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As the size of data from scientific simulations grows, the ability to identify

key time steps in a simulation has emerged as a key challenge. In response, a

number of time slice selection methods and algorithms have been proposed.

However, no past work has performed a comparative analysis of selection methods

as well as their evaluation metrics. This thesis presents results from quantitative

and qualitative study of selection methods and evaluation metrics to fill this

gap. Our work has three major thrusts. First, we identify similarities and

dissimilarities between different time slice slice selection algorithms. Second, we

evaluate conditions under which these methods may fail. Third, we also perform

a comparative study with evaluation metrics to investigate how selection methods

perform under the set of evaluation metrics in literature. In all, this thesis aims to

understand the space of time slice selection methods, to inform future research in

this area.
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CHAPTER I

INTRODUCTION

With ever-increasing compute resources at our disposal, the size of scientific

data of have also increased, both in the spatial and temporal domains. Coupled

with the comparatively slow I/O speeds, it is increasingly difficult to investigate

every time step a scientific simulation may produce. As a result, a topic of

interest in Scientific Visualization has been time slice selection, i.e., selecting and

identifying key time steps from a scientific simulation.

The main motivation of such a system is potential time savings. If done

effectively, the selected subset of time steps can be considered as a short summary

of the simulation and can remove the need to manually inspect each time step of

the simulation after every run. If 10 time steps of a simulation of length 100 suffices

to deliver the same or similar insight as the whole time series, then a well-designed

algorithm can save (1) the time to run analysis/construct visualizations for the 90

time steps (2) the time to “sort through” the 100 visualizations to extract the main

insights.

However, as previous works in this area have highlighted, designing an

effective time selection algorithm is difficult. In particular, domain-agnostic

selection algorithms, which are the main considerations in this work, are especially

difficult as the underlying physics can be vastly different among different fields like

astrophysics, climate modeling and fluid dynamics. In contrast, domain-specific

algorithms have the advantage that they can exploit domain-specific characteristics

of simulations. Work by Bennett et al. [3] is an example of a domain-specific

selection algorithm for combustion simulations that tracks and rapid increases in

heat releases to identify key time steps in such simulations. However, these domain-
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specific methods leverage domain knowledge and are only designed for particular

simulation loads.

Another area in which time slice selection is relevant is in situ processing of

scientific simulations. In situ processing refers to a processing model that analyzes

scientific simulations as they run. This contrasts with the more traditional post hoc

processing model that analyzes scientific simulations after they complete. Under

the post hoc model, a simulation would first dump each time step (or a subset of

time steps) to storage. Once the simulation completes, the scientist would inspect

the data to extract findings. While post hoc processing is still the dominant model

in practice, in situ processing has been growing in interest and popularity over the

last decade, primarily due to the I/O constraints on modern supercomputers [13, 7,

6, 16, 17]. To enable in situ processing, inspection routines called “triggers” have

been proposed. The main idea behind triggers is to have a lightweight routine that

inspects the simulation data that runs alongside a simulation. The task for triggers

is to decide whether the current time step in a simulation warrants further action

as defined by the user: visualization, analysis, further storage, etc.

The main challenge with in situ triggers is that they need to decide whether

the current time step warrants further action without the knowledge of future

time steps. That is, in situ triggers require time slice selection to be done as the

simulation runs. Since a well-designed in situ trigger should “trigger” at key time

steps of a simulation, one can interpret in situ trigger as a time slice selection

algorithm as well - the only difference being whether the selection occurs at the

end of the simulation with access to the entire data corpus or not. While the body

of past work in in situ triggers is more sparse than post hoc time slice selection

algorithms, there are approaches emerging, for example work by Yamaoka et al.
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[35]. In all, successful time slice selection for scientific simulation is of significant

interest to visualization community. Despite this, no past work has performed a

comparative analysis of time slice selection methods, as well as their evaluation

metrics. While the lack of comparative analysis of selection methods is troubling

for simulation scientists interesting in applying one for their simulation, we believe

that the lack of understanding of what each evaluation metric measures is also

concerning, especially for future research in this area. Without such an analysis,

how should one evaluate their new selection algorithm? Should the community be

convinced if the new approach performs well on a metrics A but not on metric B?

Even worse, what should one do if two metrics disagree? That is, what should one

do if metrics A and B disagree whether one selection is superior to another?

Name Description

DATA Set of all datai: {data0, data1..., dataN−1}
Selection A subset of {0,1,...,N-1}, each representing a time step

Budget
The size of the selection.

A selection with budget k is a Selection S such that |S| = k

Selection Method
A function Method(DATA, k) that,

given DATA and budget k, makes a corresponding selection S

Evaluation Metric
A function Metric(DATA, S) that,

given DATA and selection S, calculates some numeric score.
Note that a higher score need not be better.

Table 1. Terminology used in this thesis. This table considers a simulation that
runs for N time steps. For any 0 ≤ i ≤ N − 1, the data at the ith time step is
denoted datai.

Inspired by The Transfer Function Bake-off by Pfister et al., [22], with

this work, we present the Time Slice Selection Bake-off, to explore the space of

time slice selection algorithms end evaluation metrics. Before we elaborate on our

contributions, we clarify the terminology we employ in this work in Table 1.
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In short, the contribution of this work is to illuminate similarities and

differences between selection methods and evaluation metrics that are used in

practice or proposed in literature. To this end, we perform both qualitative and

quantitative analysis of selection methods and evaluation metrics over a range

of datasets and budgets. That said, we recognize the space of selection methods,

metrics, datasets, and budgets is prohibitively large to explore exhaustively,

especially given the large number of selection methods and metrics. One premise of

this thesis is that overall trends and characteristics can be understod by considering

10 data sets and 3 budgets. In particular, we use this approach to answer the

following questions.

– RQ1: Which selection methods produce similar selections?

– RQ2: Do we observe notable outlier behavior?

– RQ3: How do selection methods compare over many metrics?

To address RQ1, we perform hierarchical clustering on each selection S,

using a distance metric introduced in Chapter IV to identify similar and dissimilar

selection methods.

RQ2 will be approached qualitatively by examining the selections that each

method makes for each dataset and budget. It is important to note here that, for

all of the datasets, we consider the “correct” selection for a particular budget to be

unknown. Without the appropriate domain experts, it is difficult to establish an

appropriate “ground truth,” even if such a selection exists. (We would argue that

visualization experts and domain scientists would reasonably disagree on what an

‘optimal’ selection is for a given dataset and budget.) However, by focusing on the

trends in the selections, we believe we can characterize the selection methods as

well as point out clear failures conditions.
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To address RQ3, for every selection method SM , we evaluate its selection S

with every selection metric EM to identify if any method SM performs favorably

across the set of metrics EM .

5



CHAPTER II

REVIEW OF TIME SLICE SELECTION METHODS AND EVALUATION

METRICS

A number of past works have considered time slice selection methods for

scientific simulations. This section reviews the past body of work in this area.

§2.1 reviews domain-agnostic approaches: reconstruction-based approaches

(§2.1.1), information-theoretic approaches (§2.1.2) and other domain-agnostic

approaches (§2.1.3). Finally, §2.2 reviews domain-specific approaches.

2.1 Domain-agnostic methods

2.1.1 Reconstruction-based approaches. The objective for

reconstruction-based approaches is find a selection S, such that it minimizes a

particular reconstruction error. The two main components for this set of methods

are:

1. Method for reconstruction: Given some selection S, the reconstruction method

generates reconstructed data′i for every datai ∈ DATA with access only to the

data in the time steps in S.

2. Error function between the original and reconstructed fields: Given the

original field datai and reconstructed data′i, the error function quantifies the

difference between the two.

Given these two components, the reconstruction-based approaches defines

the cost of a selection S as follows. For some selection S, an error function f and

the reconstructed set of data′i:

cost =
∑

0≤i≤N

f(datai, data
′
i) (2.1)
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Finally, reconstruction-based approaches consider a selection S of budget k optimal,

if |S| = k and if it minimizes Eq. 2.1.

The most common method for reconstruction is linear interpolation, where

the time slices in selection S are used to reconstruct every data′i by linearly

interpolating between the closes available time steps. Zhou and Chiang used linear

interpolation as the reconstruction method and proposed Variation of Information

(VI) as the error function [37]. VI is a metric derived from information theory and

measures the sum of information present in X after observing Y and in Y after

observing X. In addition to VI, Zhou and Chiang also considers root-mean-square

error (RMSE).

Alternatives to linear interpolation have also been proposed. Tong et al.

proposed Dynamic Time Warping (DTW) as a method of reconstruction as a

nonlinear time mapping method [27]. In this work, they employ Earth Mover’s

Distance (EMD) and isosurface similarity map[9] as the error function, but state

that these were specifically chosen for the datasets that they considered (i.e.,

not domain agnostic). However, their DTW-based method does not depend on a

particular error function; therefore, it can be used broadly with any error function.

For a given budget, the optimal selection for reconstruction-based

approaches can be calculated through dynamic programming. That said, the time

complexity for these methods grow cubically with respect to the number of time

steps which can become impractical for large datasets. Hence, some have also

proposed approximation methods to decrease the time complexity [37].

Reconstruction-based approaches are common in evaluation metrics as well.

