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DISSERTATION ABSTRACT

Dana Hunter

Doctor of Philosophy

Department of Mathematics

June 2022

Title: The Curtis-Wellington Spectral Sequence through Cohomology

We study stable homotopy through unstable methods applied to its

representing infinite loop space, as pioneered by Curtis and Wellington. Using

cohomology instead of homology, we find a width filtration whose subquotients are

simple quotients of Dickson algebras. We make initial calculations and determine

towers in the resulting width spectral sequence. We also make calculations related

to the image of J and conjecture that it is captured exactly by the lowest filtration

in the width spectral sequence.
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CHAPTER I

INTRODUCTION

Understanding maps between spheres up to continuous deformation, known

as the stable homotopy groups of spheres, is a central question in algebraic

topology. These groups also encode questions in geometric topology, including

some manifold classification questions. Recent work shows that these structures

have an impact even in purely algebraic settings. In this project we study stable

homotopy groups through unstable methods, revisiting an approach initiated by

Curtis and Wellington. We develop a new filtration on their spectral sequence, and

thus stable homotopy groups of spheres themselves, and explore the ramifications of

this filtration.

Background

We begin with the set of homotopy classes of based maps between spheres,

f : Sn+k → Sn, which are denoted πn+k(Sn). For n+k ≥ 1 these sets have a natural

group structure, which is abelian for n + k ≥ 2. These groups behave nicely with

respect to the suspension homomorphism σ : πn+k(Sn)→ πn+k+1(S
n+1).

Theorem 1.1.1 (Freudenthal Suspension Theorem). The suspension

homomorphism σ : πn+k(Sn) → πn+k+1(S
n+1) is an isomorphism for k < n − 1

and a surjection for k = n− 1.

Corollary 1.1.2. The group πn+k(Sn) depends only on k if n > k + 1.

As a result, we can define the kth stable homotopy group (or k-stem), πS
k , to

be πn+k(Sn) in the stable range (n > k + 1). Historically, advances in algebraic
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topology have been reflected in progress in understanding and calculating these

groups. Developments like fiber sequences, cohomology of Eilenberg-Maclane

spaces, homological algebra, spectra and stable homotopy, Bott periodicity,

chromatic homotopy, and motivic homotopy either originated in or were quickly

applied to further understanding of these groups. As such, the question of

computing stable homotopy groups of spheres serves as a good indicator of broader

progress in the field.

Conspicuously missing from this list is iterated loop space theory. Stable

homotopy groups of spheres are isomorphic to the unstable homotopy groups

of Q0S
0, the degree zero component of lim−→ΩdSd. Building on this connection,

unstable approaches have been tried, in particular trying to leverage a deep

connection between stable homotopy and symmetric groups. At the level of

homology, this was noticed independently and simultaneously by Barratt and

Priddy [3] and Quillen. Briefly, one models the classifying space for the nth

symmetric group as a colimit over d of space of n disks in Rd. Then given a set

of n disks in Rd, associate to it a collapse map from Sd = Rd ∪ ∞ to itself which

sends the complement of the disks to the base point and each interior of a disk

homeomorphically onto the Sd\∞. These maps from the space of disks to ΩdSd can

be assembled to a map from the colimit. The Barratt-Priddy-Quillen theorem tells

us that a resulting map from the classifying space for the infinite symmetric groups

to Q0S
0 is an isomorphism in homology.

There is then an unstable version of the Adams spectral sequence that can

be applied. This was first introduced by Curtis in [10]. He outlined some first

calculations, noticing that Adams filtration was lowered and that both the Hopf

and Kervaire classes were in filtration zero, leading to the well-known and still open
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conjecture that these are the only classes to survive on the zero line. But Curtis

made some fundamental errors, which Wellington corrected and then went on to

establish more global properties, including the classification of Bockstein towers

(which in particular preclude any upper vanishing lines).

This unstable version is a much more rarely used tool compared to its stable

counterpart since it is often intractable. In particular it has a non-abelian Quillen

homology defining its E2. However, in the case that the cohomology is free, a

standard result of Bousfield [5] applies and allows the E2 term to be equated

with Ext in the category of unstable modules over the Steenrod algebra of the

desuspended indecomposables.

In their approaches, Wellington and Curtis applied the known structure of

the homology of Q0S
0. This homology is the symmetric algebra on the Kudo-

Araki-Dyer-Lashof algebra [8]. While algebraic topologists are comfortable with

“homological coalgebra,” in this case one runs into difficulties because calculations

of the homology coproduct as well as the Steenrod coaction (Nishida relations)

require regular applications of Adem relations. Wellington had to filter carefully

to make things at all tractable. Thus, any progress on using this connection with

iterated loop space theory to progress on homotopy groups of spheres mostly

stopped after the early 1980s.

Through non-explicit methods, Nakaoka, [23, 24], had previously shown that

the cohomology of the infinite symmetric group and thus Q0S
0 is polynomial,

generated in combinatorially interesting degrees. Finer control of that calculation,

and in particular incorporation of the Steenrod algebra action, motivated many

authors to study the cohomology of symmetric groups in more detail in the eighties

and nineties [1, 2, 12]. Relatively recently, Giusti, Salvatore and Sinha found a
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new Hopf ring presentation for the cohomology of symmetric groups, as algebras

over the Steenrod algebra [13], yielding a “skyline diagram” presentation for

the cohomology of S∞ in the limit. We take their work as a starting point, and

ultimately see that it makes the Curtis-Wellington spectral sequence much more

accessible than the previous approach through homology.

Summary of Results

Let N denote the algebra indecomposables of H∗(Q0S
0), which we call the

Nakaoka module and which are a module over the Steenrod algebra. Recall that

the Dickson algebras are rings of invariants Dn = F2[x1, . . . , xn]Gln(F2), calculated

by Dickson as polynomial on generators in degrees 2n − 2`. The Steenrod algebra

action on the ambient polynomial algebras restrict to the Dickson algebras, which

provide a rich and still not fully understood collection of (unstable) modules over

the Steenrod algebra. Let Do
n be the quotient of Dn by all perfect squares.

Theorem 1.2.1. There is a width filtration (see Definition 3.0.2 below) of the

Nakaoka module N whose subquotients are isomorphic to Do
n as unstable modules

over the Steenrod algebra.

This width filtration is related to composition length in the Dyer-Lashof

algebra. Applying a reduction of Bousfield (see Proposition 2.3.1 below) we have

the following.

Corollary 1.2.2. There is a width spectral sequence with

Es,t;n
1 = Exts,tU (Σ−1Do

n,F2)
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and dr : Exts,t(Σ−1Do
n) → Exts+1,t(Σ−1Do

n+r) which converges to the E2-term of the

Curtis-Wellington spectral sequence.

Accordingly, there is a filtration on stable homotopy. While this filtration

could be new, preliminary evidence is consistent with this filtration agreeing with

the chromatic filtration.

In Section V we present evidence that the first submodule in this filtration

detects the image of J . Additionally, the width filtration at the prime two has basic

generators in degrees 2k − 1 and at odd primes such generators would have degrees

2(pk − 1). In either case – a new filtration on stable homotopy or a new approach

to the chromatic filtration – it is compelling to pursue further understanding of the

width filtration.

Our calculations rely on a presentation of the cohomology of Q0S
0 due to

Giusti-Salvatore-Sinha. Through that presentation we can already manage by-

hand calculations of the Curtis-Wellington spectral sequence more readily than

by previous techniques. Moreover, filtration with Dickson algebra subquotients is

particularly amenable to computer calculation, for which we thank Hood Chatham

- see Appendix A.

It is elementary to eliminate the possibility of many differentials in the width

spectral sequence, so these computer calculations provide a good understanding

of the E2-term of the Curtis-Wellington spectral sequence as well. While,

disappointingly, the E2 term of the CWSS is much larger than the classical Adams

spectral sequence, we have explored two accessible phenomena.

The first accessible phenomenon is the existence of towers of elements

connected by multiplication by h0. Section IV we make calculations to determine

the locations of these towers in the resulting width spectral sequence.
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Theorem 1.2.3. There are infinite h0-towers in Exts,t(Σ−1Do
1,F2) in degrees 4a− 2

for a a positive integer.

Theorem 1.2.4. Let n be an integer greater than or equal to 2. There are towers

in

Exts,t(Σ−1Do
n,F2) corresponding to all integer solutions of

(2n−2 − 2n−3)a1 + · · ·+ (2n−2 − 1)an−2 + (2n−1 − 1)bn−1 = k

where at least one of a1, . . . , an−2 are odd in degree t − s = 4k − 1. And also towers

corresponding to all integer solutions of

(2n−1 − 2n−2)b1 + · · ·+ (2n−1 − 1)bn−1 + (2n − 1)cn + (2n − 1) = k

in degree t− s = 4k − 2.

These results agree with the locations of towers identified by Wellington in

the E2 term of the CWSS, thus implying that there are no differentials between the

towers internal to the width spectral sequence.

