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DISSERTATION ABSTRACT

Elisa Bellah

Doctor of Philosophy

Department of Mathematics

June 2022

Title: Linear Recurrence Sequences in Diophantine Analysis

Diophantine analysis is an area of number theory concerned with finding

integral solutions to polynomial equations defined over the rationals, or more

generally over a number field. In some cases, it is possible to associate a well-

behaved recurrence sequence to the solution set of a Diophantine equation, which

can be useful in generating explicit results. It is known that the solution set to

any norm form equation is naturally associated to a family of linear recurrence

sequences. As these sequences have been widely studied, Diophantine problems

involving norm forms are well-suited to be studied through their associated

sequences. In this dissertation, we use this method to study two such problems.
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1. Motivation

Diophantine analysis is an area of number theory concerned with finding

integral solutions to Diophantine equations; that is, equations of the form

F (x1, . . . , xn) = 0,

where F is a polynomial defined over the rationals, or more generally over a

number field. Given such a Diophantine equation, typical problems include (1)

determining the existence of solutions, (2) studying their distribution, and (3)

giving explicit descriptions of the solution set and its arithmetic properties.

Possibly the most famous Diophantine problem is on the existence of solutions to

the Fermat equation

xn + yn = zn (1.1.1)

where n is some fixed positive integer. Conjectured by Fermat in the 17th century,

and then only recently proven in the 1990s, it is now known that there are no

positive integer solutions to (1.1.1) when n ≥ 3. The solution set in the remaining

nontrivial case, when n = 2, make up the Pythagorean triples. It is classically

known that there are infinitely many Pythagorean triples, opening up further

Diophantine problems. Explicit problems on the distribution of Pythagorean

triples (as in [3] and [21]) and their arithmetic properties (as in [25] and [31]) have

been widely studied. It is often the case that explicit Diophantine results such as
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these lead to applications in cryptography and information security (see [18] for

applications of Pythagorean triples in cryptography, for example).

In some cases, it is possible to associate a well behaved recurrence sequence

to the solution set of a Diophantine equation. This strategy can be useful in

generating explicit Diophantine results. One example of this is the use of Elliptic

Divisibility Sequences, defined below, to study integer points on elliptic curves

defined over Q; for example, integer solutions to the cubic equation

y2 = x3 + ax+ b. (1.1.2)

By Siegel’s theorem, we know that there are only finitely many integer solutions

to (1.1.2) (see Chapter 9 of [27], for example). However little is known about

the structure of the solution set. In [34], Ward showed that rational points on

elliptic curves are associated to the terms of the nonlinear recurrence sequence {hn}

satisfying

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
n. (1.1.3)

More precisely, Ward showed that for any rational point P on an elliptic curve

(1.1.2), we have

x(nP ) =
an
h2
n

,

for some integer sequence {an} and x(nP ) denoting the x-coordinate of the point

obtained from adding P to itself n times using the usual group law on elliptic

curves. The sequence {hn} is called an Elliptic Divisibility Sequence (EDS) and has

several nice arithmetic properties as outlined in [34]. In particular, {hn} satisfies

the divisibility property given in Definition 1.3.3 of Section 1.3. This association

has led to several Diophantine results. For example, Hindry and Silverman studied
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bounds on the number of integral multiples of points on elliptic curves in [16].

More recently, work has been done to bound the size of the largest n so that nP

is integral. In [17] Ingram found a uniform bound on n by studying the sequence of

valuations of an EDS, which was later improved by Stange in [30].

In this dissertation, we focus on Diophantine problems coming from norm

form equations, which we discuss in detail in the next section. It is known that

all rational reducible forms are integrally equivalent to a constant multiple of

a product of norm forms (see Theorem 2 in Section 2.1 of [7], for example).

Furthermore, as we’ll see in Chapter II, the solution set to any norm form

equation is naturally associated to a family of linear recurrence sequences. As

these sequences have been widely studied, Diophantine problems involving norm

forms are well-suited to be studied through their associated linear recurrence

sequences. In this dissertation, we use this method to study two such problems.

In the following sections, we provide the background on norm form equations and

linear recurrence sequences used throughout this manuscript, and conclude the

chapter with an outline of this dissertation.

1.2. Background on Norm Form Equations

Let K be a number field, and W = {w1, . . . , wn} a Q-linearly independent

subset of K. The norm form associated to the set W is given by

FW (X1, . . . , Xn) := NK(X1w1 + · · ·+Xnwn). (1.2.4)
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Note that FW is in fact a rational form. To see this, let σ1, . . . , σn denote the

embeddings σi : K ↪→ C fixing Q. By definition,

FW (X1, . . . , Xn) =
n∏
i=1

(X1σi(w1) + · · ·+Xnσi(wn)).

So FW is homogeneous of degree n. Now, let σ̃j be an element in Gal(K̃/Q)

extending σj, where K̃ denotes the Galois closure of K. If we act on FW by any

σ̃j, we have

σ̃jFW (X1, . . . , Xn) =
n∏
i=1

(X1σ̃jσi(w1) + · · ·+Xnσ̃jσi(wn)),

which only reindexes our product. So, σ̃jFW = FW for each j, implying our

coefficients must be rational.

Given a norm form FW , it then is a classical Diophantine problem to ask for

integer solutions to equations of the form

FW (X1, . . . , Xn) = c, (1.2.5)

where c is a fixed nonzero integer. We consider two simple examples.

Example. Let D be a nonsquare integer. If we let W = {1,
√
D}, then the

corresponding norm form defined over Q(
√
D) is FW (X, Y ) = X2 − DY 2. In this

case, we see that (1.2.5) is a Pell-type equation.

Example. If W is an integral basis for a number field K, the set of solutions to

(1.2.5) with c = ±1 gives a complete list of units in K. So, the problem of finding

units in a number field can be interpreted as such a Diophantine problem.
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Given a Q-linearly independent set W , let M be the Z-module in K

generated by W . Observe that if T is another basis for M , the norm forms FW

and FT , which are defined in (1.2.4), are integrally equivalent. That is, there exist

(aij) ∈ GLn(Z) so that if

Yi =
n∑
j=1

aijXj,

then we have FW (X1, . . . , Xn) = FT (Y1, . . . , Yn). So, integer solutions to (1.2.5)

can be found by instead studying the elements in the associated module M of fixed

norm c. The characterization of solutions to (1.2.5) depends on whether or not the

associated module M is full in K (that is, whether rankM = [K : Q]).

Characterization in the case that M is full. Let

OM := {α ∈ K | αM ⊆M}

denote the coefficient ring of the module M . It is known that when M is full in K,

the coefficient ring OM is an order in K (see Theorem 3 in Section 2.2 of [7], for

example), and furthermore that M contains only a finite number of nonassociate

elements of fixed norm c (see the Corollary to Theorem 5 in Section 2.2 of [7], for

example). So, the set of elements in M of fixed norm c can be written as a disjoint

union of finitely many families

α1 U+
M , . . . , α` U

+
M ,

where

U+
M := {ε ∈ OM | NK(ε) = 1} (1.2.6)

denotes the positive unit group of M .
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Characterization in the case that M is not full. While the characterization

in the full case is well-known, the characterization in the nonfull case was more

recently provided by Schmidt in [23] and [24]. We give an overview of these results

below. For each subfield L of K, let

ML := {α ∈M | ∀λ ∈ L, ∃z ∈ Z6=0 so that zλα ∈M},

and observe that ML is a submodule of M . As above, we let OML denote the

coefficient ring of ML, and U+
ML the units in OML of positive norm. In [23],

Schmidt showed that OML is an order in L, and furthermore that the solutions

to (1.2.5) are contained in finitely many families of the form

µU+
ML ,

for some µ ∈ K and subfields L ⊂ K. The methods in [23] do not give an explicit

method to construct all such families, but the following Lemma tells us when these

families are finite.

Lemma 1.2.1 (Section 5 of [23]). ML is nonzero if and only if ML contains a

submodule of the form αN , where N is full in L and α ∈ K.

We call M nondegenerate when ML = {0} for every subfield L of K that is

not rational or imaginary quadratic. By Lemma 1.2.1 and Dirichlet’s unit theorem,

there are only finitely many solutions to (1.2.5) in the nondegenerate case. In [24],

Schmidt provided explicit upper bounds on the number of these solutions. We state

this result below.
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Theorem 1.2.2 (Theorem 1 of [24]). Suppose that FW is a norm form with

associated module M that is nondegenerate. Then, the number of solutions to

(1.2.5) is upper bounded by

min(r230n , rc2(n)),

where c2(n) = (2n)n2n+4
and r = [K : Q].

The results of Chapter II will focus on studying the arithmetic of the

solutions to (1.2.5) obtained from families of the form

αU+
M

where U+
M is the positive unit group of an order in a number field not equal to

the rationals or an imaginary quadratic, as in the full and degenerate cases. By

Dirichlet’s unit theorem, U+
M is a finitely generated abelian group with positive

rank. So, for any nontorsion element ε of U+
M , we can generate an infinite sequence

of elements in M of fixed norm c given by

α(k) = βεk, where k ∈ Z≥0.

