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DISSERTATION ABSTRACT

Jake Potter

Doctor of Philosophy

Department of Mathematics
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Title: Fixed-Point-Free Involution Word Diagrams

We define a useful diagram for studying fixed-point-free involution words.

Following the example of Little, we define a specific and a general bumping

algorithm on these diagrams. These algorithms serve as the basis for bijective

proofs of corresponding transition equations for fixed-point-free involution Stanley

symmetric functions. We also use the diagrams to show deletion and exchange

properties of FPF involution words.
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CHAPTER I

INTRODUCTION

This work is a development of the theory of the transition equation for fixed-

point-free involutions (See [2]). In particular, the main new contribution is a

diagrammatic model for involution words, together with a description of a bumping

algorithm that uses the properties of these words. For the benefit of the reader

unfamiliar with these concepts, we begin with a brief overview of the corresponding

theory in Type A, the theory of reduced words and the transition equation for the

symmetric group (see [3]).

Let P be the set of (strictly) positive integers. Denote the set of permutations

of P which fix all but finitely many elements of P by SP. For any permutation π ∈

SP, we can factor π = si1si2 · · · sik into a product of adjacent transpositions. The

list i1i2 · · · ik is called a word (for π). A descent in this word is an index j so that

ij > ij+1. We can then consider a wire diagram (see the definition of “line diagram”

in [4]) corresponding to this word. A word (or wire diagram) is called reduced if

no two wires cross each other more than once. The set of reduced words for π is

denoted R(π).
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In [5], Stanley introduced the generating functions Fπ, which we will call

Stanley Symmetric Functions, defined as

Fπ =
∑

w ∈ R(π)

w = i1i2 · · · ik


∑

t1 ≤ t2 ≤ · · · ≤ tk

ij > ij+1 =⇒ tj < tj+1

xt1xt2 · · ·xtk


.

If π has at most one descent, π is called Grassmannian and has an associated

partition λ(π). Denote the Schur function in the variables xi for the partition λ

by Sλ. For a Grassmannian permutation, π, we have Fπ = Sλ(π).

In [4], Little defines a bumping algorithm on wire diagrams for reduced

wire diagrams. He then goes on to show the algorithm produces a bijection from

the set of wire diagrams for π to the set of wire diagrams for all children of π in

the Lascoux-Schützenberger (L-S) tree (see [3]). Iterating this algorithm yields a

bijection, ϕ, from the set of wire diagrams for π to the set of wire diagrams for all

Grassmannian descendants of π in the L-S tree. Because each application of the

bumping algorithm preserves the indices of descents of the word, this gives us a

bijective proof that

Fπ =
∑
σ

Sλ(σ),

where the sum is over the Grassmannian descendants of π in the L-S tree. This

implies that, for any π ∈ SP, Fπ has only positive coefficients when written as a

linear combination of Schur functions (originally proved non-bijectively in [3]).

We now focus our attention on fixed-point-free (FPF) involutions of the set P.

See Section 2.1 for our definition of these FPF involutions. Denote the set of these

2



FPF involutions by FPFP. The set FPF is not a subgroup of SP. However, similar

to an identity element, we have a “simplest” FPF involution θ : P → P defined by

θ(i) = i − (−1)i. The map ψ : SP → FPFP defined by σ 7→ σ−1θσ is surjective. An

atom of π ∈ FPFP is a permutation in the preimage A(π) := ψ−1(π). We define the

FPF involution Stanley symmetric function indexed by π ∈ FPFP to be

F̂π =
∑

σ∈A(π)

Fσ.

In [1], the authors give an analogue of Little’s bumping algorithm for FPF

involutions. This FPF bumping algorithm is described symbolically using reduced

(and nearly reduced) words for atoms. This algorithm, just like the one we define

in Section 2.6, is a bijection from the reduced words for atoms of π to the reduced

words for atoms of children of π in an FPF version of the L-S tree. It is therefore a

bijective proof that

F̂π =
∑
σ

F̂σ,

where the sum is over children of π in the FPF L-S tree.

The next steps are done by the same authors in [2]. Here, instead of Schur

functions, we use Schur P functions, Pλ, indexed by strict partitions λ. Similar to

before, if π ∈ FPFP is FPF-Grassmannian (see [2] for definition), then there is a

strict partition ν(π) so that F̂π = Pν(π). We may then iterate the FPF bumping

algorithm to produce a bijection from the reduced words for atoms of π to the

reduced words for atoms of FPF-Grassmannian descendants of π in the FPF L-S

tree. This provides us with a bijective proof that

F̂π =
∑
σ

Pν(σ),
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where the sum is over the FPF-Grassmannian descendants of π in the L-S tree.

This implies for any π ∈ FPFP, F̂π has only positive coefficients when written as a

linear combination of Schur P functions.

In this paper, we define FPF involution word diagrams (see Section 2.1),

which are an analogue of the wire diagram used by Little. Using these diagrams,

we define a new FPF bumping map (see Definition 2.6.4) in a visual way, which

more closely resembles Little’s description of his algorithm. Along the way, several

useful properties of these diagrams are shown, making it (hopefully) clear that

FPF involution word diagrams are a useful tool for studying FPF involutions. We

include a clear visual description of what it means for a diagram to be reduced and

we classify the types of defects that may arise in non-reduced diagrams. We also

use the diagrams to prove deletion and exchange properties for FPF involution

words.

Conjecturally, the bumping algorithm in this paper, when thought of as a

map from and to reduced involution words, is the same as the one defined in [1].

The relationship of the bumping maps to their corresponding L-S trees

depends on fixing a convention to start bumping at a particular crossing. However,

without such a convention, we still obtain a useful transition equation. In [4], we

have a generalized bumping algorithm, which provides a method for proving the

bijectivity of the specific (convention-following) bumping map. This generalized

bumping algorithm also provides us with the general transition equation

∑
σ∈Ψ+(ν,r)

Fσ =
∑

σ∈Ψ−(ν,r)

Fσ.
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In Section 2.5, we present a general bumping algorithm, which provides a bijective

proof of the FPF-version of the general transition equation

∑
σ∈Ψ̂+(ν,b)

F̂σ =
∑

σ∈Ψ̂−(ν,a)

F̂σ.

Similar to [4], we show that if we follow the convention of starting at the

lexicographically largest crossing, one of our index sets is a singleton: Ψ̂+(ν, r) =

{π} (See Proposition 2.6.5 for a more precise statement).
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CHAPTER II

FIXED-POINT-FREE INVOLUTIONS

2.1. Definitions

Definition 2.1.1. Let θ : P→ P be the function defined by

i 7→ i− (−1)i =


i+ 1 i odd

i− 1 i even

.

Definition 2.1.2. A fixed point free (FPF) involution is an element π ∈ SP such

that

– π2 is the identity

– for all i ∈ P, π(i) 6= i

– for all but finitely many i ∈ P, π(i) = θ(i).

The set of all FPF-involutions will be denoted FPFP.

Definition 2.1.3. Let π ∈ FPFP \ {θ}. The size of π, denoted size(π), is the largest

value m ∈ P such that π(m) 6= θ(m). We also have size(θ) = 0.

Definition 2.1.4. For i ∈ P, let si : P→ P be the ith transposition, i.e.

si(j) =



i+ 1 j = i

i j = i+ 1

j otherwise
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Definition 2.1.5. Let π : P → P be any FPF involution. The the list w =

w1w2 · · ·wk is an FPF involution word for π if π = swk
· · · sw1θsw1 · · · swk

. The

length of w, denoted ˆ̀
FPF(w), is k.

Definition 2.1.6. An FPF involution word w1w2 · · ·wk for π is called reduced if

there does not exist another FPF involution word for π which has length smaller

than k.

Definition 2.1.7. Let π ∈ FPFP. The length of π, denoted ˆ̀
FPF(π), is the length of

a reduced word for π.

FPF involutions will be written in one-line notation, i.e. for each π ∈ FPFP,

π = π(1)π(2) . . . π(n), where n ≥ size(π).

The following definition is based on a suggestion from Zachary Hamaker.

Definition 2.1.8. Let π be an FPF involution. Let w = w1 · · ·wk be an FPF

involution word for π. An involution word diagram for π corresponding to w is a

diagram (see example below) which has a rectangular grid of q rows (q ≥ k) and

countably infinitely many columns (indexed by P), where:

– Rows 1 ≤ ρ1 < . . . < ρk ≤ q are chosen to contain a crossing.

– For each i ∈ {1, . . . , k}, a cross
( )

is in column wi of row ρi.

– For each pair of consecutive grid positions in the same row, if neither contain

a cross, a vertical line segment is drawn between them. A vertical line segment

is also drawn on the left side of any position in column 1 which does not have

a crossing.

– Above every odd numbered column, there is an arc connecting the left side of

the top of the column to the right side.
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Remark. The locations of the crosses are all in the first size(π) − 1 columns. Each

diagram ends with an ellipsis (normally omitted) signifying infinitely many columns

to the right, none of which contain any crosses.

Remark. An FPF involution word diagram D is equivalent to the set of locations

of the crosses

D = {(ρi, κi) | 1 ≤ i ≤ k}

where for each i, ρi is the row number and κi is the column number.

Definition 2.1.9. Let D be an involution word diagram. The FPF involution which

D is for is denoted π(D). We say D is reduced if there does not exists a smaller

diagram for π(D). In other words, D is reduced if there is not an involution word

diagram E so that |E| < |D| and π(D) = π(E).

Note: The cardinality |D| is the length of the corresponding word w. Thus

ˆ̀
FPF(π) = min{|D| : π(D) = π}.

Example 2.1.10. Let π = 5 4 6 2 1 3 ∈ FPFP. Then w = 2 5 4 1 3 is an FPF

involution word for π. The FPF involution word diagram for π corresponding to w

is shown below.

D = {(1, 2), (3, 5), (4, 4), (5, 1), (6, 3)} =

Note: As we will see in the next proposition, the FPF involution π can be

recovered from any of its FPF involution word diagrams by following the wires.

For k ∈ P, wire position k is the location of the wire which is left of column k. In
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the following figure, the wire position k, specifically at the bottom of the diagram,

is labeled as π(k). In this example, we can see that π(1) = 5 (or, equivalently,

π(5) = 1) by tracing the bold wire below, which connects the first and fifth wire

positions at the bottom of the diagram. This wire will be denoted either W1 or W5.

In general, we have a wire Wi = Wj for every pair i, j such that π(i) = j.

5 4 6 2 1 3 8 7 10 9

Proposition 2.1.11. Let π ∈ FPFP. Let w = w1w2 . . . wk be an FPF involution

word for π. Let D be an FPF involution word diagram corresponding to w. Then

for k ∈ P, the wire which is in wire position k at the bottom of D can be traced up,

over the arc at the top, and back down. When reaching the bottom of D again, we

will be at wire position π(k).

Proof. Let q be the number of rows in D. We have D = {(ρi, wi) | 1 ≤ i ≤ k}.

For i ∈ {0, 1, . . . , q}, let Di = {(ρ, κ) ∈ D | ρ ≤ i}. The involution word diagram

D0 = Dρ1−1 has no crossings. Thus for each ` ∈ P, the wire in wire position ` can

be traced up to the top of D0, then around the arc and back down to wire position

θ(`).

Let ρ0 = 0. We induct on i ∈ {0, 1, . . . , k} to show the diagram Dρi

has the property that for any ` ∈ P, the wire in wire position ` can be traced

up to the top of Dρi
, then around the arc and back down to wire position

(swi
. . . sw1θsw1 . . . swi

)(`). The case when i = 0 is done.
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We now fix i ∈ {0, 1, . . . , k − 1} and assume that Dρi
has the required

property. Note that Dρi+1−1 = Dρi
. For any wire position ` at the bottom

of Dρi+1
, we trace wire W` straight up to wire position ` at the bottom of row

ρi+1. Then the crossing in row ρi+1 will take us to wire position swi+1
(`) at

the top of row ρi+1. Note that if wire W` is not involved in this crossing, then

` /∈ {w
i+1
, w

i+1+1}, which means swi+1
(`) = ` From here, we use our induction

assumption. Because the portion of Dρi+1
above row ρi+1 is the same as in Dρi

,

wire W` can continue to be traced over the top of the diagram and back down

to wire position (swi
. . . sw1θsw1 . . . swi

)(swi+1
(`)) at the top of row ρi+1. Then

the crossing in row ρi+1 will apply a final transposition swi+1
, to bring us to wire

position (swi+1
swi

. . . sw1θsw1 . . . swi
swi+1

)(`), which we stay in until we reach the

bottom of Dρi+1
, as desired.

Our induction says, in particular that, when i = k, the wire W` in D can

be traced from wire position ` at the bottom all the way around the top and back

down to wire position (swk
. . . sw1θsw1 . . . swk

)(`) = π(`).

2.2. Top and Bottom Labels

Fix π ∈ FPFP and let D be an FPF involution word diagram for π. Let q be

the number of rows of D. It will be useful to label grid locations (whether or not

they are crossings in D) in a manner which indicates which wires are involved. We

do this in two ways.

For each position T = (ρ, κ) ∈ P×P with ρ ≤ q, we trace the wires coming out

of the bottom left and bottom right of the position T until they reach the bottom

of the diagram and note those wire positions. If the wire meeting the bottom left of

T reaches wire position i and the wire meeting the bottom right of T reaches wire

10



position j, then we say T has bottom label (i, j). Note that if D is reduced and

T ∈ D, then i < j (see Corollary 2.2.10).

The top label of T is defined similarly, except that when we trace the wires

coming out of the top left and top right of the position, the wires will arc at the

top before descending to their final wire position at the bottom of the diagram.

The location of the arc is irrelevant for these labels. If the wire meeting the top

left of T reaches wire position k and the wire meeting the top of T reaches wire

position `, then we say T has top label (k, `). Note that if T ∈ D, we have k =

π(j), ` = π(i), and furthermore, if the diagram is reduced, we also have k < ` (see

Corollary 2.2.10).

A position X ∈ P × P is said to have label (a, b) (in D) if (a, b) is either a

top or bottom label of X (in D). To avoid ambiguity, we will sometimes specify the

involution word diagram by calling (a, b) a D-label.

Example 2.2.1. The bold crossing in the diagram below has bottom label (3, 5)

and top label (1, 6).

Definition 2.2.2. Given an FPF involution word diagram D and a particular

crossing X ∈ D, a new involution word diagram D \ {X} is obtained by deleting

the crossing X.

Definition 2.2.3. Let D be an FPF involution word diagram. Let ρ ∈ P be any row

in which D has no crossings, i.e. for all c ∈ P, (ρ, c) /∈ D. Let κ ∈ P be any column

11



and let X = (ρ, κ). Then a new involution word diagram D ∪ {X} is obtained by

inserting a crossing at the given location.

Note that applying deletion or insertion to a reduced diagram may produce a

diagram which is not reduced.

Let π ∈ FPFP and let D be an involution word diagram for π. Let X ∈ D.

