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DISSERTATION ABSTRACT

Connor Lennon

Doctor of Philosophy

Department of Economics

September 2022

Title: Essays in Applied Machine Learning and Causal Inference.

This dissertation represents a study of how machine learning can be

incorporated into existing econometric causal techniques, with explorations

both in the costs and benefits of making that choice. The first chapter explores

a simulated instrumental variables setting to evaluate the ease of incorporating

unmodified machine learning techniques into the ”first stage“ problem. The first

stage of two-stage least squares (2SLS) is a prediction problem—suggesting gains

from utilizing ML in 2SLS’s first stage. However, little guidance exists on when

ML helps 2SLS—or when it hurts. We investigate the implications of inserting ML

into 2SLS, decomposing the bias into three informative components. Mechanically,

ML-in-2SLS procedures face issues common to prediction and causal-inference

settings—and their interaction. Through simulation, we show linear ML methods

(e.g.post-Lasso) work “well,” while nonlinear methods (e.g.random forests, neural

nets) generate substantial bias in second-stage estimates—some exceeding the

bias of endogenous OLS. This work was performed in conjunction with professors

Edward Rubin and Glen Waddell. The chapter author wrote simulation code,

excepting the substantial portions used for table creation and to iterate over

differing methods, to evaluate and run the methods tested in this chapter, and we

iv



designed the DGP function based on those found in Belloni, Chen, Chernozhukov,

and Hansen (2012).

The second chapter is an applied use of Machine Learning to evaluate an

existing causal estimate of property value on suppression costs in the Wildfire

Economics space. Models in use currently rely on excluding class A-D wildfires

that burn fewer than 300 acres, use property values as an input and feature

differential estimates for per-acre suppression costs in the Eastern and Western

United States. However, restricting suppression cost estimates to large fires

ignores wildfires that have high per-acre costs due to aggressive initial-attack

strategies, and fires occurring in well-managed forests with fewer suppression

requirements, which may lead SCI-derived estimates of cost to be biased and

potentially be overly responsive to changes in local wealth. Using double/debiased

vision transformers, SCI parameters overestimate the impact of property value as a

contributor to suppression costs.

This dissertation includes unpublished and co-authored material.
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CHAPTER I

MACHINE LEARNING INSTRUMENTAL VARIABLES

1.1 Prelude

This work was completed in collaboration with Dr.s Edward Rubin and Glen

Waddell.

1.2 Ch.1 Introduction

Today machine learning is everywhere—from exciting applications in

image processing, linguistics, and forecasting, to obligatory sections in job-

market papers, to the increasingly common seminar question: Have you tried

machine learning? With this recent popularity, machine learning (ML) methods

are appearing in an increasingly wide range of empirical econometric applications.

Despite this excitement and frequent recommendations, the literature has little to

say regarding the appropriateness of using two-stage least squares (2SLS) with ML

methods (e.g.what are the benefits and costs of ML-augmented 2SLS with regards

to unconfoundedness, exogeneity, and strength of instruments).1

In this paper, we focus on a potentially promising application of ML

methods: curating and generating the first-stage predictions of two-stage least

squares.

The motivation behind integrating machine learning in two-stage least

squares is clear: to the extent that researchers can incorporate “better” first-stage

predictions, researchers obtain more-precise second-stage estimates. Because

1 Here, we’ve closely paraphrased Jeffrey Wooldridge’s Twitter post of 26 April 2021, where he
continues with "Even worse would be if ML becomes a de facto requirement for empirical work
in cases where its benefits are questionable—or even when ML might be harmful." In terms of
recommendation, Mullainathan and Spiess (2017) writes that “Machine learning... revolves
around prediction” and “belongs in the part of the toolbox marked ŷ rather than in the more
familiar �̂ compartment.” The authors then immediately recognize that “the first stage of a linear
instrumental variables regression is effectively prediction.”

1



most ML methods are built explicitly for prediction—they typically outperform

ordinary-least squares (OLS) at this task—using ML for first-stage predictions

seems quite natural.2 The risks of adopting out-of-the box ML methods for 2SLS-

type applications are less clear.

In this paper, we discuss several phenomena that can bias ML-based 2SLS

away from its target parameters. Some of these phenomena are implications

of the forbidden regression, which naïve implementations of ML in 2SLS are

likely to lead to—injecting predictions from a nonlinear estimator into the

first stage of 2SLS (J. Angrist & Pischke, 2009; J. D. Angrist & Krueger, 2001;

Wooldridge, 2010).3, 4 If a linear first stage adequately approximates the

2 This point has been recognized in the literature (J. Angrist & Frandsen, 2020; Belloni,
Chernozhukov, & Hansen, 2011; J. Chen, Chen, & Lewis, 2020; Chernozhukov et al., 2018; Singh,
Sahani, & Gretton, 2019; ?; ?; ?; ?) inclusive of new artificial intelligence (AI) methods (Bennett,
Kallus, & Schnabel, 2020; Hartford, Lewis, Leyton-Brown, & Taddy, 2017; Liu, Shang, & Cheng,
2020). Further, the ad hoc integration of 2SLS and ML is already appearing in applied work across
a wide range of fields—estimating labor market impacts of imprisonment (Mueller-Smith, 2015),
the effects of racial-composition shocks during the Great Migration (Derenoncourt, 2019), the
effect of expropriation on growth (D. L. Chen & Yeh, 2020), the “true” size of China’s GDP growth
(W. Chen, Chen, Hsieh, & Song, 2019), the inter-generational transmission of health (Bevis &
Villa, 2020), and the heterogeneous impacts of family size and parental labor supply (Biewen &
Kugler, 2020). In a recent working paper, J. Chen et al. (2020) also recognizes this motivation,
suggesting that the traditional OLS-based implementation of 2SLS “leaves on the table some
variation provided by the instruments that may improve precision of estimates.” If one is willing
to accept the fairly strong assumption that any function (nonlinear or linear) of valid instruments
is itself a valid instrument, J. Chen et al. (2020) provides an interesting solution to some of the
challenges involved with including ML methods in 2SLS. We do not make this assumption.

3 With valid instruments, applying OLS in the first stage of 2SLS produces predictions (x̂)
that are a linear combinations of the exogenous instruments. Thus, x̂ is itself exogenous in the
traditional 2SLS procedure. Predictions produced by nonlinear functions are not guaranteed to be
orthogonal to their residuals, generating additional bias/inconsistency in second-stage estimates.

4 Another flavor of the forbidden regression involves applying different specifications of
controls in the first and second stages. Most out-of-the-box ML methods do not offer a method
to ensure that second-stage controls are used for prediction in the ML-based first stage (and in the
correct functional form). There are ad hoc solutions to this problem—writing custom functions
that implement the ML algorithm plus a linear specification of the controls/fixed effects, or
residualizing (i.e., Frisch-Waugh-Lovell). For an example, see the fixest package in R and its
feNmlm() function, which is written to efficiently estimate maximum likelihood models with
multiple fixed-effect (i.e.large factor variables). This issue is particularly important for situations

2



underlying data-generating process (DGP), then the exclusion restriction

reduces to a simple assumption that the instruments z are uncorrelated with the

endogenous disturbance u. If one introduces nonlinearity into the first stage,

then the assumption of “no correlation” must be strengthened to conditional

mean-independence between the instruments and disturbance. This (stronger)

assumption requires more careful consideration of the structural relationships of

z, x, y.

Other issues are less common to “traditional" econometrics but become key

to understanding ML-based results. These include:

– Recovering endogeneity: If the prediction algorithm is too good, then

the first-stage predictor may entirely recover the endogenous regressor

(including both good and bad variation). With (i) a small set of valid

instruments and (ii) a linear estimator (e.g.OLS), this scenario is of less

concern. As the number of potential instruments increases and the estimator

becomes more nonlinear and flexible (a hallmark of many ML methods), we

show that this concern becomes real.

– Exclusion restrictions: ML methods are not designed to choose exclusion

restrictions. If a researcher relies on ML methods to determine a nonlinear

functional form, choose instruments, and select first-stage controls in a 2SLS

framework, then she ultimately must assume that the algorithm is capable

of settling on a valid exclusion restriction—placing a lot of trust in ML to

do something it is not typically designed to do. As J. Angrist and Frandsen

(2020) point out, nonlinear estimators generate nonlinear combinations of

where conditioning on controls/fixed effects is integral to the instruments’ exogeneity. Again, ML
methods will, in this way, expose researchers to potential pitfalls.

3



the original instruments and thereby require additional exclusion restrictions

beyond the original exclusion restriction implied by the linear combination

of the instruments. With highly flexible ML methods, the set of exclusion

restrictions is nearly infinite—the researcher must either assume that (i)

the ML algorithm will choose the appropriate exclusion restrictions or (ii)

all possible exclusion restrictions are valid (as the algorithm’s choice set is

infinite).

– Amplified bias: As we show below, the bias of second-stage estimates in

2SLS is inversely related to the variance of the first-stage predictions (x̂).

Most ML methods reduce variance in the predictions (to reduce out-of-

sample prediction performance in the canonical bias-variance tradeoff).

This variance-reduction strategy leads to inflated bias in second-stage

applications—a consideration not typical to OLS-based 2SLS applications.

We show that most ML-rooted solutions that use common ML procedures

in the first stage of 2SLS fail to improve upon standard 2SLS (i.e.using OLS in the

first stage)—and generate more bias. Two linear estimators—post-Lasso selection

and principal component analysis (PCA)—are the exceptions. Post-Lasso and

PCA perform as well, or better, than standard OLS-based 2SLS. Perhaps more

importantly, we show that highly nonlinear tree-based methods (e.g.random

forests and boosted trees) can amplify bias—providing parameter estimates

farther from truth than naïve OLS regressions that ignore endogeneity. Given

sufficient training time, naïve implementations of neural networks in 2SLS can

4



reproduce the original OLS bias—providing little to no advantage over traditional

approaches to recovering exogenous identifying variation through 2SLS. 5

Ultimately we conclude that while ML methods offer many promises for a

range of applications, most out-of-the-box ML methods are not well suited for two-

stage least squares. Moreover, applying the wrong ML method in the first stage

can actually generate more bias in parameter estimates than entirely ignoring

endogeneity.

In Section 1.3 we formalize the theoretical settings and define the

estimators. In Section 1.4 we introduce two data-generating processes—

respecting that use cases will likely differ, we detail one that is rather simple in

its construction and another that is more complex. In Section 2.6 we present the

empirical results for the discussed estimators and DGPs. Finally, in Section 1.6 we

conclude.