So, if we write

α(k) = x1(k)w1 + · · ·+ xn(k)wn, (1.2.7)

then we obtain infinitely many solutions (x1(k), . . . , xn(k)) to (1.2.5). Furthermore,

the characterization above implies that all infinite families of solutions to (1.2.5)

are obtained in this way. In Chapter II we study the arithmetic of the sequences

{xi(k) : k ∈ Z≥0}, which are known to satisfy a linear recurrence relation.
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1.3. Background on Linear Recurrence Sequences

An integer sequence {b(k) : k ∈ Z≥0} is said to be a linear recurrence sequence

(LRS) if it satisfies a homogeneous linear recurrence

b(k + d) = s1b(k + d− 1) + · · ·+ sdb(k), (1.3.8)

for si ∈ Z and d ∈ Z≥0. We say that b(k) has order d if (1.3.8) is minimal. The

characteristic polynomial of b(k) is given by

f(X) = Xd − s1X
d−1 − · · · − sd,

and the roots of f are the characteristic roots of b(k). When b(k) has order d, f(X)

is called the minimal polynomial of b(k). For a linear recurrence sequence b(k) of

order d, we call b(0), . . . , b(d − 1) its initial conditions. The following result tells us

how to construct explicit formulas for linear recurrence sequences.

Proposition 1.3.1 (Chapter 1 of [9], for example). Let b(k) be a LRS of order d

with characteristic roots α1, . . . , αm and write the minimal polynomial of b(k) as

f(X) =
m∏
i=1

(X − αi)ni .

Then, there exists polynomials Ai(X) ∈ Q[X] of degree ni − 1 so that

b(k) =
m∑
i=1

Ai(k)αki .

As suggested in Proposition 1.3.1, linear recurrence sequences are known to

grow exponentially. Since we will only consider sequences that are nondegenerate
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with distinct characteristic roots we state the result on growth of these special

families below. Note that similar results hold for more general families of linear

recurrence sequences.

Proposition 1.3.2 (Theorem 2.3 of [9]). Let b(k) be a LRS with distinct

characteristic roots αi so that αi/αj is not a root of unity for any i 6= j. Suppose

that α1 has maximal absolute value. Then, there is a constant A ∈ R and for all

ε > 0 there is a constant k0 = k0(ε) so that

|α|(1−ε)k ≤ |b(k)| ≤ A|α|k,

for all k ≥ k0.

While it is challenging to obtain arithmetic results on linear recurrence

sequences in general (see Section 6.1 of [9] for a survey of such results), it has been

found to be more tractable to study the arithmetic of sequences with the following

divisibility property.

Definition 1.3.3. A linear recurrence sequence b(k) is a linear divisibility sequence

(LDS) if b(k) has the following property: for all n,m ∈ Z>0,

n | m⇒ b(n) | b(m).

For example, the fact that Lucas sequences, which we discuss below, are

divisibility sequences was used in [6] to study their primitive divisors, and in [29] to

study their index divisibility sets, as well as in many other results throughout the

literature. Elliptic Divisibility Sequences, discussed in Section 1.1, are examples of
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nonlinear divisibility sequences. Similar results for these sequences have also been

found, such as in [28] and [32].

The characterization in Proposition 1.3.7 below shows that Lucas sequences

are fundamental in studying linear divisibility sequence. We first give some

background on these sequences.

Let P,Q be nonzero coprime integers. The Lucas sequence with integer

parameters (P,Q) is defined to be the order 2 linear recurrence sequence uk =

uk(P,Q) with initial values u0 = 0, u1 = 1, and recurrence

uk+2 = Puk+1 −Quk.

For example, the Fibonacci sequence is the Lucas sequence with integer parameters

(1,−1). Let θ, θ̄ be roots of the polynomial X2 − PX + Q. Using Proposition 1.3.1

and the initial conditions of un we can write

uk =
θk − θ̄k

θ − θ̄
.

Note that Lucas sequences are sometimes defined by the parameters (θ, θ̄), rather

than the integer parameters (P,Q).

Lemma 1.3.4. Every Lucas sequence is a LDS.

Proof. Let P,Q be nonzero coprime integers, and consider the matrix

A =

P −Q

1 0

 .
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Observe that for any positive integer k, we have

Ak =

uk+1 −Quk

uk −Quk−1

 ,

where uk is the Lucas sequence with integer parameters (P,Q). Now, take any

positive integers m,n. Then we have

Amn =

um+1 −Qum

um −Qum−1


n

≡

∗ ∗
0 ∗

 (modum).

On the other hand, we have

Amn =

umn+1 −Qumn

umn −Qumn−1

 .

Comparing the lower left hand entries, we see that um | umn for every m,n ∈ Z>0.

So, uk is a LDS.

Characterization of Linear Divisibility Sequences. Determining precisely

which linear recurrence sequences are linear divisibility sequences is an open

problem. We give a survey of some of the current characterizations below.

Note that an order one linear recurrence sequence b(k) with initial condition

b(0) = c takes the form b(k) = cak. So, every nonzero order one linear recurrence

sequence is a linear divisibility sequence. In order two, we have the following.

Proposition 1.3.5 (Theorem 1 of [15]). Let b(k) be an order two linear recurrence

sequence. Then b(k) is a linear divisibility sequence if and only if b(0) = 0.
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Using Proposition 1.3.1, we obtain that the only linear divisibility sequences

in order two are of the form

c · uk or c · kαk−1,

where uk is a Lucas sequence, and α, c ∈ Z6=0.

The order three case was studied by Hall in [14]. The main result of this

paper is as follows.

Proposition 1.3.6 (Theorem 4 of [14]). Let b(k) be a linear recurrence sequence of

order three with b(0) = 0 and characteristic polynomial

f(X) = X3 − s1X
2 − s2X − s3.

If f(X) is an irreducible cubic with gcd(s2, s3) = 1, then b(k) is not a linear

divisibility sequence.

It is conjectured that the only order three linear recurrence sequences b(k)

with b(0) = 0 that are linear divisibility sequences are of the form

c · k2αk−1, c · kuk, or c · u2
k,

where uk is a Lucas sequence, and c, α ∈ Z6=0 (see Section 3.4 of [5], for example).

For higher order sequences, little explicit information is known. The best known

result in this direction tells us that the terms of a linear divisibility sequence

must at least divide a product which generalizes the the conjectured order three

characterization.

Proposition 1.3.7 (Section 1.3 of [5]). Let b(k) be a linear divisibility sequence

with b(0) = 0. Then, there exists αi, βi ∈ C and nonzero integers c, ` so that if we

12



write

a(k) := c · k`
∏
i

(
αki − βki
αi − βi

)
then we have b(k) | a(k) for all k ∈ Z≥0.

1.4. Organization

This dissertation is organized as follows. In Chapter II we show that for

certain families of quartic norm form equations, there exists integrally equivalent

forms making any one of coordinate sequences defined in (1.2.7) a linear divisibility

sequence. The results in this chapter provide new families of order 4 linear

divisibility sequences, as well as some further arithmetic structure to the solution

set of certain quartic norm form equations.

In Chapter III we discuss how to translate the question of monogeniety of

a number field to a Diophantine problem through the use of index forms. We

then discuss ongoing work to use the methods from a paper of Gaál, Pethö and

Pohst to obtain explicit information about monogenizers in certain families of

biquadratic fields by studying near squares in an associated order two linear

recurrence sequence.
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CHAPTER II

NORM FORM EQUATIONS AND LINEAR DIVISIBILITY SEQUENCES

In this chapter, we show that for certain families of norm form equations

defined over quartic fields, we can find an integrally equivalent forms so that one

of the sequences {xi(k) : k ∈ Z≥0} defined in (1.2.7) is a linear divisibility sequence.

The families we consider are motivated by the following theorem of Kubota.

Proposition 2.0.1 (Theorem 1 of [19]). Let K be a real biquadratic field with

quadratic subfields Li, and let εi be a fundamental unit of Li. Then, K has a

system of fundamental units of one of the following forms, up to relabeling:

(i) ε1, ε2, ε3

(ii)
√
ε1, ε2, ε3

(iii)
√
ε1,
√
ε2, ε3

(iv)
√
ε1ε2, ε3, ε3

(v)
√
ε1ε2,

√
ε3, ε2

(vi)
√
ε1ε2,

√
ε2ε3,

√
ε3ε1

(vii)
√
ε1ε2ε3, ε2, ε3

(viii)
√
ε1ε2ε3, ε2, ε3, with NKi

(εi) = −1 for i = 1, 2, 3,

where
√
ε denotes any element η ∈ K with η2 = ε, and the εi in cases (i) to (vii)

appearing under a radical have NLi
(εi) = 1. Furthermore, there are infinitely many

K of each type.
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Proposition 2.0.1 tells us that to study solutions to a norm form equation

FW (X1, X2, X3, X4) = c

defined over a real biquadratic field, it suffices to understand the coordinates of the

sequences α(k) = βηk where η is of one of the following three types:

(a) η is a unit in quadratic subfield of K,

(b) η2 is a unit in a quadratic subfield of K, or

(c) η is a product of units of types (a) and (b)

Our main results concern the sequences α(k) = βηk where η is type (b). In

fact, our results hold for quartic fields containing a unit of type (b) more generally.

We will show the following.