Let (a, b) be the top label and (c, d) be the bottom label of X. Then π(a) = d and

π(b) = c. Suppose that the crossing X happens in column i in D. Then we can

factor π = λsiηθη
−1siλ

−1. In this factorization, the central

ηθη−1 = π
({

(ρ, κ) ∈ D | ρ < the row that X is in
})

is the permutation for the truncated diagram consisting of just the crossing which

are above the crossing X. We conjugate by si to account for the crossing X and

then by λ to account for the crossings below X. Note that since (c, d) is the bottom

label of X, λ(i) = c and λ(i + 1) = d. Let E = D \ {X}. We now want to look at

the new fixed-point-free involution σ = π(E) = ληθη−1λ−1.

First, we can look at the case where d = b. Then X involves only one wire

crossing itself in D. In other words, (ηθη−1)(i) = i+ 1. We can see in Figures 1 and

2 that uncrossing these wires does not change the permutation.

12



a = c b = d

FIGURE 1.

a = c b = d

FIGURE 2.

We can confirm this algebraically by checking a couple of things. Firstly,

σ(a) = (ληθη−1λ−1)(a)

= (ληθη−1)(i)

= λ(i+ 1)

= b

= π(a)

Secondly, let x ∈ P \ {a, b}. We know that

λ−1(x) /∈
{
λ−1(c), λ−1(d)

}
= {i, i+ 1} and (2.2.1)

(ηθη−1siλ
−1)(x) /∈

{
(ηθη−1siλ

−1)(a), (ηθη−1siλ
−1)(b)

}
=
{

(λ−1π)(a), (λ−1π)(b)
}

= {i, i+ 1}.

(2.2.2)

Also, by (2.2.1), we know (siλ
−1)(x) = si(λ

−1(x)) = λ−1(x), and by (2.2.2), we

know

(siηθη
−1λ−1)(x) = si(ηθη

−1λ−1(x)) = (ηθη−1λ−1)(x).

13



Therefore,

σ(x) = (ληθη−1λ−1)(x)

= λ
(
(ηθη−1λ−1)(x)

)
= λ

(
(siηθη

−1λ−1)(x)
)

= (λsiηθη
−1)
(
λ−1(x)

)
= (λsiηθη

−1)
(
siλ
−1(x)

)
= (λsiηθη

−1siλ
−1)(x)

= π(x).

In this case, we can conclude that σ = π.

Now we will look at the case where d 6= b. This means that X involves two

distinct wires in D crossing each other. In other words,

(ηθη−1)(i) 6= i+ 1. (2.2.3)

Since (a, b) is the top label of X in D, (λsiηθη
−1)(i) = a and (λsiηθη

−1)(i + 1) = b.

Here, we want to show σ = ta,bπ(D)ta,b. Let j = (ηθη−1)(i) and k = (ηθη−1)(i + 1).

By (2.2.3), we know j, k /∈ {i, i+ 1}.

14



We can now say

σ(c) = (ληθη−1λ−1)(c)

= (ληθη−1)(i)

= λ(j)

= λ(sij) (because j /∈ {i, i+ 1})

= (λsiηθη
−1)(i)

= (λsiηθη
−1si)(i+ 1)

= (λsiηθη
−1siλ

−1)(d)

= π(d)

= a.

Similarly, σ(d) = b. For x ∈ P \ {a, b, c, d}, we may again conclude (2.2.1) and

(2.2.2), which implies σ(x) = π(x).

All of this can be summed up into the following lemma.

Lemma 2.2.4. Let D be an involution word diagram and let X ∈ D with label

(a, b). Then π(D \ {X}) = ta,bπ(D)ta,b.

15



Proof. For π ∈ FPFP with π(a) = b, we have ta,bπta,b = tπ(a),π(b)πtπ(a),π(b)(x) = π.

And for π ∈ FPFP with π(a) 6= b, we have

ta,bπta,b(x) = tπ(a),π(b)πtπ(a),π(b)(x) =



π(b) x = a

π(a) x = b

a x = π(b)

b x = π(a)

π(x) else.

In each of these cases, we check above that σ = π(E) is the same as ta,bπta,b.

Corollary 2.2.5. Let D be an involution word diagram and let X be a position on

some row of D which has no crossing. Let (a, b) be either the top or bottom label of

X. Then π(D ∪ {X}) = ta,bπ(D)ta,b.

Proof. Let π = π(D ∪ {X}). Let σ = π(D). Let (c, d) be the bottom label of X in

D ∪ {X}. Since D = (D ∪ {X}) \ {X}, Lemma 2.2.4 tells us that σ = tc,dπtc,d. If

(a, b) is the bottom label of X in D, then (a, b) = (c, d) and we are done. If (a, b) is

the top label, we have two cases.

First, if σ(a) = b, then as we saw before, the bottom label of X in D is also

(a, b).

Second, if σ(a) 6= b, then the bottom label of X in D is (σ(b), σ(a)).

Thus the bottom label of X in D ∪ {X} is also (σ(b), σ(a)). Now tc,dπtc,d =

tσ(b),σ(a)πtσ(b),σ(a) = ta,bπta,b.
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Lemma 2.2.6. Let π ∈ FPFP. Let D be an involution word diagram for π. Let

a, b ∈ P and assume that wires Wa and Wb cross at least three times in D. Then D

is not reduced.

Proof. We start by noting that if π(a) = b, then any of the three crossings may be

deleted to yield an involution word diagram for π with fewer crossings. Thus D is

not reduced. Now assume π(a) 6= b. Any crossing of wires Wa and Wb must have

one of the following 8 bottom labels, which we divide into two categories:

1) (a, b), (b, a), (π(a), π(b)), (π(b), π(a))

2) (a, π(b)), (b, π(a)), (π(a), b), (π(b), a)

Note that the permutation resulting from deleting a crossing depends only on the

category of the bottom label. This means that if there are 3 crossings of Wa and

Wb, 2 of them must have bottom labels from the same category. Let X and Y be

these two crossings with X in the smaller number row. Let (i, j) be the bottom

label of X and (k, `) be the bottom label of Y in D. Note that the bottom label of

Y (in any involution word diagram) only depends on the crossings below Y , so the

bottom label of Y in D \ {X} is also (k, `). Let E = D \ {X, Y }. Then π(E) =

tk,`ti,jπti,jtk,`. The goal here is to say that π(E) = π. We can do this by checking

the 32 cases, one for each combination of labels for X and Y . Half of these are

completely trivial because, for example, ta,btb,a is the identity. We will look at one

of the other 16 cases:

Assume (i, j) = (a, b) and (k, `) = (π(a), π(b)). Let σ = π(E). Then

σ = tπ(a),π(b)ta,bπta,btπ(a),π(b). Now for x /∈ {a, b, π(a), π(b)}, we also have
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π(x) /∈ {a, b, π(a), π(b)}. Hence

σ(x) = (tπ(a),π(b)ta,bπta,btπ(a),π(b))(x)

= (tπ(a),π(b)ta,b)(π(x))

= π(x).

Also,

σ(a) = (tπ(a),π(b)ta,bπta,btπ(a),π(b))(a)

= (tπ(a),π(b)ta,bπta,b)(a)

= (tπ(a),π(b)ta,bπ)(b)

= (tπ(a),π(b)ta,b)(π(b))

= (tπ(a),π(b))(π(b))

= π(a).

Similarly, σ(b) = π(b). The remaining cases follow in a similar fashion.

Therefore E is an involution word diagram for π with fewer crossings than D,

which implies D is not reduced.

Let XD(a, b) ⊂ D denote the set of crossings of wires Wa and Wb in the

diagram D.

Lemma 2.2.7. Let π ∈ FPFP. Let D be any reduced involution word diagram for π.

Let a, b ∈ P with a < b < π(b) and a < π(a). The relative order of a, π(a), b, and

π(b) is determined by |XD(a, b)| according to:

– If |XD(a, b)| = 0, then a < π(a) < b < π(b).
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– If |XD(a, b)| = 1, then a < b < π(a) < π(b).

– If |XD(a, b)| = 2, then a < b < π(b) < π(a).

Furthermore, |XD(a, a)| = 0.

Proof. Let q be the number of rows in D. For 0 ≤ i ≤ q, we define truncated

diagrams Di =
{

(ρ, κ) ∈ D | ρ ≤ i
}

, which contain the just the crossings in the top

i rows of D. Let πi = π(Di).

Suppose first that for some i, Di is not reduced. This means that there is an

involution word diagram E for πi which has few crossings than Di. Without loss of

generality, E also has fewer rows than Di. Then E ∪ (D \Di) is an involution word

diagram for π which is shorter than D. This contradicts the fact that D is reduced.

Thus we can conclude that Di is in fact reduced for each i.

We now proceed by induction on i. For the base of our induction, we note

that for any a and b, |XD0(a, b)| = 0. Since π0 = θ, a < π(a) and b < π(b)

implies a and b are odd. Also, π(a) = a + 1 and π(b) = b + 1. The relative order

a < a+ 1 < b < b+ 1 is satisfied.

Now fix i ∈ {1, . . . , q}. Assume that Di−1 satisfies the relative order

requirements for each pair of wires. If there is no crossing in row i, then the

number of crossings as well as the relative orders remain the same for every pair

of wires, so there is nothing to show. Thus we may assume that there is a crossing

(κi, i) ∈ D. Since this crossing is at the bottom of Di, we know that it crosses wires

Wκi and Wκi+1 in Di. We have πi = sκiπi−1sκi . For x ∈ P \ {κi, πi−1(κi), κi +

1, πi−1(κi + 1)}, πi(x) = (sκiπi−1sκi)(x) = πi−1(x).

Suppose that πi−1(κi) = κi + 1. Then πi(κi) = (sκiπi−1sκi)(κi) = (sκiπi−1)(κi +

1) = sκi(κi) = κi + 1 = πi−1(κi). This would mean that πi = πi−1, which implies Di
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is not reduced. Thus wires Wκi and Wκi+1 are indeed distinct in Di−1. Hence

πi(κi) = (sκiπi−1sκi)(κi) = (sκiπi−1)(κi + 1) = πi−1(κi + 1), (2.2.4)

and πi(κi + 1) = (sκiπi−1sκi)(κi + 1) = (sκiπi−1)(κi) = πi−1(κi). (2.2.5)

There are several things to check. Let’s start by looking at the three cases for

the value of |XDi−1
(κi, κi + 1)|.

– Assume |XDi−1
(κi, κi + 1)| = 0. Then πi−1(κi) < κi < κi + 1 < πi−1(κi + 1).

Using equations (2.2.4) and (2.2.5), we get πi(κi + 1) < κi < κi + 1 < πi(κi).

This correlates with the value |XDi
(κi, κi + 1)| = 1, as desired.

– Assume |XDi−1
(κi, κi + 1)| = 1. Then κi < κi + 1 < πi−1(κi) < πi−1(κi + 1).

Using equations (2.2.4) and (2.2.5), we get κi < κi + 1 < πi(κi + 1) < πi(κi).

This correlates with the value |XDi
(κi, κi + 1)| = 2, as desired.

– Assume |XDi−1
(κi, κi + 1)| = 2. Then |XDi

(κi, κi + 1)| = 3. By Lemma 2.2.6,

Di is not reduced. Therefore this case is not possible.

Now we will check that nothing unexpected happens with the other wires in

the diagram. Let x, y ∈ P \ {κi, πi(κi), κi + 1, πi(κi + 1)} with y 6= x < πi(x) 6= y.

Since Wx is not involved in the new crossing, we have |XDi
(x, y)| = |XDi−1

(x, y)|.

Therefore we want to say that the relative order of x, y, πi(x), and πi(y) is the

same as the relative order of x, y, πi−1(x), and πi−1(y), respectively. Since πi(x) =

πi−1(x), πi(y) = πi−1(y), this is indeed the case.

The crossings of Wx with Wκi in Di−1 occur at the same locations as crossings

of Wx with Wκi+1
in Di. Again, since Wx is not involved in the new crossing, we

have |XDi
(x, κi + 1)| = |XDi−1

(x, κi)|. We now want to say that the relative order
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of x, πi−1(x), κi, and πi−1(κi) coincides with the relative order of x, πi(x), κi + 1,

and πi(κi + 1). Three of these values do not change: x = x, πi(x) = πi−1(x), and

πi(κi + 1) = πi−1(κi). The remaining value, κi can be replaced by κi + 1 without

changing the relative order because the two wire positions are adjacent.

Similarly, |XDi
(x, κi)| = |XDi−1

(x, κi + 1)|. And for the same reason, the

relative order of x, πi−1(x), κi + 1, and πi−1(κi + 1) coincides with the relative order

of x, πi(x), κi, and πi(κi).

Therefore Di satisfies the relative order requirements for each pair of wires.

This concludes the induction. Thus for all pairs of distinct wires, Wa and Wb, the

relative order of a, π(a), b, and π(b) is determined by the value |XDi
(a, b)|.

Finally, we note that a wire cannot cross itself in a reduced involution word

diagram. By Lemma 2.2.4, deleting such a crossing does not change the resulting

permutation. Thus a diagram which includes one of these crossings cannot be

reduced. Therefore |XD(a, a)| = 0.

Lemma 2.2.8. Let π ∈ FPFP. Let a, b ∈ P with a < b, a < π(a), and b <

π(b). Let D be any involution word diagram for π in which neither wire Wa nor

Wb crosses itself. Assume wires Wa and Wb cross each other in D. Let X be the

top-most crossing of Wa and Wb. Then X has label (a, π(b)).

Proof. Let q be the number of rows in D. Let (r, j) = X. As in the proof of

Lemma 2.2.7, we will consider truncated diagrams Di =
{

(ρ, κ) ∈ D | ρ ≤ i
}

.

For each i, let πi = π(Di).

We start by factoring π = λsjηθη
−1sjλ

−1. Just as in the exposition before

Lemma 2.2.4, the central ηθη−1 = πr−1 corresponds to the portion of D above X.

We conjugate by sj to account for X (in column j) and then by λ to account for

the crossings below X.
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We can factor πi = ηiθη
−1
i where η0 is the identity (of Sn) and for i > 0,

ηi =


sκηi−1 if (i, κ) ∈ Di

ηi−1 if Di = Di−1 .

To keep track of all of the η’s floating around, Figure 3 shows the names used for

each of the relevant wire positions on the wires Wj and Wj+1 in Dr.

πr(j)

πr−1(j+1)

ηiθη
−1(j+1)

θη−1(j+1)η−1(j+1)

ηiη
−1(j+1)

j+1j

ηiη
−1(j)

η−1(j)θη−1(j)

ηiθη
−1(j)

πr−1(j)

πr(j+1)

bottom of row i −→

FIGURE 3.

We will now induct on i to show that for 0 ≤ i < r,

(ηiθη
−1)(j) < (ηiη

−1)(j) < (ηiη
−1)(j + 1) < (ηiθη

−1)(j + 1).

Since |XDr−1(j, j + 1)| = 0, we also have |XDi
((ηiη

−1)(j), (ηiη
−1)(j + 1))| = 0 for

i < r − 1.

For the base of the induction, when i = 0, since D0 is reduced, the desired

relative order comes from the |XD(a, b)| = 0 case of Lemma 2.2.7.