1.3 Models

1.3.1 The problem. Applied researchers commonly apply 2SLS to

estimate the causal effect of some x on some y in a setting where the exogeneity

of x cannot reasonably be assumed. In other words, where

y = �0 + �1x + u , (1.1)

there is concern over the potential for non-zero covariance between the variable of

interest x and the disturbance u when estimating the parameter �1.

5 This ignores the practical as well - on our resources, the simulation for neural network
frequently took several hours to complete which is considerably longer than the time it takes to
run a traditional 2sls

5



Let z denote a vector of instrumental variables, we express the first stage of

a 2SLS estimates x as a function of these instruments:

x = f (z) + " . (1.2)

In its traditional OLS-based implementation, f (z) is linear in z.

Defining the predictions from (??) as x̂ = f (z), the second stage of the 2SLS

procedure then regresses the outcome variable y on x̂,

y = �0 + �1 x̂ + w , (1.3)

to achieve an estimate for �1 in (??)—we let �̂1 be this estimate of �1. If the

instruments are valid (i.e., predictive of x and uncorrelated with u) and x̂ results

from an OLS regression, then x̂ will also be exogenous.6 The second stage of OLS-

implemented 2SLS then generates consistent estimates of �1, interpreted as the

causal effect of x on y.

So why adopt ML at all? Applications of 2SLS identify the effect of x on y

by extracting only a fraction of the “good” (exogenous) variation in x. The hope

for ML-infused 2SLS methods is that researchers can extract more of the good

variation in x—nonlinear combinations of the instruments, specifically—while still

omitting the bad variation. This desire has likely increased following Lee, McCrary,

Moreira, and Porter (2020), which argues that many traditional evaluations of

instrumental variables considerably overestimate their significance.

6 We are assuming homogeneous treatment effects, which removes the requirement of
monotonicity. For an inspection into monotonicity under heterogenous treatment effects in the
machine learned case, see E.3

6



1.3.2 Estimators. In the analysis below we examine three classes of

2SLS-motivated estimators:

Class 1: ‘Traditional’ two-stage regression methods: This set

of estimators covers the standard two-stage regression estimators in an

econometrician’s toolbox: two-stage least squares, (unbiased) split-sample IV

(J. D. Angrist & Krueger, 1995), the Fuller implementation of limited-information

maximum likelihood (LIML) (Anderson & Rubin, 1949; Fuller, 1977), and

jackknife IV (JIVE) (J. D. Angrist, Imbens, & Krueger, 1999). These methods

overlap in three important ways: they (i) employ a two-stage approach (ii) whose

first stage creates a linear combination of the instruments (iii) with no formal

variable selection.

Class 2: Machine-curated variable selections in standard 2SLS: This

second class augments the standard OLS-based version of 2SLS with variable

selection/synthesis. Specifically, these methods feature an additional procedure,

prior to the first stage, that downselects or combines z into a more parsimonious

set of variables—it is the elements of this more parsimonious expression of z

that then appear in the first stage. The rest of the 2SLS process proceeds as

usual (i.e.OLS). Importantly, while these models feature variable selection or

synthesis, they also preserve linearity in both stages—without any regularization

or penalization. Because these estimates result from linear combinations of z,

the original exclusion restriction of z passes through to the selected/synthesized

instruments.

The first of machine-curated methods is the post-Lasso procedure of

Belloni et al. (2012) that first estimates the linear relationship between x and z

(a linearized version of ??) using penalized regression. This penalized regression

7



minimizes the sum of squared error (SSE) plus a penalty proportional to the sum

of the coefficients’ magnitudes. That is, �⇥k�k, where � is the vector of coefficients

on the (standardized) instruments and � is a the shrinkage parameter chosen

by the researcher (typically via cross validation). Because each instrument’s

coefficient-based penalty changes discontinuously when moving from �i = 0,

Lasso can be used to select a set of stronger instruments (whose coefficients are

non-zero). Post-Lasso selects the instruments whose coefficients are non-zero and

then estimates standard, OLS-based 2SLS using those selected instruments.7

Principal-component analysis (PCA) offers an alternative route to

simplifying z by selecting z’s first k principal components (Pearson, 1901).

Thus, as the second machine-curated method we consider, Principal-component

analysis (PCA) applied to 2SLS (as in Ng and Bai (2009), and Winkelried and

Smith (2011), e.g.) passes this set of principal components into the first stage of

standard OLS-based 2SLS. While PCA may reduce the first stage’s interpretability,

this approach can drastically reduce the number of first-stage instruments while

retaining considerable explanatory power.

Class 3: ML-based first stages in 2SLS: Our final class of estimators

retains the general two-step framework of 2SLS but replaces the first stage with

a variety of cross-validated ML algorithms. We evaluate a meaningful subset

of machine-learning methods suitable for regression, including random forest

(Breiman, 2001; Ho, 1995), boosted trees (Breiman, 1998; Friedman, 2001,

2002; L. Mason, Baxter, Bartlett, & Frean, 1999), neural networks (Farley & Clark,

1954; McCulloch & Pitts, 1943; Turing, 1948), and Lasso (Santosa & Symes,

7 J. Angrist and Frandsen (2020) notes that this methodology may suffer from potentially
unseen pre-test bias. Because our model comes from relatively strong instruments, as with the
intuition of Zhao, Witten, and Shojaie (2020), we do not estimate de-biased Lasso models. We
therefore allow post-Lasso to serve as a representation of both.
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1986; Tibshirani, 1996).8, 9 Notably, most of these algorithms offer considerable

flexibility (e.g.nonlinearity in z) and variable selection (to varying degrees). This

class offers considerable insights into the merits of off-the-shelf ML methods’ for

machine-assisted 2SLS.

1.4 Data-generating processes

In order to examine the performance of ML in the predictive stage of

2SLS—in absolute terms and relative to traditional options—we employ two

general data-generating processes (DGPs). For reasons that will become clear

as we describe each, we refer to them as the low-complexity case and the high-

complexity case. While subjective, our intention is to provide bookends of a

sort, as the applied researcher rarely knows the extent to which her case is

complex—particularly in terms of extent of nonlinearity or the efficient number

of instruments.

1.4.1 A low-complexity case. The motivation for this case is to depict

the estimators’ performances when the DGP is simple and closely matches the

ideal scenario for OLS-based 2SLS: an endogenous regressor that is a linear

combination of a relatively small set of strong, valid instruments. For example,

we imagine this case appealing to researchers seeking to estimate the causal effect

of a variable of interest x1 on outcome y, i.e.

y = �0 + �1x1 + "y , (1.4)

8 For our purposes, the contributions of Srivastava, Hinton, Krizhevsky, Sutskever, and
Salakhutdinov (2014) (dropout), Ioffe and Szegedy (2015) (batch normalization), and Kingma
and Ba (2017) (stochastic optimization) are particularly relevant.

9 For a nice review of ML methods in applied economics—including Lasso, tree-based methods,
and neural networks—please see Storm, Baylis, and Heckelei (2019). For broader and more in-
depth coverage, see James, Witten, Hastie, and Tibshirani (2013) and Hastie, Tibshirani, and
Friedman (2009).
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but facing the challenge—omitted variables, simultaneity, etc.—that x1 is

endogenous and E
h
"y

���x1

i
, 0 prevents OLS from cleanly identifying �1 in (??).

(Note that the causal effect �1 is common across all individuals—this ensures that

differences across estimators are not due to the estimators recovering different

local average treatment effects (LATEs).)

In this low-complexity scenario, ML-based 2SLS methods are overkill:

neither variable selection, nor nonlinearity are necessary. As our results

demonstrate, ML methods can increase bias relative to 2SLS and even endogenous

OLS.

Formally, to model a scenario with a single endogenous regressor (x1) and a

small set of valid (and individually strong) instruments, we define the DGP as

"y = �2x2 + ⌘ ,

x2 = 1 + "c , and

x1 = gx(z) + "c ,

drawing special attention to the inclusion of "c as the disturbance common to

both x1 (the variable of interest) and x2 (the omitted variable). This common error

follows a standard normal distribution; ⌘ is distributed uniformly between �1 and

1.

We assume that a set of valid instruments z exists such that E
h
"y

��� z

i
= 0

and E[x1 | z] , 0 (we focus on the case where |z| = 7). We also anticipate that the

researcher has no beliefs or insights about the functional form of gx(·), as is likely

the case in practice. In the true DGP for this case, gx(z) =
P7

i=1 zi. That is, gx(·) is

linear.

10



In particular, we draw the instruments z from a multivariate normal

distribution centered at zero (i.e.E[z] = 0) with variance-covariance matrix ⌃z

where Cov(zi, z j) = 0.6|h�k| (and thus Var(zi) = 1 for each i). By implication,

x1 ⇠ N(0, Grand Sum(⌃z) + 1).

In full, then, the data represents the following system of equations:

y = �0(= 1) + �1(= 1)x1 + �2(= 1)x2 + ⌘ ,

x2 = 1 + "s ,

x1 = gx(z, "s) =
7X

i=1

zi + "s .

Importantly, the specification of the instruments in this DGP produces a

very strong first-stage with a relatively large concentration parameter Belloni et al.

(2012). Put simply, the concentration parameter µ2 describes the extent to which

the weak-instrument problem may arise within a given DGP. A higher value of

µ2 implies that 2SLS, without variable selection, will converge to the true �1 at

relatively small sample sizes.10 (We discuss this further in the high-complexity

case section below.) Consequently, the low-complexity case allows us to test

how machine-curated first stages perform when there is little to be gained from

variable selection/synthesis.

1.4.2 A high-complexity case. As our high-complexity case, we follow

the DGP developed by Belloni et al. (2012) with two extensions. This DGP allows

the researcher to customize instruments’ strength, and with many instruments.

10 In this “low-complexity" case, µ2 ⇡ n ⇥ 20.71, which exceeds the values in Belloni et al. (2012).
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Following Belloni et al. (2012), the DGP in our high-complexity case results from

y = �0 + �1x1 + "y ,

x1 = ⇡z + "v ,

where

("y, "v) ⇠ N

0
BBBBBBBBBB@
0,

2
66666666664

�2
y �y�v

�v�y �2
v

3
77777777775

1
CCCCCCCCCCA
,

z =

z1 z2 · · · z100

�
⇠ N(0, ⌃z) ,

⌃z[ j, j] = Var(z j) = �2
j = 1, 8 j 2 {1, . . . , 100} , and

⌃z[ j, k] = Cov(z j, zk) = Cor(z j, zk) = 0.6| j�k|, 8( j, k) 2 {1, . . . , 100} .

As before, the researcher’s interest is in identifying �1. However, unlike the

earlier DGP, the high-complexity case produces sets of relevant and exogenous

instruments that vary in their correlation and individual strength (i.e.⇡i).

