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DISSERTATION ABSTRACT 

 

Seth R. Donahue 

 

Doctor of Philosophy 

 

Department of Human Physiology 

 

June 2022 

 

Title: Machine Learning and Wearable Sensors for the Estimation of Biomechanical 

Variables Outside the Laboratory 

 

 

 

The miniaturization of sensors and their availability for biomechanical analysis 

outside of the laboratory has opened whole new areas of research. Wearable sensors have 

been developed to measure ground reaction forces, and inertial measurement units have 

been developed for the measurement of acceleration and angular velocity. The purpose of 

this dissertation was to develop methodologies for the measurement and estimation of 

biomechanical variables, outside of the laboratory. As these sensors can provide vast 

amounts of data, it is natural to leverage the strengths of machine learning models, which 

have been used to find patterns in large datasets to assist in the task of estimating 

biomechanical variables using wearable sensor data as input.  

This dissertation is divided into five distinct, but related projects all linked to the 

identification of gait events and machine learning applications for human locomotion 

data, both in and out of the laboratory. The first two projects were focused on 

identification of gait events and transitions between locomotion modes, while Projects 3 - 

5 were focused on gait event detection and estimation of biomechanical parameters 

during running outside the laboratory. Project 1: Validation of a supervised machine 

learning algorithm for steady state locomotion, and dynamic transitions between those 
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locomotion modes. Project 2: Deployment of an unsupervised machine learning and 

heuristic gait event detection algorithms for the identification of gait events, across 

environmentally constrained and internally driven locomotion transitions 

Projects 3 - 5 resulted in the development of methodologies for biomechanical 

analysis.  We utilized both heuristic and machine learning methodologies for the 

estimation of biomechanical variables in these scenarios. Project 3: Estimation of gait 

events and contact times from inertial measures on the foot and the sacrum in a semi-

uncontrolled environment. Project 4: Implementation of a recurrent neural network for 

the estimation of whole ground reaction force waveforms and the calculation of discrete 

kinetic variables from these waveforms in a semi-uncontrolled environment. Project 5: 

Synthesis and application of the previous two chapters, gait event detection and 

estimation of ground reaction force waveforms on data collected in a real-world 

environment during a 5-mile free run.     
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CHAPTER I 

 

INTRODUCTION 

 

 

Background and Significance 

Introduction 

 Biomechanical analysis of human locomotion outside of the laboratory has been 

made possible with the development of wearable sensors, for both clinical and sport 

applications [1]–[3]. Collection and analysis of biomechanical data in the laboratory has 

been well established for the measurement and analysis of human locomotion. Traditional 

biomechanical protocols require motion analysis in the laboratory either across inground 

force plates or on an instrumented treadmill [4]–[6]. These methods require expensive 

equipment, and a high level of technical expertise, while comparatively wearable sensors 

are less expensive, lightweight and require less technical expertise than laboratory-based 

methods. From both laboratory-based analyses, and real-world/ecological analyses there 

are three broad categories of measurements; spatial temporal, kinematic and kinetic. 

Examples of spatial temporal parameters relating to gait are initial contact (IC), the 

instance the foot comes into contact with the ground, toe off (TO), the last instance the 

foot is in contact with the ground, and contact time as the difference between the TO and 

IC. These form the basis of biomechanical analysis, via gait cycle segmentation. 

Examples of kinematic variables are joint angles and angular velocity. Kinetic variables 

include stance average ground reaction force (GRF), stance average GRFs, impulse, peak 

GRFs, and loading rates. For the purposes of this dissertation, analysis will be focused on 
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the identification of gait events in all manuscript chapters (III – VII), and estimation of 

ground reaction forces in the final two manuscript chapters (VI and VII).  

 

Gait Event Identification for General Locomotion 

The gold standard for identification of gait events in the laboratory are vertical 

GRF using force plates and marker trajectories measured using optical motion capture 

systems [7]. Wearable sensors for the measurement of forces outside the lab currently 

include in-shoe force or pressure sensors. Insoles utilized for the identification of gait 

events outside of the laboratory have been developed and validated for gait event 

detection, and measurement of  kinetic variables [8]–[10]. Force or pressure sensing 

insole systems can be expensive, and they are often not viable for use in assistive devices 

or consistent daily use. For the purposes of this dissertation, force sensing insoles were 

used as the standard comparator against which the IMU based estimates were examined.  

Typically, there are 9 individual sensors in a multi-axial IMU, 3-D accelerometers 

(linear acceleration), 3-D gyroscopes (angular velocity) and 3-D magnetometers 

(magnetic field). Multi-axial inertial sensors have been utilized extensively for the 

identification of gait events and locomotion mode, with varying success [11]–[18]. 

Accelerometers have the potential to be used for gait event detection but require the use 

of gyroscopes and extensive mathematical modelling, and Kalman Filters to correct the 

orientation of the senor consistent identification of gait events [19], [20]. The use of 

gyroscopes for identification of gait events may be more consistent as they are orientation 

invariant, and unaffected by gravity [21]. While these methodologies have been 
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previously explored in the laboratory, they are yet to be validated in a real-world 

environment.  

 

Machine Learning Algorithms for Identification of Gait Events   

Machine learning algorithms have been used to identify gait events and classify 

locomotion modes, such as walking, ramp/stair ascent/descent. These methods include 

linear discriminant analysis (LDA), and support vector machines (SVM) that utilized 

simple rules in high dimensional feature spaces to divide the different classes [22]–[25]. 

More sophisticated implementations of machine learning algorithms for gait event 

identification are hidden Markov models (HMM), and time history dependent variations 

of these (e.g. dynamic Bayesian networks and auto regressive HMM), while other 

algorithms include artificial neural networks (ANN), and phase variable classification 

[17], [25]–[28]. Although more computationally intensive, these algorithms provide 

improved accuracy compared to more simplistic machine learning methods. Machine 

learning algorithms are favored over simpler heuristic methods as they have the potential 

flexibility to transfer learning between environments. Some issues with these approaches 

are they have not yet been tested on data in an ecological environment, and they typically 

require large sensor arrays and high sampling frequencies that are not practical for real-

world applications.  

 One solution to the problem of large sensor arrays and high sampling frequencies 

are novel algorithmic techniques have been developed particularly for analysis of 

multiple related time series and minimal input data. An example of these algorithms are 

switching linear dynamical systems, developed previously for economic analysis and the 
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description of other dynamical processes [29]. These algorithms are unique as behaviors 

do not have to be known a priori but can be added when a new feature is discovered. A 

switching linear dynamical system, the Beta Process Autoregressive Hidden Markov 

Model (BP-AR-HMM) was used in the first part of this dissertation [30]. The beta 

process is a feature selection algorithm, that can generate new features based upon the 

given data and share these features across related time series [29]. The transitions 

between these features are governed by the AR-HMM model, which considers the 

previous time steps and generates transition probabilities for efficient transitions states. 

This type of feature identification algorithm is advantageous as it generates states from 

the input data, does not rely on user defined states, and it can be utilized as both an 

unsupervised and supervised machine learning algorithm.  

The first two Specific Aims of this dissertation sought to identify features prior to 

gait events from sensors with minimal sampling frequency with the BP-AR-HMM and a 

heuristic algorithm. The final three Specific Aims of this dissertation focused on the 

estimation of contact time from IMUs, and the mapping of GRF waveforms from IMUs 

while running outside of the laboratory.  

 

Running Outside the Laboratory  

Over the past three decades biomechanics researchers have studied running in 

different simulated environments. Examples of these are: running on different surfaces 

[31], [32], different simulated gravities [33], positive and negative slopes [34]–[36] and 

on uneven terrains [37]. These studies have developed the gold standards for human 

running performance analysis. Inertial sensors have been used for the estimations of leg 
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joint angles, and measurements of stride kinematics and segmental accelerations, during 

competitive events [38], [39]. The overarching purpose of these studies was to develop an 

understanding of human running biomechanics across a range of locomotion velocities 

and in different simulated environments. There have been further inquiries utilizing 

inertial data collected in the laboratory for estimation of gait events [40]–[42], discrete 

kinetic variables[43], [44] and kinetic waveforms [45]–[47]. Initial comparisons between 

the laboratory standard and wearable sensors for the identification of gait events has been 

successful [41], [42], [48]. There have been two general methods for the estimation of 

gait events from inertial sensors: heuristic rule sets, and machine learning.  

Identification of gait events from IMUs for running locomotion has generally 

relied on heuristic rules. Sensors mounted on the shank and foot have relied on the 

identification of peak accelerations for the estimation of Initial Contact (IC), [40], [41], 

[49]. Peak impact accelerations during running for IMUs mounted on the foot, are greater 

than 50 m s-2, these peak accelerations are consistent enough for the identification of IC 

while running. Multi-axial IMUs, mounted on the waist of the participants tend to rely on 

accelerations in either the vertical or anteroposterior directions for the identification of IC 

[40], [41], [44], [48]. From the identification of IC, it is then possible to detect TO with 

specific rules within a temporal window. The use of machine learning algorithms for the 

identification of gait events during running has shown promise as well in the laboratory, 

for a data driven approach to the identification of foot contacts [50].  

Machine learning for mapping of IMU data to GRF waveforms for the analysis of 

running biomechanics has not yet been achieved from data collected in an outdoor 

training or real-world environment. The estimation of temporally dependent waveforms 
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from recurrent neural networks (RNNs), particularly, Long Short Term Memory 

networks (LSTMs) have been used in biomechanics as gait is cyclical [45]–[47], [51]. 

They have been used for estimation of GRFs during an identified stance phase from 

inertial data [46], [47], from data normalized to the duration of a step [52]. More recently, 

there have been other efforts in this space to estimate partial GRF waveforms, that can be 

linked together to form waveforms of indefinite length [45]. From these waveforms 

simple rules can be made for the identification of IC and TO. These studies have focused 

on the estimation of contact time, peak GRF, impulse and loading rate. Each of the 

previous studies, with the exception of [45], have only estimated GRF during stance 

phase as identified by a researcher. Furthermore, the work in this space has been limited 

to estimation of these variables while running on level ground with the exception of [45], 

which included treadmill running on an incline and decline. We look to expand upon 

these methods by validating level ground running at set paces as well as free running for 

the estimation of GRFs.  

 

General and Specific Aims 

 This dissertation set out to develop validated methodologies for the identification 

of gait events and estimation of GRF waveforms from wearable sensors across a range of 

locomotion modes and running velocities from data collected outside of the laboratory. 

The practical applications of these data and methods are the accurate identification of 

foot contact from mobile sensors, including those used for control systems on powered 

assistive devices with minimal sensor data and more accurate and relevant training tools 

for runners. Towards these objectives five specific aims were addressed. The first two 
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Specific Aims focused on the estimation of features prior to gait events during steady 

state locomotion and transitions between locomotion modes with minimally sampled 

data. The last three Specific Aims focused on estimation of gait events and GRF 

waveforms while running in a semi-uncontrolled and an uncontrolled environment. 

 

Specific Aim 1: Test the utility of a machine learning algorithm to label foot 

acceleration data for classification of human locomotion. The Beta Process – Auto 

Regressive – Hidden Markov Model (BP-AR-HMM) can be either a supervised or 

unsupervised machine learning algorithm that generates a subject independent feature set 

for related time series. We utilized steady state locomotion data, walking and running as 

well as dynamic transitions between the two to test this algorithm. Features output from 

the supervised BP-AR-HMM were expected to be able to identify waveform 

characteristics prior to IC and TO. To complete this aim, data collected in a prior study 

conducted my Dr. Li Jin, a former graduate student in the BSSC were used as input to the 

BP-AR-HMM. 

 

Specific Aim 2: Develop a system for the identification of features prior to gait events in 

an ecological environment with both an unsupervised machine learning and a heuristic 

algorithm. We tested the utility of the unsupervised BP-AR-HMM to label steady state 

and dynamic locomotion data, as well as a rules-based algorithm for the identification of 

features prior to the occurrence of gait events. Steady state walking, running, ramp and 

stair ascent/descent as well as transitions between level ground walking and all other 

locomotion modes in an ecological environment. This aim sought to build a participant 
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independent labelling system of gait for the identification of gait events prior to their 

occurrence with both a machine learning and heuristic model.   

 

Specific Aim 3: Develop and validate two algorithms for the estimation of contact times 

at set paces on a track. We developed two algorithms based on previous work for the 

estimation of gait events from a wide range running velocities and participant skill levels. 

We collected data in a semi-uncontrolled environment, at set running paces on a square 

track, to estimate gait events from two IMUs located bilaterally on the dorsum of each 

foot as well as the one IMU clipped to the back of the waistband. Each of the algorithms 

used peak identification for the estimation of IC and temporal windows for the 

identification of TO. The IMU estimated gait events were compared to events derived 

from instrumented force sensing insoles as a standard.  

 

Specific Aim 4: Estimate whole ground reaction force waveforms from inertial sensors 

during fixed pace runs on a track. We implemented a machine learning algorithm for the 

mapping of inertial data to GRF waveforms using data collected from participants 

running at set paces and with a variety of running experience. This analysis used data 

from Aim 3.  The purpose of this study was to build a machine learning model for the 

estimation of gait events and contact time, as well as the estimation of discrete GRF 

variables from an estimated waveform, including stance average GRFs, peak GRFs, 

impulse, and average loading rate in a semi-uncontrolled environment.  
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Specific Aim 5: Estimate whole ground reaction force waveforms from inertial sensors 

during a free run in a real-world environment. The focus of this aim was to validate the 

algorithms developed in Aims 3 and 4 in a real-world running environment. Specifically, 

this study compared the estimation of whole GRF waveforms from the same three sensor 

set up used in Aims 3 and 4 for participants running at their own pace on a 5-mile course, 

which included running up and down hill.  

Through the completion of these aims, methodologies for the identification of gait 

events outside of the laboratory have been improved. This knowledge may be applied to 

the identification of gait events in assistive devices, wherein minimizing sampling 

frequencies makes it less burdensome to monitor patients in their own ecological 

environment. Other aspects of this work may be applied to development of a model for 

the quantification of training load throughout a runner’s preparation for a race, or for a 

novice runner to improve their form.  The larger study mentioned throughout Specific 

Aims 3-5 is the Longitudinal Running Study, the overarching purpose of this study is to 

develop biomechanical tools to monitor running performance throughout the course of 

their training.  

 

Organization of Dissertation 

 This dissertation is written in a journal style format, where chapters III-VII have 

been or will be submitted for publication to peer-reviewed journals. The following 

section explains how these chapters fit together into a coherent body of work. A bridge 

statement explaining the flow of studies is included at the conclusion of Chapters III-VII. 
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 The current chapter (Chapter I) provides essential background information 

regarding wearable sensors and machine learning algorithms for the detection of features 

prior to gait events, gait events and the estimation of whole force waveforms from 

wearable sensors. This chapter establishes the basis and need for the research presented in 

the dissertation. Chapter II will detail the methodology used for each study. Chapter III 

describes methods, model development, and validation procedures related to Specific 

Aim 1. Chapter IV describes the development of methods for outdoor data collections 

with wearable sensors and machine learning algorithms for gait event detections in a real-

world environment to complete Specific Aim 2. Chapter V describes the development of 

algorithms for the estimation of gait events using two different anatomical locations for 

running in a semi-uncontrolled environment for completion of Specific Aims 3. Chapter 

VI corresponds to the model development, methods and analysis of running in a semi-

uncontrolled environment with data estimated from an optimized machine learning 

model, for completion of Specific Aim 4. Finally, Chapter VII synthesizes the methods 

and models of chapters IV, V and VI for the analysis for the completion of Specific Aim 

5. Chapter VIII summarizes the notable results of the overall body of work, reiterating the 

key findings while acknowledging limitations and outlining future directions for work in 

this area of research. 

 This dissertation includes co-authored work, some which has already been 

submitted for publication in peer-reviewed journals. Chapter III has been submitted and 

accepted to IEEE Journal of Biomedical and Health Informatics, DOI: 

10.1109/JBHI.2020.3028827. Chapter IV has also been submitted and accepted to IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, DOI: 
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10.1109/TNSRE.2021.3131953. Chapters V-VII will be submitted for publication to an 

appropriate journal. For all work in this dissertation, with the exception of the study 

design and data collection of Chapter III (completed as part of Dr. Li Jin’s dissertation 

work), Seth Donahue was the primary investigator, responsible for study design, data 

analysis, interpretation, and dissemination. Dr. Michael E. Hahn advised on all aspects of 

this dissertation.  
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CHAPTER II 

GENERAL METHODOLOGY 

Subjects 

Chapters III and IV of this dissertation describe the development and validation of 

novel methods for the estimation of gait events across and between locomotion modes, 

both inside and outside the laboratory. Chapters V-VII of this dissertation describe the 

development of both heuristic and machine learning algorithms for the estimation of gait 

events in both a semi-uncontrolled and uncontrolled environment. The current chapter 

provides a summary of the methods developed and used for data collection and analysis 

for the various Aims.   

To address Specific Aim 1 (Chapter III), ten middle aged able-bodied subjects 

participated in the study (Table 2.1). To be included participants had to be between the 

ages of 40 and 65 and not have sustained a lower limb injury in the past year. These data 

were collected as apart of Dr. Li Jin’s dissertation.  

 

Table 2.1: Subject Characteristics (Mean ± SD) for Specific Aim 1 

Sex Age (yr) Height (cm)  Mass (Kg)  

Total (n = 10) 50.7 ± 6.0 173.4 ± 11.4 69.7 ± 1.0 

 

 

To address Specific Aim 2, sixteen able bodied participants with no injuries to 

their lower extremities in the past 6 months were recruited (Table 2.2). For Chapter IV, 

written informed consent was obtained from each participant and study protocols were 

approved by the University of Oregon Institutional Review Board (IRB protocol 

#08202018.018). 
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Table 2.2: Subject Characteristics (Mean ± SD) for Specific Aim 2 

Sex Age (yr) Height (cm)  Mass (Kg)  

Male (n = 8) 33.75 ± 17.36 179.39 ± 6.78 70.57 ± 8.21 

Female (n = 8) 28.50 ± 12.35 167.32 ± 5.02 62.67 ± 4.75 

Total (n = 16) 31.13 ± 14.81 173.36 ± 8.49 66.32 ± 7.62 

 

 

To address Specific Aims 3 and 4, fifteen runners were recruited as part of a 

larger ongoing study. These participants were recreationally trained, with a minimum 

training volume of 5 miles of running per week. For Chapters V and VI, written informed 

consent was obtained from each participant and study protocols were approved by the 

University of Oregon Institutional Review Board (IRB protocol # 10062020.007). 

 

Table 2.3: Subject Characteristics (Mean ± SD) for Specific Aims 3 and 4 

Sex Age (yr) Height (cm)  Mass (Kg)  

Male (n = 9) 26.33 ± 13.44 179.44 ± 4.22  71.33 ± 7.00 

Female (n = 6)  19.83 ± 0.41 163.00 ± 15.41  64.50 ± 2.17 

Total (n = 15) 23.73 ± 10.69 172.87 ± 12.83  68.60 ± 6.46 

 

 

To address Specific Aim 5, sixteen runners were recruited as a part of larger 

ongoing study. Participants were recreationally trained runners. They were asked to 

complete a 5-mile course, which had similar characteristics to their normal training 

routes, distances, and elevation changes. For Chapters VII, written informed consent was 

obtained from each participant and study protocols were approved by the University of 

Oregon Institutional Review Board (IRB protocol # 10062020.007, MODCR: 

00000269a). 
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Table 2.4: Subject Characteristics (Mean ± SD) for Specific Aim 5  

Sex Age (yr) Height (cm)  Mass (kg)  Pace 

(min:secs) 

Male (n = 8) 23.57 ± 6.00 166.29 ± 7.74  70.86 ± 8.38 7:53±0:46 

Female (n = 5)  23.40 ± 3.58 168.40 ± 4.56  56.20 ± 4.21 8:08±0:36 

Total (n = 13) 23.15 ± 4.88 167.77 ± 30.86  65.00 ± 9.70 7:56±0:40 

 

 

Study Design and Experimental Protocol 

Chapter III  

 Participants walked and ran on an instrumented treadmill (Bertec, Inc., Columbus, 

OH) with four steady state trials, and two dynamic walk-to-run and run-to-walk 

transitions. There were two steady state walking trials (1.4 and 1.6 m s-1), two steady 

state running trials (2.6 and 3.0 m s-1), and a walk-to-run trial from 1.8 – 2.4 m s-1 with an 

acceleration of 0.1 m s-2 and run-to-walk trial from 2.4 -1.8 m s-1, with a deceleration of 

0.1 m s-2
. Each trial was 90 seconds long, with the middle 10 seconds of each trial being 

analyzed.   

 

Chapter IV 

 Participants took part in two days of data collection. The first day consisted of 

locomotion transitions in a real-world environment, transitioning between level ground 

walking and each of the following: ramps, stairs and running. On the second day of data 

collection participants were asked to complete nine average velocity running trials from 

1.3 – 3.0 m s-1 on an 80 m straightaway.  



 

15 

 

 

Chapters V-V1 

 As a part of a larger ongoing study, participants were asked to complete average 

running velocity trials on a single lap around a 400 m track. They ran at three paces 

slower than their race pace, at their race pace and at a push pace. For example, if their 

race pace for a 5 km race was 6:00 they would be asked to run at 7:30, 7:00 and 6:30, 

then at 6:00, after their race pace they were given the choice to continue to a 5:30 pace. 

Each participant was provided a minimum rest period of two minutes or self-selected by 

the participants between each time trial.  

 

Chapter VII 

 As a part of a larger ongoing study, participants were asked to complete a 5-mile 

run on a course around the University of Oregon and Prefontaine Trail. This course 

included incline, decline and level ground running.  

 

Data Collection 

Chapter III 

 Participants were outfitted with a bilateral marker set consisting of 43 retro-

reflective markers defining nine segments (forefoot, rearfoot, shank, thigh, pelvis). 

Three-dimensional marker data were collected at 200 Hz using an 8-camera motion 

capture system (Motion Analysis Corp., Santa Rosa, CA). Ground reaction force data 

were collected at 1000 Hz using a force-instrumented treadmill (Bertec, Inc., Columbus, 

OH).   
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Chapter IV 

 Participants were equipped with four IMUs (Vicon, Centennial, CO): one on the 

waistband, one on the lateral aspect of the thigh, at approximately the midpoint between 

the greater trochanter and the knee, one on the lateral aspect of the leg, at approximately 

the midpoint between the knee and the lateral malleolus and one on the dorsal aspect of 

the foot. Three participants were equipped with the Noraxon foot switch DTS system 

(Noraxon, Scottsdale, AZ; sampling rate of 500 Hz), which measured pressure at the 

foot-shoe interface. The other 13 participants were equipped with Loadsol insoles (Novel, 

Minneapolis, MN; sampling rate of 100 Hz), which measured normal force between the 

foot-shoe interface.  

 

  Chapters V - VII 

 Participants were equipped with three IMUs, with a sampling rate (Casio, Tokyo, 

Japan; sampling rate of 200 Hz). Force sensing insoles (Novel, Minneapolis, MN; 

sampling rate of 100 Hz) were used for the measurement of normal force data between 

the foot-shoe interface. They were also equipped with a GPS watch (Garmin Forerunner 

130 and 135; Garmin, Olathe, KS; sampling rate of 1 Hz) from which distance, pace, 

elevation, and slope were measured. 

 

Data and Statistical Analysis 

Chapter III 
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 All data analyses were completed with custom Matlab scripts (Mathworks, 

Natick, MA). The GRF data were filtered with a low pass fourth order Butterworth filter 

(35 Hz cut off frequency). Ground contact state was determined when vertical GRF 

values were above a threshold of 50 N. Motion trajectory data from a single marker on 

the dorsum of the left foot were extracted from a larger data set [53]. For this study and 

throughout the dissertation, x defined the medio-lateral axis, y defined the antero-

posterior axis, and z defined the longitudinal axis. Idealized three-dimensional (3D) 

acceleration values were calculated by taking the second derivative of the filtered marker 

position data. The foot contact information and acceleration data were then downsampled 

to 20 Hz and both input into the Beta Process Auto-Regressive Hidden Markov Model 

(BP-AR-HMM). 