Now fix i ≥ 1 and assume

(ηi−1θη
−1)(j) < (ηi−1η

−1)(j) < (ηi−1η
−1)(j + 1) < (ηi−1θη

−1)(j + 1). (2.2.6)
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The crossing in row i (if there is one) may involve one of the two wires, but does

not involve both of them, otherwise, X would not be the top-most crossing of

the two wires in D. Also, the crossing in row i does not involve crossing either of

the wires with themselves. Thus one of the 4 values in (2.2.6) may increment or

decrement by 1 when switching from i − 1 to i, but it is not possible for them to

change their relative order. Therefore,

(ηiθη
−1)(j) < (ηiη

−1)(j) < (ηiη
−1)(j + 1) < (ηiθη

−1)(j + 1).

Hence by induction,

(ηr−1θη
−1)(j) < (ηr−1η

−1)(j) < (ηr−1η
−1)(j + 1) < (ηr−1θη

−1)(j + 1),

which we can rewrite as

πr−1(j) < j < j + 1 < πr−1(j + 1).

Now, using the fact that πr = sjπr−1sj, we get

πr(j + 1) < j < j + 1 < πr(j).

The top label of X in Dr is (πr(j + 1), πr(j)), which matches the format

(a, π(b)), as desired, in the case where D = Dr.

We will show that X has the desired label in D by inducting on i. Our base

case, where i = r, is already done.

Now fix i > r and assume that X has label (a, πi−1(b)) in Di−1 where a < b <

πi−1(b) and a < πi−1(a).
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We will assume there is a crossing (i, κ) ∈ Di in row i, because otherwise

there is nothing to show. The label of X in Di can be determined by tracing

the paths of the wires coming out (of either the top or the bottom) of X. Since

(a, πi−1(b)) was a label of X in Di−1, tracing the left wire to the bottom of row

i − 1 in Di will get us to wire position a. Then continuing to the bottom of row i

will take us to wire position sκ(a). Similarly, the right wire can be traced to wire

position sκ(πi−1(b)). Thus (sκ(a), (sκπi−1)(b)) is a label of X in Di.

If the new crossing involves neither Wa nor Wb, then the labels of X remain

the same in Di. Also, the relative order of the endpoints of these two wires is

preserved.

If the new crossing involves exactly one of these two wires, then we have a few

cases. If (i) a ∈ {κ, κ + 1}, then πi−1(a) /∈ {κ, κ + 1}. The label of X changes from

(a, πi−1(b)) to (sκ(a), πi−1(b)). Since πi(sκ(a)) = (sκπi−1)(a) = πi−1(a) > sκ(a),

the relative order of a, b, πi−1(a), and πi−1(b) is the same as the relative order of

sκ(a), b, πi(sκ(a)), and πi(b). The other cases (ii) πi−1(a) ∈ {κ, κ + 1}, (iii) b ∈

{κ, κ+ 1}, and (iv) πi−1(b) ∈ {κ, κ+ 1} work similarly.

We will now look at what happens when the new crossing involves both of the

wires. Since a < b < πi−1(b), a < πi−1(a), and only adjacent wires can cross, there

are only three cases to look at:

– If {κ, κ+ 1} = {a, b}, then b = a+ 1. We have πi(a) = (sκπi−1sκ)(a) = πi−1(b)

and πi(b) = πi−1(a). Since b = a + 1 and a < πi−1(a) = πi(b), we must also

have b < πi(b). Because (a, πi−1(b)) is a label of X in Di−1, so is (b, πi−1(a)).

Hence (sκ(b), (sκπi−1)(a)) = (a, πi(b)) is a label of X in Di as desired.

– If {κ, κ + 1} = {b, πi−1(a)}, then b = πi−1(a) ± 1. We have πi(a) =

(sκπi−1sκ)(a) = sκ(πi−1(a)) = b and πi(πi−1(a)) = πi−1(b). Since b < πi−1(b)
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and b = πi−1(a) ± 1, we also have πi−1(a) < πi−1(b) = πi(πi−1(a)). Now

(sκ(a), (sκπi−1)(b)) = (a, πi−1(b)) = (a, πi(πi−1(a))) is our desired label of X in

Di.

– If {κ, κ + 1} = {πi−1(a), πi−1(b)}, then πi−1(b) = πi−1(a) ± 1. We have

πi(a) = (sκπi−1sκ)(a) = sκ(πi−1(a)) = πi−1(b) and πi(b) = πi−1(a). Since

b < πi−1(b) and πi−1(b) = πi−1(a) ± 1, we also have b < πi−1(a) = πi(b). Now

(sκ(a), (sκπi−1)(b)) = (a, πi−1(a)) = (a, πi(πi(b))) is our desired label of X in

Di.

These are all of the possible cases for how the new crossing interacts with

wires Wa and Wb. Thus, by induction, for all i ∈ {r, . . . , q}, the label of X in Di

is of the form (a, πi(b)) for some a, b ∈ P satisfying a < b < πi(b) and a < πi(a).

In particular, the label of X in D = Dq is of the form (a, π(b)) for some a, b ∈ P

satisfying a < b < π(b) and a < π(a).

Corollary 2.2.9. Let D be a reduced involution word diagram for π. Let a, b ∈ P

with a < b, a < π(a), and b < π(b). Then wires Wa and Wb cross according to these

rules:

(i) If a < b < π(a) < π(b), then D has a unique crossing, X, with label (a, π(b))

(ii) If a < b < π(b) < π(a), then D has exactly two crossings, X and Y , where X

has label (a, π(b)) and Y has label (a, b). Furthermore, X is in a smaller value

row than Y , i.e. X appears higher up in D than Y .

(iii) If a < π(a) < b < π(b), then wires Wa and Wb do not cross in D.

Proof. The number of crossings in each case follows from Lemma 2.2.7 and the

fact that these are all of the possible orderings of a, b, π(a), and π(b) subject to the
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given constraints. The label in part (i) is the result of the first induction in the

proof of Lemma 2.2.8. The label of X in part (ii) follows from Lemma 2.2.8.

The label of Y in part 2 requires a little bit of work. First, we note that

since D is reduced and X has a label in the second category from the proof of

Lemma 2, Y must have a label which is in the first category. Since we don’t care

to distinguish top from bottom labels, this leaves us with 2 possibilities. Either

(a, b) is a label of Y or (b, a) is a label of Y .

If (b, a) is the bottom label of Y , then because a < b, the wires must cross

again below Y in D. Since the only other crossing of these wires is X, which

happens above Y , (b, a) cannot be the bottom label of Y .

Now if (b, a) is the top label of Y , then (π(a), π(b)) is the bottom label of Y

and we know that (in this case) π(b) < π(a). So again, there would need to be

another crossing of these two wires below Y . Thus (b, a) cannot be the top label of

Y . Therefore (a, b) is a label of Y .

Corollary 2.2.10. Let D be a reduced involution word diagram. Let (x, y) be a

label of any crossing in D. Then x < y.

Proof. We check each of the crosses in the cases presented in Corollary 2.2.9.

For case (i). The unique crossing has labels (a, π(b)) and (b, π(a)). In this

case, we know that a < π(b) and b < π(a).

For case (ii). The two crossings have labels (a, π(b)), (b, π(a)), (a, b), and

(π(b), π(a)). In this case, we know that a < π(b), b < π(a), a < b, and

π(b) < π(a).
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2.3. Deletion and Exchange Properties

Lemma 2.3.1. Let π ∈ FPFP. Let D be an involution word diagram for π. Then

ˆ̀
FPF(π) ≤

∑
Wa,Wb

|XD(a, b)|

where the sum is over all pairs of wires. Furthermore, D is reduced if and only

if for every a ∈ P, |XD(a, a)| = 0, and for every pair of wires, Wa and Wb,

|XD(a, b)| ≤ 2 and coincides with the relative orders of a, π(a), b and π(b) in

accordance with Lemma 2.2.7.

Proof. The length ˆ̀
FPF(π) is the smallest number of crossings in any involution

word diagram for π. Since D is an involution word diagram for π and the sum on

the right side is number of crossing in D, we get the desired inequality.

If we assume D is reduced, then the inequality |XD(a, b)| ≤ 2 comes from

Lemma 2.2.6. The desired relative orders for the endpoints of the wire pairs as well

as |XD(a, a)| = 0 (for every a) come from Lemma 2.2.7.

Now we instead assume that for every a ∈ P, |XD(a, a)| = 0 and for every pair

of wires, Wa and Wb, |XD(a, b)| ≤ 2 and the relative order of the endpoints agrees

with Lemma 2.2.7. Suppose that D is not reduced. Then there must a shorter

involution word diagram E such that π(E) = π. Without loss of generality, we

may assume E is reduced. Since

∑
Wa,Wb

|XE(a, b)| = ˆ̀
FPF(π) <

∑
Wa,Wb

|XD(a, b)|,

there must be a pair of wires Wa 6= Wb so that |XE(a, b)| < |XD(a, b)|. Since both

|XE(a, b)| and |XD(a, b)| agree with Lemma 2.2.7 on the relative order of a, b, π(a)
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and π(b), we must have |XE(a, b)| = |XD(a, b)|, which is a contradiction. Thus D is

reduced.

Definition 2.3.2. Let π ∈ FPFP. The set of cycles of π is

Cyc(π) =
{

(i, j) ∈ P× P
∣∣ i < j = π(i)

}
.

The set of inversions of π is

Inv(π) =
{

(i, j) ∈ P× P
∣∣ i < j and π(i) > π(j)

}
.

The set of FPF-inversions of π is

InvFPF(π) = Inv(π) \ Cyc(π) =
{

(i, j) ∈ P× P
∣∣ i < j 6= π(i) and π(i) > π(j)

}
.

Corollary 2.3.3. Let π ∈ FPFP. Then

ˆ̀
FPF(π) =

1

2
·
∣∣∣InvFPF(π)

∣∣∣.
Proof. Let D be a reduced FPF involution word diagram for π. Then ˆ̀

FPF(π) =∑
Wa,Wb

|XD(a, b)| where the sum is over all pairs of wires. For each a, b ∈ P, let

P (a, b) = {a, b, π(a), π(b)}2 be the set of pairs among the endpoints of wires Wa

and Wb. For i ∈ {0, 1, 2}, let Ci = {(a, b) ∈ P × P : a < b < π(b), a <

π(a), and |XD(a, b)| = i}.

If (a, b) ∈ C0, then a < π(a) < b < π(b). The cycles (a, π(a)) and (b, π(b)) are

the only inversions in P (a, b). Thus there are no FPF-inversions.
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If (a, b) ∈ C1, then a < b < π(a) < π(b). So (b, π(a)) and (a, π(b)) are the only

FPF-inversions in P (a, b).

If (a, b) ∈ C2, then a < b < π(b) < π(a). So (a, b), (b, π(a)), (a, π(b)), and

(π(a), π(b)) are the only FPF-inversions in P (a, b).

In each case, we see that if (a, b) ∈ Ci, then there are exactly 2i FPF-

inversions in P (a, b).

Now

ˆ̀
FPF(π) =

∑
Wa,Wb

|XD(a, b)|

=
2∑
i=0

∑
(a,b)∈Ci

|XD(a, b)|

=
2∑
i=0

∑
(a,b)∈Ci

i

=
1

2
·

2∑
i=0

∑
(a,b)∈Ci

2i

=
1

2
·

2∑
i=0

∑
(a,b)∈Ci

∣∣InvFPF(π) ∩ P (a, b)
∣∣

=
1

2
·
∣∣∣InvFPF(π)

∣∣∣.
Note that each of the summands only has finitely many non-zero terms.

Corollary 2.3.4. Let π ∈ FPFP. Let D be a reduced involution word diagram for

π. Let x, y ∈ P. Then D has a crossing with label (x, y) if and only if (x, y) ∈

InvFPF(π).

Proof. Let A = {(a, b) ∈ P× P | (a, b) is a label of some crossing X ∈ D }. We want

to show A = InvFPF(π). First assume (x, y) ∈ A, i.e. there is a crossing X ∈ D with
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bottom label (x, y). Then the other label of X is (π(y), π(x)). By Corollary 2.2.10,

x < y and π(y) < π(x). Hence (x, y) ∈ InvFPF(π). Therefore A ⊂ InvFPF(π).

By Corollary 2.3.3, we have

|A| = 2 · |D| = ˆ̀
FPF(π) = |InvFPF(π)|,

which implies A = InvFPF(π).

Corollary 2.3.5. Let π ∈ FPFP. Let D be a reduced involution word diagram for π.

Let x, y, z ∈ P with x < y < z and {x, y, z} ∩ {π(x), π(y), π(z)} = ∅. If D does not

have any crossings with label (x, y) or (y, z), then D does not have a crossing with

label (x, z).

Proof. Assume D does not have any crossings with label (x, y) or (y, z). By

Corollary 2.3.4, (x, y), (y, z) /∈ InvFPF(π). Hence π(y) > π(x) and π(z) > π(y).

This means that π(z) > π(x), which implies (x, z) /∈ InvFPF(π). By Corollary 2.3.4,

D does not have a crossing with label (x, z).

Proposition 2.3.6. (Exchange Property) Let π ∈ FPFP. Let q = ˆ̀
FPF(π). Let

D = {(ρi, κi) | 0 ≤ i < q} be a reduced involution word diagram for π. Let ρq, κq ∈ P

with κq > κq−1. Suppose that the diagram E = D ∪ {(ρq, κq)} is not reduced. Let

σ = π(E). Then one of the following is true:

(i) σ = π(D \ {(ρi, κi)}) for some i ∈ {0, . . . , q − 1}.

(ii) σ = π

Proof. The crossing (ρq, κq) crosses wires Wκq and Wκq+1 in E. If π(κq) = κq + 1,

then σ = tκq ,κq+1πtκq ,κq+1 = π. Note that π(κq) = κq + 1 implies that (ρq, κq) is a

crossing of a single wire with itself.
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Now assume π(κq) 6= κq + 1. By Lemma 2.3.1, since E is not reduced, there

is a pair of wires, Wa and Wb, so that |XE(a, b)| does not coincide with the relative

orders of a, π(a), b and π(b) in accordance with Lemma 2.2.7. For every pair of

wires besides Wκq and Wκq+1, both |XD(a, b)| and the relative order of a, π(a), b

and π(b) stay the same. Hence the pair Wκq and Wκq+1 is the only pair which does

not agree with Lemma 2.2.7.

The new crossing has bottom label (κq, κq + 1). Therefore

σ(κq) = (sκqπsκq)(κq) = π(κq + 1), and (2.3.7)

σ(κq + 1) = (sκqπsκq)(κq + 1) = π(κq). (2.3.8)

We now look at the 3 cases for the number of crossings of Wκq and Wκq+1 in

D. Let a = min{κq, π(κq), κq + 1, π(κq + 1)}, and let b = min
(
{κq, π(κq), κq +

1, π(κq + 1)} \ {a, π(a)}
)
. Notice that a < π(a), b < π(b), and a < b, just as in

Lemma 2.2.7.