In defining the “exponential” design of the first-stage coefficient

vector ⇡, we follow Belloni et al. (2012): ⇡ captures a “beta pattern" e⇡ =

(0.70, 0.71, 0.72, . . . , 0.799) that is then multiplied by a constant C, i.e., ⇡ = C ⇥ e⇡.

The constant C implies a value for the concentration parameter, µ2 = n⇡0⌃z⇡
�2

v
.11

Panels ??–?? (Figure ??)12 illustrates the three beta patterns that we adopt in the

‘high-complexity’ DGP—generating three subcases of this DGP. As described above,

and in greater depth in Hansen, Hausman, and Newey (2008), the concentration

11 For a proof of this statement, see Belloni et al. (2012).
12 All figures in this document are located in the appendix: see section A for figures referenced in

this chapter.
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parameter is useful for determining the behavior of IV estimators. Because we are

less interested in the case of weak instruments, we use µ2 = 180, which creates a

strong set of instruments as outlined in Belloni et al. (2012).13

Belloni et al. (2012) arrange the coefficients ⇡ in descending order

(i.e.⇡1 > ⇡2 > · · · > ⇡100). However, the definition of ⌃z implies that ‘proximate’

instruments are more correlated than ‘distant’ instruments—i.e.Cor(zi, zi+1) >

Cor(zi, zi+k) for k > 1. Thus, the DGP of Belloni et al. (2012) ensures that it is the

strongest instruments that are correlated with each other. While this feature may

be desirable in many contexts, we will remain agnostic with regard to whether

the strongest instruments are most correlated with each other or with other

instruments. However, this does require that we consider three sub-cases that each

arise from different orderings of the coefficients in ⇡:

– Randomly shuffled: After generating the coefficients, we randomly re-order

them to break the relationship between instruments’ strengths and their

covariance (⌃z).

– Descending from z1: In this subcase, as in Belloni et al. (2012), ⇡1 > ⇡2 >

· · · > ⇡100.

– Descending from z50: Here we modify Belloni et al. (2012) by defining ⇡50

as the largest coefficient: ⇡50 > ⇡51 > · · · > ⇡100 > ⇡1 > ⇡2 > · · · > ⇡49. Because

“proximate” instruments are correlated in ⌃z, this subcase implies that the

strongest instrument (z50) is very correlated both with the second-strongest

instrument (z51) and with the weakest instrument (z49).

13 It is important to select this value thoughtfully. Choosing a µ2 that is too small will simulate
a weak-instruments problem. Choosing a µ2 that is too large will yield a scenario in which all
instruments are “overpoweringly" valid, which reduces the effectiveness of selection or dimension-
reduction techniques.
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Finally, we define �2
v = ⇡0⌃z⇡ (which forces that Var(x1) = 1) and �y = 1. In

panels ??-?? of Figure ?? we illustrate the cross-instrument correlations implied

by ⌃z: in Panel ?? we show a correlation matrix among the 100 instruments,

and in Panel ?? we highlight the correlation of z1 and z50 to each of the other

100 instruments. Instruments are strongly correlated with their neighbors and

weakly correlated with non-neighbors—limiting the information accessible from

any single instrument.

1.5 Results

Now we turn to discussing the results of our simulations. Among the

simulations, we will include an “oracle model” that extracts the exogeneous

component of x1 in its entirety (perfectly removing endogeneity) and a simple OLS

model (where we entirely ignore endogeneity). While one might expect the oracle

and plain OLS models to bookend 2SLS models, our simulations demonstrate that

they do not. That is, machine learning can lead to outcomes that are even worse

than ignoring endogeneity.

In each case, we are interested in the performances of the estimators in

terms of their potential biases and the precision of estimates. Recall that these

estimators include three broad classes: (i) traditional methods (OLS-based 2SLS,

split-sample IV, LIML, and jackknife IV), (ii) machine-curated 2SLS (variable-

selection or -curation via post-Lasso and PCA), and (iii) 2SLS applications with

ML-powered predictions in their first stages (i.e.replacing first-stage OLS with

either Lasso, boosted trees, random forests, or neural networks).

1.5.1 Which hammer?. In Figure A2 we depict the distributions of

point estimates (�̂1) for a given method in given DGPs—in Panel ?? we illustrate

the low-complexity case, and in panels ??–?? we represent the high-complexity

14



cases.14 We summarize simulations by their means and standard deviations in

Table A1.

To those with use cases that resemble our “low-complexity case,” the

simulation results have a clear takeaway: PCA-based 2SLS and post-Lasso

perform well and offer very safe choices.16 Important for the practitioner: All four

nonlinear ML-in-the-first-stage methods (i.e.Lasso, boosted trees, neural networks,

and random forests) perform poorly in terms of both bias and variance. In fact,

“random-forest infused 2SLS” generates more bias in �̂1 than the OLS estimator

that entirely ignores endogeneity—it is possible for an ML-based 2SLS estimator to

amplify bias relative to plain OLS.17

In the three high-complexity cases in Table A1 (columns B–D) and in

panels ??–?? of Figure A2, LIML and Jackknife IV generate very little bias in

their estimates of �1, outperforming 2SLS. Across all three DGPs, 2SLS produces

mean estimates roughly 2.3–5.8 percent larger than the true parameter, while

the centers of LIML’s and JIVE’s distributions are within 0.4 percent of the true

parameter. Injecting random forests into the first stage, on average, produces

more biased estimates than naïve (endogenous) OLS—generating coefficient

estimates that are 32–56 percent larger than the true estimates. In short, one can

worsen endogeneity issues by using ML-based 2SLS estimators.

1.5.2 Decomposing the bias. To diagnose the sources of bias from

different methods, we show below one can decompose the wedge between �1 and

14 The target parameter �1 equals 1 throughout (indicate with a thin dashed line). Each
distribution results from 1,000 iterations of the simulation. Table A1 summarizes15 each of these
method-by-DGP combinations (i.e.14 ⇥ 4 = 56) with the mean and standard error from each.

16 LIML also performs well, but with slightly larger variance.
17 It is worth noting that the Jackknife IV estimator yields very high variance in this low-

complexity DGP, as do Neural Networks.
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�̂2SLS
1 into three components,

Wedge = �̂2SLS
1 � �1 = f

✓
�1Cov(x̂, e), Cov(x̂, u),

1
Var(x̂)

◆
, (1.5)

where f is non-decreasing with respect to each of its arguments. Each component

of the wedge offers insights into how first-stage methods differentially produce

biases—and delivers helpful intuition regarding the pitfalls that may arise in 2SLS

applications that include ML-based first stages.

To see the component parts of the bias drawing �̂2SLS
1 away from �1, suppose

again that the parameter of interest is �1—the causal effect of x on y in

y = �0 + �1x + u . (1.6)

Suppose also that x is endogenous, i.e.Cov(x, u) , 0. The 2SLS estimate of �1

comes from estimating

y = �0 + �1 x̂ + w , (1.7)

where x̂ is the first-stage-based prediction of x from some set of valid instruments

z = z1, z2, . . . , zp.

Because we estimate the second stage in (??) via OLS, the estimate for �1

can be written

�̂1
2SLS = �1 +

Cov(x̂,w)
Var(x̂)

. (1.8)
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Using (??) and (??), we can rewrite w as

w = y � (�0 + �1 x̂)

= �0 + �1x + u � �0 � �1 x̂

= �1 (x � x̂) + u

= �1e + u , (1.9)

where e is the first-stage residual—the difference between x and x̂.

Using (??) for w, we can decompose the covariance in (??) into two

components:

Cov(x̂,w) = Cov(x̂, �1e + u)

= �1Cov(x̂, e) + Cov(x̂, u) . (1.10)

If the first-stage predictions (x̂) come from OLS, then Cov(x̂, e) is

mechanically zero. The second term, Cov(x̂, u), is typically small when x̂ comes

from a linear-combination of valid instruments.

Finally, substituting (??) into (??) yields a helpful expression for the 2SLS

estimate for �1, which we can write as

�̂2SLS = �1 +
�1Cov(x̂, e) + Cov(x̂, u)

Var(x̂)
. (1.11)

OLS guarantees that Cov(x̂, e) is zero and, with valid instruments, that

Cov(x̂, u) is small. Whether Var(x̂) is “small” is typically of little consequence with

OLS (as �1Cov(x̂, e) + Cov(x̂, u) is typically small). However, all three points can

generate important issues when we mix ML methods into the first stage of 2SLS.
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With ML methods, nothing guarantees that Cov(x̂, e) is zero or that Cov(x̂, u) is

small. Moreover, many ML methods are constructed to reduce the variance of

predictions—further amplifying bias. This variance-reduction aspect is particularly

relevant for nonlinear methods.

1.5.2.1 The �1Cov(x̂, e) component. For the term �1Cov(x̂, e) to differ

from zero and generate bias, �1 , 0 and Cov(x̂, e) , 0. We assume that the

population-regression coefficient �1 differs from zero.18 With this assumption

imposed, the term �1Cov(x̂, e) only generates bias when Cov(x̂, e) , 0; �1 scales

the bias and affects its direction.

By construction, OLS produces predictions that are orthogonal to their

residuals, i.e.Cov(x̂, e) = 0. This first term is therefore irrelevant when the first

stage uses OLS. However, when practitioners adopt other methods in the first

stage (e.g.non-linear methods) nothing guarantees first-stage predictions are

uncorrelated with their residuals. Put differently, this part of the bias results

from using estimators whose predictions correlate with their residuals (rather

than resulting from a violation of the exclusion restriction). While it is possible for

nonlinear methods to generate Cov(x̂, e) = 0, many do not.

In addition, because Cov(x̂, e) typically drops out of OLS regression, OLS-

based empirical intuition does not help here. One implication of this non-OLS

intuition of Cov(x̂, e) is that the bias generated by it is proportional to the size of

the target parameter �1. Where treatment effects are larger, the bias transmitted

through this component is also larger.

