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DISSERTATION ABSTRACT 

 

Elisabeth A. Goldman 

Doctor of Philosophy 

Department of Anthropology 

June 2022 

 

Title: Signatures of Aging and Environment in the DNA Methylome of Rhesus Macaques 

 

While the link between aging and metabolic function is well recognized, little is 

known about how variables like diet are able to drive variation in health and longevity 

through interaction with molecular mechanisms of aging. Because aging does not occur 

uniformly throughout the body, tissue-specific analyses are necessary to elucidate 

patterns of age-related decline in organs with distinct physiological roles.  

Existing epigenetic clocks have provided some insight into the variables that 

impact aging, disease- and mortality risk, but the mechanisms underlying the 

manifestation of their effects in the larger context of aging remain obscure. While multi-

tissue clocks have gained popularity in human clinical and biomedical research, these 

models provide just one estimate of systemic health and decline, and cannot indicate 

where early or sub-clinical signs of disease may be starting to subtly manifest. Here, I 

take a targeted, tissue-specific approach to construct two generalizable epigenetic clock 

models using genome-wide methylation data generated from blood (n=563) and liver 

(n=96) samples taken from two independent populations of rhesus macaques. I applied 

the blood clock model to blood samples from an additional population of rhesus 

macaques (n=43) at Yerkes National Primate Center and a wild population of baboons 

(n=271) living at Amboseli National Park in Kenya. The model predicted age with high 

accuracy in both populations.  
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Next, I tested whether the liver-specific model was able to detect a delayed biological 

aging effect as a result of long-term dietary restriction, a known pro-longevity intervention, in 63 

rhesus macaque from a long-term dietary restriction study carried out over 33-years at the 

National Institute on Aging (NIA). Monkeys who entered the study at one of three distinct 

developmental time points (pre-adult, middle-aged, and older adult). I found that males who 

began a restricted diet later in life (between age 13 and 23 years) appeared to the reap the 

greatest longevity benefit, but did not show significantly lower rates of epigenetic aging, counter 

to the expectation that this trend would correlate with longevity. Interestingly, males who entered 

the study at older ages as control individuals had unusually long lifespans, perhaps owing to 

higher quality nutrition and supplementation they received to match their diets with that of the 

experimental group (whose diet was highly supplemented by 70% of the calories of the control 

diet). Individuals who began the restricted diet as juveniles had slower rates of epigenetic aging 

but saw no improvement in life expectancy, suggesting the clock may track trade-offs in energy 

allocation between processes like growth, maintenance and reproduction, and may at some point 

become decoupled from an individual's risk of mortality. These models are valuable tools for 

predicting age in non-human primate species and illustrate how connecting behavioral data with 

the epigenetic clock can uncover the social and environmental determinants of biological age. 

This dissertation includes previously unpublished co-authored material.  
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CHAPTER I 

 INTRODUCTION: DEFINING THE SHAPE OF THE AGING TRAJECTORY 

 

Background and Motivation 

The demographics of the global population are changing in unprecedented ways. 

Over the next three decades, the number of adults aged 60 and older will increase two-

fold, to 2.1 billion, while the number of adults aged 80 and older will triple to 426 million 

(World Health Organization 2021). Since the mid-20th century, life expectancy has 

increased by over twenty years, largely due to advancements in treatment of infectious 

disease, improved sanitation, and more food security in many parts of the world (Vaupel, 

Villavicencio, and Bergeron-Boucher 2021; K. Christensen et al. 2009). Disparities in life 

expectancy between different countries have also sharply declined (Rosen et al., 2019). 

As the over-65 demographic continues to expand in the United States, so does an already 

urgent need for a comprehensive social and public health infrastructure capable of 

supporting the country’s aging population.  

Assuming a birth year of 1900, the grandparents of Baby Boomers had a life 

expectancy at birth of 33 years or 47 years, depending whether they were Black or White, 

respectively (National Center for Health Statistics, United States 2021b). Today, Baby 

Boomers can reasonably expect that their grandchildren will surpass age 100 (National 

Center for Health Statistics, United States 2021a). Unsurprisingly, there is a shift 

underway in the national attitude towards the experience of aging: with a growing 

segment of the US population having firmly reached retirement age, popular interest in 

“healthy aging”—maintaining feelings of physical and cognitive health, autonomy and a 

sense of control, and continued engagement with one’s community throughout old age—

has grown substantially in recent years (van Leeuwen et al. 2019). However, that gains in 

life expectancy have not been accompanied by comparable reductions in rates of chronic, 

non-communicable disease is an immediate and evermore urgent health concern. The 

lack of public infrastructure to support aging adults and dearth of options for aging-in-
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place (Teater and Chonody 2021) make it difficult for aging people to maintain quality of life 

when in need of long-term assistance or intensive medical care.  

Further compounding the issue of a burgeoning population of older adults is the 

growing incidence of chronic, non-communicable diseases around the world (Arokiasamy et al. 

2017). Rates of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and other 

complications related to the dysregulation of energy balance have jumped dramatically while the 

average age-at-onset for these diseases has also declined, thereby increasing the proportion of the 

population requiring long-term medical treatment as well as the likelihood of early mortality 

(Younossi et al. 2016). It is critical that we develop better methods of prevention, early detection, 

and effective therapeutic interventions to delay or reverse the pathogenesis of age-related and 

metabolic disease to prevent complete and total exhaustion of an already strained healthcare 

system. Realization of such ambitious goals requires identifying the proximate mechanisms that 

functionally enable age-related deterioration as well as ultimate explanations for why such 

mechanisms persist.  

Scientists have been considering the nature of cellular aging from various perspectives 

for over a century (Weissman 1892), and paradigm-shifting work has been carried out in model 

systems like Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (nematodes), and 

Drosophila melanogaster (fruit flies) (Mortimer and Johnston 1959; Y. Pan 2011; Pickering et 

al. 2017; Greer et al. 2007; Klass 1983). However, intrinsic species differences continue to limit 

the translatability of the aforementioned work, or more recent groundbreaking research carried 

out in mice (e.g., Browder et al. 2022), to an exceptionally long-lived species like humans. While 

research conducted in short-lived model organisms has without question advanced the field of 

aging research, the timing and duration of processes like growth, maintenance, and cellular 

senescence are different in non-trivial ways among long-lived species (Gluckman, Hanson, and 

Low 2019). Here, I developed a methodological framework to examine tissue-specific variation 

in the DNA methylome and test hypotheses surrounding how environmental parameters and life 

history characteristics influence aging in the epigenome of a long-lived, non-human primate 

(NHP), the rhesus macaque (Macaca mulatta).  
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Evolution of Aging 

One may ask why aging should occur at all. Numerous theories have been proposed to 

explain why organisms age form an evolutionary perspective, intending to decipher an 

ultimate explanation for the aging process. A few classic theories of aging have endured 

over the years, and two are briefly summarized here. These theories are not mutually 

exclusive, but neither one provides a complete or sufficient explanation for the origins of 

biological aging. Nonetheless, they have provided a framework for much of the aging 

research conducted over the last half century and thus warrant mention.  

The mutation accumulation hypothesis is built upon the concept of a selection 

shadow, and suggests that deleterious mutations in the germline do not become evident 

until after an organism has already reproduced; therefore, seemingly neutral mutations 

continue to be passed down across generations and can drift to fixation because they only 

become apparent later in life, in the shadow of natural selection, i.e., when natural 

selection has little ability to act on them, and manifest as aging phenotypes (Haldane 

1941; Medawar 1952). There is some evidence to suggest that in mammals, genes 

upregulated later in life may be subject to stronger drift (Turan et al. 2019). However, it 

is relevant that this same study found a negative relationship between later-life gene 

expression and evolutionary conservation, suggesting genes that are more active in old 

age may be more likely to be species-specific (Turan et al. 2019).  

Another arguably more popular framework for understanding the evolution of 

aging brings together two complementary paradigms, that of antagonistic pleiotropy 

(Williams 1957) and the disposable soma theory of aging (DST) (Kirkwood 1977). 

Expanding on the idea of aging as an inadvertent byproduct of the random accumulation 

of mutations with detrimental effects, antagonistic pleiotropy proposes that genetic 

variants which are beneficial early in life may have a cost in that they become deleterious 

to survival in an organism’s post-reproductive years (Williams 1957).  Under this view, 

aging is a compromise for the selection of traits that favor early-life survival and 

fecundity at the expense of earlier mortality. Findings from several studies support this 

hypothesis: in laboratory studies of fruit flies, delayed reproduction resulted in delayed 
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senescence (Luckinbill et al. 1984). Studies in natural populations of birds and mammals have 

found a positive association between earlier age-at-first reproduction and mortality (Hammers et 

al. 2013; Hayward et al. 2014; Blomquist 2009). The disposable soma theory further extends 

antagonistic pleiotropy by arguing that transmission of the germ line the priority of an organism, 

that essentially serves as only as a vessel, and thus, after one’s genes have been transmitted to 

successive generations, there is no incentive to invest in the expensive processes of somatic 

maintenance or repair. This framework is thus organized around the notion that aging is an 

evolutionary trade-off that results from the inherently finite resources an organism can allocate to 

any one energetically-demanding process, such as growth, somatic maintenance, or reproduction 

(Bartke, Sun, and Longo 2013; Bogin, Silva, and Rios 2007). While several studies show 

evidence in support of DST, it is also possible that the observed effects did not result from the 

allocation of limited energetic resources, but instead from antagonistic pleiotropy of yet-

discovered genetic variants (Carter and Nguyen 2011). The lifespan-extending effects of dietary 

restriction and the detrimental effects of overnutrition on life expectancy stand in apparent 

contradiction to the pillars of this theory, as one would expect unlimited energetic resources to 

loosen intrinsic restrictions on lifespan (although arguments have been made to try square these 

effects with the paradigm of DST, using research in wild mice Shanley and Kirkwood 2000). 

Ultimately, phenotypic expression in humans and many (if not most) other species is the 

combined product of perinatal conditions of the environment and a much longer species-specific 

evolutionary history (Gluckman, Hanson, and Low 2019). In a modern context, the flexibility 

that exists in the range of phenotypic expression, or developmental plasticity, enables deleterious 

alterations to fetal growth trajectories in response to inaccurate cues of environmental scarcity 

from the external world.  

The effects of altered development programming are worse when the true conditions of 

the external world at birth do not match the version to which the fetus preemptively acclimated 

(Treviño et al. 2020). Signals of scarcity restrict fetal growth, reduce nephron density in the 

kidney, and induce other life-long metabolic alterations that increase the likelihood of 

cardiovascular disease and type 2 diabetes in adulthood (Barker 1995). Such alterations to the 

developmental trajectory of different organ systems have not been shown to be reversible when 
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they occur within the narrow perinatal window.  

Other, more proximate explanations have been suggested to provide mechanistic insight 

into the molecular and physiological mechanisms that underlie the aging process, focusing on 

changes that occur during the lifetime of an individual, such as the loss of genomic 

integrity, epigenetic alterations, telomere attrition, the loss of proteostasis, dysregulated 

nutrient sensing, and mitochondrial dysfunction (López-Otín et al. 2013). Several of these 

mechanisms are inextricably linked, and in this context, epigenetic alterations are notably 

powerful because they can directly or indirectly affect any of the other processes 

(although they are not unique in this ability) (López-Otín et al. 2016). Mitochondrial 

dysfunction has long been a high-priority target of aging research, as it was initially 

believed that the reactive oxygen species (ROS) produced as a byproduct of cellular 

respiration were uniformly damaging. However, more recently it come to light that the 

response to ROS production appears to be dose-dependent (Berry and Kaeberlain 2021). 

When present at consistently high levels, ROS can cause damage that accumulates over 

time, resulting in lower rates of respiration and greater proton loss, both of which are 

associated with increased cellular aging (Lenaz et al., 2000). However, low levels of ROS 

are able to act as messenger molecules and have been shown to extend the lifespan of 

cells, possibly through sustained maintenance of the cellular response to damage (Lenaz 

et al., 2000). This is particularly salient for highly differentiated cell types like 

hepatocytes, which depend on the maintenance of cellular machinery over the long-term 

(rather than cell division to regenerate) to continue a functional and non-pathogenic 

existence.   

Thus far, no singular grand theory of aging has prevailed. Nonetheless, a robust 

framework has emerged that highlights the intricacy of the phenotype of whole-organism 

aging and acknowledges the dynamic interplay between processes that contribute to 

variation in age-related decline and disease incidence (López-Otín et al. 2013; Lemoine 

2021; López-Otín et al. 2016).  The growing recognition of the complexity of organismal 

aging suggests that no singular mechanism or theory of aging is likely to explain all 

aspects of the phenomenon. Once thought to be a universal facet of life on this planet, 

aging has since been redefined as more flexible in nature, with some species seemingly 
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able to regenerate indefinitely (e.g., hydra, Chera et al. 2009; Klimovich et al. 2018), and others 

with atypically long lifespans for their body size (e.g., painted turtles, Warner et al. 2016), 

underscoring the questions that remain unresolved regarding the evolutionary underpinnings of 

biological aging.  

 

Life History Strategy and Species-Specific Aging 

A species’ life history is structured by a series of developmental stages and transitions 

that together represent a strategy aimed at optimal resource use and reproductive success (Del 

Giucide et al. 2018). Long-lived organisms like humans and many other non-human primates 

have “long, slow” life histories that have been fundamentally shaped by particular evolutionary 

pressures and ecological conditions over millions of years (Jones 2011). Environmental stability 

and relative resource abundance are two key factors that influence a species’ mortality risk and 

consequently, impact their reproductive strategy and other life history characteristics. An 

organism in a turbulent, unpredictable environment with high extrinsic mortality risk who 

attempts to maximize reproductive success by having many large litters as rapidly as possible 

will not reap the same benefit of a mechanism that (e.g.,) prevents the accumulation of 

tumorigenic mutations in a taxon whose life is expected to span multiple decades. Indeed, short-

lived organisms mature more rapidly, reproduce more frequently, and have larger litter sizes as 

compared to longer-lived species (Lemaître et al. 2015; Chisholm et al. 1993), reflecting notable 

differences in life history strategy.  

As humans grow older, they become less susceptible to permanent epigenetic alterations, 

although perhaps not immune (Jagust 2016). It could be argued that the biological and molecular 

networks whose dynamic activities are critical to quotidian health and survival are more efficient 

systems that come to replace the more mercurial epigenome as humans mature. In conditions of 

optimal health, the metabolic, immune, and stress response systems expertly pursue homeostatic 

conditions, responding to environmental experiences or insults of the kind humans encounter on 

a daily basis. The action of cortisol under the stress response system (SRS) assists with mounting 

physiological demands with immediate effects (e.g., alertness, metabolism), as well as those that 

occur over the short- (e.g., tissue repair, energy storage) and long-term (e.g., growth, 

development, reproduction) (Bogin 1999; Bartke and Quainoo 2018). Interestingly, while 
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anatomic and physiological aspects of the SRS are highly conserved across taxa, its 

temporal activation can vary considerably between species and may also be moderated by 

an individual’s history of experience and exposure (Romero and Gormally 2019), 

suggesting epigenetic involvement in modulating these effects.  

There has long been evidence to suggest that social and familial conditions, 

particularly during childhood, have far-reaching implications for health and well-being in 

humans. Prior to the discovery of the dynamic and reversible nature of epigenetic 

mechanisms, such implications were exceptionally difficult if not impossible to quantify. 

Today, through the lens of the epigenome it is possible to examine the ways in which 

different environments and social experiences impact health and longevity through 

interactions with the genome. Rhesus macaques exposed to certain environmental 

stressors have been shown to exhibit changes in DNA methylation similar to those 

observed in humans under comparable stressors, but it is unknown whether the variables 

associated with the acceleration of epigenetic aging in humans also lead to the same 

phenomenon in macaques. This is an important question as rhesus macaques are 

foundational to past and ongoing biomedical research. 

 

Inter-individual Variation in Rates of Aging 

For many common chronic health conditions, age is the biggest risk factor. Yet, 

aging and the rate at which it occurs reflect an incompletely understood biological 

narrative. With regards to non-inherited sources of variation that modulate the aging 

trajectory, diet, stress, and their downstream deleterious health effects are among the 

most potent. Obesity hastens the deleterious effects of age-related decline, and is a 

common cause of premature aging (Garaulet, Ordovás, and Madrid 2010). The global 

prevalence of obesity nearly tripled between 1975 and 2016 (World Health Organization 

2021), and rates of chronic non-communicable disease related to metabolic dysfunction 

have been similarly on the rise in countries around the world (Ramos-Lopez et al. 2017).   

 For some individuals, the onset of cardiovascular disease, diabetes, 

neurodegenerative disorders, cancer or other age-related diseases can occur early in adult 

life (e.g., late in the fourth decade of life, or early in the fifth), while others experience 
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slower rates of decline and lower incidence of serious disease, and thus are able to maintain good 

health well into (and in some cases through) their ninetieth decade (Didier et al. 2016; Benayoun, 

Pollina, and Brunet 2015). While there is a well-documented relationship between increasing age 

and reduced cellular regeneration capacity, dysregulation of the immune and inflammatory 

responses, and a diminished ability to repair DNA damage, the rate and severity of age-related 

decline varies widely across individuals (Booth and Brunet 2016; Didier et al. 2016). While 

exposure to environmental factors like pollution, toxic chemicals, and tobacco smoke are known 

to cause DNA damage, other sources of cellular stress, like the production of reactive oxygen 

species by the mitochondria, are a normal and inevitable byproduct of cellular metabolism found 

in all oxygen-consuming organisms (Lombard et al. 2005). Individuals vary in how effectively 

they are able to repair DNA damage, which is, in part, dependent on the extent of the damage to 

which they have already been exposed (Lombard et al. 2005). This variation is partly a function 

of age, but is also determined by lifestyle and environmental factors that have been repeatedly 

shown to have significant positive or negative effects on general health and longevity (Dato et al. 

2017; Beach et al. 2015; Gao et al. 2017; Ramos-Lopez et al. 2017). 

Variability in the progression of aging is partly driven by epigenetic differences (Dirks, 

Stunnenberg, and Marks 2016). Broadly speaking, biological aging is the result of a decline in 

cellular regenerative capacity and the accumulation of senescent cells in various tissues of the 

body after an organism has reached its peak reproductive period (Bhatia-Dey et al. 2016; 

Lowsky et al. 2014). While some genetic variants found at high frequencies in centenarians have 

been associated with increased longevity, their role and influence on the aging process remains 

unclear, in part due to each individual’s unique history of gene x environment interactions 

(Sebastiani et al. 2012).  

The only known behavioral intervention that has been shown to extend lifespan and 

healthspan across a number of taxa is dietary restriction (DR, also called caloric restriction 

[CR]). While the mechanisms by which DR delays aging remains elusive, there are numerous 

reports indicating that caloric restriction may preserve mitochondrial activity (Zhang et al. 2022; 

Morgunova, Shilovsky, and Khokhlov 2021).  Dietary restriction is typically defined as ~30% 

reduction in daily caloric intake without malnutrition. One hypothesis posits that it exerts a pro-

longevity effect through the regulatory actions of silent information regulator protein 
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deacetylases (sirtuins), a family of proteins that has been widely shown to extend lifespan 

in model organisms (Vijg and Campisi 2008; B. Yang, Britton, and Kirchmaier 2008; 

Kitada et al. 2019).  

Dietary restriction has been shown to delay age-related morbidity and extend 

lifespan repeatedly in short-lived model organisms (Greer et al. 2007; Hahn et al. 2017; 

Cole et al. 2017; Bitto et al. 2015) as well as in adult rhesus macaques (Colman et al. 