As an evaluation metric, the cost from Eq. 2.1 is directly used for any selection

S. The following three works have used a reconstruction-based approach for
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evaluation, all using linear interpolation as the method for reconstruction. First,

Kawakami et al. proposed an evaluation framework for in situ triggers using linear

interpolation along with L1 norm of difference as the error function [11]. Second,

Porter et al. evaluated their selection method using linear interpolation along with

and root-mean-squared-error (RMSE) and peak signal-to-noise-ratio (PSNE) as

the error function [23]. Third, Pulido et al. evaluated their selection method using

linear interpolation along with image quality metrics like structural similarity index

measure (SSIM) and universal quality index (UQI), among others like RMSE, as

the error function [24].

2.1.2 Information-theoretic approaches. The field of scientific

visualization has incorporated concepts from information theory many times to

solve challenges [30, 5], including time slice selection. Previously mentioned work

by Zhou and Chiang that used variation of information as the error function is one

example [37]. Wang et al. formalized the notion of importance values, based on a

sliding time window and conditional entropy values with adjacent time steps. By

using applying this metric on a block-partitioned dataset, they proposed to select

time slices by maximizing joint entropy of the adjacent time steps in selection S

[31]. Shannon’s entropy, which measures the amount of “information” in data, has

also been proposed for in situ triggers, where trigger would ‘fire’ if the change in

entropy from the last trigger instance exceeds some predefined value [13].

2.1.3 Other domain-agnostic approaches. Frey and Ertl presented

a flow-based approach for time slice selection, where the difference between two

time steps is quantified via a flow-based metric [10]. They quantify the difference

between two time slices in three steps: (1) probabilistically sample from data

volume, (2) construct a flow graph between the two samples, and (3) calculate the
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minimum-cost flow in the said graph. Finally, a selection S is made such that it

minimizes the difference with respect to the original time series. Ling et al.[14]

presented a time slice selection method that relied on detecting spatial deviations

and temporal deviations for simulations running in a multi-process setting. Their

work had each processor to maintain a KDE-estimated PDF of the variables

in the simulation. They used an ensemble of decision tree regressor to detect

whether (1) data in a particular processor exhibited different behavior than the

rest (spatial deviations) (2) data at current time step exhibited different behavior

than the previous time step (temporal deviations). Pulido et al. developed a time

slice selection method based on non-negative Tucker factorization (NNTF) [24].

The key idea for their work was to use a non-negative Tucker decomposition on

the 4D tensor (x,y,z,time) and extract “influential” time points as the key time

steps. Their use of non-negative Tucker decomposition involved representing the

simulation data as a 4D tensor (x,y,z,time) and extracting “influential” time steps

as the time slices selection.

Some selection methods have specifically considered an in situ setting.

Myers et al. presented a time step selection algorithm that fitted a piecewise linear

model to the data stream as the simulation ran [19]. Each incoming time step

would be evaluated on the linear model, until the precision of the previous model

drops to predefined level. Once that happens, the algorithm would start a new

linear model, and declare that time step as salient. Yamaoka et al. developed an in

situ time slice selection algorithm that leveraged KL divergence to detect changes

in the state of the simulation [35]. Like Ling et al., they target a multi-process

simulation run, and attempt to track changes in the simulation by calculating the
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KL divergence between the data in the current time step and the last time step

when the algorithm made a selection.

There is also a growing body of work utilizing deep learning to time slice

selection [23, 36, 15]. Porter et al. trained a encoder-decoder network to implicitly

learn feature descriptors of each time step in a latent space [23]. Once the network

is trained, they perform further dimensionality reduction from 1024 to 2 dimensions

via t-SNE, before making selections based on the “path” that each time step forms

in the projected 2D space. Zhang et al. developed a time slice selection method

based on a neural network that, given data from two time slices, reconstructed the

data for the intermediate time steps [36]. Based on this data reconstruction module

and a predefined error bound, they performed time slice selections in situ. However,

it should be noted that their method specifically targets ensemble simulations,

where the data reconstruction module can be trained on a simulation data with

similar characteristics prior to use.

2.2 Domain-specific approaches

In contrast to domain-agnostic approaches, domain-specific time slice

selection approaches can incorporate prior knowledge of the simulation and its

dynamics. Bennett et al. presented a time slice selection method for combustion

simulation by predicting rapid heat releases in these simulations [3]. This work was

continued by Salloum et al., who proposed a new metric leveraging the coefficient

of variation to capture rapid heat release in combustion simulation that was

more accurate and increased the robustness of trigger detection [26]. Banesh et

al. presented a method to detect mesoscale ocean eddies in large simulated or

observational ocean data [2]. Their method was an extension to the previously

introduced work by Myers et al. [19] that utilized a piecewise linear model to model
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the simulation. Liu et al. utilized a Siamese network comprised of two CNNs to

identify key time steps in flow field data for Computational Fluid Dynamics (CFD)

simulations [15]. A key idea in their work to use a Siamese network to assess the

similarity between data in two time steps. While their method outperformed the

Myers’ method [19] for their CFD data, NN-based methods like this method and

the ones introduced in §2.1.3 need to be trained before being applied, which can be

time consuming especially as the data sizes increases.
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CHAPTER III

EXPERIMENTAL OVERVIEW

3.1 Data sets

This work consider 10 different datasets, which are described in Table 2.

Name Variable of Interest Description

Asteroid tev, Temperature in electronvolt (eV)
Simulation of an asteroid impact with ocean

300× 300× 300, 237 time steps [21]

Cloud cct, Cloud top pressure in Pascals
Atmospheric simulation
of clouds in Germany

1429× 1556× 1, 481 time steps [8]

Droplet NA, Only one field
Simulation of two droplets colliding
256× 256× 256, 167 time steps [4]

EarthquakeMag Magnitude of velocity
Earthquake simulation

750× 375× 100, 227 time steps [1]

HurricanePressure Pressure in Pascals
Atmospheric simulation

of Hurricane Isabel
500× 500× 100, 48 time steps [20]

MantleTemperature Temperature in Kelvin
Earth mantle convection simulation
180× 201× 360, 251 time steps [25]

Jet NA, Only one field
Turbulent combustion simulation
480× 720× 120, 121 time steps

Bottle NA, Only one field
Laser pulse

shooting through a bottle
900× 430, 465 time steps [29]

Cloverleaf Energy
Hydrodynamics simulation

260× 132× 260, 91 time steps [28]

Radiation Gas temperature in Kelvin
Cosmology simulation of radiation waves

600× 248× 1, 200 time steps [34]

Table 2. Data sets

3.2 Selection methods

The selection methods we consider in this thesis can be broadly be separated

into two categories: (1) Reconstruction-based approaches and (2) Information-

theoretic approaches. In addition, §3.2.3 introduces two methods based neither

on reconstruction nor information theory.

3.2.1 Reconstruction-based approaches. Reconstruction-based

selection methods were introduced in §2.1.1. Recall that there are two components

to reconstruction-based selection methods: (1) The method to reconstruct every

12



data′i and (2) error function, f , used to evaluate the dissimilarity between datai and

data′i. This thesis considers two reconstruction methods: linear interpolation for

every mesh location (LI) and Dynamic Time Warping (DTW)[27]. Furthermore,

four error functions are considered: L1 norm of differernce (L1N), L2 norm of

difference (L2N), mean squared error (MSE) and Variation of Information (VI)

using 128 bins as used in [37]. Intuively, Variation of Information measures the

difference of information contained between two random variables X and Y .

The Venn diagram in Fig. 1 provides some graphic intuition into V I(X, Y ). A

key property for reconstruction-based approaches is that it enforces that the

first and final time step be included in the selection. This is to ensure that the

reconstruction methods have the sufficient information to reconstruct the set data′i

for every i. Lastly, recall from §2.1.1 that these selections can be made via dynamic

programming. In total, 2 × 4 = 8 reconstruction-based selection methods are

considered.

Figure 1. Variation of Information between two random variables, X and Y , as
Venn diagrams.
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3.2.2 Information-theoretic approaches. The information

theoretic approaches we consider are the joint entropy approach and the

importance-based selection introduced by Wang et al. [31]

The joint entropy method attempts to maximize the joint entropy in

selection S. For some selection S = {s0, s1, ..., sn−1}, the joint entropy method

defines the quality of S of budget n as in Eq. 3.1.

Selection quality =
∑

0≤i≤n−2

JE(datasi , datasi+1
) (3.1)

The selection S that maximizes Eq. 3.1 is considered optimal under the joint

entropy method.

Eq. 3.1 was used as a evaluation metric in [32], but, of course, can also be

used as a selection method by maximizing the joint entropy. In a similar fashion

to the calculations for reconstruction-based approaches, a dynamic programming

method can be employed to calculate the best selection for some budget k.

The importance-based approach by Wang et al. first subdivides the data

into equal sized blocks. Next, the importance of each block is defined as the sum

of conditional entropies of the block with those at the same spatial location in

adjacent time steps. Specifically, for some data block Xj at time t, Wang et al.

defines its importance as seen in Eq. 3.2, where Yj,t refers to the jth block at time

step t. Finally, the importance of a time step is defined as the sum over all blocks

as in Eq. 3.3.