18 The case where it exactly equals zero is a measure-zero event that is uninteresting to the
researcher.
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To understand why some methods produce larger values of Cov(x̂, e) than

other methods, first decompose this covariance into Cov(x̂, x) and Var(x̂):

Cov(x̂, e) = Cov(x̂, x � x̂) = Cov(x̂, x) � Var(x̂) . (1.12)

While Cov(x̂, e) is not generally signable, its central component (i.e.the

covariance between x̂ and e, Cov(x̂, e)) is bounded between �Var(x̂) and

Cov(x̂, x).19 In addition, we can sign �1Cov(x̂, e) in fairly general subcases:20

Sign
⇢
�1Cov(x̂, e)

�
= Sign

⇢
�1Corr(x̂, e)

�

= Sign
⇢
�1�

�1
e

✓
Corr(x̂, x)�x � �x̂

◆ �

= Sign
⇢
�1

�
· Sign

⇢
Corr(x̂, x)�x � �x̂

�

=

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(+) if �1 > 0 and Corr(x̂, x)�x > �x̂

(�) if �1 > 0 and Corr(x̂, x)�x < �x̂

(�) if �1 < 0 and Corr(x̂, x)�x > �x̂

(+) if �1 < 0 and Corr(x̂, x)�x < �x̂

0 if �1 = 0 or Corr(x̂, x)�x = �x̂ ,

(1.13)

where �x refers to the standard deviation of x (�x̂ and �e are defined similarly).

As (??) reveals, the sign of Cov(x̂, e) depends on two quantities: (i) the sign

of �1, and (ii) the sign of Corr(x̂, x)�x � �x̂. It is difficult to generalize the sign

of Cov(x̂, e) without further assumptions. While one may be tempted to assume

�x > �x̂, this assumption is not sufficient for signing Cov(x̂, e), as it still depends

19 We assume estimates, x̂, will have non-negative covariance with the true values, x.
20 We assume e, x, and x̂ have variation and that the predictions x̂ positively correlate with the

true values x.
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upon the magnitude of Corr(x̂, x).21 The knife-edge case where a = 0 appears

unlikely except in cases where either �1 = 0 or where Cov(x̂, e) is mechanically zero

(e.g.OLS).

Across the twelve models that we consider in Table A2, only the non-OLS

models produce Cov(x̂, e) , 0 (it is mechanically zero for OLS-based models)—this

is unsurprising. Lasso, neural nets, boosted trees, and random forests all produce

positive covariance between x̂ and e. In other words, in all of our DGPs, the term

Cov(x̂, e) biases �̂ upward (positively) whenever it is non-zero.22 Random forest

models generate the largest covariance between x̂ and e (and consequently the

largest Cov(x̂, e)) in each of the DGPs. Depending upon the DGP, Lasso, neural

nets, and boosted trees generate the second-highest covariance. Because our

shallow subcase of neural nets approximates OLS, its covariance between x̂ and

e is approximately zero.

One way to ensure that Cov(x̂, e) = 0 for a nonlinear model is to linearize

its output—e.g.by using the ML-based prediction x̂(z) as an instrument for x, rather

than plugging it into the second stage (J. D. Angrist & Krueger, 2001; J. Chen et

al., 2020). While this approach forces Cov(x̂, e) = 0, it requires strengthening

assumptions on Cov(x̂, u) (as we discuss in Section 1.6).

More broadly, the component of bias due to covariance between first stage

predictions (x̂) and their residuals (e)—the Cov(x̂, e) term—accounts for the vast

majority of the bias for Lasso and substantial amounts of the bias in random

forests, boosted trees, and neural nets (the exact portion of the bias differs across

21 Further, this assumption is equivalent to making an assumption on Cov(x̂, e), which means one
is essentially assuming the result. That is, Var(x) = Var(x̂) + Var(e) + 2 Cov(x̂, e). That said, in every
iteration of our simulations, Var(x) > Var(x̂).

22 This upward bias is partly due to the true parameter �1 being positive.
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DGPs and iterations). While Cov(x̂, e) does not account for all of the bias, the

non-zero covariance between first-stage predictions and residuals is an important

(potentially large) component of the bias of ML-based 2SLS models.

1.5.2.2 The Cov(x̂, u) component. Unlike Cov(x̂, e), the second

component of the wedge between �̂2SLS
1 and �1 can be non-zero for both OLS-

based methods and non-OLS models.23 However, methods that use non-linear

predictions of x in the first stage (i.e.ML-assisted 2SLS) require special care to

produce low-bias estimates of �1.

This second term, Cov(x̂, u), is effectively the exclusion restriction, and

any 2SLS-inspired estimator can reduce bias in �̂1 by ensuring Cov(x̂, u) is

approximately zero. Doing so under a machine learned estimator in-sample

requires additional effort, even in the linearized case described above which

escapes the ’forbidden regression’ trap. Assuming the instruments z are valid, an

arbitrary prediction algorithm can maintain Cov(x̂, u) ⇡ 0 through either of three

conditions:

1. Restrict the algorithm’s choice set: By restricting the learning algorithm

to choosing from a set/class of functions where each individual function

satisfies the exclusion restriction, one mechanically ensures the first-stage

predictions x̂ do not covary with the unobserved disturbance u. For example,

when we employ OLS in the first stage of 2SLS, the first-stage regression is

chosen from a set of class of linear functions that all include valid exclusion

restrictions—linear combinations of the exogenous instruments (all linear

combinations of exogenous instruments are themselves exogenous).

23 For example, a mis-specified OLS regression or any 2SLS regression. While 2SLS is a biased
estimator (Cov(x̂, u) , 0), its bias increases substantially when instruments are not exogenous
(Cov(z, u) , 0) or not relevant (Cov(z, x) ⇡ 0).
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2. Extend the exclusion restriction: One may extend the assumption

underlying the exclusion restriction into a much stronger assumption. Rather

than only assuming all linear combinations of the valid instruments are

(which is directly implied by instruments’ validity), one could assume that

all functions of the instruments—nonlinear and linear—satisfy the exclusion

restriction. Put differently, this condition requires Cov( f (z), u) ⇡ 0 for all

functions f .

3. Lean very hard on the ML algorithm: The final option is to simply rely

upon the algorithm to find a function that satisfies the exclusion restriction,

irrespective of choice set—something akin to closing one’s eyes and hoping

for the best. While this option makes a rather heroic assumption, as ML

algorithms are typically not designed to search for and find valid exclusion

restrictions, it is the default scenario. If a practitioner does not enforce

condition 1 and does not assume condition 2, then she is left with 3—

i.e.hoping that the ML methods successfully choose a function that includes

a valid exclusion restriction.

In summary, sufficiently flexible learning algorithms can recover

endogenous variation in x only using only valid instruments. Importantly, many

ML training methods explicitly incentivize and enable algorithms to do this.

Column b of Table A2 documents the tendency of flexible first-stage models

(e.g.tree methods and neural nets) to recover endogeneity. As the learning

algorithms permit more flexibility, Cov(x̂, u) tends to increase (across all DGPs).

This covariance and its associated bias are particularly large for tree-based

methods (especially random forests) and neural nets with multiple hidden

layers. Notably, in panels b–d of Figure A2, the densities of unrestricted and
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narrow neural networks are bimodal. As Appendix Figure A6 illustrates, the

bimodality results from whether the neural network (i) “chooses” zero hidden

layers (the less biased mode) or (ii) goes deeper (learning the endogenous error

and generating more bias).24, 25 This covariance between predictions x̂ and

the unobserved disturbance u accounts for a substantial amount of the bias in

nonlinear methods—demonstrating that the previously discussed first component

(1 = Cov(x̂, e) , 0) is not the only issue facing these models.

1.5.2.3 The
1

Var(x̂)
component. While the first two bias components

enter additively, the third component scales their sum. Any method that reduces

the variance of the first-stage predictions—reduces Var(x̂)—mechanically inflates

the bias produced by �1Cov(x̂, e) + Cov(x̂, u).

In the case of properly specified, OLS-based, 2SLS, the variance of the

predictions hardly affects bias in �1, since Cov(x̂, e) = 0 and Cov(x̂, u) ⇡ 0.

However, as most ML algorithms implicitly reduce the variance of their predictions

to optimally trade between out-of-sample bias and variance. This tradeoff between

bias and variance happens outside of a 2SLS framework—when practitioners

infuse variance-reducing ML methods into 2SLS, the variance reduction actually

amplifies bias in the second-stage estimates.

24 This result highlights the importance of allowing neural networks to choose no hidden layers.
25 Another, related, concern familiar to the ML literature is overfit. Overfit models tend to

produce larger values of Cov(x̂, u) than models that have been cross-validated. Though cross-
validation is best/standard practice for machine-learning methods in prediction problems, here
it retains importance by preventing the algorithms from overfitting the target variable x in the
first stage (even when out-of-sample performance is no longer the goal). We use five-fold cross-
validation (CV) to tune the hyperparameters for Lasso-, tree-, and neural-net-based methods. Our
neural-net cross-validation departs from standard five-fold CV. In Appendix Section E.1.2 we detail
our cross-validation process for training neural net. One might further avoid overfit by applying
holdout-style methods—only generating predictions for observation i when i is not in the training
set. JIVE, split-sample IV, and J. Chen et al. (2020) all feature this additional safeguard. We do not
employ these holdout-based methods because our goal in this paper is to simulate the results of a
researcher using off-the-shelf ML tools in the first stage of 2SLS.
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Taking these insights to the results in Panel B of Table A2, notice that

variance reduction can cause methods to perform poorly. For example, Lasso-

assisted 2SLS produces the lowest variance x̂ in two of the three high-complexity

cases—in cases 2 and 3, Lasso-based 2SLS has the highest 1/Varx̂-based amplifier

of the bias. This high degree of bias amplification generates notable bias in

Lasso, relative to many other methods (evident in Figure A2). So while Lasso’s

Cov(x̂, e) and Cov(x̂, u) are less than or equal to those of many other methods, the

amplification produced by variance-reduction in x̂ ultimately causes Lasso to have

substantial bias. Notably, post-Lasso-based 2SLS produces less bias, partly due to

the fact that it includes less variance reduction.

Worse yet, tree-based methods substantially reduce variance and produce

relatively large Cov(x̂, e) and Cov(x̂, u) components—resulting in very large bias in

their parameter estimates (even larger than naïve OLS).

1.6 Potential solutions

This paper examines the implications of plugging off-the-shelf ML methods

into a 2SLS framework. In many cases, injecting ML into the first stage of 2SLS

generates substantial bias.

While there are many approaches to combining instrumental-variable

intuition and machine learning, they relax the traditional 2SLS structure and

require different, generally stronger, identifying assumptions.26 Among the

current options, the closest in spirit to our question of “What are the implications

26 See, for examples, MLSS (J. Chen et al., 2020), DeepIV (Hartford et al., 2017), DeepGMM
(Bennett et al., 2020), KIV (Singh et al., 2019), Adversarial Estimation of Riesz Representers
(Chernozhukov, Newey, Singh, & Syrgkanis, 2020), Neural Estimation of SEM (Liao et al., 2020),
and Non-Parametric IV (Kilbertus, Kusner, & Silva, 2020).
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of inserting ML into 2SLS?” is the “machine learning split-sample” (MLSS)

estimator proposed by J. Chen et al. (2020).27

With two fairly simple expansions of the traditional 2SLS framework,

MLSS mitigates most biases generated by naïvely plugging ML methods into

the first stage. However, as with other more ML-forward methods, the solution

is not without the cost of substantially strengthening the exclusion restriction.