2009; Mattison et al. 2012), and even quite possibly in humans: in a six-month human 

trial, participants who followed a calorically-restricted diet experienced increased 

expression of SIRT1, a regulator of mitochondrial biogenesis, upregulation of the 

mitochondrial protein TFAM, and showed a greater number of mitochondria when 

compared to controls (Barja 2004; Berry and Kaeberlein 2021). It is notable that no pro-

longevity effect was found among macaques who began DR as juveniles (Mattison et al. 

2012; 2017) a finding which I investigate in Chapter III of this dissertation.  

 

Molecular Mechanisms of Aging 

Human aging is associated with pervasive molecular change, including altered 

patterns of gene expression, modifications of the epigenetic landscape, and changes to 

genomic architecture (Lu et al. 2017; Siebel and Lendahl 2017; Brunet and Berger 2014). 

Genomic integrity deteriorates as a function of both age and the rate of DNA damage and 

is associated with substantial changes in the epigenomic landscape (Booth and Brunet 

2016). A long-active area of investigation has been the hunt for “longevity genes”, of 

which only one (APOE) has been identified as directly influencing risk of developing an 

age-related condition (Alzheimer’s disease) later in life, depending on the variant of the 

gene an individual has inherited (Walker et al. 2021). There is also considerable interest 

in determining the relative contribution of the genetics versus the environment to the pace 

and progression of age-related biological change—this has sometimes been reduced to 

the “nature versus nurture” debate, reflecting a false dichotomy.  While estimates for the 

heritability of longevity across generations have been proposed (e.g., Herskind et al. 

1996), others have argued that such estimates are inflated by assortative mating (Ruby et 

al. 2018), and the debate is ongoing. Thus, despite substantial progress in the science of 
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aging over the past decade, few promising molecular targets have been identified for therapeutic 

intervention. The few that have exhibited staying power thus far include regulatory actions of 

silent information regulator protein deacetylases (sirtuins), the Forkhead box (FOXO) family of 

transcription factors, and the much broader category of epigenetic mechanisms (Balistreri et al. 

2013). While the mechanisms by which dietary restriction is able to delay aging remain elusive, 

there are reports suggesting it may involve mitochondrial activity (Zhang et al. 2022; 

Morgunova, Shilovsky, and Khokhlov 2021).  As previously noted,  low levels of ROS produced 

by the mitochondria can act as a low-level cellular stressor that promotes the maintenance of 

cellular mechanisms of self-preservation (Ristow and Schmeisser 2014).  

Cells employ a number of compensatory mechanisms to help mitigate the effects of 

genomic damage and instability caused by epigenetic modifications and telomere attrition 

(López-Otín et al. 2013). While effective if used intermittently, when chronically activated these 

compensatory processes become contributing factors to age-related decline (Engelfriet et al. 

2013). One such example is cellular senescence, a hallmark of molecular aging (Rakyan et al. 

2011; Benayoun, Pollina, and Brunet 2015). While senescence is often seen as a detrimental 

process, cellular capacity to enter a senescent state appears to be a protective mechanism against 

tumorigenesis, as malignant cells are more likely to evade detection with increasing age due to a 

decline in immune system function (López-Otín et al. 2013). However, circulating senescent 

cells exhibit a pro-inflammatory cytokine profile known as the senescence-associated secretory 

phenotype (SASP), a cause of tissue damage and dysfunction (Benayoun, Pollina, and Brunet 

2015). As senescent cells accumulate with age, their pro-inflammatory properties become 

increasingly problematic, triggering yet another series of pathological age-related events that 

contribute to “inflammaging”, a process by which low-grade inflammation accelerates biological 

aging (Franceschi et al. 2018). 

Genome instability is a near-universal hallmark of aging, arising from repeated molecular 

assaults that induce point mutations, chromosomal abnormalities, translocations, and 

mitochondrial dysfunction (Lemoine 2021; López-Otín et al. 2013). At peak fitness, cellular 

repair machinery mitigates these harmful effects by repairing DNA damage and preserving 

mitochondrial integrity (Rossi et al. 2007; Palikaras, Lionaki, and Tavernarakis 2015). When 
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cellular repair and maintenance machinery can no longer match the pace at which 

damage occurs, permanent cellular damage begins to manifest. 

Genomic integrity is also compromised by loss of constitutive heterochromatin (usually 

at telomeres, centromeres, and pericentromeres) and general histone loss that result in 

transcriptional deregulation (Sen et al. 2016). Abnormal patterns of gene expression are a 

hallmark of an unstable and thus potentially dysfunctional cell. Epigenetic dysregulation 

compromises genomic integrity, and in doing so increases the likelihood of replicative 

senescence or, alternatively, oncogenesis, both of which have negative implications for 

organismal health (Bhatia-Dey et al. 2016; Sen et al. 2016). Cellular senescence is 

strongly linked to systemic aging, and the rate at which senescent cells accumulate 

appears to play a key role in determining how well and how rapidly an individual ages at 

the biological level. However, replicative senescence can be triggered by many different 

molecular and environmental factors. 

Unrepaired DNA damage can reorganize the nuclear architecture, impacting 

genes and transcriptional pathways of high functional importance (López-Otín et al. 

2013). Factors that further precipitate genomic instability with increasing age include 

telomere attrition and epigenetic alterations (e.g., DNA and histone methylation, histone 

acetylation, changes to heterochromatin conformation) (Benayoun, Pollina, and Brunet 

2015).  While human aging is remarkably plastic, increasing age is nevertheless 

characterized by specific changes in gene expression that weaken global genomic 

stability, alter genomic architecture and the epigenomic landscape, and increase risk of 

cancer, neurodegeneration and cardiovascular disease (Sen et al. 2016; Brunet and Berger 

2014).  Together, these factors manifest in progressive functional deterioration and 

visible decline of tissue and organ systems, ultimately leading to mortality.  

 

Historical Difficulty of Quantifying Biological Age 

Biological age is a measure of the structural and functional state of the body. 

Unlike chronological age, biological age accounts for interindividual variation in the 

progression of age- related phenotypic change, and therefore provides a more accurate 

picture of systemic health (Benayoun, Pollina, and Brunet 2015; Chen et al. 2016; 



 

 

 

25 

Sebastiani et al. 2012).  

Chronological age is a strong predictor of morbidity and mortality but has long 

acted as a relatively crude stand-in for biological age (Jylhävä, Pedersen, and Hägg 2017; Bell et 

al. 2019). Because it has been well established that individuals age differently and at different 

rates, the utility of chronological age as a predictor of health outcomes and mortality is limited. 

Quantifying biological age has proved challenging, and further complicating the matter is the 

lack of an universally agreed-upon definition or standard of measurement among the wider aging 

research community. Regardless, the concept of biological age offers a more informative and 

valuable measure of variation in health and disease risk than chronological age can alone.  

Ideally, a molecular biomarker of aging should track the progression of age-related 

physiological change such that it is able to determine the rate at which an individual is aging 

(akin to the annual rate of increase in the likelihood of mortality) and predict future physical and 

cognitive capability, disease risk, and mortality (Jylhävä, Pedersen, and Hägg 2017). Nine classic 

hallmarks of the molecular aging process were proposed by López-Otín and colleagues (2013) 

and have grown to become a part of the foundational framework of molecular aging research 

(Lemoine 2021). Several have already been tested as biomarkers or have the potential to be used 

as such. Those that have already been involved in aging biomarker development include 

telomere attrition, epigenetic alterations, and to a lesser extent, dysregulated nutrient sensing, but 

no one measure has been able to claim status as an universal and fully comprehensive biomarker 

of aging. Each one presents its own advantages and drawbacks: for example, age-associated 

decline in leukocyte telomere length has been widely investigated as a putative biomarker of 

aging (von Zglinicki and Martin-Ruiz 2005) but the fragility of telomeric DNA continues to pose 

a considerable challenge in obtaining reliable telomere length measurements (Goldman et al. 

2018). 

Molecular measures of biological age should reflect the activity of the processes 

responsible for age-related change and be capable of differentiating between normal and 

pathological age-related phenomena (Mamoshina et al. 2018). In addition to biophysiological 

properties desired in a molecular marker of aging, key methodological factors to be considered 

include assay cost, replicability, and robustness to variations in sample quality; all must be taken 

into account when designing molecular biomarkers (Dirks, Stunnenberg, and Marks 2016; Bock 
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2012; Kurdyukov and Bullock 2016).  

 

Epigenetic Mechanisms of Aging 

While aging involves the interdependent activity of numerous external and 

internal systems, epigenomics has already provided new avenues of exploration to 

decipher how individual variation and interactions with the external world become 

biologically embedded to contribute to differences in health and life expectancy. The 

epigenome refers to a set of biochemical mechanisms that can affect gene regulation and 

expression without altering the underlying DNA sequence (Bird 2002). Unlike the 

genome, the epigenome is both dynamic and flexible; it is tasked with unifying 

information and instructions encoded in the genome with cellular, extracellular and 

environmental signals to produce modifications to a phenotype (Campbell and Wood 

2019). Epigenetic mechanisms are the means by which environmental signals induce 

changes to the epigenetic landscape, influencing gene expression through biochemical 

modifications to the genome and altering chromatin structure (Rose and Klose 2014). 

Changes in DNA methylation, posttranslational histone modifications, rearrangement of 

the nuclear architecture, and RNA-associated silencing all play a role in determining the 

molecular, functional, and structural features that constitute the epigenomic landscape 

(Klemm, Shipony, and Greenleaf 2019).  

The epigenome mediates gene-environment interactions, and environmental 

variables can modify gene activity and phenotypic expression via epigenetic mechanisms. 

However, the extent to which different variables leave a mark on the “aging ledger”  kept 

by the epigenome is not clear. While results from gene expression studies are generally 

straightforward to interpret in that they provide direct evidence of the up- or 

downregulation of specific genes, DNA methylation wears different hats depending on 

the genomic context in which it is found (i.e., its effect on gene regulation or other 

aspects of molecular function can vary markedly by genomic element): it is associated 

with the suppression of gene expression in promoter regions (promoters being the best 

characterized of all regions in which DNA methylation occurs), but its effect in other 

genomic regions is much more varied and can depend on latent, context-specific 
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parameters. Thus, while patterns of DNA methylation are known to change with age, the nature 

of the changes induced by DNA methylation are not well understood. Nonetheless, evidence 

strongly suggests that DNA methylation plays a crucial role in age-related biological change and 

variability in the aging trajectory; epigenetic modifications are well poised to act as proxy 

measures of biological aging due to their sensitivity to behavioral and environmental factors 

known to affect parameters of individual health.  

Epigenomics has already provided new avenues of exploration to decipher how 

individual variation and interactions with the external world become biologically embedded to 

contribute to differences in health and life expectancy. Nearly all aspects of cellular function in a 

multicellular organism require precise regulation of differential gene expression (Booth and 

Brunet 2016). During prenatal development, DNA methylation acts as part of a broader network 

of epigenetic mechanisms to establish differences in the structure of posttranslational chromatin 

states. Modified chromatin states promote functional polarization of chromatin domains, thereby 

allowing stable commitment to transcriptional activity or inactivity, and the capacity to commit 

genetically homogenous cells to a wide, heterogeneous variety of cellular fates (Bird 2002). 

DNA is densely packaged and wrapped around an octamer of core histone proteins to 

form the basic unit of a chromatin polymer, the nucleosome (Hochberg et al. 2011). In cells that 

are not actively dividing, units of chromatin adopt either a euchromatic or heterochromatic 

configuration (Booth and Brunet 2016). Euchromatin is the transcriptionally active state, in 

which chromatin is loosely packaged in an open conformation, allowing transcription factors and 

other regulatory proteins access to DNA. In the heterochromatic state, DNA is tightly condensed, 

and this closed conformation prevents transcriptional activity (Allis and Jenuwein 2016). 

Epimutations (disruptions to existing patterns of epigenetic regulation), accumulate at 

varying rates with age, increasing rates of aberrant epigenetic change and modifying gene 

expression (Issa 2014). A global trend of DNA hypomethylation is also observed with increasing 

age, although there are specific loci often enriched for genes related to development as well as 

potential oncogenesis which become hypermethylated with age (Kananen et al. 2016; Salminen 

et al. 2012; Salminen 2021). Age-related changes in histone methylation are known to contribute 

to the loss of heterochromatin, which disrupts chromatin architecture and increases the likelihood 

of DNA damage. Chromatin reorganization can modify patterns of gene expression, reduce 
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transcriptional fidelity, and increase the likelihood of mutations, thereby intensifying 

genomic and mitochondrial deterioration (Engelfriet et al. 2013). Abnormal restructuring 

of heterochromatin can also create a more permissive environment for the activation and 

relocation of mutagenic transposable elements, which disrupt coding and regulatory 

processes and further contribute to the loss of genomic integrity (Sturm, Ivics, and Vellai 

2015). These myriad epigenetic changes drive a growing number of cells towards 

apoptosis or replicative senescence (Engelfreit et al. 2013). 

Transcriptional activation of most protein-coding genes occurs at promoters that 

contain an unusually high density of CG dinucleotides, known as CpG islands. These are 

stretches of the genome typically between 500 bp to 2 kb long and with at least 50% 

guanine-cytosine (CG) content (Lee and Pausova 2013; Day et al. 2013). The 

accumulation of methyl marks at multiple CpG sites in the same genomic region is 

known as hypermethylation, while their loss is referred to as hypomethylation (Day et al. 

2013). When hypermethylation occurs in promoter regions, expression of the associated 

gene is typically suppressed (Lee and Pausova 2013). Interestingly, when methylation 

occurs within gene bodies, it is associated with enhanced rather than repressed gene 

expression, although in general, its effect outside of promoters is only partially 

understood (Campbell and Wood 2019).  

DNA methylation suppresses gene expression by preventing or facilitating 

binding of transcriptional activators or repressors, respectively, and through recruitment 

of repressive histone-modifying enzymes (Booth and Brunet 2016). In most individuals, 

CpG-rich regions show modest but consistent levels of methylation, but the specific 

identity of the methylated site varies by individual. In contrast, CpG-poor regions show 

greater variability in the degree of methylation, but more uniformity in terms of which 

sites are methylated across individuals (Johnson and Tricker 2010). Studies of identical 

twins have shown that inter-individual differences in genome methylation patterns 

increase as a function of age, leading to differences in gene expression and lifespan 

(Moskalev et al. 2014; Thompson et al. 2010). Twin pairs who exhibited greater lifestyle 

differences or spent less time together over the course of their lives show greater inter- 

individual variability, highlighting an environmental influence on the epigenomic 
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landscape (Lee and Pausova 2013). Variation in epigenetic markers between cells from the same 

tissue also increases with age (Maegawa et al. 2017; West, Widschwendter, and Teschendorff 

2013; Mendenhall et al. 2021). This trend of increasing variability among certain epigenetic 

markers over time is known as epigenetic drift, and is believed to be driven by both intrinsic and 

environmental factors (Lee and Pausova 2013; Issa 2014). Epigenetic changes that occur in 

response to environmental stimuli could underlie certain aspects of inter-individual vulnerability 

to age-related disease and decline (Perna et al. 2016), but the mechanisms by which this occurs 

remain obscure.  

 

Predictive Models of Aging Using the DNA Methylome 

An epigenetic model with the capacity to quantify biological age in population-based 

research was first realized in 2013, when Horvath and Hannum and colleagues independently 

published separate versions of human-specific epigenetic clocks. The epigenetic clock is a 

biological age predictor model that measure changes in DNA methylation at select CpG sites to 

predict chronological age with unprecedented accuracy (Horvath 2013; Hannum et al. 2013). In 

healthy individuals, chronological and biological age are typically well correlated. However, 

individuals who experience prolonged socioeconomic or psychosocial stress, are pre- disposed to 

particular age-related diseases, to or who actively manage chronic non-communicable conditions 

(such as type 2 diabetes or cardiovascular disease), often exhibit signs of pathological or 

accelerated aging, which is reflected in a predicted biological age that exceeds actual 

chronological age, indicating increased risk of mortality  (Gassen et al. 2017; Horvath et al. 

2014). While the two human clock models are based on a similar framework and methodology, 

each has specific strengths depending on context: as a multi-tissue age predictor, Horvath’s 

epigenetic clock theoretically has a wider range of potential applications, and may be less likely 

to detect tissue-specific changes (Quach et al. 2017). The epigenetic clock model developed by 

Hannum and colleagues was correlated with age-related changes in gene expression, and could 

possibly be used in conjunction with transcriptome dynamics to characterize molecular aging in 

greater detail (Hannum et al. 2013).  

At the site-specific level, it is apparent that methylation levels change only modestly over 

the course of the lifespan. Despite the small contribution to the aging phenotype of each CpG site 
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in isolation, when assessed in aggregate, changes in methylation at these sites closely 

tracks the progression of aging. The cumulative age effects of these small changes 

suggest that aging may be regulated by a large number of small changes distributed 

throughout the genome.  

It has been proposed that these age predictor models measure the “work” 

performed by an epigenetic maintenance system whose main function is the preservation 

of genomic stability (Horvath 2013). The intensity of the “work” performed by this 

maintenance system corresponds to the pace at which the clock “ticks”. Under this 

premise, the clock is expected to tick most rapidly during growth and development; when 

growth is largely complete, the ticking rate slows down and assumes a more constant 

pace during normal aging. However, threats to genomic stability are expected to 

upregulate activity of the epigenetic maintenance system, theoretically accelerating DNA 

methylation age. Disruptions to the genomic architecture, mitogenic activity, and 

carcinogenesis are all expected to activate the epigenetic maintenance system and thus 

accelerate rates of DNA methylation aging (Nwanaji-Enwerem, Weisskopf, and 

Baccarelli 2018; Horvath 2013).  

An important feature of epigenetic clock models is that they are both accurate 

predictors of age but can also be used to identify outliers who do not follow the typical 

pace of normal aging (Hannum et al. 2013). This allows the epigenetic clock to be used 

both as a measure of chronological age and a putative indicator of disease and mortality 

risk (Perna et al. 2016; Marioni et al. 2015a; 2015b). Epigenetic age predictor models 

appear to be sensitive to a number of physiological, psychological, and environmental 

factors, contributing to their robustness as a method aimed at capturing biological age. 

While other studies have identified genomic patterns of age-related change in DNA 

methylation (Bocklandt et al. 2011; B. C. Christensen et al. 2009),  they never gained 

widespread popularity for use as biomarkers, possibly owing to issues related to 

replicability of performance.  

Over the past nine years, epigenetic clocks has been applied in a variety of 

contexts to examine the impacts of lifestyle, behavior, diet, hereditary disorders, chronic 

infection, and non-communicable chronic diseases on the pace of aging. Results from 
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these analyses have provided consistent if somewhat enigmatic support for the clock’s ability to 

capture true variation in the progression of aging and age-related decline. Contributing to the 

enigma is the “black box” nature of the type of machine learning used to produce these models—

while widespread application and testing of the human clocks provide substantial evidence for 

their capacity to capture (some of the) variation in biological aging that chronological age 

cannot, attempts at identifying the molecular mechanisms underlying their functionality have 

yielded no definitive results. It is also notable that hazard ratios for the relationship between 

clock-based estimates of age acceleration/deceleration and the incidence of disease or age-related 

mortality are very modest (e.g., Perna et al. 2016), suggesting these models capture an 

incomplete picture, despite being one of the most robust biomarkers of aging in use today. The 

“next-generation” of human clocks have incorporated biochemical and behavioral data to 

produce multi-level age predictor models that more accurately model human risk of mortality. 