– Assume |XD(κq, κq +1)| = 0. Then a < π(a) < b < π(b) and |XE(κq, κq +1)| =

1. Since π(κq) 6= κq + 1, we know that π(a) = κq and b = κq + 1. By (2.3.7)

and (2.3.8), we get σ(κq +1) < κq < κq +1 < σ(κq). Since |XE(κq, κq +1)| = 1,

this agrees with Lemma 2.2.7. By Lemma 2.3.1, E is reduced. In other words,

this case is not possible.

– Now assume |XD(κq, κq + 1)| = 1. Then a < b < π(a) < π(b) and |XE(κq, κq +

1)| = 2.

If a = κq, then b = κq + 1 and by (2.3.7) and (2.3.8), we get κq < κq + 1 <

σ(κq + 1) < σ(κq). This agrees with Lemma 2.2.7.
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If instead, π(a) = κq, then π(b) = κq + 1. By (2.3.7) and (2.3.8), we get

σ(κq + 1) < σ(κq) < κq < κq + 1. This also agrees with Lemma 2.2.7.

Now if b = κq, then π(a) = κq + 1. Let X ∈ D be the unique crossing of Wκq

and Wκq+1 in D. Let F = D \ {X} and ν = π(F ). By Lemma 2.2.8, (a, π(b))

is a label of X in D. Thus, by Lemma 2.2.4,

ν = ta,π(b)πta,π(b) = tb,π(a)πtb,π(a) = sκqπsκq = σ.

This is means that in this case, statement (i) holds.

– Finally, assume |XD(κq, κq + 1)| = 2. Then a < b < π(b) < π(a) and

|XE(κq, κq + 1)| = 3. Since π(κq) 6= κq + 1, we know that b 6= κq. Let

Y ∈ D be the bottom-most crossing of Wκq and Wκq+1 in D. Let F = D \{Y }

and ν = π(F ). Then by Lemma 2.2.9, (a, b) is a label of Y in D. Thus, by

Lemma 2.2.4,

ν = ta,bπta,b = tπ(b),π(a)πtπ(b),π(a).

If a = κq, then b = κq + 1, which means

σ = sκqπsκq = ta,bπta,b = ν.

If π(b) = κq, then π(a) = κq + 1, which means

σ = sκqπsκq = tπ(b),π(a)πtπ(b),π(a) = ν.

Thus in both of these cases, statement (i) holds.
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Corollary 2.3.7. (Deletion Property) Let π ∈ FPFP. Let D = {(ρi, κi) | 0 ≤ i < q}

be an involution word diagram for π which is not reduced. Then at least one of the

following is true:

(i) There exist distinct crossings X, Y ∈ D so that deleting both crossings yields a

shorter diagram for π, i.e. π(D \ {X, Y }) = π.

(ii) There is a single crossing X ∈ D so that deleting X yields a shorter diagram

for π, i.e. D \ {X} = π.

Proof. Let q be the number of rows in D. For i ∈ {0, 1, . . . , q}, let Di = {(ρj, κj) |

0 < j ≤ i } be the ith truncated diagram. Since D0 is reduced and Dq = D is not

reduced, there must exist a smallest index j ∈ {1, . . . , q} so that Dj is not reduced.

By Proposition 2.3.6, either (i) πj = π(Dj \ {(ρt, κt)}) for some t < j, or (ii)

πj = πj−1. In case (i), deleting both X := (ρj, κj) and Y := (ρt, κt) from Dj yields

a shorter diagram for πj. In case (ii), deleting just X := (ρj, κj) from Dj yields a

shorter diagram for πj.

Note that case (ii), just as in the proof of Proposition 2.3.6, only comes about

by having a single wire cross itself.

In either of these cases, we get a shorter diagram for π by deleting the same

crossing(s) from D.

2.4. Defects

Definition 2.4.1. An FPF involution word diagram is reduced if the word

corresponding to it is reduced.
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Definition 2.4.2. An FPF involution word diagram may have “defects.” A defect

is a pair of crossings in the FPF involution word diagram. Given one crossing from

this pair, we refer to the other crossing as the defect counterpart.

There are 3 types of defects in FPF involution diagrams:

– Type 1: the “normal” type.

This is where two different

wires cross each other twice

without either wire reaching the

top between these two crossings.

– Type 2.

This is where two different

wires cross each other twice

with both wires reaching the top

between these two crossings.

– Type 3.

This is where a single wire

crosses itself. In this case,

the defect counterpart of the

crossing is itself.

Remark. It is possible for a crossing to be in more than one defect pair. We

will not be concerned with classifying these situations as they never arise in the
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algorithms presented. Any time a pair of crossings is said to be of a particular type,

we also assume neither of the crossings is involved in another type of defect.

Claim 2.4.3. An FPF involution word diagram is reduced if and only if it has none

of these defects.

Proof. Let π ∈ FPFP. Let D be an involution word diagram for π which has none of

the defects described in Definition 2.4.2. Suppose that D is not reduced.

Corollary 2.3.7 tells us that there are two distinct wires, Wa and Wb, and a

pair of crossings X and Y of those wires so that σ := π(D \ {X, Y }) = π. Note that

we may eliminate conclusion (ii) from Corollary 2.3.7 as a possibility because this

only comes about by having a type 3 defect.

Without loss of generality, assume Y is lower in the diagram (larger row

number) than X. Suppose now that (x, y) is the top label of Y in D. Since

Wa 6= Wb, we must have π(x) 6= y. When following the two wires coming out of

the top of Y in D, both must eventually reach the crossing X. Note that X cannot

be reached by following either of the wires coming from the bottom of Y because X

is in a higher row than Y .

Since D does not have any defects of type 1 or 2, of the two wires coming

out of the top of Y exactly one must reach the top of the diagram. Without loss of

generality, Wy is the one that reaches the top between X and Y . This means that

continuing to follow Wy, over the top of the diagram and down through X, will

eventually lead to wire position y at the bottom of D. In other words, y is part of a

bottom label of X. Since Wx does not reach the top of the diagram between X and

Y , following Wx out of the top of Y will lead up through X and continue up to the

top of the diagram before descending to wire position x. In other words, x is part

of the top label of X, which implies π(x) is part of the bottom label of X.
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We now know that the bottom label of X is either (π(x), y) or (y, π(x)).

Hence σ = tπ(x),ytx,yπtx,ytπ(x),y. We can see that σ and π are not equal because

σ(x) = y 6= π(x). This contradicts the conclusion we drew from Corollary 2.3.7.

Therefore D must actually be reduced.

It is left to the reader to verify the reverse implication, that each of the

defects indeed provide one or more crossings which may be deleted to obtain a

shorter diagram for the same permutation.

Definition 2.4.4. Let D be an involution word diagram. Let (ρ, κ) ∈ D. We say

D is nearly reduced at κ (or at the crossing (ρ, κ)) if the diagram D \ {(ρ, κ)} is

reduced.

Lemma 2.4.5. Let D be an involution word diagram and X ∈ D. If D is not

reduced, but is nearly reduced at X, then X has a defect counterpart.

Proof. Let (ρ, κ) = X. Let (a, b) be the bottom label of X ∈ D. Let E = D \ {X}.

We will be assuming that E is reduced and D is not reduced. Let σ = π(E) and

π = π(D) = ta,bσta,b.

For convenience, we will segment wires Wa and Wb into several parts. These

parts are dashed and labeled in the following figure. None of them involve the

crossing X nor the arcs at the top of D.

A

UA

DA

B

UB

DB

π(b) a b π(a)
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Segments A and B are the parts of wires Wa and Wb, respectively, which

come out of the bottom of X and reach wire positions a and b, respectively,

at the bottom of D. Segments UA and UB are the parts of wires Wa and Wb,

respectively, which come out of the top of X and end just before arcing at the top

of D. Segments DA and DB are the parts of wires Wa and Wb, respectively, which

come down from after arcing at the top of D to reach wire positions π(b) and π(a),

respectively.

Our goal is to show that X has a defect counterpart in D. Suppose that X

does not have a defect counterpart in D.

If segments A and B cross, then that crossing is a defect counterpart for X.

Thus we may assume that A and B do not cross. Hence A is left of B in each row,

including at the bottom of D. This means that a < b.

Similarly, we know that UA does not cross UB. Thus the top of UB is left of

the top of UA. Since the arc (applying the function θ) does not cross any wires, we

must have the top of DB to the left of the top of DA. If DA crosses DB anywhere,

then that crossing is a (type 2) defect counterpart of X. Thus DB is left of DB in

all rows, including at the bottom of the diagram. Hence π(b) < π(a).

We now consider whether DB is to the left or right of X in row ρ.

First, assume that DB is to the left of X. Both DB and A are both part of

wire Wa in E. Since E is reduced, we know that DB cannot cross A. This means

that if DB is to the left of X in row ρ, then π(b) < a.

Now assume DB is to the right of X. Then DB is to the right of UA at the

bottom of row ρ− 1, which implies DB and UA cross. If DB crosses both UA and B,

then these two crossings would be a type 1 defect pair in E. Thus DB does not also

cross B. This means that if DB is to the right of X in row ρ, then b < π(b).
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Combining these two inequalities (along with a < b), we can say that π(b) is

not between a and b. A similar argument using DA shows that π(a) is not between

a and b.

Since E is reduced, ˆ̀
FPF(σ) = |E|. Since D is not reduced, the deletion

property tells us that ˆ̀
FPF(π) < |D| = |E| + 1 = ˆ̀

FPF(σ) + 1. In other words,

ˆ̀
FPF(π) ≤ ˆ̀

FPF(σ).

Below, we consider cases for the relative order of a, b, π(a), and π(b). In each

case, we will arrive at the contradiction by counting FPF-inversions and noting

that π has at least one more than σ. This means that ˆ̀
FPF(π) > ˆ̀

FPF(σ), which

contradicts the inequality in the previous paragraph.

For each of these cases, we will count FPF-inversions among a, b, π(a), and

π(b) for both π and σ. We also have to consider FPF-inversions involving a third

cycle (c, π(c)) = (c, σ(c)) ∈ Cyc(π) ∩ Cyc(σ) for an arbitrary c /∈ {a, b, π(a), π(b)}.

We will not need to consider pairs of cycles involving neither a nor b as it is not

possible for conjugation by ta,b to change their relative order.

Note that (x, y) is an FPF-inversion of π if and only if (π(y), π(x)) is. To

reduce the length of our lists, we will only include one from each of these FPF-

inversion pairs. For convenience, we will only include FPF-inversions (x, y) for

which x < π(x) and x < π(y). In other words, we only include the inversion (x, y)

where x = min{x, y, π(x), π(y)}. Denote the set of (half of the) FPF-inversions of π

involving only x, y, π(x), or π(y) by Ix,y(π).

We have a < b, π(b) < π(a) and a and b are adjacent. This leaves us with 3

possible relative orders. Let c ∈ P \ {a, b, π(a), π(b)} so that c < π(c).

(i) Assume π(b) < a < b < π(a). Thus σ(a) < a < b < σ(b).

Then Ia,b(π) = {(π(b), π(a))} and Ia,b(σ) = ∅. Hence |Ia,b(π)| = |Ia,b(σ)|+ 1.
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We now look at the 15 cases for the relative or of a, b, c, π(a), π(b), and π(c).

In each case, we want to show |Ia,c(π)|+ |Ib,c(π)| ≥ |Ia,c(σ)|+ |Ib,c(σ)|.

∗ If c < π(c) < π(b) < a < b < π(a), then c < σ(c) < σ(a) < a < b < σ(b).

So

|Ia,c(π)| = |∅| = 0,

|Ib,c(π)| = |∅| = 0,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |∅| = 0.

∗ If c < π(b) < π(c) < a < b < π(a), then c < σ(a) < σ(c) < a < b < σ(b).

So

|Ia,c(π)| = |∅| = 0,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |{(c, a)}| = 1, and

|Ib,c(σ)| = |∅| = 0.

∗ If c < π(b) < a < π(c) < b < π(a), then c < σ(a) < a < σ(c) < b < σ(b).

So

|Ia,c(π)| = |{(c, π(a))}| = 1,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |{(c, a), (c, σ(a))}| = 2, and

|Ib,c(σ)| = |∅| = 0.

∗ If c < π(b) < a < b < π(c) < π(a), then c < σ(a) < a < b < σ(c) < σ(b).

So

|Ia,c(π)| = |{(c, π(a))}| = 1,
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|Ib,c(π)| = |{(c, b), (c, π(b))}| = 2,

|Ia,c(σ)| = |{(c, a), (c, σ(a))}| = 2, and

|Ib,c(σ)| = |{(c, σ(b))}| = 1.

∗ If c < π(b) < a < b < π(a) < π(c), then c < σ(a) < a < b < σ(b) < σ(c).

So

|Ia,c(π)| = |{(c, π(a)), (c, a)}| = 2,

|Ib,c(π)| = |{(c, b), (c, π(b))}| = 2,

|Ia,c(σ)| = |{(c, a), (c, σ(a))}| = 2, and

|Ib,c(σ)| = |{(c, σ(b)), (c, b)}| = 2.

∗ If π(b) < c < π(c) < a < b < π(a), then σ(a) < c < σ(c) < a < b < σ(b).

So

|Ia,c(π)| = |∅| = 0,

|Ib,c(π)| = |{(c, b), (π(b), c)}| = 2,

|Ia,c(σ)| = |{(c, a), (σ(a), c)}| = 2, and

|Ib,c(σ)| = |∅| = 0.

∗ If π(b) < c < a < π(c) < b < π(a), then σ(a) < c < a < σ(c) < b < σ(b).

So

|Ia,c(π)| = |{(c, π(a))}| = 1,

|Ib,c(π)| = |{(c, b), (π(b), c)}| = 2,

|Ia,c(σ)| = |{(c, a)}| = 1, and

|Ib,c(σ)| = |∅| = 0.

∗ If π(b) < c < a < b < π(c) < π(a), then σ(a) < c < a < b < σ(c) < σ(b).

So
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|Ia,c(π)| = |{(c, π(a))}| = 1,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |{(c, a)}| = 1, and

|Ib,c(σ)| = |{(c, σ(b))}| = 1.

∗ If π(b) < c < a < b < π(a) < π(c), then σ(a) < c < a < b < σ(b) < σ(c).

So

|Ia,c(π)| = |{(c, π(a)), (c, a)}| = 2,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |{(c, a)}| = 1, and

|Ib,c(σ)| = |{(c, σ(b)), (c, b)}| = 2.

∗ If π(b) < a < c < π(c) < b < π(a), then σ(a) < a < c < σ(c) < b < σ(b).

So

|Ia,c(π)| = |{(a, c), (a, π(c))}| = 2,

|Ib,c(π)| = |{(c, b), (π(b), c)}| = 2,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |∅| = 0.

∗ If π(b) < a < c < b < π(c) < π(a), then σ(a) < a < c < b < σ(c) < σ(b).

So

|Ia,c(π)| = |{(a, c), (a, π(c))}| = 1,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |{(c, σ(b))}| = 1.

∗ If π(b) < a < c < b < π(a) < π(c), then σ(a) < a < c < b < σ(b) < σ(c).