Specifically, J. Chen et al. (2020) proposes augmenting 2SLS with two simple

techniques: restrict ML-based predictions to be explicitly out of sample (using

split-sample methods), and use the ML-generated predictions as a “synthetic”

instrument that then enters linearly in the first stage.

The idea for out-of-sample (split-sample) ML predictions follows the lead

of Jackknife IV and Split Sample IV. By introducing out-of-sample methods to

the ML-prediction exercise, J. Chen et al. aims to prevent the ML algorithm from

fitting the first-stage errors—shutting down the bias generated by Cov(x̂, u). The

drawback, however, is that this out-of-sample step likely increases variability (as

seen in the JIVE results of Figure A2).

The second component of J. Chen et al. involves a “zeroth stage” (i.e.,

before the first stage), in which the practitioner trains an ML algorithm to predict

x using the instruments z.28 The predictions from this zeroth stage are then

used as the instrument within a traditional 2SLS framework. The benefit here

is that the resulting linear first stage—linearizing the results of a potentially

forbidden regression—guarantees that Cov(x̂, e) = 0, shutting down one avenue

27 J. Angrist and Frandsen (2020) also applies split-sample methods to several ML algorithms
(i.e.post-Lasso, random forest)—both in the first stage of 2SLS and while synthesizing instruments
in a stage that precedes the first stage.

28 Note that this zeroth stage is identical to first stages that naïvely insert ML methods into 2SLS.
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in which bias enters. Importantly, this method assumes that no learnable function

of instruments meaningfully predicts the structural disturbance u. As the ML

algorithm’s function space grows (trades bias for variance), it can cover all

possible functions of the instruments (e.g.most neural networks are universal

approximators), which requires strengthening the exclusion restriction Cov(x̂, u)

from any linear function of the instruments to one that includes all possible

functions of the instruments. This strengthened exclusion restriction is generally

much stronger (and likely more difficult to justify) than the typical identifying

assumption assumed in 2SLS applications. As a simple example, most machine

learning algorithms excel at detecting interactions of predictor variables that

produce powerful variation in their predictions.

However, many econometricians fail to consider multi-way interactions in

their exclusion restriction set, which ML methods will detect and produce bias in

the resulting estimates, even for interactions up to the fourth degree, as seen in

A3.
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CHAPTER II

REVISITING THE STRATIFIED COST INDEX

2.1 Ch.2 Introduction

For much of modern history, wildfires have been the most common natural

disasters, and have been increasing in salience for the greater population. United

States suppression costs have increased alarmingly—while no US wildfire season

prior to the year 2000 recorded suppression costs of over a billion dollars, 16

of the last 20 fire seasons have exceeded that threshold. This startling and

anthropologically recent Marlon et al. (2012) change downplays the severity of

the trend, as the last five years of suppression have, on average, cost two point

three billion dollars Suppression costs (2020). Because of this rapidly rising cost,

fire suppression costs and its underlying causes have become increasingly of

interest for policy makers. Unfortunately, investigating why one wildfire is more

expensive than another has proven to be quite challenging for economists to

identify. The assumptions required for modern causal inference methods—which

rely on random variation in treatment to produce causally valid estimates, are

likely violated in the case of wildfire suppression costs. Natural experiments

in the field are difficult to find,1 as wildfires usually do not last long enough

for a the pre-treatment period to be meaningfully removed from the post,

preventing difference methods from removing fire-specific effects from any

sample. Additionally, relying on random ignitions for causally valid variation

is unlikely to be a winning strategy either. The works that do consider wildfire

ignitions to be considered to be random events, must carefully trim their dataset,

limiting the validity of the conclusions to sometimes as narrow as a single wildfire

1 and experiments are ethically challenging to run
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.2 This means most externally-valid identification of causal factors underlying

wildfire suppression costs rely heavily on conditionally as-good-as-random

variation in observational settings.

To find causal estimates of parameters in such frameworks, researchers usually

turn to techniques such as propensity score matching or conditional outcome

models, which attempt to estimate P(Y |z, X) for treatment z and outcome Y by

directly controlling for variables in X. The problem with such methods is that they

require a pre-existing structural causal model to select X, and rely on two strong

assumptions for a continuous treatment variable z 3:

Conditional Independence : (Ycounter f actual) ?? z|X, 8z

Common Support : 0  P(z|X) < 1,8z

When the above assumptions appear to be satisfied, there are still ample

risks to using this strategy for identification, as improperly defining the set

X can mislead a researcher into interpreting effects of z on Y as causal. In

particular, the wildfire management literature interchangably uses property

value, count of homes and property presence in measuring the effect of homes

on suppression costs. The argument for this modeling choice is usually that;

under an optimal wildfire suppression strategy, a central planner should spend

resources proportional to the value of the property at risk. Property value,

home count and property presence variables, however, are not interchangable

2 This is because the causality for suppression expenditure on many fires is confounded when
the burn-paths of the wildfires depend on existing vegetation or longer-term trends in weather,
both of which correlate to variables that may influence local policies and fire manager decisions.

3 See Cunningham (2021) for a full overview
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in consequence. In particular, the often cited research in Gude, Jones, Rasker,

and Greenwood (2013), who use a home-count variable in their work, build on

models developed in Gebert, Calkin, and Yoder (2007), which relies on evidence

from conditional outcomes for causal interpretation. This choice for modeling is

not of no consequence for policy application, as many of the proposed solutions

for adaptation to rising suppression costs, such as restricting new construction

in at-risk wildland urban interface communities, have differing impacts on home

counts vs. property values vs. property location, thus understanding of the causal

structure of fire suppression effort is of utmost importance to guide future policy

decisions. Complicating the estimate of the causal effect, property value!

suppression costs is a set of high-dimensional, spatially-varying environmental

amenity confounders. While past work has used both spatial and point-level

wildfire data to estimate how property value influences suppression decisions,

estimates using fire boundaries or final burned acres leave a great deal of spatial

variation available for potential confounding, and requires controlling for

outcomes of fire suppression itself. This research seeks to validate this assumption

in the literature, by refining a structural model of wildfire suppression costs

that combines findings from the economics hedonic regression literature and

wildfire research to create a unified causal model of wildfire suppression costs.

With this model, the work then compares the resulting econometric estimates of

suppression cost elasticity in regards to those derived by past studies.

Assuming as-good-as-random conditional variation admits a structural causal

model of suppression costs. Doing so, however, consists of adjusting for a high-

dimensional set of controls that reasonable encompass all of the spatial variation
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in wildfire and amenity sets, such as topology, fuels and weather and uses

machine learning rather than conditioning the data with explicit fire boundaries

to reduce the dimension of the features. This allows for identifying the causal

effect of increasing property values on suppression costs, while controlling for

environmental variables that cause wildfire suppression costs and property

amenities to vary endogenously.

To the credit of researchers in ecological and economic sciences, the causes

of total escalating expenditures are well developed. A century-old legacy of rapid

response suppression and focus on a conservation of natural resources has led to

an overabundance of plant life per acre when compared to historically observed

vegetation patterns Busenberg (2004). At the same time, human-caused climate

change has put pressure on forest systems from another direction. Recent work

has estimated that climate change has led to a doubling of the total expected

burn area of wildland fire since the 1980s, alongside increases in burn intensity

Abatzoglou, Balch, Bradley, and Kolden (2018). Given the ongoing concern, there

is a sizable economic literature in estimation of wildfire suppression costs, as

seen in Donovan, Noordijk, and Radeloff (2004), Liang, Calkin, Gebert, Venn,

and Silverstein (2008), Abt, Prestemon, and Gebert (2009), Preisler, Westerling,

Gebert, Munoz-Arriola, and Holmes (2011), Yoder and Gebert (2012), Hand,

Thompson, and Calkin (2016), Florec, Thompson, and y Silva (2019) and Baylis

and Boomhower (2019). Despite this large body of work, Gebert et al. (2007),

which introduced the Stratified Cost Index (SCI) remains the reference for fire cost

estimation - driven in part by its adoption as a metric used to measure relative

cost effectiveness of suppression efforts. The SCI; produced using a simple log-log

ols regression estimate with ignition-point-level covariates, estimates suppression

30



costs per acre as an ex-ante problem solved by fire managers.4 As such, it is

often cited by economists performing ongoing research on factors involved in

wildfire suppression costs. Using measures of fire environment, values at risk,

delay of detection, initial suppression strategy and availability of resources, it

was able to explain roughly half of the in-sample variation5 for logged large-fire

per-acre costs across the country. As it was intended primarily as a solution to

the forest service’s cost forecast problem, many of the included factors are not

rooted in understanding their effects from a causal standpoint—rather, they were

intended to capture as much variation in the data as possible for use as historic

benchmarks. Given there was no forest service metrics for tracking expenditure-to-

performance, developing some way of tracking expenditure between divisions

and across different fires is critical. However, given recent policy advice from

economists and forest service professionals a more nuanced understanding of how

fire managers change their assignment of resources in response to higher property

values is critical.

The inclusion of ’total housing value’; an artifact of attempting to control

for suppression effort spent on preventing loss of life and property,6 has had a

particularly lasting effect on the literature and fire suppression in the intervening

years since the study. While count of nearby homes has been demonstrated to

4 Yoder and Gebert (2012) updates this model with a maximum likelihood estimation that
accounts for variation in fire acres over time.

5 R2 of .44 for Western US, R2 of .49 for Eastern US. Out of sample predictions had R2 of .33 for
the Western Region and .18 for the Eastern Region. Restricted to Fires of Acreage 100 or greater,
and also focused within Forest Service Lands - a caveat that was introduced due to data availability
at the time.

6 Other factors considered but discarded due to poorer fit were nearby population and total
count of homes
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have a causal effect on fire suppression costs Gude et al. (2013), most economic

models of suppression expenditure treat total nearby property value as the input

to the fire manager’s problem, but empirical work has not been able to disentangle

this causal link. Since the publication of Gebert et al. (2007) distributional

concerns of suppression expenditures in the continental United States have been

raised by the literature. Evidence shows that spending on wildfire suppression

disproportionately benefits individuals in the wildland-urban interface (WUI)

Baylis and Boomhower (2019), who are on the whole whiter and wealthier than

populations in other regions. This has been reinforced in preliminary results from

the working paper Wibbenmeyer and Robertson (2021) with nearly universal

results for the Western United States, save Washington. One overlooked avenue

complicates interpretations of this result—algorithmic bias in the SCI itself, by way

of the fire-manager’s information set.