While this is not typically feasible for studies involving non-human animals, empirical 

application of non-human clocks to the study of putative pro- or anti-aging interventions or 

behaviors can elucidate the variables to which such models are more or less sensitive. This, in 

turn, will shed more light on the physiological systems and molecular networks that play active 

roles in DNA methylation changes that promote healthy or pathogenic processes of aging. 

 

Dissertation Research 

The molecular pathways involved in the process of biological aging are multitudinous, 

and the environmental and genetic factors that influence the activity of these pathways, thereby 

driving inter-individual differences in rates in biological aging, are equally numerous and 

complex. Many of the physiological processes that ultimately result in age-related decline and 

mortality are inescapable; however, they are not entirely immutable. It is clear that different 

individuals age at different rates, although it is not clear why or how this variation manifests. 

This dissertation research was aimed at elucidating sources of variability in the pace and shape of 

the aging trajectory using the lens of the DNA methylome to systematically investigate the 

molecular nature of aging in a targeted, tissue-specific approach. As has been recognized 

previously (e.g., Bell et al. 2019), targeted tissue-specific models are expected to be more 
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valuable to the advancement of our understanding of aging and age-related disease.    

 

Description of Chapter II: An Epigenetic Clock Captures Variation In Molecular Aging In Two 

Cercopithecoid Species 

The research constituting this chapter had two main objectives. The first was to 

develop an epigenetic age predictor model for rhesus macaques. To this end, I used DNA 

methylation data from whole blood from 563 rhesus macaques living on the island of 

Cayo Santiago to develop an epigenetic clock model using data from a free-ranging, 

long-lived non-human primate. 

The second objective of this research was to apply the clock to evaluate its 

predictive performance using independent datasets. However, due to the nature of the 

assay, DNA methylation data generated using reduced representation bisulfite sequencing 

(RRBS) are never uniform between independent datasets and this heterogeneity in 

genomic coverage complicates inter-study application of epigenetic clock models. Thus, 

to increase the generalizability of my model to other studies and datasets, I develop a 

simple but highly effective method (“sliding window method”) to increase the degree of 

shared coverage between datasets. I tested the efficacy of this “sliding window-based” 

approach and the functional capacity of my model to estimate epigenetic age with high 

accuracy using previously collected data from two cercopithecoid species living in highly 

disparate environments: the first, a captive group of 43 female rhesus macaques housed at 

Yerkes National Primate Research Center, and the second, a wild population of 271 male 

and female baboons living in Amboseli National Park, in Kenya. In doing so, I was able 

to present a new, updated method with greater cross-study applicability, enabling more 

powerful comparative analyses from existing and future RRBS datasets. I also 

demonstrated that the RheMacAge model is applicable not just to rhesus macaques, but 

also predicts age with high accuracy in a second closely-related and biomedically 

relevant species, baboons (Papio sp.). Finally, I test the model’s sensitivity to the effects 

of social status in a pilot analysis of data from macaques on Cayo Santiago, and show 

that the RheMacAge model recapitulates the effect of male rank on epigenetic age in 
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baboons that was first reported in the publication of a baboon clock by Anderson et al. (2021), 

demonstrating its sensitivity to factors that modulate the pace of aging even when utilized in a 

separate species. 

The research in this chapter is yet unpublished but includes contributions from multiple 

co-authors. Co-author Marina Watowich (MW) ran the statistical test to determine if there was a 

significant association between social status (rank) and the pace of epigenetic aging, and 

contributed written text to the Results section under the sub-heading “Effects of Socio-

environmental Variables on Residual Epigenetic Age”. MW also generated the figure showing 

the relationship between rank and epigenetic aging (Figure 5). Co-author Kenneth Chiou 

generated the PhastCon scores that I used to test the clock loci for enrichment for evolutionarily 

conserved sequences. He contributed text describing the methodology for PhastCon score 

generation in Appendix B, under the sub-heading “Enrichment Analysis for Evolutionarily 

Conserved Sequences”.  Apart from the two aforementioned sections, all work in this document 

is my own. Additional co-authors who had the opportunity to review the work in Chapter II are 

Jordan A. Anderson, Lauren J.N. Brent, James P. Higham, Julie E. Horvath, Melween I. 

Martínez, Arianne Mercer, Michael J. Montague, Michael L. Platt, Sierra N. Sams, Noah 

Snyder-Mackler, Kirstin N. Sterner, and Jenny Tung.  

 

Description of Chapter III: Characterization of the Rhesus Liver Methylome by Sex, Age, and in 

Response to Dietary Restriction 

Diet is one of the most consequential behavioral variables in the human environment, 

with profound effects on health and longevity. However, the relationship between diet and aging 

is not well understood, and efforts to characterize this relationship in humans have struggled to 

disentangle the effects of diet from confounding variables. Because nutrition is arguably the most 

powerful environmental determinant of health over the long lifespan typical of primate species, 

characterizing the effects of diet on longevity in a primate model is an important task. The 

research described in this chapter thus had three primary objectives. The first was to build an 

epigenetic clock specifically for liver tissue; the second objective was to apply the liver-specific 
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clock model to a study of long-term dietary restriction to test the hypothesis that DR 

delays the rate of biological aging. The third objective was to compare the effect of DR 

on the aging methylome in age- and sex-matched samples to better understand the 

molecular effects of DR and the functional underpinnings of its pro-longevity effects.  

Two major studies of long-term DR have been conducted in long-lived primates. 

One was performed at the University of Wisconsin, Madison, and investigated how DR 

affected risk and incidence of age-related disease and life expectancy in a population of 

adult rhesus macaques using a case/control study design. The second was conducted at the 

National Institute on Aging (NIA); analysis of this population is the focus of this chapter. 

Unlike the UW study, results from the NIA study of long-term DR are more ambiguous 

and involve individuals who started on a calorically-restricted diet at multiple 

developmental time points and ages. To address this gap in knowledge, I constructed an 

epigenetic clock using banked liver tissue samples from 96 rhesus macaques from the 

Oregon National Primate Research Center (ONPRC). I subsequently tested the effect of 

dietary modification, specifically a calorie-restricted diet, on the pace of epigenetic aging 

using this model. Importantly, this is the only research to date to examine the effect of 

caloric restriction on lifespan when started during the early juvenile stage in a long-lived 

non-human primate.  

Finally, I characterized patterns of epigenomic aging across the adult lifespan in 

the liver of healthy rhesus macaques, as well as in each sex independently, providing a 

novel window into the epigenetic changes associated with tissue-specific aging in both 

sexes of this species through differential methylation analyses. I comparatively examined 

the degree of epigenetic age-related change in the liver between normal aging and DR 

study populations to shed light on the processes of epigenetic aging in a critically 

important but underexplored tissue.  

Description of Chapter IV: Concluding Summary 

In the final chapter,  I summarize the intellectual contributions that have been 

made through the completion of the research I describe here. I propose potential 

explanations for the most salient findings from these analyses, with a particular focus on 
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the outcomes from Chapter III. I also briefly describe and exhibit a tissue-specific clock I 

constructed using 96 hippocampus samples from rhesus macaques but was not able to 

formally include in this dissertation. Finally, I conclude by suggesting future directions in 

which this research may go to continue to reveal novel and interesting insight into the 

relationship between the environment, the epigenome, and aging.   

 

Bridge to Chapter II 

Blood is often the preferred biological sample type for periodic evaluation of general 

health in humans and non-human animals. Several aspects of blood and blood sample collection 

make it a logical choice for this purpose. Blood circulates throughout the body and interfaces 

with all tissues and organs; for this reason, it is relied on as a proxy measure of systemic health. 

Additionally, changes in cell type proportions among immune cells found in blood can be 

indicative of an underlying risk factor for disease or disease state. Venous blood draws are a 

quick and efficient means of obtaining a biological sample from a healthy living organism 

especially compared to most other tissues in the body. Compared to biopsy, this is a minimally-

invasive procedure that can be completed by a phlebotomist in minutes. In the following chapter, 

I investigate age-related changes in the methylome of semi-wild rhesus macaques living on the 

island of Cayo Santiago using whole blood samples collected after darting and briefly 

anesthetizing an animal before re-releasing them back into the group. I built and tested an age 

predictor model on two additional cercopithecoid populations and examined the putative 

epigenetic response to environmental variables expected to influence the pace of aging, finding 

support for a relationship between male social status and the rate of epigenetic aging. The shape 

and strength of this relationship differed between male rhesus macaques and male baboons in 

ways that are putatively reflective of the different ways that males of each species structure of 

their respective dominance hierarchies.  
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CHAPTER II 

AN EPIGENETIC CLOCK CAPTURES VARIATION IN MOLECULAR AGING IN 

TWO CERCOPITHECOID SPECIES 

 

Introduction 

Research in this chapter includes unpublished co-authored material. Marina 

Watowich (MW) and Kenneth Chiou (KC) made substantial contributions to the work in 

this chapter. MW performed statistical analysis of the relationship between social status 

and epigenetic aging and generated Figure 5. KC generated the data used for the analysis 

of evolutionarily conserved sequences. Each wrote a paragraph describing the work 

performed. All other writing and analyses are my own. 

 Chronological age is the strongest risk factor for the development of most 

chronic, non-communicable diseases (Wagner et al. 2016). However, chronological age 

cannot capture individual variation in health and disease risk beyond that associated with 

the passage of time. Measures of biological age aim to capture this variation to improve 

predictions of individual morbidity and mortality risk. The epigenetic clocks constructed 

by Horvath (2013) and Hannum and colleagues (2013) were the first models of biological 

age to be successfully used outside their study of origin and have gained widespread use 

as biomarkers of health (see Nwanaji-Enwerem, Weisskopf, and Baccarelli 2018; 

Horvath and Raj 2018 for review). Recent work in humans has shown that a more rapid 

rate of age-related physiological decline compared to the average for one’s birth-year 

cohort (i.e., accelerated aging) is associated with a greater risk of death (Chen et al. 2016; 

Levine et al. 2018; Marioni et al. 2015) and greater predisposition to several major 

diseases of aging (Ambatipudi et al. 2017; Z. Yang et al. 2016; Zheng et al. 2016). 

Epigenetic clocks may also capture socio-environmental effects on the pace of aging, 

such as exposure to traumatic events during military combat (Boks et al. 2015), adverse 

childhood experiences (Miller et al. 2015) or the long-term health implications of alcohol 

and tobacco use (Beach et al. 2015). Yet, the way in which different social and ecological 
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factors “get under the skin” to regulate shifts in disease and mortality risk is not well understood. 

Development of epigenetic clocks in non-human animal models provides opportunities for 

comparative analyses across species using data from controlled experimental settings or from 

multigenerational field studies.       

Macaques and baboons are two ideal models for humans because they are close 

evolutionary relatives with similar life history strategies to humans. This is particularly relevant 

for the study of aging because environmental effects may not manifest in a similar manner, if at 

all, in short-lived species (e.g., rodents) with different life history strategies from humans. 

Indeed, questions that have been notoriously challenging to study in humans can often be 

brought to fruition in these closely related non-human primate relatives, such as those related to 

the long-term health effects of diet and nutritional intake or chronic stress (Kanthaswamy et al. 

2017; Rawlins and Kessler 1986). Socially-living non-human primate species like macaques and 

baboons offer an excellent model for examining how differences in social status contribute to 

disparities in health and well-being (Snyder-Mackler et al. 2020). Among gregarious NHP 

species, social relationships and interactions are structured by dominance hierarchies. Individuals 

with high social status (dominant or high-rank individuals) have greater access to environmental 

(food, water, resting sites safe from predators) and social (mates, grooming partners) resources 

(Sapolsky 2005). Low social-status individuals (subordinate or low-rank individuals) are more 

often the targets of aggressive behavior, are less frequently groomed by other group members, 

and exhibit more fear- and anxiety-related behaviors compared to dominant individuals, such as 

grimacing, lip smacking, and vigilant scanning of the social environment (Sapolsky 2005; 

Shively and Day 2015). Importantly, low social status in  human and non-human primates is 

associated with greater risk and incidence of inflammatory diseases and shorter lifespan (Snyder-

Mackler et al. 2020). Studies in captive female rhesus macaques show differences in feeding 

behavior, body fat storage, and rates of obesity between dominant and subordinate individuals: 

low-status individuals are more likely to eat at night, consume more calories, and are predisposed 

to store visceral rather than subcutaneous fat, which contributes to higher levels of disease-

associated inflammatory cytokines and adipokines (Wilson et al. 2008; Shively and Day 2015). 

Given that many of these health effects mirror those associated with chronic social stress and 

health inequity in humans, the relationship between social status, disease- and mortality risk has 
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translational relevance to the study of biological aging and to the characterization of what 

determines resilience or vulnerability to the effects of stress on long-term health outcomes.  

The most extensively applied DNA methylation clocks to date were built using 

DNA methylation data from humans generated on Illumina Infinium microarrays 

(Hannum et al. 2013; Horvath 2013). By contrast, many of the non-human and non-

model organism studies of DNA methylation conducted over the last decade have used 

high-throughput bisulfite sequencing (BS-seq) approaches due to the high cost of 

developing new species-specific arrays. These studies have thus generated a large amount 

of BS-seq data from which additional value might be extracted with the appropriate tools. 

However, sequence-based clock models are often less generalizable than array-based 

clocks because of variability in precisely which CG-rich regions of the genome are 

covered. This characteristic can limit comparative analyses or external application of a 

clock model because CpG sites cannot be used for prediction if they are absent from the 

dataset to which the model is being applied.  

In developing a non-human primate epigenetic clock, we aim to facilitate 

comparisons among species whose aging trajectories are more like humans both in 

duration and timing of key developmental events compared to shorter-lived model 

organisms like rodents. To this end, our study had two primary objectives: (1) to develop 

and validate a generalizable epigenetic clock model for use with BS-seq data, and (2) to 

use this model to explore social environmental sources of variation in biological aging in 

a pilot analysis. First, we built a sequence data-based epigenetic clock model using blood 

samples from a population of free-ranging rhesus macaques living on Cayo Santiago. 

Because CpG sites within close physical distance to one another tend to have similar 

methylation levels, we partitioned the rhesus macaque genome into 2.85 million non-

overlapping windows (each 1 kb in length) and subsequently grouped CpG sites in our 

dataset into these 1 kb-long windows. Using this sliding window-style approach (as 

opposed to individual sites) substantially improved our model’s generalizability across 

datasets. Finally, we applied our model to two independently generated datasets, 

demonstrating not only the cross-study but cross-species applicability of our approach in 

two non-human primates (NHP) with exceptional research importance, rhesus macaques 
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(Macaca mulatta) and baboons (a heavily admixed population yellow (Papio cenocephalus) and 

anubis (Papio anubis) baboons living at Amboseli National Park, hereafter referred to using the 

more colloquial “Amboseli baboons”, due to the relatively high prevalence of admixed 

individuals [see Vilgalys et al. 2021]).  

 

Methods 

Study Populations and Sample Collection 

Our primary dataset consisted of 563 whole blood samples (n unique individuals=493) 

drawn from sedated rhesus macaques by veterinary staff as part of routine capture-and-release 

efforts on Cayo Santiago, an island located 1 kilometer off the eastern coast of Puerto Rico. This 

colony of free-ranging rhesus macaques was first established on Cayo Santiago in 1938 with a 

founder population of approximately 400 individuals of Indian origin (Rawlins and Kessler 

1986). Demographic, socio-behavioral, and biological data have been routinely collected on the 

island since 1956. As of 2022, the population has grown to more than 1,600 individuals, 

organized into 11 extant social groups. The data used in this study came from 273 female and 

220 male rhesus macaques aged 1.32 months to 28.82 years, and were collected from 2010 to 

2018. Age at sexual maturity for rhesus macaques on Cayo Santiago is approximately four years, 

and median lifespan is approximately 18 years (this is lower than the average lifespan for captive 

rhesus macaques, whose longevity is benefited by the routine medical care and extensive health 

monitoring that typically occurs at research institutes). A 20-year old female rhesus macaque in 

captivity has a remaining life expectancy approximately comparable to a 60-year old woman in 

the United States. Sixty-six individuals were sampled more than once during this study: sixty-

two individuals were sampled twice and four individuals were sampled three times. Blood was 

collected into K3 EDTA vacutainer tubes (BD Biosciences) which were stored at -80°C within 

eight hours of collection. Ethical approval was granted by the University of Puerto Rico, Medical 

Sciences Campus (protocol number A400117) for all samples collected.  

 

RRBS Data Generation 

Genomic DNA was isolated from whole blood using the Qiagen Blood and Tissue DNA 

kit (QIAGEN, Hilden, Germany). To measure CpG methylation, we used reduced representation 
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bisulfite sequencing (RRBS) (Gu et al. 2011). To prepare RRBS libraries, we followed 

the library preparation protocol detailed on the Snyder-Mackler Lab website (wp-

content/uploads/2020/03/SMack_Lab_RRBS-with-Zymo-EZDNA-MagBead.pdf). Briefly, we 

digested extracted DNA using the MspI restriction enzyme, which cuts at CCGG sites, 

ligated NEBNext methylated adapters (Illumina Inc., San Diego, CA), bisulfite converted 

the DNA using the Zymo EZDNA Methylation- LightningTM Kit (Zymo Research, 

Irvine, CA), and amplified the final fragments using PCR with NEBNext Multiplex 

Oligos to barcode each library. Libraries were sequenced in two batches. Batch 1 

contained 104 samples (2x50bp reads) sequenced on an Illumina NovaSeq S2 flowcell. 

Batch 2 was made up of 527 samples (2x100bp reads) and sequenced on a NovaSeq S4 

flowcell.   

 

Secondary RRBS Datasets 

We tested the generalizability and performance of our model using two 

independently generated RRBS datasets. To test generalizability across populations and 

study systems of the same species, we used samples from 43 female rhesus macaques, 

aged 3.1 to 20.1 years, housed at Yerkes National Primate Research Center (YNPRC). 

RRBS libraries were generated from purified classical monocytes (CD3-/CD14+) 

collected as part of an unrelated study examining dominance rank effects on gene 

regulation and immune function (Snyder-Mackler et al. 2016a). 

 

To test the generalizability of our clock to another species that is highly important 

in biomedical research, we applied our model to a second RRBS dataset generated from 

271 whole blood samples collected from wild baboons (from Anderson et al. 2021, SRA 

project accession PRJNA648767). This dataset contained samples collected from 138 

females and 133 males, aged 1.93 to 26.34 years. 

 

Alignment and Preprocessing 
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We trimmed sequenced reads with Trim Galore! (v0.4.5) (Martin 2011), and used 

MultiQC (Ewels et al., 2016) to evaluate the quality of the trimmed reads and to check 

for additional adaptor contamination or low-quality sequences. Mean sequence quality 

was assessed using Phred scores, which exceeded the minimum acceptable threshold 

(>20) for all libraries. For both our newly generated data and the two external datasets, we used 

Bismark (v0.20.0) (Krueger and Andrews 2011) for alignment and methylation calling to the 

rhesus reference genome (Mmul10). We aligned trimmed reads to the converted rhesus reference 

genome using default settings for all but two parameters (--score-min and -R; see Appendix B 

under “Supplemental Methods”). We generated methylation coverage files by summing 

methylated and unmethylated read counts for each site. We parallelized downstream filtering and 

processing of the coverage data with GNU parallel (Tange 2018) and used BedTools (v2.24.0) 

(Quinlan and Hall 2010) to remove features missing in more than 10% of samples and those with 

< 5X median coverage. For the Yerkes and Amboseli datasets, the data processing workflow was 

nearly identical apart from modifications for processing the single-end reads in both these 

datasets. Unless otherwise stated, all subsequent analyses were carried out in RStudio 

(v1.4.1106) (RStudio Team 2015).  