The lowest filtration is also accessible, and related to the image of J . In

Section V we make calculations which show preliminarily that the image of J is

compatible with the width filtration. In studying the image of J , we first noticed

that the unstable Adams Ext chart for H∗(BO,F2) is a shifted version of the

unstable Adams Ext chart for the first quotient of the width filtration.

Proposition 1.2.5. Exts,tU (Σ−1Do
1)
∼= Exts,t+1

U (Σ−1Ind H∗(BO)).
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While it seems this would be classical, we haven’t found any treatment of this

in the literature. This motivated us to study the image of J map on cohomology,

and the following.

Theorem 1.2.6. The map induced by the image of J on cohomology induces a

splitting of the Nakaoka module N.

Corollary 1.2.7. The algebraic map induced by the image of J on Ext induces a

splitting of Ext(N).

We also speculate that the map on the E2 page of the unstable Adams

spectral sequence induced by the J map on cohomology is algebraic – that is, it

agrees with the map on Ext induced by the map on cohomology. If this were the

case, then the splitting of Theorem 1.2.6 would give rise to the standard splitting

of homotopy by the image of J . Such results would invite further study of the

compatibility of the width filtration and the chromatic filtration.

Outline

In Section II we review background including homology of Q0S
0 and Dyer

Lashof operations, work of Giusti-Salvatore-Sinha on the cohomology of symmetric

groups, the result of Bousfield we referenced above, and work of Hu’ng and

Peterson on indecomposables of Dickson algebras.

The unstable Adams spectral sequence is typically intractable, with a non-

abelian Quillen homology defining its E2. But in Section III we apply a standard

result of Bousfield [5] in the special case that a cohomology ring is free, as is

the case here, equating the E2 with Ext in the category of unstable modules

over the Steenrod algebra of the desuspended indcomposables. Using the skyline
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diagram presentation of the cohomology of the infinite symmetric group, these

indecomposables are manageable.

Indeed, we show that a filtration by skyline diagram width (which

corresponds to composition length in the Kudo-Araki-Dyer-Lashof algebra) yields

subquotients which are given by the Dickson algebras, modulo perfect squares. The

resulting width spectral sequence is relatively tractable, allowing us for example

to reveal an error, likely of transcription, in Wellington’s Ext charts (at the 11-

and 12- stems). We then share computer calculations, which imply many more

differentials than in the classical Adams spectral sequence, but regular phenomena

as well.

In particular, there are Bockstein (h0) towers, which we classify in the width

spectral sequence in Section IV. These occur in the same dimensions as Wellington

identified, with considerably more effort, in the E2 of the CWSS. Thus, there are no

differentials in the width spectral sequence with h0 inverted, and we conjecture no

differentials in the width spectral sequence in general, a purely algebraic question.

It would be interesting to understand differentials between these h0-towers and the

special roles the resulting classes in homotopy might play.

Based on a remarkable identification of the unstable Adams E2 for

BO and some preliminary calculations, in Section V we initiate the study of

the J-homomorphism. We calculate the induced map on cohomology of the

indecomposables and prove that it induces a splitting of the Nakaoka module.

The width filtration is algebraic, with its topological meaning an open question.

These calculations related to the image of J give evidence for a connection to the

chromatic filtration.
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CHAPTER II

KEY BACKGROUND

Homology of QS0 and the Dyer-Lashof algebra

We will begin with a review of the homology of QS0, which was the basis of

the calculations of both Curtis and Wellington and has been understood for fifty

years [8]. Recall Dyer-Lashof operations

Qs : Hq(QX)→ Hq+s(QX)

Let I = (s1, . . . , sk) be a sequence of integers and QI = Qs1 · · ·Qsk .

We define the length of I to be `(I) = k, degree of I to be d(I) =
∑k

j=1 si,

and the excess of I to be e(I) = 2s1 − d(I). The sequence I is called admissible if

2sj ≥ sj−1. These operations are subject to the Adem relations for r > 2s

QrQs =
∑
i>0

(
i− s− 1

2i− r

)
Qr+s−iQi.

The Dyer Lashof algebra over F2, is defined in [8] as the quotient of free

associative algebra generated by Qs by the two-sided ideal generated by the Adem

relations and the relations QI = 0 if e(I) < 0. Recall as well that the homology of

loop spaces, as H-spaces, carry a product structure.

Theorem 2.1.1. H∗(QX) is the free commutative algebra generated by QIx, where

x ranges over a basis for the reduced homology of X and I ranges over admissible
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sequences with e(I) ≥ 0, modulo the ideal generated by the set

{Qsx− x2 | |x| = s}

We are concerned with X = S0, for which ι ∈ H0 is the only basis element.

While this presentation gives a clean additive basis for homology, there are a

few challenges in using this as input for the unstable Adams spectral sequence.

Cup co-product is given by ∆QI =
∑

J+J ′=I Q
J ⊗ QJ ′ where J and J ′

both have excess greater than or equal to 0. But Adem relations are needed. For

example, ∆Q4,2 is the sum

Q3,2⊗Q1,0+Q2,2⊗Q2,0+Q3,1⊗Q1,1+Q2,1⊗Q2,1+Q1,1⊗Q3,1+Q2,0⊗Q2,2+Q1,0⊗Q3,2.

However, Q1,0, Q2,0, Q3,1 are all not admissible and require Adem relations to see

that since Q1,0 = 0, Q2,0 = Q1,1, and Q3,1 = 0 the co-product is really

∆Q4,2 = Q2,2 ⊗Q1,1 +Q2,1 ⊗Q2,1 +Q1,1 ⊗Q2,2.

It is thus a combinatorial challenge to even construct primitives, in contrast to our

explicit ring generators for cohomology given in Theorem 2.2.2.

Similarly, Steenrod action is given by Nishida relations

Sqr∗Q
s =

∑
i

(
r − 2i

s− 2r + 2i

)
Qs−r+iSqi∗

where Sqr∗ is the dual to Sqr. These are combinatorially involved themselves, and

moreover, as was the case with cup coproduct, inadmissible terms which arise

complicate analysis.
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Another challenge in working with homology is that the operations Qi do not

preserve components. For example, start with ι ∈ H0(Ω
n
1S

n) and Q2ι ∈ H2(Ω
n
2S

n).

To work with the 0-component, define ῑ as the non-zero class in H0(Ω
n
−1S

n), so that

Q2ι ∗ ῑ ∗ ῑ ∈ H2(Ω
n
0S

n). But,

Q1(Q2ι ∗ ῑ2) = Q1Q2ι ∗ ῑ2 +Q1ῑ2 = Q1Q2ι ∗ ῑ2

which is not the same as Q1Q2ι ∗ ῑ4. Thus in the most straightforward basis for

homology of Q0S
0, namely monomials in QIι multiplied by appropriate powers of ῑ,

one cannot immediately apply the Nishida relations.

Cohomology

Recall that H∗(Q0S
0,F2) ∼= H∗(BS∞,F2). While cohomology is the formal

linear dual of homology, that is not the best perspective to take to actually make

calculations. Instead, recent calculations of cohomology of finite symmetric groups

by taking all symmetric groups together and considering both cup product and a

transfer or induction product gives a concise presentation.

Theorem 2.2.1 (GSS). As a Hopf ring,
⊕

nH
∗(BSn;F2) is generated by classes

γ`[n] ∈ Hn(2`−1)(BSn2`), along with unit classes on each component. The

coproduct of γ`[n] is given by

∆γ`[n] =
∑
i+j=n

γ`[i] ⊗ γ`[j].

Relations between transfer products of these generators are given by

γ`[n] � γ`[m] =

(
n+m

n

)
γ`[n+m].
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Relations between cup products of generators are that cup products of generators on

different components are zero.

These can be presented graphically, as “skyline diagrams.” The generator γ`[n]

is represented by a rectangle of width n · 2`−1 and total area n · (2` − 1), so that

the area of the rectangle corresponds to its degree in cohomology while the width

indicates which component it is from. Cup product is indicated by vertical stacking

to make columns, whose placement next to each other denotes transfer product.

We also draw in vertical dashed lines separating the block into n equal sections, for

purposes of the coproduct. An example of such a diagram can be seen in Figure 1.

γ31�γ
2
2γ

3
1[2] � γ2[2]γ

2
1[4] � 14

FIGURE 1. Skyline diagram for γ31 � γ2γ31[2] � γ2[2]γ21[4] � 14

The cohomology of the infinite symmetric group is the inverse limit

H∗(BS∞) = lim←−
n

H∗(BSn).

The maps H∗(BSn) → H∗(BSm) for n > m take a diagram in H∗(BSn) which

has a “tail” of width greater than or equal to n−m
2

(that is, a �-product factor of

1k with k > n−m
2

) to a diagram in H∗(BSm) obtained by shortening its tail to

make it the appropriate width to be an element of H∗(BSm). If a class is not such

a transfer product with a sufficiently large unit class, it maps to zero. In Figure 1

the diagram has a tail of width 2 and is an element of H∗(BS18). Shortening the
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tail once, it becomes γ31 � γ2γ31[2] � γ2[2]γ21[4] � 12 ∈ H∗(BS16). Shortening it again

produces γ31 � γ2γ31[2] � γ2[2]γ21[4] ∈ H∗(BS14) after which point the tail can no longer

be shortened and its image in H∗(BS2k) is 0 for k < 7.