Theorem 2.0.2. Let K be a quartic field with a real quadratic subfield L

containing a quartic unit η of positive norm, so that η2 is a unit in L. Fix a

nonzero element β ∈ K, and write α(k) = βηk. Then, there is a choice of basis

W = {w1, w2, w3, w4} for the module M ′ = β Z[η], which we construct explicitly, so

that if we write

α(k) = x1(k)w1 + · · ·+ x4(k)w4

then {x1(k) : k ∈ Z≥0} is a LDS.

Theorem 2.0.3. Let M = Z[
√
m,
√
m+ 1], where m and m + 1 are non-square

integers. Then, η =
√
m +

√
m+ 1 is a unit in the positive unit group U+

M with

η2 a unit in a quadratic subfield of K = Q(η), and there is a choice of basis W =

15



{w1, w2, w3, w4} for the module M , which we construct explicitly, so that if we write

ηk = x1(k)w1 + · · ·+ x4(k)w4,

then {x1(k) : k ∈ Z≥0} is a LDS.

Remark 2.0.4. Note that Theorems 2.0.2 and 2.0.3 hold for the sequence

{xi(k) : k ∈ Z≥0}

for any fixed i ∈ {1, 2, 3, 4}, just by changing the basis to reindex our coordinates.

However, we show in Sections 2.2 and 2.3 that there does not exist a choice of basis

for the modules M ′ and M in Theorems 2.0.2 and 2.0.3 so that the coordinate

sequences x1(k), x2(k), x3(k), x4(k) defined in (1.2.7) are LDS simultaneously.

This chapter is organized as follows. In Section 2.1, we show that the

sequences {xi(k) : k ∈ Z≥0} defined in (1.2.7) are linear recurrence sequences,

each with characteristic polynomial equal to the minimal polynomial of our unit

ε. In Section 2.2, we discuss how to use Lucas sequences to study norm forms

defined over real quadratic fields. In Section 2.3, we prove Theorems 2.0.2 and

2.0.3. In Section 2.4, we discuss a related sequence proposed by Silverman in [26],

and provide examples where Conjecture 9 of this paper holds.

2.1. Coordinate Sequences

Let M be a full module in a number field K, and ε a nontorsion element in

the positive unit group U+
M defined in (1.2.6). For β ∈ M with NK(β) = c, set

16



α(k) = βεk. If we choose a basis W = {w1, . . . , wn} for M , and write

α(k) = x1(k)w1 + · · ·+ xn(k)wn, (2.1.1)

then we obtain tuples of solutions (x1(k), . . . , xn(k)) to the corresponding norm

form equation FW (X1, . . . , Xn) = c.

Definition 2.1.1. We call the integer sequences {xi(k) : k ∈ Z≥0}, where xi(k)

is defined in (2.1.1), the coordinate sequences of α(k) with respect to our choice of

basis W .

In this section, we show that the coordinate sequences {xi(k) : k ∈ Z≥0} have

characteristic polynomial equal to the minimal polynomial of ε. We also provide

sufficient conditions so that the minimal polynomial of the coordinate sequence

{xi(k) : k ∈ Z≥0} is equal to the minimal polynomial of ε.

Proposition 2.1.2. Let K be a number field, and take γ ∈ K and θ ∈ OK .

Consider the sequence x(k) = TrK/Q(γθk).

(a) The sequence x(k) satisfies a linear recurrence with characteristic polynomial

equal to the minimal polynomial of θ.

(b) Let L = Q(θ). If TrK/L(γ) 6= 0, then the minimal polynomial of the sequence

x(k) is equal to the minimal polynomial of θ.

Remark 2.1.3. Suppose that θ has minimal polynomial

f(X) = Xd − s1X
d−1 − · · · − sd,
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for si ∈ Z. Then, Proposition 2.1.2(a) implies that the sequence x(k) = TrK/Q(γθk)

satisfies the recurrence

x(k + d) = s1x(k + d− 1) + · · ·+ sdx(k).

However, it is possible that this recurrence is not minimal. For example, take

K = Q(
√

2,
√

3,
√

5),

θ =
√

2 +
√

3 and γ =
√

5. Then, Proposition 2.1.2 (a) implies that x(k) satisfies an

order 4 recurrence, but we can check that x(k) = 0 for k = 0, 1, 2, 3. So, x(k) is a

constant sequence, while deg θ = 4.

There does not appear to be a complete characterization for when the

sequence x(k) is exactly of order deg θ in the current literature, so Proposition 2.1.2

(b) gives a new result in this direction. We note that Proposition 2.1.2 (a) follows

from known results on generalized power sums (see Chapter 1 of [9], for example),

but we provide a more elementary proof below.

Proof of Proposition 2.1.2. Let n = [K : Q] and σi : K ↪→ C be the n distinct

embeddings fixing Q. Set γi := σi(γ) and θi := σi(θ), for i ∈ {1, . . . , n}. Then, we

can write

x(k) = TrK/Q(γθk) =
n∑
i=1

γiθ
k
i . (2.1.2)

Let

f(X) = Xd − s1X
d−1 − · · · − sd
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be the minimal polynomial of θ over Q. Since θ ∈ OK we have si ∈ Z. Then,

d∑
j=1

sjx(k + d− j) =
d∑
j=1

n∑
i=1

sjγiθ
k+d−j
i by (2.1.2)

=
n∑
i=1

γiθ
k
i

d∑
j=1

sjθ
d−j
i

=
n∑
i=1

γiθ
k
i θ

d
i ,

where the final equality follows because each θi is a root of f(X). So, our sequence

satisfies the recurrence x(k + d) =
∑d

j=1 sjx(k + d − j), which has characteristic

polynomial equal to f(X), which proves part (a).

Next, suppose that x(k) satisfies an order m recurrence for 0 < m ≤ d, say

x(k +m) =
m∑
j=1

rjx(k +m− j),

where rj ∈ Z. Then, we have

TrK/Q(γθk+m) =
m∑
j=1

rj TrK/Q(γθk+m−j),

and by linearity of the trace, we get TrK/Q(Cθk · γ) = 0, where

C = θm −
m∑
i=1

riθ
m−i.

Order the embeddings so that σ1(θ) = θ1, . . . , σd(θ) = θd are distinct, and

σi(θ) = σdm+i(θ)

19



for m = 1, 2, . . . , `. Then,

TrK/Q(Cθk · γ) = σ1(Cθk) (σ1(γ) + σd+1(γ) + · · ·+ σ`d+1(γ))

+ σ2(Cθk) (σ2(γ) + σd+2(γ) + · · ·+ σ`d+2(γ))

...

+ σd(Cθ
k)
(
σd(γ) + σ2d(γ) + · · ·+ σ(`+1)d(γ)

)
where n = (`+ 1)d. For i = 1, . . . , d. Set

Si = σi(γ) + σd+i(γ) + · · ·+ σ`d+i(γ).

Then, we can write


σ1(Cθ0) · · · σd(Cθ

0)

...
. . .

...

σ1(Cθd−1) · · · σd(Cθ
d−1)



S1

...

Sd

 =


0

...

0

 , (2.1.3)

Without loss of generality, suppose that σ1(θ) = θ. Then,

S1 = TrK/L(γ),

where L = Q(θ). If C 6= 0 then the set {C,Cθ, . . . , Cθd−1} would be Q-linearly

independent, and we would have

det


σ1(Cθ0) · · · σn(Cθ0)

...
. . .

...

σ1(Cθd−1) · · · σd(Cθ
d−1)

 = disc(C,Cθ, . . . , Cθd−1)1/2 6= 0.
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But this contradicts (2.1.3), since S1 6= 0 by assumption. So, we must have C = 0,

and so θ is a root of

Xm −
m∑
i=1

riX
m−i ∈ Z[X]

But since θ is degree d, and m ≤ d we get m = d. Hence, the recurrence

x(k + d) =
d∑
j=1

sjx(k + d− j)

is minimal, and so f(X) is the minimal polynomial of the sequence x(k).

We have the following Corollary to Proposition 2.1.2.

Corollary 2.1.4. Let K be a number field and M a full module in K. Suppose

that ε is a nontorsion element in U+
M . For a fixed nonzero β ∈M , let

α(k) = βεk

and {xi(k) : k ∈ Z≥0} be a coordinate sequence of α(k) with respect to some

basis, as defined in (2.1.1). Then, {xi(k) : k ∈ Z≥0} is a linear recurrence sequence

with characteristic polynomial equal to the minimal polynomial of ε. Furthermore,

if deg ε = [K : Q] then the minimal polynomial of this sequence is equal to the

minimal polynomial of ε.

Proof. Let W = {w1, . . . , wn} be any basis for M , and write

α(k) = x1(k)w1 + · · ·+ xn(k)wn.

Since M is a full module, W is a Q-basis for K. So, there exists a dual basis W ∗ =

{w∗1, . . . , w∗n} to W with respect to the trace pairing. That is, W ∗ is a basis for K,
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and we have

TrK/Q(w∗iwj) = δij

for all i, j, where

δij =


1 if i = j

0 if i 6= j.

Let γ = w∗i β. Then we have

xi(k) = TrK/Q(γεk).

Note that if deg ε = [K : Q] then Q(ε) = K. So

TrKQ(ε)(γ) = γ 6= 0.

Hence, the result follows from Proposition 2.1.2 (b).

2.2. Norm Form Equations over Real Quadratic Fields

Suppose that K is a real quadratic field, and let M be a full module in K.