 

Site-Based Modeling Approach 

To limit the inclusion of invariant or uninformative sites, we removed CpG sites that 

were missing in more than 10% of the training samples and excluded samples that were missing 

data at >25% of CpG sites in the dataset. We removed constitutively hypo- or hypermethylated 

sites (those with median percent methylation less than 10% or greater than 90% across samples), 

and sites with < 5X median coverage, leaving 196,345 CpG sites in the site-based dataset. A 

detailed description of sample filtering criteria can be found in Appendix B under “Supplemental 

Methods”. 

We then imputed missing and low coverage (< 5X) sites in our dataset using BoostMe 

(Zou et al. 2018). On average, 12.5% of sites were imputed per sample. After removing sites 

mapping to sex chromosomes and those containing one or more inadmissible values (non-real 

numbers that result from when BoostMe attempts to divide by zero), the dataset contained 
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185,153 sites. 

 

Sliding Window-Based Modeling Approach 

To improve our model generalizability, we compared performance of the 

traditional site-based method to a sliding window-style approach with the intent of 

capturing more shared loci across samples and datasets. For each window containing at 

least one read in our dataset, we summed methylated reads and divided them by the total 

number of (methylated + unmethylated) reads to obtain methylation ratios corresponding 

to each region. We implemented the same filtering strategy described above by excluding 

windows that were missing in more than 10% of samples (leaving 279,052 windows), 

samples that were missing >25% of features in the dataset, windows that were 

constitutively hypo- or hypermethylated, and those with < 5X median coverage, leaving a 

final set of 161,289 windows.  

Missing values and those with < 5X coverage at a given feature were imputed 

using BoostMe. The average proportion of imputed windows was 1.98% per sample. 

Notably, the average proportion of features imputed for the window-based approach was 

six-fold lower than that of the site-based dataset. Following imputation, the removal of 

windows containing non-real numbers and those mapping to sex chromosomes, 159,472 

windows remained. The three datasets used to train, validate and test the model were 

processed in an identical manner.   

 

Model Training and Optimization via Cross Validation 

Each step described in this section was performed independently on both the site-

based and window-based datasets.   

We used elastic net regression implemented using the R package glmnet (v4.1-1) 

(Friedman et al. 2010) and leave-one-out cross validation (LOOCV) to evaluate the 

predictive performance of our DNA methylation data. To perform LOOCV, one sample 

is held out at a time, and ‘proto-models’ are generated on the remaining N-1 samples 

using 10-fold cross validation. The “best” proto-model (the proto-model with the lowest 
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mean absolute error) is then used to predict the age of the held-out sample. This process is 

repeated for each sample in the dataset. Once all 563 age predictions were generated, we 

regressed all predicted age values onto observed age values (chronological age) to evaluate the 

predictive performance of the model generated from our primary dataset. 

After confirming the capacity of our primary dataset to predict age, we proceeded to 

generate the final model. We quantile normalized methylation values across features and across 

samples independently for the Yerkes macaque and baboon datasets. Next, we determined 

optimal hyperparameter settings using the caret package (v6.0-86) (Kuhn, 2008; 

https://topepo.github.io/caret/) by performing a grid search across two hundred combinations of 

alpha and lambda using repeated (3x) 10-fold cross validation on all 563 samples. Once the 

optimal hyperparameter values were determined, we performed an elastic net regression on the 

entire dataset using the optimized values and applied this model to the two external datasets. 

 

Gene Annotation and Enrichment Analyses for the Window-based Dataset 

We tested whether our clock windows were overrepresented in CpG islands and shores 

using annotation files downloaded using UCSC’s TableBrowser tool (Kent et al. 2002). We used 

BedTools to determine the number of windows that overlapped CpG islands (CG-rich parts of 

the genome that often co-localize with promoter regions) and CpG island shores (2 kb flanking 

regions on either side of the island) and used two-sided Fisher's exact tests to test for enrichment. 

To test whether clock windows were overrepresented in enhancer regions, we downloaded 

chromatin state annotations for human peripheral blood mononuclear cells (PBMCs) from the 

Roadmap Epigenomics Project (https://egg2.wustl.edu/roadmap/web_portal/index.html) and 

used UCSC’s LiftOver tool (Kent et al. 2002) to convert these coordinates to the rhesus macaque 

genome. We retained annotations for genic enhancers (chromatin state 6, frequently occurring in 

gene bodies and sometimes in exons), bivalent enhancers (chromatin state 12, characterized by 

both activating and repressive histone marks) and other enhancers (chromatin state 7, occurring 

less frequently in gene bodies [compared to state 6] and very rarely in exons). We used BedTools 

to determine the number of windows that overlapped enhancers and two-sided Fisher’s exact 

tests to test for enrichment of hypo- and hypermethylated clock windows in enhancer regions. To 

determine whether any Gene Ontology (GO) terms or KEGG (Kyoto Encyclopedia of Genes and 



 

 

 

44 

Genomes) pathways were significantly overrepresented in the clock windows, we used 

the gProfiler (v0.2.0) (Raudvere et al. 2019) R package. To test for enrichment of 

evolutionarily conserved regions in clock windows, we calculated conservation scores for 

148,339 of the 155,347 windows in our dataset using phastCons (Siepel 2005) (see 

Appendix B). 

 

Model Applications 

Quantifying the Pace of Epigenetic Aging 

We defined a measure of age acceleration, termed "residual age" (similar to 

Horvath’s [2013] "delta age") by taking the residuals from a loess (locally estimated 

scatterplot smoothing) regression of predicted onto chronological age to enable 

identification of individuals who may be aging more (or less) rapidly than expected based 

on their calendar age. By taking the residuals from a loess regression, we can detect 

putatively meaningful deviation from the expected rate of aging while accounting for 

systemic effects of the model (e.g., the influence of chronological age) and the non-linear 

pace of the aging process (see Figure S1).  

 

Examining the Effects of Socio-environmental Variables on Residual Epigenetic Age 

We tested if low social status, a proxy for social adversity, accelerated the pace of 

epigenetic aging in the Cayo Santiago rhesus macaques. Rhesus macaques live in social 

groups composed of adult females from several matrilines, their offspring, and mostly 

unrelated adult males. Females inherit their mothers’ dominance rank, and thus offspring 

take the position just below their mothers, with younger sisters superseding older sisters. 

Males typically emigrate from their natal social groups when they reach sexual maturity 

(approximately age four) to join new social groups, where any status conferred by their 

matriline is lost and they become low-ranking members in the new group. Contrary to 

some other social NHPs (e.g., baboons), male rhesus macaques do not attain high rank 

through direct competition, but “queue” for dominance such that their rank increases in 

accordance with their length of tenure in a social group (Maestripieri and Hoffman 2012).  

While female rank tends to be stable over long periods and males do not generally fight 
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for high rank, dominance hierarchies for both sexes are determined and reinforced via 

antagonistic interactions between individuals (Maestripieri and Hoffman 2012). For both 

sexes, high rank confers greater access to resources. Among females, low-rank animals 

are harassed more frequently and chased away from food. By contrast, high-rank females show 

higher annual survival, although it is unclear whether rank consistently affects lifespan in female 

rhesus macaques (Maestripieri and Georgiev 2016; Brent, Ruiz-Lambides, and Platt 2017; Ellis 

et al. 2019). For males, high rank confers greater access to resources and mates. Prior to the 

breeding season, high-rank males gain body fat and weight, which they then lose at a rapid pace 

once breeding commences (Bercovitch 1997). Thus, low-ranking individuals may experience 

different forms of social adversity dependent on sex. 

For this study, we acquired behavioral data and quantified dominance rank for 81 males 

and 116 female rhesus macaques. Rank was calculated separately for females and males within a 

social group using dyadic win-loss interactions between individuals, with the highest rank scored 

as 100 (i.e., dominating 100% of other individuals) and the lowest as 0. Behavioral data used to 

determine social rank were collected in the year before blood was drawn (i.e., we calculated rank 

for animals whose blood was drawn between October and December using behavioral data 

collected from that same calendar year, while the rank of animals with blood drawn between 

January and March was calculated using behavioral data collected the preceding year). 

We tested whether dominance rank was associated with less rapid epigenetic aging by 

modeling residual age as a function of rank as a linear variable separately for females (n = 116, 

aged 6.01 to 27.9 years) and males (n = 81, aged 5.9 to 22.8 years). Because longer tenure is 

associated with higher dominance rank, we tested whether the pace of epigenetic aging was 

affected by length of tenure in one's social group among males (n = 230, aged 3.9 to 21.7 years). 

 

Results 

The Window-Based Model Outperformed the Traditional Site-Based Model 



 

 

 

46 

Despite the fact that both the site- and window-based datasets contained a similar 

number of loci after filtering (~180K and ~160K, respectively), the overlap in features 

retained in both the Cayo and Yerkes datasets increased substantially when we used the 

sliding window-based approach. Of the 185,153 CpG sites in the filtered Cayo Santiago 

dataset, 38% (70,439) of sites were also found in the Yerkes dataset, compared to 97% 

(155,347) shared features for the window-based dataset (see Figure S2 in Appendix A). 

This increase in generalizability across datasets was bolstered by the fact that the 

window-based model showed superior performance in predicting age in the Cayo 

population using LOOCV. Our site-based model was able to accurately predict age 

(Pearson’s r = 0.82 MAD = 2.11 years) (Figure 1A) but was significantly outperformed 

(t = 5.52, df = 545, p = 5.36 x 10-8, mean difference = 0.32, paired t-test) by the window-

Figure 1. (A)  Site-based model of methylation age successfully predicts known chronological age. Known 

chronological age is highly correlated with epigenetic age predictions from our site-based epigenetic clock 

(Pearson's r = 0.82, median absolute deviation between predicted and chronological age [MAD] = 2.11 
years). Methylation data used to generate the site- and window-based clocks are from whole blood from a 

cross-sectional sample of rhesus macaques living on Cayo Santiago (n samples = 549; n unique females 

= 267). Curved line shows line of best fit from univariate loess regression. (B) Window-based model of 

methylation age successfully predicts known chronological age and outperforms the site-based model. 
Known chronological age is even more highly correlated with epigenetic age predictions in the window-

based epigenetic clock (Pearson's r = 0.9, MAD = 1.42 years) than the site-based clock. The model was 

generated using whole blood samples from rhesus macaque living on the island of Cayo Santiago (n 

samples = 563; n unique females = 273). Curved line shows line of best fit from univariate loess regression. 
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based model (Pearson’s r = 0.9, MAD = 1.42 years) (Figure 1B). It performed equally well in 

males and females (p = 0.71, two-sample t-test). While both models predicted chronological age 

well, they did not scale linearly. We found that age predictions began to plateau at older ages (> 

20 years), as reported in other species, including humans (e.g., Horvath, 2013; Levine et al., 

2020). 

We were also able to test if our model could track aging longitudinally using data from 

66 individuals sampled more than once. For these 66 individuals (n = 70 paired samples due to 

the 4 individuals sampled three times), 88.6% (62/70) displayed an increase in biological age in 

accordance with advancing chronological age (Figure 2). Thus, samples collected later in time 

were more likely to be accurately identified as older than those collected at earlier points in time 

(p = 9.13 x 10-12, one-sided exact binomial test). 

 

 

Figure 2. Predicted aging trajectories for repeatedly sampled individuals 

overwhelmingly increase over time (n = 66 individuals, 70 total predictions 

because 4 individuals were sampled 3x). The vast majority of epigenetic age 
predictions increased as calendar age increased within individuals (blue lines; 

62/70 predictions). Very few predictions went against this expected trend and 

decreased with advancing chronological age (red lines; 8/70; 11.4%). The model 

was significantly more likely to correctly predict the age from the later sample 
was greater than the age(s) of the sample(s) collected at earlier points in time (p 

= 9.13 x 10-12, one-sided exact binomial test). Dashed line shows x=y. 
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Characteristics of RheMacAge Clock Loci 

The final window-based model (RheMacAge blood clock), generated using all 

563 samples, included 359 windows. Of these windows, 164 decreased in methylation 

with age (“hypomethylated windows”) and 195 increased in methylation with age 

(“hypermethylated windows”) . Hypermethylated windows were significantly enriched 

for CpG islands (Odds Ratio [OR]: 3.58 [95% CI: 2.05, 5.97], p = 1.09 x 10-10) but not 

CpG island shores (OR: 1.04, p = 0.8). Hypomethylated windows were not enriched for 

CpG islands (OR: 1.09, p = 0.74) and were significantly underrepresented in CpG island 

shores (OR: 0.26, [95% CI: 0.14, 0.46], p = 4.9 x 10-8). Bivalent enhancer regions were 

significantly overrepresented among hypomethylated clock windows (OR: 4.12 [95% CI: 

1.63,8.71], p = 0.002), while hypermethylated windows were not significantly enriched 

for enhancer regions. 

To determine whether any biological pathways, processes or molecular functions 

were significantly overrepresented in our clock, we performed  GO and KEGG pathway 

analyses. We evaluated the 359 clock windows against the background of 155,347 

windows that were included in model training. We found no GO terms or KEGG 

pathways were significantly overrepresented among our clock windows.  

CpG sites exhibiting age-dependent changes in methylation are often found in 

evolutionarily conserved regions of the genome (Mozhui and Pandey 2017), and certain 

age-dependent patterns of methylation change have been shown to be conserved between 

humans and mice (Spiers et al. 2016; Stubbs et al. 2017). Furthermore, Horvath’s (2013) 

model generated robust predictions of age for chimpanzees and bonobos (the closest 

living evolutionary relatives of humans), but not gorillas, suggesting that some features 

selected by the clock come from conserved sequences but others may not. We found that 

the windows in the RheMacAge clock were very modestly enriched for evolutionarily 

conserved sequences (D = 0.09, p = 0.007, two-sample Kolmogorov-Smirnov test) 

(Figure S3, Figure S4). 

 

RheMacAge Clock Predicts Age in Two Independent Test Datasets 
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To test the performance of our model in an independent dataset, we applied the 

RheMacAge clock to RRBS data generated from purified blood cells from 43 female 

rhesus macaques housed at Yerkes Primate National Research Center (aged 3.1 to 20.1 

years). Our methylation-based age predictions were significantly correlated with chronological 

age (Figure 3) (Pearson’s r = 0.69, p = 2.65 x 10-7), with an MAD of 2.09 years. This indicates 

that the model can be used to predict age with high accuracy in independent populations of 

rhesus macaques.  

We then tested if our clock could generalize to closely-related taxa using the Amboseli 

baboons. When applied to baboons, our RheMacAge clock was able to predict chronological age 

with high accuracy and showed the same general sex-specific patterns in the rate of aging shown 

by Anderson et al. (2021) (male Pearson’s r = 0.8,  p <  2.2 x 10=16 ; MAD = 1.34 years, Figure 

4A; female Pearson’s r = 0.74, p < 2.2 x 10-16 ; MAD = 2.19 years, Figure 4B). Despite the 

modest reduction in predictive accuracy, the RheMacAge model captured a similar biological 

Figure 3. Predicted DNA methylation age for Yerkes rhesus macaques is strongly 

correlated with chronological age (r = 0.69, MAD = 2.09 years). Solid line shows line of 
best fit from univariate linear regression of predicted onto chronological age. Dashed line 

shows x=y. 
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signal to the baboon clock and residual epigenetic age calculated from both models was 

significantly positively correlated (males: r = 0.55, p = 5.28 x 10-12; females: r = 0.41, p = 7.49 x 

Figure 4. RheMacAge successfully predicts interspecies epigenetic ages of baboon DNA 

methylation and recapitulates results from a baboon-specific methylation clock. Predicted age 

for (A) male and (B) female baboons using the RheMacAge epigenetic clock are highly 
correlated with known chronological age (males: r = 0.8, MAD = 1.34 years; females: r =  

0.74, MAD = 2.19 years). The solid line shows the line of best fit from univariate linear 
regression of predicted onto chronological age. Dashed line shows x = y. Residual epigenetic 

age from the RheMacAge (x-axis) recapitulates residual ages from a baboon-specific clock (y-

axis) for (C) males (r = 0.55, p = 5.28 x 10-12) and (D) females (r = 0.41, p = 7.49 x 10-7). 
Points in the bottom left (decelerated ages) and top right (accelerated ages) quadrants reflect 

concordance in residual epigenetic ages between the two clocks. Discordant predictions 
between the two clocks (i.e., one clock predicts accelerated age while the other predicts 

decelerated rate of aging) are in the top left and bottom right quadrants. 
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10-7; Figures 4C, Figure 4D). 

 

The RheMacAge Clock and the Impact of Social Status and Adversity on the Aging Epigenome 

Finally, we tested whether social status was associated with residual epigenetic age in 

sub-sample of rhesus macaques (n = 197) from Cayo Santiago. Higher-ranking males tended to 

show lower residual epigenetic age, although this relationship did not reach statistical 

significance (n = 81, ß = -0.345, p = 0.06) (Figure 5). Residual epigenetic age was not correlated 

with length of male tenure (n = 230, ß = -0.001, p = 0.94). Among females, we found no effect of 

dominance rank on residual epigenetic age (n = 116, ß = -0.03, p = 0.80) (Figure 5). Similarly, 

no significant association between female rank and epigenetic age was observed in baboons by 

Anderson et al. (2021), despite the strong effect of rank on lifespan that previously has been 

observed this population of female baboons.  

Figure 5. Higher dominance rank was associated with lower residual age in males, although this 
relationship was not significant (p = 0.06). No such trend was identified in females (p = 0.80) in the 

Cayo Santiago dataset. Dominance rank is shown as a continuous variable that represents the 

percentage of same-sex animals in a social group that the focal individual outranks (thus 0% is 

equivalent to the lowest-ranking and 100% to the highest-ranking individual). 
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For male baboons at Amboseli, estimates of residual epigenetic age from the 

RheMacAge model replicated the significant association between high social status 

(measured on an ordinal scale, where 1 is the highest rank) and greater residual 

epigenetic age (Pearson’s r = -0.47,  p = 4.05 x 10-7, n = 104) first reported with the 

publication of the original dataset (Anderson et al. 2021). Thus, using a model built with 

data from a different primate species, we found that higher-ranking male baboons 

exhibited more rapid epigenetic aging, while the pace of epigenetic aging in female 

baboons showed no relationship to rank (p = 0.4). This result underscores the suitability 

of our model to the interrogation of the biology of aging across social and ecological 

conditions in both lab and field-based primate populations.  

 

Discussion 

     Rhesus macaques are an important biomedical model of human aging (Chiou 

et al. 2020). Despite this, there are comparatively less ‘omics’ resources available for 

rhesus macaques than humans or mice (see Meer et al. 2018). Here, we have generated 

genome-wide methylation data for over five hundred samples, which is the largest study 

of DNA methylation aging study carried out to date in this highly relevant model of 

human aging.  

Our RheMacAge clock produced accurate age estimates from blood in an 

independent sample of captive female rhesus macaques and a large sample of wild 

baboons. We also observed a more rapid rate of epigenetic change with age in male 

versus female baboons, consistent with results from Anderson et al. (2021), 

demonstrating our approach can capture the same biological aging signatures as a model 

developed specifically for baboons. As such, the model serves as a reliable biomarker of 

aging in blood collected from these species and provides an important opportunity to test 

hypotheses about the aging process.  