So
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|Ia,c(π)| = |{(a, π(c))}| = 1,

|Ib,c(π)| = |{(c, b)}| = 1,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |{(c, σ(b)), (c, b)}| = 2.

∗ If π(b) < a < b < c < π(c) < π(a), then σ(a) < a < b < c < σ(c) < σ(b).

So

|Ia,c(π)| = |{(a, c), (a, π(c))}| = 2,

|Ib,c(π)| = |∅| = 0,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |{(b, σ(c)), (b, c)}| = 2.

∗ If π(b) < a < b < c < π(a) < π(c), then σ(a) < a < b < c < σ(b) < σ(c).

So

|Ia,c(π)| = |{(a, π(c))}| = 1,

|Ib,c(π)| = |∅| = 0,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |{(b, σ(c))}| = 1.

∗ If π(b) < a < b < π(a) < c < π(c), then σ(a) < a < b < σ(b) < c < σ(c).

So

|Ia,c(π)| = |∅| = 0,

|Ib,c(π)| = |∅| = 0,

|Ia,c(σ)| = |∅| = 0, and

|Ib,c(σ)| = |∅| = 0.

(ii) Assume a < b < π(b) < π(a). Thus a < b < σ(a) < σ(b). . . .
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(iii) Assume π(b) < π(a) < a < b. Thus σ(a) < σ(b) < a < b. . . .

In the second and third cases, we omit the details as they are extremely

similar to those from the first case.

Lemma 2.4.6. Let D be an involution word diagram and X ∈ D. If D is not

reduced, but is nearly reduced at X, then X has a unique defect counterpart.

Proof. We already know that there is a least one defect counterpart of X by

Lemma 2.4.5.

Let π = π(D). Suppose that both Y and Z are defect counterparts of X in

D. We want to show that Y = Z. Let (a, b) be the bottom label of X. If π(a) = b,

then X is a type 3 defect, which means Y = X = Z.

We may now assume π(a) 6= b, i.e. Wa 6= Wb. Then Y and Z must

also cross wires Wa and Wb. More specifically, Y and Z must have one of the

following 8 bottom labels, which we divide into two categories (as in the proof of

Lemma 2.2.6):

1) (a, b), (b, a), (π(a), π(b)), (π(b), π(a))

2) (a, π(b)), (b, π(a)), (π(a), b), (π(b), a)

Since the bottom label of X is in category 1, the bottom label of Y is as well.

Otherwise, we can check that π(D \ {X, Y }) 6= π, which would mean that Y is not

a defect counterpart of X. We check for one example here, and leave the rest to the

reader. Assume the bottom label of Y is (π(a), b). Then we consider the case where

Y is in a smaller number row than X. Since X is lower down in the diagram, its

bottom label is preserved after deleting Y . Thus π(D\{X, Y }) = ta,btπ(a),bπtπ(a),bta,b.
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Now

(ta,btπ(a),bπtπ(a),bta,b)(a) = (ta,btπ(a),bπtπ(a),b)(b)

= (ta,btπ(a),bπ)(π(a))

= (ta,btπ(a),b)(a)

= ta,b(a)

= b

6= π(a)

Therefore π(D \ {X, Y }) 6= π. Similarly, if Y is in a larger number row than X,

then the bottom label of X is preserved after deleting Y , so π(D \ {X, Y }) =

tπ(a),bta,bπta,btπ(a),b. Since (tπ(a),bta,bπta,btπ(a),b)(a) = π(b), we know π(D \ {X, Y }) 6=

π.

Similarly, we may conclude that the bottom label of Z is also in category 1.

Suppose that Y 6= Z. We will now show that D is not nearly reduced at X.

Let E = D \ {X}. Then π(E) = ta,bπta,b = tπ(a),π(b)πtπ(a),π(b). Since ta,b = tb,a and

tπ(a),π(b) = tπ(b),π(a), it suffices to consider only labels (a, b), and (π(a), π(b)).

We will now delete all 3 of the crossings from D. Let F = D \ {X, Y, Z}.

Since the resulting diagram, F , is the same regardless of the order in which we

delete X, Y , and Z, we will calculate π(F ) by deleting crossings from the top down

(the crossing with the smallest numbered row to the largest numbered row). This

way, it is clear that after deleting each crossing, the bottom label of the remaining

crossings is unaffected. This means that π(F ) = t3t2t1πt1t2t3 where for each i, ti ∈

{ta,b , tπ(a),π(b)}. But ta,b and tπ(a),π(b) commute and each have order 2, so we may

cancel to arrive at π(F ) = tπt for some t ∈ {ta,b , tπ(a),π(b)}. Hence π(F ) = π(E).
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Since π(F ) = π(E) and |F | < |E|, E is not reduced, which means that D is

not nearly reduced at X. This means that if we assume that D is nearly reduced at

X, we may conclude that Y = Z, as desired.

Lemma 2.4.7. Let D be an FPF involution word diagram with defect pair X, Y ∈

D. If D is nearly reduced at X, then D is also nearly reduced at Y .

Proof. Assume D is nearly reduced at X. Just as in the proof of Lemma 2.4.6, we

know that the bottom label of Y is in the same label category as X. Therefore

π(D \ {X}) = π(D \ {Y }).

We have ˆ̀
FPF(π(D \ {Y })) = ˆ̀

FPF(π(D \ {X})) = |D \ {X}| = |D \ {Y }|.

Therefore D \ {Y } is reduced, which implies D is nearly reduced at Y .

Lemma 2.4.8. Let D be an involution word diagram. Let X ∈ D. Let (a, b) be the

top label and (c, d) be the bottom label of X in D. Let E = D \ {X}. The E-labels,

topE(X) and botE(X), of X are described by:

– If X is a type 3 defect in D, then topE(X) = (b, a) = (d, c) and botE(X) =

(a, b) = (c, d).

– If X is not a type 3 defect in D, then topE(X) = (a, b) and botE(X) = (c, d).

Proof. If we trace the wires coming out of the bottom left and bottom right of

position X, the wires take the exact same path in both D and E because none of

the crossings below X have been affected. Therefore the bottom label of X is the

same in D as it is in E.

Let π = π(D) and σ = π(E). Since (c, d) is a label of X in D, σ = tc,dπtc,d.

In both D and in E, the top label of X is determined by the bottom label. Since X
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is a crossing in D, and (c, d) is the bottom label, the top label must be (π(d), π(c)).

Hence a = π(d) and b = π(c).

Since X is not a crossing in E, and (c, d) is the bottom label, the top label

must be (σ(c), σ(d)).

If X is a type 3 defect of D, then c = π(d) and d = π(c) = b, which means

σ(c) = (tc,dπtc,d)(c) = tc,d(π(d)) = tc,d(c) = d = b. Similarly, if X is a type 3 defect

of D, σ(d) = a. Hence the top label of X in E is (b, a) = (d, c).

Now in the case where X is not a type 3 defect of D, we have c 6= π(d), which

means σ(c) = (tc,dπtc,d)(c) = tc,d(π(d)) = π(d) = a and σ(d) = (tc,dπtc,d)(d) =

tc,d(π(c)) = π(c) = b. Hence the top label of X in E is (a, b).

Lemma 2.4.9. Let E be an involution word diagram which has no crossings in row

ρ ∈ P. Let κ ∈ P and X = (ρ, κ). Let (a, b) be the top label and (c, d) be the bottom

label of X in E. Let D = E ∪ {X}. The D-labels, topD(X) and botD(X), of X are

described by:

– If X is a type 3 defect in D, then topD(X) = (b, a) = (c, d) = botD(X).

– If X is not a type 3 defect in D, then topD(X) = (a, b) and botD(X) = (c, d).

Proof. Just as in the proof of Lemma 2.4.8, the bottom label of X in D must be

(c, d). Let (x, y) be the top label of X in D. Since E = D \ {X}, we may apply

Lemma 2.4.8 to say:

– If X is a type 3 defect in D, then the top label of X in E is (y, x) = (d, c).

Thus (y, x) = (a, b), which means the top label of X in D is (b, a) = (c, d).

– If X is not a type 3 defect in D, then the top label of X in E is (x, y). Thus

(x, y) = (a, b), which means the top label of X in D is (a, b).
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Lemma 2.4.10. Let D be an involution word diagram which is nearly reduced at

X ∈ D. Let Y ∈ D be a defect counterpart of X. Let (a, b) be the top (resp.

bottom) label of X. The labels of Y are then determined by the defect type as

follows:

– If the defect is of type 1, then (b, a) is the top (resp. bottom) label of Y.

– If the defect is of type 2, then (b, a) is the bottom (resp. top) label of Y.

– If the defect is of type 3, then (a, b) is both the bottom and top label of Y.

Proof. Since D is nearly reduced at X, by Lemma 2.4.6, Y is the only defect

counterpart of X. By Lemma 2.4.7, D is nearly reduced at Y . For convenience, we

will refer to the label (x, y) as the “swap” of label (y, x). Note that the top labels

of X and Y are swaps of each other if and only if the bottom labels are swaps of

each other.

We start with the case where X and Y are a type 1 defect pair. Let T ∈

{X, Y } be the crossing in the smallest row (furthest up in the diagram). Let B ∈

{X, Y } \ {T} be the other crossing. Let (x, y) be the bottom label of T . Tracing

wires Wx and Wy down from the bottom of T , the wires cross exactly once at B,

otherwise, another crossing would be a second defect counterpart to X. Hence wire

Wx is on the left side of wire Wy at the top of B. At the bottom of B, Wx is now

right of Wy. This means that the bottom label of B is (y, x), which is the swap of

the bottom label of T , as desired.

Now we look at the case where X and Y are a type 2 defect pair. Let (x, y)

be the bottom label of X. Then wire Wx is to the right of Wy at the top of X. If

by tracing wires Wx and Wy to the top of the diagram the wires cross (without
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either one arcing over first), that cross would be a type 1 defect counterpart of X.

Therefore Wx is to the right of Wy at the top of the diagram (before arcing). Since

the arcs do not cross any wires and Wx 6= Wy, Wx is still to the right of Wy after

arcing over. If we continue to trace the wires down after arcing over, Wx cannot

cross Wy before reaching Y , else that crossing would be a second type 2 counterpart

of X. Therefore Wx is to the right of Wy at the top of Y . Thus (y, x) is the top

label of Y . So, indeed, the top label of Y is the swap of the bottom label of X.

Moreover, this means the bottom label of Y is the swap of the top label of X, as

desired.

Finally, we assume X = Y is a type 3 defect. Let (x, y) be the bottom label of

X. Then (π(D)(y), π(D)(x)) = (x, y) is also the top label of X = Y .

Lemma 2.4.11. Let π ∈ FPFP. Let a, b ∈ P with a < π(a) = b. Let D be a

involution word diagram for π. Let ρ be a row of D. For each i ∈ P, let (xi, yi) be

the top label of (ρ, i). Then the following statements hold:

(i) For all i, yi = xi+1.

(ii) For any k ∈ P, there exists a unique i so that xi = k.

(iii) If D is reduced and xi = a and xj = b, then i > j.

Proof. Statement (i) follows from the definition of top label as for each i, the

quantities yi and xi+1 are obtained by tracing the exact same wire in the same

direction.

We start by factoring π = ληθη−1λ−1. Similar to the exposition before

Lemma 2.2.4, the central ηθη−1 corresponds to the portion of D strictly above row

ρ. Then for k ∈ P, let ik = ηθη−1λ−1(k). Then xik = k. Also, for k, k′ ∈ P, if
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ik = ik′ , then ηθη−1λ−1(k) = ηθη−1λ−1(k′) implies k = k′ because η, θ and λ are

invertible. Alternatively, we can trace the wire in wire position k (at the bottom of

the diagram) up and over the arc and back down to the top of row ρ. The resulting

wire position is ik. Thus statement (ii) holds.

Now assume D is reduced and let i, j ∈ P so that xi = a and xj = b. Then

if we trace the wire in wire position xi (at the top of row ρ) down instead of up, we

will reach wire position b = π(a) at the bottom of the diagram. Similarly, tracing

the wire in position xj down will reach wire position b > a. Since wire Wa = Wb

does not cross itself, between the top of row ρ and the bottom of the diagram, we

must have j > i. Hence statement (iii) holds.

2.5. The FPF Involution Bumping Algorithm

The general bumping algorithm defined in this section is inspired by Little’s

general bumping algorithm (see Algorithm 2 in [4]). The suggestion to try such

an algorithm on involution word diagrams was given to the author by Zachary

Hamaker. See also [1] for a similar bumping algorithm which does not use

involution word diagrams.

Definition 2.5.1. Given an FPF involution word diagram D, and a particular

crossing X = (ρ, κ) ∈ D with κ > 1, we can perform a bump at X by doing the

following:

1. Delete the crossing X.

2. Insert a new crossing in the same row and 1 column left of where the crossing

X was.
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In other words, the new diagram obtained by bumping the crossing is

B
(
D, (ρ, κ)

)
= (D \ {(ρ, κ)}) ∪ {(ρ, κ− 1)}.

Definition 2.5.2. Given an FPF involution word diagram D, a new involution

word diagram p
(
D
)

is obtained by prepending a wire which does not cross any other

wires onto the left side of D, then relabel so that we maintain the underlying set, P.

This is equivalent to shifting all of the crossings of D to the right by two. In other

words,

p
(
D
)

= {(ρ, κ+ 2) | (ρ, κ) ∈ D}.

Lemma 2.5.3. Let D be an involution word diagram. Let (ρ, κ) ∈ D with κ > 1.

Then

p
(
B(D, (ρ, κ)

))
= B

(
p(D), (ρ, κ+ 2)

)
.

Proof. We have

p
(
B(D, (ρ, κ)

))
= p
((
D \ {(ρ, κ)}

)
∪ {ρ, κ− 1}

)
=
{

(i, j + 2)
∣∣∣ (i, j) ∈

(
D \ {(ρ, κ)}

)
∪ {ρ, κ− 1}

}
=
({

(i, j + 2)
∣∣ (i, j) ∈ D

}
\ {(ρ, κ+ 2)}

)
∪ {ρ, κ+ 1}

= B
(
p(D), (ρ, κ+ 2)

)
.

Lemma 2.5.4. Let π ∈ FPFP and D be an involution word diagram for π which is

nearly reduced at (ρ, κ) ∈ D. If (ρ, κ) is a type 3 defect, then B(D, (ρ, κ)) does not

have a type 3 defect.
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Proof. Let E = D \ {X}. Let (a, π(a)) be the top label of (ρ, κ) in D. Then

by Lemma 2.4.8, (π(a), a) is the top label of (ρ, κ) in E. Then wire Wa is in wire

positions κ and κ+1 at the top of row ρ in E, which means that wire position κ−1

is occupied by a different wire, Wb 6= Wa. Thus the new crossing at (ρ, κ−1) crosses

wires Wa and Wb and is not a type 3 defect.

Lemma 2.5.5. Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). Let c ∈ P with c > b. Let π =

tb,cνtb,c. Let D be a reduced involution word diagram for π. If ˆ̀
FPF(π) = ˆ̀

FPF(ν) +

1, then D has a crossing with label (b, c). Moreover, D is nearly reduced at this

crossing.