For any β ∈M and ε a nontorsion element in U+
M , let α(k) = βεk as before. Since ε

is degree 2 over Q, Corollary 2.1.4 implies that the coordinate sequences of α(k) are

order 2 linear recurrence sequences. Such sequences have been well-studied, and so

Corollary 2.1.4 implies some immediate consequences.

Proposition 2.2.1. Let K be a real quadratic field and M a full module in K. Fix

a nonzero element β ∈ M and write α(k) = βεk. Then, there is a choice of basis
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W = {w1, w2} for M , which we construct explicitly, so that if we write

α(k) = x1(k)w1 + x2(k)w2

then the sequence x1(k) is a LDS.

Recall from Proposition 1.3.5 of Chapter I that order two linear divisibility

sequences must initialize at zero. So, given α(k) as in Proposition 2.2.1, it is not

possible to find a basis for M so that x1(k) and x2(k) are LDS simultaneously.

Proof of Proposition 2.2.1. By Proposition 1.3.5, it suffices to find a basis {w1, w2}

for M so that x1(0) = 0. Let {t1, t2} be any basis for M , and B be the matrix given

by  β

βε

 = B

t1
t2

 .

Note that ∃C ∈ GL2(Z) so that BC is lower triangular. So, we can define a new

basis {v1, v2} from {t1, t2} by change of basis matrix C−1. Then,

 β

βε

 =

a11 0

a21 a22


v1

v2

 , (2.2.4)

for some aij ∈ Z. Now, let W = {w1, w2} be the basis defined by

w1

w2

 =

1 1

1 0


v1

v2

 .
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We claim that we can take W as our desired basis. To see this, observe that

 0 a11

a22 a21 − a22


w1

w2

 =

a11 0

a21 a22


v1

v2

 .

So, if we write α(k) = x1(k)w1 + x2(k)w2 then by (2.2.4) x1(k) has initial conditions

x1(0) = 0 and x1(1) = a22. So, x1(k) = a22uk, where uk is the Lucas sequence with

parameters (ε, ε̄). By Corollay 2.1.4 we know that x1(k) is an order 2 recurrence

sequence, and so we must have a22 6= 0. Hence, x1(k) is a LDS.

2.3. Norm Form Equations over Quartic Fields

Let K be a quartic field, and M a full module in K. Choose an element β in

M , and suppose there exists a unit η ∈ U+
M of degree 4 over Q. By Corollary 2.1.4,

the coordinate sequences of α(k) = βηk are order 4 linear recurrence sequences.

Unlike in the order 2 case, much less is known about higher-order linear recurrence

sequences, and so it is generally quite challenging to determine when an arbitrary

order 4 linear recurrence sequence is a LDS.

Suppose that η is a quartic unit with η2 =: ε a unit in a quadratic subfield

of Q(η). Recall, by Proposition 2.0.1, this is one of the three cases needed to

understand solutions to norm forms over real biquadratic fields. Let K̃ be the

Galois closure of K. Observe that for σ ∈ Gal(K̃/Q) we have σ(ε) = σ(η)2. So,

the conjugates of η are of the form

±
√
ε,±
√
ε̄, (2.3.5)
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where ε̄ denotes the conjugate of ε. Since η is of degree 4 over Q, it has minimal

polynomial

f(X) = X4 − (ε+ ε̄)X2 + 1. (2.3.6)

So, Corollary 2.1.4 implies that the coordinate sequences x(k) of α(k) are order 4

linear recurrence sequences satisfying

x(k + 4) = Tx(k + 2)− x(k), (2.3.7)

where T = ε + ε̄. The following Proposition gives sufficient initial conditions for

x(k) to be a LDS, and will be used to prove our main results.

Proposition 2.3.1. Let x(k) be an order 4 linear recurrence sequence with initial

conditions x(0) = 0, x(1) = x(2) = a, x(3) = a(T + 1), and recurrence

x(k + 4) = Tx(k + 2)− x(k),

where a and T are nonzero integers. Then, x(k) is a LDS.

Proof. Note that it suffices prove our claim for a = 1. Let uk denote the Lucas

sequence with integer parameters (T, 1). Since we assumed that x(0) = 0 and

x(2) = 1, we have x(2n) = un for every n ∈ Z≥0. Consider the matrix

A =

T −1

1 0

 .
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Recall from the proof of Lemma 1.3.4 that we have the identity

An =

un+1 −un

un −un−1

 , (2.3.8)

and so we have

An =

x(2n+ 2) −x(2n)

x(2n) −x(2n− 2)

 , (2.3.9)

for every n ∈ Z>0. Using the recurrence for x(k), we observe that

An

x(3)

x(1)

 =

x(2n+ 3)

x(2n+ 1)

 . (2.3.10)

Combining (2.3.9) and (2.3.10) yields

x(2n+ 3)

x(2n+ 1)

 =

x(3)x(2n+ 2)− x(1)x(2n)

x(3)x(2n)− x(1)x(2n− 2)

 .

That is, we have x(2n+ 1) = x(3)x(2n)− x(1)x(2(n− 1)) for any positive integer n.

Recalling that x(1) = 1, x(3) = T + 1 and x(2n) = un, we obtain

x(2n+ 1) = (T + 1)un − un−1

= un+1 + un,

where the final equality follows by using the recurrence for uk. So, we have

x(k) =


un, if k = 2n

un+1 + un, if k = 2n+ 1,

(2.3.11)
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for any k ∈ Z≥0. Note that we need to show x(k) | x(k`) for every k, ` ∈ Z≥0.

Suppose that k = 2n. Then, x(k) = un and x(k`) = un`. So, by Lemma 1.3.4

we have x(k) | x(k`). Next, suppose that k = 2n + 1 and ` = 2m. Noting that

A2n = (An)2, and using identity (2.3.8) we have

u2n+1 −u2n

u2n −u2n−1

 =

un+1 −un

un −un−1


2

.

After squaring the matrix on the right, we compare the upper left-hand entries to

get the identity u2n+1 = u2
n+1 − u2

n. So, we have

x(2k)

x(k)
=
x(2(2n+ 1))

x(2n+ 1)

=
u2n+1

un+1 + un

= un+1 − un ∈ Z.

Hence, x(k) | x(2k), and by the previous case we have

x(2k) | x(2km)⇒ x(k) | x(k`).

Now, suppose that k = 2n + 1 and ` = 2m + 1. Let ε, ε̄ denote the roots of X2 −

TX + 1. Recall from Section 1.3 we can write

uk =
εk − ε̄k

ε− ε̄
,
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for every k ∈ Z≥0. So, we have

x(2n+ 1) = un+1 + un

=
εn+1 − ε̄n+1

ε− ε̄
+
εn − ε̄n

ε− ε̄

=
εn(ε+ 1)− ε̄n(ε̄+ 1)

ε− ε̄

=
εn(ε+ 1)− 1

εn+1
(1 + ε)

ε− ε̄

=
ε+ 1

ε− ε̄
· ε

2n+1 − 1

εn+1
.

This gives

x((2n+ 1)(2m+ 1))

x(2n+ 1)
=
x(2(2nm+ n+m) + 1)

x(2n+ 1)

=
ε2(2nm+n+m)+1 − 1

ε2nm+n+m+1
· εn+1

ε2n+1 − 1

=
ε(2n+1)(2m+1) − 1

ε2n+1 − 1
· 1

εm(2n+1)
.

To see this value is in Z, let α = ε2n+1. Then, from above we obtain

x((2n+ 1)(2m+ 1))

x(2n+ 1)
=
α2m+1 − 1

α− 1
· 1

αm

=
α2m + α2m−1 + · · ·+ α + 1

αm

= (αm + α−m) + · · ·+ (α + α−1) + 1.

Since α = ε2n+1 and NK(ε) = 1, then α and α−1 are quadratic conjugates. So, we

have αt + α−t ∈ Z for every t = 1, . . . ,m. Hence,

x(2n+ 1) | x((2n+ 1)(2m+ 1)),
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and so x(k) is a LDS.

Theorem 2.0.2 will now follow from Proposition 2.1.2. Recall that K is a

quartic number field containing a quartic unit η of positive norm so that η2 is a

unit in a quadratic subfield of K.

Proof of Theorem 2.0.2. Note that the module M ′ = βZ[η] has basis

{β, βη, βη2, βη3}. Define the set W = {w1, w2, w3, w4} by



0 0 1 0

1 0 0 1

1 0 0 0

T + 1 1 0 0


︸ ︷︷ ︸

A



w1

w2

w3

w4


=



β

βη

βη2

βη3


,

where T = ε + ε̄. Note that A ∈ GL4(Z), and so W is a basis for M . Since η has

minimal polynomial

f(X) = X4 − TX2 + 1,

then by Corollary 2.1.4 we know that the sequence x1(k) is an order 4 linear

recurrence sequence satisfying (2.3.7). Moreover, if we write α(k) = βεk in terms

of the basis W , then

x1(0) = 0, x1(1) = x1(2) = 1, and x1(3) = T + 1.

So, by Proposition 2.3.1, x1(k) is a LDS.
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In the following Corollary, we provide explicit formulas for the coordinate

sequences of α(k), with respect to the basis constructed in Theorem 2.0.2, in terms

of Lucas sequences.