The BP-AR-HMM is an algorithm developed to share features across related time 

series. The key element of this algorithm, the beta process, adds and remove states that 

can be shared across all data sets input. For example, if two states describe the same 

feature they will be combined into a single state and shared. This development of 

dynamic features is crucial for use in semi-supervised or unsupervised machine learning, 

or as data sets grow so large that they cannot be feasibly annotated. The HMM assumed 

that a set of distributions and transitions between dynamic features follow a Markov 

process. This process was modified with the presence of the auto-regressive model, 

which considers temporal relationships in the data. The vector auto regression approach 

provided an estimation of current state, based upon the previous time steps, the available 

states and distributions based on the hidden Markov model. A sticky parameter was used 

to increase the probability of self-transitions within a state to identify biomechanically 
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significant states [30]. Output data from the BP-AR-HMM were states of varying 

duration, transitions between different states were indicative of transitions between 

different aspects of the gait cycle. Performance evaluation of the BP-AR-HMM included 

the critical timing of states and how consistently the features were used across all 

locomotion modes. Accuracy in this study was defined as the number of features 

identified prior to the impending gait events divided by the number of measured gait 

events for both the heuristic and machine learning algorithms. 

 

Chapter IV 

 All data analyses were completed with custom Matlab scripts. Foot-shoe normal 

force data were considered the standard reference for identification of measured gait 

events. The inertial signals and force data were time-synced using ‘foot-stomps’ before 

and after each trial. Inertial data from the IMUs on the participant were time synced and 

down sampled to 100 Hz, then synchronized with the insole force sensors off-line. Foot 

contact information and ground reaction force data were converted into indicator 

variables, indicating cyclic motion or not. Then data were labeled with specific 

locomotion mode. Input into the heuristic algorithm was single axis angular velocity data 

about the x-axis of the IMU (sagittal plane of the participant), sampled at 100 Hz. Input 

into the BP-AR-HMM consisted of single axis angular velocity data about the x-axis of 

the IMU, down sampled to 25 Hz. There were four rules utilized for the identification of 

gait events from the heuristic algorithm and six state from the BP-AR-HMM. 

 

Chapter V 
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All data analyses were completed with custom Matlab scripts (Mathworks, 

Natick, MA). Foot-shoe normal force data were considered the standard reference for 

identification of measured gait events. A Kalman filter was applied for the adjustment of 

orientation of the local IMU coordinate system to gravity [54], [55]. Initialization of the 

Kalman filter occurs with the IMU still, and an estimation of the orientation of the sensor 

using accelerometer signal. During motion, orientation of the sensor is estimated by 

calculating the change in orientation from the rate gyroscopes. Each stance phase when 

the resultant accelerations were near that of gravity, the orientation of the sensor was 

reset with acceleration.  

 Identification of gait events with the force sensing insole utilized a threshold of 50 

N. Initial contact from the foot mounted IMUs were estimated with peak detection 

algorithms, and TO was detected with either a peak acceleration or a threshold during a 

variable length temporal window. From the sacral mounted IMU, IC was detected with a 

peak finding algorithm and TO was detected with a static temporal window, either 

detecting maximum acceleration or maximal slope of the vertical acceleration.  

 Pearson correlation coefficients (r2) were used to compare the estimated contact 

times to the measured force insole contact times. A strong correlation was defined as r2 ≥ 

0.8, a moderate correlation as 0.5 ≤ r2 ≤ 0.8 and a weak correlation as 0.3 ≤ r2 ≤ 0.5. The 

relationships between the estimated and measured waveform variables are presented in 

both linear regression and Bland-Altman plots with 95% confidence intervals (CIs)/ 

Limits of Agreement (LoA) respectively.  

Chapter VI 
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  All data analyses were completed with custom Matlab scripts (Mathworks, 

Natick, MA). An extension of Chapter V, the analysis in this chapter shifted the data 

analysis to include the use of an LSTM for the estimation of GRF waveforms. The 

variables calculated from these waveforms were contact time, stance average GRFs, peak 

GRF, impulse, and average loading rate.  

 We chose to use an LSTM for the estimation of GRF waveforms since GRFs 

patterns during gait are cyclical and therefore time dependent. The LSTM was initially 

developed to overcome the vanishing gradient or the long term dependency problem 

within machine learning [51]. Within the LSTM, there are specific feedback connections, 

which facilitates retention of about previous data in the sequence by the LSTM. The 

output of the LSTM depends on three different things, the cell state, hidden state, and the 

input data at the current time step.  

 The cell state and hidden state are governed by specific gates in the LSTM cell 

shown in Figure 2.1. The forget gate decides which parts of the memory are useful, based 

on the previous hidden state and new input data. The previous hidden state and new input 

data are fed into a neural network with sigmoid activation functions. If the output from 

this network was approximately 0, that portion of the input data was deemed irrelevant, 

and when the output is closer to 1 it was deemed relevant and kept. Outputs from the 

forget gate were then pointwise multiplied by the previous cell state, so that portions of 

the cell state that were deemed irrelevant were multiplied by approximately 0, and thus 

have less influence on the next steps.  

 The next step determined if any new information should be added to the cell state, 

given the new input data and the previous hidden state that has been modified by the 
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forget gate. A new cell state was estimated using a neural network, with a hyperbolic 

tangent activation function. This network had the same input data. The purpose of this 

gate was to estimate the new cell state based upon the input data and the previous hidden 

state. The input gate was the next gate and together with the estimated cell state, generate 

a state vector. The input gate had a sigmoid activated neural network, that functioned as a 

filter identifying which components of the new memory vector were important. Thus, if 

the output from the input gate were near zero, the model will not update that element of 

the cell state. The output from the estimated cell state network and the input network are 

then point multiplied and added to the cell state.  

 

 

Figure 2.1: LSTM cell layout and mapping of operations.  

 

 The final step was the output gate, which is similar to the forget gate, in that it 

takes in the previous hidden state, and input data. The output gate is a neural network 

with a sigma activation function. The cell state was passed through a hyperbolic tangent 

filter. The steps described above are repeated for each input. For example, for a 400-
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sample input, the above steps would be repeated 400 times. The output was also a hidden 

state; therefore, it needed to be processed through a regression layer to output a 

waveform. The loss function in this work was computed as the half mean squared error.  

 There were two steps in the validation of these machine learning protocols, first a 

hyperparameter optimization, followed by a Leave One Out Cross Validation (LOOCV). 

We optimized the hyperparameters of the LSTM with a Bayesian Optimization [56], [57], 

this algorithm attempts to minimize the error in the loss function of the LSTM in a 

bounded domain, however the specifics of this algorithm are beyond the scope of this 

dissertation. Input data during the optimization were randomly split into a training set of 

70% of the total data, a validation set of 15% of the total data and a test set of 15% of the 

data. The hyperparameters optimized were the initial learning rate, gradient decay factor, 

squared gradient decay factor, L2Regularization and number of hidden units. The only 

hyperparameter that influenced the outcome of the algorithm was the number of hidden 

units, as all others converged to the default Matlab input. The range for the number of 

hidden units in the optimization was [10 50]. Optimization of these data was tested on 

temporal windows of varying length between 1 and 5 seconds in duration at half second 

intervals. The optimal network was determined by model performance on these windows. 

The optimal temporal window length was determined by examination of the RMSE from 

the optimal network output. This network was then used in a LOOCV, where a single 

participant was left out of the training set to be utilized as the test set. From the LOOCV 

we determined the most accurate estimation of waveforms by the identification of the 

temporal window duration that had the lowest RMSE for the waveform and discrete 

kinetic variables.  
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   Estimated waveforms from the LOOCV were analyzed and presented in this 

work. Initial analysis involved identification of the optimal temporal window. This was 

done via inspection of the estimated GRF variables in Bland-Altman plots. Initial Contact 

(IC) was identified by the first instance of force >5% BW and toe off (TO) was 

determined by the last instance of force greater than >5% BW. Contact time was 

determined by taking the temporal difference between these two discrete events. Stance 

average GRFs, impulse, peak GRFs, and average loading rate were the GRF variables 

calculated in this work, from the estimated force waveforms. Average loading rate was 

calculated by identifying the impact peak and then averaging the slope in the middle 60% 

of the region between IC and the impact peak [58].  

 

Chapter VII 

  All data analyses were completed with custom Matlab scripts (Mathworks, 

Natick, MA). We utilized variations from previous chapters for the estimation of gait 

events from an IMU and the estimation of GRF waveforms from bi-directional LSTMs 

(BD-LSTMs). These BD-LSTMs take in data both forward, say from time points 0-99, 

and backwards, from 99-0 and utilize the methods described above. Post-processing 

consisted of the same protocols as Chapters V and VI, with additions due to the 

uncontrolled nature of this data collection. Data from the GPS signal were upsampled 

from 1 Hz to 100 Hz, by creating a matrix where each original data row was increased to 

be 100 rows of identical data. Occasionally, ground reaction force data exhibited baseline 

drift. These were corrected for, however the magnitude of the adjusted force was not 
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corrected for, as there were less than 500 footfalls that needed correction, having minimal 

effect out of the >85,000 analyzed footfalls.  

 Gait event detection algorithms used in this chapter were similar to those used in 

Chapter V. Identification of foot contact from the force data used the same rules as in 

Chapter VI. The identification of gait with IMUs required the addition of detection of 

pre-IC similar to chapter IV. A temporal window began 50 ms after the identified minima 

and ended 450 ms after identified minima, and the largest peak > 50 m s-2 in the resultant 

accelerations was identified as IC. The rules for identification of TO were the same as in 

Chapter V.  

 Optimized networks were taken from Chapter VI and used for a LOOCV of the 

data in this chapter. A BD-LSTM with a regression output of 1 second was utilized for 

this study. Foot contacts < 100 ms and > 500 ms were removed from the data set, as they 

represented non-cyclical movement (i.e., not a running pattern). Further, any data < 5% 

BW were set to 0 BW. Initial contact and toe off from the estimated waveforms were 

identified in the same manner as Chapter VI.  

 Foot contacts that could not be matched to the measured GRF data were removed 

from the data set. From the estimated waveforms, stance phase RMSE, stance average 

GRFs, peak GRFs, impulse and average loading rate were all calculated in the same 

fashion as Chapter VI. Velocities from the GPS were set to the nearest 0.25 m s-1 for 

velocities ranging from 2.25 – 5.25 m s-1, all other velocities were removed from the 

analysis. Any velocity < 2.25 m s-1 was considered to be a walking step, and there were 

not enough foot contacts for analysis > 5.25 m s-1. Slope was calculated from the altitude 

data and binned into three different groupings of level ground, incline, and decline. 
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Incline foot strikes were identified as slopes > 5° and decline foot strikes were identified 

as slopes < -5°. We noted errors of up to 4° in the GPS data, which was the reason for 

delineating the slopes as more than ±5°, and designating all other foot strikes to be level 

ground. 

 Running velocity and slope combinations were included in the analysis if the 

participant had more than 10 footfalls for either the IMU or estimated variables. Linear 

models, RMSE, and bias were calculated for the variables in this study using the same 

approach as in Chapter VI. 
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CHAPTER III 

USER INDEPENDENT ESTIMATIONS OF GAIT EVENTS WITH MINIMAL 

SENSOR DATA  

 

Published as Donahue, S.R; Jin, L; Hahn, M. E; User Independent Estimations of 

Gait Events with Minimal Sensor Data. IEEE Journal of Biomedical and Health 

Informatics. 2021, 25(5), 1583-1590.  The experimental work was performed by L. Jin.  

The writing and analysis are entirely mine. M.E. Hahn provided editorial assistance and 

guidance. 

 

Introduction 

 In recent years the development of assistive devices and their control systems 

have improved dramatically; from passive prosthetic limbs that provide minimal 

adaptability to specialized performance limbs and adaptive assistive devices which 

support the user in a variety of ecological environments [59]–[63]. These adaptive limbs 

rely on input from mechanical sensors such as Inertial Measurement Units (IMUs), 

accelerometers, goniometers, load cells, and neuromotor input derived from 

electromyography. Current control systems take these sensory data and are able to 

identify gait events, classify steady state locomotion, and provide prediction of user intent 

for the next step [5-7]. This study aims to implement an unsupervised machine learning 

algorithm on minimally sampled accelerometer data, to identify gait events, and further 

assess the feasibility of the output for building a model for the classification of 

locomotion and prediction of locomotion transitions.  



 

27 

 

The control algorithms used to estimate gait events with wearable sensors (e.g. 

IMU’s) have classically been threshold based with a variety of sensor locations [12], 

[65], [66]. Other groups have used adaptive algorithms such as Hidden Markov Models 

(HMM) for the development of rules for detection of gait events [18], [67]. These 

algorithms are accurate for a constrained task however, they tend to be inflexible. The 

expert user defines the states, and the transitions between the states. Another method that 

involves gait event estimation is the identification of gait phase. Gait phase identification 

has informed the classification of both steady state locomotion and transitions between 

locomotion states. The algorithms used for these analyses traditionally are variants of 

linear discriminant analysis, support vector machines, artificial neural networks and 

hidden Markov models [22], [24], [68]–[73], and a variety of other classification 

algorithms [11], [14], [24], [27], [74], [75]. Algorithms utilizing the temporal nature of 

gait data to optimize classification and prediction have been successful [76], e.g. 

Dynamic Bayesian Networks consider the previous data and states to determine the 

current state and make a prediction of what the next state will be. Subject independent 

algorithms, which provide generalized classification of gait and transition prediction for 

both able-bodied subjects and prosthesis users have shown promise as well [77], [78]. 

These algorithms have been highly accurate in the laboratory setting, with great than 95% 

accuracy for the identification of gait events.  

Previous algorithms represent solutions from the understanding of the expert user. 

The potential set of features in any given data can be extensive, therefore expert 

knowledge of the user, coupled with observations of the dataset can define important 

features or characteristics of the waveforms.  Often, for threshold-based models high 
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sampling rates are required for accurate classification of gait. Furthermore, these 

algorithms require large sensor arrays, i.e. multiple mechanical and neuromuscular 

sensors, for classification. In most cases these algorithms identify gait events at a steady 

state velocities, and do not consider how the subject may be accelerating through space or 

transitioning between locomotion states. These characteristics limit the applicability of 

these approaches to a real-world environment, because of their inflexibility to a variety of 

situations and for the user to manage the sensors.   

Gait event detection in the past has primarily been concerned with 

environmentally constrained locomotion e.g. ramps and stairs [79]–[81].  The primary 

locomotion states and transitions studied with both subject dependent and independent 

classifiers have typically been environmentally constrained transitions from level ground 

walking to ramp or stair ascent or descent [22], [64], [74], [77], [82]. In addition to these 

standard locomotion states and transitions, recent work has examined classification of 

running in prosthetic leg systems [61], [83]. However, it remains that little progress has 

been made on the classification of walk to run (WRT) and run to walk (RWT) transitions.   

In the laboratory setting, walking and running can be differentiated via ground 

reaction force (GRF) waveforms [5], [84], [85]. Walking is defined as a pendular gait 

with a brief double support phase, minimal ballistic propulsion, and a ground reaction 

force waveform with two distinct peaks [85]–[87]. Running is defined as a bouncing gait 

with an aerial phase, ballistic propulsion and ground reaction force waveforms that have a 

single large peak, and occasionally a transient peak in the first 25% of foot contact [86]–

[88]. While these general descriptions clearly distinguish the two locomotion forms, it 

remains that an efficient parsing of gait (specifically initial contact (IC), toe-off (TO), 
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mid-stance and phases of swing) during steady state walking and running, and the 

transitions between the two gaits has not been attained in near real-time. Recent advances 

in assistive devices and prosthetic limbs require new flexible control algorithms to 

determine locomotion states, discrete gait events and transitions between. An 

unsupervised classification algorithm could provide efficient locomotion mode detection, 

which may be translated to a near real-time control application in assistive devices. 

In this paper, we propose the use of an unsupervised learning algorithm, the Beta 

Process - Auto Regressive - Hidden Markov Model (BP-AR-HMM) [30], [89]. The BP-

AR-HM is a data driven feature extraction algorithm used to derive common features 

from related time series data. For this experiment we input calculated acceleration data 

for the algorithm to derive features (or states), to then estimate gait events. These states 

could also provide a framework for the classification of gait and potentially a basis for 

the prediction of locomotion transitions. The primary purpose of this study was to derive 

output from the BP-AR-HMM to provide biomechanically relevant classifications for 

estimation of gait events such as initial contact and toe off for steady state and dynamic 

locomotion with a group of able-bodied middle-aged adults. The secondary purpose was 

to explore the possibility of developing a framework for classification of gait and the 

development of a probabilistic model for prediction of locomotion transitions between 

walking and running from the output of the BP-AR-HMM. 

 

Methods 

Instrumentation and Data Collection  
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 Ten middle aged able-bodied subjects participated in the study (50.7 ± 6.0 years, 

173.4 ± 11.4 cm, 69.7 ± 14.9 kg; 5 female). Ground reaction force (GRF) and passive 

marker trajectory data were collected at 1200 Hz and 120 Hz, respectively. Marker data 

were collected with an 8-camera system (Motion Analysis Corp., Santa Rosa, CA).  The 

protocol consisted of two different transitions: (walk to run) WRT and (run to walk) 

RWT on a force-instrumented treadmill (Bertec, Inc., Columbus, OH). The WRT 

protocol began with walking at 1.8 m s-1 for 30 seconds, then the treadmill was constantly 

accelerated at 0.1 m s-2 to the velocity of 2.4 m s-1. Subjects were asked to transition to 

running gait whenever they felt ready during the acceleration stage. After transitioning to 

a running gait, they ran at 2.4 m s-1 for another 30 seconds. The RWT protocol was the 

inverse of the WRT, starting at 2.4 m s-1 for 30 seconds, then the treadmill was constantly 

decelerated at 0.1 m s-2 to the velocity of 1.8 m s-1. The subjects were then asked to 

perform four steady state locomotion trials. Walking trials were performed at 1.4 and 1.6 

m s-1 and running at 2.6 and 3.0 m s-1 for 90 seconds. Data from the middle 10 seconds of 

each trial were extracted for analysis. All data analysis was completed with custom 

Matlab scripts (Mathworks, Natick, MA) 

The GRF data were filtered with a low pass fourth order Butterworth filter (50 Hz 

cut off frequency). Ground contact state was determined when the vertical GRF values 

were above a threshold of 50 N. These GRF signals were used as the reference for foot 

contact by the BP-AR-HMM. Motion trajectory data from a single marker on the dorsum 

of the left foot were extracted from a larger data set [53]. Idealized, three-dimensional 

(3D) acceleration values were calculated by taking the second derivative of the raw 

marker position data. In this case idealized means the data from the accelerometer does 
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not contain a signal from the acceleration due to gravity. The foot contact information 

and acceleration data were then down-sampled to 20 Hz in Matlab to minimize the 

amount of data needed for successful classification.   

The BP-AR-HMM algorithm was tested on an initial set of 58 trials, from all 10 

participants, to provide user-independent classification [53]. Two trials were removed 

from the original data set of 60 trials because the GRF data were incomplete for the 

present analysis. 

 

Model Overview 

 The BP-AR-HMM is an unsupervised machine learning algorithm that provides a 

spatial-temporal statistical model for related time series data. More detailed descriptions 

of the model can be found in the work of Fox and colleagues [31,33]. A brief overview of 

the model components is provided here. The beta process (BP) provides a sparse feature 

sharing framework which is a probabilistic binary feature inclusion model (Figure 1.1). 

Vector auto-regression (AR) provides an estimation of what the current state is, based 

upon the previous time step(s), current state data, and available transition distributions. 

The HMM assumes that the set of distributions and transitions between dynamic features 

follow a Markov process. The assumption of the Markov process is the probability of 

state change from i to j has a set probability πij, which does not depend on prior state. To 

ensure biomechanically relevant states, a sticky parameter was used as described by Fox 

et al, [90]. The purpose of the sticky parameter increases the probability of self-

transitions to capture biomechanically relevant states [90]. Finally, the reversible jump 
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Markov Chain Monte Carlo (MCMC) algorithm is used to ensure the correct features are 

utilized by determining the transition probabilities between states [30]. 

  

Figure 3.1:  The full BP-AR-HMM approach is shown here, adapted from [30] where  

and  are the hyper parameters that govern the Markovian state switching process to 

produce (i) which is the collection of transition weights. From this the transition 

distribution can be constructed with the feature vector from the beta process to 

generate transition behaviors indicated from fi. The representation of a single  is from 

a finite Dirichlet distribution of dimension Ki of k such that fik = 1. 

 

The BP-AR-HMM generates a user independent statistical model, based upon 

minimally sampled data that does not require real time feature extraction or windowing. 

It also allows subject independent classification of data sets with a variety of transitions. 

 

Traditional Protocols for Machine Learning 

Classic machine learning paradigms have been based upon algorithms that have 

shown exemplary results for high dimensional pattern matching, taking n-dimensional 

 
 

 

 



 

33 

 

from a number of sensors and identifying a state or gait phase. These algorithms have 

required a large volume of data in order to generate classifications and predictions. Many 

of these algorithms bypass gait event identification for the use of gait phase 

identification. These phases are defined by the user, using features extracted from the 

data as described in the introduction. Features can include the mean, variance, zero 

crossing, minimum, maximum, frequency content, amongst others [74], [91], [92].  These 

features are then used for classification of current phase and locomotion state. Data are 

then split into training (70%), validation (15%) and test (15%) sets. The initial training of 

the model is completed on the training data set.  The validation data is used as a real-time 

training check of the generalizability of the model; the model does not use this data for 

training.  The test data is utilized after the training of the model is complete to test the 

accuracy of the model on an unseen data.  

The BP-AR-HMM is different from these traditional methods of feature 

extraction and classification. The only thing we define for input into the algorithm is foot 

contact with the ground. This is then input into the model as a guide and to assist in 

limiting the state output. The rules determined by the BP-AR-HMM are derived from the 

acceleration data. Inputting the foot contact data decreases the initial number of states in 

the instantiation of the MCMC algorithm. Instead of breaking up the data set into 

training, validation and testing sets, a Reversible MCMC algorithm was used to 

determine probability distributions for the states derived by the Beta Process.    

 

Analysis Methodology 
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Data input into the BP-AR-HMM were three-dimensional acceleration data, along 

with a Boolean indicating stance and swing phase from treadmill force data. This 

information was utilized in the initialization of the model and limits the number of states 

derived by the BP-AR-HMM. Gait events were determined from the GRF data. The 

temporal differences between the first occurrence of a BP-AR-HMM estimated state and 

the measured initial contact (IC) and toe off (TO) of the left foot were used to calculate 

the lead time and estimation of a given gait event. The duration of a state was calculated 

from the first instance of the state to the first instance of a different state. The durations of 

the state output for each of the steps were averaged across all subjects, and was used to 

build a framework from which the classification of gait and an initial examination of the 

development of a probabilistic model of locomotion transitions could be completed. The 

utility of the probabilistic model for gait transitions was examined with transition data 

using the three steps prior to the transition step, the transition step (defined as the first 

step in the new gait pattern) and the three steps post transition. The transition step and 

gait events were determined by GRF data. All analyses were performed post hoc. 

 

Results 

There were 9 dynamic states derived by the BP-AR-HMM. Five states occurred in 

> 98% of the gait cycles (Table 3.1). Three states were strictly associated with foot 

contact, five states were associated with swing phase, and one state was associated with 

both stance and swing phase. Of the 797 gait cycles analyzed, state 2 and state 5 occurred 

in every cycle. The next most consistent occurrence was state 4, which was associated 

with terminal swing phase and initial foot contact. States 2 and 5 were captured for each 
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walking gait cycle, and from running gait there were 4 states (2-5) captured in each cycle. 

The average duration of these states, except 7 and 3, remained approximately the same 

for all walking and running gait cycles (Table 3.2). 