Proof. Let d = ν(c). Notice π(a) = (tb,cνtb,c)(a) = tb,c(ν(a)) = tb,c(b) = c. Similarly,

π(b) = d. We know a < b < c. This leaves 4 possibilities for the relative value of d.

Case 1 (d < a < b < c): Let E be a reduced involution word diagram for

ν. By Corollary 2.2.9 (ii), E has a crossing with label (b, c). Deleting this crossing

yields an involution word diagram for tb,cνtb,c = π which has fewer crossings than

E. Therefore ˆ̀
FPF(ν) > ˆ̀

FPF(π), which means this case cannot occur.

Case 2 (a < d < b < c): A crossing with label (b, c) is guaranteed by

Corollary 2.2.9 (ii).

Case 3 (a < b < d < c): By Corollary 2.2.9 (ii), wires Wa and Wb cross twice

in D. Let X ∈ D be the crossing with label (b, c) and Y be the other crossing.

Deleting X yields an involution word diagram, D \ {X}, for tb,cπtb,c = ν. Since X

is in a higher row than Y in D, the bottom label of Y is the same in D \ {X} as it

is in D. According to Corollary 2.2.9 (ii), this bottom label of Y is either (a, b) or

(d, c). Since ν(a) = b and ν(d) = c, Y must be a type 3 defect of D \ {X}. Hence
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D \ {X} is not reduced. Therefore ˆ̀
FPF(ν) < ˆ̀

FPF(π) − 1, which means this case

cannot occur.

Case 4 (a < b < c < d): A crossing with label (b, c) is guaranteed by

Corollary 2.2.9 (i).

In cases 2 and 4, D must be nearly reduced at the crossing with label (b, c)

because deleting this crossing yields an involution word diagram, F , for tb,cπtb,c = ν

which has one fewer crossing than D. Since ˆ̀
FPF(ν) = ˆ̀

FPF(π) − 1, F has exactly

ˆ̀
FPF(ν) crossings. Therfore F is reduced.

Definition 2.5.6. Let D be an involution word diagram corresponding to w =

w1w2 · · ·wk. Fix an even number m ≥ size(π(D)). Define the mth complement of

a grid position (ρ, κ) by (ρ, κ)
c

= (ρ,m − κ). Also, define the mth complement of

D by D
c

= {(ρ, κ)c | (ρ, κ) ∈ D}. Then D
c

is an involution word diagram for

wc = (m − w1)(m − w2) · · · (m − wk). Finally, define the mth complement of a pair(
D, (ρ, κ)

)
by
(
D, (ρ, κ)

)c
=
(
D

c
, (ρ, κ)

c)
.

Note that the m here is not needed in the notation as each time we use it, the

value of m will either be specified ahead of time or taken to be size(π(D)) by default.

Remark. Taking a complement amounts to flipping the part of the involution word

diagram that we care about across a vertical line. Since each defect type is preserved

under this flip, the property of being reduced is also preserved. Since labels of

crossings are determined by tracing wires, labels of corresponding crossings behave

as expected: If X has label (a, b) in D, then X
c

has label (size(π(D))−b, size(π(D))−

a) in D
c
.
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Corollary 2.5.7. Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). Let c ∈ P with c < a.

Let π = tc,aνtc,a. Let D be a reduced involution word diagram for π. If ˆ̀
FPF(π) =

ˆ̀
FPF(ν) + 1, then D has a crossing with label (c, a). Moreover, D is nearly reduced

at this crossing.

Proof. Let m = size(π(D)). The diagram D
c

is a reduced involution word diagram

for some permutation νc. Since (a, b) ∈ Cyc(ν), we also have (m − b,m − a) ∈

Cyc(νc). Then πc = (tc,aνtc,a)
c

= tm−c,m−aν
ctm−c,m−a and ˆ̀

FPF(πc) = ˆ̀
FPF(π) =

ˆ̀
FPF(ν) + 1 = ˆ̀

FPF(νc) + 1. By Lemma 2.5.5, D
c

is nearly reduced at some crossing

X ∈ Dc
with label (m − a,m − c). Therefore D is nearly reduced at X

c ∈ D with

label (c, a).

Definition 2.5.8. Let ν ∈ FPFP. Let q ∈ P. Then we define the following:

Ψ+(ν, q) =
{
η ∈ FPFP

∣∣ ˆ̀
FPF(η) = ˆ̀

FPF(ν)+1 and z = tq,j·ν·tq,j for some j > q
}

Ψ̂−0 (ν, q) =
{
η ∈ FPFP

∣∣ ˆ̀
FPF(η) = ˆ̀

FPF(ν)+1 and η = ti,q·ν·ti,q for some i < q
}

Ψ̂−(ν, q) =


Ψ̂−0 (ν, q) if Ψ̂−0 (ν, q) 6= ∅

Ψ̂−0 (21⊗ ν, q + 2) otherwise

.

Definition 2.5.9. The generalized bumping algorithm:

Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). Let π ∈ Ψ̂+(ν, b). Let D be a reduced

FPF involution word diagram for π. The output to this algorithm will be a pair(
E, (ρ, κ)

)
, where E is a reduced involution word diagram and (ρ, κ) ∈ E is a

crossing.

Since π ∈ Ψ̂+(ν, b), there is c > b such that π = tb,cνtb,c and ˆ̀
FPF(π) =

ˆ̀
FPF(ν) + 1. Therefore, D has a crossing with label (b, c) by Lemma 2.5.5.

Set D0 := D. Let (ρ0, κ0) be the crossing with label (b, c).
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If κ0 = 1, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
B
(
p(D0), (ρ0, 3)

)
, (ρ0, 2)

)
Now set D1 := B

(
D0, (ρ0, κ0)

)
.

After having found Di, we do the following:

If Di is reduced, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
Di, (ρi−1, κi−1 − 1)

)
.

Find the defect counterpart (ρi, κi) of the most recently bumped crossing,

(ρi−1, κi−1 − 1).

If κi = 1, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
B
(
p(Di), (ρi, 3)

)
, (ρi, 2)

)
Set Di+1 := B

(
Di, (ρi, κi)

)
.

Remark. The necessary defect counterparts exist and are unique due to

Lemmas 2.4.5 and 2.4.6 and the fact that for each i, Di is nearly reduced at the

relevant location. Deleting the crossing yields a reduced involution word diagram for

ν as seen in the proof of Claim 2.5.15.

Remark. The input to this algorithm is equivalent to being given a reduced

involution word diagram D which is nearly reduced at a given starting crossing,

(ρ0, κ0).

Definition 2.5.10. For convenience, we will use the notation GBA∗
(
D, (ρ0, κ0)

)
to

be just the diagram part of the output (ignoring the final crossing).

Proposition 2.5.11. This algorithm terminates.

Proof. A crossing which starts in column κ can be bumped at most κ − 1 times.

This is because the κth bump of this crossing would correspond to κi = 1, which

ends the algorithm immediately. Since there are finitely many crossings, each only

able to be bumped finitely many times, the algorithm must terminate.

Example 2.5.12. To illustrate the generalized bumping algorithm, we will start

with ν = 4321 ∈ FPFP. Then (2, 3) ∈ Cyc(ν). Also, π = 456123 ∈ Ψ̂+(ν, 3) because
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π = t3,5 ν t3,5. The involution word diagram show in part A of the following figure

is a reduced FPF involution word diagram for π. We proceed by bumping the bold

crossing, which has bottom label (3, 5).

Subsequent bumps are show in the other parts of the figure. In each part, the

crossing to be bumped next has been emboldened. The bold crossings in parts B,

C, D, E, and F are defect counterparts (of the most recently bumped crossing) of

types 3, 1, 2, 3, and 1, respectively. Notice that if we delete the bold crossing in

any part, we get a reduced involution word diagram for ν.

A

→

B

→

C

→

D

→

E

→

F

→

G

Since the bold crossing in part F is in column 1, we prepend a wire to the left

side before bumping one final time. Note that the output diagram shown in part G

is the same as the input diagram from part A.

Definition 2.5.13. For π ∈ FPFP, let R̂(π) be the set of reduced FPF involution

word diagrams for π in which every row has a crossing.

Remark. For any π ∈ FPFP, the set R̂(π) is in one to one correspondence with

reduced involution words for π.
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Proposition 2.5.14. Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). The generalized bumping

algorithm yields a map between these two sets:

⋃
σ∈Ψ̂+(ν,b)

R̂(σ)
GBA∗−−−−→

⋃
σ∈Ψ̂−(ν,a)

R̂(σ).

Proof.

Let π ∈ Ψ̂+(ν, b). Then π = tb,cνtb,c for some c > b. Let D be a reduced involution

word diagram for π. For each i, define Di, ρi, and κi as they are in the algorithm.

The result, E = GBA∗
(
D, (ρ0, κ0)

)
, is an involution word diagram for an involution

σ := π(E) ∈ FPFP. Our goal is to show σ ∈ Ψ̂−(ν, a).

We start by assuming for all i, κi 6= 1. Let n be the number of bumps taking

place in the algorithm. Then E = Dn. Since E is reduced and has the same

number of crosses as D, σ has the desired length: ˆ̀
FPF(σ) = ˆ̀

FPF(π) = ˆ̀
FPF(ν) + 1.

We will delay the proof of the following claim.

Claim 2.5.15. Using the above notation, for each i ∈ {1, . . . , n},

(i) Di−1 \ {(ρi−1, κi−1)} is a reduced involution word diagram for ν, and

(ii) if (ρi−1, κi−1 − 1) is not a type 3 defect of Di, then there exists xi 6= a such

that (ρi−1, κi−1 − 1) has label (xi, a).

Let (ρ, κ) = (ρn−1, κn−1 − 1). We know (ρ, κ) ∈ E = Dn is not a type 3 defect

of E because E is reduced. By Claim 2.5.15 (ii), there exists xn ∈ P such that (ρ, κ)

has label (xn, a) in E. Since E is reduced, we know xn < a by Corollary 2.2.10. By

Claim 2.5.15 (i), E \ {(ρ, κ)} = Dn−1 \ {(ρn−1, κn−1)} is a reduced involution word

diagram for ν. Therefore σ = txn,aνtxn,a. Hence σ ∈ Ψ̂−0 (ν, a) = Ψ̂−(ν, a).
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Now we instead assume that there is an m so that κm = 1. Using m + 1

applications of Lemma 2.5.3, the output of the algorithm, E = B
(
p(Dm), (ρm, 3)

)
and (ρ, κ) = (ρm, 2), is the same as the result of applying the first m + 1 bumps of

the bumping algorithm to p(D) with starting crossing (ρ0, κ0 + 2).

Suppose that E is not reduced. We know that E is nearly reduced at (ρ, κ).

Then Lemma 2.4.5 tells us that (ρ, κ) has a defect counterpart Y in E. We know

(ρ, κ) is the only crossing in column 2 and there are no crossings in column 1. This

is shown in the following figure.

row ρ −→

...

...

· · ·

The first two columns of E

Since (ρ, κ) involves wires W1 and W2 6= W1, we know (ρ, κ) is not a type

3 defect. Thus our defect pair is of type 1 or 2. We know that the non-dashed

segments (from the above figure) are not involved in any crossings except at (ρ, κ).

So Y must only involve the dashed segments. Since the dashed segment coming

out the bottom right of (ρ, κ) does not go above row ρ, we know Y must appear

below row ρ. Therefore, between (ρ, κ) and Y , wire W2 arcs over the top of the

diagram, but wire W1 does not. Hence Y is neither a type 1 defect, nor a type 2

defect. In other words, no such defect counterpart Y exists, which implies E is in

fact reduced.

57



Since E is reduced, we know that GBA applied to p(D) with starting crossing

(ρ0, κ0 + 2) has exactly m + 1 bumps and also outputs the involution word diagram

E. When bumping p(D), the column values are each 2 more than they are in the

original version, which means the smallest “new κi” value is 3 and the result which

uses the assumption κi 6= 1 for all i can be used. Hence σ ∈ Ψ̂−0 (21 ⊗ ν, a + 2). We

are done as soon as we show Ψ̂−0 (21 ⊗ ν, a + 2) = Ψ̂−(ν, a), which is equivalent to

Ψ̂−0 (ν, a) = ∅.

Suppose Ψ̂−0 (ν, a) 6= ∅ and let η ∈ Ψ̂−0 (ν, a). Then ˆ̀
FPF(η) = ˆ̀

FPF(ν) + 1 and

η = ty,aνty,a for some y < a. Applying Claim 2.5.15 (ii), there exists xm 6= a such

that (ρm−1, κm−1−1) has label (xm, a) in Dm. This means the crossing (ρm, 1) ∈ Dm

either has label (xm, a) or (a, xm). Let F = Dm \ {(ρm, 1)}. Then F is a reduced

involution word diagram for ν. By Lemma 2.4.8, (ρm, 1) either has label (xm, a) or

(a, xm) in F .

Suppose (y, a) is the bottom label of (ρm, 1) in F . Then Dm = F ∪{(ρm, 1)} is

an involution word diagram for ty,aνty,a = η. Also, Dm has one more crossing than

F . Since F is reduced and ˆ̀
FPF(η) = ˆ̀

FPF(ν) + 1, Dm must also be reduced. This

implies the algorithm would have stopped one step sooner than it actually does,

which is a contradiction. Therefore (y, a) is not the bottom label of (ρm, 1) in F .

Now instead suppose (x, a) is the bottom label of (ρm, 1) in F for some x 6=

y. By Lemma 2.4.11 (ii), there exist i, d ∈ P so that (ν(y), d) is the top label of

(ρm, i) in F . Because F has no crossings in row ρm, (y, ν(d)) is the bottom label of

(ρm, i). Since x 6= y, we know i 6= 1. By Lemma 2.4.11 (i), since a 6= y, we know

i 6= 2. Hence i > 2. Since y appears as part of a bottom label to the right of a in

row ρm and y < a, wires Wa and Wy must cross at some X ∈ F between row ρm

and the bottom of F . Tracing the wires on the bottom left and bottom right of X
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lead to wire positions y and a, respectively. Therefore X has bottom label (y, a).

However, there cannot be a crossing in F with label (y, a) because deleting this

crossing would yield an involution word diagram for ty,aνty,a = η which has fewer

crossings than F . This contradicts the fact that ˆ̀
FPF(η) = ˆ̀

FPF(ν) + 1. Thus, for

any x ∈ P, (x, a) is not the bottom label of (ρm, 1) in F .

Suppose now that (a, z) is the bottom label of (ρm, 1) in F for some z ∈ P.

Then we are again in the situation where y appears as a bottom label to the right

of a in row ρm, which cannot happen. Thus (a, z) cannot be the bottom label of

(ρm, 1) in F for any z.

By Lemma 2.4.11 (iii), b must appear to the left of a as a top label in row ρm.

Thus (a, xm) cannot be the top label of (ρm, 1). Moreover, if (xm, a) is the top label

of (ρm, 1), then xm = b, which would mean (b, a) is also the bottom label of (ρm, 1).