AXj ,t = 0.5 ·H(Xj,t|Yj,t−1) + 0.5 ·H(Xj,t|Yj,t+1) (3.2)

At =
∑
i

Ai,t (3.3)
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With the importance of each timestep, Wang et al. then partitions the time series

into contiguous sections with approximately equal sum of importance values.

Finally, a time step from each contiguous partition is chosen such that the joint

entropy of every selection in S is maximized. Hence, the importance-based method

can be thought of a variant of the joint entropy methods, except that it restricts

the pool from which the selections can be made. The size of each block used in this

paper for each data set is listed in Table 4 and details of the method can be found

in [31].

Both joint entropy and importance-based selection methods requires a

histogram to be constructed for each time step, thus requires the number of bins

to be defined. In this paper, we consider four bin counts: 8, 64, 128, and 256 bins.

Therefore, 2× 4 = 8 total information-theoretic methods are considered.

3.2.3 Flow-based* method and uniform selection. In this work,

we also consider the flow-based method by Frey and Ertl [10]. However, we make

one key modification: we enforce that the first and last time step be included in the

selection. For any budget k, recall that reconstruction-based methods effectively

have k− 2 degrees of freedom. To ensure that comparisons are valid across methods

with the same budget, this paper considers a modified flow-based* method that

enforces the inclusion of the endpoints. We also consider the uniform selection

which places selections evenly throughout the time series.

Also note that a number of selection methods can also be directly used as an

evaluation metric as well. The full set of selection methods this work considers and

whether they are also valid metrics are shown in Table 3.
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Name Description Can be a evaluation metric

LIL1N Linear interpolation with L1 norm of difference Yes
LIL2N Linear interpolation with L2 norm of difference Yes
LIMSE Linear interpolation with mean squared error of difference Yes
LIVI Linear interpolation with Variation of Information Yes

DTWL1N Dynamic time warping with L1 norm of difference Yes
DTWL2N Dynamic time warping with L2 norm of difference Yes
DTWMSE Dynamic time warping with mean squared error of difference Yes
DTWVI Dynamic time warping with Variation of Information Yes
JE8 Joint entropy with 8 bins Yes
JE64 Joint entropy with 64 bins Yes
JE128 Joint entropy with 128 bins Yes
JE256 Joint entropy with 256 bins Yes

Importance8 Importance-based selection with 8 bins No
Importance64 Importance-based selection with 64 bins No
Importance128 Importance-based selection with 128 bins No
Importance256 Importance-based selection with 256 bins No

Flow-based*
Modified version of the flow-based method

[10]
Yes

Uniform An evenly-spaced selection No

Table 3. Selection methods

Data set Block size

Asteroid 20× 20× 60
Cloud 50× 50× 1

Droplet 16× 16× 16
EarthquakeMag 50× 30× 10

HurricanePressure 25× 25× 10
MantleTemperature 20× 20× 20

Jet 24× 26× 20
Bottle 45× 25× 1

Cloverleaf 23× 20× 23
Radiation 20× 20

Table 4. Block sized used for the importance-based approach [31]
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CHAPTER IV

SELECTION SIMILARITY

4.1 Overview

In short, this section addresses RQ1: which selection methods produce

similar selections? In other words, we want to cluster the selection methods in

Table 3 into those that exhibit similar behavior. The importance of such an

analysis is to gain a better understanding of how selection methods relate to each

other across the range of data sets and budgets. To this end, we apply two passes

of agglomerative clustering.

1. Agglomerative clustering on the result that each selection method makes for a

particular data set and a particular budget.

2. Agglomerative clustering on the result that each selection method makes

across all data sets for a particular budget.

For example, the first clustering pass would cluster selection methods based on its

results on the asteroid data set for a budget of 5, while the second pass would

cluster selection methods on its results on all data sets for a budget of 5. In order

to quantitatively cluster selections using a hierarchical clustering model, a metric is

required to capture the dissimilarity between two selections.

4.2 Selection difference

Given two different selections of budget k, S1 and S2, we want to define a

selection difference SD(S1, S2), to capture the dissimilarity between the two. In

order to define SD, we borrow ideas from alignment-based metrics based on time

series analysis. In particular, consider two alignment schemes: Euclidean alignment

and Dynamic Time Warping alignment. (An important note: The Dynamic Time

Warping (DTW) alignment introduced here is entirely different than the DTW-
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based selection method by Tong et al [27]. Though they are both based on the

same idea from time series analysis, the two should not be confused.)

For two time slice selections of budget k, S1 : {x0, ..., xk−1} and S2 :

{y0, ..., yk−1}, an alignment between S1 and S2 is a set P = {p0, ..., pm} of pairings

pi. Each pi is pair of elements (xi, yj): one selection from S1, and another from S2.

A simple metric we can devise is to consider the difference between S1

and S2 as the summation of pairwise difference at each index. Aligning every ith

element with each other between two time series is referred to as the Euclidean

alignment[33] (i.e. for any i, pi = (xi, yi)). The difference metric that arises from

this alignment can be written as follows:

Euclidean alignment cost(S1, S2) =
∑
i

abs(S1[i]− S2[i]) (4.1)

However, as noted by Keogh and Pazzani, the Euclidean alignment between time

series is highly sensitive to small distortions in the time axis [12], thus, making it

less appealing in many scenarios.

Thus, the more commonly used alternative, and the method used in this

paper, is the Dynamic Time Warping (DTW) alignment [12], which allows for a

more flexible and intuitive dissimilarity metric between two time series. A valid

DTW alignment satisfies the following three conditions.

1. The first and last indices are paired together. In other words, (x0, y0) ∈ P and

(xk−1, yk−1) ∈ P .

2. Every xi, yj appears at least once in a pairing in P .

3. The pairings between S1 and S2 must be monotonically increasing. In other

words, for any xi, xj ∈ S1 with i < j, its respective pairing ys, yt ∈ S2

must obey s ≤ t, and vice versa. The monotonicity of pairings is enforced

to preserve the time ordering in the pairings.
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Finally, the optimal DTW alignment is the set of pairings P that minimizes the

difference in each pairing pi. Formally, for two selection S1, S2, and the set of all

valid DTW alignments, denoted P , the DTW alignment cost is defined as follows.

DTW alignment cost(S1, S2) = min
P∈P

∑
i

abs(Pi[0]− Pi[1]) (4.2)

0 15 50 55 99
Time step

Selection 2

Selection 1

Cost=0 Cost=5 Cost=35 Cost=10 Cost=0

Overall cost=50

Euclidean Alignment
0 10 15 65 99

0 15 50 55 99
Time step

Selection 2

Selection 1

Cost=0

Cost=5

Cost=0
Cost=15

Cost=10
Cost=0

Overall cost=30

Dynamic Time Warping Alignment
0 10 15 65 99

Figure 2. Euclidean alignment (top) and Dynamic Time Warping (bottom)
alignment between two selections: {0, 10, 15, 65, 99} and {0, 15, 50, 55, 99}.
The dotted lines denote the pairings that would be produced under the respective
alignment schemes. Notice that Euclidean alignment has cost of 0+5+35+10=50,
while the DTW alignment has cost of 0+5+0+15+10+0=30.

Fig. 2 plots a notational relation between the Euclidean alignment cost

and DTW alignment cost. As Keogh and Pazzani pointed out, the Dynamic
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Time Warping alignment better describes the difference between two time slice

selections. Here, the Euclidean alignment that forces the (15, 50) pairing paints

a distorted picture. As a result, as mentioned prior, in this thesis, we employ the

DTW alignment cost as SD(S1, S2).
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(a) Clustering for the asteroid
data set with a budget of 5
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(b) Clustering for the droplet
data set with a budget of 5

Figure 3. Dendrograms from the per data set/budget hierarchical clustering of
selection methods (i.e. the first clustering phase). Each clustering is also color-
coded based on results if 5 clusters were to be extracted.

To calculate SD(S1, S2), dynamic programming can be used, following the

recurrence relation in Eq. 4.3. Let DP [i][j] denote the selection difference between

the first i elements of S1 and first j elements of S2. Then, the following holds.

DP [i][j] =abs(S1[i]− S2[j])+

min(DP [i− 1][j], DP [i− 1][j − 1], DP [i][j − 1]) (4.3)

Finally, notice that DP [k][k] is equal to SD(S1, S2) for any two selections S1, S2 of

budget k.

4.3 Hierarchical clustering

4.3.1 Overview. For a particular data set and budget, we determine

similarities across the selection methods by applying agglomerative clustering with

this SD metric. (Note that average-linkage clustering is used as the method to join
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(b) Aggregate clustering using
SDNorm for budget of 10
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(c) Aggregate clustering using
SDNorm for budget of 20

Figure 4. Dendrograms from the aggregate hierarchical clustering of selection
methods (i.e. the second clustering phase). Each clustering is also color-coded
based on results if 5 clusters were to be extracted.

clusters in the hierarchical clustering process as recommended by Manning et al.

[18].) However, this per data set/budget clustering only highlights local clusterings.

Therefore, as noted in §4.1, in order to cluster the behavior of selection methods

across data sets for a particular budget, we use agglomerative clustering on the

aggregated selection differences across all data sets.

There are number of ways to aggregate selection differences across data sets.

The most simple method, and perhaps obvious, is a simple addition of SD values.