We used our model to carry out a preliminary test of the relationship between 

epigenetic aging and dominance rank in the Cayo Santiago rhesus macaques and found 

that high rank was associated with lower residual aging among males (p = 0.06). This 

contrasts with the effects seen in baboons, where high-ranking males exhibit age 
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acceleration (Anderson et al. 2021). Two socioecological differences between the two species 

likely explain this discrepancy: (1) the mechanism of male rank attainment and (2) reproductive 

seasonality. In baboons, male rank is determined by competitive interactions and mating occurs 

throughout the year. Thus, male baboon reproductive success is highly correlated with length of 

tenure as the alpha male (Alberts, Watts, and Altmann 2003). Maintaining alpha status is 

stressful (Gesquiere et al. 2011) and requires significant energy expenditure to monopolize 

access to estrous females and fend off competitors (Alberts, Buchan, and Altmann 2006). In 

contrast, male rhesus macaques obtain high social status through a less antagonistic queueing 

system where dominance rank is correlated with length of group tenure. Additionally, rhesus 

macaques are seasonal breeders and their mating season is restricted to a few months each year. 

We collected our blood samples during the weeks preceding the mating season, when, in 

anticipation of the energetically-demanding mating season, high-ranking males 

disproportionately increase in weight and fat compared to lower-ranking animals. Taken 

together, these findings suggest the RheMacAge model is sensitive to the biological effects of 

social status on the pace of aging and may be able to capture latent variables associated with 

different types of dominance hierarchies. While these specific findings require further 

investigation, they highlight the potential of the model to test more specific hypotheses about the 

effects of socio-environmental variables on the aging process. 

This model can also complement and expand current and future aging research in this and 

other relevant primate populations. For example, our model could be used as a means of testing 

the effects of medical interventions aimed at delaying aging-related physiological decline, such 

as caloric restriction, rapamycin, or other pharmacological treatments, in two long-lived, 

biomedically relevant NHP species that act as important models for human aging. Our model is 

particularly well-suited to situations where behavior and biology intersect: it could be used to 

examine whether adversity experienced during the juvenile stage affects patterns of age-related 

DNA methylation change, or if the timing of daily feeding behavior among captive individuals 

(e.g., night versus daytime feeding) is associated with changes in the pace of epigenetic aging. 

Coupled with differential methylation and gene expression data, such research could uncover 

molecular mechanisms that regulate how stress becomes biologically embedded, and may help 

identify health or behavioral variables that contribute to increased resiliency to the effects of 
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such stressors. In addition, this model can be used by primate centers to evaluate an 

individual’s suitability as a study candidate in the preliminary stage, while there is still 

time to make changes to a study population. This could ensure that animals in different 

treatment groups are matched on key physiological metrics prior to the application of any 

intervention, thus enabling more effective use of center resources. 

Horvath and colleagues (2021) recently published an array-based epigenetic clock 

model for rhesus macaques that relies on a newly-designed DNA methylation array for 

mammals that covers 38,000 evolutionarily conserved CpG sites (Arneson et al. 2021). 

Because bisulfite sequencing is another very common technology used to generate DNA 

methylation data, our model and the array-based alternative neatly complement one 

another and together, should fit most methylation datasets. Together with Horvath and 

colleagues’ array-based rhesus clock, our sequence-based model contributes to an 

overdue but growing analytical toolkit for biomedical and other research involving rhesus 

macaques. Despite these additions to the analytic arsenal, the relative dearth of analytical 

tools for rhesus macaques underscores the need for targeted development of tissue-

specific clocks that are more sensitive and better able to detect disease-specific epigenetic 

changes in affected tissues, which may in turn shed light on underlying mechanisms (Bell 

et al. 2019). 

While none of the regions in our clock model were significantly enriched for any 

particular GO terms or KEGG pathways, results from enrichment analyses of various 

epigenetic clocks are often ambiguous and very general. Given that random selections of 

CpG sites are able to predict age surprisingly well (see Stubbs et al. 2017), it follows that 

changes across the methylome may be broadly predictive of age. Often, the CpG sites 

automatically selected for inclusion in an epigenetic clock model have no obvious 

associations with aging or age-related processes but are simply good at predicting age 

when measured in aggregate with a particular group of CpG sites. In fact, among CpG 

sites included in the DNAm PhenoAge model, those with higher weights showed little or 

no correlation with calendar age, while those with the largest age correlation coefficients 

tended to have lower weights in the regression equation (Levine et al. 2018). It is possible 

that the lack of significant association with particular age-related genes or functions is 
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because in some instances, the CpG site itself has no direct association with age-related gene 

expression or activity. Instead, such patterns of change may reflect deterioration in epigenetic 

integrity and disruptions to cell signaling and regulatory networks that are characteristic of the 

aging process. Both global and tissue-specific changes take place in the aging epigenome, and 

while both are relevant to the study of health and aging, tissue-specific changes are expected to 

yield greater insight into the pathogenesis of specific age-related diseases and the factors that 

contribute to individual differences in susceptibility (Bell et al. 2019; Field et al. 2018; Levine et 

al. 2022).  

DNA methylation-based age predictors can reliably track chronological age; accelerated 

aging in humans (where predicted age exceeds chronological age) has been associated with a 

number of socio-environmental and health variables, increased predisposition to age-related 

disease, and higher mortality risk (see Horvath and Raj 2018; Nwanaji-Enwerem et al. 2018). 

However, at present these models are more suitable as initiation points for hypothesis testing 

rather than as a means to an end themselves. Our exploration of the relationship between 

dominance rank and epigenetic aging among the macaques on Cayo Santiago is one such 

example of how our model is a starting point that may help shape and refine the objectives of 

exploratory research by providing a direction for further analysis. Nonetheless, the molecular 

mechanisms reflected in measures of epigenetic age have yet to be identified. Determining why 

and how these models work at the molecular level as well as which aspects of the aging process 

they capture and which they fail to detect should be a priority in aging research.  

 

Conclusions 

Here we have developed a means of overcoming an impediment to comparative analyses, 

independent model evaluation, and testing in the context of bisulfite sequencing data. Our 

sliding-window methodology is easy to implement and the generalizability of the resulting model 

enables cross-study comparison, as demonstrated by the successful application of our 

RheMacAge model to independent RRBS datasets in two species. Our model detected an inverse 

association between residual epigenetic age and social status in male rhesus macaques on Cayo 

Santiago that approached significance (p = 0.06) in a pilot analysis, and recapitulated the 

relationship between rank and epigenetic aging in wild-living baboons that was first shown by 
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Anderson et al. (2021). These results provide proof-of-concept for our model and its 

capacity to measure the influence of certain environmental elements on health, aging, 

disease- and mortality risk. While their mechanistic underpinnings are still largely 

unknown, the ongoing and increasingly widespread use of epigenetic clock models has 

advanced the field towards an essential goal: quantification of the impact of lived 

experiences on health and aging. We anticipate that this straightforward workflow will 

enable more frequent and robust investigation of existing but generally untested 

epigenetic clock models and enhance the value of existing sequence-based methylation 

datasets. Rather than continuing to build custom models that can be applied to a single 

dataset, increased attention should be directed at increasing cross-study applications and 

discerning the biological mechanisms that underlie the functionality of existing predictive 

models. 

 

Bridge to Chapter III  

 Venous blood has long been used to assess systemic health in humans, and 

changes in the blood epigenome are likely to be systemically informative in a way that 

changes in other individual tissue types will not be, due the omnipresence of blood 

throughout the body. On the other hand, the diversity of white blood cell types present in 

the circulatory system may not capture more subtle physiological changes, or those that 

disproportionately manifest in a particular tissue or set of tissues with shared or similar 

functions. Additionally, it has now been established that variation in the pace of aging (as 

measured by rates of cell regeneration, rather than a clock model) exists not only between 

different tissues, but also between cells of the same organ. A study of “long-lived cells” 

conducted by Arrojo e Drigo and colleagues (2019) demonstrated that cell types in the 

liver, pancreas, and brain exhibit a phenomenon known as “age mosaicism”: in the liver, 

hepatocytes were found to be as old as neurons, whose ages tend to correlate with the 

organism’s actual chronological age due to a lack of neuronal regeneration, while 

endothelial cells in hepatic sinusoids (vascular structures with similarities to capillaries in 

function but a unique morphology found only in the liver) and stellate-like cells 

underwent major turnover events at ages 6- and 18-months in rodents. The authors posit 



 

 

 

57 

that hepatocytes can act as long-lived cells because they are able to remain quiescent by working 

in conjunction with the highly active sinusoidal vascular architecture to detoxify the blood, 

transport, store, and monitor levels of circulating nutrients, and maintain whole-body 

homeostasis (Arrojo e Drigo et al. 2019). Thus, depending upon whether changes in DNA 

methylation are a cause or consequence of age-related deterioration, cell types from a single 

organ that have originated from different stem cell progenitor populations or that have very 

different rates of cellular turn over may exhibit markedly different signs of cellular aging. It is 

therefore necessary to investigate any intra-organ epigenetic differences that might exist between 

cell types of a given organ. 

In the following chapter, I take a more targeted approach to interrogate normal processes 

of age-related change in the liver methylome from rhesus macaques aged three to 33 years. The 

objective of this research was to characterize age-related methylation change in liver as it occurs 

in normal aging and under conditions of dietary modification to elucidate how different organs 

within the body respond and/or contribute to the larger phenotype of systemic aging.  
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CHAPTER III  

CHARACTERIZATION OF THE RHESUS LIVER METHYLOME BY SEX, AGE, 

AND IN RESPONSE TO DIETARY RESTRICTION 

Introduction 

The liver is the central regulator of whole-body metabolism, maintaining 

homeostasis through regulation of energetic demands, systemic monitoring and 

facilitating inter-cellular crosstalk. Age-related changes in the genome and epigenome 

interfere with mitochondrial function and disruptions of nutrient sensing pathways (Hunt 

et al. 2019). This ultimately provokes cellular senescence and the persistence of a chronic 

but low-grade inflammatory state(López-Otín et al. 2016). Metabolic and epigenetic 

alterations work together to promote or delay a larger phenotype of organismal aging, and 

both fit mechanistically into the “early origins of adult disease hypothesis”, put forth by 

Barker (Barker 2004), which argues that the environmental and particularly nutritional 

conditions experienced during perinatal life act to program fetal growth and patterns of 

development and may, in certain contexts, predispose individuals to metabolic and 

cardiovascular disease through alteration of these trajectories. Epigenetic mechanisms 

were quickly linked as likely facilitators of these environmentally-induced alterations 

(Mcmillen and Robinson 2005; Barker 2004). 

Insulin sensitivity declines in normal aging but can be accelerated by the same 

type of  high-fat, high-sugar diet that often leads to long-term cardiovascular disease and 

metabolic dysfunction (Morgunova, Shilovsky, and Khokhlov 2021; Younossi et al. 

2016). Calorically-restricted diets, by contrast, promote extended longevity by altering 

the activity of sirtuins, insulin/insulin-like growth factor signaling, mTOR, and AMPK 

signaling (Hunt et al. 2019).  

Effective inter-organ communication is essential to maintaining metabolic health 

and whole-body homeostasis, and the integrity of these pathways also declines with 

advancing age (F. Wang et al. 2021). Regulation of glucose metabolism is orchestrated 

through communication between intestinal lipids and the vagus nerve, which sends 

signals to the brain to modulate glycogen synthesis from its input in the liver (Pocai et al. 
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2005; Jensen, Alpini, and Glaser 2013). Disorders related to obesity and cholesterol metabolism 

can contribute to cognitive decline by altering the function of the gut-liver-brain axis (F. Wang et 

al. 2021; Palmisano, Zhu, and Stafford 2017). The liver’s involvement in the function of a 

diverse array of other organs and tissues to maintain homeostasis underscores the importance of 

understanding how disruptions to this organ’s functionality, structural integrity, signaling 

mechanisms, and communication networks alter disease risk and modulate the shape of the aging 

trajectory at the level of the whole organism.    

The regulation of energy metabolism has long been a promising avenue for interrogating 

the mechanisms that underlie the aging process. Deregulated nutrient sensing occurs by way of 

several pathways (López-Otín et al., 2013). The highly conserved nutrient-sensing mechanistic 

target of rapamycin (mTOR) signaling pathway interacts with a number of physiological 

networks that have been implicated in the aging process (Kapahi et al. 2010). Importantly, 

mTOR inhibition is associated with two pro-longevity processes: enhancement of the 

regenerative capacity of hematopoietic stem cells and the suppression of pro-inflammatory 

cytokines produced by circulating senescent cells (H. Pan and Finkel 2017). 

Nutrient-sensing pathways are typically involved in epigenetically-mediated cellular 

responses to changes in energy availability. mTOR acts to dynamically regulate cell growth, 

proliferation, and homeostasis (Balistreri et al. 2013; Kapahi et al. 2010). mTOR is a 

serine/threonine kinase that functions as part of two central signaling complexes, mTORC1 and 

mTORC2 (H. Pan and Finkel 2017; Müller et al. 2018). When stimulated by growth factors or 

high nutrient availability, mTORC1 augments anabolic processes like lysosome biogenesis, 

mitochondrial metabolism and protein translation to facilitate cell growth and proliferation while 

inhibiting catabolic processes like autophagy through repression of FOXO transcriptional 

activity (Pan and Finkel 2017). Insulin/insulin-like growth factor signaling, mTOR, and the 

activity of sirtuins are all involved in autophagic activity, a crucial mechanism of maintenance 

and self-preservation at the cellular level for cell types that rarely regenerate, such as most 

hepatocytes and neurons (Bellanti et al. 2020; Arrojo e Drigo et al. 2019). Stem cell functionality 

declines with age and contributes to age-related organ dysfunction (Wang et al. 2021), while the 

senescence-associated secretory phenotype (SASP) of circulating senescent cells promotes the 
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accumulation of tissue damage that eventually outpaces the rate at which it can be 

repaired (López-Otín et al. 2013; Benayoun et al. 2015).  

Dietary restriction (DR, also referred to as calorie restriction, or CR) is defined as 

reduced caloric intake without malnutrition. It is the only behavioral modification shown 

to have a demonstrable, positive impact on health, longevity, and the onset of age-related 

disease (Greer et al. 2007; Gensous et al. 2019). Studies in yeast, nematodes, and fruit 

flies have confirmed the longevity-promoting effects of this intervention across short-

lived taxa but understanding the impact of caloric restriction on longevity in long-lived 

species has been a more difficult, time- and resource intensive task (Bitto et al. 2015; 

Mitchell et al. 2015; Mattison et al. 2017). The primary molecular mechanisms that 

underlie variation in the aging trajectory have yet to be elucidated, and it is possible that 

the processes that confer such benefits in the context of shorter lifespans differ in activity 

or functional identity between long- and short-lived organisms. Captive rhesus macaques 

can develop many of the same chronic, age-related conditions that manifest over the 

course of human aging, such as cardiovascular disease, diabetes, and other age-related 

disorders, highlighting their importance as a model for understanding human disease 

(Colman et al. 2009). A 20-year longitudinal study of calorically-restricted rhesus 

macaques was undertaken at the Wisconsin National Primate Research Center (WNPRC) 

to determine whether rhesus monkeys fed a calorically-restricted diet exhibited delays in 

mortality and the onset of “classic” age-related pathologies as compared to a control 

group. Results from this study show a strong positive effect on survival and healthspan. 

Calorically-restricted monkeys in the WNPRC experimental group showed no signs of 

brain atrophy or glucoregulatory impairment, and had a 50% lower incidence of 

neoplasia and cardiovascular disease (Colman et al. 2009). By contrast, monkeys in the 

control group died from age-related causes at 3x the rate of the experimental group and 

also showed similar increases in the incidence of age-related disease (Colman et al. 

2009).  

Intriguingly, a second report was published part way through (23 years after the 

initial start) from the only other study of long-term DR in rhesus macaques, carried out 

on a separate population of rhesus macaques at the National Institute on Aging (NIA). 
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This study found that while dietary restriction resulted in improvements in overall physiologic 

function, it had no measurable impact on survival (Mattison et al. 2012, 2017). However, two 

key differences existed between the WNPRC and NIA studies that are of note: first, the WNPRC 

diet contained 6X the sucrose and twice the fat of the NIA diet, which may have contributed to 

the more apparent health and longevity outcomes observed at WNPRC at the time they were 

analyzed; the NIA diet was more nutrient-rich, and apart from the difference in total calories, 

was the same in macronutrient composition for experimental and control individuals. Second, the 

NIA experimental design was relatively unique in that individuals entered the study at varying 

ages, rather than beginning and ending the diet at a uniform time in adulthood across all animals. 

Due to the resource-intensive nature of this type of research, the WNPRC and NIA 

studies represent the only long-term studies of dietary restriction in a long-lived non-human 

primate conducted to date. Here, I analyzed DNA methylation data from the NIA study. I 

examine how differences in an individual’s developmental stage “at diet start” interact with this 

putative pro-longevity intervention to differentially moderate later-life health outcomes in a 

long-lived primate. The question of how DR influences longevity in species whose life histories 

are already “long and slow” (Jones 2011) has remained largely unresolved, as the explanation for 

the physiological response to restricted nutritional resources was initially proposed as a means 

for shorter-lived organisms like mice to delay reproduction during periods of famine and/or to 

reduce juvenile mortality rates (Shanley and Kirkwood 2000).  Given that many primates already 

exhibit life history characteristics that have been shaped by past resource scarcity or 

environmental instability to favor increased parental investment (i.e., protracted period of pre-

adulthood, a later age at first reproduction, smaller litter size, and longer inter-birth intervals), 

there are likely disparities in the physiological response that manifest in relation to longevity. 

This research had three main objectives. The first objective was to develop a liver tissue-

specific epigenetic clock for rhesus macaques, as no tissue-specific age predictor model for 

rhesus liver currently exists. The second objective was to apply the liver-specific epigenetic 

clock model to determine whether I could detect a delayed aging effect as a result of restricted 

nutritional resources in this rhesus macaque population. In theory, this would provide additional 

evidence for the functional role of the clock as a reliable biomarker of aging and further support 

dietary restriction as a successful pro-longevity intervention in a long-lived primate species. 
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Finally, I sought to compare patterns of change in the aging DNA methylome under DR 

against those of age- and sex-matched individuals fed a typical research colony diet, and 

to examine how the effects of DR on the aging methylome varied by developmental stage 

at start of the diet (Objective 3). I found that long-term DR had a profound impact on the 

aging methylome and seemingly delayed the stochastic deterioration that characterizes 

the “normal aging” trajectory in mid- and late adulthood. I also identified significant 

differences in the extent of global hypomethylation change by sex and developmental 

stage. The effect of dietary restriction on the aging methylome varied markedly along 

these two variables, as did levels of circulating blood glucose and lipids.  

 

Methods 

 

“Normal” Samples from the ONPRC Biobank 

Samples used for the initial phase of this study (“normal aging” cohort) consisted of 

96 liver samples from the Oregon National Primate Research Center’s (ONPRC) Tissue 

Archive. I refer to them as the ONPRC dataset or the “normal aging” cohort throughout 

the text. I selected samples with the primary objective of covering the widest possible age 

range. The ratio of males to females in the normal aging cohort was approximately 2:3, 

with 59 females and 37 males included in the dataset. I used a set of pre-determined 

selection criteria to exclude tissue samples from individuals who had prior involvement 

in studies requiring diet modification, frequent invasive surgeries, fatal injury or severe 

illness near time of death, or were involved in more than three different experimental 

studies (excluding strictly observational research) in the ten years prior to the animal’s 

death.  