With restriction maps taking this form, the cohomology of BS∞ could be

viewed through such diagrams with “infinitely long tails”, or in monomial form

as “�1∞”. As they confer no additional information, we prefer to omit the tails

altogether, only using them implicitly when we calculate through multiplication

rules for finite groups. Using this presentation, we next recall another basic result

of Giusti-Salvatore-Sinha, refining a classical result of Nakaoka.

Theorem 2.2.2. The cohomology of BS∞ is a polynomial algebra. Minimal

generators of H∗(BS∞) as an algebra under cup-product are represented graphically

by single columns with at least one block type appearing an odd number of times.

These minimal generators form a basis for the indecomposables of the

cohomology of BS∞ (and this also of Q0S
0), which we call the Nakaoka module

N.

The idea of proof is to consider the product of single-column diagrams which

contribute to a skyline diagram. This product results in a sum of diagrams, the

widest of which is the original skyline diagram. This shows such products are

algebraically independent, and a simple filtration argument shows the polynomial

ring they generate exhausts the cohomology. For example, the skyline diagam from

Figure 1, is the product of its nontrivial columns, γ31 , γ22γ
3
1[2], and γ2[2]γ

2
1[4] plus

lower-width terms.

In the same paper, Giusti-Salvatore-Sinha describe the Steenrod algebra

action on the cohomology of symmetric groups in terms of the basis elements
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γ`[2k]. Because there are Cartan formulae for both cup and transfer product, this

determines Steenrod structure on the whole.

Definition 2.2.3. (i) The algebraic degree of a single column is the total number

of Hopf ring generators cup-multiplied to make the single column.

(ii) The height of one of these skyline diagrams is the largest of the algebraic

degrees of its constituent columns.

(iii) The effective scale of a single column, composed of γ`[n] cup-multiplied

together, is the largest such ` that occurs in the block. The effective scale of a

skyline diagram is the minimum of the effective scales of its single columns.

(iv) A monomial is full width as long as it is not a non-trivial transfer

product of some monomial with some unit class 1k.

Theorem 2.2.4 (Theorem 8.3 of [13]). The Steenrod square Sqiγ`[2k] is the sum

of all full-width monomials of total degree 2k(2` − 1) + i, height one or two, and

effective scale at least `, with height two only allowed if the effective scale = `.

For example, Figure 2 illtustrates the three summands of Sq3(γ2[4).

Sq3(γ2[4]) = γ4[1] + γ3[1] � γ2[1]γ1[2] � γ2[1] + γ22[1] � γ2[1] � γ2[2].

Sq3 ( ) =
γ2[4] γ4[1]

+

γ3[1] � γ2[1]γ1[2] � γ2[1]

+

γ22[1] � γ2[1] � γ2[2]

FIGURE 2. Skyline diagrams for the three summands of Sq3(γ2[4])

It is straightforward to use Cartan formulae to calculate Steenrod action on

N, the indecomposables. This gives a refinement of Nakaoka’s work, which only
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determined this module additively, and is a much more accessible presentation

than of the homology primitives [8, 19]. Indeed, much of Wellington’s work on

the CWSS is devoted to calculations with these primitives. These calculations are

generally simplified or become immaterial through this cohomology approach.

The unstable Adams spectral sequence and a result of Bousfield

We will next review some of the background to the unstable Adams spectral

sequence along with a result of Bousfield’s that makes the E2 term actually

computable.

Recall that work of [4] and others proves that for simply connected X with

π∗(X) of finite type, there is an unstable analog to the Adams spectral sequence

with E2
∼= Exts,tUA(H∗(X),F2) converging to π∗(X).

There have been relatively few computations made of the unstable Adams

spectral sequence, with some explicit calculations of Curtis and Mahowald [11, 9]

and Miller’s proof of the Sullivan Conjecture [22] being spectacular exceptions.

A main roadblock is that the Ext groups which occur, which we call ExtUA for

the category of unstable algebras over the Steenrod algebra, are not Ext groups in

the usual sense of derived homomorphisms in an abelian category. While Goerss

established that they are a “non-abelian” derived Hom, in the sense of Quillen, in

the category of simplicial algebras over A, this has not to our knowledge been used

in any way for calculations.

To make calculations, one can hope for equivalent Ext calculations in abelian

categories. The category of unstable modules over the Steenrod algebra, U , is

abelian and there is a free unstable algebra functor U → UA. However, the

cohomology of a space is very rarely in the image of this functor, even if it is
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free. If the cohomology is free only as an algebra, there is still an alternate form

of reduction. Let A be an augmented algebra with A its augmentation ideal. We

let Ind A denote the algebra indecomposables A/(A · A). Note that Σ−1Ind A is

naturally in U . The following was originally stated by Bousfield in [5] and follows

from the composite functor spectral sequence constructed by Miller [22].

Theorem 2.3.1. Let P be an unstable algebra over A that is free as an algebra on

Ind P . Then

Exts,tUA(P, k) ∼= Exts,t−1U (Σ−1Ind P, k)

Recall that we refer to Ind H∗(Q0S
0,F2), as the Nakaoka module, N. Thus,

Proposition 2.3.1 applies and will give as an immediate corollary, Proposition 3.0.1

in the next section.

Hung-Peterson’s calculations of indecomposables of Dickson algebras

We will now end the background sections with a discussion of Dickson

algebras and some of the results of Hung-Peterson on their indecomposables, which

will show up on the 0-line of the first page of our spectral sequence.

Let Dn denote the nth Diskson algebra, defined as the invariants

F2[x1, . . . , xn]GLn(F2). These algebras are polynomial on generators dk,l in

dimensions 2k(2l − 1) where k + l = n. Adem and Milgram [2] describe one method

to generate these generators.

Theorem 2.4.1 (Theorem 2.4 [2]). Let

Dn,i(x1, . . . , xn) = det


x1 · · · x̂2

i−1

1 · · · x2
n

1

...
. . .

...
. . .

...

xn · · · x̂2
i−1

n · · · x2
n

n


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then

dn−j,j = Dn,n+1−j/Dn,n+1

are the generators for the nth Dickson algebra F2[x1, . . . , xn]GLn(F2).

As an example, consider the second Dickson algebra, D2. Then,

D2,1 = det

x21 x41

x22 x42

 = x21x
4
2 + x41x

2
2,

D2,2 = det

x1 x41

x2 x42

 = x1x
4
2 + x41x2,

and

D2,3 = det

x1 x21

x2 x22

 = x1x
2
2 + x21x2.

We then get our two generators, d1,1 in degree 2 = 21(21 − 1) and d0,2 in degree

3 = 20(22 − 1) from polynomial long division,

d1,1 = D2,2/D2,3 =
x1x

4
2 + x41x2

x1x22 + x21x2
= x21 + x1x2 + x22

and

d0,2 = D2,1/D2,3 =
x21x

4
2 + x41x

2
2

x1x22 + x21x2
= x21x2 + x1x

2
2.

We show below that one can filter the algebra indecomposables of the

cohomology of Q0S
0 and obtain subquotient modules which are essentially Dickson

algebras. Thus, the Steenrod indecomposables of Dickson algebras (as modules)

give rise to putative indecomposables in the unstable Adams spectral sequence for

Q0S
0.
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Before our work, the Lannes-Zarati homomorphism (which seems not to

have been published in full detail) maps from part of the classical Ext algebra of

the Steenrod algebra to the indecomposables of a corresponding Dickson algebra,

Extn,n+d
A (F2,F2) → (F2 ⊗A Dn)d. This connection motivated Hung and Peterson to

work out a minimal set of generators for Dn as a module over the Steenrod algebra

A through n = 4. Through our work below, these can give rise to elements in

Ext0,t(Ind (H∗(Q0S
0))) of width n.

For D1, which is just the cohomology of RP∞, the classes d0,1
2s−1 form a

basis as a module over A. For n = 2, the classes d1,1
2s−1d0,2

0 form a basis for D2

as a module over A. The cases for n = 3 and n = 4 are worked out in [16]. To

state these results, we let I = (in−1, . . . , i0) be a sequence of non-negative integers

corresponding to

dn−1,1
in−1dn−2,2

in−2 · · · d0,ni0

Theorem 2.4.2 (Hung-Peterson Theorem 2.6). The set of monomials

corresponding to the sequences I listed below form a monomial basis for Z/2⊗A D3

(2s − 1, 0, 0), s ≥ 0

(2r − 2s − 1, 2s − 1, 1), r > s > 0.
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Theorem 2.4.3 (Hung-Peterson Theorem 2.7). The set of monomials

corresponding to the sequences I listed below form a monomial basis for Z/2⊗A D4

(2s − 1, 0, 0, 0), s ≥ 0

(2r − 2s − 1, 2s − 1, 1, 0), r > s > 0

(2t − 2r − 1, 2r − 2s − 1, 2s − 1, 1), t > r > s > 1

(2r − 2s+1 − 2s − 1, 2s − 1, 2s − 1, 1), r > s+ 1 > 2.