Corollary 2.3.2. Let W = {w1, w2, w3, w4} be the basis for the module βZ[η]

constructed in Theorem 2.0.2, and α(k) = βηk be as above. If we write

α(k) = x1(k)w1 + · · ·+ x4(k)w4,

then for any integer k ≥ 3 we have

x1(k) =


un if k = 2n

un+1 + un if k = 2n+ 1,

x2(k) =


0 if k = 2n

un if k = 2n+ 1,

x3(k) =


−un−1 if k = 2n

0 if k = 2n+ 1,

x4(k) =


0 if k = 2n

−un−1 if k = 2n+ 1,

where un is the Lucas sequence with parameters (ε, ε̄), defined in Section 2.1.

Proof. Recall, by Corollary 2.1.4 we know that all of the coordinate sequences xi(k)

of α(k) satisfy the order 4 recurrence

xi(k + 4) = Txi(k + 2)− xi(k), (2.3.12)

where T = ε + ε̄, and by construction of our basis W these sequences have initial

conditions
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k x1(k) x2(k) x3(k) x4(k)

0 0 0 1 0

1 1 0 0 1

2 1 0 0 0

3 T + 1 1 0 0

From (2.3.11) in the proof of Proposition 2.3.1 we see that x1(k) satisfies the

desired formula. Next, let yi(n) = xi(2n + 1) for i = 2, 4 and y3(n) = x3(2n). By

(2.3.12) we have that yi(n) satisfies the order 2 recurrence

yi(n+ 2) = Tyi(n+ 1)− yi(n).

Since y2(0) = 0 and y2(1) = 1 we get

x2(2n+ 1) = y2(n) = un for all n ≥ 0,

where un is the Lucas sequence with integer parameters (T, 1). Since y3(1) = 0 and

y3(2) = −1 we have

x3(2n) = y3(n) = −un−1 for all n ≥ 1.

Similarly, since y4(1) = 0 and y4(2) = −1 we have

x4(2n+ 1) = y4(n) = −un−1 for all n ≥ 1.
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Remark 2.3.3. Let M be an arbitrary full module in our quartic field K and

let α(k) = βηk as above. Note that M ′ = βZ[η] is a finite index submodule of

M containing α(k) for every k ∈ Z≥0. So, we can always write the coordinate

sequences for α(k) in terms of the basis constructed in Theorem 2.0.2. It turns

out to be more challenging to apply Proposition 2.3.1 to find a basis for the entire

module M . The following Proposition provides sufficient conditions for when this

can be done.

First, we set some notation. For a basis {t1, t2, t3, t4} of M , write



β

βη

βη2

βη3


= B



t1

t2

t3

t4


. (2.3.13)

Writing B in Smith normal form, we know that there exists X, Y ∈ GL4(Z) so that

XBY = diag(δ1, . . . , δ4) (2.3.14)

with δ1 | · · · | δ4. Let X = (xij). Then, we have the following.

Proposition 2.3.4. If there exists a matrix X ∈ GL4(Z) satisfying (2.3.14) and

gcd

(
χ4,

δ4

δ1

)
= 1,

where χi = xi2 + xi3 + (T + 1)xi4, and T = ε + ε̄, then there is a choice of basis W

for the module M so that the coordinate sequence x1(k) of α(k) with respect to the

basis W satisfies the initial conditions of Proposition 2.3.1.
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Proof. Suppose that we have a basis W = {w1, w2, w3, w4} for M as above. Set

~w =

(
w1 · · · w4

)>
and ~t =

(
t1 · · · t4

)>
.

Then, A~w = B~t, where B is defined in (2.3.13) and A is a matrix with first column

(
0 a a a(T + 1)

)>
.

Let X be any matrix satisfying (2.3.14), which we know exists by writing B is

Smith normal form. Write D = diag(δ1, . . . , δ4). Observe that gcd(χ1, . . . , χ4) = 1,

since if there were a prime p dividing every χi, then we would have

p ·


q1

...

q4

 = 0 ·


x11

...

x41

+


x12

...

x42

+


x13

...

x43

+ (T + 1)


x14

...

x44

 ,

where qi ∈ Z. But then the columns of X would be (Z/p)-linearly dependent, which

contradicts the fact that X ∈ GL4(Z). Now, let

~c1 =

(
δ4
δ1
χ1

δ4
δ2
χ2

δ4
δ3
χ3 χ4

)>
.

It is known that any lattice element can be extended to a basis precisely when it is

primitive (see Chapter 1 of [8], for example). Since δ1 | · · · | δ4, and we’ve assumed

that gcd(χ4, δ4/δ1) = 1, then we have

gcd

(
δ4

δ1

χ1,
δ4

δ2

χ2,
δ3

δ2

χ3, χ4

)
= 1.
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So, there is a matrix C ∈ GL4(Z) with first column equal to ~c1. Next, let A =

X−1DC. Then, A has first column

~a1 =

(
0 δ4 δ4 δ4(T + 1)

)>
.

Furthermore, D−1XA = C ∈ GL4(Z). Let Z = Y D−1XA ∈ GL4(Z), and define a

new basis W = {w1, w2, w3, w4} from {t1, t2, t3, t4} by change of basis matrix Z−1.

Since Z = B−1A, we have

A


w1

...

w4

 =


β

...

βη3

 .

So, if we write α(k) = x1(k)w1 + · · · + x4(k)w4, then x1(k) satisfies the initial

conditions x1(0) = 0, x1(1) = x1(2) = δ4, x1(3) = δ4(T + 1).

Theorem 2.0.3 provides a family of modules satisfying the conditions

of Proposition 2.3.4. An interesting future direction could be to provide a

characterization of all such modules.

Proof of Theorem 2.0.3. Recall that M = Z[
√
m,
√
m+ 1], and η =

√
m +

√
m+ 1.

Observe that η =
√
ε, where ε = 2m+ 1 + 2

√
m(m+ 1). Let K = Q(

√
m,
√
m+ 1),

and L = Q(
√
m(m+ 1)). A short computation shows that NL(ε) = 1 and η ∈ U+

M .

Next, observe that



1

η

η2

η3


=



1 0 0 0

0 1 1 0

2m+ 1 0 0 2

0 4m+ 3 4m+ 1 0


︸ ︷︷ ︸

B



1

√
m

√
m+ 1√

m(m+ 1)


.
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We can compute XBY = diag(1, 1,−2, 2) where

X =



1 0 0 0

0 1 0 0

0 −4m− 3 0 1

−2m− 1 0 1 0


, and Y =



1 0 0 0

0 1 −1 0

0 0 1 0

0 0 0 1


.

Hence, χ4 = 1 and so Proposition 2.3.4 applies. That is, there is a basis W so

that the coordinate sequence x1(k) of α(k) with respect to the basis W satisfies the

initial conditions of Proposition 2.3.1. So, x1(k) is a LDS.

Remark 2.3.5. Note that the proof of Proposition 2.3.4 provides an algorithm

for computing our desired basis in Theorem 2.0.3 explicitly. We demonstrate this

computation. Note that

TrL/Q(ε) = 4m+ 2.

Recall that we need to find a matrix C = D−1XA in GL4(Z) with first column

being a primitive vector and A ∈Mat4(Z) with first column

~a =

(
0 a a a(4m+ 3)

)>

. We compute the first column of C to be

~c1 =

(
0 a 0 a/2

)>
.
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So, we choose a = 2 and the rest of the entries of C so that C ∈ GL4(Z). For

example, we can take

C =



0 1 0 0

2 0 1 0

0 0 0 1

1 0 0 0


.

Then, we compute A = X−1DC, where D = diag(1, 1,−2, 2), to get

A =



0 1 0 0

2 0 1 0

2 2m+ 1 0 0

8m+ 6 0 4m+ 3 −2


.

So, setting Z = B−1A, and using Z−1 as our change of basis matrix from

{1,
√
m,
√
m+ 1,

√
m(m+ 1)} we obtain basis W = {w1, w2, w3, w4} for M given

by

w1 =
√
m, w2 = 2 +

√
m+ 1−

√
m(m+ 1),

w3 =
√
m(m+ 1), w4 = 1.

So, if we write ηk = x1(k)w1 + · · · + x4(k)w4, we can check that x1(k) satisfies the

initial conditions x1(0) = 0, x1(1) = x1(2) = 2, x1(3) = 2(4m + 3), and so by

Proposition 2.3.1 we have that x1(k) is a LDS.

Remark 2.3.6. If α(k) is as in Theorems 2.0.2 and 2.0.3, the coordinate sequences

{xi(k) : k ∈ Z≥0} contain order two subsequences {xi(2k) : k ∈ Z≥0}.

By Proposition 1.3.5 in Chapter I, an order two linear recurrence sequence must
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initialize at zero. So, it is not possible to find a basis for the corresponding module

that makes x1(k), x2(k), x3(k), x4(k) LDS simultaneously.

2.4. Powers of Algebraic Integers

We conclude this chapter by discussing a related sequence studied by

Silverman in [26], and show how methods from the previous sections might be used

in its analysis.

Given α ∈ Z̄, define the sequence

dk(α) = max{d ∈ Z | αk ≡ 1(mod d)}. (2.4.15)

where the congruence αk ≡ 1(mod d) means that there is an element β ∈ Z̄ with

αk = 1 + dβ.