Wildfires are extremely complex events, where incident managers are forced

to make military-scale decisions with lives in the balance—even so, an incredible

amount of consideration is made towards optimizing choices in a careful way.

Home value directly or indirectly correlates to fire manager decisions and

suppression expenditure in four distinct ways-

– The "Direct" Path: In a very real sense, allocating resources to

proportionately protect expensive properties is a logical policy objective:

if a manager seeks to minimize total dollar losses, spending more money

to prevent high-value property loss relative to low-value property loss falls

directly in line with an optimal decision rule.
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– The "Amenities" Path: Property prices in and around the WUI are; more

so than for other homes, a product of the portfolio of amenities that

homeowners value and are willing to pay for. Amenities in hedonic analyses

are usually assumed to be orthogonal to parameters of interest, but this is

not the case here. For example, property views generally produce utility for

the homeowner and are considered characteristics of the home. Views are

functions of surrounding topography, property ownership of neighboring

properties, nearby plant growth, and their interaction. Topography plays an

important role in directly unrelated expected fire spread, as do ’fuels’ which

themselves are functions of plant growth. Expected fire spread is directly

factored into suppression strategy which directly drives costs. This effect has

been well discussed in the property valuation literature.

– The "Procedural" Path: Fundamentally, suppression costs are perfectly

identifiable from inputs used for the suppression production function.

Which inputs are optimal for this production function change, based on

the characteristics of the fire. Inputs to this production function have

distinct advantages and their utility is differentially impacted by topography

and development. Even under conditions where fire managers allocate

equal importance to home protection regardless of property value then

more expensive inputs may be required to defend an expensive property,

depending on where it is located.

– The "Model Loop" Path: One unconsidered route for the apparent bias for

protection of higher incomes is the SCI itself. If a wildfire’s per-acre expenses

are 2 standard deviations above historic norms, responsible managers

will very likely undergo a thorough review of their work, likely leading to
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many hours authoring government reports that explain any cost overrun.

Given property value directly factors into some regional SCI models—any

existing policy pathways that promote expenditure on expensive property

are reinforced by having the historic expenditures respond to threatened

property value.

All property value effects measured by studies so far have not tried to

digest and understand the relative magnitudes from these different causal

pathways7 The challenge of doing this is that the specific functional form of the

suppression production function is unknown, and the interaction between this

function with spatially dynamic wildfire is likely to be extremely complex and

non-linear. Existing research on the spatial dynamics of wildfire mostly includes

some form of data about the final burned area of the fire either as a control

as in Abt et al. (2009) or to dictate a study area, as in Hand et al. (2016). For

understanding the causal effect of pre-determined variables such as property

values on suppression costs, conditioning on post-treatment variables are bad

controls. What is required for interpretable parameters in such a model is a

function that takes a set of spatial variables, weighted by an either known or

learned event-agnostic kernel to control for indirect effects. This should capture a

sufficient degree of variation to meaningfully capture the relationship, as outlined

in Marchal, Cumming, and McIntire (2017). Linear regression is not sufficient

for such a task without some pre-identified spatial kernel that can combine the

requisite number of inputs into a sufficiently small feature set. One solution is to

treat the problem as a partially linear regression - that is, that the parameter of

7 Ongoing research in the working paper, Plantinga, Walsh, and Wibbenmeyer (2021), has
controlled for local fuel levels, which may partially block the indirect causal pathways.
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interest has some objective linear effect on the outcome, but the controls enter in

a highly nonlinear way to both the outcome and the causal variable of interest.

One solution is to use newly developed machine learning algorithms to weight

the spatially explicit data and then utilize double/debiased machine learning

to understand the ex-ante effect of property value on suppression expenditures

decisions.

To extend understanding of suppression, this work seeks to combine

the climate and event-level causal models of wildfire and wildfire suppression

expenditures, identify a sufficient conditioning set of variables using methods

outlined in Pearl (2010) to block the non-direct causal pathways that may lead

to spurious correlation between home prices and suppression costs, using newly

developed vision transformers,8 a computer vision technique that is capable

of capturing both sequential and spatial knowledge with minimal inductive

bias—allowing us to most completely identify complex nuisance parameters, while

leaving the direct causal path unblocked.

The results have both theoretic and policy implications for wildfire

suppression. When not conditioning on acres burned, per acre costs of suppression

are less responsive to property value alone than past estimates imply and are

indistinguishible from zero. This remains true whether or not estimates are

conditioned on Western United States.

This work will proceed with a stylized model of suppression cost

expenditures building off of work done in Bayham and Yoder (2020) in section

2.2, followed by a semi-parametric econometric model in section 2.3. The work

then turns to existing understanding of wildfire spread, expected valuation of

8 First proposed in Dosovitskiy et al. (2021)
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damage/suppression and hedonic property modeling in section ??. Section 2.4

sets up the assumptions for the modeling framework and outlines the machine

learning and causal models in full, before moving on in section 2.5 to discuss

the data used for the study before finally; in section 2.6, outlining and discussing

initial results.

2.2 Model of Cost

Fire managers make decisions in inherently unsure environments, under

less than ideal conditions. Using resources owned by a combination of federal

agencies and private contractors, they are tasked with protecting resources they

do not necessarily personally benefit from with limited or changing guidance in

terms of which ought to be prioritized. In this sense, fire managers do not face

a budget constraint unlike many other market actors, noted in Calkin, Venn,

Wibbenmeyer, and Thompson (2013) though their employing agency must still

pay these costs. Instead, there are constraints placed on them from two different

sources: first, from the limiting number of resources present in the United States

and abroad, and second, through limited monitoring by their cost-sensitive

employer, via comparison to historical norms from a regionally-varying metric,

the ’stratified cost index’. Such problems are common in the real world when an

agent performs relatively independent work that is only monitored by a manager

through a loose collection of weakly correlated signals.

To motivate the econometric estimation, this work begins with a stylized

model of fire resource assignment to determine total suppression costs, as

designed by Bayham and Yoder (2020) and extend it to include endogenous

values at risk, as well as smaller fires. In the authors’ model, a set of fire managers

communicate needs to a regional fire coordination group who choose allocations
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of resource bundles over many concurrently burning fires. A fire manager is

treated as a loss minimizer making decisions at time t, and where losses are

accumulated over two periods, {t, t + 1}. Losses in a given period are represented

by a non-parametric function

`t(dt, ct)

(2.1)

This is done because costs spent to protect assets can exceed total avoided

losses (Calkin et al. (2013).) Suppression costs are then simply generated by a

vector of assigned inputs,

ct = y
0
t
w + m(yt,pt)

(2.2)

Where yt represents a {N⇥1} binary vector of all resources and w represents

a corresponding {N ⇥ 1} vector of pre-negotiated contract prices or wages, m

captures operating costs generated by these resources, for instance, travel time

from point of storage to fire front. p is a interconnected set of all environmental

and geographic features, pt are those nearby features (and their connections)

relevant to the fire at the time of response and impacts operating costs by
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changing feasible staging locations, available water sources or other geographic

assets that make fire resources more or less costly to use. These costs are used to

change outcomes in a future damage function, dt+1,

dt+1 = d(vt(�h, st(pt) + e
v

t
), yt, st+1(pt+1, st(pt), yt) + "s

t+1) + "d
t+1

(2.3)

Where damage is a monotonically decreasing function of yt, an increasing

or decreasing function of both fire shape, st+1 and vt(�h, st(pt) + e
v

t
), which

represents a vector of potentially affected values, which itself is a function of

nearby environmental amenities capitalized into the home ,9 conditions at the

ignition location st(pt) and market based shocks e
v

t
. This change to values at risk

from Bayham and Yoder (2020) is done for two reasons: first, because the goal is

to allow for endogenous values at risk, and second to extend the model to smaller

fires—as small fires often bring beneficial changes to ecosystems and can reduce

fire risk in the long run. The shape function is a function of ignition conditions

and location, st, which itself comes from environmental conditions at the ignition

location pt. Both pt and pt+1 are vectors of �t(fire frontt), and !t, where {�t, �t+1}

form an incomplete atlas of p at the location of the fire front in periods t and t+1,

and a set of time-varying environmental factors like weather, in !t and !t+1. Fire

shapes in future periods is uncertain (even with partially unobserved pt+1), and so

resulting damage from this uncertainty is captured in a mean zero noise variable,

9 represented by a function �h(x1, . . . , xn) ! R defined by points on the set p: to function as a
smooth surface of country-wide environmental variables
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"s
t+1, and uncertainty in the overall damage function from resource variability is

captured in "d
t+1.

The vector of at-risk values contains any homes at risk with varying property

values, other private structures, public structures, infrastructure, natural resources

such as watersheds or ecological values such as wildlife habitat. Fire suppression

resources can protect these assets through a few mechanisms—one, by preventing

the fire shape from reaching these assets, or two by applying effort to protecting

individual resources. Environmental conditions at the front of the fire, pt+1 can

have a strong impact on effectiveness of selected resources, where humidity can

reduce the spread of fire Rothermel (1972) and steep/inaccessible terrain can

make engines and firefighter efforts on foot substantially more challenging as

noted in Katuwal, Calkin, and Hand (2016) and Butry, Gumpertz, and Genton

(2008).

From here, with these changes to the prior work’s response function, the

analysis can follow in the footsteps of Bayham and Yoder (2020).

Fire managers minimize the loss function over two periods, subject to

available resources at time t, Yt

min
yt�0
{`t(dt, ct) + Et{`t+1(dt+1, ct+1)} : s.t Yt � yt}

(2.4)

This makes the first order conditions of this problem become
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(2.5)

yt � 0, Yt � yt, FOC
0
yt

yt = 0, �n,t
⇥
Yn,t � yn,t

⇤
= 0, 0  {yn,t, Yn,t}  1 (2.6)

where �n,t is the Lagrangian multiplier for the specific resource n, �t is an

{N ⇥ 1} vector of such multipliers. 10 These first order conditions consist of four

interpretable terms: the first represents is positive, and represents increasing

cost of assigning a resource to a given fire due to increasing expenditures on

contract fees and the second represents increasing expenditures due to practical

considerations of mobilizing the resource - either due to their home-base or due

to support costs (food, housing, fuel etc.) The third and fourth terms represent

expectations in time t of damage reduction occurring in period t + 1, the third

being the direct effect of suppression resources on damage (a direct protection

measure) and the fourth is the avoided damage due to containment of the shape

in period t+1: st+1. Importantly, the third and fourth terms may be positive or

negative, given fire is sometimes ecologically beneficial and lowers future fire risk.