Below we will discuss these indecomposables further and give a new concrete

connection with homotopy groups.
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CHAPTER III

WIDTH SPECTRAL SEQUENCE

In this section, we apply Bousfield’s result of Proposition 2.3.1 to equate

the Curtis-Wellington E2 with an explicit Ext group in the category of unstable

modules over the Steenrod algebra, at which point there is an immediate filtration

to develop. The following is an immediate corollary of Proposition 2.3.1.

Proposition 3.0.1. The E2 term of the Curtis-Wellington spectral sequence is

isomorphic to Exts,tU (Σ−1N).

Our graphical skyline diagram presentation, in particular of the

indecomposables as stated in Theorem 2.2.2, points immediately to a filtration of

the Nakaoka module.

Definition 3.0.2. Let Fn be the submodule of N of elements of width less than or

equal to 2n−1.

These are submodules as unstable Steenrod modules by the formula from

Theorem 2.2.4. Moreover, Fn/Fn−1 will be spanned by single columns of width

exactly 2n−1 with at least one block type appearing an odd number of times.

Let Vn be the transitive elementary abelian 2-subgroup of S2n . Because

restriction to a subgroup maps to invariants of an action by the normalizer of the

subgroup (see [2]), in this case the restriction map is received by rings of Dickson

invariants. But Corollary 7.6 of [13], follows an argument of Milgram to show that

restriction of γ`,2k with `+ k = n to Vn is the Dickson class dk,l. Thus single-column

diagrams go to corresponding products of Dickson classes, and these single column
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skyline diagrams are isomorphic to a quotient of Dn as a module over the Steenrod

algebra. In particular, we have the following.

Proposition 3.0.3. The quotient Fn/Fn−1 is isomorphic to Do
n, where Do

n is the

quotient of Dn by all perfect squares.

This filtration allows us to consider only full width terms in the image of the

Steenrod action, substantially simplifying calculations. Assembling the long exact

sequences in cohomology associated to the short exact sequences

0→ Fn−1 → Fn → Do
n → 0

from the filtration described above produces a tri-graded spectral sequence

converging to the E2 term of the Curtis-Wellington spectral sequence for stable

homotopy.

Theorem 3.0.4. The spectral sequence associated to the width filtration has

Es,t;n
1 = Exts,tU (Σ−1Do

n,F2)

and dr : Exts,t(Σ−1Do
n) → Exts+1,t(Σ−1Do

n+r). It converges to Exts,tU (Σ−1N), and

thus the E2 of the Curtis-Wellington spectral sequence.

Using the well-known Steenrod structure on Dickson algebras, as presented for

example in [15], we have been able to make hand calculations out to the 17 stem.

Hood Chatham [7] kindly produced an Ext-chart illustrating the first page of this

spectral sequence, out to the the forty-five stem. We share a clip here in Figure 3

and the full chart in the Appendix.
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Along the zero-line in this width spectral sequence we see the Steenrod

indecomposables of the Dickson algebras, which have been of interest, for example

in work of Hung and Peterson [16], and are far from understood. On the E1 page,

we can see the classes listed by Hung and Peterson in Theorems 2.4.2 and 2.4.3.

We do not have any calculations about whether these classes will survive to the

E2 page of the Curits Wellington spectral sequence, but hand calculations in low

degrees show that they are all still there. These Dickson indecomposables also

provide an upper bound on the classes that will survive to the E∞ page of the

CWSS. Curtis conjectured that only Hopf and Kervaire classes will survive, so these

results provide a strong connection between the work of Hung and Peterson and

that of Curtis. We also note that this zero-line receives the Hurewicz map for Q0S
0,

as studied by Lannes and Zarati [18].

Wellington made similar computations for Ext(H∗Q0S
0) at the prime 2,

including charts out to the 17 stem. Comparing Wellington’s results to ours, they

mainly agree, but our calculations reveal an error in the 11 and 12 stem in the Ext

chart. The original chart had a class in bidegree (12,4) and a d2 differential to the

class in degree (11, 6). Instead, our hand calculations show that there is a class in

degree (12, 3), which appears in the computer calculations in degree (11, 3) after the

desuspension. Since we know that the CWSS must converge to stable homotopy, we

know that there must be a d3 differential instead of the d2 differential.
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FIGURE 3. The E1 page of the width spectral sequence, with width filtration
encoded by color: black corresponds to D1, red to D2, green to D3, teal to D4, and
purple to D5.

Part of Table 13 by Wellington [27] (with correction in the 12

stem), depicting the E2 page and differentials of the CWSS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0
1
2
3
4
5
6
7
8

E∞ page of Curtis-Wellington spectral sequence up through the 17 stem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0
1
2
3
4
5
6
7
8
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The differentials of the spectral sequence of Theorem 3.0.4, namely

dr : Exts,t(Do
n)→ Exts+1,t(Do

n+r),

fix topological degree (t), increase co-bar length by 1 (s), and increase filtration

by r. In the charts, they will be moving one unit left, one unit up, and in our

representation of the third (width) grading by color move between different colors

so that if the source is in Do
n, the target is in Do

n+r. We can see by hand through

at least the 16-stem that there are no possible differentials in the width filtration

spectral sequence purely by considering degree and multiplicative strucure.
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CHAPTER IV

H0 TOWERS

Partial action

One of the immediate differences between the Adams spectral sequence

and Curtis-Wellington spectral sequence is the presence of infinite h0 towers. We

classify these in the width spectral sequence.

We begin by defining a partial action of ExtA(F2,F2). In the Yoneda

approach to Ext, an element of Exts,tA (F2,F2) is an extension of length s from F2

to ΣtF2, namely

0→ ΣtF2 → E1 → · · · → Es → F2 → 0,

where the Ei are A modules. An element of Extp,qU (Σ−1Do
n,F2) is an extension of

length p from Σ−1Do
n to ΣqF2

0→ ΣqF2 → F1 → · · · → Fp → Σ−1Do
n → 0

where the Fi are unstable A modules and the maps Fi → Fi+1 have excess less than

or equal to the degree of Fi+1.

Definition 4.1.1. Define a partial action of Exts,tA (F2,F2) on Extp,qU (Σ−1Do
n,F2),

defined when t − s + 1 ≤ q, by suspending the stable extension q times and

concatenating it on the left with the unstable extension to give an extension which

defines an element of Exts+p,t+q
U (Σ−1Do

n,F2).
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0→ Σt+qF2 → ΣqE1 → · · · → ΣqEs → ΣqF2 → F1 → · · · → Fp → Σ−1Do
n → 0.

Calculations involving the Λ-algebra

We next recall the Λ-algebra [4, 6], which gives an explicit though

computationally involved way to compute some Ext groups over the Steenrod

algebra. The Λ algebra is the graded associative differential algebra with unit over

F2 with

1. a generator λi of degree i for each i ≥ 0

2. for each i, k ≥ 0 a relation

λiλ2i+1+k =
∑
j≥0

(
k − 1− j

j

)
λi+k−jλ2i+1+j

3. a differential ∂ given by

∂(λi) =
∑
j≥1

(
i− j
j

)
λi−jλj−1.

Note that Λ =
⊕

s≥0 Λs where Λs is genreated by monomials λI of length s.

To define complexes using the Λ algebra, we need our action to be on the

right. Let UR denote the category of unstable right A modules and continue

to denote U the category of unstable left A modules. For M of finite type,

Exts,tUR(F2,M) ∼= Exts,tU (M∗,F2).

The Λ algebra gives one method to approach calculation of Ext groups, in

particular, from [6],
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Exts,tUR(F2,M) ∼= Hs(V (M))t−s

where V (M) is the chain complex

M →M⊗̂Λ1 →M⊗̂Λ2 → · · ·

Theorem 4.2.1 (Theorem 3.3 from [6]). For M ∈ UR and s, t ≥ 0 there is a

natural isomorpism

Exts,tUR(F2,M) ∼= Hs(V (M))t−s

Proof. Given a short exact sequence of right A modules,

0→ A→ B → C → 0

we get an exact sequence

· · · → Hs,t(V (A))→ Hs,t(V (B))→ Hs,t(V (C))→ Hs+1,t(V (A))→ · · · .

Now let M be an injective in UR, then Hs,t(V (M)) = 0 for s > 0. Indeed, let

I(n) be the injective unstable A module on a single n-dimensional generator. For

n ≥ 1, ΩI(n) = I(n− 1) and Ω1I(n) = 0 (where Ω is right adjoint to the suspension

functor and Ω1 is its first derived functor). By applying Theorem 3.5 of [6], there is

a natural exact sequence

→ Hs,t(V (ΩI(n)))→ Hs,t+1(V (I(n)))→ Hs−1,t(V (Ω1I(n)))→ Hs+1,t(V (ΩI(n)))→ .
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Thus, Hs,t(V (ΩI(n))) = Hs,t(V (I(n − 1))) ∼= Hs,t+1(V (I(n))). Note that for s > 0,

Hs,t(V (0)) = 0, so by induction Hs,t(V (n)) = 0 for s > 0. Since any injective

right A module is the retract of a direct sum of injectives I(n) of this form we can

conclude Hs,t(V (M)) = 0 for s > 0 for any injective M ∈ UR.