In other words, we can assess the difference between two selection methods for

some budget k by summing SD value for each of the 10 data sets. However, simple
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addition of SD across data sets can be a problem, since the number of time steps

in each data set varies. The range of values that SD can take on increases for data

sets with longer time series; hence, simple addition of raw SD values will inflate

contributions from data sets with more time steps. Therefore, for the aggregate

hierarchical clustering phase, we devise a normalized SD metric, to overcome this

issue.

4.3.2 Normalized SD. In essence, for the normalized SD, or

SDNorm, we consider each element in a selection, not as a time slice index, but

as a percentage of the whole time series. By way of example, consider a data

set with 50 time steps, and a selection for this data set {0, 10, 15, 49}. In the

SDNorm calculation, we instead treat this selection as {0%, 20.4%, 30.6%, 100%}

or {0, 20.4, 30.6, 100}, and proceed with the same calculation as in Eq. 4.2. This

transformation is permissible for a several reasons. First, notice that this linear

transformation does not affect the local per data set/budget clustering from the

first clustering phase, since SD and SDNorm would bring rise to the same clusters

in the first per data set/budget clustering phase. Second, the number of time steps

in a particular data set is often arbitrary. Simulation scientists will often decide

the rate to dump the simulation data to disk (e.g. every 5 simulation cycles).

Therefore, we argue the actual time step index of the selection is less interesting

than where it is temporally located in the time series.

The key, desirable property of SDNorm is that it sidesteps the issue that

SD had under simple addition across data sets. Since the values are all within [0,

100], simple addition of SDNorm can be used to cluster the behavior of selection

methods across all data sets. (We cannot, however, use SDNorm to cluster across

different budgets, since the range of SDNorm increases as the budget increases.)
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With SDNorm established, we define the pairwise difference between two selection

methods SM1, SM2 for a budget k in the aggregate clustering phase in Eq. 4.4. Let

D denote the set of all considered data sets. Then,

Aggregated difference(SM1, SM2, k) =∑
dset∈D

SDNorm(SM1(dset, k),SM2(dset, k)) (4.4)

4.3.3 Results.

4.3.3.1 Results from the first clustering pass (per data set

& budget clustering). For this selection similarity analysis, we consider three

budgets: 5, 10, and 20. This analysis does not consider larger budgets for two

reasons: (1) As described in the introduction, time slice selection algorithm are

often used to generate a short summary of the data set. Therefore, comparisons

at lower budgets are more meaningful. (2) Differences between selection methods

are more accentuated at lower budgets. Now, since there are 10 data set under

consideration, this yields 10 × 3 = 30 per data set/budget clusterings, and 3

aggregate clustering using SDNorm for each budget. Instead of analyzing all 33

clustering results and dendrograms, we highlight five clustering results and show

their dendrograms in Figs. 3 and 4.

Figs. 3a and 3b consider the asteroid and droplet data set,

respectively, at a budget of 5. Notice that the clustering results between the two

share some similarities, but also have key differences. Some observations follows.

– The joint entropy methods (i.e. JE8, JE64, JE128, and JE256) make similar

selections in both data sets.

– DTW-based methods except DTWVI (i.e. DTWL1N, DTWL2N, DTWMSE)

make similar selections for both data sets.
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– The relative behavior of the importance-based method (i.e. Importance8,

Importance64, Importance128, Importance256) is different. While their

behavior are similar for the droplet data set, the behavior is is more varied

for the asteroid data set.

– LI-based methods except LIVI (i.e. LIL1N, LIL2N, LIMSE) make similar

selections for the droplet data set, but for the asteroid data set, LIMSE

performs differently than the other two.

4.3.3.2 Results from the second clustering pass (aggregate

clustering). With the 30 local clusterings as mentioned prior, however, exploring

each clustering and their differences is (1) time consuming and (2) less interesting

than characterizing general behavior over all datasets. Instead, this section will

mainly focus on the results from Fig. 4 to answer the question posed in §4.1 -

which selection methods produce similar results? In the aggregate, we make the

following observations.

– LIL1N, LIL2N, LIMSE, DTWL1N, DTWL2N, and DTWMSE all produce

similar results for all data sets for all budgets.

– JE64, JE128, JE256 produce similar results for all data sets for all budgets.

– Importance64, Importance128, Importance256 produce similar results for all

data sets for all budgets.

– Flow-based* generally performs most similar to LIL1N, LIL2N, LIMSE,

DTWL1N, DTWL2N, and DTWMSE.

– JE8 and Importance8 are most similar to each other, and generally dissimilar

to the rest.

– VI-based methods (i.e. LIVI, and DTWVI) are outliers. LIVI forms a single

leaf at budgets 10 and 20. At budget 5, though it forms a cluster with
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DTWVI, LIVI is still significantly different that the rest of the selection

methods. Despite it following the same reconstruction-based approach as

methods like LIL1N, their behaviors present a significant departure from

them. The reason for this departure is explored in Chapter V.

4.3.3.3 Observations on the behavior of the joint entropy

selection method. A key difference that separates reconstruction-based and

joint entropy selection method is whether they enforce some level of temporal

spacing in their selections. Reconstruction-based selection methods, by way of

their design, tend to prefer selections that are temporally spaced out. In fact, this

naturally follows from how the cost for reconstruction-based methods are defined.

Regardless of the specific reconstruction paradigm, these methods hinge on finding

time steps in the simulation from which reconstruction of other time steps are best

achieved. Therefore, skipping many intermediate time steps tends to introduce high

error in the cost calculation, leading it to prefer to spread out its selections. In

contrast, joint entropy methods pay little attention to how selections are “spread”

out temporally, since no reconstruction is done. Thus, there is no inherent penalty

for skipping many intermediate time steps in adjacent selections - they only serve

to maximize the joint entropy of adjacent selections. This is seen in Fig. 7 and

Figs. 10b and 10c. Notice that the joint entropy methods, in the earthquakeMag,

asteroid, and jet data sets, tend to cluster their selection more in comparison

to the reconstruction-based methods. This is not to say, reconstruction-based

selection methods never clump their selections. Especially, at higher budgets, (e.g.

earthquakeMag with budget 20) reconstruction-based methods do make clumped

selections. We merely observe that the tendency to clump selections is higher for
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the joint entropy methods, providing insight into why the clustering analysis often

classified them as dissimilar.
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CHAPTER V

FAILURE CONDITIONS

5.1 Overview

This section mainly addresses RQ2: do we observe notable outlier behavior?

Now, as mentioned in the introduction, establishing the “correct” selections for

a particular combination of data set of budget is difficult without consulting a

domain scientist. Therefore, this section points out clear cases where we observe

selection methods and evaluation metrics misbehave.

5.2 Issues that data sets with high dynamic range encounter

In the context of this work, data sets with high dynamic range refers to

data sets where the local minimum and maximum values of the each time step

change drastically over the course of the time series. Among the data sets that

considered, two data sets, asteroid and earthquakeMag, have high dynamic

range. asteroid, for example, models an asteroid collision with a ocean that

occurs at time step 4 in our data set. After this initial impact, the remaining time

steps track the aftermath of the collision and how the energy disperses through

the air and ocean. As a result, the range of values at each time step are drastically

different. For examples the range of values (temperature in eV) at time step 4 is

[0.01870, 2.350], while the range of values at time step 200 is [0.01075, 0.2057].

The earthquakeMag data set is a similar case. In this simulation of a

magnitude 7.7 earthquake on the Southern San Andreas Fault, the rupture begins

at time step 0, and continues until time step 54. After the fault rupture stops, the

first waves reach the bounding box of the simulation by around time step 100. The

waves continue to propagate the until the end of the time series. Fig. 5 shows

volume rendering of the earthquakeMag simulation. Due to this nature of the
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Figure 5. Volume renderings of magnitude of velocity in the earthquakeMag
data set. Shown are time steps (right-to-left, top-to-bottom) 0, 19, 39, 79, 99, 119,
139, 159, 179, 199, and 226
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simulation, the range of values (magnitude of velocity) at time step 39 is [0, 3.119],

while the range of values at time step 200 is [0, 0.07701].

These drastic differences in ranges presents a challenge for any selection

methods using histogram to represent data - namely the joint-entropy methods,

DTWVI and LIVI. There are two options when constructing the histograms at

each time step: (1) Use the local maximum and minimum values or (2) Use the

global maximum and minimum values. Now, using local maximum and minimums

for constructing the per time step histogram is problematic since this would

effectively change resolution of each bin over the time series. Under this paradigm,

entropy measures are can become practically useless since small variation of data

can be distorted to represent high “information”.

As a consequence, using the global maximum and minimum values for the

histograms is the only reasonable option as this ensures that the Shannon entropy

numbers are meaningful in the context of the whole time series. However, using

global maximum and minimum values faces one key issue. In many cases, this leads

to heavy underutilization of histogram bins.

Fig. 6 shows the histogram at each time step using the global maximum

and minimum values for the earthquakeMag data set. Note that the histograms

use a log-scaled y-axis. Further, with the exception of some of the time steps that

correspond to the rupture expansion and the initial wave propagation (i.e. time

steps 0-54), many histogram bins are unused, or have comparatively very little

count. For selection methods and evaluation metrics that rely on histograms to

represent the data, this proves to be a significant challenge.