In [26], Silverman proved that dk(α) is a divisibility sequence, and showed that,

except for some exceptional cases, this sequence grows slower than exponentially.

We record this Theorem below.

Theorem 2.4.1 (Theorem 1 of [26]). Let α ∈ Z̄. Then,

lim
n→∞

log dn(α)

n
= 0

unless α` ∈ Z for some ` ∈ Z, or α` is a unit in a quadratic extension of Q.

In the exceptional case where α is an element of Z[
√
D] for a nonsquare

integer D ≥ 2, and NK(α) = 1, it is shown in Theorem 7 of [26] that dk := dk(α)
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satisfies the order 4 linear recurrence

dk+4 = Tdk+2 − dk, (2.4.16)

where T = α + ᾱ.

Let η be an algebraic number of degree 4 with η2 quadratic. Choose an

integral basis {w1, w2, w3, w4} for L = Q(η), and write

ηk = x1(k)w1 + · · ·+ x4(k)w4. (2.4.17)

Then, by Corollary 2.1.4 we have that the xi(k) also satisfy the order 4 linear

recurrence

xi(k + 4) = Txi(k + 2)− xi(k). (2.4.18)

We have the following observation.

Proposition 2.4.2. Let α be a nontorsion unit of positive norm in Z[
√
D] for a

nonsquare integer D ≥ 2, and let η be any algebraic integer satisfying η2 = α. Let

L = Q(η). If OL = Z[η], then there exists a choice of basis for OL so that

x1(k) =


dk(α) if d1(α) = 1

dk(α)/d1(α) if d1(α) 6= 1,

where dk(α) and x1(k) are defined as in (2.4.15) and (2.4.17), respectively.

Proof. By (2.4.16) and (2.4.18), we know that x1(k) and dk(α) both satisfy the

same recurrence. So, it suffices to find a basis for OL so that the initial conditions
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of x1(k) match those of dk(α). Let

~a =

(
d0 d1 d2 d3

)>
.

If d1(α) = 1, then ~a is a primitive lattice element in Z4 and so there exists

A ∈ GL4(Z) with first column ~a. Let {w1, w2, w3, w4} be the basis obtained from

{1,
√
α,
√
α

2
,
√
α

3} by change of basis matrix A−1. Then x1(k) has the desired

initial conditions. If d1(α) 6= 1, then we replace the sequence dk(α) by dk(α)/d1(α)

in the argument above.

Remark 2.4.3. Since the coordinate sequence {xi(k) : k ∈ Z≥0} of βk for any

β ∈ Z̄ defined in (2.4.17) are linear recurrence sequences with distinct characteristic

roots, then by Proposition 1.3.2 they grow exponentially. So Theorem 2.4.1 implies

that if xi(k) = dk(α) for some α ∈ Z̄ and fixed index i, then α must be in one of the

exceptional cases. That is, we must have a power of α either in Z or a quadratic

unit. It would be interesting to know when a result like Proposition 2.4.2 holds in

the other exceptional cases.

We finish this section by discussing how the recurrence for the coordinate

sequences {xi(k) : k ∈ Z≥0} of αk, for some α ∈ Z̄, could be used to study the

sequence dk(α) defined in (2.4.15).

By definition, we have that dk(α) is the largest positive integer satisfying

αk − 1 ∈ dk(α)OK . (2.4.19)

Let {1, w2, . . . , wn} be an integral basis for K. If we write

αk = x1(k) + x2(k)w2 + · · ·+ xn(k)wn.
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Then we have

dk(α) = gcd(x1(k)− 1, x2(k), . . . , xn(k)). (2.4.20)

Furthermore, by Corollary 2.1.4 each of the sequences xi(k) has characteristic

polynomial equal to the minimal polynomial of α. As in the previous sections,

we can change the initial conditions of xi(k) by changing the basis of OK . We use

these observations to study the following conjecture.

Conjecture 2.4.4 (Conjecture 9 of [26]). For α ∈ Z̄, suppose one of the following

holds:

(a) [Q(αr) : Q] ≥ 3 for all r ≥ 1, or

(b) [Q(αr) : Q] ≥ 2 for all r ≥ 1 and NK(α) 6= ±1.

Then, the set {k ≥ 1 | dk(α) = d1(α)} is infinite.

The following proposition can be used to construct examples where

Conjecture 2.4.4 holds.

Proposition 2.4.5. Let α ∈ Z̄ have minimal polynomial

f(X) = Xn − s1X
n−1 − · · · − sn,

and set K = Q(α). If there exists a positive divisor t > 1 of n so that si = 0

∀i 6∈ tZ, then we have dk(α) ≤ |OK/Z[α]| for all k ∈ 1 + tZ. In particular, if

OK = Z[α], then dk(α) = d1(α) = 1 for all k ∈ 1 + tZ.

Proof. Let ∆ = |OK/Z[α]|, and d̃k denote the largest integer with

αk − 1 ∈ d̃k
∆
Z[α].
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Since OK ⊂ 1
∆
Z[α], then by (2.4.19) we have

αk − 1 ∈ dkOK ⊂
dk
∆
Z[α].

So, dk ≤ d̃k. Next, write

αk = y1(k) + y2(k)α + · · ·+ yn(k)αn−1.

Then, similar to (2.4.20) we observe that

d̃k = ∆ gcd(y1(k)− 1, y2(k), . . . , yn(k)).

If si = 0 ∀i 6∈ tZ, then by Corollary 2.1.4 we have

y1(k + n) = sty1(k + n− t) + · · ·+ s`tyi(k + n− `t).

Since y1(k) has initial conditions y1(0) = 1, y1(1) = · · · = y1(n− 1) = 0, we see that

y1(1 + `t) = 0 for any ` ∈ Z≥0. So, dk ≤ d̃k = ∆.

We give an example to demonstrate how to use Proposition 2.4.5 to generate

examples where Conjecture 2.4.4 holds.

Example 2.4.6. Let α be an algebraic number of degree 4 so that β := α2 is

quadratic. Observe that the minimal polynomial of α is of the form

f(X) = X4 − TrL/Q(β)X2 +NL/Q(β),
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where L = Q(β), and so by Proposition 2.4.5 we have that

dk(α) ≤ |OK/Z[α]|

whenever k is odd. So, Conjecture 2.4.4 holds whenever

OK = Z[α] where K = Q(α). (2.4.21)

Number fields K satisfying (2.4.21) are called monogenic, and elements α satisfying

(2.4.21) are called monogenizers of K.

We searched for elements α as in Example 2.4.6 that are monogenizers of

K = Q(α). Using Sage to check whether OK = Z[α], we searched the first five real

quadratic fields (ordered by discriminant), and found the following list of examples:

√
2 +
√

2,
√

1 +
√

3,
√

1
2
(5 +

√
5),
√

1 +
√

6,
√

1 +
√

7.

It would be interesting to provide a characterization of all monogenic quartic

fields with generator of the form α where α2 is contained in a quadratic subfield,

as this would provide a family of examples where Conjecture 2.4.4 holds for the

sequence dk(α) and could improve the results of Section 2.3. In the following

chapter, we study the monogenizers of certain biquadratic fields through their

associated index forms.
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CHAPTER III

INDEX FORM EQUATIONS OVER BIQUADRATIC FIELDS

Let K be a number field and O an order in K. That is, O is a Z-module in K

of rank [K : Q] that is also a ring with unity. We call O monogenic if there exists

an element α ∈ O with O = Z[α]. In this case we call α a monogenizer of O.

Note that if α is a monogenizer of O, so is α ± c for any integer c. We define the

equivalence

α ∼ β ⇔ α± β ∈ Z (3.0.1)

and call each equivalence class a monogenization of O. It is well-known that

every order is contained in the ring of integers OK of K, and so we will say that

K is monogenic whenever OK is, and that α is a monogenizer of K when α is a

monogenizer of OK . In Remark 2.3.3 and Example 2.4.6, we saw that the results of

Chapter II could be improved when our quartic field K has monogenizer α with α2

contained in a quadratic subfield of K.

A biquadratic field is a quartic field of the form Q(
√
m,
√
n) where m and

n are distinct nonsquare integers. In [11], Gaál, Pethö and Pohst give a method

to algorithmically search for monogenizers of certain biquadratic fields, which we

expect will lead to further theoretical results. In this chapter, we give an exposition

of the methods outlined in [11]. Our main contribution is a rewriting of this

algorithmic paper in order to motivate further theoretical results.

This chapter is organized as follows. In Section 3.1 we give some background

on index form equations, which translate the question of monogeneity of a number

field K to a Diophantine problem. In Section 3.2 we use the results of [11] to
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reduce this Diophantine problem to solving a system of norm form equations. In

Section 3.3 we outline how the authors of [11] associate the monogenizers of a

biquadratic field to near squares of an associated linear recurrence sequence. We

then discuss ongoing work to use this result to obtain bounds on the height of

monogenizers in biquadratic fields.

3.1. Background on Index Form Equations

Let K be a number field and α an element of OK . Note that Z[α] is finite

index in OK when degα = [K : Q], and that α is a monogenizer precisely when

the index is equal to 1. We use this observation to translate the problem of finding

monogenizers of K to a Diophantine problem.