Now all that remains to show is that Exts,∗UR(F2,−) and Hs(V (M))∗−s agree

on a point. For M an injective right A module,

Ext0,tUR(F2,M) ∼= HomUR(H̃∗(S
t),M).

Next we define a map Φ : HomUR(H̃∗(S
t),M) → H0,t(V (M)) by f 7→ f(1).

We know that x ∈ H0,t(V (M)) if and only if x ∈ ker(δ) : M⊗̂Λ0 → M⊗̂Λ1, which

means x · Sqi = 0 for all i. This then means the map fx : H̃∗(S
t) → M determined

by 1 7→ x is in HomUR(H̃∗(S
t),M) since fx(1) · Sqi = x · Sqi = fx(1 · Sqi) = 0 for all

i. So, we can see that this is an isomorphism.

In [5], Bousfield defines the following tower complex as a quotient of the chain

complex V (M), as follows.

Definition 4.2.2. Let

T s(M) =


M ⊗ (λ0)

s s = 0, 1

M ⊗ (λ0)
s ⊕

∑
k>0

M2k ⊗ λ2k−1(λ0)s−1 s > 1,

with

δ(x⊗ λ2k−1(λ0)s−1) = 0,
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and

δ(x⊗ (λ0)
s) =


x · Sq1 ⊗ (λ0)

s+1 + x · Sq2k ⊗ λ2k−1(λ0)s s > 0, x ∈M4k

x · Sq1 ⊗ (λ0)
s+1 otherwise.

Let O(M) be the subcomplex of V (M) generated by x ⊗ λI ∈ M⊗̂Λs such

that λI = λi1 · · ·λis is admissible with is odd.

Proposition 4.2.3 (Proposition 2.3 of [5]). For M ∈ UR with M0 = 0 there is a

long exact sequence

· · · → Hs−1(T (M))n+1 → Hs(O(M))n → Hs(V (M))n → Hs(T (M))n → · · ·

Proof. Beginning with the exact sequence

0→ ker(q)→ V (M)
q−→ T (M)→ 0

we get a long exact sequence in homology

· · · → Hs−1(T (M))n+1 → Hs(ker(q))n → Hs(V (M))n → Hs(T (M))n → · · · .

Note that the map q is the quotient map that takes anything in V (M) not of

the form M ⊗ (λ0)
s or M2k ⊗ λ2k−1(λ0)s−1 (for s > 1) to 0. In particular since all

elements of O(M) are of the form x ⊗ λI for λI = λi1 · · ·λis is admissible with is

odd, we get natural maps O(M) ↪→ ker q and Hs(O(M)) → Hs(ker(q)). Thus, it

suffices to prove that this map induces an isomorphism Hs(ker(q)) ∼= Hs(O(M)).
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The harder direction here is showing surjectivity. Take x ∈ ker q such that

δ(x) = 0. If x is a boundary, then we are done. Assume x is not a boundary. Then

choose y in the same homology class with y =
∑t

i=0 yi ⊗ λJi(λ0)i with t a minimum.

Suppose t 6= 0. If the final term, ns of Jt = (n1, · · · , ns) is even, then

δ(yt ⊗ λJtλ
t
0) will include (among other terms) the term yt ⊗ λn1,...,ns−1λ

t+1
0

contradicting the fact that δ([x]) = δ([y]) = 0. So, ns is odd, which means that

δ(yt ⊗ λn1,··· ,ns+1λ
t−1
0 ) contains the term yt ⊗ λn1,··· ,nsλ

t
0) plus additional terms where

the λ0 at the end has power t − 1 or less. Then y + δ(yt ⊗ λn1,··· ,ns+1λ
t−1
0 ) is still

homologous to x but now has t− 1 as the maximum degree of the λ0 portion of the

term, which contradicts the minimality of t. Thus, we conclude t = 0 (and ns is still

odd) so [x] = [y ⊗ λn1,...,ns ] ∈ H∗(O(M)).

Towers on the E1 page

Remark 2.4 of [5] notes that the towers in H∗(T (M)) correspond with those

in H∗(V (M)) and thus also with the towers in Exts,tUR
(F2,M). Applying these tower

detectors to Exts,tU (Σ−1Do
n,F2), we conclude the following two theorems.

Theorem 4.3.1. There are infinite towers in Exts,t(Σ−1Do
1,F2) in degrees t − s =

4a− 2 for a a positive integer.

Theorem 4.3.2. Let n be an integer greater than or equal to 2. There are towers

in

Exts,t(Σ−1Do
n,F2) corresponding to all integer solutions of

(2n−2 − 2n−3)a1 + · · ·+ (2n−2 − 1)an−2 + (2n−1 − 1)bn−1 = k
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where at least one of a1, . . . , an−2 are odd in degree t − s = 4k − 1. And also towers

corresponding to all integer solutions of

(2n−1 − 2n−2)b1 + · · ·+ (2n−1 − 1)bn−1 + (2n − 1)cn + (2n − 1) = k

in degree t− s = 4k − 2.

Wellington, in [27] also used these tower detecting complexes, but of course

with his homology approach. Recall that the homology of Q0S
0 is free under the

product induced by loop sum on classes QI where I is admissible. Wellington

proves there are towers in dimensions 4k − 1 and 4k generated by QI either in

degree 4k with excess 0 and some odd index, or QI in degree 4k − 1 with final

index odd and all others even. Our calculations agree with Wellington’s in that the

towers in Exts,tU (Σ−1Do
n,F2) for each n correspond with his generated by QI with

`(I) = n. Indeed, in degree (4k − 1) − 1, we have towers corresponding to each

integer solution to

(2n−1 − 2n−2)b1 + · · ·+ (2n−1 − 1)bn−1 + (2n − 1)cn + (2n − 1) = k.

Each of these corresponds to the tower generated by QI with I = (s1, s2, . . . , sn)

where sn = 2k + 1 + 2cn and the other si can be computed inductively from right to

left with the formula

si =
1

2(n−1)−i

(
k + 1 + an +

n−1∑
j=i

2(n−1)−jbj

)
for 2 ≤ i ≤ n− 1,

and finally

s1 = 4k − 1−
n∑

j=2

sj.
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In degree (4k)− 1, we found towers corresponding to each integer solution of

(2n−2 − 2n−3)a1 + · · ·+ (2n−2 − 1)an−2 + (2n−1 − 1)bn−1 = k.

Each of these corresponds to the tower generated by QI with I = (s1, s2, . . . , sn)

where we once again find each term in the index working from right to left. First,

sn = 2k and sn−1 = k + bn−1, then inductively we compute

si =
1

2(n−1)−i

(
k + bn−1 +

n−2∑
j=i

2(n−2)−jaj

)
for 2 ≤ i ≤ n− 1,

and finally

s1 = 4k −
n∑

j=2

sj.

This agreement between our towers in the width spectral sequence and

Wellington’s imply there are no differentials in the width filtration spectral

sequence with h0 inverted. Between the fact that these results indicate there are

no differentials between towers and that some differentials can be eliminated by

hand calculations in low degrees, we wonder whether there are any differentials in

the width spectral sequence at all, a purely algebraic question.

Proof of Theorem 4.3.1. Let d1 be the generator of D1. Then elements of Do
1 are

d2i+1
1 in degree 2i after desuspension. Take {x1, x3, · · · , x2i+1, · · · } as a basis for

the linear dual, (Σ−1Do
1)
∗ where x2i+1 is dual to d2i+1

1 , so each x2i+1 is in degree 2i

in the desuspension. Consider M = (Σ−1Do
1)
∗ as an unstable right A module by

defining the linear map xi · Sqk as

(xi · Sqk)(y) = xi(Sq
ky), for y ∈ Do

1.
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We can use Bousfield’s tower detector to determine where there are towers in

Exts,tUR(F2,M). As defined in as defined in Definition 4.2.2, T s(M) is constructed

so that in degree 2 and above the next degree is constructed from the previous by

multiplying by λ0 on the right and the differential from degree one onward is the

same as the previous degree but with an extra factor of λ0 on the right. Thus, it is

sufficient to compute H2(T (M)) to determine where the towers are.

We can see in Definition 4.2.2 that the differential δ only involves Sq1 and

Sq2k and thus in this case is determined by the fact that

xi · Sq1 = 0 and x4k+1 · Sq2k = x2k+1.

Elements of H2(T (M)) come in three forms. First, all x4k+1 ⊗ (λ0)
2 are not

cycles since δ(x4k+1 ⊗ (λ0)
2) = x2k+1 ⊗ λ2k−1(λ0)2. Second, all x2k+1 ⊗ λ2k−1λ0 are

cycles, but also boundaries hit by x4k+1 ⊗ λ0. Finally, all x4k−1 ⊗ (λ0)
2 are cycles

and can not be boundaries since the image of T 1(M) is only elements of the form

x2k+1 ⊗ λ2k−1λ0. Thus, we get a tower for x4k−1 ⊗ (λ0)
s in degree 4k − 2 for each

positive integer k.