   

Figure 3.2:  Exemplar plots of the state output from the BP-AR-HMM with foot 

acceleration of a single representative subject. States 1 and 4 consistently can be used for 

the identification of gait events, as they occur prior to the identified gait event from the 

force data. State 4 occurs when the acceleration has a negative slope in the medial lateral 

and vertical components of the acceleration at the end of swing phase, and a positive 

slope after initial contact. State 1 occurs at the first instance of an increase in the 

acceleration in the medial lateral component of the acceleration after middle stance 

phase. The major differences between walking and running are shown in the durations of 

state 7. In the walk to run transition, as the velocity of the treadmill was increased State 7 

no longer appears, panel D, step S+2. In all panels the accelerations are shown as a 

variation of a dashed line. In each of the panels each step is labeled as the steps prior to 

the transition (S-2, S-1), the transition step (S-0) or the steps following the transition 

(S+1, S+2). Panels A and B show data from the WRT; panels C and D show data from 

the RWT.  
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 There were no states unique to either walking or running. However, state 7 was 

unique to slower locomotion. It represents the portion of stance phase in which there is 

approximately zero acceleration in all three directions (Figure 3.2). State 7 occurred in 

28.9% of running gait cycles, with a higher frequency in the RWT transition than the 

WRT. State 9, which represents an approximate mid-swing phase only occurred in 26.8% 

of gait cycles and could be considered a misclassification of state 6. 

   Classification of impending gait events were represented by states 1 and 4. When 

state 1 occurred the foot was moving into the push-off phase of stance, for walking and 

running. State 1 occurred 0.14 ± 0.03 seconds before TO (Table 3.2). State 4, 

representing terminal swing into the initial braking phase of stance, consistently occurred 

0.13 ± 0.02 seconds before IC. Both states occurred in >99% of gait cycles. 

  The average duration of each state output from the BP-AR-HMM can be 

indicative of which locomotion mode the subject is using. For walking, the state with the 

longest average duration during foot contact was state 7 which occurred in 99.10% of 

walking foot contacts with an average duration of 0.29 ± 0.12 seconds. The average 

duration of state 7 for running gaits was 0.06 ± 0.02 seconds, occurring in 28.94% of 

running steps (Figure 3.2). State 3 had the second largest difference in duration between 

the two locomotion modes, at 0.09 seconds. The average duration of state 3 in running 

gait cycles was 0.14 ± 0.04 s, and  was 0.05 ± 0.01 s in walking gait. State 3 occurred in 

97.90% of walking and running gait cycles. Figure 3.3 shows the relationship between 

these two state durations during each of the transitions. 
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   In Figure 3.2, foot contacts are shown in panels A and C, with walking and 

running foot contacts differentiated by their height. In panels B and D, the state output 

from the BP-AR-HMM is shown. In both panels state 1 and 4 are identified first, 

indicative of when either an initial contact or toe off event will occur. In panel B the 

decrease in the duration of state 7 provides evidence of a gait transition from a run to a 

walk. In panel D the increased duration of state 7 and the decreased duration of state 3 is 

indicative of a walk to run transition.  

 

Figure 3.3:  Changes in the duration of state 7 and state 3 for all subjects’ transitions 

between walking and running (RWT and WRT). The steps before the transition step are 

denoted by S-3, S-2, S-1, the transition step is S-0 and the steps of the new locomotion 

type are S+1, S+2, S+3. The duration of each of the states were averaged across subjects, 

for each step.  
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Table 3.1: Gait Cycle Accuracy (% of Occurrences) and Duration of States Output by 

the BP-AR-HMM Across Subjects 

 Gait Phase 
Gait Cycle  

Occurrences (%) 
Average State Duration (s); Mean ± SD 

State Walking Running 
All 

N1 = 797 

Walking 

N2 = 334 

Running 

N3 = 463 

All 

N1 = 797 

Walking 

N2 = 334 

Running 

N3 = 463 

1 Push Off Push off 98.53 97.30 99.35 0.09 ± 0.04 0.07 ± 0.05 0.098 ± 0.038 

2 Early swing Early Swing 100.00 100.00 100.00 0.10 ± 0.03 0.10  ± 0.03 0.10 ± 0.03 

3 Early Swing Early Swing 99.14 97.90 100.00 0.11  ± 0.05 0.05 ± 0.01 0.14  ± 0.04 

4 

Terminal 

Swing /Early 
Stance  

Terminal 

Swing 
99.88 99.70 100.00 0.20  ± 0.04 0.20  ± 0.04 0.20  ± 0.04 

5 Mid-Swing Mid-Swing 100.00 100.00 100.00 0.06  ± 0.02 0.05  ± 0.01 0.08  ±0.02 

6 Mid Swing Mid Swing 92.17 97.01 88.34 0.08  ± 0.04 0.10  ± 0.04 0.06  ±0.02 

7 Stance Early Stance 59.07 99.10 28.94 0.22  ± 0.12 0.29  ± 0.08 0.06  ±0.02 

8 
Early /mid 

Stance 
Early Stance 94.24 94.61 93.95 0.08  ± 0.03 0.10  ± 0.03 0.07  ± 0.03 

9 Mid Swing Mid Swing 26.83 34.13 21.60 0.07  ± 0.04 0.06  ± 0.03 0.07  ± 0.05 

 

 

Table 3.2: Average Time Prior to Gait Events when 

Either State 4 or 1 Occurs. 

Velocity 

(m s-1) 

INITIAL 

CONTACT (S) 
Toe Off (S) 

1.4 0.11 ± 0.01 0.12 ± 0.03 

1.6 0.11 ± 0.01 0.13 ± 0.05 

2.6 0.11 ± 0.02 0.14 ± 0.01 

3.0 0.12 ± 0.02 0.13 ± 0.02 

WRT 0.10 ± 0.02 0.16 ± 0.04 

RWT 0.21 ± 0.02 0.14 ± 0.03 

Average 0.13 ± 0.02 0.14 ± 0.03 
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Discussion 

  In this study, we have demonstrated that a data driven, semi-unsupervised 

machine learning algorithm can consistently, with minimal inter-participant variability, 

identify gait events from minimal sensor data for steady state and dynamic locomotion. 

The parsing of gait with single sensor data sampled at 20 Hz represents an important step 

in the development of transition-predictive control algorithms for assistive devices.  

  The minimally sampled data from a single sensor provides an approach to reduce 

the computational load in control systems for actuated prosthetic limbs. The classification 

accuracy in both steady state and dynamic locomotion trials by the output of the BP-AR-

HMM is comparable to other gait classification studies. Identification of gait events with 

threshold algorithms has been presented thoroughly [7], [8], [93].  The timing of the 

identification of gait events is critical in the overall structure of the control system for 

decision making. Other groups have reported minimal lead time or detection of the event 

after it has occurred using accelerometers at various anatomical locations [11], [12], [66], 

[94]. Mannini and colleagues used a HMM for gait event detection, with 100% accuracy 

and identification of the gait event approximately 40 ms prior to the gait event [17]. 

However, their work uses states that were identified by the user, while in our study states 

were derived in an unsupervised fashion with the Beta Process. Groups that have used 

finite state machines, which require user defined states, have shown high gait event 

identification accuracy for able-bodied subjects [95], [96]. The limitations of these 

studies are large sensor arrays and high sample frequency. Another limitation is the 

limited velocities at which the subjects were asked to move. In the present work we have 

shown that IC and TO can be identified across various locomotion velocities and two 
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different gaits with adequate lead time for a control system to adjust orientation or 

stiffness parameters of an assistive device in preparation for the next step [14].   

 The secondary purpose of this study was to determine if the output of the BP-AR-

HMM could be used for gait classification and whether a probabilistic model for the 

identification of locomotion transitions would be feasible. Classification approaches for 

multiple gaits by a control algorithm have been reported to be accurate to the range of 95 

– 99% [11], [27], [74], [97], [98]. In Table 3.1, state 7 is indicative of walking stance 

phases and also present in 29% of running steps (slow running foot contacts and 

primarily identified during the WRT and RWT trials). State 7 captures the time of 

approximately zero acceleration when the foot is in mid stance. As gait velocity 

increases, the duration of state 7 will decrease until it altogether disappears. A rule-based 

classification utilizing the duration of state 7 could provide input about what gait type the 

subject is using. State 3 shows a similar pattern but the differences in the durations are 

not as stark. Results presented in Figure 3.3 indicate transition occurrence as the patterns 

in the accelerations of the foot change. From these data, it appears the BP-AR-HMM 

output can provide relevant information about the current locomotion state and when a 

transition may occur.  

 The information about the previous stance phases could then be used to estimate 

what type of gait will be used next, either a walking or running gait, as shown in Figure 

3.3. In short, by assessing changes in the presence and duration of state output over the 

course of multiple stance phases, a probabilistic model of gait transitions could be 

generated.  
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 When there are multiple types of locomotion, recent work has made use of 

heuristic algorithms which utilize user defined patterns in linear acceleration and angular 

velocity signals [14], [18], [27], [99]. Other algorithms such as linear discriminant 

analysis, support vector machines and artificial neural networks have taken the user 

defined states and generated optimized rules for the classification of gait, with varying 

degrees of success [22], [70], [74]. This approach is similar to the process of heuristic 

models and rules developed in other machine learning methodologies. Unlike the 

aforementioned methodologies, the BP-AR-HMM optimizes the feature set using split-

merge, merge or remove features to ensure sparsity in the feature space [30], [89]. 

Finally, algorithms that use time history for the classification of gait are typically based 

on user defined locomotion types. Previous work has used a Dynamic Bayesian network 

(DBN) [13]. The DBN requires expert user input into the algorithm for classification of 

gait parameters and locomotion transitions. A characteristic which is advantageous for 

consistency in the output of the algorithm is use of the latent temporal structure of 

cyclical gait data. Both the DBN and the BP-AR-HMM use these patterns to provide 

information about the gait cycle. This is valuable in control systems because the 

additional information could be used to provide more accurate predictions of locomotion 

transitions. 

 The use of an instrumented force treadmill in this study limits the applicability of 

these results to real world control systems, because of the constraints of steady state 

velocity and the use of constant accelerations during transitions on the treadmill. 

Additionally, the calculated acceleration data provides less information than a full IMU, 

which would include additional data from rate gyros and magnetometers. Data were not 
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filtered between differentiation steps which may have magnified small errors in the data. 

These data are not directly comparable to acceleration data from an IMU as the 

orientation of the local coordinate systems will differ. There will also be a difference via 

acceleration due to gravity, which is not included in this data set. However, the given data 

are sufficient to test this algorithm on the patterned nature of gait. Utilization of the rate 

gyro to measure angular velocity of the foot may lead to more accurate classification of 

gait events and more robust predictive models for locomotion transitions. The use of 

offline analysis and able-bodied subjects shows that the output from this algorithm has 

the potential to be implemented in an assistive device. In the present study, motion data 

from the foot dorsum were chosen to represent a potential location for an IMU embedded 

in a prosthetic limb. Additionally, the unilateral methods used in this study were intended 

to represent how measures could be made within a prosthetic limb. 

 

Conclusion 

 In the present study, limited sensor data from a single idealized accelerometer was 

used for the identification of gait events prior to their occurrence. Use of this data set has 

approached the minimal information required from a sensor to determine when gait 

events will occur. The utilization of minimally sampled data could drastically reduce 

computational load while maintaining similar gait event identification accuracy. Further, 

we have built a plausible framework for the classification of locomotion state and 

transitions between walking and running gaits. In future work we plan to test and validate 

this algorithm on a variety of environmentally constrained locomotion transitions. This 
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will be followed by development of probabilistic models for predicting locomotion 

transitions in various ecological settings. 
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Bridge 

 The goal of this chapter was to investigate the effectiveness of a supervised 

machine learning algorithm for the identification of gait events during steady state 

walking, running and the transitions between the two locomotion modes. We utilized the 

BP-AR-HMM which derives features from the input data and shared them across that 

data. We have shown that we can identify features prior to IC and TO from the BP-AR-

HMM. Furthermore, we have shown that the temporal duration of the features changes 

during the walk-to-run locomotion transitions. Data in this chapter support further 

investigation of the BP-AR-HMM, and its ability to build a set of features for the 

identification of gait events outside the laboratory from minimally sampled data. Chapter 

IV will utilize the same algorithm to identify gait events prior to their measured 

occurrence for level ground walking, ramp and stair ascent/descent and spontaneous 

transitions between walking and running.  
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CHAPTER IV 

FEATURE IDENTIFICATION WITH A HEURISTIC ALGORITHM AND AN 

UNSUPERVISED MACHINE LEARNING ALGORITHM FOR PRIOR 

KNOWLEDGE OF GAIT EVENTS  
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finalizing the final manuscript.  

 

Introduction 

 Human locomotion occurs across a range of velocities and environments that are 

not easily replicated in the laboratory. Understanding how able-bodied humans move 

naturally through a real-world environment can inform interventions and device design 

for individuals with orthopedic or neurologic conditions limiting full ambulatory 

function. Proper identification of gait events is crucial for gait analysis in the clinical 

setting, for remote monitoring of patient activity levels and the control of prosthetic 

devices [1], [2], [3]. The quantification and data driven extraction of features shared 

across human locomotion modes in a real-world environment can provide researchers 

with succinct representations of these data. Identification of key gait events, initial 

contact (IC) and toe off (TO), form the basis of our understanding of different locomotion 
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modes, commonly used in the analysis of gait [4], [5], [6]. Recently, studies have utilized 

mobile sensor arrays for the quantification of human locomotion through varied 

environments [54]. These mobile sensor arrays have allowed for the development of 

rules-based algorithms for the identification of gait events. Developments in algorithmic 

methods, particularly machine learning, have improved the potential of mobile sensor 

technology for analysis of gait in real-world environments [102]–[104]. Of particular 

interest, unsupervised machine learning algorithms for the analysis of multiple time series 

are being developed and tested for gait event detection [105], [106]. While these 

algorithms have been shown to be accurate for gait event identification in the laboratory, 

they have not been tested on data collected from a real-world environment, nor have they 

been compared to simple heuristic identifiers with minimal sensor data from the same 

data set.  

 The gold standards for identification of gait events in a real-world environment 

have been force and pressure based insole systems [93], [107]. These systems can be 

expensive, are prone to failure, and are often not feasible for use in assistive devices or 

long-term use. Additional options for mobile sensing are inertial sensors, such as 

accelerometers and gyroscopes. These sensors have been utilized extensively for the 

identification of gait events and locomotion mode, with varying success [1], [10], [11], 

[12], [13], [14], [15], [16]. One of the major limitations of accelerometers regards excess 

vibrations experienced during initial foot contact which may limit consistency of 

accelerometry data when compared to gyroscopic data. Additionally, the orientation of 

the gyroscope is unaffected by gravity [93], therefore gyroscopes may provide more 

consistent performance than other inertial quantities for the identification of locomotion 
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and gait events. Previous methodologies have been primarily focused on level ground 

walking at the subject’s preferred velocity, or have examined multiple locomotion modes, 

including ramps, stairs and running, but not all modalities in the same study [1], [12], 

[14], [17], [18], [19], [20].   

 There is currently no consensus about the placement of sensors for gait event 

detection, though it is common to use an array of sensors on the lower limb, including the 

foot, shank and sacrum [1], [3], [10], [14], [15], [16], [17], [20], [21], [22]. Recent work 

has employed a single sensor mounted on the shank or foot for gait event identification 

using a set of heuristic rules derived by the expert user, [66], [99], [110], [111], [113], a 

combination of user defined phases and supervised machine learning [17], [22], [25], 

[26], [27], [28] or frequency analysis [14], [109] to detect common gait events. Heuristic 

algorithms are advantageous because of their computational simplicity. However, they 

also require an intimate knowledge of the waveforms, for a variety of locomotion modes. 

In contrast, unsupervised machine learning algorithms have the potential to input the data 

with minimal modification by the researcher. Indeed, there have been rare attempts to use 

unsupervised machine learning algorithms for identification of gait events [105], [106], 

which have performed at the same accuracy as the supervised and heuristic algorithms. 

These methods have been focused on determining precisely when a gait event is going to 

occur. In this study we look to identify features prior to the occurrence of the gait event. 

 A key limitation of most gait event detection and locomotion classification 

algorithms is the reliance on data collected in a controlled environment, such as a 

laboratory or clinic. Current algorithms also typically require a large volume of data 

(large sensor arrays with high sampling frequencies) to determine and differentiate 
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patterns in locomotion. High density data from multiple inputs, requires computationally 

intensive methods and feature extraction for the identification of gait events. In real world 

applications, the identification of gait events with minimal sensor data is ideal as it will 

reduce the computational load and preserve the battery life of a device. 

 In the modern renaissance of machine learning, novel algorithms have been 

introduced. They have been built specifically for analysis of multiple related time series 

data (e.g. IMU data collected from the same anatomical location on multiple subjects 

undergoing the same protocol). One example is switching linear dynamical systems, 

developed previously for economic analysis and the description of dynamical processes 

[29]. This class of algorithms allows for conditions where not all possible features are 

known a priori but can be added when a new feature is discovered. From this set of novel 

algorithms, we propose use of the Beta Process Auto Regressive Hidden Markov Model 

(BP-AR-HMM) for the identification of gait events using a single stream of angular 

velocity data from a sensor on the foot sampled at 25 Hz. Minimizing the data input into 

the algorithm will reduce the number of required sensors and the computational 

complexity needed to identify gait events. This algorithm has been used previously for 

the identification of unique features in time series from similar data sources (e.g. position 

data from motion of different subjects) [30]. The approach is used to discover dynamics 

shared between time series and builds a global set of features that describe all possible 

behaviors in the data set. The result is a feature identification algorithm that is not 

constrained by user-determined states and is completely unsupervised. 

 It is currently unknown how well these methods are suited for locomotion data 

collected in a real-world environment with minimal input data. There has yet to be a 
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direct comparison between a heuristic, peak finding algorithm and an unsupervised 

learning algorithm on data collected in a real-world environment. It is critical to note that 

the approach used in this work seeks to identify features that indicate an impending gait 

event, as the knowledge prior to the gait event is useful when designing a controller for 

application in an assistive device [1]. The purpose of this study was to implement and 

compare two different algorithms, a heuristic algorithm and an unsupervised machine 

learning algorithm for the detection of gait events prior to their actual occurrence using 

minimally sampled angular velocity data collected in a real-world environment.  

 

Methods  

 This study was approved by the University of Oregon Institutional Review Board 

(protocol #: 08202018.018). All participants provided written consent prior to 

involvement in the study. Data were collected from sixteen able bodied participants (8 

male and 8 female; 31.1 ± 14.8 years, 173.4 ± 8.5 cm, 66.7 ± 7.7 kg). All analyses were 

performed offline in custom Matlab programs (Mathworks, Natick, MA). Each subject’s 

dominant foot was equipped with an IMU (Vicon, Centennial, CO) mounted on the 

dorsal aspect of the foot (Figure 2.1, Panel A). Foot ground contact information was 

recorded with two different systems. The first three participants were equipped with the 

Noraxon footswitch Telemyo DTS system (Noraxon, Scottsdale, AZ), while the other 13 

participants were equipped with Loadsol inserts (Novel Electronics, St. Paul, MN). The 

first day of the study consisted of multiple locomotion mode transitions with steady state 

locomotion between modes (Figure 2.1, Panel C). On the second day of the study, 

transitions between walking and running were examined with a protocol based upon the  
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work of Long and Srinivasan [117] the range of target average velocities ranged from 1.3 

m s-1 to 3.0, m s-1 (1.30, 1.51, 1.73, 1.94, 2.15, 2.36, 2.58, 2.79, 3.00 m s-1) encompassing 

velocities typical in human locomotion. Participants were asked to cover a distance of 90 

m, during which they received verbal feedback at the half-way time point and when five 

seconds remained in the trial (Figure 4.1) [117]. The condition order of these trials was 

randomized to minimize any learning effects (Figure 4.1, Panel C).  

 The IMU data were first down sampled to a common frequency of 100 Hz, then 

synchronized with the insole force sensors. Ground reaction force data were converted 

into an indicator variable, indicating either no discernable movement pattern, or 

consistent pattern such as stance or swing phase. The data were further labeled with each 

different locomotion mode. Input into the rules-based algorithm was the single axis 

angular velocity data about the x-axis of the IMU, approximately sagittal plane of the 

participant, sampled at 100 Hz. The data were then filtered with a fourth order zero lag 

Butterworth filter (fc  = 6 Hz). Input into the BP-AR-HMM consisted of the single axis 

angular velocity data, further down sampled to 25 Hz (Figure 4.1, Panel B).  

 There were four rules utilized for the identification of gait events from the raw 

waveform. There are two prominent peaks that were identified as consistent features for 

the identification of gait events. For the identification of an impending IC a minimum 

must be < -100 rad s-1. The feature utilized to identify impending TO was a peak > 150 

rad s-1. The two other rules to minimize misclassification of peaks were 1) temporal 

differences between minima or maxima must be ≥ 0.1 s; 2) if the difference between IC 

and TO < 0.1s, ignore the next peak. This heuristic set results in a peak finding algorithm,  

with minimal constraints, and is computationally simple compared to the BP-AR-HMM.   
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 Figure 4.1: Data Collection Setup and Protocol Panel A: The experimental set up 

with the IMU outlined on the dorsum of the participant’s dominant foot and the insole for 

foot contact identification. Panel B: Flow of the data from collection to identification of 

patterns for analysis. Panel C: The real-world environment course, unlabeled sections 

indicate level ground locomotion. Day 1 contained two environmentally constrained 

transitions and walk to run and run to walk transitions (course in red). Day 2 of the trial 

consisted of only walk to run and run to walk transitions (course in blue). 
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 The rules for gait event identification were the first instance of a state from a 

subset of states output from the BP-AR-HMM.  The identification of IC was the first 

occurrence of a state that was not 5, 6 or 13.  The rules for the identification of TO were 

the first instance of either state 2, 6 or 16.   

The BP-AR-HMM is a machine learning algorithm that provides a spatial-

temporal statistical model and classifications for related time series data [30], [89]. 

Briefly, the Beta Process provides a sparse subject independent feature set, to be used by 

the Auto-Regressive Hidden Markov Model (AR-HMM). The key element of this 

algorithm, the beta process, gives the algorithm the ability to add and remove states. For 

example, if two states describe the same feature they will be combined into a single state. 

This development of dynamic features is crucial for use in semi-supervised or 

unsupervised machine learning. The HMM assumed that the set of distributions and 

transitions between dynamic features follow a Markov process. This process however 

was modified with the presence of the AR model, which does not assume temporal 

independence. The vector auto regression approach provided an estimation of current 

state, based upon the previous time steps, the available states and distributions based on 

the HMM. A sticky parameter was used in the BP-AR-HMM to ensure the capture of 

biomechanically relevant states by encouraging self-transitions [30]. Performance 

evaluation of the BP-AR-HMM included the critical timing of states and how 

consistently the features were used across all locomotion modes. Each stance and swing 

phase were identified via the force data from force-measuring insert. The locomotion 

mode of each step was identified, and gait events were identified using rules generated 



 

53 

 

from the states output from the BP-AR-HMM. Each gait event was identified as the first 

instance of force being higher than 20 N. 

 Classical machine learning methodologies rely on three different groupings of the 

data, a training data set (~70%), validation set (~15%), and test set (~15%). In this 

paradigm, the machine learning algorithms are trained on the training set, and rules are 

developed for classification or prediction. During training the validation set is tested with 

the partially trained algorithm to ensure the algorithm is not being overfit to the training 

data. If the training accuracy of the algorithm is higher than the validation and testing 

accuracy the algorithm is considered to be overfit. After training, the test data are used as 

a measure of accuracy on a novel dataset (i.e. the test set). These test sets are typically a 

single novel subject, as in the Leave One Out Cross Validation (LOOCV) procedure. The 

BP-AR-HMM utilized a reversible jump Markov Chain Monte Carle method, which does 

not require the use of LOOCV, The details of this algorithm are beyond the scope of this 

paper, but can be found here: [118]. 

 

Results  

 The output from for the identification of features that occur prior to identified gait 

events with heuristic rules resulted in a 94.87% accuracy of all gait events (TO and IC). 