We have already seen that this cannot happen.

In every case, we have reached a contradiction. Therefore, no such η can exist

and Ψ̂−0 (ν, a) is indeed empty.

Proof. (of Claim 2.5.15) For each i, let πi = π(Di). We proceed by induction on i.

After the deletion step of the first bump, the result, D0 \ {(ρ0, κ0)}, is an involution

word diagram for tb,cπtb,c = tb,c(tb,cνtb,c)tb,c = ν. Now fix i ∈ {1, . . . , n − 1}

such that Di does not have a defect of type 3. Assume statements (i) and (ii) hold

for this value i. Since i < n, Di is not reduced. Since Di \ {(ρi−1, κi−1 − 1)} =

Di−1\{(ρi−1, κi−1)} is a reduced involution word diagram for ν, Di is nearly reduced

at (ρi−1, κi−1 − 1). By Lemmas 2.4.5 and 2.4.6, (ρi−1, κi−1 − 1) has a unique defect

counterpart (ρi, κi) ∈ Di. By Lemma 2.4.10, (ρi, κi) has label (a, xi) in Di. Since

(ρi−1, κi−1 − 1) ∈ Di has label (xi, a), Di \ {(ρi−1, κi−1 − 1)} is an involution

59



word diagram for ν = txi,aπitxi,a, which implies πi = txi,aνtxi,a. Therefore Di \

{(ρi, κi)} is an involution word diagram for txi,aπitxi,a = txi,a(txi,aνtxi,a)txi,a = ν.

Also, Di \ {(ρi, κi)} is reduced since it has the same number of crossings as Di−1 \

{(ρi−1, κi−1)}. There are 2 cases. Case 1: Assume Di+1 does not have a defect of

type 3.

We will now focus on the (up to) 3 wires in row ρi of Di and Di+1 which

are involved in the bump. By Lemmas 2.4.8 and 2.4.9, deletion and insertion at

a position do not change the labels of that position. We have the following figure

depicting the relevant columns of row ρi before, during, and after the bump. In

this figure, and the other figures to follow, labels we are interested in are displayed

above or below the relevant wire positions.

a xi

(before deletion)

xi+1 a xi

(after deletion)

xi+1 a

(after insertion)

Whatever wire ends up as the left side of the label when the new crossing is

inserted becomes xi+1, which means (ρi, κi − 1) has label (xi+1, a) in Di+1. Note

that (xi+1, a) is not necessarily a label of (ρi, κi − 1) in Di (before the deletion).

Lemmas 2.4.8 and 2.4.9 do not guarantee that other labels will not change. What

is important here is that a is the right side of the label (after the insertion). This

must be the case because a is part of the label for both the insertion and deletion.

By the uniqueness part of Lemma 2.4.11 (ii), xi+1 6= a.

We may instead have bottom labels instead of top labels. The same argument

holds.
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a xi

(before deletion)

xi+1 a xi

(after deletion)

xi+1 a

(after insertion)

Case 2: We now assume (ρi, κi − 1) is a type 3 defect of Di+1.

By Lemma 2.5.4, (ρi, κi) is not a type 3 defect of Di. Hence (ρi−1, κi−1 − 1)

is not a type 3 defect of Di either. We will be doing two consecutive bumps to get

past the type 3 defect. Again, using Lemmas 2.4.8 and 2.4.9, if (a, xi) is the top

label of (ρi, κi) in Di, then our wires look like this:

a xi

a xi+1

(before first bump)

a xi+1

a xi+1

(after first bump)

a xi+1xi+2

(after second bump)

Again, we have new values of xi+1 and xi+2 determined by the labels of the

crosses as shown above. The nature of the involvement of the wire Wa is the only

thing of consequence here. Note that the existence of xi+1 is not guaranteed by our

induction assumption, but we also don’t need it to obtain a valid value of xi+2, so it

only serves as a placeholder in the figures for Case 2.

Just as in case 1, we may have to start with bottom labels instead of top

labels.
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a xixi+1

(before first bump)

axi+1

axi+1

(after first bump)

a

a

xi+1

xi+2

(after second bump)

To prove the base of the induction for statement (ii), set i = 0 and x0 = π(b)

and use case 1 or 2 as determined by whether or not D1 has a defect of type 3.

Definition 2.5.16. Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). Let σ ∈ Ψ̂−(ν, a). Let E

be a reduced FPF involution word diagram for σ. By Corollary 2.5.7, there must

be some (ρ, κ) ∈ E so that E \ {(ρ, κ)} is an involution word diagram for ν. Let

m = size(π(E)) + 2. We now use mth complements from Definition 2.5.6. Let

GBA−1
(
E, (ρ, κ)

)
=
(
GBA

(
E

c

, (ρ, κ)
c))c

.

Effectively, we can think of GBA−1 as the map which comes from unbumping

each of the individual bump steps by bumping crossings right instead of left.

When “bumping right,” we never need to prepend because we always have a

wire which does not cross any wires to the right of all of our crossings. In other

words, the prepend is done preemptively via using m = size(π(E)) + 2 instead of

m = size(π(E)).

Therefore, if GBA applied to D starting at (ρ, κ) does not require a prepend

(at the end), then

GBA−1
(
GBA

(
D, (ρ, κ)

))
=
(
D, (ρ, κ)

)
,
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and if it does require a prepend, then

GBA−1
(
GBA

(
D, (ρ, κ)

))
=
(
p(D), (ρ, κ+ 2)

)
.

Proposition 2.5.17. Let ν ∈ FPFP. Let (a, b) ∈ Cyc(ν). The map

⋃
σ∈Ψ̂+(ν,b)

R̂(σ)
GBA∗−−−−→

⋃
σ∈Ψ̂−(ν,a)

R̂(σ).

is bijective.

Proof. We start by showing injectivity. Let π, π′ ∈ Ψ̂+(ν, b). Let D and D′ be

reduced involution word diagrams for π and π′, respectively. Define ρ0 and κ0 as

they are in the algorithm. Similarly, define the starting crossing (ρ′0, κ
′
0) ∈ D′.

Assume the generalized bumping algorithm yields the same involution word

diagram E := GBA∗
(
D, (ρ0, κ0)

)
= GBA∗

(
D, (ρ′0, κ

′
0)
)

for an involution σ ∈ FPFP.

Let (ρ, κ), (ρ′, κ′) ∈ E be the ending crossings for the two bumping algorithm

implementations. Then (ρ, κ) has label (x, a) for some x < a. Also, (ρ′, κ′) has

label (y, a) for some y < a. As in the proof of Proposition 2.5.14, deleting either

of the ending crossings (ρ, κ) or (ρ′, κ′) yields a reduced involution word diagram

for ν. Therefore, ν = tx,aσtx,a = ty,aσty,a. Since E is reduced, the ending crossings

cannot be type 3 defects. Thus, we have x 6= σ(a) and y 6= σ(a). Now,

ν(x) = (tx,aσtx,a)(x) = tx,a(σ(tx,a(x))) = tx,a(σ(a)) = σ(a).

Similarly, ν(y) = (ty,aσty,a)(y) = σ(a). But ν(x) = ν(y) implies x = y. Since there

can only be one crossing with label (x, a) = (y, a), we must have (ρ, κ) = (ρ′, κ′).

There are two cases:
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Case 1: Assume the GBA applied to D does not involve a prepend (at the

last step). Then Ψ̂−0 (ν, a) 6= ∅, which means the GBA applied to D′ also does not

involve a prepend. Thus applying GBA−1 to E starting at (ρ, κ) = (ρ′, κ′) will

output
(
D, (ρ0, κ0)

)
, which tells us that D = D′ (also, π = π′ and (ρ0, κ0) =

(ρ′0, κ
′
0)).

Case 2: Assume the GBA applied to D does involve a prepend (at the last

step). Then Ψ̂−0 (ν, a) = ∅ and Ψ̂−(ν, a) = Ψ̂−0 (21 ⊗ ν, a + 2), which means the

GBA applied to D′ also involves a prepend. Therefore, applying the GBA to p(D)

and p(D′) yield the outputs
(
E, (ρ, κ)

)
and

(
E, (ρ, κ)

)
, respectively, without using

a prepend (at the end of the algorithm). By Case 1, we have p(D) = p(D′), which

implies D = D′.

Hence GBA∗ is injective.

To show surjectivity, we start with any σ ∈ Ψ̂−(ν, a) and any involution word

diagram, E, for σ. By Corollary 2.5.7, there must be some (ρ, κ) ∈ E so that E \

{(ρ, κ)} is an involution word diagram for ν. There are two cases.

Case 1: Assume Ψ̂−(ν, a) = Ψ̂−0 (ν, a). We apply our inverse bumping map

to E to arrive at
(
D, (ρ0, κ0)

)
:= GBA−1

(
E, (ρ, κ)

)
. By an argument similar to

(almost) the entire proof of Proposition 2.5.14, D is an involution word diagram for

some π = tb,cνtb,c ∈ Ψ̂+(ν, b) and (ρ0, κ0) has label (b, c) for some c > b. Hence

GBA∗
(
D, (ρ0, κ0)

)
= E.

Case 2: Assume Ψ̂−(ν, a) = Ψ̂−0 (21⊗ ν, a + 2). Hence Ψ̂−0 (ν, a) = ∅. We apply

our inverse bumping map to E to arrive at
(
D, (ρ0, κ0)

)
:= GBA−1

(
E, (ρ, κ)

)
. Since

E \ {(ρ, κ)} is a reduced involution word diagram for 21 ⊗ ν, Corollary 2.2.9 tells

us that W1 = W2 does not cross any wire in D. Hence we know that E \ {(ρ, κ)}

has no crossings in the first two columns. Thus E has at most one crossings in the
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first two columns. Since E is reduced, we know that the crossing (ρ, κ) is not a

type 3 defect of E, so it cannot be in column 1. If (ρ, κ) is in column 2, since (ρ, κ)

is the first crossing to be bumped “right” (see comments after Definition 2.5.16),

the output D of the inverse bumping map will not have any crossings in the first

two columns. In the case where (ρ, κ) is not in column 2 of E, then E has no

crossings in the first two columns, which means neither does D. Hence we know

that D = p(F ) for some reduced involution word diagram F . We know D is a

reduced involution word diagram for some π = tb+2,c(21⊗ν)tb+2,c ∈ Ψ̂+(21⊗ν, b+ 2)

and (ρ0, κ0) ∈ D has label (b + 2, c) for some c > b + 2. Therefore F is a reduced

involution word diagram for η = tb,c−2νtb,c−2 ∈ Ψ̂+(ν, b), (ρ0, κ0 − 2) ∈ F has

label (b, c − 2), and c − 2 > b. Moreover, since Ψ̂−0 (ν, a) = ∅, applying GBA to

F starting at (ρ0, κ0 − 2) will end in a prepend. Hence GBA∗
(
F, (ρ0, κ0 − 2)

)
=

GBA∗
(
D, (ρ0, κ0)

)
= E.

Thus the map GBA∗ is surjective.

2.6. The Lexicographically Largest Crossing

The specific bumping algorithm defined in this section is inspired by Little’s

algorithm (see Algorithm 1 in [4]). The lemma and proposition in this section

reflect ideas from the same article.

Definition 2.6.1. Fix π ∈ FPFP \ {θ} and a reduced involution word diagram D for

π. The lexicographically largest crossing is the unique crossing in D with label (r, s)

where:

– s = size(π).
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– r is the maximal index so that r < s, π(r) > π(s), and r 6= π(s).

Proof. (r is well defined)

First, we show s is even. Suppose not, i.e. suppose s is odd. We then have

θ(s) = s − (−1)s = s + 1. Since s + 1 > s, we must have π(s + 1) = θ(s + 1) =

s+1−(−1)s+1 = s+1−1 = s. Since π is an involution, this also yields π(s) = s+1.

This contradicts the fact that π(s) 6= θ(s). Therefore s must indeed be even.

Second, we show π(s) 6= s − 1. Since s is even, θ(s) = s − (−1)s = s − 1. We

know from the definition of size(π) that π(s) 6= θ(s).

Third, we show π(s) < s. Suppose not, i.e. suppose π(s) > s. From the

definition of size(π), we have θ(π(s)) = π(π(s)) = s. But θ(s) = s− (−1)s = s− 1 6=

π(s). This contradicts the fact that θ is an involution. Therefore π(s) < s.

Fourth, we show π(s−1) ≤ s. Again, we suppose not, i.e. suppose π(s−1) > s.

We then have θ(π(s− 1)) = π(π(s− 1)) = s− 1. But θ(s− 1) = s− 1− (−1)s−1 =

s 6= s− 1. This contradicts the fact that θ is an involution. Therefore π(s) < s.

Hence π(s) < s− 1 and π(s− 1) < s.

Finally, let A =
{
x ∈ P | x < s, π(x) = s − 1 > π(s), and x 6= π(s)

}
.

We know that π(s − 1) ∈ A because π(s − 1) < s, π(π(s − 1)) = s − 1 > π(s),

and π(s − 1) 6= π(s). Thus A 6= ∅. Because it is bounded above by s, A is finite.

Therefore A has a maximal element and r is well defined.

Proof. (there is a unique crossing with label (r, s) )

We start by showing π(r) < s. Suppose not, i.e. suppose π(r) ≥ s. We know

π(r) 6= s because r 6= π(s). Hence π(r) > s, which means θ(π(r)) = π(π(r)). We

then have

s− 1 ≤ s− (−1)π(r) < π(r)− (−1)π(r) = θ(π(r)) = π(π(r)) = r < s.
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This means that r is an integer strictly between s−1 and s. This is a contradiction.

Therefore π(r) < s.

Let D be any reduced involution word diagram for π. Given the inequalities

r < s, π(s) < s, and π(r) < s, there are three possible orderings for r, π(r), s, and

π(s).

– Case 1 (π(s) < r < π(r) < s)

This case is not possible. We have π(r) < s, π(π(r)) = r > π(s) and π(r) 6=

π(s). Since π(r) > r, this contradicts the maximality of r.

– Case 2 (π(s) < π(r) < r < s)

By Corollary 2.2.9, there are exactly 2 crossings of wires Wr and Ws, One has

labels (π(r), s) and (π(s), r). The other crossing has labels (π(s), π(r)) and

(r, s).

– Case 3 (r < π(s) < π(r) < s)

By Corollary 2.2.9, there is exactly 1 crossing of wires Wr and Ws, which has

label (r, s).

Therefore (r, s) is necessarily a label for exactly 1 crossing in D.

Claim 2.6.2. This choice of r and s is lexicographically largest in the sense that: If

you list the top and bottom label pairs (i, j) for all crossings X ∈ D, then s will be

the largest such j on the list and r will be the largest i among those paired with s.

Proof. (of Claim 2.6.2)

Let X ∈ D be any crossing and let (t, u) be a label of X. Our first goal here

is to show u ≤ s. Suppose not, i.e. suppose u > s. Since D is reduced, Wt 6= Wu,

which implies π(t) 6= u. By Corollary 2.2.10, t < u.
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Since u > s, we have π(u) = θ(u) = u− (−1)u ≥ u− 1 ≥ s. Since π(s) < s, we

must have π(u) 6= s. Thus π(u) > s. Since X ∈ XD(t, u), we know XD(t, u) 6= ∅.