Proof of Theorem 4.3.2. We know that Dn is generated by n elements in degrees

(2n − 2i) for 0 ≤ i ≤ n − 1. Let these generators be represented by d2n−2i . Then

an arbitrary basis element of Do
n is of the form da12n−2n−1 · · · dan2n−20 with at least one

ai odd. Let xa1,...,an ∈ (Do
n)∗ denote the linear dual of da12n−2n−1 · · · dan2n−20 in degree∑n

i=1 ai(2
n − 2n−i).

Working now in (Σ−1Do
n)∗, xa1,...,an ∈ (Do

n)∗ will now be in degree
∑n

i=1 ai(2
n−

2n−i) − 1. Let M = (Σ−1Do
n)∗ and consider the tower detecting complex T (M). As
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described n the proof of Theorem 4.3.1 it is sufficient to calculate H2(T (M)) to

determine the location of the towers.

Since the differential δ as defined in Definition 4.2.2 only uses Sq1 and

Sq2k,we need only understand the right action of Sq1 on an arbitrary xa1,...,an and

the right action of Sq2k on xa1,...,an with
∑n

i=1 ai(2
n − 2n−i) = 4k + 1. These are

given by the formulas

xa1,...,an · Sq1 =


xa1,...,an−2,an−1+1,an−1 if an−1 even,an ≥ 1, at least one ai odd

0 else

and if
∑n

i=1 ai(2
n − 2n−i) = 4k + 1

xa1,...,an · Sq2k =



xa1+2
2

,
a2
2
,...,

an−1
2

,an−1
2

if an odd, ai even

xa1
2
,...,

aj−1
2

,
aj−1

2
,
aj+1+2

2
,
aj+2

2
...,

an−1
2

,an−1
2

if aj, an odd,

ai even for i 6= j, n

xa1
2
,...,

an−2
2

,
an−1−1

2
,an+1

2

if an−1, an odd,

ai even for 1 ≤ i < n− 1

0 else,

where throughout i and j are between 1 and n− 1 inclusively.

With these formulas in hand, we analyze H2(T (M)). Our strategy will be

to first characterize all cycles in H2(T (M)) and then go through each type of

cycle to determine which are boundaries. All of those that are not boundaries will

correspond to our tower generators. There are four types of cycles:

(a) xa1,...,an ⊗ (λ0)
2 with

n∑
i=1

ai(2
n − 2n−i) 6= 4k + 1 and an−1 odd
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(b) xa1,...,an ⊗ (λ0)
2 with an−1 even and an = 0

(c) xa1,...,an ⊗ (λ0)
2 with

n∑
i=1

ai(2
n− 2n−i) = 4k+ 1 and an, an−1, and some other ai

for 1 ≤ i < n− 1 odd

(d) xa1,...,an ⊗ λ2k−1λ0 with
n∑

i=1

ai(2
n − 2n−i) = 2k + 1

To see that these are all of the cycles, we look at our formulas for the action

of Sq1 and Sq2k. As long as the degree of xai,...,an is not a multiple of four, the

differential on xai,...,an ⊗ (λ0)
2 only involves Sq1. So, if

∑n
i=1 ai(2

n − 2n−i)− 1 6= 4k,

xai,...,an ⊗ (λ0)
2 is a cycle when xai,...,an · Sq1 = 0. This means either an−1 is odd and

we get cycles of type (a), an = 0 and an−1 is even and we get cycles of type (b), or

all ai are even, but then xai,...,an is not an element of (Do
1)
∗.

If xai,...,an is in degree 4k, the differential on xai,...,an ⊗ (λ0)
2 involves both Sq1

and Sq2k. Then
∑n

i=1 ai(2
n − 2n−i) − 1 = 4k which means that an > 0 and an−1 is

even. For both Sq1 and Sq2k to act trivially, an−1 must be odd and some other ai

for 1 ≤ i < n− 1 is also odd to give the cycles of type (c).

Finally, we have the elements of the form xai,...,an ⊗ λ2k−1(λ0)s−1 which are all

cycles by definition and give us the cycles in class (d).

Beginning with cycles of class (a), we want to determine which are also

boundaries. For cycles in (a), xa1,...,an ⊗ (λ0)
2 with

∑n
i=1 ai(2

n − 2n−i) 6= 4k + 1

and an−1 odd, we will split into three cases based on the value of
∑n

i=1 ai(2
n − 2n−i)

mod 4.

If
∑n

i=1 ai(2
n − 2n−i) = 4k − 1 and an−1 is odd, then an is odd and

δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0) = xa1,...,an−2,an−1,an ⊗ (λ0)
2
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as long as one of a1, . . . , an−2 are odd. Thus, we see that the only cycles not hit by

boundaries are xa1,...,an−2,an−1,an ⊗ (λ0)
2 with an−1, an odd and ai even for 1 ≤ i ≤

n− 2.

If
∑n

i=1 ai(2
n − 2n−i) = 4k − 2 and an−1 is odd , then an is even and

δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0) = xa1,...,an−2,an−1,an ⊗ (λ0)
2

and we see that all these cycles are also boundaries.

If
∑n

i=1 ai(2
n−2n−i) = 4k and an−1 is odd with an ≥ 2, then xa1,...,an−2,an−1,an⊗

(λ0)
2 is the boundary of



δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0

+xa1+2,a2,...,an−2,an−1,an−1 ⊗ λ0) an−1 odd, all other ai even

δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0

+xa1,...,aj−1,aj−1,aj+1+2,aj+2,...,an−2,an−1,an+1 ⊗ λ0) aj, an−1 odd, all other ai even

δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0) an−1 odd, at least 2 other ai odd

and we see that all these cycles are also boundaries. This now covers all cases for

our class (a) cycles.

Turning to our class (b) cycles, xa1,...,an ⊗ (λ0)
2 with an−1 even and an = 0 we

see that none of these are boundaries. Indeed, they would need to be in the image

of some xb1,...,bn ⊗ (λ0) with xb1,...,bn ·Sq1 = xa1,...,an . However, Sq1 changes the parity

of each of the last two indices and is only nonzero if bn−1 is even, but then its image

an−1 must be odd, a contradiction.
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Next, all class (c) cycles xa1,...,an ⊗ (λ0)
2 with

∑n
i=1 ai(2

n − 2n−i) = 4k + 1 and

an, an−1, and some other ai for 1 ≤ i < n− 1 odd are boundaries hit by

δ(xa1,...,an−2,an−1−1,an+1 ⊗ λ0) = xa1,...,an−2,an−1,an ⊗ (λ0)
2.

Thus, all class (c) cycles are boundaries as well.

Finally, for class (d), if
∑n

i=1 ai(2
n − 2n−i) = 2k + 1

δ(x2a1,...,2an−2,2an−1+1,2an−1 ⊗ λ0) = xa1,...,an ⊗ λ2k−1λ0.

So these too are all boundaries.

This leaves us with only those classes of type (a) corresponding to

xa1,...,an−2,an−1,an ⊗ (λ0)
2 with an−1, an odd, ai even for 1 ≤ i ≤ n − 2 and all

cycles from class (b) with xa1,...,an ⊗ (λ0)
2 with an−1 even and an = 0 such that∑n

i=1 ai(2
n − 2n−i) = 4k in H2(T (M)). These correspond to all integer solutions

respectively of the equations:

(2n−1 − 2n−2)b1 + · · ·+ (2n−1 − 2)bn−2 + (2n−1 − 1)bn−1 + (2n − 1)cn + (2n − 1) = k.

and

(2n−2 − 2n−3)a1 + · · ·+ (2n−2 − 1)an−2 + (2n−1 − 1)bn−1 = k

with at least one ai for 1 ≤ i < n− 2 odd.

While these calculations immediately give towers in the width filtration

spectral sequence, we do not perform the analysis to determine which survive to
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the E2 of the CWSS, instead citing agreement with Wellington’s towers in the E2

of the CWSS. His argument is substantially more involved than what was required

above, so we would like to find a self-contained argument at some point.

It would be interesting to investigate the elements of homotopy which

correspond to these towers, which must of course all support or receive differentials.

Would the resulting finite towers at E∞ be exceptional in any way?
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CHAPTER V

IMAGE OF J

Ext calculations for BO

We start with a fun observation. The Bousfield result [5] equating the E2

of the unstable Adams spectral sequence with an Ext in unstable modules can be

applied to Exts,tUA(H∗(BO),F2), as of course H∗(BO) is polynomial on the Stiefel-

Whitney classes. We get

Exts,tUA(H∗(BO),F2) ∼= Exts,t−1U (Σ−1Ind H∗(BO),F2).

Up to decomposables, Sqi(wj) =
(
j−1
i

)
wj+i, where wj is the jth Stiefel

Whitney class [17, 26, 28]. Preliminary calculations for ExtU lead to the

observation that its Ext chart looked like ExtU(Σ−1Do
1), but shifted to the right.

Recall that Do
1 is the cohomology of RP∞, modulo squares. This then lead us to

the following isomorphism between familiar modules, which we found surprising.