Accuracy in this study was calculated as the number of features identified,  divided by the 

number of measured gait events. Figure 4.2 demonstrates the consistency with which the 

state output indicate impending gait events. The average temporal difference between 

measured IC from the insoles and the peak identified prior to IC was 186.32 ± 86.70 ms, 

and the difference between measured TO and estimated TO was 63.96 ± 46.30 ms (Table 
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4.1). The only feature that occurred consistently after the measured gait event was IC for 

stair ascent. Figures 4.3, 4.4 and 4.5 (Panel A) show where the estimated IC and TO 

events are identified based upon the aforementioned rules. The accuracies presented in 

Tables 4.1 and 4.2 for IC and TO are shown out of all of the measured footfalls.   

 

 The output from the BP-AR-HMM resulted in 16 states that described the entirety 

of the data input. Of these states, 12 were considered viable features for the description of 

locomotion in a real-world environment. From these, the identification of IC and TO was 

approximately 99.6% across all locomotion modes (Table 4.2). Nine of the 12 states 

occurred in >65% of gait cycles (Table 4.3). Each state described a specific pattern in the 

angular velocity waveform, and transitions between the states were temporally 

dependent.  For the current paper, analysis was constrained to states considered to be the 

most descriptive of gait phases (Table 4.3). States such as 16, 11 and 6 tended to occur 

during the periods described by IC and TO, therefore they are counted as occurring in 

both stance and swing phase of a given gait cycle. States 5 and 6 were considered to best 

describe swing phase and the absence of these states was considered to be the feature that 

indicated impending foot contact. States 2 and 16 were considered to be the best states 

Table 4.1: Heuristic Algorithm Accuracy and Lead Time  

 

 

 

 

 

 

 

 Overall accuracy of the Heuristic algorithm and time differences between the 
features identified for the prior identification of gait events relative to observed gait 
events. All of the timings for the identified features are prior to the measured event.   
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that described pre-TO and TO in the majority of locomotion modes. These states are 

presented in Figures 4.3-4.5, showing representative waveforms of all steady state 

locomotion modes. 

 

 We used simple rules based upon features derived by the BP-AR-HMM to 

identify gait events, prior to or just after their occurrence. Figure 4.3 shows which states 

were optimal for the identification of gait events prior to the event. Features across 

locomotion mode were found to have temporal consistency for the prior identification of 

gait events (Table 4.3). Across locomotion modes, the states occurring most consistently 

were states 2 and 16 (Tables 4.1 and 4.2). State 6 generally occurred throughout swing 

Table 4.2: BP-AR-HMM Algorithm Accuracy and Lead Time  

 

 

 

 

 

 

 

 

 Accuracy of a BP-AR-HMM gait event identifier and time differences between the identified 
features relative to observed gait events. All of the timings for identified features are prior to the 
measured event.   

Table 4.3: Primary States Output From the BP-AR-HMM 

 

 

 

 

 
 The percentage of the stance and swing phases in which each state occurs.  
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phase, however it was occasionally used to detect impending TO, as needed (Table 4.3). 

Specifically, if states 2 or 16 were not observed then the first occurrence of state 6 was 

used to identify impending TO (Table 4.2). The states used to identify impending IC from 

the BP-AR-HMM was the first occurrence of a state that was not state 5, 6 for most 

locomotion modes (Figure 4.2). The notable difference was with running, where the rule 

for identifying IC was the first instance when the state was not 13.  

 

Figure 4.2:  Gait Event identifiers from the BP-AR-HMM. These graphs present five 

time points before and after a gait event and the proportion of footfalls when a selected 

state output from the BP-AR-HMM occurs. The states that identify swing phase and for 

all locomotion modes other than running are states 5 and 6. The absence of state 5, 6 and 

13 are indicative of IC. The identification of TO can be achieved with first occurrence 

states 2, 16.  
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Figure 4.3:  Representative foot ground contacts for Level Ground Walking (A & C) and 

Running (B & D). Panels A and B show the angular velocity plotted in Black with the 

identified foot contacts in Blue. Panels C and D show output from the BP-AR-HMM in 

Green plotted with the angular velocity in Black. The states used for identification of gait 

events are labeled in panels C and D. 
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Figure 4.4.  Representative foot ground contacts for Stair Ascent (A & C) and Descent 

(B & D). Panels A and B show the angular velocity plotted in Black with the identified 

foot contacts in Blue. Panels C and D show output from the BP-AR-HMM in Green 

plotted with the angular velocity in Black. The states used for identification of gait events 

are labeled in panels C and D. 
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Figure 4.5:  Representative foot ground contacts Ramp Ascent (A & C) and Descent (B 

& D).  Panels A and B show the angular velocity plotted in Black with the identified foot 

contacts in Blue. Panels C and D show output from the BP-AR-HMM in Green plotted 

with the angular velocity in Black. The states used for identification of gait events are 

labeled in panels C and D.  
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Discussion 

 The purpose of this study was to implement and compare two algorithms, a 

heuristic algorithm and an unsupervised machine learning algorithm for identification of 

features and states for the detection of gait events prior to their actual occurrence using 

minimally sampled angular velocity data collected in a real-world environment. In this 

study we built two classifiers able to provide prior identification of gait events across 

multiple locomotion modes; including level ground walking, running, stairs and ramps 

from a single angular velocity waveform. The BP-AR-HMM was more accurate in its 

identification of gait events than the heuristic algorithm across all locomotion modes. 

From the output of the BP-AR-HMM, identification of impending TO was most 

consistently achieved by identifying the first occurrence of either state 2 or 16, and 

identification of impending IC was most consistently achieved by the identification of 

states 5 or 6. 

 The BP-AR-HMM accuracy for estimation of gait events was >97% across 

locomotion modes, which was greater than the 94% overall accuracy of the heuristic 

algorithm. Utilizing a single data stream from a gyroscope in a real-world setting, we 

were able to achieve accuracy at levels similar to others who have used larger sensor 

arrays to collect data in a controlled environment [111], [119]. Although the heuristic 

algorithm was less accurate than the BP-AR-HMM the results remain similar to previous 

work with the addition of data from multiple locomotion modes collected in a real-world 

environment [66], [110]. 

 The need to reposition the limb during swing phase is consistent across all 

locomotion modes and velocities. This allowed for the identification of TO with simple 
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rules, as the limb pushed off from the ground in rapid plantar flexion into swing phase, 

which had a similar pattern across locomotion modes. In contrast, during stance phase 

there were distinct differences in the angular velocity waveform across locomotion 

modes (Figures 4.3, 4.4 and 4.5). These differences led to differing state output from the 

BP-AR-HMM, indicating that this algorithm may be useful for classification and 

prediction of locomotion mode. 

 Previous studies developed gait event detection algorithms for up to six different 

locomotion modes (walking, ramps, stairs, ascent and descent), with >95% accuracy [18], 

[66], [91], [108], [111]. To build real world applications for this type of gait event 

detection system, it is important to anticipate when a gait event is going to occur. One 

other study implemented an algorithm with capacity to provide predictions of gait events 

using an Adaptive Neuro-Fuzzy Bayesian algorithm from three IMUs on the lower limb 

of the subject, collected at 100 Hz over level ground and ramp walking [108]. That 

approach was able to predict gait events based upon the previous gait event but did not 

provide any lead time for the calculation of the event and it required up to 100 ms to 

make a decision if a gait event was going to occur [108]. Another study developed an 

HMM using data from a foot mounted gyroscope with a detection accuracy of 100% and 

an average delay of 43 ms for level ground walking [17], and another group developed an 

HMM using data from a gyroscope with mean detection delay of 60 ms [93]. We have 

improved upon these results by identifying features prior to the occurrence of the gait 

event prior. A further improvement is that the current study utilizes less data than the 

previous studies. 
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 Other comparable work includes that of Figueiredo et al [111], which examined 

multiple locomotion modes with a heuristic model based upon data collected from a 

gyroscope on the foot of a healthy subject and then input into a finite state machine for 

the detection of gait events. Their approach was reported to detect IC across multiple 

locomotion modes at a rate of > 96.98%, and TO at a rate of > 95.89% [111]. We 

achieved slightly higher accuracy with > 97.26% using the BP-AR-HMM across gait 

events and locomotion modes. Another study used a heuristic approach with a single 

IMU on the shank, identifying gait events with the following time gaps: level ground IC 

with 16 ± 9 ms and TO at –16 ± 15.9 ms, ramp ascent IC at 18.8 ± 11.6 ms and  TO at -

17.2 ± 21.3 ms [120]. In the present study, the features using a heuristic algorithm had a 

lead time of > 100 ms, with the exception of stair ascent, for IC and > 60 ms for TO 

(Table 4.1). The lead time for the BP-AR-HMM identification of gait events was > 40 ms 

for both IC and TO (Table 4.2). Previous studies utilizing combinations of machine 

learning and EMG have identified gait events with varying accuracy [102]–[104]. These 

approaches have shown the efficacy of machine learning and neural networks for the 

identification of gait events with EMG for level ground walking, with accuracy levels of 

87.4% [104], 96.1% [102], and 94.9% [103]. These values are comparable to our level 

ground walking accuracy with the output from the BP-AR-HMM and the heuristic rules 

generated. It should be noted that these previous studies were focused on determining 

when a gait event had occurred. In contrast, in our approach the BP-AR-HMM and the 

heuristic model identified the key portions of gait prior to the actual event with data 

collected in a real-world environment. 
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 Limitations of this study include but are not limited to post hoc, offline data 

analysis; therefore, we have not yet demonstrated the ability to detect gait events in real 

time. Although the BP-AR-HMM output has a higher accuracy than the heuristic 

algorithm, a simpler algorithm might be easier to include in a control algorithm as it is 

less computationally intensive, therefore reducing the temporal delay between the sensor 

data input and an identified gait event. Additionally, although the data were collected in a 

real-world environment, all subjects completed the same course, which is not 

representative of the natural variation experienced in daily locomotion. 

 

Conclusion 

 In this study we have shown the efficacy of both a heuristic algorithm and an 

unsupervised machine learning algorithm for the identification of features prior to gait 

events based on a single stream of minimally sampled angular velocity data. This leads us 

to believe that in practice a near real time system can be implemented for subject 

independent identification of gait events across locomotion modes and velocities with 

either a heuristic, user defined rule set, or features extracted with an unsupervised 

machine learning algorithm. The key to the BP-AR-HMM used in this study is the Beta 

Process, allowing the model to generate and remove states and share them across all input 

time series, thus allowing the construction of a robust subject independent model. For the 

identification of gait events, this model was at least as accurate as previous approaches, 

while using less sensor data. The outcome of this work indicates that the model used may 

be useful in the classification and prediction of locomotion mode. Such an approach 

could be adapted for use in the control of assistive devices.  
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Bridge 

 The goal of this chapter was to investigate the effectiveness of an unsupervised 

machine learning algorithm for the identification of gait events during dynamic 

locomotion in an ecological environment. We utilized the BP-AR-HMM as an 

unsupervised machine learning algorithm, to derive features and share them across the 

input data. We have also developed a heuristic algorithm for the identification of features 

prior to gait events which will be crucial for the measurement of gait events in a real-

world environment. The methodology of this chapter is the basis for subsequent chapters.  

While the modality changes in the next chapters to running, this work sets the basis for it.   

 



 

65 

 

CHAPTER V 

VALIDATION OF RUNNNING GAIT EVENT DETECTION ALGORITHMS IN A 

SEMI-UNCONTROLLED ENVIRONMENT  

 

This work is currently in preparation for submission to Sensors.  Dr. Michael E. Hahn, 

provided mentorship including assistance with study design, data interpretation, and 

editing and finalizing the final manuscript. 

 

Introduction 

 The biomechanical analysis of running outside of the laboratory can be a useful 

tool for real-time or session by session feedback during training for coaches and athletes 

[121], [122]. The standard in human locomotion research for identification of gait events 

is the use of three-dimensional (3D) motion capture and ground reaction force data. 

These systems typically utilize multiple cameras and force plates in a controlled 

laboratory environment. Despite being the gold standard, these methods require 

expensive equipment, large indoor facilities and technical expertise [107], [123], [124], 

thus limiting their practical use in clinical or sporting environments. Previous studies 

have shown the efficacy of utilizing mobile sensing units for the detection of gait events 

inside and outside the laboratory [93], [125]. However, there has been a lack of validation 

of these algorithms for gait event estimation outside the laboratory. This work expands 

upon current validation techniques for the estimation of gait events and foot contact 

duration during running in a semi-uncontrolled environment. 
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Over the past decade there has been extensive work to understand Inertial 

Measurement Unit (IMU) data in the development of techniques to evaluate human 

locomotion and identify gait events for running in a controlled laboratory setting [20], 

[41], [44], [49], [126]–[129]. There are typically 9 sensors in a standard IMU: tri-axial 

accelerometers (linear acceleration), tri-axial rate gyroscopes (angular velocity) and tri-

axial magnetometers (magnetic field). These sensors have been used for the measurement 

of biomechanical variables in several environments and over different durations in and 

out of the laboratory [122], [130], [131]. However, data from IMUs cannot be used for 

analysis of biomechanical variables without thorough pre-processing of the data and 

specific algorithms [38]. The bases of these algorithms rely explicitly on expertise of the 

researcher to understand segmental accelerations and angular velocities throughout the 

gait cycle, and then developed rules for the estimation of foot contact, via gait events: 

initial contact (IC) and toe off (TO). Some of these approaches have been developed 

specifically for running, with sensors on the foot, shank and the sacrum [126]–[128], 

[132], [133]. Application of these analyses have led to measurement of trail running, 

marathons, and training runs for athletes ranging in skill from recreational to competitive 

collegiate athletes [39], [44], [130], [134]. Prior work in this research space has shown 

that consistent features can be extracted from data in the laboratory and in the real-world, 

with modest efforts made to validate the estimated biomechanical outcomes in the real-

world environment [135], [136]. Force plates have been used previously to validate 

identification of gait events [41], [126], as have force-instrumented treadmills [42], [48], 

[131]. However, the validations of these methods did not account for the possible range 

of velocities and skill levels in an outdoor semi-uncontrolled environment.  
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The purpose of this work was to validate identification of gait events using data 

from IMUs in a semi-uncontrolled environment. Second, this study sought to expand the 

range of velocities tested with these algorithms and expand the range of participant skill, 

from novice runners who run < 5 miles per week to runners who can run a 5k race in sub-

15-minute time. We expected the estimation of gait events and foot contact time to be 

more accurate for the foot mounted IMUs in comparison to the sacral mounted IMU 

across the range of velocities. Portable insoles developed for the measurement of in-shoe 

forces [10] were used as the standard for validation of the identification of IC and TO in a 

real-world environment. The algorithm developed in this study will be considered valid if 

the RMSE in overall contact time across the range of velocities is less than 0.04 seconds 

across the range of velocities (representing < 5-6% total contact time at jogging/running 

velocities). 

 

Methods 

Data were collected from 15 participants, (9 male, 6 female, age: 23.6 years, 

height: 178.3 cm, mass: 73.5 kg) as part of a larger study (Table 5.1). All analyses were 

performed using custom Matlab programs (Mathworks, Natick, MA). Multi-axis IMUs 

(Casio, Tokyo, Japan) were mounted on the dorsal aspect of the participants’ feet and 

approximately on the sacrum (clipped to the back of the participants waistband). These 

sensors recorded 3D linear accelerations and angular velocities at 200 Hz. Inertial data 

were post processed with a Kalman filter to orient the vertical axis of the local (IMU) 

coordinate system to gravity. Foot-shoe normal force data were recorded with Loadsol 

insole force sensors (Novel Electronics, St. Paul, MN) at 100 Hz. Standard GPS data  
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were measured with a Garmin 

Forerunner (Kansas City, KS). Participants 

performed progressively faster 400 m running 

trials (four to five, with the fastest velocity 

being optional), with participant selected rest 

durations, on a square practice track, based on 

self-reported race pace for a 5k. An example 

of the paces run by a participant are shown in 

Table 5.2. The total range of velocities run by 

participants was 2.4 – 5.4 m s-1. The 

participants monitored their pace with a standard wrist-mounted Garmin GPS display. If 

a participant missed their pace by more than 2 seconds, they were asked to repeat that 

pace after suitable rest. These velocities represent typical training and race paces for the 

majority of recreational and high-level distance runners [44], [137].  

 

 

 

 

 

 

 

Data Processing 

Foot-shoe normal force data measured from force sensing insoles were considered 

the standard reference for identification of measured gait events [10]. Inertial signals and 

Table 5.1: Distribution of Average 

Running Velocities  

Average Running 

Velocity (m s-1) 

Number of 

Participants 

2.23 1 

2.33 1 

2.43 1 

2.55 4 

2.68 6 

2.82 6 

2.98 6 

3.15 7 

3.35 9 

3.57 9 

3.83 9 

4.12 8 

4.47 8 

4.87 7 

5.36 7 

 

Table 5.2: Exemplar Paces for Participant with a 7-Minute 

per Mile 5-km Race Pace  

EXAMPLE PACES Minutes per Mile 

Pace 1 8:30 

Pace 2 8:00 

Pace 3 7:30 

Pace 4 (Race Pace) 7:00 

Pace 5 (Optional) 6:30 
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force data were time-synced using controlled unilateral ‘foot-stomps’ before and after 

each trial. The IMU data were then down-sampled to match the force sensing insole 

sampling frequency (100 Hz) and filtered using a 4th order low-pass zero-lag Butterworth 

filter (fc = 35 Hz) (Figure 5.1). This filter was chosen as it was more conservative in the 

reduction of noise for the accurate identification of gait events, using peak accelerations 

[44]. Force data < 50 N were set to zero. 

 

 

Figure 5.1: Flow chart of the data post processing steps and the algorithmic methods for 

the identification of gait events from the force sensing insole data, and data from multi-

axial IMUs at both anatomical locations.  
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Algorithmic Descriptions 

Algorithms used in this study are briefly described here. A more thorough 

treatment of the algorithms can be found in Figure 5.1. Identification of gait events with 

foot-shoe normal force data utilized a threshold of 50 N. Gait event estimation from the 

IMU data utilized distinct spatial and temporal rules. Identification of gait events from 

the dorsal mounted IMUs estimated initial contact by identifying peaks in the resultant 

acceleration. The spatial rule for ICfoot was a minimum resultant acceleration of 50 m s-2. 

The temporal rule for determining ICfoot was a minimum duration of 500 ms between 

estimated consecutive ICfoot [40]. Identification of TOfoot was performed by searching a 

specific temporal window beginning 100 ms after estimated ICfoot, ending at the half-

width of the estimated stride time. In this window TOfoot was either identified as the local 

maxima of vertical acceleration or the first instance when the vertical acceleration was 

greater than three times gravity [40], [128]. Gait event detection using the sacral IMU 

utilized the anterior posterior accelerations. The spatial rule for the identification of 

ICsacrum was local minima with a maximum value of 5 m s-2 in the posterior direction. The 

temporal rule for ICsacrum was a minimum temporal difference of 200 ms between the 

identified ICsacrum [40]. The identification of TOsacrum with a search window was either 

with the maximum acceleration in the anterior direction, or the maximum positive slope 

of the acceleration in the anterior direction [41]. Exemplar output of these algorithms are 

presented in Figures 5.2 and 5.3.   

Results 

The gait events estimated using data from foot mounted IMUs were more accurate 

than the those estimated using the sacral mounted IMU when compared to the force 
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measurement standard identification (Figure 5.4, Table 5.3). Foot mounted IMUs had a 

larger RMSE than the sacral mounted IMU for the identification of gait events in the 

slowest running velocity conditions. Across the range of velocities, the algorithms 

identified ICfoot and ICsacrum with similar accuracy (Figure 5.4, Table 5.3). The 

identification of TOsacrum was more accurate at slower velocities than TOfoot. However, at 

running velocities > 3.57 m s-1 the algorithm identified TOsacrum after the force measured 

TO and with larger RMSEs than TOfoot (Figure 5.4).  

 

Table 5.3: Root Mean Square Error for the Identification of Gait Events and Estimation 

of Foot Contact  

Foot Mounted Sacral Mounted 

Velocity 

(m s-1) 

Initial 

Contact (s) 

Toe  

Off (s) 

Contact 

Time (s) 

Initial 

Contact (s) 

Toe  

Off (s) 

Contact 

Time (s) 

2.24 0.074 0.092 0.025 0.045 0.059 0.043 

2.33 0.026 0.060 0.045 0.038 0.021 0.030 

2.44 0.024 0.044 0.026 0.035 0.027 0.026 

2.55 0.033 0.064 0.054 0.039 0.036 0.024 

2.68 0.024 0.040 0.038 0.028 0.028 0.490 

2.82 0.024 0.034 0.029 0.030 0.032 0.030 

2.98 0.018 0.039 0.035 0.024 0.032 0.027 

3.16 0.024 0.036 0.032 0.029 0.042 0.029 

3.35 0.024 0.035 0.025 0.039 0.051 0.036 

3.58 0.018 0.023 0.022 0.019 0.042 0.037 

3.83 0.020 0.031 0.028 0.024 0.045 0.036 

4.13 0.019 0.024 0.023 0.020 0.047 0.039 

4.47 0.021 0.026 0.021 0.020 0.044 0.036 

4.88 0.018 0.026 0.022 0.020 0.035 0.030 

5.36 0.020 0.038 0.035 0.020 0.033 0.026 

In these data, 0.01s is equivalent to a single sample difference between the IMU 

estimation of gait events and contact time and the values derived from the force data.  
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Estimation of foot contact duration with data from the foot mounted IMU showed 

an overestimation of foot contact duration at slower running velocities (< 2.55 m s-1). 

Estimated foot contact duration from the dorsal mounted IMUs generally had a smaller 

RMSE across the range of velocities than the sacral IMU estimated contact duration 

(Table 5.3 and Figure 5.5). The algorithm for the sacral mounted IMU data consistently 

underestimated the duration of foot contact at slower velocities, < 3.5 m s-1, and 

overestimated the duration of foot contact at faster velocities > 3.5 m s-1 (Figure 5.5).   

 

Figure 5.2: Acceleration waveforms from the IMUs mounted on the right foot (orange 

and blue waveforms), with superimposed foot contacts (dashed black square waves) 

identified from the force measuring insoles. The estimated ICfoot are shown in the filled 

circles and estimated TOfoot is shown in the filled squares. The search windows used for 

the identification of TOfoot are shown in the solid black rectangles. Panel A shows data 

from a 2.24 m s-1 run and panel B shows data from a 5.36 m s-1 run.   

 

 Analysis of foot contact by trial mean were examined using Bland Altman plots. 

These plots present a comparison between the average difference between IMU estimated 

foot contacts and force measured foot contacts (Figure 5.6). The offset of the foot IMU 
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estimate was 0.004s with [-0.005 0.013] 95% Limits of Agreement (LoA) and the sacral 

IMU estimate offset was 0.001s with [-0.018 0.021] 95% LoA. These results show more 

variability at the slower velocities, and longer foot contacts, for both the sacral and foot 

mounted IMUs (Figure 5.6). We used a linear model to examine the relationship between 

the IMU estimated foot contacts and the force measured foot contact as well (Figure 5.7). 

Regression analysis of the sacral estimation of foot contact resulted in an r2 value of 0.73,  

a moderate correlation, and a slope of 0.60, indicating an underestimation of the foot 

contact duration . Regression analysis from the foot IMU estimated contact duration 

resulted in an r2 value of 0.91, a strong correlation, and a slope of 1.15, indicating a slight 

overestimation of the foot contact duration.  

 

Figure 5.3: Acceleration waveforms from IMUs mounted on the sacrum (blue 

waveforms), with superimposed foot contacts (dashed black square waves) identified 

from the force measuring insoles. The estimated ICsacrum are shown in the filled circles 

and the estimated TOsacrum are shown in the filled squares. The search windows used for 

the identification of TOsacrum are shown in the solid black rectangles. Panel A shows data 

from a 2.24 m s-1 run and panel B shows data from a 5.36 m s-1 run.   
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Figure 5.4: Time differences in the identification of gait events between measured forces 

and estimated IMU gait events. Negative time differences indicate that the IMU 

estimated gait event occurred prior to the measured gait event. The identification of 

TOsacrum had larger error rates due to the temporal windowing of the data, and the wider 

range of velocities used than previous work. 
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Figure 5.5: Differences in force measured and IMU estimated contact time across the 

range of average velocity trials. The sample sizes for each velocity are shown in Table 

5.1. 