Fig. 7 plots the result from each selection method for the earthquakeMag

data set at a budget of 10.
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Figure 6. Histogram of time steps from the earthquakeMag data set using 64
and 128 bins. Shown are time steps (right-to-left, top-to-bottom) 0, 19, 39, 79, 99,
119, 139, 159, 179, 199, and 226.

5.2.1 Effects on joint entropy selection methods. Notice first the

outlier behavior of the joint entropy approaches: JE8, JE64, JE128, and JE256.

While other methods maintain some temporal resolution, purely maximizing

the joint entropy of the selection yields selections that are heavily clumped

around where the ruptures ends and starts to spread throughout the data set.
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Figure 7. Result from each selection method at a budget of 10 for the
earthquakeMag data set. Each dot corresponds to the time slice that each
selection method makes.

(i.e. time steps 50-100) The underutilized bins in the other time steps, and the

consequent empty joint histograms, imply that the joint entropy methods do not

perceive these time steps as “worthy” for selection. These qualities lead to the

selections by the joint entropy approaches as seen in Fig. 7. This may not be a

true “‘failure” condition, i.e., it may be the case that this is the only region of

interest to domain scientists. That said, from the perspective of understanding

the simulation as a whole, this selection certainly underdelivers, and it is a notable

effect of underutilized bins for data set with high dynamic range.

5.2.2 Effects on reconstruction-based selection methods

that use Variation of Information. Another notable case of the effects

of underutilized bins is seen with the reconstruction-based methods that

use Variation of Information as the error metric. Consider LIVI ’s selection

for the earthquakeMag data set in Fig. 7 and notice that it is clearly

another outlier in relation to the rest. In fact, the selection method LIVI
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selects {0, 216, 217, 218, 219, 220, 221, 222, 224, 226} as its selection for the

earthquakeMag data set at budget of 10. The cause of this behavior can be seen

by revisiting how Variation of Information is defined.

As seen in Fig. 1, at its core, Variation of Information between two random

variables X and Y is the sum of conditional entropies, H(X|Y ) and H(Y |X). Since

reconstruction-based methods try to minimize∑
i

V I(datai, data
′
i)

where datai is the original data and data′i is the reconstructed data, it follows that

this is equivalent to minimizing∑
i

H(datai | data′i) + H(data′i | data)

A key property of conditional entropy between two random variables X and Y is

that it always obeys H(X) ≥ H(X|Y ). In other words, if H(X) is very small, then

H(X|Y ) must also be a very small quantity. If X contains little information itself,

then the information in X given the information of Y is naturally very small.

Returning to the earthquakeMag data set and its histograms in Fig. 6,

notice that the first and last time step have little information since most data is in

one bin. (i.e. H(data0) ≈ 0 and H(data226) ≈ 0.). This in turns means that any

linearly interpolated data between time step 0 and time step 226 also must have

very little information. (This follows since linear interpolation will never introduce

values outside of what it sees at the endpoints for each mesh location.) The effect

of this behavior is that, under evaluation metric EMLIVI, {0, 226} is evaluated

as a better selection than {0, 100, 150, 226}. The two selections are given scores

38.041 and 55.003 respectively. (Lower is better.) The reason for this behavior

is as outlined above. Since the entropy of data′i is small if linearly interpolated

32



between time step 0 and 226, H(data′i|datai) also tends to be to a small amount,

causing this odd effect to preferring no intermediate selections between 0 and 226.

Minimization of Variation of Information can be achieved, if the reconstructed data

had little to no information altogether. This, of course, is a clear failure condition.

{0, 100, 150, 226} as a selection contains all the information of {0, 226}; therefore, it

should be evaluated at least as well as the former - not worse.

Figure 8. Pairwise mapping cost for the earthquakeMag data set: LIL1N on the
right and LIVI on the left.

Fig. 8 shows the mapping cost for LIL1N and LIVI evaluation metric

between any two time slices between 0 and 226 for the earthquakeMag data set.

Every [i, j]th entry of the upper triangle heat map shows the cost between time step

i and time step j under EMLIL1N and EMLIVI. (i.e. Linear interpolating every time

step between time step i and time step j and summing the differences via LIL1N

or LIVI.) The cause of outlier behavior from SMLIVI can be seen in Fig. 8 as well.

Notice the difference between the upper right regions of the two plots in Fig. 8.

(i.e. Mapping costs between lower (0-15) time steps and higher (200-227) time

steps.) While LIL1N assesses the comparatively high error in that region, notice
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that LIVI does not. This provides another explanation as to why the LIVI selection

methods makes its selection for earthquakeMag. Similar outlier behavior is seen

with the asteroid data set with LIVI and DTWVI.
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CHAPTER VI

METRIC COMPARISONS

6.1 Overview

This section mainly addresses RQ3: how do selection methods compare

over many metrics? To this end, for every selection method SM in Table 3, we

evaluate its selection with every evaluation metric EM in Table 3. This analysis

results in the following: for every selection method SM , a budget k, and a data

set, we calculate 13 metric scores, each corresponding the score that evaluation

metric assigns to the selection that a particular selection method makes. However,

reporting on the raw metric scores loses some key information as it relates to what

the scores mean in a relative sense. For example, consider two selections S1, S2,

and two evaluation metrics EM1, EM2. (Assume that lower is better for these

two metrics.) Suppose that their evaluations are as shown in Table 5. The proper

Evaluation Metric Evaluation of S1 Evaluation of S2

EM1 10 20
EM2 1900 2000

Table 5. Example of a set of evaluations

interpretation of these raw results can be difficult. For example, is the difference

between 1900 and 2000 for EM2 a meaningful difference? Or, in the eyes of EM1,

is S1 twice as good a selection as S2? The key issue here is that raw scores from

evaluation metrics lack context. Raw scores from each EM do not deliver any

insight as to how each EM behaves over a range of different selections. To address

this issue, for the purposes of metric comparison, this section considers instead the

percentile of score among 5000 random selections rather than the raw scores itself.

Specifically, when evaluating a selection S with an evaluation metric EM , we first
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randomly generate 5000 selections of the same budget, evaluate each 5000 selections

with EM and report the percentile of EM(S) among the random 5000 selections.

Note that a higher percentile is better for all metrics. For example, if a metric EM

evaluates a selection S in the 75th percentile, this means that, in the eyes of EM ,

the selection S is better than 75% of the 5000 random selections considered.

6.2 Results

Figs. 9a and 9b plot the results from the asteroid and cloud data sets

at a budget of 5 as heatmaps. Fig. 9c reports the average percentile over all 10

data sets at a budget of 5. Each row in Fig. 9 corresponds to a selection method

and each column corresponds to a evaluation metric. Therefore, each cell (i, j) in

the heatmaps corresponds to SMi’s percentile among 5000 random selection under

the metric EMj.

Comparing Figs. 9a and 9b, the first obvious difference between the two is

lack of poor evaluations for the cloud data set in Fig. 9a. Notice that every cell

with the exception of SMDTWL2N − EMflow∗ scores higher than a 90th percentile.

In contrast, for the asteroid data set in Fig. 9b, the heatmap shows many more

combinations with poor evaluations. This difference is primarily due to the nature

of the data set. The asteroid data set captures a asteroid collision with a ocean,

while the cloud data set tracks cloud over a regular day in central Europe. As a

result, the cloud data is far more static (i.e. less changes in the data) than the

asteroid data set. Consequently, for the cloud data set, all selection methods

make selection very similar to an uniform selection. Since the data stays fairly

similar over time, the methods fall back to placing selections mostly evenly across

the time series. This is seen in Fig. 10a. The takeaway from Fig. 9a is that for
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(c) Average of evaluation percentiles
for all data sets

Figure 9. Percentile of evaluations among 5000 random selections at a budget of 5.

static dataset like cloud, all methods perform similarly, and since all methods

make similar selections, all evaluation methods rate them similarily as well.

On the other hand, the asteroid data set tells a very different story.

Not only do methods make different selections (as seen in Fig. 10b), but there are

notable differences in how methods fare under the range of evaluation metrics.
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(b) Asteroid data set
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Figure 10. Results from each selection method at a budget of 5 for select data sets.
Each dot corresponds to the time step that each selection method makes.

First, and perhaps most notably, notice the poor evaluation for SMLIVI

and SMDTWVI across the board. Of course, since SMLIVI and SMDTWVI optimize

for their respective metrics, EMLIV I and EMDTWV I , they perform at the 100th

percentile under them. However, under any other metric, they perform poorly,

around the 5-10th percentile range. The reason for this disparity becomes obvious

in Fig. 10b: SMLIVI and SMDTWVI focus on a entirely different part of the time

series than the other selection methods. The cause for this was discussed in

Chapter V on failure conditions.

Second, we also notice an asymmetry between the non-VI reconstruction-

based approaches (i.e. LIL1N, LIL2N, LIMSE, DTWL1N, DTWL2N, and

DTWMSE) and the joint entropy approaches. While the reconstruction-based
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metrics poorly evaluates the selections that the joint entropy methods make, the

same is not true for the converse. In fact, the joint entropy metrics favorably

evaluates selections that reconstruction-based methods make as well as the joint

entropy selection methods. Notice that for the asteroid data set in Fig. 9b,

with the exception of LIVI and DTWVI, all combinations of reconstruction-

based methods and joint entropy metrics yield a higher than 80th percentile. But,

several combinations of joint entropy methods and joint entropy metrics yield poor

percentiles, some in the single digits. This trend holds across data sets as well, as

seen in Fig. 9c. Notice that while the joint entropy metric evaluates all methods

favorably, reconstruction-based metrics are more critical, especially the linear-

interpolation based metrics.