Calculations of ExtU(BO,F2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0
1
2
3
4

Proposition 5.1.1. Exts,tU (Σ−1Do
1)
∼= Exts,t+1

U (Σ−1Ind H∗(BO))
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This hints that the lowest degree in the width filtration yields the image

of J, an idea that we expand on more later in this section. Before proving this

proposition, we recall notation from [25]. Define Φ : U → U on M ∈ U at the

prime 2 to by

(ΦM)n ∼= Mn/2 SqiΦx = ΦSqi/2x

where Mn/2 is trivial if n/2 is not an integer. Let λM : ΦM → M by Φx 7→ Sq0x.

Define the functor Ω and its first (and only nontrivial) left derived function Ω1 by

kerλM = ΣΩ1M and cokerλM = ΣΩM.

Proposition 5.1.2. If M ∈ U and λM is injective, then Exts,tU (ΩM,F2) ∼=

Exts,t+1(M,F2).

Proof. We know that

0→ ker(λM)→ Φ(M)→M → coker(λM)→ 0

is an exact sequence where ker(λM) ∼= ΣΩ1M and coker(λM) ∼= ΣΩM . Since

λM is injective, ker(λM) = 0, so ΩiM = 0 for all i > 0. Let P• → M be

a free resolution of M . Then ΩP• → ΩM is a free resolution of ΩM . Thus,

ExtU(ΩM,F2) ∼= Hs(Homt(ΩP•,F2)). Since Ω is left adjoint to Σ, we get

Hs(Homt(ΩP•,F2)) ∼= Hs(Homt(P•,ΣF2)) ∼= Hs(Homt+1(P•,F2)) ∼= Exts,t+1
U (M,F2)
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Proof of Proposition 5.1.1. The result will follow from Proposition 5.1.2 if we can

show that λM is injective for M = Σ−1Ind H∗(BO) and cokerλM ∼= ΣΣ−1Do
1.

For any i > 0, wi ∈M , wi has degree i− 1 and

λM(wi) = Sq0(wi) = Sqi−1(wi) =

(
i− 1

i− 1

)
wi+i−1 = w2i−1

so λM is clearly injective. We can also see that the image of λM will be w2i−1 for

i ≥ 1. Then cokerλM will be w2i + im(λM) in degrees 2i − 1. The map w2i +

im(λM) 7→ d2i−11 then defines an isomorphism with Do
1
∼= ΣΣ−1Do

1, so we conclude

that ΣΣ−1Do
1
∼= cokerλM . Thus, applying Proposition 5.1.2, Exts,t(Σ−1Do

1)
∼=

Exts,t+1(Σ−1Ind H∗(BO)).

The suggestive calculation above for BO could tell us about the delooping of

the image of J . But our calculations in this paper are based on the cohomology

of QS0 and not its delooping. For QS0 itself, the first calculations above are

consistent with the following.

Theorem 5.1.3. The map induced by the image of J on cohomology induces a

splitting of the Nakaoka module N.

Corollary 5.1.4. The algebraic map induced by the image of J on Ext induces a

splitting of Ext(N).

Naively one would conjecture that J quotient of N which sends γ2k+1
1[1] 7→

β2k+1, but this is not a map of unstable modules. To make our calculations of this

map and the induced map on Ext, we begin by studying the map on homology.
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J∗ on homology

We use the basis for the homology of SO presented by Hatcher [14],

H∗(SO,Z) ∼= E[e1, . . . , en, . . .]

and the basis for H∗(Q1S
0) in Theorem 3.44 of Madsen-Milgram [20],

H∗(Q1S
0,Z2) ∼= E(g1, . . . , gi, . . .)⊗ P (gI)

where I = (i1, . . . , im) and runs over all sequences of integers 0 ≤ i1 ≤ · · · ≤ im

and i1 = 0 implies m = 2 and i2 > 0. We can translate between this basis and the

Kudo-Araki-Dyer-Lashof basis of admissible qI .

Proposition 5.2.1 (Theorem 3.9 [21]). Let J be the class of the identity map

(S∞, ∗) → (S∞, ∗) in Q1S
0, let p be any prime, and let I be any admissible

sequence of length j. Define

s(QI(J)) = QI(J) ∗ (−J) ∗ · · · ∗ (−J)

where there are pj copies of −J , the class of a point in Q−1S
0. Then

H∗(Q0S
0),Zp) = Λ{s(QI(J))}

as an algebra.

In our application p = 2 and in our notation J = ι, −J = ῑ and s(QI(J)) =

qI(ι) ∗ ῑ2
j
. As discussed in the proof of Theorem C in [21], the product of these
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generators with ι (shifting to the 1-component) give the homology generators as

described by:

gi ⊗ 1 7→ qi(ι) ∗ ι

1⊗ g0,i 7→ q2i (ι) ∗ ι3

1⊗ gI 7→ qI(ι) ∗ ι2
m−1.

The homology map induced by the J homomorphism follows from Corollary

1.5 of [21], giving that J∗ : H∗(SO) → H∗(Q1S
0) is defined by ei 7→ gi ⊗ 1, which is

qi(ι) ∗ ι.

J∗ on cohomology indecomposables

We can use this and the pairings between homology and cohomology for

both SO and Q1S
0 to understand the induced map J∗ : Σ−1Ind H∗(Q1S

0) →

Σ−1Ind H∗(SO). For cohomology, use the basis from Hatcher [14]

H∗(SO,F2) ∼=
⊗
i odd

F2[βi]

where βi is the linear dual to ei. To work out the pairing between homology and

cohomology for SO, we inductively use the Hopf algebra structure.

In general, the induced map on cohomology is given by the following.
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Proposition 5.3.1. The map on cohomology indecomposables induced by the J

homomorphism is:

γ2k+1
1[1] 7→ β2k+1

γi1[2]γ2[1] 7→ β2i+3

and all other indecomposables map to 0.

To prove this we make some preliminary calculations in the Lemmas below.

Lemma 5.3.2. Odd degree elements of N pair trivially with any nontrivial product

of two or more elements in H∗(Q1S
0).

Proof. Let x ∈ N be an indecomposable of odd degree and width 2k. Any

indecomposable of width 2k in odd degree must contain at least one block of full

width, thus ψ(x) = x⊗1+1⊗x. Let qI1 and qI2 be nontrivial elements of H∗(Q1S
0).

Then

〈x, qI1 ∗ qI2〉 = 〈ψ(x), qI1 ⊗ qI2〉 = 0

using the product and co-product structure of the homology and cohomology.

Lemma 5.3.3.

β∗2k+1 = e2k+1 +
∑

a+b=2k+1

ea ∧ eb

Proof. We begin with the identity β2k+1 = (e2k+1)∗, since β2k+1 is primitive and

pairs nontrivially with only e2k+1. Thus, 〈β2k+1, e
2k+1 +

∑
a+b=2k+1 e

a ∧ eb〉 = 1.

We would like to show that for any other x ∈ H∗(Q1S
0), 〈x, e2k+1 +∑

a+b=2k+1 e
a ∧ eb〉 = 0. We begin by writing x as the sum of products of primitives

x =
∑
j

∏
i

β2bi,j
2ai,j+1.
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By linearity and degree arguments it suffices to consider products of the form x =∏n
i=1 β

2bi
2ai+1 where deg x =

∑
i(2ai+1) ·2bi = 2k+1. Then 〈x, ea∧eb〉 = 1 if there are

an odd number of ways to split up the n terms in the product into two products of

total degrees a and b, otherwise 〈x, ea ∧ eb〉 = 0.

The number of ways to split the n terms into two groups is


∑bn

2
c

i=1

(
n
i

)
n is odd∑n

2
−1

i=1

(
n
i

)
+
(
n
n
2

)
n is even.

In either case, this is equivalent to

∑n
i=0

(
n
i

)
2

− 1 =
2n

2
− 1 = 2n−1 − 1,

which is odd for n ≥ 2. Certainly, not all of these pairs will be distinct, but they

will cancel each other out in pairs, leaving an odd number of possibilities. Thus,

〈x, ea ∧ eb〉 = 1. We can also calculate that 〈x, e2k+1〉 = 1, which means that

〈x, e2k+1 +
∑

a+b=2k+1

ea ∧ eb〉 = 1 + 1 = 0

and β2k+1 is the only term in H∗(Q1S
0) that pairs nontrivially with e2k+1 +∑

a+b=2k+1 e
a ∧ eb.

Lemma 5.3.4.
∑m

i=0

(
n
i

)
≡2

(
n−1
m

)
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Proof.

m∑
i=0

(
n

i

)
= [xm]

(1 + x)n

1− x

≡2 [xm]
(1 + x)n

1 + x

= [xm](1 + x)n−1

=

(
n− 1

m

)

Lemma 5.3.5. (
b− 1

k − b

)
= [xk−b]Fk(x)

where

Fk(x) =
C(−x)−k − (−xC(−x))k√

1− 4x
≡2 C(x)−k + (xC(x))k

and C(x) is the generating function for the Catalan numbers

C(x) =
1−
√

1− 4x

2x
.