 Discussion 

 The purpose of this work was to validate the identification of gait events using 

data from IMUs in a semi-uncontrolled environment. We collected inertial data from two 

IMUs attached bilaterally on each foot and one approximately on the sacrum, from 

participants of varying running skill levels. We developed and implemented two 

algorithms for the identification of gait events from an IMU, based upon previous work 

[40], [128], [133]. The output of these algorithms, IMU estimated gait events were 

validated against the standard of a force sensing insole. The main findings of the work are 

summarized briefly here: 1) Estimated and measured contact times generally decreased 

across the range of running velocities; 2) Identification of gait events from the foot 

mounted IMUs was more accurate than identification of gait events from the sacral 
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mounted IMU; 3) Foot contact was identified with an average RMSE of < 0.04 s across 

the range of average running velocities for the foot and sacral mounted IMUs.   

 

Figure 5.6: Bland-Altman plot displaying the average differences between the estimated 

contact durations from the IMUs and the measured gait events from the force sensing 

insoles from the Sacral IMU in Panel A and the Foot Mounted IMU in Panel B. Each dot 

represents an average velocity trial by a participant. Differences greater than 0 are an 

overestimation of contact time by the IMU. Differences less than 0 are an 

underestimation of foot contact by the IMU.  

 

 



 

77 

 

 
Figure 5.7:  Time differences between the IMU estimated foot contact and force 

measured foot contact. Sacral mounted IMU data generally underestimate foot contact, 

with a slope of 0.60. Foot mounted IMU data generally overestimate foot contact 

duration at faster velocities slope of 1.15. The foot mounted IMU was more accurate 

across the range of velocities for the estimation of foot contact in comparison to the 

sacral mounted IMU.  

 

 It is necessary to address the accuracy of the force sensing insoles and their 

measurement of contact time with respect to velocity, as this measure was considered our 

standard.   Foot contact time measured from the insoles followed a similar pattern to 
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[137]; a decrease in contact time with an increase in velocity [138]. Foot contact 

durations as measured by the force insoles were consistently longer in duration than those 

reported in [137]. A contributing factor in this was the participants recruited for these 

studies. Our study recruited participants from a range of running skills, from the truly 

novice, to endurance athletes able to run at 15 min 5 km race pace. The samples tested in 

previous studies consisted of middle distance and sprint athletes.  

 The time between ICfoot and the force sensing insole approached zero difference 

as velocity increased (Figure 5.5). We used an algorithmic method most similar to [9], 

which proposed the identification of peak resultant acceleration across the range of 

velocities, and this has become a common approach for the identification of ICfoot [41], 

[139]. The work of [41] utilized a force plate and single foot strikes for the identification 

of gait events, reporting differences in ICfoot ranging from -7.3 to 3.3 ms. In our study 

error in the estimate of ICfoot ranged from -63 to -5 ms (Figure 5.4). They additionally 

reported TO differences ranging from – 53 ms to -32 ms, compared to our range of 

TOfoot differences from -78 to 2 ms (Figure 5.4) [41]. We have improved on the 

identification of TOfoot, by incorporating their rule for the identification of TOfoot as a 

secondary rule to the identification of peak vertical acceleration, in a temporal search 

window [40], [41]. Our work had more variability in the range of TOfoot identification, 

however, only at the three slowest running velocities, as there was only one participant 

who ran at these average running velocities.  

 Foot mounted IMUs overestimated contact time at running velocities < 2.52 m s-1 

(Figures 5.4 and 5.6). The slope of the regression line for this comparison is 1.15, 

providing further evidence of overestimation of foot contact time overall (Figure 5.7).  



 

79 

 

Another study reported an offset of -0.047 s with 95% LoA of [-0.059 0.154] [40], 

compared with our findings of 0.004s with a 95% LoA [-0.005 0.013], showing an 

overall improvement. It should be noted that Benson et al. reported challenges in the 

identification of TOfoot for one of their participants, which may have contributed to the 

larger offset [40]. Our algorithm was developed on a wider range of velocities, 

participant running abilities and on data collected in a semi-uncontrolled environment. 

The set of algorithms we have developed captured the gait events more effectively than 

previous work. The overestimation of foot contact at the slower running velocities would 

likely be remedied by the inclusion of a greater number of less experienced runners. 

 Estimations of contact time from the sacral mounted IMUs between the velocities 

of 2.52 and 3.16 m s-1 matched the measured contact times (Figure 5.5). However, the 

RMSE TOsacrum at velocities >3.57 m s-1 is greater than 0.04 (Table 5.3). This stems from 

difficulty in estimating the temporal window in which to identify TOscrum. Identification 

of the temporal duration of the window in which to estimate TOsacrum is related to aerial 

time, which in this study ranged from 40 to 100 ms. Differing window lengths were 

tested to accurately identify TOsacrum. The most accurate of these resulted from window 

termination 20 ms before the next ICsacrum (Figure 5.3). A dynamic temporal window for 

the estimation of TOsacrum could be a way to further improve estimation accuracy of 

TOsacrum and foot contact. The study by [48] reported an average underestimation of foot 

contact from sacral mounted IMUs from -0.017 to -0.001s, while the current findings 

show the average contact time differences from -0.011 to 0.027s. Specifically, at average 

running velocities < 2.56 m s-1 the sacral IMU underestimated foot contact time, and at 

average running velocities >3.16 m s-1 contact time was overestimated. Another study, 



 

80 

 

[40], reported a foot contact offset from a sacral mounted IMU of 0.029s with a 95% LoA 

[-0.069 0.010]. Our analysis had a smaller offset of 0.001s with 95% LoA of [-0.018 

0.021].  

 There were multiple limitations in this study. First, the temporal synchronization 

between the IMUs and the force sensing insoles presented an initial challenge. While 

participants were running, the IMU clock and the force sensing insole clock could be off 

by a 0.01s. These errors resulted in zeros being added or removed during swing the phase 

from the force sensing insole data. These errors were partially accounted for by foot-

stomp synchronization between each trial. We did not want to artificially decrease the 

RMSE in the results of this work by removing data due to imperfect synchronization. 

This in turn led to cumulative errors between the measured and estimated gait events. 

These errors would be more concerning if there were large differences in the estimation 

of contact time across the range of velocities. As it is, we feel that it is important to 

include the data in full, to fully represent the performance of the techniques used.  

A single participant’s data heavily influenced the error in the model. This 

participant ran less than 5 miles per week and was truly a novice runner. When the data 

from this participant were removed from the data set, ICfoot ranged from -20 ms to -1 ms, 

compared to the original -63 ms to 5 ms (a ~60% improvement) from velocities of 2.67 m 

s-1 to 5.4 m s-1 and TOfoot temporal differences ranged from -30 ms to -1 ms, compared to 

the original values of -78 ms to 2 ms (a ~75% improvement) across the range of 

velocities. Further, exclusion of this participant from the analysis reduces offset in the 

foot mounted IMU in the estimation of foot contact from an offset of 4 ms to an offset of 

1 ms, while the 95% LoA remains the same. The slope of the linear regression also 
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decreased from 1.15 to 1.10 when this participant’s data are removed from analysis, 

indicating reduced overestimation of contact time in the model. We chose to include this 

participant as a representative example of the truly novice runner. We expect that if more 

runners from a wide range of running levels were included in the data set, we would see 

decreased variability in the identification of IC and TO from the minimal and maximal 

running velocities included in this work. 

 In conclusion, our results demonstrate the validity of two different gait event 

detection algorithms for a range of running velocities and skill levels in a semi-

uncontrolled environment. We used data from a wider range of participant skill levels, 

and a wider range of running velocities than previous studies. We have demonstrated the 

utility of these algorithms for identification of foot contacts in a semi-uncontrolled 

environment. The use of a gait event detection system in a real-world environment needs 

to be validated for a broader set of conditions before we can estimate other biomechanical 

variables from these devices. The next steps in this research are the estimation of ground 

reaction force waveforms from the force sensing insole data, and testing of these 

algorithms in a truly uncontrolled environment.  
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Bridge 

 The goal of the previous chapter was to investigate the effectiveness of two rules-

based algorithms for the identification of foot contacts in a semi-uncontrolled 

environment. Given the consistency of these results we were able to make the corrections 

to the force data necessary to time-align initial contacts from the IMU and force sensing 

insoles. In the next chapter, we move forward with the estimation of whole GRF 

waveforms across the range of velocities in a semi-uncontrolled environment. During 

these trials participants ran at approximately a set pace, with minor fluctuations in 

running velocity, such as at the beginning and the end of the trial. 



 

83 

 

CHAPTER VI 

VALIDATION OF RUNNNING GAIT EVENT DETECTION ALGORITHMS IN A 

SEMI-UNCONTROLLED ENVIRONMENT  

 

This work is currently in preparation for submission to Journal of Biomechanics.  Dr. 

Michael E. Hahn, provided mentorship including assistance with study design, data 

interpretation, and editing and finalizing the final manuscript. 

  

Introduction 

 Wearable sensors are being used extensively for the collection of human running 

biomechanical data outside of the laboratory [40], [123], [130], [140], [141]. The primary 

wearable sensors recently used in locomotion biomechanics have been multi-axial inertial 

measurement units (IMUs), which measure linear acceleration and angular velocity data. 

Previously, IMUs have been used to estimate gait events, contact time, and other spatial 

temporal variables [40], [41], [44], [48]. Additionally, specific kinetic variables have 

been estimated from IMUs, such as joint moments, peak vertical force, impulse and 

loading rate [43], [44], [47], [140]. Other wearable sensors utilized for biomechanical 

monitoring or clinical evaluation are insole force sensors. These sensors measure force 

between the foot and shoe, and have been validated as a measure of vertical ground 

reaction forces (GRF) on a treadmill [10]. Wearable sensors have the capability to also be 

incorporated into other sensor systems for the estimation of specific external loading 

variables and internal tissue loading [142], [143], and for overall feedback during training 

[122], [144].  
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 Previous studies estimating kinetic variables associated with external loading 

have used either statistical or physical models [44], [88], [145]. In recent years, machine 

learning techniques have been used instead of physical or statistical modelling, having 

become a popular set of tools for biomechanical analysis and estimation of kinematic and 

kinetic variables. Previous work using machine learning algorithms have estimated or 

predicted gait events from IMU data [18], [146]–[148], with IMUs located either 

bilaterally on the feet or on the sacrum. Machine learning algorithms, including artificial 

neural networks (ANNs), recurrent neural nets (RNNs), among other techniques, have 

also been used to estimate kinetic variables, such as vertical impulse, loading rate and 

peak GRFs [43], [45]–[47], [149]. A few drawbacks for these studies include the 

biomechanical expertise required for estimation of these variables, significant 

preprocessing of raw data, and identification of stance phase before data can be parsed 

into a usable form. Furthermore, these machine learning models are not yet ready for 

implementation outside of the laboratory, as they have been built using data from 

controlled laboratory settings and do not capture the variability of human movement that 

occurs out of the laboratory in response to surface differences and changes in velocity 

[150].  

We propose the use of RNNs, specifically Long Short Term Memory networks 

(LSTMs) to map IMU data onto GRF waveforms measured with force sensing insoles. 

The LSTM approach was specifically developed for time series data, and mapping 

between two different waveforms [151]. The purpose of this study was to implement a 

machine learning algorithm for the mapping of inertial data to kinetic waveforms from 

participants running on a track across a range of velocities and participant skill levels.   
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Methods 

This study was approved by the University of Oregon Institutional Review Board 

(protocol #: 10062020.007). Data were collected from 15 participants (Table 6.1), (9 

male, 6 female, age: 23.6 years, height: 178.3 cm, mass: 73.5 kg) as part of a larger, 

ongoing project. Participant 5-km race times 

ranged from 30:00 - 15:30 minutes (Tables 6.1 

and Table 6.2). All analyses were performed in 

custom Matlab programs (Mathworks, Natick, 

MA). Multi-axial IMUs (Casio, Tokyo, Japan) 

were mounted bilaterally on the dorsal aspect 

of each participants feet and approximately on 

the sacrum (clipped on the back of each 

participant’s waistband). These sensors 

recorded 3D linear accelerations and angular 

velocities at 200 Hz. Data were post processed 

with a Kalman filter to orient the local (IMU) coordinate system vertical to gravity 

(Figure 6.1 Panel B). The use of multiple inertial sensors has been suggested to lead to 

improved estimation of spatial temporal and kinetic variables, compared to a single 

inertial sensor [44], [152], [153]. Foot-shoe normal force data were recorded with 

Loadsol insole force sensors (Novel Electronics, St. Paul, MN) at 100 Hz.  

Table 6.1: Distribution of Average 

Running Velocities 

Average 

Running 

Velocity (m s-1) 

Number of 

Participants 

2.23 1 

2.33 1 

2.43 1 

2.55 4 

2.68 6 

2.82 6 

2.98 6 

3.15 7 

3.35 9 

3.57 9 

3.83 9 

4.12 8 

4.47 8 

4.87 7 

5.36 7 
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Participants performed four to five 400 m running trials on a square track, at 

paces based upon their self-reported 5 km race pace (a total of 4 or 5 paces, with the 

fastest pace being 

optional). An exemplar 

set of paces is shown in 

Table 6.2. The total  

range of velocities run by participants in this study was 2.4 – 5.4 m s-1. Each participant 

monitored their pace with Garmin GPS, (Kansas City, KS). If they missed their time trial 

by more than 2 seconds, they would be asked to repeat the trial, after sufficient rest. 

These velocities represent typical training and race paces for the majority of recreational 

and high-level distance runners [44], [137].  

 

Data Processing  

Foot-shoe normal force data were measured from force sensing insoles, 

considered the standard reference for identification of measured gait events and kinetic 

variables in this study [10]. The IMU data were down sampled to 100 Hz to match the 

force sensing insole sampling frequency and then filtered with a 4th order low-pass zero-

lag Butterworth filter (fc = 35 Hz). Kinetic data were filtered with a 2nd order low-pass 

zero-lag Butterworth filter (fc = 20 Hz). The inertial signals and force data were time-

synced using foot-stomps before and after each trial. Internal clock drift between the 

insoles and the IMUs was rectified by an iterative corrections algorithm. Force data <5% 

body weight (BW) were set to 0 BW. The estimated kinetic waveforms output from the 

machine learning algorithm were filtered with the same filter as the measured kinetic 

Table 6.2: Example Paces and Timing for 400 m run 

Example Paces  Minutes per mile  

Pace 1  8:30 

Pace 2  8:00 

Pace 3  7:30 

Pace 4  7:00 

Pace 5 (optional)  6:30 
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waveforms. Estimated foot ground contacts less than 0.050 s were set to 0 BW, as foot 

contacts shorter than 0.050 s were considered noise, having small magnitudes and not 

consistent with measured foot contacts observed in running locomotion.  

 

Machine Learning Architecture  

The overall structure of the machine learning algorithm is shown in (Figure 6.1 

Panel A). The mathematical details of LSTMs can be found elsewhere [51], [154]. The 

steps for development and testing of the machine learning models were two-fold; first the 

network architecture was optimized using the Bayesian Optimization for Deep Learning 

[155], and then the network was tested using Leave One Out Cross Validation (LOOCV). 

Bayesian Optimization for Deep Learning requires user specification of the 

hyperparameters, which are then optimized. The Bayesian Optimization was tested on the 

data set with 70% Training, 15% Validation and 15% Test segmentation of the data 

(Figure 6.1). The optimal network architecture was determined by performance on the 

Test data set. The hyperparameters optimized included the initial learning rate, gradient 

decay factor, squared gradient decay factor, L2Regularization and number of hidden 

units. The only hyperparameter that influenced the outcome of the algorithm was the 

number of hidden units. The range of the number of hidden units used in the optimization 

was [10 - 50]. Through the Bayesian Optimization process, the optimal number of hidden 

units was determined to be 42. This value was used for the LOOCV process. All other 

hyperparameters converged to the default Matlab input. Additional preliminary work 

showed that a 4 second temporal window was the most accurate for the estimation of 

ground reaction force waveforms.  
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Figure 6.1.  Panel A, machine learning methodology and throughput, specifically the 

input data, machine learning protocol and output. Calculated output contact time and 

kinetic variables are shown here. Panel B instrumentation on the foot, with the Kalman 

corrected coordinate system on the IMU. Panel C measured and estimated ground 

reaction forces from a participant with the smallest RMSE for a participant, Panel D 

shows the largest RMSE measured and estimated ground reaction forces from the same 

participant.   

 

Data Analysis 

 Estimated waveforms from the LOOCV were analyzed and are presented in this 

work. Initial analysis involved identification of the optimal temporal window. This was 

done via inspection of the estimated kinetic variables in Bland-Altman plots. Initial 

Contact (IC) was identified by the first instance of force >5% BW, and toe off (TO) was 

determined by the last instance of force greater than >5% BW. Contact time was 

determined by taking the temporal difference between these two discrete events. Stance 

average GRFs, impulse, peak GRFs, and average loading rate were the kinetic variables 
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calculated in this work, from the estimated force waveforms. Average loading rate was 

calculated by identifying the impact peak and then averaging the slope in the middle 60% 

of the region between IC and the impact peak [58].  

Pearson correlation coefficients (r2) were used to compare the estimated force 

data output from the LSTM to the measured insole force data. Seventy-five data points 

were used, with fifteen participants running five velocities, and each data point 

representing a 400 m time trial on a square track. Differences between the model 

estimated variable and measured waveform variable are presented in both linear 

regression and Bland-Altman plots with 95% confidence intervals (CIs) and Limits of 

Agreement (LoA), respectively. A strong correlation was defined as r2 ≥ 0.8, a moderate 

correlation as 0.5 ≤ r2 ≤ 0.8 and a weak correlation as 0.3 ≤ r2 ≤ 0.5. Differences between 

measured and estimated gait events are presented as well as, root mean square error 

(RMSE) for each contact time, and kinetic variable.  

 

Results 

The data presented are the trial means from each subject and velocity from the 

LOOCV analysis. Waveform RMSE ranged from 0.191 – 0.309 BW, while the individual 

stance phase RMSE ranged from 0.189 to 0.288 BW (Table 6.3). Exemplar data for the 

minimal and maxima RMSE outputs for a participant are shown in (Figure 6.1 panel C). 

Estimated IC was identified prior to measured IC and IC differences ranged from 0.013 - 

0.020 s per trial (Table 6.4). The identification of TO differences ranged from - 0.012 - 

0.041 s. At velocities <3.16 m s-1, TO was estimated prior to the measured gait event. 
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However, at velocities > 3.16 m s-1, the estimation of TO occurred after the measured gait 

event (Table 6.4). Estimated and measured contact time had good agreement at average  

running velocities < 3.16 m s-1, however at average running velocities >3.16 m s-1, 

contact time was overestimated (Figure 6.2 Panel A). The Pearson’s Correlation 

Coefficient between the estimated and measured contact time showed a moderate  

correlation; r2 = 0.795 

(Figure 6.2 Panel B). 

Bias in the estimate of 

contact time was 0.020 

with 95% LoA: [-

0.011 0.051] (Figure 

6.2 Panel C). Contact 

time RMSE ranged 

from 0.089 s to 0.021s 

(Table 6.5).   

Estimated output from the measured stance average GRFs showed a consistent 

underestimation at velocities > 3.16 m s-1 (Figure 6.3 Panel A). There was a weak 

correlation between the estimated stance average GRF and the measured stance average 

GRF; r2 = 0.408 (Figure 6.4 Panel A). The agreement between the estimated stance 

average GRFs and the measured stance average GRFs were offset by -0.092 BW and 

95% LoA [-0.351 0.167] BW (Figure 6.5 Panel A). The stance average ground reaction 

force RMSE ranged from 0.063 - 0.402 BW (Table 6.5). The measured stance impulse 

decreased as the average running velocity increased. At all but the slowest velocity (2.24  

Table 6.3: Stance and Waveform Root Mean Square Error 

Average 

Velocity (m s-1) 

Stance RMSE 

(BW) 

Waveform RMSE 

(BW) 

2.24 0.230 ± 0.000 0.238 ± 0.025 

2.33 0.189 ± 0.000 0.191 ± 0.029 

2.44 0.199 ± 0.000 0.202 ± 0.028 

2.55 0.253 ± 0.080 0.271 ± 0.100 

2.68 0.268 ± 0.056 0.266 ± 0.074 

2.82 0.267 ± 0.019 0.274 ± 0.057 

2.98 0.281 ± 0.020 0.309 ± 0.059 

3.16 0.262 ± 0.038 0.304 ± 0.056 

3.35 0.288 ± 0.039 0.305 ± 0.071 

3.58 0.248 ± 0.033 0.268 ± 0.062 

3.83 0.230 ± 0.049 0.265 ± 0.076 

4.13 0.242 ± 0.053 0.281 ± 0.072 

4.47 0.233 ± 0.048 0.275 ± 0.073 

4.88 0.243 ± 0.043 0.284 ± 0.089 

5.36 0.240 ± 0.052 0.287 ± 0.101 
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m s-1) and the two fastest velocities (4.88 and 5.36 m s-1) the impulse was overestimated 

by the LSTM output (Figure 6.3, Panel B). Estimated impulse had a weak correlation  

 with measured impulse; r2 = 0.385 (Figure 6.4 Panel B). The agreement between the 

estimated impulse and the measured impulse bias was 0.007 BW*s and 95% LoA [-0.051 

0.065] BW*s (Figure 6.5 Panel B). The RMSE across the range of velocities ranged from 

0.159 to 0.266 BW*s (Table 6.5).  

The estimated peak forces across the range of velocities were similar to the 

measured peak forces, except for at the slowest velocity (2.24 m s-1) (Figure 6.3 Panel C). 

Estimated peak GRFs were moderately correlated with the measured peak ground 

reactions forces (r2 = 0.614) (Figure 6.4 Panel C). The agreement between the measured 

and estimated peak GRFs had an offset of 0.029 BW with 95% LoA [-0.322 0.381] BW 

(Figure 6.5 Panel C). The average RMSE of peak vertical GRFs ranged from 7.798 to 

Table 6.4: LSTM Estimated Gait Event Error 

Average Velocity 

 (m s-1) 

IC Difference (s) TO Difference (s) 

2.24 0.013 ± 0.000 0.041 ± 0.000 

2.33 0.019 ± 0.000 0.014 ± 0.000 

2.44 0.019 ± 0.000 0.015 ± 0.000 

2.55 0.015 ± 0.003 0.007 ± 0.003 

2.68 0.017 ± 0.005 0.014 ± 0.018 

2.82 0.015 ± 0.006 0.015 ± 0.017 

2.98 0.015 ± 0.003 0.007 ± 0.017 

3.16 0.014 ± 0.006 0.001 ± 0.011 

3.35 0.019 ± 0.004 -0.003 ± 0.022 

3.58 0.020 ± 0.005 -0.011 ± 0.012 

3.83 0.018 ± 0.005 -0.007 ± 0.012 

4.13 0.015 ± 0.008 -0.012 ± 0.009 

4.47 0.017 ± 0.008 -0.009 ± 0.009 

4.88 0.017 ± 0.003 -0.006 ± 0.008 

5.36 0.017 ± 0.005 -0.006 ± 0.005 
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18.132 (BW) (Table 6.5). The estimated average force loading rate was overestimated 

compared to measured loading rate across the range of velocities. Estimated loading rate 

was weakly correlated with measured loading rate (r2 = 0.405) (Figure 6.4 Panel D). The  

agreement between the measured and estimated loading rate had an offset of -6.116 BW 

s-1, with LoA [-20.475 8.243] BW s-1 (Figure 6.5 Panel D). The average RMSE for  

loading rate over each velocity ranged from [0.07 0.218] BW s-1 (Table 6.5). 