 

Samples from the National Institute on Aging  

The second dataset include in this analysis came from storage at the NIA biobank 

from the aforementioned study of DR in rhesus macaques carried out over more than 

three decades.  I began this analysis with 68 samples and removed five samples during 

quality control: four were removed due to poor quality of the raw tissue, and one sample 
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due to insufficient coverage post-sequencing. This left 63 individuals in the dataset. There were 

23 females ranging from 17 to 42 years of age at their time of death; and female animals began 

the study between the ages of 1.67 and 18.75 years. The proportion of a female monkey’s 

lifetime during which she was involved in the DR study ranged from 44% to 92.6%. There were 

40 males ranging from 21.5 to 44.2 years of age at time of death included in the study. The 

proportion of a male monkey’s life during which he was under DR ranged from 2.7% to 97.6%. 

All animals were initially categorized as control (n = 29) or experimental (n = 34)  and 

matched as closely as possible for age and sex. Each group was fed the same diet apart from 30% 

fewer calories in the diet for the experimental group. In lieu of the monkey chow that is typical 

for captive research colonies, the diet fed to the monkeys in both groups was enriched to help 

prevent malnutrition in the experimental group. While the control monkeys did not indicate a 

desire for more food than they were given (some amount of food was generally left uneaten at 

the end of each feeding period), as this study progressed, the individuals in the control and 

experimental groups increasingly converged in weight, body fat percentage, and to a lesser 

degree, in caloric intake, although control monkeys did still typically eat between 10 -20% more 

calories than DR group individuals (Mattison et al. 2012). Thus, physical measurements from the 

NIA control group were consequently more similar to those from the WNPRC experimental DR 

group. Both NIA and the WNPRC experimental groups stand in stark contrast to the WNPRC 

study’s control monkeys, who were heavier, had more body fat, and exhibited higher rates of 

chronic disease compared to the WNPRC experimental group or either NIA group considered.   

To more accurately reflect the characteristics of the dataset, I reclassified the control 

group as the "healthy diet" (HD) group, and the experimental group as the "healthy diet + dietary 

restricted" (HD+DR) group; the HD+DR group received the same diet but with 30% fewer 

calories than the HD group. 

  

Library Preparation and Sequencing 

Genomic DNA was isolated and quantified at the ONPRC Primate Genetics Core using 

standard approaches. RRBS libraries were generated by the KCVI Epigenetics Consortium using 

established protocols (Carbone et al. 2019). For the 96 ONPRC liver samples, libraries were 

subjected to quality control and normalized using qPCR and sequenced on an Illumina 
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HiSeq4000 by the Genomics & Cell Characterization Core Facility (GC3F) to obtain 

single-end 75bp reads. For the 68 NIA liver samples, the same protocol was followed but 

libraries were sequencing on a NovaSeq S4 flowcell to produce paired-end 150bp reads.  

 

Data Pre-Processing and Quality Control 

I used TrimGalore! (Martin 2011) with the “--rrbs” parameter to remove low-

quality bases and adaptor contamination from raw sequence reads. I used FastQC and 

MultiQC (Ewels et al. 2016). to quality-check trimmed reads. Mean Phred score at each 

base position within a given read was > 30 for all samples that were retained in both 

datasets. 

 

Alignment and Methylation Calling 

I used Bismark v0.20.0 (Kreuger and Andrews 2011) to perform in silico bisulfite 

conversion of the rhesus macaque reference genome (Mmul10), and aligned trimmed reads 

to the reference using “–score_min -L,0,-0.6” and default settings for all other alignment 

parameters. I performed methylation calling using Bismark’s methylation extractor script 

and included the parameter flags “--merge_non_CpG, --comprehensive, --bedGraph”.  

 

Data Filtering 

BedTools (v2.24.0) (Quinlan and Hall, 2010) was used for data filtering 

procedures. I used a custom shell script to discard CpG sites missing in more than 10% of 

samples. I then split reads in each file into 20 distinct files, one file per autosome per 

sample, discarding reads mapping to sex chromosomes. Next, I generated 20 BED ‘filter’ 

files, one per autosome, containing all CpG sites located on a given chromosome that 

were present in at least 90% of the samples. I removed any row containing a missing 

value and those with less than 10X median coverage, and retained only sites with median 

percent methylation between 10 and 90%, to exclude CpG sites that show little variation 

across the age spectrum. 

Model Training and Calibration  
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 To confirm the suitability of these data for modeling variation in epigenetic aging, I used 

leave-one-out cross-validation (LOOCV) to train 96 proto-models using glmnet (v4.0.2) 

(Friedman, Hastie, and Tibshirani 2010) with an inner 10-fold cross-validation loop. I did not 

perform any normalization or pre-selection steps, did not tune the alpha hyperparameter (a priori 

default: alpha=0.5) or modify the range of lambda values examined by glmnet. 

As in Chapter II, I took the residuals of a loess regression of predicted onto chronological 

age to adjust for the effects of the modeling process on the defined measure of age acceleration 

(“residual age” or “residual epigenetic age”).  

 

Optimization and Construction of the Site-Based Clock Model 

I followed the same optimization protocol detailed in Chapter II under “Model Training 

and Optimization via Cross Validation”. I performed 10-fold cross-validation on the entire 

dataset of 96 samples across a grid of alpha and lambda values. I input these optimized 

hyperparameter values into a single run of the glmnet command to define the 300 CpG sites and 

associated coefficients which compose the final site-based model. Together, these sites make up 

the model that predicts age with the lowest median error in liver. 

 

Gene Ontology and KEGG pathway analysis for Site-Based Model 

As with the features in the blood-based model, I used gProfiler to test the 300 clock sites 

automatically selected through the model training process for enrichment against a custom 

background of all CpG sites included in our dataset (n = 216,542 CpG sites). I restricted the 

output of the analysis to gene ontology terms to which ≤ 500 genes were annotated. 

 

Optimizing the Generalizable Model 

I used the sliding-window approach described in Chapter II to build a second epigenetic 

clock model for liver that could easily be generalized and applied to independent data, such as 

the second dataset analyzed in this chapter (see below). For a detailed description of the “sliding-

window” method I developed for increasing inter-study comparability using independently-

generated RRBS datasets, see Chapter I Methods. Briefly, I binned CpG sites into adjacent, non-
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overlapping 1,000bp windows and trained and optimized the final model on the full 

dataset to obtain the best hyperparameter values and automatically select model features. 

In total, 133 windows were automatically selected, of which 79 were hypomethylated 

with age and 54 of which gained methylation with age.  

 

Application of the Liver Clock to the Dietary Restriction Study 

I used the sliding window-based model to generate age predictions for the test 

dataset from the NIA study of long-term dietary restriction (N=63; 40 males; 23 females). 

To determine if a relevant biological or demographic variable was a significant predictor 

of the rate of epigenetic aging, I regressed epigenetic age onto diet type (HD or HD+DR), 

age-at-start, sex, and blood-based measures of glucose, triglycerides, cholesterol, total 

protein, albumin, alanine aminotransferase (ALT) and aspartame aminotransferase (AST) 

levels.  

 

Differential Methylation Analysis of Normal Liver Aging 

The same filtered set of 216,542 CpG sites that were used to train the clock were 

similarly used for differential methylation analysis. I identified significantly differentially 

methylated CpG sites (DMCs) using the PQLseq package (Sun et al., 2018). Probabilities 

(p-values) were corrected for multiple testing using the Benjamini-Hochberg False 

Discovery Rate (FDR) implemented using the package q-value (v 2.26.0) (Storey, 2003). 

After identifying CpG sites showing significant differential methylation with 

increasing age, I divided them into two groups. The first consisted of those that lost 

methylation with age (hypo-age DMCs) and the second those that gained methylation 

with age (hyper-age DMCs).  

 

Analysis Of Sex-Specific Trends In The Aging Liver Methylome 

I used the same data and analytical methodology described above but divided the 

samples into females and males prior to running the differential methylation analysis. I 

employed k-means hierarchical clustering to examine patterns of similarity and patterns 
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of change across CpG sites showing significant differences in methylation with age within sex 

and between study populations (NIA and ONPRC).   

 

Age- and Sex-matched Differential Methylation Analysis With or Without Dietary Modification 

Age-matched females (n = 20, n = 23 for NIA and ONPRC, respectively) and age-

matched males (n = 24, n = 15) were examined separately. Ages of individuals ranged from 17 to 

33 years of age at time of death. Within each sex, CpG sites analyzed for differential methylation 

were filtered to include sites that were present across all females (or across all males) at a 

minimum of 5X median coverage and with 10 - 90% median methylation. I determined the 

number of significantly differentially methylated sites at a pre-defined False Discovery Rate 

(Benjamini-Hochberg method) and employed a custom R script to filter out sites that failed to 

converge or were not significant at the specified FDR. I performed two-sided Fisher’s exact tests 

to determine whether individuals whose diets had not been manipulated (“normal agers”) showed 

a larger number of significant changes in DNA methylation, as compared to individuals in the 

group from the National Institute on Aging. As healthy, calorically-restricted diets that avoid 

malnutrition of the individual are associated with increased longevity, I hypothesized that the 

rate of age-related epigenetic change would be less rapid, with dietary restriction acting to 

protect against or at least delay stochastic and age-dependent deterioration of canonical 

epigenetic mechanisms. I used the PQLseq package (Sun et al. 2019) to test for differential 

methylation at each CpG for 175,889 shared sites in females and 182,592 sites in males to 

determine whether individuals subject to dietary modification showed fewer significant changes 

in methylation with age, which would suggest lower levels of the type of stochastic change that 

contributes to age-related decline. I retained only sites that were significant at FDR< 0.05 after 

testing for differential methylation with age across the lifespan.  

 

Differential Methylation Analysis of “Juvenile Start” Diet Group 

To examine the effects of dietary restriction specifically on animals who entered the 

study under the age of three years, I ran a differential methylation analysis using the interaction 

between age-at-start (in years) and diet type (healthy or dietary restricted) as the predictor 
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variable of interest, with sex as a covariate. I used the Bioconductor AnnotationHub 

(v3.2.2) and GenomicRanges (v1.46.1) packages to retrieve annotation data, and the 

Ensembldb (v2.18.3) package to identify genes directly overlapping significant age-

DMCs.  

I performed GO and KEGG Pathway analysis using gProfiler (Raudvere et al. 

2019) with a custom gene background; genes were included as background if they could 

be annotated to a site in our dataset, irrespective of significance, and excluded if they had 

no potential connection or relationship. I restricted output of significant GO terms and 

KEGG pathways to include genes to which at most 500 terms were annotated at a pre-

defined FDR. I used Reactome Pathway Analysis (Gillespie et al. 2022) to perform 

exploration and visualization of relevant and interrelated pathways, examining only those 

genes that directly overlapped a significant age-DMC at a pre-defined FDR. I used 

Enrichr (Kuleshov et al. 2016) to examine the Mammalian Phenotypes (Smith, 

Goldsmith, and Eppig 2004) associated with genes overlapping significant DMCs.  

 

Differential Methylation Analysis of Super Ager Males 

Because males in the old-start group on both the HD and HD+DR diets lived 

remarkably long lives, I sought to identify some of the molecular mechanisms involved in 

this “Super Ager” phenotype. I performed differential methylation analysis with PQLseq 

using age at death as the main predictor variable, and precise age at start (in years) and 

diet type (healthy diet [HD] or healthy diet + dietary restriction [HD+DR]) as covariates. 

I extracted significant age-DMCs (FDR<0.05) and divided them into hypo- and hyper-

age DMCs. I performed hierarchical k-means clustering using the pheatmap package 

(v1.0.12) (https://github.com/raivokolde/pheatmap), and used gProfiler with a custom 

background of genes only present in the “old start” male dataset to identify GO terms and 

KEGG pathways for which the age-DMCs were significantly enriched (FDR<0.001). 
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Results 

Annotation and Enrichmentof the 300 Liver Clock Sites 

Of the 300 sites included in this liver-specific age predictor model, 164 gained 

methylation and 136 lost methylation with advancing age. More than half of hypermethylated 

sites in the clock fell within a CpG island (CGI) (two-sided Fisher’s Exact Test [FET], p < 2.2e-

16, OR = 5.26, 95% CI: 3.81, 7.27), indicating significant enrichment in this genomic 

compartment. By contrast, hypomethylated sites were significantly underrepresented in CGIs 

(two-sided FET, p < 1.03e-05, OR = 0.27, 95% CI: 0.12, 0.53). 

Among the genes tested, two were significantly overrepresented among liver-specific 

clock sites: cyclin-dependent kinase inhibitor 2B (CDKN2B) and SRC kinase signaling inhibitor 

1 (SRCIN1). Twelve of the 300 clock sites mapped to CDKN2B (two-sided FET, p = 5.235e-07, 

OR = 7.17, 95% CI: 3.52, 13.41) and eight of 300 mapped to SRCIN1 (two-sided FET, p  = 

0.007, OR = 3.02, 95% CI: 1.27, 6.22).  

 

 

Liver Model Performance During Training 

Predicted ages generated using the window-based model with LOOCV were strongly 

correlated with chronological age in the ONPRC cohort (Figure 6) (Pearson’s r = 0.94 ; median 

absolute difference [MAD] = 1.74, slope of age = 0.8). There was no significant difference in 

predictive accuracy of the liver epigenetic clock for females and males in the normal aging 

cohort. Weight also showed no correlation with residual epigenetic age in the ONPRC sample 

population. 
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Age Predictions from NIA Study Correlate with  Calendar Age 

Using the window-based model on the NIA cohort as a whole, predicted and 

chronological age showed a strong positive correlation (Pearson’s r = 0.69,  [95% CI: 

0.53, 0.8], p = 4.35 x 10-10) (Figure 7). 

Figure 6. Univariate regression of predicted onto chronological age for 96 liver samples used to build 

the liver clock. Estimates per animal were generated by elastic net regression using LOOCV. 
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 The interaction between dietary restriction and juvenile-start was significantly predictive 

of a lower rate of epigenetic aging (t = -2.46, p = 0.02) (see Figure 8). 

 

Later Age-at-Diet-Start Correlated with Longer Lifespan in NIA Monkeys 

 

In both males and females, age at the start of the diet (in years) was significantly 

positively correlated with age at death (males: Pearson’s r = 0.74 [95% CI: 0.56, 0.86], p = 3.88 

x 10-8;  females: r = 0.65 [95% CI: 0.33, 0.84], p = 0.0008). 

 

Figure 7. Univariate regression of predicted age onto chronological age in the NIA 

dataset. HD, healthy diet. HD+DR, healthy diet with reduced caloric intake (dietary 

restriction). 
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Aggregate Analyses of Differential Methylation in Normal Liver Maturation and Aging  

I identified 16,161 CpG sites that were significantly differentially methylated with age 

(FDR < 0.001). Of these, 9,923 and 6,238 were hypo- and hypermethylated with age, 

respectively. There were significantly more sites that lost rather than gained methylation 

with advancing age (OR: 1.73 [95% CI: 1.12, 2.7], p = 0.009), consistent with known 

trends of global hypomethylation coupled with more targeted hypermethylation in 

specific regions. This finding also aligns with a previously identified trend in the liver of 

widespread DNA demethylation between the perinatal period and adulthood in mice 

(Liang et al. 2011). Enriched pathways for hypomethylated sites included protein-protein 

interactions at the synapse, collagen chain trimerization, and extracellular matrix 

organization (FDR<0.1).  

 

Sex Differences in Methylation in Adult Liver Aging 

Figure 8. Residual age distribution among individuals in the control group by developmental stage at start 

(left). Residual age distribution for individuals in the dietary restricted (HD+DR) group by developmental 

stage at start (right). 
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Adult females showed a greater number of CpG sites with significant hypomethylation 

(OR: 3.18 [95% CI: 2.68, 3.78], p < 2.2 x 10-16, two-sided FET) and hypermethylation (OR: 1.62 

[95% CI: 1.23, 2.14], p < 0.001, two-sided FET) compared to adult males. 

 

 

Sex-Specific Differences in Methylation by Age and Diet  

Normal aging adult females showed significantly more hypomethylation (but not more 

hypermethylation) compared to their age-matched counterparts in the NIA group (OR: 7.12 

[95% CI: 5.65, 9.07], p < 2.2 x 10-16, two-sided FET). A similar trend was observed for males, 

with normal aging males showing significantly more hypomethylation with age (but not more 

hypermethylation) compared to their age-matched NIA counterparts (OR: 12.74 [95% CI: 7.39, 

23.78], p < 2.2 x 10-16, two-sided FET). 

 

Differential Methylation in DR Juveniles Occurred at Genes Involved Growth and Development 

Among juvenile-start individuals, there were 256 CpG sites that were significantly 

differentially methylated by the interaction between diet (HD or HD+DR) and precise age at start 

(in years). Genes overlapping these significant DMCs were related to the cellular response to 

DNA damage, as well as to several Mammalian Phenotypes (MPs) that pertain to abnormal or 

altered patterns of growth and/or age-specific mortality risk (Figure 9). The MP to which the 

greatest number of genes (15, more than 3x as many as any other MP apart from decreased grip 

strength [7 genes]) were associated was “preweaning lethality”. Other relevant associated MPs 

included liver hypoplasia, abnormal myelopoiesis, lethality throughout fetal growth and 

development, insulitis, decreased skeletal muscle mass and decreased skeletal muscle fiber. 

 

Differential Methylation in Super Agers Reflects Processes Distinct from the Epigenetic Clock 
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Males who entered the NIA study between the ages of 14.8 and 23 (“old start” males) 

lived exceptionally long lives. However, these “Super Agers” did not show consistently 

lower rates of epigenetic aging (residual epiegentic age) as measured by the epigenetic 

clock compared to the rest of the individuals in the dataset (Figure 10). Of the 3,548 CpG 

sites that were significantly differentially methylated in super-agers, 79% of them (n= 

2,803) showed gains of methylation with age and clustered discretely by diet (Figure 

11). Hypo-age DMCs (n=745) did not cluster neatly by any of the variables tested 

(Figure S5, Appendix A). Hyper-age DMCs were significantly enriched for nervous 

system development terms (Figure S6, Appendix A). Hypo-age DMCs did not show any 

significant enrichment for particular GO terms or KEGG pathways.  
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Figure 9. Mammalian phenotypes associated with the interaction between diet and age-

at-start in juvenile-starts. 
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Figure 10. Residual age plotted against chronological age for A) all individuals in the NIA 
study, B) only long-lived males (n=11). Long-lived males do not show consistently lower residual 

age as compared to all animals in the study. Circles correspond to HD = healthy diet; triangles 

correspond to HD+DR = healthy diet + dietary restricted. Color shows age at which an 

individual entered the study.  
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Discussion 

The liver acts as the body’s metabolic conductor, monitoring and coordinating the 

activity of numerous molecular networks by integrating and sending signals across cells 

and tissues, allocating energetic resources, and maintaining tissue homeostasis. An 

essential role of DNA methylation is the dynamic regulation and timing of activities that 

Figure 11. Heatmap of significantly hypermethylated sites with age in long-

lived males. Note samples cluster first by diet type (healthy versus 

healthy+dietary restricted).  
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are part of the complex, coordinated program of whole-body metabolism. A key aspect of the 

liver is the constancy with which it works—its pursuit of homeostasis is arguably its defining 

feature. The DNA methylome can also be characterized by its dynamic nature and capacity to 

facilitate reversible changes in gene regulation, and this makes it a natural complement to 

molecular analyses in the liver. Studies targeting the mechanics of DNA methylation change in 

the liver across the lifespan have been slow to emerge and are very rarely performed outside of 

humans, mice and rats. 

Here, I endeavored to characterize molecular aging in the liver of rhesus macaques 

through the lens of the DNA methylome. I developed a tissue-specific epigenetic clock and 

subsequently evaluated its sensitivity to a long-term pro-longevity intervention (dietary 

restriction). I complemented the creation of this predictive model with differential methylation 

analyses across ages, by sex, and under distinct behavioral/dietary conditions with the objective 

of understanding how changes in the liver methylome may contribute to the larger phenotype of 

organismal aging. Below, I highlight three key findings that have emerged thus far from this 

research.   

