04 66.34 

Named Entity 

Recognition 
GENIA 76.40 75.21 

Semantic Role 

Labeling 
CoNLL2012 84.96 83.17 

B
A

R
T

 L
ar

g
e 

B
A

R
T

 B
as

e
 

GENRE 
Entity 

Disambiguation 

AIDA 76.34 72.42 

MSNBC 77.13 73.93 

ACE2004 74.71 75.1 

AQUAINT 78.95 74.14 

CWEB 63.05 59.23 

WIKI 74.83 71.82 

REBEL Relation Extraction 
CoNLL04 71.28 67.26 

NYT 90.84 89.02 

GenIE 
Closed Information 

Extraction 

Wiki-NRE 
Micro 89.51±0.15 91.05±0.15 

Macro 40.25±1.66 37.09±1.55 

Geo-NRE 
Micro 87.03±0.98 89.81±0.86 

Macro 54.01±7.06 51.59±6.32 

B
A

R
T

N
E

R
 

Word 

Nested Named 

Entity Recognition 
GENIA 

77.99 78.20 

Span 78.79 78.56 

BPE 78.60 76.14 

Word 
Named Entity 

Recognition 
CoNLL2003 93.14 91.77 
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Table 6. (continued). 

Default 

PTM 

New 

PTM 
 Task Data Set Default F1 F1 

  DEGREE Event Extraction ACE05-E 

Trig-I 75.49 74.97 

Trig-C 71.74 71.15 

Arg-I 56.54 54.37 

Arg-C 54.44 51.68 

B
A

R
T

 

B
as

e
 

B
A

R
T

 

L
ar

g
e 

TempGen 

Role-filler Entity 

Extraction 
MUC-4 56.09 52.69 

Binary Relation 

Extraction 
SCIREX 14.78 11.42 

 

Changing PTM size generally has a negative impact on performance. This is somewhat 

expected with smaller PTMs since larger PTMs usually have better understanding of language 

semantics. Different models and data sets within models are not equally affected.  

On GENRE, performance decreases for all tested data sets except ACE2004. With 

BARTNER, there is not much difference between the utilized PTM sizes for Word and Span 

representations on GENIA while the smaller PTM leads to worse performance for Word 

representation on CoNLL2003. While there is an improvement in micro-F1 with the smaller 

PTM on GenIE, macro-F1 is higher in both tests, which means that the larger PTM performs 

better on less frequent relations in the data sets. We also observe that a larger PTM diminishes 

performance on TempGen. This is likely because we use the same number of cross-attention 

heads (K = 10) for the larger PTM (with 16 heads rather than 12). Further investigation would 

be required to find the ideal K for BART Large. 

These results indicate that while we could generally assume models in this paradigm 

benefit from the better semantic understanding of larger PTMs, there may be cases where the 

trade-off between different PTM sizes may lead to choosing smaller variants rather than larger 

ones. 

 

C. Using Fine-tuned PTMs 

BART has been fine-tuned for several downstream tasks using large data sets. Since such 

variants have different embeddings, we hypothesize that different variants may have an impact 

on models that rely on them in downstream tasks. We test BARTNER and REBEL with BART 



 

34 

Large CNN/DM and XSum; variants that have been fine-tuned on news summarization. BART 

Large CNN/DM generates long summaries which are close to the source sentences while BART 

Large XSum is highly abstractive. We specifically choose to test REBEL since it does not apply 

any constraint on the output sequence generation. Results for these experiments are presented in 

Table 7. 

Table 7. Experiments on fine-tuned variants of BART Large PTM for REBEL and BARTNER using CoNLL04 and 

GENIA data sets respectively. Results and percentage of change in micro-F1 from default BART Large are 

provided. 

 Data Set Fine-tuned Model P R F1 % Change 

REBEL CoNLL04 

BART Large CNN/DM 50.81 61.82 55.78 -21.75 

BART Large CNN/DM 

(Output length: 32) 
54.59 65.41 59.51 -16.51% 

BART Large XSum 69.17 67.98 68.57 -3.80 

BARTNER 

(Word) 
GENIA 

BART Large CNN/DM 79.54 76.55 78.02 +0.04 

BART Large XSum 79.51 76.48 77.97 -0.03 

 

Performance on BARTNER does not vary with different underlying PTM variants. This 

is likely because the encoder is much more relevant in the underlying PTM since the decoder is 

trained in a completely new manner using the pointer mechanism. With the CNN/DM variant, 

we see that too many relations are predicted on REBEL. We hypothesize that this is due to the 

fine-tuning phase that the PTM has had where it was trained to generate sentences similar to 

those in the input sequence. We test with decreasing the output sequence length for REBEL from 