Lemma 5.3.6. Fix k > 0 for d2k+1
3
e ≤ j ≤ k,

(
j − 1

2j − k − 1

)
+

b 2k−j
2
c∑

b=d k+1
2
e

(
b− 1

2b− k − 1

)(
j − b− 1

2k − j − 2b

)
=


1 if j = k

0 else.

46



Proof. We know that
(

b−1
2b−k−1

)
=
(
b−1
k−b

)
. Applying Lemma 5.3.5 we get

(
b− 1

k − b

)
= [xk−b]Fk(x)

and (
j − b− 1

2k − j − 2b

)
= [x2j−(2k+1)+b]F3j−2k−1(x).

Given the range on j, we know that 3j − 2k − 1 ≤ k − 1. Thus k > 3j − 2j − 1, so

the sum

∑
b

(
b− 1

2b− k − 1

)(
j − b− 1

2k − j − 2b

)
=
∑
b

([xk−b]Fk(x))([x2j−(2k+1)+b]F3j−2k−1)

= [x2j−k−1]Fk(x) · F3j−2k−1(x)

which is the coefficient of x2j−k−1 in Fk(x) · F3j−2k−1(x). Expanding out this

product, we get

Fk(x) · F3j−2k−1(x) =

= (C(x)−k + xkC(x)k)(C(x)−3j+2k+1 + x3j−2k−1C(x)3j−2k−1)

= C(x)−3j+k+1 + xkC(x)−3j+3k+1 + x3j−2k−1C(x)3j−3k−1 + x3j−k−1C(x)3j−k−1

= C(x)−(3j−k−1) + x3j−2k−1(C(x)−(3k−3j+1) + x3k−3j+1C(x)3k−3j+1) + (xC(x))3j−k−1

= F3j−k−1 + x3j−2k−1F3k−3j+1.
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Then the x2j−k−1 coordinate is

[x2j−k−1]F3j−k−1 + [xk−j]F3k−3j+1 =

(
j − 1

2j − k − 1

)
+

(
2k − 2j

k − j

)
.

Putting everything together, we have

(
j − 1

2j − k − 1

)
+

b 2k−j
2
c∑

b=d k+1
2
e

(
b− 1

2b− k − 1

)(
j − b− 1

2k − j − 2b

)
=

=

(
j − 1

2j − k − 1

)
+

(
j − 1

2j − k − 1

)
+

(
2k − 2j

k − j

)
=

(
2(k − j)
k − j

)
,

which is 1 if and only if j = k.

Now we are ready to prove Proposition 5.3.1.

Proof of Proposition 5.3.1. Since H∗(SO) has indecomposables in only odd

degrees, we only need to understand the map on odd degree elements in N and

thus only need to keep track of homology classes that are dual to odd degree

indecomposables. Then, by Lemma 5.3.2, we can ignore any products of two or

more classes in H∗(Q1S
0) as we work out the maps. Additionally, for each odd

degree there is exactly one indecomposable in H∗(Q1S
0), namely β2k+1. Then

Lemma 5.3.3 tells us β2k+1 is a term in (e2k+1)∗ and (ea ∧ eb)∗ but not in the

linear dual of any products of three or more terms. So, it suffices to look at only

products of one and two ei in H∗(SO) since products of three or more are dual only

to decomposables.
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The homology map induced by the J homomorphism is J∗ : H∗(SO) →

H∗(Q1S
0) is defined by ei 7→ gi ⊗ 1 = qi(ι) ∗ ι in the Kudo-Araki-Dyer-Lashof basis.

It follows that

ea ∧ eb 7→ (qa(ι) ∗ ι) ◦ (qb(ι) ∗ ι) =

a
2∑

l=a−b
2

(
a− l
a− 2l

)
qb+2l−a,a−l + products

We consider all a+b = 2k+1. Then (q2k+1−2j,j)
∗ 7→

∑
(ea∧eb)∗ where the sum,

runs over all ea ∧ eb for which q2k+1−2j,j was one of the terms in the image under J∗.

Summing over all a+ b = 2k + 1, the coefficient for admissible q2k+1−2j,j will be

2j−k−1∑
i=0

(
j

i

)
+

b 2k−j
2
c∑

b=d k+1
2
e

(
2b−k−1∑

l=0

(
b

l

))(
j − b− 1

2j − (2k + 1) + b

)
,

which simplifies by Lemma 5.3.4 mod 2 to

(
j − 1

2j − k − 1

)
+

b 2k−j
2
c∑

b=d k+1
2
e

(
b− 1

2b− k − 1

)(
j − b− 1

2k − j − 2b

)
.

By Lemma 5.3.6, we see that (q1,k)∗ contains an odd number of (ea ∧ eb)∗ in

its image and thus β2k+1 is one of the terms in the image. For all other q2k+1−2j,j

there are an even number of (ea ∧ eb)∗ in the image and thus β2k+1 does not appear

as one of the terms in the linear dual, which leaves only decomposables. So, only

J∗((q1,k)∗) is nonzero up to decomposables.

Next, we have that for 2a+ 3b = 2k + 1,

〈γa1[2]γb2[1], q1,k〉 =


1 a = 1, b = k

0 else.
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Thus, γk−11[2] γ2[1] appears as a term in (q1,k)∗ and is not a term in any other (qi,j)
∗.

So,

J∗(γk−11[2] γ2[1]) = J∗((q1,k)∗) +
∑

J∗((qi,j)
∗) = β2k+1 + 0.

Any other γa1[2]γ
b
2[1] when expressed as a sum of (qi,j)

∗ will have only terms with

i > 1 and thus J∗ will contain only decomposables.

For an example of how this works in degree 15 (k = 7) see Appendix B.

Theorem 5.3 on the splitting of the Nakaoka module follows from the map on

cohomology given in Proposition 5.3.1.

Proof of Theorem 5.1.3. At the level of unstable modules, we have the inclusion

map Σ−1Do
1 → Σ−1N and J∗ : Σ−1N → Σ−1Ind H∗(SO) whose composition

induces an isomorphism between the image of the first filtration Do
1 in N and the

indecomposables of H∗(SO).
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APPENDIX A

THE WIDTH SPECTRAL SEQUENCE

Through degree 16, there are no possible differentials in the width spectral

sequence so this gives the E2 of the CWSS

FIGURE 4. E1 page of the width spectral sequence. Black corresponds to D1, red
to D2, green to D3, teal to D4, purple to D5, and brown to D6.
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APPENDIX B

J∗ CALCULATIONS IN DEGREE 15

We will illustrate what is happening in the proof of Proposition 5.3.1 in

degree 15 (k = 7). Using Lemma 5.3.2 to ignore nontrivial products in H∗(Q1S
0)

and Lemma 5.3.3 to ignore products of three or more terms in H∗(SO), the relevant

homology maps are

J∗(e
15) = q15

and for a+ b = 15

J∗(e
a ∧ eb) =

a
2∑

l=da−b
2
e

(
a− l
a− 2l

)
qb+2l−a,a−l + products.

We conclude that J∗(q∗15) = J∗(γ151[1] = (e15)∗ = β15 and J∗((q15−2j,j)
∗) =

∑
(ea ∧ eb)∗

where the sum, runs over all ea ∧ eb for which q15−2j,j was one of the terms in the

image under J∗. Thus, summing over the image of J∗ for all a + b = 15 and looking

at the coefficient of q15−2j,j mod-2 will tell us whether q15−2j,j is in the image of an

odd or even number of ea ∧ eb. For q15−2j,j to be admissible, we need 5 ≤ j ≤ 7. We

then calculate the coefficient for q5,5 is

2∑
i=0

(
5

i

)
+

4∑
b=4

(
2b−8∑
l=0

(
b

l

))(
5− b− 1

−5 + b

)
,

which by Lemma 5.3.4 is

(
4

2

)
+

4∑
b=4

(
b− 1

2b− 8

)(
5− b− 1

−5 + b

)
= 0.
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Repeating the same process for q3,6, the coefficient is equivalent mod-2 to

(
6

4

)
+

4∑
b=4

(
b− 1

2b− 8

)(
6− b− 1

−3 + b

)
= 1 + 1 = 0.

And finally for q1,7, the coefficient is equivalent mod-2 to

(
6

6

)
+

3∑
b=4

(
b− 1

2b− 8

)(
7− b− 1

−1 + b

)
= 1 + 0 = 1.

Thus, q1,7 is the only element appearing an even number of times as the image of

the ea ∧ eb and thus only J∗((q1,7)
∗) is nonzero up to decomposables.

Next, we know that

(q1,7)
∗ = γ61[2]γ2[1] + γ31[2]γ

3
2[1] + γ52[1],

(q3,6)
∗ = γ31[2]γ

3
2[1] + γ52[1],

and

(q5,5)
∗ = γ52[1]

so

J∗(γ52[1]) = J∗((q∗5,5) = 0,

J∗(γ31[2]γ
3
2[1]) = J∗((q3,6)

∗ + (q∗5,5)) = 0 + 0,

and

J∗(γ61[2]γ2[1]) = J∗((q1,7)
∗ + (q3,6)

∗ + (q∗5,5)) = β15

all up to decompoasables.
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Paris 230 (1950), 918–920.

55