Let σi be the distinct embeddings of K ↪→ C fixing Q. For any m-tuple

of elements α1, . . . , αm in K, the discriminant of α1, . . . , αm is defined to be the

quantity

DK(α1, . . . , αm) := det(σi(αj))
2.

For an element α ∈ K of degree m, the discriminant of α is given by

DK(α) := DK(1, α, . . . , αm−1).

Let {1, w1, . . . , wn} be an integral basis for K so that [K : Q] = n + 1. For an

element α ∈ OK of degree [K : Q] write

α = x0 + x1w1 + · · ·+ xnwn, (3.1.2)
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with xi ∈ Z. Let σ0, . . . , σn be the distinct embeddings K ↪→ C fixing Q, and

suppose that σ0 is the identity embedding. We have

DK(α) = det



1 α · · · αn

1 σ1(α) · · · σ1(α)n

...
...

. . .
...

1 σn(α) · · · σn(α)n



2

.

This is a Vandermonde determinant, and so we get

DK(α) =
∏

0≤i<j≤n

(σi(α)− σj(α))2.

For convenience, we denote X := (X1, . . . , Xn). If we write α as in (3.1.2) we see

that DK(α) does not depend on x0. For the linear form

`(X) := w1X1 + · · ·+ wnXn (3.1.3)

in K[X] we define the discriminant of `(X) in K to be

DK(`(X)) :=
∏

0≤i<j≤n

(σi(`(X))− σj(`(X)))2, (3.1.4)

where the embeddings σi act on `(X) in the usual way. That is,

σi(`(X)) = σi(ω1)X1 + · · ·+ σi(ωn)Xn.
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For any α ∈ OK we have the following well-known identity

DK(α) = |OK/Z[α]|2DK , (3.1.5)

where DK denotes the discriminant of K; that is,

DK := DK(1, w1, . . . , wn) (3.1.6)

(see of Remark 2.25 of [20], for example). We define the index form IW (X) with

respect to basis W by the equation

DK(`(X)) = I2
W (X)DK . (3.1.7)

By identity (3.1.5) we have that α = x0 + x1w1 + · · · + xnwn is a monogenizer of K

precisely when the integer tuple (x1, . . . , xn) is a solution to the following equation

IW (X) = ±1. (3.1.8)

The following Lemma tells us that finding integral solutions to (3.1.8) is in fact a

Diophantine problem.

Lemma 3.1.1. The form IW (X) defined in (3.1.7) is an integral form (that is, a

homogeneous polynomial with integer coefficients) of degree n(n + 1)/2, where

[K : Q] = n+ 1.

Proof. Define Fij(X) to be the polynomials in K[X] given by

`j(X) = F0j(X) + F1j(X)w1 + · · ·+ Fnj(X)wn,
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where `j(X) denotes the product of `(X) = X1w1 + · · · + Xnwn with itself j times.

Observe that each Fij(X) is of homogeneous degree j, and since {1, w1, . . . , wn} is

an integral basis, each Fij(X) is in Z[X]. So, for any σk we have

σk(Fij(X)) = Fij(X).

From the definition of the discriminant form given in (3.1.4), we have

DK(`(X)) = det



1 `(X) · · · `n(X)

1 σ1(`(X)) · · · σ1(`n(X))

...
...

. . .
...

1 σn(`(X)) · · · σn(`n(X))



2

.

Setting w0 = 0 we use the notation above to write

DK(`(X)) = det



1
∑n

i=0 Fi1(X)wi · · ·
∑n

i=0 Fin(X)wi

1
∑n

i=0 Fi1(X)σ1(wi) · · ·
∑n

i=0 Fin(X)σ1(wi)

...
...

. . .
...

1
∑n

i=0 Fi1(X)σn(wi) · · ·
∑n

i=0 Fin(X)σn(wi)



2

= det



1 w1 · · · wn

1 σ1(w1) · · · σ1(wn)

...
...

. . .
...

1 σn(w1) · · · σn(wn)



2

det



1 F01(X) · · · F0n(X)

0 F11(X) · · · F1n(X)

...
...

. . .
...

0 Fn1(X) · · · Fnn(X)



2
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By definition of the field discriminant DK given in (3.1.6) we have

DK(`(X)) = DK · det



1 F01(X) · · · F0n(X)

0 F11(X) · · · F1n(X)

...
...

. . .
...

0 Fn1(X) · · · Fnn(X)



2

.

Using definition (3.1.7) this gives

IW (X) = ± det



1 F01(X) · · · F0n(X)

0 F11(X) · · · F1n(X)

...
...

. . .
...

0 Fn1(X) · · · Fnn(X)


.

Since each Fij(X) is in Z[X] with homogeneous degree j, we conclude that IW (X)

is an integral form with

deg IW (X) =
n∑
j=0

j = n(n+ 1)/2.

It is known that every index form equation (3.1.8) has only finitely many

integral solutions, which implies that there are only finitely many monogenizations

of OK for a given number field K. An effective upper bound on the number of

integral solutions to (3.1.8) was given by Győry in [12]. While this bound has since

been improved (see [13] for a survey of these results), it is generally too large to be

computationally feasible. Current research aims to improve these bounds in special

cases. For example, in [10], the authors use a number of reductions to show that

integral solutions to index form equations over quartic fields imply solutions to a
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cubic Thue equation and a system of quadratic equations (see Proposition 3.1 of [1]

for details of this result). In [1], Akhtari uses this result to provide a new proof for

the best known upper bound on the number of monogenizers in quartic fields up to

the equivalence given in (3.0.1). In particular, Akhtari shows the following.

Proposition 3.1.2 (Theorem 1.1 of [1]). Let K be a quartic number field. Then,

the number of elements α ∈ OK with OK = Z[α] up to the equivalence defined in

(3.0.1) is at most 2760.

In fact, Akthari proves this bound for the number of monogenizations of any

quartic order O, which we recall is always finite index in OK . Improvements on this

bound are also given based on the size of the discriminant of O.

In [11], Gaál, Pethö and Pohst study index forms defined over biquadratic

fields with class number one by using the special integral basis due to Pohst below.

Lemma 3.1.3 (see [22]). Let K be a biquadratic field with quadratic subfield L =

Q(
√
m) having class number 1. Then, there is a non-square element µ in L so that

we can write K = Q(
√
µ). Furthermore, let

ω =


√
m if m ≡ 2, 3(mod 4)

1+
√
m

2
if m ≡ 1(mod 4)

so that OL = Z[ω]. Then there exists α, β ∈ OL so that if ψ = (α + β
√
µ)/4 then

{1, ω, ψ, ωψ} (3.1.9)

forms an integral basis for K.
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Using this basis, the authors of [11] give a number of reductions in order to

algorithmically find small solutions to (3.1.8) over fields of this type. The following

sections outline these reductions, which we plan to use to obtain further explicit

results such as those in Theorem 3.1.2.

3.2. Reduction to Simultaneous Norm Form Equations

Let K be a biquadratic field containing a quadratic subfield L with class

number 1 as in Lemma 3.1.3. We let X = (X1, X2, X3) and `(X) be the linear

form given in (3.1.3) with respect to the basis W = {1, ω, ψ, ωψ} from Lemma

3.1.3. That is,

`(X) = X1ω +X2ψ +X3ωψ.

From Lemma 3.1.1, we know that IW (X) is a degree 6 integral form. In this

section, we show how to reduce the index form equation

IW (X) = ±1

to a system of norm form equations. We combine Proposition 1 and Theorem 1 of

[11] to obtain the following result, and provide an alternate proof to that given in

[11] using the language of algebraic number theory.

Proposition 3.2.1. Let K, L, µ and ω be as in Lemma 3.1.3. The index form

equation IW (X) = ±1 has an integer solution x = (x1, x2, x3) if and only if

NL(x2 + x3ω) = ±1, and

NL′(L (x)) = ±(ω − ω̄)2
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where L′ = Q(
√
NL(µ)) and L (X) ∈ OL′ [X] is the fixed quadratic form defined in

(3.2.11).

Proof. Write L = Q(
√
m), and label the embeddings σi so that σ0 = id and

σ1 :
√
m 7→ −

√
m,
√
µ 7→

√
µ

σ2 :
√
m 7→

√
m,
√
µ 7→ −√µ

σ3 :
√
m 7→ −

√
m,
√
µ 7→ −

√
µ

where ᾱ denotes the quadratic conjugate of an element α ∈ L. For convenience, set

`ij(X) := σi(`(X))− σj(`(X)). (3.2.10)

By the definitions given in (3.1.4) and (3.1.7) we get

I2
W (X)DK =

∏
0≤i<j≤3

`2
ij(X).

Using the integral basis W , we compute the discriminant of K to be

DK = ((ω − ω̄)2(ψ − ψ2)(ψ1 − ψ3))2,

and we observe that

`02(X) = (ψ − ψ2)(X2 + ωX3)

`13(X) = (ψ1 − ψ3)(X2 + ω̄X3)
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where ψi = σi(ψ). So, we have

IW (X) = ± 1

(ω − ω̄)2
(X2 + ωX3)(X2 + ω̄X3)

∏
0≤i<j≤3

(i,j)6∈{(0,2),(1,3)}

`ij(X).

Since (X2 + ωX3)(X2 + ω̄X3) ∈ Z[X2, X3] is monic in X2, and (ω − ω̄)2 is divisible

by m, then by above we must have that (ω − ω̄)2 divides

∏
0≤i<j≤3

(i,j)6∈{(0,2),(1,3)}

`ij(X).