 

 

 

Table 6.5: LSTM Estimated Spatial-Temporal and Kinetic Variables RMSE 

Average 

Velocity  

(m s-1) 

Contact Time 

(s) 

Stance 

Average (BW) 

Impulse 

(BW* s) 

Peak GRF 

(BW) 

Loading Rate  

(BW s-1) 

2.24 0.090 ± 0.000 0.063 ± 0.000 0.103 ± 0.000 0.266 ± 0.000 
13.592 ± 0.000 

2.33 0.021 ± 0.000 0.070 ± 0.000 0.032 ± 0.000 0.159 ± 0.000 
15.575 ± 0.000 

2.44 0.023 ± 0.000 0.070 ± 0.000 0.032 ± 0.000 0.183 ± 0.000 
12.559 ± 0.000 

2.55 0.028 ± 0.002 0.127 ± 0.082 0.048 ± 0.024 0.227 ± 0.081 
9.535 ± 3.032 

2.68 0.024 ± 0.001 0.122 ± 0.069 0.041 ± 0.016 0.221 ± 0.053 
8.733 ± 1.564 

2.82 0.024 ± 0.001 0.108 ± 0.048 0.042 ± 0.012 0.256 ± 0.053 
8.695 ± 1.839 

2.98 0.025 ± 0.006 0.121 ± 0.037 0.044 ± 0.012 0.208 ± 0.034 
7.798 ± 1.242 

3.16 0.023 ± 0.006 0.154 ± 0.073 0.041 ± 0.011 0.221 ± 0.018 
9.963 ± 4.378 

3.35 0.034 ± 0.014 0.150 ± 0.068 0.047 ± 0.013 0.213 ± 0.038 
11.383 ± 5.400 

3.58 0.039 ± 0.016 0.196 ± 0.091 0.047 ± 0.016 0.225 ± 0.056 
14.725 ± 4.691 

3.83 0.031 ± 0.012 0.177 ± 0.086 0.037 ± 0.018 0.230 ± 0.107 
14.085 ± 3.744 

4.13 0.033 ± 0.013 0.196 ± 0.093 0.040 ± 0.022 0.237 ± 0.130 
14.825 ± 4.458 

4.47 0.032 ± 0.014 0.198 ± 0.093 0.037 ± 0.019 0.226 ± 0.118 
15.561 ± 5.319 

4.88 0.029 ± 0.008 0.218 ± 0.102 0.034 ± 0.014 0.237 ± 0.118 
15.608 ± 3.667 

5.36 0.028 ± 0.007 0.198 ± 0.085 0.032 ± 0.014 0.229 ± 0.121 
18.132 ± 5.392 
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Figure 6.2: Complete analysis of contact time. Panel A shows contact time trends across 

the range of velocities. The measured contact times are in black and the estimated contact 

times are in red.  Regression analysis and 95% confidence intervals of contact time is in 

Panel B. Panel C presents a Bland-Altman plot of the difference between the estimated 

and measured contact times, and 95% limits of agreement.  
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Figure 6.3: 

Kinetic variables 

across 

velocities. 

Measured 

(black) variables 

calculated 

directly from the 

force sensing 

insoles. 

Estimated (red) 

calculated from 

the LSTM 

estimated 

waveform. The 

trends in the 

estimated data 

follow those of 

the measured 

data, there is 

however an 

offset between 

the two. 
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Figure 6.4: 

Regression 

analysis of 

estimated 

kinetic 

variables with 

mean and 95% 

confidence 

intervals. Each 

data point 

represents an 

average 

velocity trial. 

The color of a 

trial represents 

the average 

running 

velocity of the 

trial.  
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Figure 6.5: 

Bland 

Altman plot 

with offset 

and 95% 

Limits of 

Agreement. 

Each data 

point 

represents 

an average 

velocity 

trial. The 

color of a 

trial 

represents 

the average 

running 

velocity of 

the trial. 
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Discussion  

The purpose of this study was to implement a machine learning algorithm for the 

mapping of inertial data to kinetic waveforms from participants running on a track across 

a range of velocities and participant skill levels. We estimated GRF waveforms with three 

inertial sensors from participants running in a real-world training scenario; 400 m repeats 

at prescribed paces. Three specific findings can be summarized: (1) we estimated four-

second GRF waveforms from the IMU data of the same duration, (2) estimations of 

contact time from the output waveform were accurate, but were overestimated at average 

running velocities > 3.16 m s-1, and (3) estimates of single kinetic variables matched the 

overall trends of the measured input data, however the model tended to underestimate 

kinetic variables (stance average forces, peak force and average loading rate) at running 

velocities > 3.16 m s-1 (Figures 6.3 and 6.5).  

The estimation of gait events from IMUs have been reported with a wide variety 

of algorithmic methods, as these are the most critical variables for parsing biomechanical 

waveforms [14], [70], [156]. In the present study, IC difference between estimated and 

measured gait events ranged from 0.013 - 0.020s across a range of running velocities, 

indicating that IC was estimated to occur prior to the measured IC. This temporal 

difference may have been due to the iterative corrections algorithm that was utilized to 

match estimated IC with measured IC. Estimation of TO differences ranged from -0.012 

– 0.041s, indicating a range of slightly early and slightly late estimation. This appears to 

be specific to running velocity, as estimation of TO at velocities < 3.16 m s-1 occurred 

before measured TO, and at running velocities > 3.16 m s-1 TO was estimated to occur 

after measured TO. It follows that contact time was overestimated at velocities >3.35 m s-
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1. Previous work reported an RMSE of 0.011s and r2 = 0.665 from a quantile regression 

forest [43]. Our results show a threefold increase in the RMSE to 0.032s but a stronger 

correlation r2 = 0.795. Greater error in our estimates likely came from greater variability 

in the average running velocity throughout a trial and the inclusion of accelerations and 

decelerations within a running trial. 

Stance phase ground reaction force RMSE was comparable to ranges presented in 

previous work (RMSE of 0.39 BW) [47], with our estimated waveforms resulting in 

average RMSE of 0.245 BW for all running velocities. Another study reported an RMSE 

ranging from 0.13 – 0.17 BW between velocities of 2.7 and 4.5 m s-1  [45], using an 

algorithm that is closest in nature to ours, as they estimated portions of waveforms that 

could be concatenated into full GRF waveforms. The performance of our algorithm was 

similar to these previously reported values, with an RMSE ranging from 0.189 - 0.288 

BW (Table 6.3), across a wider range of velocities and at non-constant velocities. The 

primary difference between our current study and previous work in this area is that 

previous studies estimated whole GRF waveforms in the laboratory at steady state 

running velocities on a treadmill, and only estimated stance phase or a segment of the 

waveform. Ours is the first study to produce a model for estimation of a full GRF 

waveform with multiple stance and swing phases from data collected outside of the 

laboratory.  

In our study, measured stance average GRFs generally increased with velocity 

(Figure 6.3 Panel A), however not linearly as expected [137]. Estimated stance average 

GRFs were underestimated when compared to measured stance average GRFs (Figure 6.2 

Panel A and Figure 6.5 Panel A). Divergence between estimated and measured values 
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occurred over the same range of velocities (3.16 to 5.36 m s -1) that contact time was 

overestimated (Figure 6.2 and Figure 6.5 Panel A). Generally, an increase in contact time 

will cause a decrease in stance average GRFs. This is compounded with the 

underestimation of peak GRF values at faster average running velocities (Figure 6.5 

Panel C). Faster running velocities revealed a greater bias in estimated stance average 

GRFs. For comparison, the physical model developed by [157], presented an average 

RMSE ranging from 0.681 – 1.302 BW for running velocities from 2 – 5 m s-1. 

Regardless, our results show notable improvement on this work, with an RMSE for 

estimated stance average GRF ranging from 0.063 to 0.218 BW (Table 6.5).  

Estimation of impulse is the most mathematically complex variable presented in 

this work and it also has the poorest agreement between estimated and measured values. 

Impulse was expected to decrease as velocity increased [145], [158], which matches our 

results. Estimated impulse from a quantile regression forest was reported to have a strong 

correlation (r = 0.974) and an RMSE of 0.004 BW*s for running velocities between 3.8 

and 5.4 m s-1 [43]. Our results differ, with a weak correlation of r2 = 0.385 and an average 

RMSE across velocities 0.044 BW*s. These differences can be related, in part, to the 

discussion of errors above for both contact time and stance average GRFs. Another key 

difference is the variation in experience levels among our participants when compared to 

highly trained Division 1 endurance athletes. Beyond these differences, impulse is highly 

susceptible to errors in both the estimation of contact time and GRF magnitude, both of 

which had detectable bias in the current model.  

As expected, peak force increased with running velocity (Figure 6.3 Panel C). 

This measure has been related to estimation of external load while running [145], [158]. 
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Estimation of peak GRFs across the range of running velocities was the most accurate 

output from the current model. Previous research reported that the relationship between 

peak GRFs estimated by an ANN at three different velocities (ranging from 2.78 – 3.89 

m s-1) had a moderate correlation for peak GRF; r2 = 0.72 and 95% LoA [-0.17 0.18] BW, 

with a bias of 0.01 BW, on average [47]. In contrast, our model had a slightly weaker 

correlation (r2 = 0.614) and LoA [-0.322 0.381] BW, with an average RMSE of 0.223 

BW. Although our model resulted in similar correlations, we also have twice as much 

variability represented by our 95% LoA range. Further investigation revealed an outlier 

from the peak GRF analysis, in which the value was overestimated by approximately 

50% for a single participant. This observation indicate that the force-measuring insoles 

were moving between the foot and the shoe for this participant.  

 Measured average loading rate generally increased with running velocity, as 

expected (Figure 6.3 Panel D) [158]. Wouda et al. reported an ANN-estimated loading 

rate with correlation of r2 = 0.57, LoA of [-16 10] BW s-1 and a bias of -2.9 BW s-1 [47]. 

Our results showed a correlation of r2 = 0.405, with LoA [-20.450 8.243] BW s-1 and a 

bias of -6.116 BW s-1, demonstrating less agreement and a larger bias than the previous 

work. This could be due in part to differences in data collection protocols and the 

sensitivity of the force sensing insoles to error in the calculation of loading rate [9]. 

Estimated average loading rate was underestimated at velocities > 3.16 m s-1, possibly 

due to errors in the estimation of gait events. Identification of IC prior to the measured 

gait event decreases the estimated average loading rate. We attempted to mitigate this by 

estimating average loading rate between 10 and 40% contact time. However, as contact 
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time was overestimated and GRFs were underestimated, underestimation of average 

loading rate across the range of velocities still occurred. 

There are several limitations in this work. The force sensing insoles occasionally 

lost connection during trials, which led to different calibration files for the same 

participant. Force sensing insoles rely heavily on the calibration process prior to the data 

collection, and if they move between the foot and the shoe the force values will be 

affected. These sources of error likely contributed to the variability within our data and 

affected the machine learning model for the estimation of GRF waveforms. The 

methodology presented in this work is transferable to real-world running. However, we 

hesitate to recommend the algorithm in current form as a tool for the analysis of training 

and the translation of this work into the real-world environment. Overestimation of 

contact time with increased running velocity is an example of the limited transferability 

of the algorithm to novel environments. Building a machine learning model for a single 

participant or a small subset of participants with similar running ability would 

substantially reduce the model’s estimation error. We had a single participant run at the 

slowest velocities, and this participant’s data did not follow the expected kinetic trends. 

However, this participant’s data provide a good benchmark to demonstrate how these 

methods capture running performance of a truly novice runner.  

In conclusion, the mapping of GRF waveforms from IMU data collected in a real-

world environment has been shown to be feasible, with limitations. We have presented 

conservative results from an LSTM model of GRF waveform estimation by reporting 

data from a LOOCV analysis. We used three IMUs for the mapping of inertial to kinetic 

data for a variety of participants ranging in skill from truly novice runner (30:00 
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estimated 5km race time) to more highly trained runners (15:30 5km race time) running 

400m on a square track. This work has improved upon much of the relevant literature for 

estimation of spatial-temporal and kinetic measures from the estimated ground reaction 

force waveforms. Future studies investigating the effects of different amounts of data 

input, and potentially the inclusion of a wider range of running velocities should improve 

estimations from similar machine learning algorithms. Additionally, it would be valuable 

to identify biases in the reported variables by comparing measurement of force data from 

a force-instrumented treadmill to those measured by force sensing insoles, across a range 

of velocities and inclinations matching the training environment of experienced runners.  
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Bridge 

 The goal of the previous chapter was to investigate the performance of an LSTM 

for mapping could estimate a whole GRF waveform from inertial data in a semi-

uncontrolled environment. From these data we were able to estimate contact time as well 

as discrete kinetic variables from three inertial sensors. The purpose of the next chapter 

was to utilize multiple aspects from the previous methodologies for the estimation gait 

events from foot-mounted IMUs and GRF waveform from a free run on a 5-mile course. 

We included the use of GPS for measurements of pace and slope the participant ran on. 

This next chapter synthesizes the gait event identification, and GRF waveform estimation 

from previous chapters and applies them to this uncontrolled setting.  
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CHAPTER VII 

RUNNING IN THE REAL WORLD: ESTIMATION OF GAIT EVENTS AND 

GROUND REACTION FORCE WAVEFROMS WITH WEARABLE SENSORS AND 

MACHINE LEARNING  

 

This work is currently in preparation for submission to Nature.  Dr. Michael E. Hahn 

provided mentorship including assistance with study design, data interpretation, and 

editing and finalizing the final manuscript. 

 

Introduction 

Biomechanical analysis of running outside the laboratory has become possible, 

due to advances in wearable sensor and machine learning technologies [1], [159]. 

Laboratory based technologies such as motion capture and instrumented force plates have 

been the traditional method with which to measure biomechanical data, including spatial-

temporal, kinematic and kinetic variables. These tools require significant investment and 

high levels of training to collect these data. Wearable technologies are an alternative to 

laboratory based methods and have become more widely available for the monitoring of 

running biomechanics in uncontrolled environments [144], [160]. Examples of these are 

inertial measurement units (IMUs), GPS, and in-shoe force or pressure sensors, which 

can be used to measure or estimate biomechanical data [10], [40], [147], [161]. Earlier 

research has utilized IMUs for the estimation of gait events, foot ground contact time 

[40], [44], [48], [162]–[164], and estimation of specific kinetic variables with statistical 

or machine learning models [43], [47], [149]. Furthermore, in-shoe force sensors measure 
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normal force between the foot and shoe during foot contact have been validated as a 

measure of vertical ground reaction forces (GRFs) on an instrumented force treadmill 

[10].  

There are typically 9 sensors in a multi-axial IMU: tri-axial accelerometers (linear 

accelerations), tri-axial rate gyroscopes (angular velocity), and tri-axial magnetometers 

(magnetic field). Data from IMUs need specific processing and algorithms for extraction 

of meaningful biomechanical variables [38]. Some approaches have been developed 

specifically for running, with sensors on the foot, shank, and sacrum [39], [44], [48], 

[134]. These algorithmic techniques have demonstrated that consistent features can be 

extracted from inertial data for identification of foot contacts in the laboratory and in real-

world environments. However, these algorithms are yet to be validated against a kinetic 

measure in a free running real-world environment, with uncontrolled running velocities 

and different positive and negative grades. 

Machine learning models have been implemented for estimation and prediction of 

gait events [65], [165], of single kinetic variables [43], [47], [149], and single stance 

phase GRFs during running, or portions of running GRF waveforms [45]–[47], [166]. 

These studies have been constrained to the laboratory, with either in-ground force plates 

or instrumented force measuring treadmills for GRF measurement. Recurrent neural 

networks (RNNs) show promise for estimation of kinetic variables, specifically Long 

Short-Term Memory networks (LSTMs). These network structures were designed for the 

analysis of temporally related data [151]. Human gait data are ideal for these types of 

algorithms, as locomotion is a cyclic activity and therefore, temporally related. However, 

we must be cautious with the application of machine learning algorithms for evaluation 
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of running performance outside of the laboratory, as it has been well established that gait 

parameters, kinematics and kinetics are different between treadmill running and 

overground running of different durations [130], [139], [167]–[169]. It is currently 

unknown how these algorithms will perform with data collected over the course of an 

entire run over different grades and velocities.  

Consequently, the purpose of this study was to test two specific methods for the 

biomechanical analysis of running in an unconstrained environment: 1) a heuristic 

algorithm for the estimation of foot contacts from IMU data; 2) a machine learning 

algorithm, Bi-Directional LSTM (BD-LSTM), for estimation of normal GRFs between 

the foot and shoe; foot contacts and discrete GRF variables. We expect gait event 

detection from both algorithms to have similar accuracies across the range of running 

velocities and grades in this study. Specifically, we expect an RMSE of 0.04s, or 6% 

error, in the estimation of foot contact from the IMU data which are similar to results in 

[40]. Output waveforms from the machine learning algorithm, estimated stance phases 

would have an RMSE of 0.030 BW, and estimated discrete kinetic variables would have 

moderate correlations with measured variables in a manner akin to previous work [45]. 

 

Methods 

This study was approved by the University of Oregon Institutional Review Board 

(protocol #: 10062020.007). Data were collected from 16 participants (Table 7.1), (8 

male, 8 female, age: 23.15 years, height: 167.77 cm, mass: 65.00 kg) as part of a larger 

ongoing study. Three participants were excluded from the analysis, due to GPS 
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malfunctions. All analyses were performed in custom Matlab programs (Mathworks, 

Natick, MA). Multi-axial IMUs (Casio, Tokyo, JPN) were mounted bilaterally on the 

dorsal aspect of each participant’s foot and approximately on the sacrum (clipped on the 

back of each participant’s waistband). The use of multiple inertial sensors has been 

suggested to  

improve estimation of 

spatial temporal and 

kinetic variables, compared 

to a single inertial sensor  

[44], [152], [153]. These 

multi-axial IMUs recorded 

3D linear accelerations and 

angular velocities at 200 

Hz. Acceleration data were 

post-processed with a Kalman filter to orient the local (IMU) coordinate system vertical 

to gravity. Foot-shoe normal force data were recorded with Loadsol insole force sensors 

(Novel Electronics, St. Paul, MN) at 100 Hz. Participants were asked to run a five-mile 

course around the University of Oregon and surrounding parks (Figure 7.1). Participants 

also wore a Garmin (Kansas City, KS) GPS watch (either Garmin Forerunner 130 and 

135 to record elevation and running velocity).  

Data Processing 

Force-sensing insole and IMU data were synced with ‘foot stomps’ before and 

after each run. The IMU data were down sampled to 100 Hz to match the force sensing 

Table 7.1: Participant Characteristics and Mile Pace  

GENDER Age Mass 

(Kg) 

Height 

(cm) 

Pace 

(mins:secs) 

M 19 68 175 7:24 

F 21 63 168 7:59 

M 21 73 183 7:15 

F 19 55 173 7:24 

M 34 68 185 8:17 

F 23 52 163 7:51 

M 18 68 183 7:33 

M 20 68 170 7:13 

F 27 54 173 8:57 

M 28 88 191 9:10 

M 26 70 69 7:13 

F 27 57 165 8:31 

M 18 61 183 8:31 
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insoles and filtered with a 4th order low pass zero-lag Butterworth filter (fc = 35 Hz). 

Internal clock drift between the IMUs and force sensing insoles were resolved with an 

iterative corrections algorithm. The kinetic data were normalized to participant 

bodyweight (BW) and were filtered with a 4th order low-pass zero-lag Butterworth filter 

(fc = 20 Hz). Post-hoc corrections to force insole data due to a drifting baseline were 

required (< 1% of the measured footfalls needed this adjustment). Making these 

corrections entailed identifying swing phases during a period in which the forces had a 

drifting baseline and setting the swing phases to 0 BW. This approach is described in 

greater detail in Chapter II of the dissertation. Additionally, force data <5% BW was set 

to 0 BW. Elevation and velocity measured by the GPS at (sf = 1 Hz), were filtered with a 

zero-lag 10 sample moving average filter. Velocities from GPS data were set to the 

nearest 0.25 m s-1 for velocities ranging from 2.25 – 5.25 m s-1, and the upper limit was 

set by the number of footfalls available for analysis, discussed below. Running velocities 

< 2.25 m s-1 are typically walking velocities and the walk to run transition typically 

occurs at around 2.00 – 2.10 m s-1. Grade was calculated from the elevation data and 

binned into three different groupings. Incline foot strikes were identified at measured 

grades of > 5°, and decline foot strikes were identified as measured grades of < -5°, with 

level ground foot strikes between 5° and -5°. The [-5°, 5°] limit was set due to observed 

noise of ± 4° throughout the run during portions of the course with no physically 

discernible grade. Data from the GPS were then time-synced to the beginning and end of 

the IMU and kinetic data. For each combination of velocity and grade to be included in 

the analysis from a participant there must have been a total of 10-foot contacts meeting 

this criterion throughout the course.  
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Descriptions of Gait Event Detection Algorithm 

 Gait event estimation from IMU data utilized heuristic rules similar to previous 

work [40], [41], [147]. Initial contact from the IMUs on the dorsal aspect of the foot (IC-

IMU) was identified with two rules. First was the identification of minimum angular 

velocity in the x-axis of the IMU with minimum of 500 ms between identified minima. 

Second, a temporal window relative to each minimum, ranging from 5 ms post minima to 

45 ms post minima was searched for a resultant acceleration > 50 m s-2. If this condition 

was satisfied then this peak was set to be ICIMU [40]–[42]. Identification of TOIMU was 

performed by searching a specific temporal window beginning 100 ms after ICIMU and 

ending at the half-width of the estimated stride time. In this window TOIMU was either 

identified as the local maxima of vertical acceleration or the first instance that vertical 

acceleration was > 3g [40], [128]. Identification of gait events with foot-shoe normal 

force data utilized a 5% BW cutoff; the first instance of force > 5% BW was identified as 

IC, and TO was identified as the last instance of force <5% BW. We then removed foot 

contacts that could not be matched to the IMU and force sensing insole measures. If 

ICIMU was not within half contact time of the IC from the force sensing insole it was 

removed from the analysis.  

Machine Learning Methods 

 We utilized a BD-LSTM with 19 hidden units and a regression output. A more 

thorough description of the network architecture can be found here [151]. Input into the 

BD-LSTM were 1-second temporal windows of inertial data: 3-D accelerations, angular 

velocities, and their respective resultants, from three anatomical locations (dorsum of 

both feet, and the waistband at approximately the sacrum). Output from the BD-LSTM 
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were 1-second intervals of estimated GRF data. The algorithm was evaluated with a 

Leave One Out Cross Validation (LOOCV) with 12 participants in the training data and 1 

participant in the test data, repeated for each participant. The estimated force data were 

then filtered with a 2nd order low-pass zero-lag Butterworth filter (fc = 15 Hz). Estimated 

data tended to be noisier than the input GRF waveforms. This was accounted for with a 

lower cutoff frequency in the filter. Errant estimated GRF data were removed by setting 

estimated force <5% BW to 0 BW, and by removal of false “foot-contacts” generated by 

the model that were <100 ms or > 500 ms. Foot contacts shorter than 100 ms were not 

consistent with measured foot contacts during running and foot contacts longer than 500 

ms tended to occur during periods of quiet standing (e.g. participant was at a cross walk). 

We observed that the swing phase estimation error approaches 0 as most of the errant 

data are corrected for using the steps described above. Initial contact from the machine 

learning output (ICLSTM) was identified by the first instance of force >5% BW and toe off 

(TOLSTM) was identified by the last instance of force greater than >5% BW. To be sure 

we were matching foot contact correctly during analysis, if ICLSTM was not within a half 

contact time of the measured IC, it was removed from the analysis. From the model 

output GRF waveforms, stance average GRFs, peak GRFs, impulse and average loading 

rate (ALR) were calculated. Average loading rate was calculated by identifying the 

impact peak and then averaging the force/time slope in the middle 60% of the region 

between IC and the impact peak [58].  