This vector of first order conditions defines, as in the prior work, an equilibrium

10 The discrete problem for langrangian optimization can be made into a continuous optimization
following Wah and Wu (1999).
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{y⇤
t
(Yt; vt,pt,pt+1,w), �⇤

t
(Yt; vt,pt,pt+1,w)} can be defined for each wildfire.11 This

includes all scenarios, and includes endogenous values at risk, vt directly.

Observed costs after a fire, then, can be constructed by plugging in the

definitions of optimal resource usage (y
⇤
t
) derived from ?? into ?? to get,

c⇤t = y
⇤
t
w + m(y⇤

t
,pt) (2.7)

Where y
⇤
t

is a vector of functions, where each depends on local fire

conditions, wages, values at risk, and also fire conditions and values at risk for

other fires burning at time t .12

Understanding the cost response of fire suppression costs to a specific value

in v like property values is represented by

dc⇤t
dvt,h

=
dy
⇤
t

dvt,h

0
w +

@m
@y
⇤
t

0 dy
⇤
t

dvt,h
(2.8)

Equation ?? gives us an intuitive interpretation of the coefficient on a

regression of costs on property values - the optimal assignment of resources as it

responds to housing values times the wages, plus the responsiveness of support

costs to those optimal choice of resources. However, we know yt responds to

changes in pt and pt+1, and vt,h is a function of ph and pt. This overlap in functional

inputs will result in bias in any unadjusted econometric estimates of suppression

cost elasticity. This also allows us to understand, in context of endogenous values

at risk, past estimates of the contribution of housing value on suppression costs

11 Bayham and Yoder (2020) use planning periods as t, but given many resources remain
assigned to the fire, we can relax this to a 2-period per fire model.

12 This comes from a regional fire manager who responds to several fires requesting resources
and using the relative shadow prices �n,i,t where i tracks fires.
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using point data, as in Gebert et al. (2007) and using shape/total acreage, as in

Liang et al. (2008) or Hand et al. (2016).

2.3 Econometric Model

Both property values and fire suppression are intensely intertwined

with nearby natural features, and thus any unconditional estimate of the price

elasticity of suppression to property values is likely to be biased. One way of

understanding this dependence is by examining the simplest linear regression

model of suppression costs on summed nearby property values.13

costi = �0 + �1

NX

n=1

propVali + ✏i, for fire i

(2.9)

Estimating this model, however, is problematic using OLS.

costi = �0 + �1

NX

n=1

(�n,h + st(pt) + vn,t) + ✏i (2.10)

Using this regression, we can find the estimated �̂1

�̂1 =
⇥
(�h + st(pt) + vn,t)0(�h + st(pt) + vn,t)

⇤�1 (�h + st(pt) + vn,t)0ct (2.11)

13 For illustrative purposes, we will discuss this problem in terms of linear parameterization
for each function - in practice, these functions may not be linear, and then we can extend to the
nonlinear case.
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�̂1 =
⇥
(�h + st(pt) + vn,t)0(�h + st(pt) + vn,t)

⇤�1 (�h+st(pt)+vn,t)0(
X

j

w j(y⇤j,t)+
X

j

(� j(y⇤j,t)+� jpt))

(2.12)

In the most straightforward case, we can produce the usual �̂1 = �1 + bias

decomposition.

�1 =
(�h + st(pt) + vn,t)

P
j(

w j+� j

⇠ j
)(�h + st(pt) + vn,t)

⇥
(�h + st(pt) + vn,t)0(�h + st(pt) + vn,t)

⇤ (2.13)

bias in �̂1 =

⇣P
j w j(y⇤j,t) + � j(y⇤j,t) + � jpt �

P
j(

w j+� j

⇠ j
)(�h + st(pt) + vn,t)

⌘ �
(�h + st(pt) + vn,t)

�

⇥
(�h + st(pt) + vn,t)0(�h + st(pt) + vn,t)

⇤

(2.14)

Where ⇠ j,i is the inverse share of all weighted values at risk represented by

private property. Assuming no bias in our estimator, assumes most problematically

that environmental conditions at the point of ignition (pt) are uncorrelated with

the ignition location (st(pt)). The very earliest works attempting to predict wildfire

costs understood this, and tried to adjust for pt directly—as was done in Gebert et

al. (2007) (the Stratified Cost Index). When implemented correctly, this changes

equation ?? substantially.

bias in �̂1|pt =

⇣P
j w j(y⇤j,t) + � j(y⇤j,t) �

P
j(

w j+� j

⇠ j
)(�h + vn,t)

⌘ �
(�h + vn,t)

�

⇥
(�h + vn,t)0(�h + vn,t)

⇤ (2.15)

This completely removes bias due to correlation between inclusion of

homes from changing ignition location and environmental conditions at the

point of ignition. Though such an approach goes a long ways towards a causal

estimate of �1, as is outlined in section 2.214 additional bias may arise from

14 and recognized in Gebert et al. (2007)
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optimal resource choices y
⇤
t
. Using the conditional functional form of y

⇤
t
,15 this

requires a strong assumption to drive equations ?? and ?? to 0,

wj ⇤ Et(y⇤j({�t+1,!t+1}, vk,t)(�h + vn,t)|pt) = 0,8 j, k , n (2.16)

In words, this assumption implicitly encompasses two logical leaps:

first, that the environmental conditions at the head of a fire are uncorrelated

with the environmental conditions that are capitalized into a private property

(covpt
(�t+1, �h) = 0), and second, that the ratio of costs assigned to different values

at risk are independent from one another for any resource j. One way to avoid

this problem is to control for observed factors of pt+1, most commonly, this is

done by using observed environmental/topological conditions contained by the

perimeter of the fire alongside observed weather conditions, as seen in Donovan et

al. (2004) and Hand et al. (2016). This

This procedure, however, indirectly conditions data on the final state of the

fire, st+1. As was outlined in equation ??, this has the effect of conditioning on pt+1

and pt as intended, but also conditions on utilized resource’s effect on fire growth,

y
⇤
t
. Such a conditioning statement does not matter when the parameter of interest

is an optimal prediction, but, as observed in all three referenced studies doing so

finds much smaller effects from property value on suppression costs.16

�1 = w
@y
⇤
t

@vt,h
+

dm
dvt,h

(2.17)

15
y
⇤
t
|pt

(Yt; vt,pt+1,w)
16 Though in Hand et al. (2016) they internally find the opposite- that point ignition results are

smaller than spatially aligned results. This may be due to the dataset in use - which spans 2000-
2008 and thus induces measurement error from homes valued pre and post great recession.
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If using final fire boundaries and acreage as weights does not sufficiently

condition on spatially varying data, the question then becomes, how should one

estimate this causal effect and is any specification valid? Imagine the optimal

estimator for the query - what is the elasticity of suppression costs in response

to changes in property values, ceteris paribus? Ideally, we would like to control

for {pt,pt+1}, but without using observed fire boundaries that are a function of

the outcome we are hoping to measure. The standard econometric approach

would be to look for an observable policy experiment that changes the property

values of certain homes in a way that is orthogonal to the physical factors of fire

suppression. However, such a policy experiment would also require two wildfires

occurring at similar intensities during the same period of time that threatened

both sets of homes. This makes many of the policy tools for natural experiments

available to economists unlikely to be viable.

Alternatively - an econometrician could draw a sufficiently large boundary

around the point of ignition, and use all relevant environmental variables within

it to control for both the environmental conditions at the point of ignition and at

all potential future fire-front locations, ie pb ◆ {pt,pt+1} but not condition on the

future fire manager information set It+1. Doing so would result in an estimate of

�cond,

�cond = w
@E(y⇤

t
|pb)

@E(vt,h|pb)
+

dm
dE(vt,h|pb)

(2.18)

Conditioning on this set of variables would neither condition on an

outcome, nor would it require assuming exogeneity of property values and fire

suppression conditions. Problematically, physical characteristics of a fire are

extremely high dimensional, thus without having some method of weighting
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spatial variation (as point-level statistics do, or averaging within the burned area

does) in nearby environmental factors, some degree of feature engineering or

selection is required to produce an estimate. One such approach for doing exactly

this, in the partial linear regression framework17 is developed in Chetverikov et

al. (2016), which permits machine learning methods to estimate valid controls in

high dimensional settings for causal queries in a doubly robust way.

However, to meet sufficiency requirements, we must assume that not all

of the variables in pb, vt, !t are relevant for understanding the causal query in

question, and must use some consistent18 algorithm to learn a control that would

remove bias due to confounding. Doing so requires understanding how spatial

variables can lead to changes in suppression expenditures. The next section will

outline theoretical understanding of wildfire spread, expected costs and expected

net value change and end with a discussion of results from the environmental

economic hedonic literature.

2.4 Models of Wildfire Suppression and Hedonic Valuation

In order to produce a comprehensive system in which to conduct a causal

analysis, it is important to understand institutional knowledge around each sub-

component of suppression - simulated physical models of spread provide an

understanding of a fire-manager’s expected damages they will try to avoid, which

can be used alongside economic-based models of suppression effort. This is done

to identify the minimal adjustment set for a causal analysis.

2.4.1 Wildfire spread.

17 first described in Robinson (1988)
18 in the mean square error rate sense

46



Wildfires are inherently unpredictable events, and take place in an evolving

and complex environment where suppression strategies must be adopted prior to

full knowledge of damages (or benefits) that may occur as a result. This means

that in order to understand suppression decisions of fire managers, it is necessary

to understand how expectations of wildland fire spread evolve and the resulting

changes to assets in its perimeter, absent of suppression. Fire risk, like other

amenities, is closely associated

Despite the uncertainty underlying wildfire events themselves, wildfire

spread, conditional on what is burning is a fairly well understood problem. The

trouble comes in simulating wildfire events which often cross heterogeneous

fuel types and occur under rapidly changing real-world atmospheric conditions.

Though these models are well defined on a small scale, validating a molecular-

level simulated physics model scaled to a full fire system is nearly impossible to

validate, leaving how to expand detailed small-scale understandings to larger-

scaled phenomenon of interest. Understanding the physical processes that

underpin models of fire spread, along with how those models are operationalized

in the field provide insight into the forecasting problem fire managers face. This

requires some background on both physical and computational models of fire

spread. 19

Existing models can be categorized into one of two categories, those that

rely primarily on a series of vector calculations, at the cost of more complicated

two dimensional dynamics,20 and those that take inspiration from, but forego

some of the formal physical processes in exchange for two dimensional spread.