128 to 24 to artificially constrain the model output text. As expected, this results in a higher 

precision. It is therefore important to analyze the PTMs to be used in this paradigm especially 

when they are fine-tuned for specific downstream tasks. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 

Models in the reformulation paradigm have been shown to be incredibly effective on 

several classic NLP tasks, achieving SOTA results on numerous data sets. One of the greatest 

advantages of these models is that they can generalize to several, and sometimes disparate, tasks 

and subtasks. For example, Text2Event and DEGREE unify event extraction subtasks. Much 

more broadly, TANL unifies structured prediction tasks. Another significant advantage is that 

these models can make use of PTMs for effective prediction under few-shot and zero-shot 

scenarios [16, 26]. 

However, such models have several shortcomings. The following is a discussion of some 

of these shortcomings as well as possible ways to address them. They can be summarized into 

the following three points: 

1- The quadratic complexity of transformer based PTMs makes them difficult to 

compute 

2- Due to their generative nature, it is difficult to impose semantic and ontological 

constraints. 

3- These is a lack of standardization in utilizing PTM which makes it difficult to reliably 

discern which part of the model contributes to better performance. 

The models discussed in this survey are all Transformer-based models which have time 

and space complexities of O(L2), where L is sentence length [23]. This can limit the use of such 

models due to memory and time constraints as well as financial and environmental 

considerations [59]. While certain models such as REBEL specifically try to minimize the input 

and output sequence sizes, this issue is further amplified with template filling models like 

DEGREE which appends very lengthy sentences and prompts to the raw input to achieve better 

data efficiency. However, this limitation is due to the inefficiency of transformers rather than the 

models themselves and could be improved upon with more efficient transformers such as 

Reformer [60], Linformer [61], and transformers with clustered attention [62]. That said, to the 

best of our knowledge, no model in this paradigm has attempted to use efficient transformers as 

their backbones. 
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Another concern with utilizing generative models is that the target NLP tasks have 

specific output structures that cannot be overlooked. Generative models could output a wrong 

structure or even generate labels that do not exist. Models like Text2Event can prevent such 

issues more easily since they deal with either a single task or structurally similar tasks where the 

output can be constrained to only generate valid structures. BART-Gen and DEGREE provide 

extensive context to the language model to minimize such mistakes. However, these solutions 

are not feasible for TANL since one of the most important aspects of this model is the fact that it 

unifies multiple tasks into a single framework. Constraining the structure in one way to ensure 

validity for a task, may lead to disastrous results for other tasks. This is presumably why TANL 

does not impose any restrictions on the model to generate valid outputs. Step Decomposed and 

Constrained Text-to-Text Transformer (SDCT5) [63], a model based on TANL, attempts to 

address this issue by decomposing the decoding process into three stages such that all tasks share 

the same structure at the initial stage, and valid tokens could be generated in later stages. While 

this model does ensure that valid structures are generated, it only outperforms TANL marginally. 

The author hypothesizes that this is due to exposure bias since output constraints are only applied 

during inference. 

Finally, a more general concern is that these models use different PTMs. Since 

performance on specific downstream tasks can depend on the choice of PTM [4], it is difficult to 

analyze whether the remarkable performance achieved by these models reflects the effectiveness 

of their architectures or if it is due to the outstanding language understanding of a specific PTM, 

and its fit for the target tasks. A possible way to discern the effectiveness of a specific model 

architecture would be to investigate its performance without pre-training. Unfortunately, many of 

the models reviewed in this work do not provide this data. Another possibility would be to train 

all the models on the same PTM of the same size, but this may sometimes change aspects of the 

models in undesirable ways since different PTMs have different training objectives and token 

associations. 

In this work, we explored a new paradigm in NLP where tasks are reformulated as text 

generation tasks. We provided a brief history of the more significant milestones that lead to the 

emergence and progress of this paradigm. We provided a taxonomy based on the output 

structures of these works and explored some of the representative models in each type. Finally, 

we explored several the models to better understand the different aspects of said models in terms 
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of their output representations, PTM sizes, and PTM variants. We found that these models are 

sensitive to the specific output formats. Utilizing smaller PTMs generally lead to poorer 

performance on various tasks. We also found that different models vary in the way they are 

impacted by PTM variants. Finally, we discussed a number of limitation and possible future 

directions in this section. 
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