Root Mean Squared Error (RMSE), linear models and bias analyses were used to 

assess estimated contact time and the kinetic variables. Differences between the model 

estimated variable and measured variable waveform are presented in both linear 
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regression and Bland-Altman plots with 95% confidence intervals (CIs) or Limits of 

Agreement (LoA), respectively. Pearson correlation coefficients (r2) were calculated to 

show agreement between estimated and measured data. A strong correlation was defined 

as r2 ≥ 0.8, a moderate correlation as 0.5 ≤ r2 ≤ 0.8 and a weak correlation as 0.3 ≤ r2 ≤ 

0.5.  

 
Figure 7.1: Outlined course each participant ran. It is clear there is error in the GPS, 

specifically at the beginning of the course. This may have been due to the number of 

buildings and the chosen GPS technology.  
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Results 

There were 90,537 foot strikes measured with the force sensing insoles. Using the 

rules-based algorithm described above, data from the foot mounted IMU provided a total 

of 90,063 (88,364 analyzed) foot strikes, and the BD-LSTM estimated 90,579 (85,406 

analyzed) foot strikes. The average pace for the 5 mile course (Figure 7.1) was 7:56 ± 

0:40 (min:secs) (Table 7.1). Two participants ran different courses than initially planned, 

each longer than 5 miles.  

Table 7.2: Root Mean Square Error Table for IMU Gait Event Detection  

RUNNING 

VELOCITY  

(M S-1) 

Level Ground Decline Incline 

IC (s) TO (s) TC (s) IC (s) TO (s) TC (s) IC (s) TO (s) TC (s) 

2.25 0.018 ± 

0.002 

0.034 ± 

0.017 

- - - - 0.010 ± 

0.000 

0.054 ± 

0.000 

0.059 ± 

0.000 

2.50 0.017 ± 

0.003 

0.034 ± 

0.017 

0.032 ± 

0.016 

0.015 ± 

0.006 

0.046 ± 

0.012 

0.044 ± 

0.015 

0.016 ± 

0.007 

0.026 ± 

0.009 

0.020 ± 

0.012 

2.75 0.017 ± 

0.003 

0.028 ± 

0.008 

0.030 ± 

0.011 

0.019 ± 

0.006 

0.033 ± 

0.013 

0.032 ± 

0.014 

0.015 ± 

0.006 

0.022 ± 

0.008 

0.023 ± 

0.009 

3.00 0.019 ± 

0.005 

0.028 ± 

0.009 

0.027 ± 

0.009 

0.018 ± 

0.006 

0.034 ± 

0.011 

0.032 ± 

0.007 

0.017 ± 

0.006 

0.027 ± 

0.009 

0.027 ± 

0.011 

3.25 0.019 ± 

0.005 

0.027 ± 

0.009 

0.026 ± 

0.009 

0.018 ± 

0.005 

0.025 ± 

0.009 

0.024 ± 

0.010 

0.017 ± 

0.005 

0.024 ± 

0.007 

0.027 ± 

0.010 

3.50 0.018 ± 

0.004 

0.024 ± 

0.006 

0.025 ± 

0.009 

0.019 ± 

0.007 

0.028 ± 

0.008 

0.026 ± 

0.010 

0.017 ± 

0.006 

0.026 ± 

0.008 

0.026 ± 

0.011 

3.75 0.018 ± 

0.004 

0.025 ± 

0.009 

0.025 ± 

0.011 

0.019 ± 

0.005 

0.027 ± 

0.012 

0.027 ± 

0.010 

0.020 ± 

0.005 

0.025 ± 

0.009 

0.022 ± 

0.010 

4.00 0.020 ± 

0.005 

0.028 ± 

0.011 

0.028 ± 

0.012 

0.022 ± 

0.011 

0.025 ± 

0.009 

0.029 ± 

0.011 

0.020 ± 

0.006 

0.024 ± 

0.011 

0.021 ± 

0.010 

4.25 0.020 ± 

0.007 

0.028 ± 

0.014 

0.029 ± 

0.012 

0.017 ± 

0.011 

0.025 ± 

0.011 

0.025 ± 

0.014 

0.019 ± 

0.007 

0.020 ± 

0.009 

0.026 ± 

0.011 

4.50 0.019 ± 

0.008 

0.026 ± 

0.013 

0.033 ± 

0.014 

0.011 ± 

0.007 

0.035 ± 

0.008 

0.029 ± 

0.012 

- - - 

4.75 0.018 ± 

0.000 

0.042 ± 

0.000 

0.036 ± 

0.000 

- - - - - - 

5.00 0.021 ± 

0.000 

0.026 ± 

0.025 

0.033 ± 

0.022 

0.017 ± 

0.000 

0.010 ± 

0.000 

0.024 ± 

0.000 

- - - 

5.25 0.051 ± 

0.000 

0.045 ± 

0.000 

0.066 ± 

0.000 

- - - - - - 
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Results are presented with the minima and the maxima difference or RMSE for 

each variable. Specific RMSEs for estimated variables across velocities and grades can 

be found in Tables 7.2-7.6. Pearson correlation coefficients are presented as well as the 

slope of the regression line. Bland-Altman plots show mean difference in the estimated 

and measured variable with the 95% Limits of Agreement (LoA) (Figures 7.3 – 7.4 and 

7.7-7.10). Each marker in these figures represents a minimum of 10 footfalls for each 

velocity and grade (positive, negative, and level ground).  

Table 7.3: RMSE from BD-LSTM Output  

RUNNING 

VELOCITY 

(M S-1) 

Initial Contact Toe Off Contact Time 

Level 

Ground 
Decline Incline 

Level 

Ground 
Decline Incline 

Level 

Ground 
Decline Incline 

2.25 0.020 ± 

0.014 
- 

0.023 ± 

0.006 

0.030 ± 

0.019 
- 

0.025 ± 

0.012 

0.038 ± 

0.022 
- 

0.025 ± 

0.003 

2.50 0.021 ± 

0.006 

0.039 ± 

0.000 

0.025 ± 

0.008 

0.030 ± 

0.012 

0.060 ± 

0.000 

0.030 ± 

0.015 

0.033 ± 

0.017 

0.047 ± 

0.000 

0.027 ± 

0.006 

2.75 0.020 ± 

0.006 

0.021 ± 

0.014 

0.019 ± 

0.005 

0.024 ± 

0.010 

0.023 ± 

0.005 

0.024 ± 

0.009 

0.028 ± 

0.013 

0.022 ± 

0.005 

0.027 ± 

0.012 

3.00 0.020 ± 

0.006 

0.019 ± 

0.008 

0.019 ± 

0.005 

0.022 ± 

0.009 

0.021 ± 

0.006 

0.022 ± 

0.008 

0.027 ± 

0.014 

0.024 ± 

0.012 

0.026 ± 

0.011 

3.25 0.020 ± 

0.007 

0.018 ± 

0.008 

0.019 ± 

0.006 

0.022 ± 

0.009 

0.025 ± 

0.006 

0.020 ± 

0.007 

0.027 ± 

0.015 

0.027 ± 

0.012 

0.024 ± 

0.009 

3.50 0.021 ± 

0.007 

0.021 ± 

0.008 

0.018 ± 

0.006 

0.023 ± 

0.009 

0.024 ± 

0.009 

0.021 ± 

0.009 

0.029 ± 

0.016 

0.027 ± 

0.012 

0.027 ± 

0.011 

3.75 0.021 ± 

0.010 

0.023 ± 

0.011 

0.016 ± 

0.009 

0.024 ± 

0.009 

0.029 ± 

0.014 

0.016 ± 

0.005 

0.030 ± 

0.015 

0.035 ± 

0.017 

0.021 ± 

0.007 

4.00 0.021 ± 

0.009 

0.024 ± 

0.011 

0.018 ± 

0.010 

0.026 ± 

0.011 

0.032 ± 

0.011 

0.019 ± 

0.008 

0.034 ± 

0.016 

0.039 ± 

0.017 

0.026 ± 

0.009 

4.25 0.021 ± 

0.009 

0.024 ± 

0.010 

0.023 ± 

0.011 

0.027 ± 

0.013 

0.030 ± 

0.010 

0.014 ± 

0.002 

0.034 ± 

0.018 

0.039 ± 

0.017 

0.021 ± 

0.004 

4.50 0.019 ± 

0.005 

0.022 ± 

0.010 
- 

0.029 ± 

0.007 

0.043 ± 

0.024 
- 

0.039 ± 

0.011 

0.051 ± 

0.019 
- 

4.75 0.022 ± 

0.000 
- - 

0.026 ± 

0.000 
- - 

0.039 ± 

0.000 
- - 

5.00 0.025 ± 

0.007 
- - 

0.025 ± 

0.009 
- - 

0.040 ± 

0.010 
- - 

5.25 0.029 ± 

0.000 
- - 

0.036 ± 

0.000 
- - 

0.040 ± 

0.000 
- - 

 

Gait Event and Contact Time Estimation from IMUs  

 The RMSE of the estimated ICIMU ranged from 0.017 – 0.051s for level ground 

running, 0.011 – 0.022s for decline running, and 0.015 – 0.020s for incline running 
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(Table 7.2 and Figure 7.2 Panel A). Estimation of TOIMU RMSE ranged from 0.024 – 

0.044s for level ground running, 0.024 – 0.046s for decline running, and 0.020 – 0.053s 

for incline running (Table 7.2 and Figure 7.2 Panel B). The RMSE of estimated contact 

times ranged from 0.024 – 0.066s for level ground running, 0.023 – 0.046 for decline 

running, and 0.020 – 0.059 for incline running (Table 7.2 and Figure 7.2 Panel C). Linear 

regression and the analysis of bias in the estimate can be found in (Figure 7.3). 

Table 7.4: BD-LSTM Stance Phase Ground Reaction Force 

Waveform RMSE   

RUNNING 

VELOCITY 

(M S-1) 

Level Ground 

(BW) 
Incline (BW) Decline (BW) 

2.25 0.315 ± 0.102 - 0.253 ± 0.081 

2.50 0.313 ± 0.066 0.300 ± 0.000 0.265 ± 0.058 

2.75 0.304 ± 0.057 0.332 ± 0.004 0.268 ± 0.067 

3.00 0.294 ± 0.065 0.292 ± 0.082 0.272 ± 0.073 

3.25 0.289 ± 0.059 0.321 ± 0.035 0.277 ± 0.065 

3.50 0.299 ± 0.070 0.354 ± 0.070 0.274 ± 0.066 

3.75 0.310 ± 0.072 0.389 ± 0.120 0.229 ± 0.036 

4.00 0.339 ± 0.085 0.391 ± 0.165 0.309 ± 0.082 

4.25 0.358 ± 0.115 0.394 ± 0.172 0.269 ± 0.007 

4.50 0.397 ± 0.180 0.576 ± 0.371 - 

4.75 0.376 ± 0.000 - - 

5.00 0.427 ± 0.010 - - 

5.25 0.635 ± 0.000 - - 

 

  Stride frequency was observed to change across velocities and minimally with 

grades. Stride frequency ranged between 72.460- 91.681 strides min-1 for level running, 

between 79.624 – 86.299 strides min-1 for decline running, and from 76.395 – 87.016 

strides min-1 for incline running (Figure 7.4). Measured stance average GRFs ranged 

from 1.291 – 1.515 BW for level ground running, from 1.294 – 1.590 BW for decline 

running, and from 1.253 – 1.356 BW for incline running (Figure 7.6 Panel A). Peak 

GRFs ranged from 2.253 to 2.66 BW for during level ground running, from 2.168 to 
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2.845 BW for decline running, and from 2.187 – 2.367 BW for incline running (Figure 

7.6 Panel B). Impulse during stance phase ranged from 0.333 – 0.398 BW*s for level 

ground running, from 0.340 – 0.403 BW*s for decline running, and from 0.342 – 0.370 

BW*s for incline running (Figure 7.6 Panel C). Measured ALR ranged from 31.919 – 

58.307 BW s-1 for level ground running, from 38.220 – 57.359 BW s-1 for decline 

running, and from 29.969 – 48.234 BW s-1 for incline running (Figure 7.6 Panel D). 

BD-LSTM Gait Event and Contact Time   

 The RMSE of the estimation of ICLSTM ranged from 0.019 – 0.029 s for level 

ground, from 0.018 – 0.039 s for decline running, and from from 0.016 – 0.025 s for 

incline running (Table 7.3). Estimation of TOLSTM ranged from 0.021 – 0.036 s for level 

ground running, from 0.021 – 0.059 s for decline running, and from 0.014 – 0.030 s for 

incline running (Table 7.3). Contact time estimation ranged from 0.024 – 0.066 s for level 

ground, from 0.023 – 0.046 s for decline running, and from 0.020 – 0.059 s for incline 

running (Table 7.3 and Figure 7.4).  

Kinetic Variables from Machine Learning Output 

 Stance phase GRF whole waveform RMSE ranged from 0.298 BW to 0.635 BW 

across all running velocities and grades (Table 7.4). Stance average GRF RMSEs ranged 

from 0.113 – 0.313 BW for level ground running, from 0.112 – 0.337 BW for decline 

running, and from 0.089 – 0.158 BW for incline running (Table 7.5 and Figure 7.7). Peak 

force RMSE ranged from 0.187 – 0.392 BW for level ground running, from 0.197 – 

0.508 BW for decline running, and from 0.114 – 0.212 BW incline running (Table 7.5 

and Figure 7.8). Impulse RMSE ranged from 0.024 – 0.066 BW*s for level ground 
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running, from 0.035 – 

0.086 BW*s for decline 

running, and from 0.022 – 

0.038 BW*s for incline 

running (Table 7.5 and 

Figure 7.9). Average 

loading rate RMSE 

ranged from 14.963 – 

34.680 Bw s-1 for level 

ground running, from 

18.346 – 45.121 BW s-1 

for decline running, and 

from 12.241 – 21.642 Bw 

s-1 for incline running 

(Table 7.5 and Figure 

7.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Gait event differences estimated from the 

foot mounted IMUs (Panels A and B). Panels C and D 

show the estimated and measured contact times.  
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TABLE 7.5: Measured Kinetic Variables from Force Insoles   

RUNNING 

VELOCITY 

(M S-1) 

Stance Average Ground Reaction Force (BW) Peak Ground Reaction Force (BW) 

Level 

Ground 

Decline Incline Level 

Ground 

Decline Incline 

2.25 1.350 ± 0.075 - 1.230 ± 0.021 2.318 ± 0.146 - 2.157 ± 0.052 

2.50 1.314 ± 0.079 1.294 ± 0.000 1.230 ± 0.021 2.253 ± 0.152 2.168 ± 0.000 2.157 ± 0.052 

2.75 1.327 ± 0.076 1.350 ± 0.084 1.277 ± 0.097 2.282 ± 0.165 2.249 ± 0.185 2.223 ± 0.203 

3.00 1.294 ± 0.081 1.316 ± 0.085 1.257 ± 0.086 2.254 ± 0.151 2.248 ± 0.187 2.195 ± 0.163 

3.25 1.291 ± 0.089 1.320 ± 0.066 1.253 ± 0.085 2.254 ± 0.154 2.279 ± 0.135 2.187 ± 0.151 

3.50 1.314 ± 0.091 1.352 ± 0.118 1.264 ± 0.084 2.298 ± 0.162 2.338 ± 0.216 2.212 ± 0.146 

3.75 1.317 ± 0.100 1.355 ± 0.133 1.280 ± 0.084 2.308 ± 0.186 2.367 ± 0.255 2.242 ± 0.156 

4.00 1.337 ± 0.109 1.375 ± 0.141 1.278 ± 0.075 2.341 ± 0.206 2.401 ± 0.268 2.236 ± 0.130 

4.25 1.338 ± 0.118 1.386 ± 0.178 1.305 ± 0.063 2.346 ± 0.230 2.431 ± 0.344 2.294 ± 0.128 

4.50 1.335 ± 0.114 1.351 ± 0.245 - 2.353 ± 0.234 2.394 ± 0.435 - 

4.75 1.457 ± 0.000 - - 2.514 ± 0.000 - - 

5.00 1.515 ± 0.150 1.590 ± 0.000 - 2.669 ± 0.260 2.846 ± 0.000 - 

5.25 1.449 ± 0.000 - - 2.505 ± 0.000 - - 

 
Impulse (BW*s) Average Loading Rate (BW s-1) 

 
Level 

Ground 

Decline Incline Level 

Ground 

Decline Incline 

2.25 0.356 ± 0.023 - 0.365 ± 0.024 40.380 ± 

8.429 

- 26.897 ± 

4.971 

2.50 0.373 ± 0.031 0.354 ± 0.000 0.365 ± 0.024 31.919 ± 

1.564 

46.045 ± 

0.000 

26.897 ± 

4.971 

2.75 0.369 ± 0.026 0.365 ± 0.024 0.370 ± 0.024 35.168 ± 

5.992 

50.658 ± 

11.145 

29.969 ± 

4.459 

3.00 0.357 ± 0.029 0.366 ± 0.026 0.361 ± 0.029 34.657 ± 

5.588 

38.220 ± 

6.578 

30.215 ± 

3.581 

3.25 0.352 ± 0.027 0.353 ± 0.024 0.354 ± 0.028 36.008 ± 

6.455 

45.744 ± 

12.826 

30.755 ± 

4.304 

3.50 0.350 ± 0.028 0.357 ± 0.028 0.353 ± 0.027 39.088 ± 

5.242 

47.238 ± 

13.109 

32.381 ± 

4.213 

3.75 0.346 ± 0.029 0.348 ± 0.029 0.348 ± 0.027 39.984 ± 

5.073 

51.401 ± 

10.231 

36.196 ± 

4.405 

4.00 0.348 ± 0.030 0.347 ± 0.029 0.342 ± 0.026 43.588 ± 

5.613 

55.461 ± 

9.529 

38.833 ± 

4.716 

4.25 0.346 ± 0.032 0.347 ± 0.036 0.342 ± 0.026 46.055 ± 

8.777 

55.107 ± 

11.352 

43.496 ± 

8.523 

4.50 0.342 ± 0.032 0.340 ± 0.041 - 47.118 ± 

6.174 

47.399 ± 

17.226 

- 

4.75 0.398 ± 0.000 - - 40.092 ± 

0.000 

- - 

5.00 0.374 ± 0.042 0.403 ± 0.000 - 57.365 ± 

14.135 

57.359 ± 

0.000 

- 

5.25 0.333 ± 0.000 - - 58.307 ± 

0.000 

- - 

 

 



 

118 

 

Table 7.6: Kinetic Variable RMSE from BD-LSTM Estimated Waveforms  

RUNNING 

VELOCITY 

(M S-1) 

Stance Average Ground Reaction Force (BW) Peak Ground Reaction Force (BW) 

LG Decline Incline LG Decline Incline 

2.25 0.160 ± 0.068 - 0.089 ± 0.013 0.222 ± 0.087 - 0.117 ± 0.042 

2.50 0.149 ± 0.063 0.191 ± 0.000 0.106 ± 0.021 0.233 ± 0.097 0.430 ± 0.000 0.115 ± 0.021 

2.75 0.153 ± 0.047 0.132 ± 0.003 0.122 ± 0.048 0.201 ± 0.091 0.218 ± 0.042 0.182 ± 0.106 

3.00 0.134 ± 0.055 0.123 ± 0.061 0.121 ± 0.049 0.187 ± 0.097 0.197 ± 0.128 0.169 ± 0.102 

3.25 0.141 ± 0.058 0.138 ± 0.068 0.118 ± 0.044 0.194 ± 0.097 0.205 ± 0.109 0.154 ± 0.089 

3.50 0.153 ± 0.070 0.185 ± 0.061 0.124 ± 0.056 0.208 ± 0.114 0.268 ± 0.126 0.163 ± 0.119 

3.75 0.162 ± 0.079 0.227 ± 0.126 0.106 ± 0.023 0.220 ± 0.129 0.351 ± 0.194 0.138 ± 0.038 

4.00 0.186 ± 0.088 0.212 ± 0.151 0.158 ± 0.059 0.255 ± 0.132 0.316 ± 0.241 0.213 ± 0.110 

4.25 0.204 ± 0.100 0.233 ± 0.159 0.139 ± 0.017 0.259 ± 0.155 0.345 ± 0.251 0.136 ± 0.031 

4.50 0.245 ± 0.171 0.337 ± 0.315 - 0.311 ± 0.261 0.508 ± 0.416 - 

4.75 0.247 ± 0.000 - - 0.392 ± 0.000 - - 

5.00 0.298 ± 0.076 - - 0.380 ± 0.252 - - 

5.25 0.313 ± 0.000 - - 0.223 ± 0.000 - - 

 
Impulse (BW*s) Average Loading Rate (BW s-1) 

 
LG Decline Incline LG Decline Incline 

2.25 0.024 ± 0.004 - 0.022 ± 0.010 19.208 ± 4.419 - 13.043 ± 2.744 

2.50 0.038 ± 0.015 0.086 ± 0.000 0.024 ± 0.011 14.963 ± 4.868 28.065 ± 0.000 12.242 ± 4.931 

2.75 0.035 ± 0.008 0.036 ± 0.006 0.030 ± 0.012 15.399 ± 4.307 24.423 ± 5.967 12.915 ± 3.642 

3.00 0.031 ± 0.011 0.035 ± 0.011 0.030 ± 0.014 16.549 ± 4.926 18.346 ± 6.540 13.225 ± 3.691 

3.25 0.031 ± 0.011 0.036 ± 0.013 0.029 ± 0.015 18.065 ± 4.870 22.735 ± 4.258 15.267 ± 4.550 

3.50 0.031 ± 0.009 0.040 ± 0.011 0.031 ± 0.011 18.830 ± 4.966 27.728 ± 5.564 15.812 ± 4.568 

3.75 0.034 ± 0.010 0.043 ± 0.011 0.032 ± 0.008 20.028 ± 4.578 30.510 ± 2.926 13.566 ± 2.308 

4.00 0.039 ± 0.012 0.037 ± 0.013 0.039 ± 0.014 22.185 ± 5.708 32.335 ±13.041 19.349 ± 9.038 

4.25 0.039 ± 0.014 0.043 ± 0.025 0.035 ± 0.009 25.270 ± 5.889 32.324 ± 

13.928 

21.642 ± 3.445 

4.50 0.047 ± 0.018 0.047 ± 0.018 - 30.374 ± 

19.786 

45.121 ± 

18.762 

- 

4.75 0.058 ± 0.000 - - 31.505 ± 0.000 - - 

5.00 0.066 ± 0.009 - - 33.656 ± 9.727 - - 

5.25 0.058 ± 0.000 - - 34.680 ± 0.000 - - 
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Discussion  

The purpose of this study was to test two specific methods for the biomechanical 

analysis of running in an unconstrained environment: 1) a heuristic algorithm for the 

estimation of foot contacts from IMU data; 2) a machine learning algorithm, BD-LSTM, 

for estimation of normal GRFs between the foot and shoe; foot contacts and discrete GRF 

variables. The specific findings of the study are summarized briefly here: 1) contact time 

with foot-mounted IMUs was estimated with an average RMSE of 0.030 s, 2) BD-LSTM 

output waveforms estimated contact times with RMSE of 0.031 s, 3) BD-LSTM output 

waveform step-by-step average for all combinations of velocities and grades had an 

RMSE of 0.33 BW per step. Throughout the discussion, it is assumed that the greater 

ranges of RMSEs, lower Pearson Correlation Coefficients and wider 95% LoA are due to 

the unconstrained running environment of this study, in comparison to running in a 

controlled laboratory environment.  