So, x = (x1, x2, x3) is a solution to IW (X) = ±1 precisely when

(x2 + ωx3)(x2 + ω̄x3) = ±1, and

`01(x)`12(x)`23(x)`03(x) = ±(ω − ω̄)2.

Define

L (X) := `01(X)`23(X). (3.2.11)

Note that the coefficients of L (X) are algebraic, since we assumed ω, ψ are

elements of an integral basis of K. So, to complete our proof, we need to show that

L (X) ∈ L′[X]

and that L (x) has conjugate `12(x)`03(x) in L′ = Q(
√
NL(µ)). For the first claim,

note that the nontrivial embedding fixing L′ is σ1. To see this, note that Gal(K/Q)
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is Z/2× Z/2 so every embedding has order 2. This gives us

σ1(
√
µ) = σ1(σ1(

√
µ)) =

√
µ

and so σ1(
√
NL(µ)) = σ1(

√
µ)σ1(

√
µ) =

√
NL(µ). By Galois correspondence we

know that L′ is fixed by two elements, and so to see whether L (X) has coefficients

in L′, it suffices to show it is fixed under the action by σ1. Recalling that ψ is of

the form ψ = (α + β
√
µ)/4 for α, β ∈ L we can check that

σ1(ψ1) = ψ, σ1(ψ2) = ψ3 and σ1(ψ3) = ψ2,

which gives

σ1(`01(X)) = −`01(X), σ1(`23(X)) = −`23(X)

σ1(`12(X)) = `03(X) and σ1(`03(X)) = `12(X).

So, we have L (X) := `01(X)`23(X) ∈ L′[X] and `12(X)`03(X) ∈  L′[X]. To see these

two quadratic forms are conjugates, it suffice to show that

σ2(L (X)) = `12(X)`03(X).

As before we can check that

σ2(ψ1) = ψ3, σ2(ψ2) = ψ, and σ2(ψ3) = ψ1,

to get σ2(`01(X)) = `23(X) and σ2(`23(X)) = `01(X), as desired.
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Remark 3.2.2. Note that Proposition 3.2.1 implies solutions to the simultaneous

norm form equations

NL(x2 + x2ω) = ±1 and

NL′(γiyi + γjyj) = ±(ω − ω̄)2,

for γi, γj ∈ OL′ , and where yi = xi + axj and y2 = xk + bxj for i, j, k ∈ {1, 2, 3} and

some fixed a, b ∈ Q. To see this, write the quadratic form L (X) as

L (X) = (α1X1 + α13X3)X1 + (α2X2 + α12X1)X2 + (α3X3 + α23X2)X3,

for some αi ∈ OL′ . So, if x = (x1, x2, x3) is a solution to the system of equations in

Proposition 3.2.1 then we have L (x) = γ1x1 + γ2x2 + γ3x3, for γi ∈ OL′ . But since

L′ is quadratic, {γ1, γ2, γ3} are linearly dependent. So we can write

L (x) = γiyi + γjyj,

where yi = xi + axj and y2 = xk + bxj for i, j, k ∈ {1, 2, 3} and fixed rational

constants a, b. So solutions to the system in Proposition 3.2.1 imply solutions to

the system of norm form equations above. It would be interesting to study whether

any explicit information can be gathered from this observation. For example, in [4]

Bennett gives explicit upper bounds on the integral solutions to simultaneous Pell-

type equations. We plan to study whether such a method extends to simultaneous

quadratic norm form equations more generally.
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3.3. Near Squares in Linear Recurrence Sequences

The authors of [11] show that integral solutions to IW (X) = ±1, with W

as in Lemma 3.1.3, can be found by studying terms in an associated order 2 linear

recurrence sequence that are a constant away from a perfect square. We state this

result below and give an alternate proof using language of algebraic number theory.

Proposition 3.3.1 (Section 4 of [11]). Let K,L and W be as above. Suppose that

IW (X) = ±1 has a solution (x1, x2, x3) ∈ Z3, and let ε be a fundamental unit in

OL. Let G(k) be the order two linear recurrence sequence defined by

G(k + 2) = Tr(ε2)G(k + 1)−G(k)

Then, for a fixed constant δ there exists k ∈ Z≥0 and y ∈ Z so that

G(k) = y2 + δ.

Furthermore, the constant δ and the initial conditions of G(k) are explicitly

computable and depend on L, x2, x3.

Proof. Let L (X) be the quadratic form defined by

L (X) = `01(X)`23(X)

where `ij(X) = σi(`(X)) − σj(`(X)) as in the proof of Proposition 3.2.1. Recall in

this proof that we showed L (X) has coefficients in OL′ where L′ = Q(
√
NK(µ)).

This gives

TrL′(L (X)) ∈ Z[X]
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where here we use the definition of trace given by TrL′(γ) = γ + γ̄ for an element

γ ∈ L′ and let the conjugate embedding act on our polynomial in the usual way.

Furthermore, since `ij(X) is a linear form, then L (X) is a quadratic form, and so

we can write

TrK(L (X)) = a1X
2 + a2X

2
2 + a3X

2
3 + a12X1X2 + a13X1X3 + a23X2X3,

for ai, aij ∈ Z. Since TrK(L (x)) ∈ Z then the quadratic

f(X1) := TrK(L (X, x2, x3))− TrK(L (x1, x2, x3)) ∈ Z[X]

must have discriminant

∆f (x2, x3) := b2x
2
2 + b3x

2
3 + b23x2x3 + b0 (3.3.12)

equal to an integer square, where bi ∈ Z. Next, by Proposition 3.2.1, since x is a

solution to our index form equation IW (X) = ±1 we must have

NL(x2 + ωx3) = ±1.

From our characterization of solutions to norm form equations from Chapter I, for

a fundamental unit ε in OK we can write (x2, x3) = (x(k), y(k)) for some integer k,

where

εk = x(k) + ωy(k).

So, x(k) and y(k) are order 2 linear recurrence sequences with characteristic roots

ε, ε̄. We use Proposition 1.3.1 from Chapter I to find an explicit formula for these
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sequences. Note that y(0) = 0 and so we have

y(k) = y(1)
εk − ε̄k

ε− ε̄
.

But since ε− ε̄ = y(1)(ω − ω̄) we get

y(k) =
εk − ε̄k

ω − ω̄
. (3.3.13)

Next, we write x(k) = Aεk + Bε̄k, and use the initial conditions of x(k) to solve for

A,B ∈ L. We have A+B = 1 and x(1) = Aε+Bε̄, but also

x(1) = ε− ωy(1) =
ε̄ω − εω̄
ω − ω̄

,

which gives

x(k) =
ω̄εk − ωε̄k

ω̄ − ω
. (3.3.14)

So, plugging (3.3.14) and (3.3.13) in for (x2, x3) in our discriminant formula

(3.3.12), we get

∆f (x2, x3) =b2

(
ω̄2ε2k + ω2ε̄2k

(ω̄ − ω)2
∓ 2ωω̄

(ω̄ − ω)2

)
+ b3

(
ε2k + ε̄2k

(ω − ω̄)2
∓ 2

(ω − ω̄)2

)
− b23

(
ω̄ε2k + ωε̄2k

(ω̄ − ω)2
∓ ω̄ + ω

(ω − ω̄)2

)
+ b0,

where the option in signs depends on whether ε has positive or negative norm. It

can be checked that all summands above are in 1
2
Z. Let

G(k) := b2a1(k) + b3a2(k) + b23a3(k) ∈ Z

57



where

a1(k) := 4
ω̄2ε2k + ω2ε̄2k

(ω̄ − ω)2

a2(k) := 4
ε2k + ε̄2k

(ω − ω̄)2

a3(k) := 4
ω̄ε2k + ωε̄2k

(ω̄ − ω)2
,

and each ai(k) ∈ Z. Then we have

G(k) = 4∆f + 4b0,

where ∆f = ∆f (k) depends on k. Since ∆f must be an integer square, there must

exist k ∈ Z≥0 and y ∈ Z so that G(k) = y2 + δ, where

δ = 4b0 ∓
8b2ωω̄

(ω̄ − ω)2
∓ 8b3

(ω − ω̄)2
± 4b23(ω̄ + ω)

(ω − ω̄2)
.

Now, since ai(k) has characteristic roots ε2, ε̄2, each of these sequences satisfy the

order 2 recurrence ai(k + 2) = TrL(ε2)ai(k + 1)− ai(k). It is then straightforward to

check that G(k) also satisfies the order 2 recurrence

G(k + 2) = TrL(ε2)G(k + 1)−G(k).

Given an order 2 linear recurrence L(k) and polynomial P (X) over Z, finding

solutions k ∈ Z≥0 and x ∈ Z to equations of the form

L(k) = P (x) (3.3.15)
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have been widely studied, especially when P is quadratic. For example, in [33]

Walsh explicitly provides solutions to (3.3.15) for a family of order 2 sequences

L(k) and polynomials P (X) of the form P (X) = cX2 ± 1. As outlined in

[33], the method of Baker from [2] can be used to bound the size of solutions to

G(k) = y2 + δ from Proposition 3.3.1, which we expect would lead to a bound on

the height of monogenizers over biquadratic fields.
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