Another observation we make is on the performance of uniform selection.

For cloud, asteroid and overall, notice that uniform selection does fairly well

across all metrics. In fact, in many instances, uniform selection is preferred by

metrics over other methods that involve computations to generate. This result in

both encouraging and discouraging. On the one hand, as a domain scientist, Fig.

9 shows that in many cases using a uniform selection will net better or equally

as good results than applying a more sophisticated selection method. But, as

a visualization researcher, this demonstrates that there is substantial room for

improvement - beating a uniform selection should be a low bar considering its

simplicity.

Finally, from Fig. 9c, we observe that the flow* metric evaluates similarily,

compared to the non-VI reconstruction-based approaches. On average, the

flow* metric favorably evaluates non-VI reconstruction-based approaches (∼80th

percentile), poorly evaluates joint entropy approaches (∼45th percentile) and
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evaluates the importance-based methods in between the aforementioned two.

These results are consistent with the clustering results from §4.3.3 that found the

flow* selection method to make similar selections as non-VI reconstruction-based

approaches.

Finally, examining the set of selection methods and their average

performance over the set of evaluation metrics, we find the following

1. Non-VI reconstruction-based and flow-based* selection methods are favorably

evaluated over our set of evaluation metrics, with the exception of EMLIVI

and EMDTWVI.

2. The average performance of SMLIVI and SMDTWVI is poor due, in particular,

to its issues outlined in Chapter V.

3. Joint entropy selection methods perform well under joint entropy evaluation

metrics, but perform poorly under reconstruction-based metrics.
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CHAPTER VII

CONCLUSION

This thesis considered 10 data sets and 18 selection methods and explored

the behavior of time slice selection methods over a diverse range of scientific

simulations. Through a Dynamic Time Warping-alignment based selection

difference metric and agglomerative clustering of selection methods, we identified

similarities and dissimilarities between time slice selection algorithms in literature.

Furthermore, we investigated failure conditions that some methods face. We

identified that selection method that rely on histograms to represent data struggles

when simulations have high dynamic range, since this leads to significantly

underutilized bins in many cases. Lastly, by evaluating every selection method with

every other evaluation metric, we illuminated the behavior of evaluation metrics,

and identified selection methods that perform well across the set of all evaluation

metrics.

We believe this work can serve as a launching pad for further investigation

into the behavior of selection methods. For example, the stability of selection

methods is an important consideration. If the behavior of a selection method

were significantly different for spatially subsampled data compared to the original

data, this would be a cause of concern. Considering the stability of selection

methods under temporal and spatial subsampling and other perturbations of the

data, is an area of future work. Deep-learning based selection methods that were

introduced in Chapter II may also be a worthy topic of investigation, considering

the demonstrated power of deep learning in other domains of computer science.

That said, this thesis has focused on domain-agnostic approaches, and deep-

learning methods will need to innovate to become domain agnostic. Future work
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should include the aforementioned stability work, investigating deep-learning based

selection methods, assessing how selection methods behave over different budgets,

as well as expanding the set of considered data sets. Finally, we note that a user

survey targeting domain scientists is critical to gain the full picture of the space of

time slice selection methods. Recall from Chapter I that we currently consider the

“correct” selection for any data set and budget to be unknown. Clearly, this is a

significant obstacle in designing time slice selection methods since the real quality

of selection methods can only be defined in relation to a known ground truth. In

our case, the ground truth is what a domain scientist would select based on their

knowledge of their domain and dynamics of a particular simulation. As such, we

consider this user survey a critical future work as well.
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APPENDIX A

ADDITINAL RESULTS FROM EACH SELECTION METHOD
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APPENDIX B

EVALUATIONS COMPARING TO RANDOM SELECTIONS
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JE_128

JE_256

Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 99.9 97.6 69.3 99.8 95.8 90.0 59.5 80.3 89.5 91.8 92.5 94.2

100.0 100.0 98.1 64.6 99.3 95.7 91.1 53.1 83.1 89.9 91.4 92.5 95.7

92.5 99.4 100.0 34.2 99.2 99.9 99.9 49.2 94.4 97.9 95.2 95.4 94.7

4.9 1.9 0.5 100.0 0.1 0.0 1.3 93.5 2.0 0.0 0.2 0.1 0.0

98.2 99.4 99.5 46.1 100.0 99.3 98.8 53.0 88.7 97.6 96.6 96.0 96.7

88.2 98.9 100.0 29.4 99.3 100.0 99.9 52.0 93.2 98.9 96.3 95.8 91.9

81.4 97.9 99.9 23.8 97.7 100.0 100.0 49.9 95.4 98.9 96.6 96.1 89.9

17.8 11.5 5.0 88.5 6.7 5.7 4.1 100.0 2.0 6.3 6.9 11.8 2.6

0.9 2.1 23.9 0.5 37.5 74.4 91.2 30.1 100.0 98.4 92.8 95.6 35.8

16.2 44.7 72.9 3.7 75.4 93.8 97.4 44.6 98.7 100.0 99.8 99.9 43.5

9.2 30.9 57.7 3.7 57.9 73.2 80.5 49.7 92.9 99.9 100.0 100.0 28.5

6.2 24.8 55.2 2.9 58.5 77.2 86.7 45.8 98.9 100.0 100.0 100.0 32.3

1.6 5.1 32.9 0.8 46.6 80.6 94.5 33.2 99.9 99.2 97.0 98.7 38.4

19.4 48.6 73.4 4.4 70.2 87.7 93.4 44.4 98.8 99.9 99.8 99.9 38.5

41.7 69.6 80.4 14.0 80.3 89.2 88.2 57.5 88.5 99.7 99.9 99.6 36.6

93.5 91.6 91.0 48.3 92.2 84.2 81.5 47.1 66.2 95.8 97.9 98.6 85.3

96.1 98.0 99.5 39.3 96.6 97.7 98.3 33.5 91.0 95.1 92.2 94.2 100.0

90.8 84.4 70.4 66.3 87.2 73.0 64.6 59.4 42.2 67.5 74.9 79.3 79.5

Percentile of Evaluations Asteroid Budget: 5
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JE_128

JE_256

Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 100.0 100.0 69.5 99.8 99.6 98.7 54.5 90.5 93.5 94.7 94.1 93.1

100.0 100.0 100.0 71.5 99.6 99.3 98.1 53.5 89.1 92.7 94.0 93.3 92.6

100.0 100.0 100.0 58.1 99.8 99.8 99.4 46.8 93.2 94.9 96.1 95.5 90.1

26.9 25.1 9.3 100.0 17.8 18.2 14.9 100.0 7.1 9.0 8.9 9.8 33.4

99.7 99.5 99.7 62.6 100.0 99.8 99.6 52.1 93.8 95.6 96.7 96.2 91.5

98.9 98.4 99.6 47.4 99.8 100.0 100.0 38.9 96.8 97.9 98.4 98.0 84.1

96.1 94.9 98.4 38.0 99.6 100.0 100.0 28.2 98.2 98.7 98.9 98.5 80.2

63.6 62.4 29.9 88.0 21.8 23.0 13.3 100.0 32.4 31.4 33.0 36.1 29.7

17.8 14.9 53.3 2.8 94.1 98.6 99.6 6.1 100.0 100.0 99.9 99.6 52.4

31.4 20.0 79.3 17.6 69.7 70.9 79.3 17.6 99.9 100.0 100.0 100.0 81.5

22.5 12.6 61.3 18.3 75.0 75.3 83.2 17.7 99.9 100.0 100.0 100.0 81.8

20.0 10.8 57.4 15.1 70.7 70.9 79.2 16.6 99.9 100.0 100.0 100.0 80.7

12.7 9.2 42.4 18.9 87.7 91.6 94.1 35.3 98.8 96.3 96.5 96.0 89.9

17.4 11.4 47.4 30.8 97.1 98.0 98.3 44.6 98.1 98.4 98.8 98.7 93.7

21.9 12.8 52.6 28.3 96.8 97.8 98.2 36.8 97.5 99.0 99.4 99.6 91.5

25.1 14.1 57.7 28.4 96.7 97.7 98.4 33.3 97.3 99.2 99.6 99.6 91.1

92.2 84.8 84.6 72.9 75.1 73.3 67.1 79.6 69.7 75.3 77.0 78.4 100.0

82.4 95.4 95.1 81.1 82.3 80.0 80.2 75.9 81.7 82.0 84.2 82.2 95.3

Percentile of Evaluations Bottle Budget: 5
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JE_128

JE_256

Importance_8
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Flow-based*

Uniform

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.2 98.7 98.6 98.4 99.4

100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 96.9 99.5 99.4 99.3 95.9

100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 97.4 99.7 99.6 99.6 89.8

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.0 97.1 97.2 96.7 98.2

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.2 98.7 98.6 98.4 99.4

100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 95.3 98.4 98.3 98.0 71.6