By Lemma 2.2.7, since t < u and π(u) = u ± 1, we can conclude |XD(t, u)| = 2 and

π(t) > u. Hence π(t) > s. Thus u < π(t) = θ(t) = t − (−1)t ≤ t + 1 ≤ u is a

contradiction. Therefore u ≤ s.

We now restrict our attention to the case where u = s. Our goal here is to

show t ≤ r. Since (t, s) is a label of X and D is reduced, t < s by Corollary 2.2.10.

Since (π(s), π(t)) is the other label of X, π(s) < π(t) for the same reason. Since X

is not a type 3 defect, t 6= π(s). Thus t satisfies the three inequalities which define

r. By maximality of r, t ≤ r.

Lemma 2.6.3. Let π ∈ FPFP and D be a reduced FPF involution word diagram for

π. Let X ∈ D be the lexicographically largest crossing. Then D is nearly reduced at

X.

Proof. Let r and s be defined as they are in Definition 2.6.1. Let E = D \ {X} and

σ = π(E).

Then D is nearly reduced at X if and only if E is reduced. Also, E is reduced

if and only if ˆ̀
FPF(σ) = ˆ̀

FPF(π)− 1.

We will use the notation Ix,y(π) from the proof of Lemma 2.4.5 to denote

the set of (half of the) FPF-inversions of π involving only x, y, π(x), or π(y). We

know that by deleting the crossing X, wires Wr and Ws cross one fewer time, which

means |Ir,s(σ)| = |Ir,s(π)|+ 1.

Also, for two distinct wires Wa,Wb /∈ {Wr,Ws}, the relative order of

a, b, π(a) = σ(a), and π(b) = σ(b) is unchanged by deleting X.
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This leaves us to check that the number of inversions which involve a third

wire is the same in π as in σ. Let x ∈ P \ {r, s, π(r), π(s)}. All we need to do is

verify that for our arbitrary x, |Ix,r(π)|+ |Ix,s(π)| = |Ix,r(σ)|+ |Ix,s(σ)|.

We first use Lemma 2.2.7 to restrict our attention to relative orders of

r, s, π(r), and π(s) which yield a crossing in D.

Next we note that if π(s) < π(x), then we must have x < r in order to not

violate the maximality of r. Similarly, if π(s) < x, then π(x) < r. This leaves us

with twelve cases for the relative orders of x, r, s, π(x), π(r), and π(s). Each of these

12 cases is checked in the following table, which concludes the proof.
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# ∗ Relative Order |Ix,r(∗)| |Ix,s(∗)| |Ix,r(∗)|+ |Ix,s(∗)|

1
π x < π(x) < r < π(s) < π(r) < s 0 0

0
σ x < σ(x) < r < σ(r) < σ(s) < s 0 0

2
π x < r < π(x) < π(s) < π(r) < s 1 0

1
σ x < r < σ(x) < σ(r) < σ(s) < s 1 0

3
π x < r < π(s) < π(x) < π(r) < s 1 1

2
σ x < r < σ(r) < σ(x) < σ(s) < s 2 0

4
π x < r < π(s) < π(r) < π(x) < s 2 1

3
σ x < r < σ(r) < σ(s) < σ(x) < s 2 1

5
π r < x < π(x) < π(s) < π(r) < s 2 0

2
σ r < x < σ(x) < σ(r) < σ(s) < s 2 0

6
π x < π(x) < π(s) < π(r) < r < s 0 0

0
σ x < σ(x) < σ(r) < σ(s) < r < s 0 0

7
π x < π(s) < π(x) < π(r) < r < s 0 1

1
σ x < σ(r) < σ(x) < σ(s) < r < s 1 0

8
π x < π(s) < π(r) < π(x) < r < s 1 1

2
σ x < σ(r) < σ(s) < σ(x) < r < s 1 1

9
π x < π(s) < π(r) < r < π(x) < s 2 1

3
σ x < σ(r) < σ(s) < r < σ(x) < s 2 1

10
π π(s) < x < π(x) < π(r) < r < s 0 2

2
σ σ(r) < x < σ(x) < σ(s) < r < s 2 0

11
π π(s) < x < π(r) < π(x) < r < s 1 2

3
σ σ(r) < x < σ(s) < σ(x) < r < s 2 1

12
π π(s) < π(r) < x < π(x) < r < s 2 2

4
σ σ(r) < σ(s) < x < σ(x) < r < s 2 2
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Definition 2.6.4. The bumping algorithm:

Let π ∈ FPFP. Let D be a reduced FPF involution word diagram for π. The

output to this algorithm will be a pair
(
E, (ρ, κ)

)
, where E is a reduced involution

word diagram and (ρ, κ) ∈ E is a crossing.

Set D0 := D.

Let (ρ0, κ0) be the crossing with label (r, s), which is guaranteed by

Definition 2.6.1.

If κ0 = 1, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
B
(
p(D0), (ρ0, 3)

)
, (ρ0, 2)

)
Now set D1 := B

(
D0, (ρ0, κ0)

)
.

After having found Di, we do the following:

If Di is reduced, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
Di, (ρi−1, κi−1 − 1)

)
.

Find the defect counterpart (ρi, κi) of the most recently bumped crossing,

(ρi−1, κi−1 − 1).

If κi = 1, stop. Output: GBA
(
D, (ρ0, κ0)

)
=
(
B
(
p(Di), (ρi, 3)

)
, (ρi, 2)

)
Set Di+1 := B

(
Di, (ρi, κi)

)
.

In Example 2.5.12, the starting crossing for the generalized bumping

algorithm had top label (r, s) = (2, 6). Hence this was actually an example of the

specific bumping algorithm as well.

Proposition 2.6.5. Let π ∈ FPFP. Let r and s be defined as they are in

Definition 2.6.1. Let ν = tr,sπtr,s.

If π(s) < r, then Ψ̂+(ν, r) = {π}.

If r < π(s), then Ψ̂+(ν, π(s)) = {π}.
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Proof. We have π = tr,sνtr,s. By Lemma 2.6.3, any reduced involution word

diagram for π is nearly reduced at the crossing with label (r, s). Therefore `(π) =

`(ν) + 1. Let D be a reduced involution word diagram for π and let X ∈ D be the

crossing with label (r, s). Let DX = D \ {X}. Then DX is a reduced involution

word diagram for ν.

We first assume π(s) < r. We know that π ∈ Ψ̂+(ν, r) because s > r.

Suppose there is an involution η ∈ Ψ̂+(ν, r) \ {π}. Then η = tr,xνtr,x and

`(η) = `(ν) + 1 for some x > r with x 6= s. We know π(s) < π(r) < r by the

proof of (the uniqueness of the crossing in) Definition 2.6.1. Thus x /∈ {π(r), π(s)}.

Let E be a reduced involution word diagram for η. Lemma 2.5.5 tells us there is

a crossing Y ∈ E with label (r, x). Let EY = E \ {Y }. Then EY is a reduced

involution word diagram for ν.

Since DX is a reduced involution word diagram for ν and every crossing is left

of column s, we know size(ν) ≤ s. Hence EY does not have any crossings to the

right of column s− 1. Let κ be the column containing Y .

Suppose κ ≥ s. Then since there are no other crossings in column κ, the

bottom label of Y is (κ, κ + 1). Since r < s, we know (r, x) cannot be the bottom

label of Y . Also, since ν(r) = π(s) < s, we know (η(x), η(r)) = (ν(r), ν(x)) cannot

be the bottom label of Y , which means (r, x) cannot be the top label of Y . Thus,

we can conclude κ < s, which implies x ≤ s. Since x 6= s, we have x < s.

By the maximality of r in Definition 2.6.1, we know that π(x) < π(s), which

means (x, s) /∈ InvFPF(π). Thus by Corollary 2.3.4, there cannot be a crossing in

D with label (x, s). Therefore we have π(x) < π(s) < π(r) < r < x < s. By

Corollary 2.2.9, there is a crossing Z ∈ D with label (r, x).
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We now want to find the label of Z in DX . When we delete the crossing X

from D, we must preserve either the top or bottom label of Z. This is because the

two parts of the wire Wr that we follow to determine that labels of Z are (r, x)

and (π(x), π(r)) cannot both be involved in the crossing X, so one of those parts

must take the exact same path to the exact same wire position at the bottom of

the diagram. We have two cases:

Case 1: Assume the label (r, x) is preserved, i.e. (r, x) is a label of Z in DX .

Then by Corollary 2.3.4, (r, x) ∈ InvFPF(ν). Again, by Corollary 2.3.4, (r, x) is the

label of some crossing Z ′ ∈ EY . Deleting this crossing gives us a diagram EY \

{Z ′} for tr,xνtr,x = η with fewer crossings than E. Since E is reduced, this is a

contradiction. Thus (r, x) cannot be a label of Z in DX .

Case 2: Assume the other label, (π(x), π(r)), is preserved, i.e. (π(x), π(r)) is

a label of Z in DX . Since π(r) = ν(s), the other label of Z in DX is (s, x). Since

s > x and DX is reduced, this contradicts Corollary 2.2.10.

In both cases, we have reached a contradiction. Therefore no such η exists

and Ψ̂+(ν, r) = {π}.

We now instead assume r < π(s). Then r < π(s) < π(r) < s by the proof of

(the uniqueness of the crossing in) Definition 2.6.1. We know that π ∈ Ψ̂+(ν, π(s))

because s > π(s).

Suppose there is an involution η ∈ Ψ̂+(ν, π(s)) \ {π}. Then η = tπ(s),xνtπ(s),x

and `(η) = `(ν) + 1 for some x > π(s). Since η 6= π, we know x 6= π(r). Let E be

a reduced involution word diagram for η. Lemma 2.5.5 tells us there is a crossing

Y ∈ E with label (π(s), x). Let EY = E \ {Y }. Then EY is a reduced involution

word diagram for ν.
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By the same argument as in the case where π(s) < r, we know x ≤ s.

However, it is no longer obvious that x 6= s.

Suppose x = s. Then η = tν(r),sνtν(r),s implies η(r) = s and η(ν(r)) = ν(s).

Now our ordering r < ν(r) < ν(s) < s tells us that wires Wr and Wν(r) cross

twice in E. By Corollary 2.2.9, Y is the top-most crossing of these two wires. Let

Z be the other crossing. Then Z has labels (r, ν(r)) and (ν(s), s). We know that

deleting Y will preserve one of these labels (whichever is the bottom label). Thus

the crossing Z either has label (r, ν(r) or (ν(s), s) in EY . Either of these labels

imply that Z is a type 3 defect in EY , contradicting the fact that EY is reduced.

Therefore x 6= s, which implies x < s.

Since π(x) satisfies π(x) < s, π(π(x)) > π(s) and π(x) 6= π(s), in order to

not violate the maximality of r in Definition 2.6.1, we must have π(x) < r. Hence

π(x) < π(s), which means (x, s) /∈ InvFPF(π). Thus by Corollary 2.3.4, there cannot

be a crossing in D with label (x, s). Therefore we have π(x) < r < π(s) < x < s.

By Corollary 2.2.9, there is a crossing Z ∈ D with label (π(s), x).

We now want to find the label of Z in DX . When we delete the crossing X

from D, we must preserve either the top or bottom label of Z. Just as before have

two cases:

Case 1: Assume the label (π(s), x) is preserved, i.e. (π(s), x) is a label of Z

in DX . Then by Corollary 2.3.4, (π(s), x) ∈ InvFPF(ν). Again, by Corollary 2.3.4,

(π(s), x) is the label of some crossing Z ′ ∈ EY . Deleting this crossing gives us a

diagram EY \ {Z ′} for tπ(s),xνtπ(s),x = η with fewer crossings than E. Since E is

reduced, this is a contradiction. Thus (π(s), x) cannot be a label of Z in DX .

Case 2: Assume the other label, (π(x), s), is preserved, i.e. (π(x), s) is a label

of Z in DX . Since π(x) = ν(x), the other label of Z in DX is (ν(s), x). Since DX
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is reduced, Corollary 2.2.10 tells us that x > ν(s) = π(r). We now segment wires

Wr and Ws in D (see Figure 4). Let A be the part of Ws which comes out of the

left side of the bottom of X and descends to wire position π(s) at the bottom of D.

Let B be the part of Wr which comes out of the right side of the bottom of X and

descends to wire position π(r) at the bottom of D. Similarly, UA, DA, UB, and DB

are the other dashed segments labeled in Figure 4. Let S be the region enclosed by

Wr, Ws, and the bottom of the diagram below the crossing X (as shown). Let R be

the (unshaded) region to the right of S.

Now, we will follow the path of Wx starting at wire position x at the bottom

of D. At the bottom of the diagram, Wx is in region R. The point where Wx arcs

over the top of the diagram is not in R. Thus we must have Wx leave R by crossing

B, Us or Ds on the way up to the top of D. If we cross Ds, that crossing would

have bottom label (x, s), which is not possible.

Suppose now that we cross B. Then we are in region S and must leave.

We may not cross B again as this would create a type 1 defect with the crossing

used to enter S. Thus we must cross A. But a crossing with A would have bottom

label (π(s), x). Since this crossing is below X, its bottom label would be preserved
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when deleting X. This situation has already been covered by Case 1. Thus we may

assume that we do not cross B on the way up.

Therefore the first of these wires which we cross is Us. Since π(x) < π(s) <

x < s, by Corollary 2.2.9, there is only one crossing of wires Wx and Ws. Therefore

we cannot reenter the region S ∪ R enclosed by the wire Ws. This means that on

our way back down after arcing over at the top of D, we still cannot cross B.

We know that π(x) < r < π(r) < x. By Corollary 2.2.9, there is a crossing

Z ′ ∈ D with label (π(x), r). Since Z ′ does not involve segment B of Wr, we know

that the label (π(x), r) is preserved when deleting X. In other words, Z ′ has label

(π(x), r) in DX because the part of the wire Wr which leads to wire position r is

the same as it is in D. Since π(s) = ν(r), the other label of Z ′ in DX is (π(s), x).

Just as in Case 1, we know this is not possible.

Again, in both cases, we have reached a contradiction. Therefore no such η

exists and Ψ̂+(ν, π(s)) = {π}.

Theorem 2.6.6. Let π ∈ FPFP. Let r and s be defined as they are in

Definition 2.6.1. Let ν = tr,sπtr,s.

If π(s) < r, then the bumping algorithm yields a bijection

R̂(π) −→
⋃

σ∈Ψ̂−(ν,π(s))

R̂(σ).

If r < π(s), then the bumping algorithm yields a bijection

R̂(π) −→
⋃

σ∈Ψ̂−(ν,r)

R̂(σ).
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Proof. If π(s) < r, then (π(s), r) ∈ Cyc(ν). If r < π(s), then (r, π(s)) ∈ Cyc(ν).

The result follows directly from combining Propositions 2.5.17 and 2.6.5.
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