 

Sex-Specific Trends in Methylation Aging 

I observed significant differences in the relative amount of age-related change in the 

female versus the male liver DNA methylome in rhesus macaques. In terms of the number of 

CpG sites that gain or lose methylation with age, females significantly outpaced males. While it 

is tempting to speculate on theoretical causes for this disparity, further research is required to 

understand the consequences of change in methylation at different genomic elements (e.g., 5’ 

UTRs, intergenic regions, exons, etc.), which can up- or downregulate gene expression 

depending on the genomic element at which methylation occurs. Such research will contribute to 

the developing portrait of the rhesus liver methylome that is just starting to come into focus. 

Ideally, such a reference will help to elucidate the underlying biology of sex differences in the 

liver as well as how changes in this organ are connected to both external and internal 

mechanisms of aging. 
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A major cause of non-age related death in the NIA female population was 

complications from endometriosis (J. Mattison, personal communication), which resulted 

in very few females reaching very old age. The relationship between liver aging, fibrosis, 

endometriosis, and endometrial and other female reproductive cancer demands further 

investigation. I speculate that the effects of DR may be particularly detrimental in young 

and reproductive-age females who are predisposed to endometriosis, due to association of 

endometriosis with undesirable weight loss, difficulties in nutrient absorption, and low 

BMI. This emphasizes the fact that DR is only likely to exert a pro-longevity effect under 

conditions of robust health, and could otherwise be potentially lethal. 

A trend of global hypomethylation is commonly observed with advancing age. 

While hypermethylation with age occurs in a seemingly less random manner (often at 

proto-oncogenes), age-related hypomethylation is more stochastic (Vandiver et al. 2015). 

Rather than being a cause or direct consequence of mechanistic aging, it is likely the 

result of an increasingly error prone molecular architecture that promotes the loss of 

genomic integrity with age. CpG sites showing hypomethylation with age in the normal 

aging (ONPRC) cohort were enriched for broad pathways that are not inherently 

pathological but can easily induce a pathogenic cascade that snowballs into an adverse 

aging phenotype. First, collagen chain trimerization is critical for proper protein folding, 

and the accumulation of misfolded proteins is considered to be one of the most conserved 

molecular features of aging, affecting both unicellular and multicellular organisms 

(Lemoine 2021). Second, altered activity of protein-protein interactions at the synapse 

may disrupt patterns of inter-cellular adhesion and binding of transmembrane proteins, 

thereby degrading the ability of these highly specialized sites to engage in proper 

communication. Third, extracellular matrix elements found in the perivascular space of 

the central and portal veins of the liver are thought to contribute to the liver’s longevity 

(Arrojo e Drigo et al. 2019), and disorganization of the extracellular matrix is a harbinger 

of perturbed cellular communication and migratory networks. Modifications to the tissue 

microenvironment that can lead to proto-oncogenic changes in stem cell niches, increased 

cell proliferation, loss of stem cell differentiation capacity, and promote the pathogenesis 

of various types of cancer and hepatic fibrosis. In captivity, the rhesus macaque liver is 
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very susceptible to the condition of fibrosis (excessive wound-healing that replaces parenchymal 

with connective scar tissue) (Kim et al., 2016). Among females in the NIA study, the main cause 

of non-age related death was due to complications from endometriosis, highlighting the potential 

role for dysregulated wound repair mechanisms in driving pathologies of aging (Taylor, Kotlyar, 

and Flores 2021). 

 

Developmental Stage is a Key Determinant of the Organismal Response to Dietary Restriction 

Through the application and testing of this tissue-specific epigenetic clock in the context 

of a known pro-longevity intervention, I found that the epigenetic clock does indeed capture 

changes with age that are relevant to organismal health. That the rate of epigenetic aging in the 

juvenile-start group was significantly slower but showed no corresponding increases in life 

expectancy provides support for a trade-off that sacrifices later-life survival for the processes of 

growth, maintenance/repair, and potentially reproduction. Alternatively, this slowed rate of 

epigenetic change could be the result of programming in the early-life epigenome in anticipation 

of a nutritionally-scarce environment (Hanley et al. 2010), but not necessarily a component of a 

particular evolutionary trade-off. Under either scenario, the results from this study indicate that 

the developmental stage at which an individual starts a healthy diet with or without dietary 

restriction may be predictive of life expectancy in primates and other long-lived species, but not 

necessarily in the expected direction. Dietary restriction in young or reproductive-aged primates 

may thus be counterproductive due to a lack of energetic capital that impairs normal processes of 

growth and thus increase the risk of premature mortality. This is an important finding as this is 

the only study to date that has examined the effects of DR beginning at a very young age in a 

long-lived primate species. 

In contrast, for the old-start males, who need not have shouldered the energetic demands 

of growth or reproduction at the time they began DR, I suggest that the mechanism underlying 

the extended longevity phenotype may be related to the preservation and/or rejuvenation of 

healthy levels of reactive oxygen species (ROS). (Ristow and Schmeisser 2014). The body’s 

response to ROS has been shown to be dose-dependent: while high levels of cause damage and 

cellular aging, low levels enable ROS to act as signaling molecules that maintain the functional 
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integrity of cellular capacity to effectively remove waste, repair damage, and thus extend 

cellular lifespan (Sohal and Orr 2012; Pickering et al. 2017; Barja 2004). 

Surprisingly, I found exceptionally long-lived individuals showed relatively high rates of 

epigenetic aging despite their remarkable longevity. I posit that the pace of biological 

aging as reflected in the epigenetic clock may be in large part programmed by the early-

life nutritional environment, and that predictions of the epigenetic clock grow 

increasingly decoupled from an individual’s mortality risk over time in certain long-lived 

species. In the context of liver and quite possibly in other tissues too, the epigenetic clock 

appears to capture at least two age-related phenomena, one of which is active and the 

other passive. The “active” stage is defined by experiences and exposures in early life: 

the cells of the body are “listening” for cues from the environment most intently at this 

stage, and this heightened sensitivity enables external signals to more readily “get under 

the skin” and directly provoke epigenetic activity that sets the pace of an aging trajectory, 

and may predispose (or protect) an individual from chronic non-communicable diseases 

later in life (Barker 2004; Kohil et al. 2021; Dumolt, Patel, and Rideout 2021; Gluckman 

and Hanson 2004).  

The second, “passive” component of this mechanical framework does not mold 

the shape of the aging trajectory directly, as I posit it does in early life. Instead, it acts 

more as a distracted stenographer, recording stochastic deterioration as it pertains to the 

operational integrity of the aging methylome, but with varying levels of attention 

depending on the magnitude of the effect. Furthermore, it is not clear that there is 

necessarily a causal relationship between randomly-accumulating damage and disease 

and mortality risk, which may require reconceptualization of this biomarker and how it is 

used. 

Additionally, dysregulation of intra- and inter-cellular communication networks 

may contribute to intrinsic age-related physiological deterioration. This type of molecular 

change can still contribute to variation in rates of aging, but may largely be caused by 

random error as genomic stability and epigenomic integrity decline with age. Thus, I 

suggest that the activity of these "pro-aging" forces are likely to be more responsible for 
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the gradual deterioration that characterizes the aging process at the cellular level than the types 

of environmental factors that play a more substantial role in early life. 

Under my proposed theory of epigenetic aging and the mechanics of the 

epigenetic clock, the perinatal methylome facilitates direct responses to cues from the external 

environment in an effort to acclimate and maximize prospective fitness in a newly discovered 

environment, before more sophisticated networks (e.g., immune, metabolic, endocrine) take 

over. Following this early-life period, developmental trajectories may become increasingly 

canalized and thus more difficult to perturb, as an extended period of heightened sensitivity to 

the external world is unlikely to have a net positive effect on the fitness of an organism, and 

instead may simply interfere with development or delay reproductive success. It follows that 

DNA methylation in adults would be less susceptible to direct signals from the environment. 

However, this pathway could still contribute to variation in aging indirectly, by modulating the 

impact of factors that promote DNA damage, epigenetic or metabolic alterations, and/or more (or 

less) rapid rates of age-related molecular change. Thus, in early life, the pace of epigenetic aging 

is primed to respond to factors that set the body on a particular trajectory (i.e., it is 

developmentally plastic), along which it proceeds through the rest of life with possible periodic 

spikes in environmental sensitivity throughout the juvenile stage and adulthood. 

Related to this proposed framework, it is notable the Mammalian Phenotypes associated 

with the interaction term of age-at-start and diet in juveniles suggest potential alterations in 

patterns of growth. Many of these phenotypes are similar to changes that result from malnutrition 

in utero in human fetuses (Gluckman and Hanson 2004). This suggests exposure to a calorically-

restricted diet among young rhesus macaques may alter life-long metabolic function through 

altered programming of the growth trajectory and negatively impact later-life survival. 

In non-human animals, earlier age at first reproduction has been associated with 

increased age-specific fecundity but reduced overall longevity in multiple taxa. In a study of 

female rhesus macaques, earlier age at first reproduction was negatively associated with survival 

to ages 11 and 16, but showed no significant association with survival to 21 and 26 years of age 

(Blomquist 2009), suggesting some kind of physiological shift occurs between middle- and old 

age in females of this species. One possible explanation is that natural age-related declines in 

fertility automatically shifts resource allocation away from reproduction to somatic maintenance. 
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Relatedly, individuals who live to age 21 despite an early age at first reproduction may be 

more resilient to the effects of resource-related stress, and may be more likely to continue 

to survive if they successfully make it through the period of peak reproductive activity. In 

Seychelles warblers (Acrocephalus sechellensis), a small but relatively long-lived avian 

species with a life expectancy at fledging of 5.5 and a maximum lifespan of 17 years, 

environmental quality and greater food abundance was associated with a later age at first 

reproduction, which itself was significantly positively correlated with better later-life 

survival (Hammers et al. 2013). Similarly, in female Asian elephants (Elephas maximus) 

earlier age at first reproduction was associated with a significantly reduced likelihood of 

survival in later-life (Hayward et al. 2014).  

A study of the effects of age at first reproduction in multiple zoo-housed avian 

and mammalian species on later-life survival found no significant association, arguably 

due to the absence of resource stress common to life in the wild (Ricklefs and Cadena 

2007). While the macaques in our study were captive-housed and thus not subject to the 

same ecological pressures as wild populations, individuals under DR were subject to a 

type of resource stress (i.e., caloric restriction). In rhesus macaques, the sex of an 

individual as well as the developmental time point at which they begin a calorically 

restricted diet may be a critical determinant of whether they are able to reap the putative 

pro-longevity benefits from such a dietary program.  

 

Dietary Restriction Delayed Age-Related Deterioration of the Methylome 

Finally, dietary restriction appears to delay the rate of stochastic deterioration that 

accompanies aging in the rhesus liver methylome. The known trend of global 

hypomethylation that portends dysfunction in the epigenetic landscape happens at a 

slower rate in both females and males under DR. Intriguingly, sites that were 

significantly hypermethylated with age in the Super Age males showed several notable 

features. As mentioned earlier, 79% of significant DMCs showed gains in methylation 

with age, despite the known trend of widespread hypomethylation that typically occurs 

during aging. This finding aligns with previous work in mice, who show similarly 
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disproportionate gains and relatively little loss of methylation in response to DR (Hahn et al. 

2017). Second, hierarchical clustering analysis revealed that patterns of methylation at these sites 

showed greater similarity by diet type, rather than by age at start or death (Figure 11). Third, the 

hyper-age DMCs in the “old-start” males were significantly enriched for specific GO terms 

pertaining to the extracellular matrix, and in particular the molecular processes and cellular 

components involved in synaptic signaling and other forms of cellular crosstalk, whose integrity 

may be better preserved under dietary restriction. 

I further suggest that a major component of pathological aging in the liver is the 

overactivation of wound-healing mechanisms leading to fibrosis, which can alter the structural 

anatomy and thus degrade the functional integrity of the liver (Jensen, Alpini, and Glaser 2013). 

Fibrosis causes infiltration of the sinusoidal space by scar tissue, which redirects the flow of 

blood carrying potentially infectious agents; as a result, it may act as part of a positive feedback 

loop that promotes disruptions to cellular crosstalk and further pathogenic alterations to the liver 

physiology (Jensen, Alpini, and Glaser 2013). An increase in dense connective tissue due to the 

overactivity of collagen-producing genes is related to alterations of the extracellular matrix 

(Karsdal et al. 2020), and thus I propose this may progressively weaken the robustness of cellular 

signaling networks. Much like in games of telephone, the more points of transfer that exist 

between the original message and final recipient, the more likely it is that the message and its 

meaning will be corrupted. This however is merely one hypothesis that remains to be thoroughly 

interrogated. 

 

Conclusions 

The liver has a remarkably diverse set of functional capabilities, acting as the body’s 

master metabolic regulator, with additional roles in the immune and endocrine systems, and is of 

critical importance to the maintenance of health. While hepatocytes make up approximately 80% 

of the constituent cell types in liver, the liver nonetheless hosts a wide range of highly localized 

cells that assist in the transport of nutrients, detoxification and other critical physiological 

processes. The liver shares several active pathways involved in photoaging of skin, particularly 

among the activity of genes related to elastic fiber and collagen production and the extracellular 

matrix (McCabe et al. 2020). Many of these shared aspects are themselves shared features of the 
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chronic inflammation that is associated with “intrinsic aging”. McCabe and colleagues 

(2020) found metalloproteinase inhibitor 3 (TIMP3) expression was significantly 

increased in aged skin (>80 years), complementing a finding of significant 

hypomethylation of TIMP3 with age in our normal liver aging dataset. The relationship 

between extracellular matrix degradation and the dysregulation of inter-cellular signaling 

networks across cells and tissue types is worthy of further investigation to elucidate how 

deregulated cell communication and signaling promote the progression of age-related 

deterioration.  

While the notion of a multi-tissue biomarker of aging has excited the geroscience 

community, this study and other research strongly suggest that the liver may exhibit 

subtle disease-associated changes that are not readily apparent in other tissues or organs, 

especially those with disparate functional roles in the body. For this reason, future 

research that causally links observable mechanisms to known anatomical and 

physiological networks (such as changes in the liver, pancreas or gastrointestinal tract 

that operate through the gut-liver-brain-axis) is likely to enhance our understanding of the 

role of this organ within the larger organism and processes of phenotypic aging. 

 

Bridge to Chapter IV  

In the final chapter, I summarize key intellectual and material contributions that 

have emerged from the research I have presented here. I also suggest avenues of 

investigation that I believe will continue to advance our knowledge of the aging process.  
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CHAPTER IV 

CONCLUDING SUMMARY 

It is critical that we seek to unify scientific findings from functional genomics 

experiments with evolutionary theory to deepen our understanding of the intricacies of the aging 

process. To treat mice and humans as equivalent taxa in the context of aging science ignores a 

force (i.e., the passage of time) that has fundamentally shaped the different ways in which long- 

and short-lived species have evolved to respond to environmental conditions. Non-human 

primates, particularly great apes and cercopithecoid monkeys, are well-suited to bridge the gap 

between organisms with very short life expectancies and the exceptional longevity of humans. 

Filling this void in knowledge enables meaningful advancement towards a grounded, empirical 

theory of aging.  

The ability to quantify biological age and determine the circumstances under which 

accelerated aging occurs will help deconstruct the complex, multifaceted nature of the aging 

process. Accelerated aging has been associated with chronic disease, psychosocial stress and has 

been shown to be predictive of mortality in humans (see Horvath and Raj 2018 for review). How 

epigenetic changes contribute to variation in the rate and severity of age-related decline is still 

unclear because it remains difficult to determine how specific environmental factors impact the 

progression of aging in humans due to the inherent lack of control over the highly variable 

environment. Few molecular biomarkers of physiological aging have historically been available 

for use in epidemiological and population- based research. However, the study of molecular 

aging has been bolstered by the advent of high-throughput, genome-wide techniques that have 

enabled the development and testing of a new generation of molecular biomarkers of the aging 

process. While several promising biomarkers of aging have been developed, no one marker may 

be truly comprehensive at present.  

Changes in DNA methylation exhibit predictable patterns of change over time but are 

also responsive to environmental factors that contribute to variation in age-related disease 

pathogenesis as well as differences in the relative pace of cellular aging (E. Li and Zhang 2014). 

Unlike chronological age, biological age accounts for interindividual variation in the progression 

of age- related phenotypic change, providing a more accurate picture of overall health. The 
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effective treatment of age-related disease is one the great challenges faced by modern 

medicine; while tremendous strides have been made in aging science, the question of how 

the underlying molecular mechanisms of biological aging interact with parameters of the 

human environment to produce such marked variation in health and disease risk has not 

been answered. Deciphering the effects of individual environmental and behavioral 

variables on the phenotype of whole-organism aging is a key step towards understanding 

the variation we observe in the progression of biological aging.  

To enable ongoing advancement in the field of aging biomarker research, 

distinguishing the molecular changes that reflect the normal course of human aging from 

those which are indicative of disease and/or disease risk is essential. A logical place to 

start is the examination of cell type- and tissue-specific variation, starting at a fine scale 

and moving progressively towards a systems-based perspective that can unify the 

processes of aging across the multiple scales at which it occurs. Here, I have 

characterized age-related change in the methylome as it manifests in specific tissues in 

rhesus macaques and developed and applied optimized epigenetic clock models to test 

hypotheses surrounding sources of variation in the aging process.  

 

 Intellectual Contributions 

Studies of the methylome using both epigenetic clocks and differential 

methylation analyses across tissue types are well-suited to testing a range of hypotheses 

and can be flexibly applied to suit the needs of different disciplines. The research I have 

conducted for this dissertation makes several impactful scientific contributions to 

biological anthropology, the discipline of geroscience, and the study of aging 

epigenomics.  

As part of this project, methylation data were generated from over 800 banked 

rhesus macaque tissue samples. This is the largest amount of methylation data produced 

for this species to date (despite being quite modest in comparison to what is available for 

mice and for humans). Moreover, these data come exclusively from tissues previously 

collected and stored in biobanks, thus making use of the rich tissue resources that exist at 

research centers across the country without any additional sample collection. Only a 
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small number of methylation datasets have historically been available for rhesus macaques, 

despite the prevalence and involvement of this species across many types of biomedical research 

(Didier et al. 2016; Mitchell et al. 2015; Phillips et al. 2014). In addition to the size of the 

dataset, the ample numbers of both females and males as well as the breadth of the age range 

covered are also exceptional assets. Most publicly available datasets for rhesus macaques are 

limited in age range, and some do not provide information regarding the age of the individual 

from which samples came. Therefore, the methylation datasets generated from blood, liver, and 

brain for this dissertation will facilitate novel investigations into the epigenetics of aging in a 

long-lived primate. Many of the factors that negatively impact human health manifest in what 

appears to be acceleration in the course of natural aging, but this can only be confirmed in 

species whose life expectancy is comparable to that of humans. Such investigations are an 

essential next step in deepening our understanding of the phenotype of human longevity.  

To understand how variation in the epigenome interacts with the environment to 

differentially affect healthspan, I characterized molecular signatures of aging in rhesus macaques 

and developed generalizable predictive models to enable testing of hypotheses surrounding the 

mechanics of aging at the molecular level and how they manifest differently across tissues, 

individuals, environments, and species. I performed rigorous comparative analyses of the aging 

methylome by sex, age, and in response to dietary restriction in the liver. I additionally 

developed three targeted, tissue-specific epigenetic clocks for rhesus macaques and tested two of 

these models under different environmental conditions expected to influence health and the aging 

process.  