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.3 99.0 99.0 98.8 90.5

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.1 97.9 98.0 97.6 94.3

98.8 99.3 99.4 98.6 98.5 97.7 98.0 98.8 100.0 99.8 99.7 99.6 96.5

98.9 98.7 98.9 98.7 99.0 98.0 98.2 98.8 99.5 100.0 100.0 100.0 99.8

98.9 98.7 98.9 98.7 99.0 98.0 98.2 98.8 99.5 100.0 100.0 100.0 99.8

99.0 98.7 98.9 98.7 99.0 98.1 98.3 98.8 99.5 100.0 100.0 100.0 99.8

99.8 99.9 100.0 99.8 99.9 99.7 99.8 100.0 98.2 99.7 99.6 99.5 99.9

99.9 100.0 100.0 99.9 100.0 99.8 99.9 100.0 97.9 99.7 99.7 99.6 90.2

99.9 100.0 100.0 99.9 100.0 99.8 99.9 100.0 97.9 99.7 99.7 99.6 90.2

99.9 100.0 100.0 99.9 100.0 99.9 99.9 100.0 97.9 99.7 99.7 99.6 99.2

98.4 97.6 97.9 98.2 98.7 97.9 98.0 98.1 96.9 99.4 99.3 99.2 100.0

99.8 99.7 99.9 99.8 99.8 99.3 99.4 100.0 98.6 99.8 99.9 99.8 95.1

Percentile of Evaluations Cloud Budget: 5
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JE_128

JE_256

Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 99.8 96.1 72.9 95.5 90.7 89.7 28.0 66.0 82.3 76.0 67.5 98.7

97.2 100.0 99.9 12.5 94.6 97.3 99.8 56.2 95.3 90.4 72.6 45.8 93.4

97.0 99.9 100.0 12.1 89.3 92.4 99.8 52.4 96.6 86.5 60.7 32.4 90.3

0.1 0.1 0.1 100.0 0.0 0.0 0.0 83.6 27.4 0.0 0.0 0.9 1.8

98.2 96.7 89.7 50.6 100.0 100.0 95.1 67.2 58.3 96.3 94.7 92.8 99.8

97.0 94.7 86.8 49.8 99.9 100.0 94.8 70.6 56.0 97.3 96.6 95.2 99.2

76.2 91.0 99.1 2.6 93.1 99.4 100.0 20.2 95.6 80.7 59.5 35.9 93.2

3.8 3.3 2.9 99.0 6.0 4.1 1.8 100.0 27.4 3.2 7.3 17.0 3.0

0.6 1.2 4.8 55.3 0.9 3.7 38.7 54.0 100.0 23.6 2.3 0.1 21.2

85.9 84.5 78.8 20.0 85.9 84.8 80.0 79.9 27.4 100.0 96.8 92.9 79.9

56.0 58.9 46.6 32.4 70.2 77.3 49.4 90.3 27.4 96.6 100.0 100.0 57.7

48.5 52.5 43.5 28.5 62.0 66.7 42.0 91.4 27.4 95.5 100.0 100.0 51.5

1.6 3.1 9.3 43.5 1.3 5.4 52.5 54.4 100.0 24.4 2.3 0.1 23.4

97.0 99.9 99.9 13.9 94.3 97.7 99.7 58.3 95.4 89.7 71.9 45.4 94.7

87.8 85.5 77.1 35.0 97.6 99.4 89.1 75.3 27.4 98.6 99.7 99.2 91.3

80.5 77.5 67.2 36.7 93.6 96.1 72.2 80.7 27.4 98.0 99.9 99.6 79.1

99.8 99.4 93.9 61.1 99.4 98.6 93.0 42.9 63.1 88.1 85.0 81.6 100.0

90.5 82.9 66.6 81.7 84.6 82.4 59.7 41.0 27.4 73.2 78.2 81.7 81.6

Percentile of Evaluations Cloverleaf Budget: 5

0

20

40

60

80

100

49



M
et

ric
_L

IL
1N

M
et

ric
_L

IL
2N

M
et

ric
_L

IM
SE

M
et

ric
_L

IV
I

M
et

ric
_D

TW
L1

N

M
et

ric
_D

TW
L2

N

M
et

ric
_D

TW
M

SE

M
et

ric
_D

TW
VI

M
et

ric
_JE

8

M
et

ric
_JE

64

M
et

ric
_JE

12
8

M
et

ric
_JE

25
6

M
et

ric
_f

lo
w*

LIL1N

LIL2N

LIMSE

LIVI

DTWL1N

DTWL2N

DTWMSE

DTWVI

JE_8

JE_64

JE_128

JE_256

Importance_8
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Flow-based*

Uniform

100.0 100.0 100.0 99.9 100.0 100.0 100.0 99.9 58.3 45.9 42.9 41.6 86.0

100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.9 60.0 47.1 44.8 43.8 87.5

100.0 100.0 100.0 99.7 100.0 100.0 100.0 99.9 61.0 47.5 45.1 44.1 87.7

99.5 99.7 98.8 100.0 98.8 99.2 97.7 100.0 41.7 30.0 29.6 28.2 65.9

100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.9 60.0 46.5 44.0 42.9 87.6

100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.9 59.3 46.4 43.8 42.5 87.6

100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.8 62.5 48.6 46.0 45.0 90.2

100.0 100.0 99.7 99.9 99.8 99.9 99.4 100.0 50.7 37.6 36.0 34.4 78.6

32.6 34.8 35.3 26.6 34.3 35.3 37.4 32.0 100.0 100.0 99.9 100.0 25.3

27.3 28.4 30.6 19.3 29.4 28.2 31.6 23.3 100.0 100.0 100.0 100.0 24.8

27.5 29.3 30.6 21.5 29.3 29.1 31.6 26.0 99.8 100.0 100.0 100.0 22.6

24.7 25.7 27.3 17.2 26.4 25.4 29.0 21.2 99.6 100.0 100.0 100.0 22.2

67.2 60.7 68.9 53.2 68.6 63.7 72.7 56.0 98.2 96.3 95.8 96.1 60.1

63.9 58.5 65.7 51.8 65.5 60.7 69.3 53.0 98.2 96.3 96.0 96.1 62.8

60.8 54.9 62.8 48.2 62.0 56.4 66.6 49.5 98.2 96.8 96.7 96.7 62.1

57.8 51.3 59.3 46.1 59.2 53.2 63.6 46.7 97.4 96.3 96.0 96.4 65.1

97.2 97.3 98.1 91.1 98.2 97.9 98.2 90.8 84.2 71.8 70.1 70.7 100.0

95.5 93.7 96.1 89.5 96.7 95.1 97.0 89.9 84.4 73.3 72.0 72.2 99.7

Percentile of Evaluations Drop Budget: 5
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Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 96.8 99.3 50.7 98.0 93.5 85.5 3.4 80.4 84.2 83.7 83.7 85.5

96.1 100.0 99.5 39.4 98.3 99.0 96.5 18.4 51.2 85.1 88.7 90.0 93.0

98.5 98.0 100.0 31.3 99.9 99.7 99.7 9.6 64.4 94.8 95.3 95.5 79.3

33.7 31.7 22.2 100.0 0.0 0.2 4.6 84.2 2.6 0.0 0.0 0.0 1.7

92.7 98.7 99.1 38.5 100.0 100.0 99.9 25.3 60.7 89.8 91.8 91.7 95.9

67.7 77.5 75.9 45.0 98.9 100.0 100.0 38.9 69.1 73.9 72.9 67.9 99.2

62.9 69.8 79.1 41.8 99.2 100.0 100.0 42.6 80.9 87.3 84.2 78.2 99.0

0.0 1.4 3.0 0.1 30.2 29.1 61.6 100.0 64.6 99.8 99.9 99.3 1.5

3.6 0.2 0.1 9.2 39.3 51.2 80.1 93.1 100.0 96.3 90.3 85.4 1.2

1.1 3.9 8.1 0.6 59.4 68.9 92.5 60.9 80.0 100.0 99.8 99.1 3.4

1.3 5.4 11.2 1.1 55.7 63.6 88.4 64.3 58.5 99.9 100.0 100.0 4.6

1.2 5.3 10.7 1.6 51.1 56.5 81.3 71.6 49.9 99.7 100.0 100.0 4.7

4.0 0.3 0.2 9.3 40.3 52.2 78.9 73.4 100.0 89.2 79.8 76.4 1.3

15.9 12.5 35.6 6.6 73.3 69.1 88.9 24.9 98.9 99.5 98.4 97.5 45.2

14.7 17.6 67.1 5.4 92.2 94.9 99.4 36.9 69.6 99.7 99.8 99.7 36.2

17.5 21.9 80.6 6.8 93.5 96.1 99.6 34.7 67.2 99.6 99.8 99.8 43.6

75.2 83.6 86.6 46.5 99.7 97.3 93.4 32.9 75.4 68.3 70.5 72.7 100.0

85.6 91.2 89.4 25.5 68.9 65.7 57.5 6.0 64.9 82.1 78.9 75.7 94.7

Percentile of Evaluations EarthquakeMag Budget: 5
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Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 100.0 100.0 99.9 99.8 100.0 100.0 99.9 99.9 99.9 99.8 99.8 50.3