 We observed a decrease in contact time with increased running velocity, for level 

ground, incline and decline foot contacts (Figure 7.2 Panel 3). We noted minimal 

differences in measured contact times between level ground, incline, and decline (Figure 

7.2 Panel E). Comparison of stride frequencies for running velocities from 2.5 – 4.5 m s-1 

between the current study and a treadmill study showed minimal differences ranged from 

[-2.604 -4.643] strides min-1 [138]. There were negligible differences between level 

ground running, decline and incline stride frequencies (Figure 7.5). This finding is not 

surprising, as velocity has been shown to have a larger effect on stride frequency [35], 

[170]. However, we have shown that stance average GRFs, peak GRFs and ALR 

increased with running velocity (Figure 7.6), following the same trends previously 
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Figure 7.3: Estimated contact time from foot mounted IMUs. Linear regression and 

Bland-Altman plots are presented for all foot contacts (A & E), followed by level ground 

(B & F), decline (C & G) and incline foot contacts (D & H). Pearson Correlation 

Coefficients, and the slope of the regression line are presented in panels A-D. The Bland-

Altman plots present differences between the estimated and measured contact time. The 

average difference and the 95% LoA are shown in panels E-H. 
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Figure 7.4:  Estimated contact time from the BD-LSTM. Linear regression and Bland-

Altman plots are presented for all foot contacts (A & E), followed by level ground (B & 

F), decline (C & G) and incline foot contacts (D & H). Pearson Correlation Coefficients, 

and the slope of the regression line are presented in panels A-D. The Bland-Altman plots 

present differences between the estimated and measured contact time. The average 

difference and the 95% LoA are shown in panels E-H. 
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Figure 7.5: Stride Frequency measured from the force sensing insoles, across the range 

of velocities, with plotted with incline, decline and level ground. 

reported [137], [138]. The current study had measured impulses ranged from 0.333 – 

0.403 BW*s (Table 7.5), compared to another study that reported impulse across 

different velocities and grades on a treadmill ranging from 0.300 – 0.340 BW*s [45]. The 

ranges of ALR in our study (31.919 – 58.307 BW s-1) were similar to previous work 

(30.100 – 64.700 BW s-1) across a range of velocities and grades [45]. Differences in 

ALR during decline running showed an increase of 9.298 BW s-1, and decrease of 2.048 

BW s-1 during incline running (Figure 7.6), which is similar to values reported previously 

[35].  

 Our approach to estimating gait events used both acceleration and angular 

velocity data, which diverges from previous work, as most studies have made use of only 

one type of data, either accelerations or angular velocities [21], [40]–[42], [126], [147], 

[171], [172]. Differences between ICIMU and measured IC in the current study occurred in 

the expected range (-0.020- 0.020s), due to the iterative corrections algorithm used 



 

123 

 

(Figure 7.2 Panel A). A previous study in a controlled laboratory environment reported 

identification of ICIMU across a small range of velocities (8 – 11 km h-1), with a range of 

RMSE 0.004 – 0.008 s [42]. This is a smaller average RMSE than our study across a 

range of velocities, and grades (RMSE range 0.011 - 0.051 s). The same study reported a 

larger RMSE range for identification of TOIMU: 0.008 – 0.011 s, than ICIMU from their 

work [42], while our study presented TOIMU RMSE range from 0.020 - 0.053 s. Machine 

learning estimation of gait events allows for flexibility in the identification of ICLSTM and 

TOLSTM instead of relying on specific heuristics, as presented above. We have shown 

minimal differences between the IMU estimated contact time and the BD-LSTM 

estimated contact time; RMSE ranges for ICIMU, 0.011 – 0.051 s, compared to ICLSTM, 

0.016 - 0.039 s. There was a larger RMSE in the lower bound of ICLSTM, but a narrower 

range of RMSEs across the range of running velocities. Estimation of TOIMU had an 

RMSE range of 0.020 - 0.053 s, while TOLSTM RMSE was 0.014 - 0.059 s (Tables 7.2 

and 7.3). The estimation of TO with inertial sensors has shown more variability than 

estimation of IC in many different studies, including the current study [40]–[42], [48].  

Contact time estimated from both the foot mounted IMUs and the BD-LSTM 

decreased with increased running velocity (Figures 7.3 and 7.4). Contact time estimation 

from foot mounted IMUs in this study had an RMSE from 0.020 – 0.066 s. Contact time 

estimated from the BD-LSTMs had an RMSE that ranged from 0.021- 0.040 s, an 

improvement over the IMU estimated contact time. Foot contact durations for IMU 

estimates had an r2 = 0.460, and the BD-LSTM estimated foot contact durations had an r2 

= 0.524 (Figures 7.3 Panel E, and Figure 7.4 Panel E). Despite better agreement in the 

output from the BD-LSTM, there was more bias in the estimation of contact time from 
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the BD-LSTM compared to the IMU estimated contact time, (Level Ground: 0.010s vs. 

0.005 s), and this trend continued with the different grade conditions (Figures 7.3 and 7.4 

Panels E - F). Another study reported an r2 = 0.665 for estimated contact times from a 

Quantile Regression Forest, while the current study presented an r2 = 0.524 across all foot 

contacts [43]. For external comparison, the our model showed a reduced bias in the 

estimations of contact time compared to [40]. They reported an offset of -0.016s with 

95% LoA [-0.058 0.027 s], while the current model resulted in an offset of 0.005 s with 

95% LoA [–0.035 0.044 s] across all IMU estimated foot contacts, and an offset of 0.010 

s with 95% LoA [–0.025 0.044 s] across all BD-LSTM estimated foot contacts. Our 

approach resulted in narrower limits of agreement for both the IMU and BD-LSTM 

estimated contact times. The previous study used raw data for analysis, compared to the 

use of averages of each combination of velocity and grade presented in this work. 

 The accuracy in the estimation of GRF waveforms during stance phase using the 

BD-LSTM varied across running velocities. Level ground running had the largest RMSE 

range (0.288 – 0.635 BW), compared to decline running (0.291 – 0.576 BW) and incline 

running (0.229 – 0.309 BW). It should be noted however, that level ground running also 

had the largest range of velocities (Table 7.3). We observed that the BD-LSTM 

underestimated the GRF across the full range of velocities and grades. Stance phase 

RMSE ranged from 0.229 BW to 0.635 BW for all velocities and grades, compared to 

previously estimated stance phase RMSE from 0.12 to 0.20 BW derived from kinetic 

waveforms estimated from a machine learning algorithm for treadmill running at 

different velocities and inclinations [45].  
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Stance average forces mirrored the estimation of the whole waveform errors. 

Correlation of stance average GRFs reported in the previous chapter was r2 = 0.408 

across running velocities. However, the current analysis yielded a much lower r2 = 0.105. 

The current study had 95% LoA [-0.332 0.105] BW and a mean difference of -0.113 BW 

for all foot contacts (Figure 7.7). This is slightly more bias than reported in the previous 

chapter (mean difference = -0.092 BW). For external comparison, an LSTM was 

developed for the estimation of stance average GRFs reported an RMSE between 0.340 

and 0.630 BW [47], while the current study reported a stance average GRF RMSE 

between 0.089 – 0.313 BW. 

Estimated peak force had similar patterns to the estimated stance average GRF 

(Figure 7.8). The correlation of peak force reported in the previous chapter was r2 = 0.614 

for level ground steady state running velocities, while the current work resulted in an r2 = 

0.332 across all foot contacts, with worse performance in the estimation of peak force 

during incline running foot contacts (r2 =0.264). Previous work reported a moderate 

correlation between the estimated and measured peak GRFs, from data collected on a 

force instrumented treadmill (r2 = 0.665) [43]. For further external comparison, a BD-

LSTM that utilized only foot contact information from a single sensor on the sacrum 

resulted in an r2 = 0.62, with 95% LoA [-0.17 0.18] BW and a bias of 0.01 BW. In 

another study, the 95% LoA ranged from [-0.503 0.220] BW with a bias of -0.142 BW 

[47]. The major difference between the previous work and ours was that they estimated 

single stance phase vertical GRFs on a treadmill, while we estimated entire waveforms in 

a free running environment, which is inherently more variable than in the controlled 

laboratory setting. 
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Impulse had the best performance of the calculated discrete kinetic variables from 

the estimated GRF waveform, as it was the least effected by underestimation of the force 

waveform magnitude. Linear regression showed that estimated and measured impulse 

were moderately correlated, r2 = 0.571 for all foot contacts (Figure 7.9 Panel A). Impulse 

was underestimated by 0.040 BW*s for all foot contacts, which equates to approximately 

6 - 8% error in the estimation of impulse across the range of locomotion velocities and 

grades. More precise estimation of contact time from the BD-LSTM increased the 

accuracy in the calculation of impulse. In the previous chapter, estimated impulse was 

weakly correlated with the measured impulse, r2 = 0.385, with a bias of 0.007 BW*s and 

95% LoA [-0.051 0.065] BW*s, while for the current study we observed an r2= 0.571, a 

bias of -0.020 BW*s and 95% LoA [-0.060 0.021] BW*s. A previous study estimated 

impulse with a mean absolute error of approximately 0.030 BW*s across velocities and 

grades running on a treadmill [45], compared to the current study with RMSE across 

running velocities and grades ranging from 0.022 to 0.086 BW*s. The RMSEs for 

impulse in the present study tended to be larger for decline running compared to level 

ground and incline running, due to the more pronounced impact peak observed in that 

condition. 

Estimated ALR was weakly correlated with measured ALR, with r2 = 0.160 for 

level ground running, r2 = 0.210 for decline running, and r2 = 0.492 for incline running. 

In comparison, from Chapter VI, correlation between the estimated and measured ALR 

during level ground running on a track surface yielded an r2 = 0.614. Estimated ALR was 

more accurate when there were more footfalls available in the waveform (e.g., a longer 

temporal input). For comparison, in another study using data collected in a laboratory 
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environment across a range of velocities, loading rate was moderately correlated to 

measured loading rate, with an r2 = 0.57, a bias of -2.9 BW s-1 95% and LoA [-16 10] 

BW s-1
 [47], while the current study presents a 95% LoA [34.002 7.917] BW s-1 with a 

bias of -13.042 BW s-1. Estimated ALR has been reported to have larger percent errors 

than other estimated kinetic variables [45]. In the present study, this may be due to the 

inherent differences in loading rate between decline, incline, and level running. The ALR 

is typically much larger for decline running than it is for incline or level ground running 

[35].  

There are various limitations in the collection of running data outside of the 

laboratory, some of which have been highlighted above. There were two corrections 

made to the force data in this study. The first of these was an iterative corrections 

algorithm to resolve differences between the internal clocks of the IMU and the force 

sensing insoles. Second, throughout the study, approximately 500 footfalls were observed 

to have a drifting baseline. The drifting baseline may have been a result of the force 

sensing insole moving between the foot and the shoe during the highly dynamic running 

activities being tested. There was also a small error in the synchronization of GPS data to 

IMU and GRF data. Our protocol involved synchronization of the data by matching the 

sudden increase in velocity measured by the GPS to the beginning of the run, and the 

periods in which the runner had minimal velocity (e.g., while waiting at cross walks). 

This protocol greatly improved our data analysis capacity, but unfortunately there did 

remain a slight offset in the GPS data, for each footfall. This can be rectified by the use of 

on-board GPS with the IMUs or force sensing insoles, which will lead the to the GPS 

being time synced with either the IMU or the GPS data. 
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The BD-LSTM shows great promise in its ability to estimate running GRF 

waveforms. However, the algorithm appears to have limited transferability to a novel 

participant, as evidenced by the inferior performance in the estimation of kinetic 

variables, especially at faster running velocities (due to the limited data available for 

model input at higher running velocities). Performance might be improved upon by the 

addition of more data at faster running velocities.  

 In conclusion, while this study has limitations in its transferability to 

biomechanical analysis of running in the real world, it is the first study to our knowledge 

to make kinetic measures during an uncontrolled run outside of the laboratory. Further, 

this is the first study to estimate IMU contact times and validate them against a kinetic 

standard, as well as estimate kinetic waveforms via machine learning. We have shown 

that the estimation of gait events and contact time using IMU data matches the estimation 

of a machine learning algorithm. Future studies focusing on building models for training 

load, single participant machine learning models, and the inclusion of GPS data into the 

input of the machine learning algorithm may reduce the underestimations of the stance 

phase GRFs at faster running velocities. 
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Figure 7.6: 

Kinetic 

variables across 

the range of 

running 

velocities, with 

level ground, 

decline and 

incline foot 

contacts 

shown.   
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Figure 7.7: Stance Average GRF. Linear regression and Bland-Altman plots are 

presented for all foot contacts (A & E), followed by level ground (B & F), decline (C & 

G) and incline foot contacts (D & H). Pearson Correlation Coefficients and the slope of 

the regression line are presented in panels A-D. The Bland-Altman plots present 

differences between the estimated and measured stance average GRF. The average 

difference and the 95% LoA are shown in panels E-H. 
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Figure 7.8: Peak Force. Linear regression and Bland-Altman plots are presented for all 

foot contacts (A & E), followed by level ground (B & F), decline (C & G) and incline 

foot contacts (D & H). Pearson Correlation Coefficients and the slope of the regression 

line are presented in panels A-D. The Bland-Altman plots present differences between 

the estimated and measured stance average GRF. The average difference and the 95% 

LoA are shown in panels E-H. 
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Figure 7.9: Impulse. Linear regression and Bland-Altman plots are presented for all foot 

contacts (A & E), followed by level ground (B & F), decline (C & G) and incline foot 

contacts (D & H). Pearson Correlation Coefficients and the slope of the regression line 

are presented in panels A-D. The Bland-Altman plots present differences between the 

estimated and measured stance average GRF. The average difference and the 95% LoA 

are shown in panels E-H. 
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Figure 7.10: Average Loading Rate. Linear regression and Bland-Altman plots are 

presented for all foot contacts (A & E), followed by level ground (B & F), decline (C & 

G) and incline foot contacts (D & H). Pearson Correlation Coefficients and the slope of 

the regression line are presented in panels A-D. The Bland-Altman plots present 

differences between the estimated and measured stance average GRF. The average 

difference and the 95% LoA are shown in panels E-H. 
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CHAPTER VIII 

CONCLUSION  

Summary of Results and Findings 

This dissertation set out to develop validated methodologies for the identification 

of gait events and estimation of GRF waveforms from wearable sensors across a range of 

locomotion modes and running velocities from data collected outside of the laboratory. 

Motivation for this work was the potential of wearable sensors and machine learning to 

explore whole new areas of gait biomechanics outside of the laboratory. We first 

validated a supervised machine learning model for the identification of features occurring 

prior to gait events from motion capture data collected on a treadmill (Chapter III). Then 

an unsupervised machine learning model and a heuristic algorithm were implemented 

with inertial and GRF data collected outside of the laboratory for feature identification 

prior to gait events (Chapter IV). The dissertation then shifted to identification of gait 

events and estimation of GRF waveforms during running performance in a semi-

uncontrolled and uncontrolled environment. In Chapter V, we developed an algorithm for 

the identification of gait events in a semi-uncontrolled environment from IMUs on the 

foot and on the sacrum and validated the results against force sensing insoles. In Chapter 

VI we implemented an LSTM for the estimation of GRF waveforms. We were able to 

estimate gait events, contact time, and calculated discrete GRF variables form the output 

waveform. Finally, in Chapter VII we applied the techniques developed in the previous 

chapters to estimate gait events from the IMUs with heuristic rules, and estimate GRF 

waveforms from data collected in a free running environment.  
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 Chapter III demonstrated an in-laboratory validation of a supervised BP-AR-

HMM for the identification of consistent features prior to gait events across a number of 

steady state walking and running velocities as well as the dynamic transitions between 

them. We have shown the feature output of the BP-AR-HMM can be used to identify 

when locomotion transitions may occur. We utilized minimal sensor data from an 

idealized accelerometer for the identification of gait events prior to their occurrence. The 

use of minimally sampled data would greatly reduce the computational load for 

identification of features prior to gait events collected over long periods time. This is a 

crucial aspect of this work, as minimizing the computational load will increase the battery 

life of an assistive device. The success of this algorithm and the methods developed are a 

solid foundation for translation of this work outside of the laboratory.  

 Chapter IV demonstrated the efficacy of feature identification prior to gait events 

on an outdoor course with both a heuristic and an unsupervised machine learning 

algorithm. Two major methodologies were developed in this chapter, first the 

introduction of a heuristic algorithm to identify features prior to a gait event, and the 

collection of data outside of the laboratory with naturally occurring transitions between 

locomotion modes. This work was based on the input of a single stream of 25 Hz and 100 

Hz angular velocity data across locomotion modes and transitions between. These models 

were at least as accurate as previous methodologies, while using minimally sampled data 

from a single source. We believe this work could be the basis for a near real-time system 

for participant independent identification of gait events across locomotion modes and 

velocities with a heuristic or an unsupervised machine learning algorithm.  
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 Chapter V validated identification of IC and TO during running gait. The 

methodologies from Chapter IV were applied to the sports performance setting, as we 

implemented and synthesized ideas from the previous chapters for the validation of the 

identification of gait events and contact times from IMUs and compared the results to the 

standard of a force insole. We have shown the use of foot mounted IMUs for 

identification of foot contacts is superior to that of the sacral mounted IMUs. Results 

from this study suggest we will be able to estimate gait events from data collected in a 

semi-uncontrolled running environment across a range of locomotion velocities and 

participant skill levels.  

 Chapter VI detailed the use of a machine learning algorithm for the estimation of 

GRF waveforms. The data presented from this study were outputs from a LOOCV, to 

provide a conservative result of this methodology. The estimated GRF waveform for the 

calculation of contact time was strongly correlated to the measured contact times. The 

calculated discrete variables generally matched the trends in the measured data with a 

bias for underestimation of the variables. The analysis of running performance in a semi-

uncontrolled environment provided a strong enough basis for the application of this work 

into a real-world environment.  

 Chapter VII describes the collection and analysis of gait events and GRF variables 

while running in a free running environment. The gait event detection algorithm was 

modified slightly to include features from the angular velocity data for the identification 

of pre-IC, from Chapter IV. We evaluated multiple temporal windows durations for the 

estimation of GRF waveforms and identified a 1 second window. Estimated contact times 

from the BD-LSTM were similar to those estimated from the IMUs on both feet. There 
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was significant underestimation of GRF waveforms. The results of this study provide 

insight into the measurement and analysis of GRF waveforms during running 

performance in an uncontrolled environment.  

 In summary, the methods and results of these studies show the potential of 

wearable sensors and machine learning for the analysis of biomechanics of individuals 

outside of the laboratory. We have shown the accuracy of these models for the estimation 

of features prior to gait events, using data from a single sensor on the foot (Chapters III 

and IV) both in an out of the laboratory environment. We have identified gait events and 

estimated ground reaction forces in both a semi-uncontrolled and uncontrolled 

environment (Chapters IV, V, VI and VII). Features for prior knowledge of gait events 

were found to be crucial in Chapter VII during running in an uncontrolled environment. 

These methods can be used for the identification of gait events with minimal sensor data 

in assistive devices or for the monitoring of training load for runners with wearable 

sensors.  

 

Limitations 

One of the most significant limitations of this work is that all the calculations and 

estimations were made offline. Application of these algorithms for near real-time 

feedback would be advantageous for analysis of biomechanical data in the field (e.g. for 

clinicians, coaches and athletes). Specifically, the running data collected would be ideal 

for feedback for participants. Furthermore, models developed in this dissertation are not 

directly transferable to real world applications. However, they build a framework for the 

collection of biomechanical analysis outside of the laboratory with wearable sensors.  
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Errors in the synchronization of the sensors included: drift between the IMU clock 

and the force sensing insole clock, these led to larger differences in the estimation of gait 

events. These errors resulted in zeros being added or removed during swing the phase 

from the force sensing insole data. These errors were present specifically in Chapters IV 

and V as there were no adjustments made for the initial gait event detection algorithms. 

We did not want to artificially decrease the error in the results of this work by removing 

data due to imperfect synchronization or adjusting the data for the identification of gait 

events, therefore we did not match the ICs, but maintained a maximum difference of 

0.002s. This in turn led to small cumulative errors between the measured and estimated 

gait events.  

One limitation unique to Chapter III is that data from motion capture markers 

were not directly comparable to measured acceleration from an IMU. The calculated 

accelerations were similar to the output of a Kalman filter with a zero-velocity update 

with gravity removed from the vertical direction of the filtered acceleration signal. 

Therefore, the models developed here are not directly applicable to any clinical work. 

However, implementation of the BP-AR-HMM for the identification of features prior to 

gait events were successful and therefore used in the next chapter.  

One limitations of Chapter IV is that we did not complete any real-time testing for 

gait event detection, or the implementation of these algorithms into a control system. This 

limits the clinical applicability of the work, as it remains unknown how real-time 

implementation would affect the performance of the BP-AR-HMM. Additionally, these 

data were collected on a set course and not in an unconstrained environment, therefore, 

we do not know how applicable these models are for real world biomechanical analysis.  
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A limitation of Chapter V is that we chose to include a single participant’s data 

that heavily influenced the analysis. Removal of this participant from the data set reduced 

the bias of the estimation of contact time from an overestimation of 4 ms to 1 ms. The 

algorithms in this chapter are not yet validated in a real-world training scenario. As 

participants were only asked to run at set paces on a level ground track, there were no 

changes in grade or terrain, which may affect accuracy of the identification of gait events. 

Additionally, there was a discrepancy between the internal clocks of the IMUs and the 

force sensing insoles. We chose not to adjust these discrepancies as we didn’t want to 

artificially lower the differences the estimated and measured gait events. Therefore, the 

identification of gait events in practice may perform better than indicated in this work. 

Limitations of Chapters VI and VII were in part due to the limited transferability of the 

machine learning algorithms for use in training or clinical scenarios. There is yet too 

much error for participant independent algorithms for the estimation of GRF waveforms 

to be applied in a real-world scenario. The models were biased to running velocities < 4.0 

m s-1, therefore at faster running velocities, the BD-LSTM underestimated the GRF 

waveforms at these velocities. For the most accurate estimations of GRF waveforms, we 

would recommended at this point that the participant’s own data be included in the 

training of the algorithm or that participant-specific algorithms should be developed for 

the estimation of GRF waveforms. Additionally, approximately 500 footfalls were 

adjusted due to a drifting baseline. Improvements in the technology for the measurement 

of GRF data between the foot and the shoe are needed, specifically with an increase in 

sampling frequency for more effective measurement of loading rates, as well as more 

accurate measurement of foot contacts. Finally, there were slight errors in the 
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synchronization of the GPS to IMU and force data. This could be rectified with the 

utilization of an embedded GPS with the IMU.  

 

Recommendations for Future Work 

This dissertation provides a platform upon which to implement algorithms for the 

identification of gait events in an assistive device with minimal sensor data, and the 

application of these methods for the creation of a training load quantification algorithm 

for running coaches and athletes through the estimation of GRF waveforms. Additionally, 

we have laid the foundation for methods of data collection outside of the laboratory, with 

force sensing insoles, IMUs and GPS.  

Future work could explore the use of these algorithms in an onboard controller for 

an assistive device, first in a controlled environment such as the laboratory but also in an 

uncontrolled environment with the user freely moving with the device. The heuristic 

algorithm is simple to implement for identification of gait events for long term 

monitoring of clinical populations. This would be a necessary step to understand how 

those who are using assistive devices are interacting with them outside of the clinic. If we 

understand how the patient is moving throughout their daily life, targeted interventions 

from the clinic may help them interact more efficiently with their environment. 

From the second half of the dissertation, models for the quantification of training 

load could easily be derived from these data and improved upon with the addition of 

more data and the inclusion of more participants. Other work could explore methods for 

the implementation of participant-specific models, instead of the subject independent 

models developed in this work. There is evidence, yet unpublished, from similar work on 
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the treadmill in the laboratory showing the importance of development of participant-

specific models for the quantification of training load. The use of GPS and IMU data for 

input into a machine learning algorithm may lead to better results for estimation of 

ground reaction force waveforms, as velocity has been shown to have a greater effect on 

discrete ground reaction force waveform calculations. There is a need to understand how 

novice runners perform and learn to run consistently. Long term monitoring of novice 

runners would inform the creation of new models for running feedback. These models of 

novice runners could be crucial in understanding the development of running related 

injuries. 

Future work could also explore the differences between running in the laboratory 

and running in a real-world environment with the force loading insoles and provide 

corrections to the measured force data to match exactly what we measure on the in-lab 

force instrumented treadmill. Lastly error state Kalman filters could be implemented for 

the tracking of the IMU trajectories in 3-D space, which would allow for the estimation 

of join kinematics and provide estimations of joint kinetic values with the inclusion of 

force sensor data.  
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