To the best of my knowledge, the single-tissue clocks I have developed are the first of 

their kind for use in rhesus macaques, and are expected to have broad utility to research being 

conducted at the ONPRC and similar research institutes. While the idea of a multi-tissue clock 

holds clear appeal, single-tissue clocks are more sensitive to more subtle age-relevant change 

that occur exclusively in or disproportionately affect a particular tissue type (Bell et al. 2019). I 

first developed a blood-based epigenetic clock using venous blood samples previously collected 

from over five hundred free-ranging rhesus macaques, aged 1.32 months to 28.82 years, living 

on the island of Cayo Santiago (Chapter II). These monkeys are provisioned with food and water 

but otherwise range freely across the island. While not formally included as part of this 
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dissertation, I have also explored differential methylation by age, sex, in response to 

environmental disruption, and according to different reproductive characteristics in this dataset. 

While these specific analyses are ongoing, this work speaks to the diversity of hypotheses 

that can be tested with the Cayo Santiago methylation dataset and demonstrates the 

tremendous potential of this resource for investigating the methylome in the context of 

physiological, health or age-related change.  

While blood is a sound choice for assessments of general systemic health in 

humans and other animals, certain tissues are better suited for addressing some questions 

over others. One very salient and obvious example is the study of dietary intervention, 

where metabolically active tissues like liver or pancreas are likely to be more illustrative 

of underlying change. As an example, in one study of people with chronic obesity 

preparing to undergo bariatric surgery, epigenetic age was shown in to increase by 3.3 

years for every 10-unit increase in BMI in liver, but not blood, muscle, or adipose tissue 

(Horvath et al. 2014). This underscores the likelihood of unique, tissue-specific 

phenomena that warrant further inquiry. Other studies have shown that different organs 

and tissues (e.g., hippocampus, Levine et al. 2015) appear to age at distinct rates, which 

could ultimately mask changes in the pace of aging that occur first or only in a single 

tissue. A study that systematically compared tissue-specific to pan-tissue clocks found 

that the models varied both in their predictive capacity and underlying genomic features: 

while both tissue-specific and multi-tissue models were able to predict age with high 

accuracy, tissue-specific clocks showed better performance in independent testing, and 

the CpG sites that constituted the tissue-specific models were more likely to be located in 

CpG shores (as opposed to CpG islands for the multi-tissue model), and less likely to be 

found in evolutionarily conserved regions (Choi, Joe, and Nam 2019). This again 

suggests that tissue-specific clocks are better suited to monitoring and deciphering the 

etiology of certain diseases. Studies of how the methylome changes in response to dietary 

modification and aging in rats have demonstrated consistent distinctions in patterns of 

methylation between tissue types, with liver often showing anomalous patterns of 

methylation change in comparison to other organs (Guarasci et al. 2018). As an organ, 

the liver is the master regulator of whole-body metabolism, and metabolic dysregulation 
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is a common feature of premature aging. The liver may exhibit sub-clinical signs of metabolic 

dysfunction much earlier than blood or other tissues, highlighting the value of a more targeted 

approach in the context of diseases such as diabetes, non-alcoholic fatty liver disease, or other 

components of Metabolic Syndrome.  

This is the first research to investigate sex differences in the liver epigenome of healthy 

macaques, to characterize epigenetic age across the lifespan in this species in multiple tissue 

types, and to evaluate the effects of a pro-longevity intervention using a custom, tissue-specific 

epigenetic clock (Chapter III). Results from this research underscore the necessity of elucidating 

the role of the liver within the larger process of physiological aging and the role it plays in 

disease and mortality risk in long-lived species. It is worth noting one relevant difference in the 

neural anatomy of the liver between mice and rats compared to humans: humans and 

cercopithecoid monkeys show liver tissue that is deeply innervated (Nobin et al. 1978) and 

contains direct lines of communication to the brain, specifically the hypothalamus (Jensen et al. 

2013). The hypothalamus can activate hepatic metabolism through the vagus nerve, which 

innervates the liver (Pocai et al. 2005). By contrast, the livers of mice and rats do not show this 

deep level of innervation, and instead have a greater concentration of cell-cell gap junctions 

between hepatocytes that occur in inverse proportions to the level of innervation (Seseke, 

Gardemann, and Jungermann 1992; Hertzberg and Gilula 1979). Additionally, in rats and mice, 

the liver has no direct connection to the brain and communicates only indirectly with the nervous 

system (Yi et al. 2010). These differences are salient given the heavy (albeit incompletely 

understood) involvement of the nervous system in the progression of aging in humans.  

It is notable that gene expression patterns in the liver are generally similar across a range 

of mammalian taxa, namely mice, cynomolgus macaques, pigs, and humans (Wagenaar et al. 

1994). Nonetheless, the effects of DNA methylation are not limited to gene expression. These 

trends towards heterogeneity between species emphasizes the value of targeted models for this 

(and other) tissue types for elucidating the etiology of disease. Both species- and tissue-specific 

studies will yield novel discoveries about age-related change in the context of the hepatic 

epigenome.  

Findings from this project also highlight the importance of age as it relates to 

developmental stage and to sex in determining the likelihood of reaping the pro-longevity 
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benefits of DR or a pharmacological DR mimetic. Given this finding contrasts with 

studies in mice that show increased longevity when caloric restriction is started at earlier 

ages, it is important to further explore the underpinnings of this finding within an 

evolutionary and life history-oriented framework. These analyses have also highlighted 

potential roles of the nervous system in the modulation of age-related change in the 

methylome of rhesus macaques, a relationship previously reported by an investigation as 

part of the WNPRC study of long-term dietary restriction that looked at changes in gene 

expression in response to DR (Kayo et al. 2001). This is an intriguing finding that 

warrants further investigation, given the dearth of knowledge regarding how the nervous 

system affects tissues and tissue-specific processes throughout the body, and would 

benefit from incorporating additional data from other tissues. The central nervous system 

plays an essential role in the sensing and regulation of both glucose and lipids in the 

hepatic portal system, and this line of communication between the brain and liver to 

regulate metabolism has been suggested as a therapeutic target for obesity (Jensen et al. 

2013).  

While not a part of my dissertation project, I also developed a hippocampus-

Figure 12. Predicted ages from hippocampus samples (n=96). 
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specific clock for rhesus macaques that predicts age with high accuracy (Pearson’s r = 0.9; 

median absolute difference = 2.44 years; Figure 12). In addition to the DNA methylation data 

used to build this model, we recently obtained matched RNA-seq data for these same samples. 

These matched datasets are well suited to interrogate how the nervous system and associated 

changes in the methylome contribute to broader patterns of age-related phenotypic change. 

 

Future Directions  

The contemporary field of aging research is pivoting away from the identification of 

genes associated with longevity in ways that remain largely mysterious (Wensink and Cohen 

2022) to the characterization of the molecular mechanisms by which the external world “gets 

under the skin” to promote such variation in longevity. With the advent of multiple molecular 

biomarkers that purportedly capture systemic biological aging (e.g., Levine et al. 2018; Lu et al. 

2019), understanding the underlying mechanisms should be prioritized to maximize their 

translational potential to the clinic. This necessitates the thorough characterization of intra-

individual aging variation to evaluate the sensitivity of different organs to putative pro- or anti-

aging factors, as well as their relative contribution to the phenomenon of aging in other tissues 

and for an organism as a whole. 

There are a remarkable number of directions in which any part of this research can be 

taken. The work presented in this dissertation forms a foundation for future empirical analyses 

involving complementary components of the aging process, such as epigenetic drift, whereby the 

epigenome becomes increasingly unique and more prone to errors with advancing age (Issa 

2014; Y. Li and Tollefsbol 2016). Drift can be elegantly measured using the information 

theoretic concept of entropy (Jenkinson et al. 2017).  Entropy is a measure of predictability or 

disorder in a system, and has been used in the past to capture the phenomenon of epigenetic drift 

(e.g., Maegawa et al. 2017). Future research should aim to elucidate epigenetic drift in different 

tissues and develop a clearer understanding of how this phenomenon fits within the larger 

network of age-related changes that occur within the epigenome. Additionally, these data can be 

used to identify putative methylation quantitative trait loci (meQTLs). Incorporating chromatin 

accessibility and other types of epigenomic data will help to disentangle the effects of genes 

versus environment on methylation change across the lifespan. Furthermore, multi-omics studies 
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may identify genes and/or genetic mechanisms with active roles in the aging process that 

were previously unconfirmed due to insufficient data or methodological resources. The 

field of aging science is at an inflection point, and there is enormous potential for 

epigenetic and comparative evolutionary studies to make meaningful contributions to 

emerging science. 

Future directions for pro-longevity dietary interventions should include research 

aimed at completing the diverse molecular portrait of the aging process. For the long-

term dietary restriction study carried out at the NIA, it would be informative to examine 

methylome profiles in blood longitudinally, to see how the methylome of dietary-

restricted individuals changed across the lifespan and in accordance with length of time 

on the diet. The liver datasets analyzed in this dissertation are rare resources due to the 

lack of available samples from healthy or normal liver tissue from any primate (including 

humans) at young, middle, and early adult ages. Blood is advantageous in that is 

relatively easy to collect and can be sampled repeatedly over the lifetime of an individual. 

By examining longitudinal change in these animals, we can see discern whether the effect 

of DR is tissue-specific or more systemic, determine whether DR leaves a “signature” of 

energetic restriction in the methylome, and whether this signature accurately portends 

extensions in lifespan and healthspan. Furthermore, the absence of a lifespan-extending 

effect in the “adult start” group warrants attention. This is a notable distinction compared 

to mice, for whom starting DR earlier in adulthood correlates with more beneficial 

longevity outcomes (Cole et al. 2017). Additionally, the changes in the methylome that 

occur with age and in response to DR in this rhesus macaque population should be 

comparatively analyzed to see if an independent signature of DR is discernable, and if 

such a signature, assuming it exists, is functionally distinct from predictable patterns of 

age-related change. Functional characterization of the differentially methylated sites 

(particularly those showing significant hypermethylation with age) in the Super Agers is 

one potentially fruitful avenue for this pursuit.  

 Characterizing the genes and genomic elements to which CpG sites showing 

significant differential methylation with age between the normal and NIA datasets will 

help shed light on the delayed aging effect of DR supported by findings from this 
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research. Additionally, identifying the mechanisms which underlie the difference in magnitude 

of age-related change in female versus male rhesus macaques will be important to furthering our 

understanding of how chromosomal sex impacts aging in different tissues and in response to 

different pro-longevity interventions. Future research on DR in primates should consider whether 

it is worthwhile to include very young non-human primates in such studies, given that trade-offs 

with growth appear to interfere with any substantial longevity benefit that might be reaped.   

Lastly, while this dissertation has made important contributions, it too has limitations. It 

will be worthwhile to explore how cell type and cellular age (based on regeneration rates) 

contributes to age-related methylation change using single-cell approaches. It is also important to 

recognize that while the two species’ evolutionary similarity is a substantial asset, macaques and 

humans are nonetheless very distinct species. While we can isolate variables in the laboratory, 

ultimately, removing the effects of the environment may be akin to introducing a different type 

of confounding variable when it comes to the study of epigenomics and gene-environment 

interactions. The development of approaches that can capture and quantify the complexity of 

interaction between different environmental forces in real time will be challenging, but may hold 

the final answers to a theoretically diminishing number of outstanding questions about aging. 

Moving forward, it will be advantageous to employ and unify findings from both targeted and 

system-wide approaches to identify mechanisms that underlie relationships between accelerated 

(or decelerated) aging and specific age-related diseases. This in turn may enable our 

understanding of the larger phenomenon of biological aging to come full circle.  
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APPENDIX A 

SUPPLEMENTAL FIGURES 

 

 

 

 

  

Figure S1. Plot on the left shows uncorrected measure of age acceleration, “delta age”, which displays 

systematic bias towards under prediction at older ages. Once we regress out the effects of the modeling 
process, the measure is much more evenly scattered across age ranges and no longer reflects any 

apparent technical confounders. 
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Figure S2. The proportion of shared coverage between our rhesus training 

and test datasets increased from 38% for the site-based approach (top) to 

97% for the window-based approach (bottom). Numbers on the left of each 
venn diagram show the number of features (sites or windows) unique to the 

Yerkes dataset, while numbers on the right-hand side show those unique to 

the Cayo Santiago dataset. The numbers shown where the two circles 

overlap refer to the count of shared features between the two datasets when 

either approach was used. 
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Figure S3. Clock windows are modestly but significantly enriched for evolutionarily 

conserved sequences (two-sample Kolmogorov-Smirnov test, D = 0.09, p = 0.007). 
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Figure S4. Distribution of mean phastCon scores for clock windows (those automatically 

selected for inclusion in the model) and non-clock windows. Clock windows show a 
modest trend towards sequence conservation as compared to the windows that were not 

selected. 
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Figure S5. CpG sites showing significant loss of methylation 

with age in old-start males on HD and HD+DR diets. 
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Figure S6. Significantly enriched Gene Ontology (GO) terms for Super Ager males 
(FDR < 0.05). Numbered (solid color) circles indicate terms that were significantly 

overrepresented among the age-DMCs for the Super Ager males and to which fewer 

than 500 genes were annotated. These terms are identified by number in the table below 
the Manhattan plot. Transparent circles represent terms that are significantly 

overrepresented but to which more than 500 genes were annotated (meaning they are 
more general and less informative regarding specific functions or mechanisms). The y-

axis shows the (negative log) p-value for tests of enrichment per GO term, with higher 

values indicating greater significance. MF: Molecular Function; BP: Biological 

process; CC: Cellular component.  
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APPENDIX B 

SUPPLEMENTAL METHODS AND RESULTS 

 

Bismark Parameter Settings 

When aligning the reads to the reference genome using Bismark, we made two 

modifications to the alignment default parameters to reduce the number of ambiguously 

mapped reads (which results in data loss because these reads are discarded due to the 

inability to determine a unique best alignment). We relaxed the minimum alignment 

score to allow approximately 3 mismatches or gaps in the alignment of 1-2 bp each (this 

is the “--score_min” parameter; note that the maximum alignment score is zero, 

corresponding to perfect alignment with no mismatches or gaps). We also increased the 

number of times Bismark attempted to reseed a repetitive (low complexity) read before 

marking it as invalid, from a default of 2 to 8 times (“-R” parameter).  

 

Criteria Used to Eliminate Samples from the Site-Based Dataset 

Our initial dataset contained 631 genomic libraries. We removed 21 low coverage 

libraries following alignment to the reference genome. We combined data from duplicate 

libraries (those derived from samples collected from the same individual on the same day, 

n = 29), leaving 581 samples. We removed eight samples after plotting the ratio of X-

chromosome to chromosome 19-mapping sites by sex and finding four samples labeled as 

female that clustered with the males, and four labeled as male that clustered with the 

females, suggesting they had been mislabeled. Finally, we removed 24 samples that were 

missing > 25% of their data in the final filtered dataset. 

 

Considerations for Training, Optimizing, and Implementing Epigenetic Clock Models 

We used an elastic net penalized regression algorithm that automatically selects 

different subsets of CpG sites (or 1 kb windows) that together generate the most accurate 

and precise age predictions. We used a nested loop structure to train and optimize our 

penalized regression model, with a leave-one-out cross validation (LOOCV) outer loop to 
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tune model hyperparameters and an inner 10-fold cross validation loop to fit the model to 

training data (which determines the model’s coefficients). 

In the case of DNA methylation-based epigenetic clocks, our goal is to model the 

relationship between methylation at CpG sites or windows (independent variables) and calendar 

age (dependent variable).  

We first fit a model to our training dataset. During the training stage, the algorithm is 

given both the methylation ratios and the chronological age of each sample. The algorithm then 

uses N-1 samples to train “proto-models” by dividing the data into 10 folds and running an 

internal cross-validation loop to train and validate on the inner folds. It determines which 

combination of features predict calendar age while minimizing the mean squared error. 

Hyperparameters are meta-parameters that are not learnable from the training data; examples are 

regularization parameters like lambda or the value of K in K-fold cross validation. We initially 

use previous knowledge or default settings for the hyperparameters and can subsequently 

optimize them by using caret’s train() function and setting different hyperparameter 

combinations using preProcOptions(). Tuning alpha may only result in modest boosts in 

performance, but it still recommended to examine results from setting different alpha values 

during the model optimization process. 

 

Enrichment Analysis for Evolutionarily Conserved Sequences 

To assign conservation scores to windows in rhesus macaque coordinates, we calculated 

phastCons scores directly using the “57 mammals EPO” multiple species alignment obtained 

from Ensembl (release 101). Multiple alignment format (MAF) files were processed in the 

following manner: First, ancestral species were removed, along with blocks not containing 

rhesus macaque sequences using maffilter v1.3.1 (Dutheil, Gaillard, and Stukenbrock 2014). We 

then removed species duplicates from each alignment and indexed each block to the rhesus 

macaque reference genome using mafTools (Mayakonda et al. 2018). Next, we used maf_parse 

from the PHAST utilities (Hubisz, Pollard, and Siepel 2011) to extract blocks corresponding to 

the 155,347 windows in this analysis. After extracting each window, we performed a local 

realignment of each block using MAFFT (v7.402) (Katoh and Standley 2013) and maffilter. 

Some rhesus sequences that were originally from the same window were split across multiple 
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blocks or MAF files. We thus rearranged alignment blocks such that each MAF file 

contained only blocks from the same rhesus macaque window using a custom shell script. 

We then combined blocks using the Merge() function in maffilter with rhesus macaque 

set as the reference species. We calculated conservation scores using the phastCons 

program (v1.5). First, we fit a phylogenetic model using phyloFit, the REV nucleotide 

substitution model, and the phylogenetic tree provided with the dataset in the Ensembl 

release. A minority of windows were excluded (7,008, or 4.5%) from this analysis 

because they were not represented in the multiple species alignment. We ran phastCons 

using the arguments “--expected-length 45 --target-coverage 0.3 --rho 0.3", which are 

identical to arguments used in the UCSC Genome Browser pipeline for generating 

conservation tracks. The resulting phastCons scores represent probabilities of negative 

selection at the per-site level. We summarized each window by calculating the mean 

phastCons score across all windows. 

 

Sample Removal in the Test Datasets 

For the Yerkes macaques, we removed two samples due to insufficient library 

size (remaining n = 43). For the baboons, we removed nine samples that failed three 

attempts at alignment to the bisulfite-converted rhesus genome (Mmul10), and six with 

low library sizes (remaining n = 271). 

 

Supplemental Results 

Tests for Associations between Epigenetic Age, Rank and Grooming in the Yerkes Dataset 

Previous studies have found clear associations between indicators of 

physiological health like immune function and dominance rank (Simons and Tung 2019; 

Snyder-Mackler et al. 2016a). Because we were able to access behavioral data for the 

Yerkes RRBS dataset (Snyder-Mackler et al. 2016a; 2016b), we also used the 

RheMacAge blood clock to test if certain social variables were associated with 

accelerated aging. We found no significant association between age acceleration and 

dominance rank (a measure of social status) or grooming (a measure of social 

connectedness). Because rates of aggression are inversely correlated with rank and low 
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rank is correlated with increased psychosocial stress, we hypothesized that low-ranking 

individuals who receive more harassment may show accelerated epigenetic aging. The 

association between age acceleration and received harassment approached but did not 

reach significance (p = 0.08). This trend was largely driven by an individual who experienced 

more than twice as much aggression as any other individual and exhibited the most extreme age 

acceleration (predicted age > calendar age + 10 years).  
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