99.9 100.0 99.9 99.4 99.8 100.0 99.9 99.9 99.9 98.8 98.9 99.0 89.9

100.0 100.0 100.0 99.9 99.8 100.0 100.0 99.9 99.9 99.9 99.8 99.8 50.3

99.9 99.9 99.9 100.0 99.9 99.9 100.0 99.8 98.2 99.3 99.6 99.7 10.7

100.0 100.0 99.9 99.8 100.0 100.0 100.0 99.9 99.6 99.5 99.5 99.5 34.1

100.0 100.0 99.9 99.8 100.0 100.0 100.0 99.9 99.6 99.5 99.5 99.5 34.1

100.0 99.9 99.9 99.9 99.8 100.0 100.0 99.7 98.8 99.2 99.5 99.5 18.3

99.9 100.0 99.9 99.6 99.9 100.0 99.9 100.0 100.0 99.6 99.5 99.5 76.7

99.0 99.6 99.7 99.3 98.6 98.8 99.2 99.1 100.0 100.0 100.0 100.0 37.6

99.0 99.6 99.7 99.3 98.6 98.8 99.2 99.1 100.0 100.0 100.0 100.0 37.6

97.7 98.1 98.4 97.3 97.6 97.2 98.1 98.0 99.4 99.9 100.0 100.0 36.5

97.7 98.1 98.4 97.3 97.6 97.2 98.1 98.0 99.4 99.9 100.0 100.0 36.5

96.8 98.1 97.6 96.2 94.6 97.5 96.7 96.0 97.7 94.8 96.3 96.6 92.2

94.3 96.2 95.7 93.3 92.1 95.8 95.2 93.5 88.9 87.0 89.2 89.9 44.8

95.7 97.4 96.6 95.5 93.4 96.7 95.8 94.8 96.8 92.2 93.9 94.8 61.7

95.4 96.8 95.9 94.7 93.1 96.6 95.4 94.5 96.0 90.8 93.0 93.6 27.5

81.8 82.0 84.5 82.8 81.8 81.4 84.5 75.1 82.4 93.0 93.2 92.4 100.0

97.8 99.3 99.0 96.4 97.0 99.2 98.7 97.5 99.5 97.9 98.7 99.4 57.8

Percentile of Evaluations HurricanePressure Budget: 5
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Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 100.0 99.9 99.7 99.9 99.9 99.7 54.4 80.3 74.7 71.5 70.8 87.0

99.6 100.0 99.8 99.3 98.9 100.0 99.8 47.2 73.6 68.1 64.9 64.6 62.2

99.7 100.0 100.0 98.8 99.4 99.7 99.9 44.7 77.2 69.3 65.8 65.1 99.5

99.2 98.6 97.7 100.0 98.7 99.0 98.3 55.0 75.2 72.4 70.0 69.7 19.7

100.0 100.0 99.9 98.2 100.0 99.5 99.4 61.8 85.1 78.2 75.4 74.4 47.8

99.8 100.0 99.8 99.7 99.2 100.0 100.0 45.2 73.4 67.7 64.5 64.3 63.3

99.6 100.0 99.9 99.3 99.0 100.0 100.0 41.1 73.1 65.9 62.5 62.5 62.7

1.6 1.7 1.2 2.3 2.0 0.7 0.6 100.0 76.3 97.9 99.2 99.6 9.8

37.2 38.3 35.8 29.6 54.4 30.8 25.0 96.0 100.0 97.8 96.8 95.9 28.2

11.6 13.5 10.6 10.7 17.1 8.1 5.2 99.5 97.3 100.0 100.0 99.9 0.6

8.2 9.9 7.2 8.2 11.4 5.8 3.7 99.6 94.8 99.9 100.0 100.0 9.6

5.4 6.0 4.7 6.1 7.4 3.6 2.2 99.8 91.3 99.8 100.0 100.0 1.5

99.9 100.0 100.0 98.8 99.8 99.8 99.9 48.9 80.1 72.3 68.8 68.2 97.7

100.0 100.0 100.0 98.9 100.0 99.9 99.8 56.0 82.1 75.6 72.3 71.6 71.5

100.0 100.0 99.9 99.2 100.0 99.9 99.8 57.0 81.9 75.9 72.6 71.8 62.4

100.0 100.0 99.9 98.9 100.0 99.4 99.4 60.4 84.0 77.9 75.0 74.1 93.0

97.1 95.8 94.3 99.4 95.1 97.0 95.8 47.4 67.9 65.6 63.6 63.9 82.9

99.1 98.9 98.8 99.3 97.8 99.2 99.0 36.0 69.1 62.8 59.6 59.2 68.3

Percentile of Evaluations Jet Budget: 5
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Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 100.0 100.0 99.8 100.0 100.0 100.0 99.7 71.8 78.7 77.1 79.1 63.2

100.0 100.0 100.0 99.7 100.0 100.0 100.0 99.6 70.2 78.1 75.9 77.7 70.3

100.0 100.0 100.0 94.3 99.8 99.9 100.0 94.3 69.7 95.8 95.4 95.7 60.2

91.7 91.6 85.4 100.0 95.2 97.9 92.0 100.0 31.2 43.0 44.3 46.6 44.6

100.0 100.0 100.0 99.6 100.0 100.0 100.0 99.3 73.0 80.6 78.6 80.4 17.7

100.0 100.0 100.0 99.7 100.0 100.0 100.0 99.6 70.2 78.1 75.9 77.7 70.3

100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.2 71.4 80.1 77.6 79.5 21.6

92.7 92.4 86.6 100.0 95.3 97.5 92.0 100.0 35.2 44.8 45.6 48.3 26.2

36.3 47.6 42.4 49.4 38.9 45.8 40.4 51.8 100.0 88.8 85.3 85.6 31.2

57.3 63.6 66.4 39.6 52.7 53.8 57.4 41.1 95.8 100.0 100.0 100.0 71.4

69.8 72.3 75.1 48.0 61.9 60.9 63.9 45.1 92.6 100.0 100.0 100.0 13.3

69.8 72.3 75.1 48.0 61.9 60.9 63.9 45.1 92.6 100.0 100.0 100.0 13.3

96.5 96.8 96.2 94.2 97.3 96.3 96.3 94.4 91.9 96.4 95.9 95.8 50.9

97.4 97.1 97.0 93.8 97.3 96.9 97.0 93.3 87.1 94.8 94.9 95.1 48.6

98.7 98.5 99.3 88.1 98.5 97.8 98.6 91.8 74.2 97.4 97.9 97.6 63.5

98.6 98.2 99.0 88.4 98.3 96.9 98.2 92.0 76.3 97.6 98.0 97.8 94.3

17.2 21.6 19.7 27.9 17.0 18.5 14.5 30.4 70.7 43.4 40.5 41.0 100.0

99.8 99.9 100.0 93.4 99.3 99.3 99.5 92.4 68.2 95.9 95.7 96.0 90.4

Percentile of Evaluations MantleTemperature Budget: 5
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JE_8

JE_64

JE_128

JE_256

Importance_8

Importance_64

Importance_128

Importance_256

Flow-based*

Uniform

100.0 100.0 100.0 50.4 92.6 89.9 94.5 92.3 37.9 20.6 22.6 22.7 97.2

99.9 100.0 100.0 44.4 90.1 90.0 94.3 91.7 31.0 17.3 18.1 18.1 95.8

99.9 100.0 100.0 42.6 89.1 87.5 92.9 89.2 28.7 16.7 17.7 17.9 95.9

81.1 77.1 60.0 100.0 97.3 96.6 93.7 83.8 77.7 58.2 54.5 51.3 89.6

94.5 91.9 81.3 97.2 100.0 100.0 99.8 99.8 65.6 47.3 45.8 43.1 98.4

95.0 92.8 83.4 95.8 100.0 100.0 100.0 99.9 61.0 39.5 40.2 39.2 99.9

96.3 94.5 87.2 92.6 99.9 100.0 100.0 99.8 57.7 35.3 37.4 35.2 100.0

96.3 94.6 87.0 94.8 100.0 99.9 99.9 100.0 63.3 40.8 41.4 40.6 99.4

10.4 11.2 9.7 58.5 12.3 12.8 10.6 12.5 100.0 99.4 96.8 95.8 9.2

5.5 5.6 5.0 31.3 5.6 5.3 4.9 6.8 97.2 100.0 100.0 99.9 5.6

7.0 7.0 6.6 35.4 7.6 7.1 6.8 7.5 96.3 99.5 100.0 99.8 5.8

5.6 5.8 5.1 33.3 6.0 5.5 5.1 6.1 93.3 99.4 100.0 100.0 5.7

48.5 47.6 34.4 97.9 69.6 68.1 57.2 38.4 96.0 78.4 79.2 77.0 39.0

34.3 35.9 24.7 95.2 47.7 49.5 38.2 27.4 97.9 82.5 83.8 82.2 26.5

32.9 34.6 23.9 95.0 45.3 47.2 36.2 25.0 98.6 85.2 85.6 83.4 25.1

29.4 31.1 21.7 94.6 40.1 41.6 31.9 25.4 99.2 85.6 85.9 84.2 22.4

97.0 95.7 90.5 89.2 99.4 99.9 100.0 100.0 54.4 31.8 34.7 33.2 100.0

77.7 74.3 57.0 99.8 96.2 95.3 90.8 68.5 83.3 63.9 66.0 61.0 83.8

Percentile of Evaluations Radiation Budget: 5
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