19 This analysis does not seek to reinvent the model of fire spread, but organize the existing field
of knowledge. As such, it includes this section to motivate the future econometric analysis.

20 models of this type make assumptions about width of fires
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Whichever category of model is being used, the underlying dynamics

of the spread are dictated by the well-known Rothermel (1972) model of fire

spread, which was expanded upon soon after by Rothermel (1983). The goal is

to simulate how fire spreads in a plane, with changing wind vectors and slopes

on a small scale to hopefully be able to scale said model up to larger wildfire size

events.

To illustrate this model, imagine simulating such a problem in absence of

wind, moisture and slope, in a uniform fuel bed (ie, a patch of dried grass in a

laboratory.) Dropping a match in the middle of the grass patch will lead to the

fire burning the fuel (grass) at the center of the patch and spreading evenly to the

outside edges at some rate. To find that rate, it’s reasonable to measure the rate

of spread as a ratio of the intensity of the reaction (how hot the fire is burning)

over some function of density of fuel (as the fire will consume proximal fuels first

before spreading to neighboring fuels) and ambient heat. Where IR is the intensity

of the burn, ⇢b is the density of the fuel, absent of moisture in kg
m3 , Qig is ambient

heat, and " is a scaleless ’effective heating number’ - this spread is simply IR
⇢b"ig

.

What makes this problem more complex is that fire spread is directly

impacted by the slope on which the reaction is occurring and wind speed. This

complicates the problem because both slope and windspeed are ’orientation

sensitive’, that is, given a spread direction of interest, they have a differing effect

on the observed rate of spread.21 In addition, many fires burn in tree-stands

meaning a fire that begins by burning only underbrush can escalate in intensity

and eventually what is known as a ’crown fire’, where the tree canopy ignites in

21 Rothermel’s surface fire spread rate, which takes into account these factors, given a spread
direction, is very similar to the equation written above. Rrothermel can be calculated by using the
following Rrothermel =

IR⇠(1+⇥w+⇥s)
⇢b"Qig

where ⇠ is the propagating flux ratio, and ⇥w and ⇥s are windspeed
and slope respectively.
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a tree stand. Crown fires complicate analysis of fire spread for three reasons -

one, they occur at a different elevation and implicit slope than surface fires, and

therefore spread at different rates two, fires burning further from the ground

produce much higher rates of ’spotting’ – burning debris transported by wind and

rising heat, that can seed ’spot fires’ in non-neighboring regions Albini (1979),

and lastly, how crown fires have been modeled and understood is still limited,

more research needs to be done to understand how different tree species and

combinations of ground fuels change flame dynamics.

2.4.2 "Damages" from Wildfire. Understanding wildfire damage, as

with understanding wildfire itself, is challenging. Even the term ’damages’ is

misleading – wildfire can be, and often is, beneficial. This was an early learning

of the US forest service when, in 1960, it was discovered that not a single giant

sequoia tree had begun to grow in California since the turn of the century as a

direct result of hyper-aggressive early fire suppression strategies. This has led to

a changing of posture from one of damage-prevention to one of maximization

of net-value-change, or NVC, conditional on ignition. The description of this

change, and how it is included in policy to inform fire procedures is best described

in Scott, Thompson, and Calkin (2013). This change of focus to NVC has led

to increased uptake of the practice of ’prescribed fire’, where experienced fire

managers intentionally light fires to clear fuel and repair ecosystems that are out

of balance.

The complication this adds to analysis is that net value change is not only a

function of binary burned and unburned cells, but rather a complex weighting of

conditional damage plus benefit at every burn intensity level. Damage and benefit,

however, do not just come from local burn sources – crown fires that produce
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spotting can lead to damage to WUI property from a considerable distance.

They also can deposit higher densities of ash in local watersheds, poisoning

communities despite being nowhere near a flame.

This means a fire-manager is required to assess the conditions of a fire, how

likely the fire will enter more or less severe intensity states and how allowing a

fire to burn in new locations may increase the expected likelihood of negative NVC

in both adjacent and non-adjacent locations.

As discussed in Scott et al. (2013), and first directly estimated in Dillon

(2020), wildfire NVC risk is modeled as a discrete probability distribution over

damages to specific assets, as weighted by local decision makers within a decision-

making body. Where wg are locally determined weights of importance, BP is burn

probability, NVC is net value change, RIg is some metric of relative importance, RE

is a metric of relative extent,22 i indexes locations, and j indexes values at risk, risk

is defined as -

Risk ⌘ E(wgNVC) =
X

j

X

i

(BPi ⇤ NVCi j ⇤
RIg

RE
) (2.19)

However, fire managers rarely respond to the unconditional risk function

during a suppression action. They interact instead with a version of the above

function, conditional on specific time and ignition. Grouping these initial

conditions into variable ⇠, the conditional version of the above looks like -

E(Risk|⇠) ⌘ E(wgNVC|⇠) =
Z

⇠

X

j

X

i

(BPi,⇠ ⇤ NVCi, j,⇠ ⇤
RIg,⇠

REi,⇠
)

22 This is a unit-agnostic spatial measure constituting the area the value at risk occupies - this is
done to prevent overweighting certain amenities because they occupy a larger area than others, see
Scott et al. (2013) for more information. In this work, the units for this measure will be grid cells,
ie, 90 m2
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Where BP = P(i|⇠), NVC = P(NVCi, j|⇠, i)

This minor change allows for a reformulation of burn probability in cell c,

to

BPi ⌘
c=CY

c=1

P(BPc|pa(BPc, ⇠), ⇠)

.

This reformulation allows for a connection between the damages

from wildfire and spread. Spread of fire fronts can be modeled as a natural

process that potentially spreads between cells in a Moore neighborhood

on a grid, as shown in figure ??, with burn probability driven by Rrothermel.23

Figure 1. Visualization of the
Moore neighborhood

Cells in orange are burning,

those in red are potentially at

risk of igniting in period 2

Damage arises from the fire intensity, and thus

expected NVC from an action that lowers the

burn probability of cell c is

�BPc ⇤ wgNVCc ⇤
RIg

RE
+ E(Risk�c|�BPc)

Where risk is defined as seen in

equation ??. Clearly, the expected NVC of any

fire suppression action must depend in part on

variables that dictate fire spread, local priorities

as defined by the management region and the

set of values at risk during an incident. Thus,

optimal suppression effort must also depend

on a combination of the variables driving expected NVC, alongside variables that

23 This notably ignores spotting- but spotting can be incorporated by including canopy
information in the cell and creating a more complex interconnection between cells
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change the cost of that action, such as contracted price for the resource and how

many hours are required to achieve that outcome, which is a function of both the

type of resource being used and accessibility of the cell.

2.4.3 Property Valuation and Environmental Amenities. ’Hedonic’

valuation is a technique to estimate how product ’quality’ is valued by consumers

(in a revealed preference way) in any good, and is estimated by examining

how individual contributions of specific characteristics of some complex good

contribute to the whole of price. In economics, this approach was first popularized

as a mechanism to measure of changes in quality for automobiles in Griliches

(1961), but soon was adapted to be used to estimate factors in hedonic cost

models in Kain and Quigley (1970). The set up for such a model is modeled as

a regression between values or monthly rent on individual characteristics of the

home xi, including location, size, school quality etc. as well as changes in value

arising over time, t. Generally, this method attempts to identify utility changes

from marginal changes in some element xk 2 x through a nonparametric function,

Vt(x, t). Most commonly, the assumptions that go along with such an estimation

strategy come from one of two methodologies, either a ’correct adjustment set’, ie,

assuming the economist has chosen and included the correct set of controls x, or

from a first-differences strategy, where the assumption is that differences over the

time horizon of some natural experiment do not lead to systematic differences

in x. The usage of these types of models to estimate values for non-market

environmental assets has been prolific and ongoing, for instance, home views are

valued in Rodriguez and Sirmans (1994), forested landscapes , as in Poudyal,

Hodges, Fenderson, and Tarkington (2010), and general home siting (Heyman,

Law, and Berghauser Pont (2019)). Given the popularity of the methodology
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for natural asset valuation, and substantial significance of these results, property

values are clearly influenced by many of the natural factors that may differentially

affect fire suppression costs.

As an example, elevation, slope and aspect play a key role in determining

viewshed for a given location, and similarly drives other types of visibility graphs,

Turner, Doxa, O’Sullivan, and Penn (2001), which itself is capitalized into a

property as well as playing a role in fire spread. More relevantly, fire scars within

a viewshed have been shown to lead to lower property values, McCoy and Walsh

(2018). Collectively, these types of environmental assets associated with a home

are referred to as ’environmental amenities’ and can lead to changes in property

values. The legacy of this literature however leaves understanding what variables

contribute to property values appear to be a catch-all for anything that can

potentially vary in space. This feature of property price makes the problem of

understanding what role it plays in complex economic systems highly burdensome

on the econometrician to either have a compelling argument for the exclusion

of any feature, or by placing a heavy burden on some natural experiment’s

assumption of ’as good as random’ assignment.

What is often overlooked is the non-parametric relationship between

objective ’quality’ in an omniscient sense and ’price.’ An early attempt to address

the non-parametric nature is performed in a paper C. Mason and Quigley

(1996), which lays out how curvature of the utility curve for housing quality

drastically changes hedonic property valuation estimates, and uses a GAM to

attempt to understand the shape of this curve for each estimated component. If

anything is clear from the literature overall, it is that the functional mapping from

characteristics to price is anything but simple.
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The takeaway here is that to estimate how property prices directly

contribute to some outside valuation in absence of a well-proposed experiment, it

is very important that any components a consumer hypothetically may be willing

to pay for must be considered in the design.

2.5 Unbiasedness through Twin Vision Transformers

There has been an increase of interest in using ML to extract direct effects

in cases of complex causal systems. In particular, causal AI has begun exploring

in depth the usage of Doubly Robust, Double Machine Learning (DR/DML),

first described in Chernozhukov et al. (2018). Applications of the method have

been expanded in recent years, and allow for robust inference on causal effects

from discrete or continuous treatment effects Colangelo and Lee (2021) using

nearly any machine learning algorithm so long as it converges to the estimand, as

outlined in Chernozhukov, Newey, and Singh (2021). In the case of suppression

costs, this meta-learning method admits opportunities to use computer vision

techniques to learn extremely high-dimensional functions of controls in a doubly-

robust fashion, with the goal of weighting characteristics at important locations

to control for along some collection of potential fire spread paths, weighted by

probability of those fire paths occurring. The double robustness provides an

extra benefit, as it solves simultaneously for the treatment intensity score and

conditional outcome model, defined as

e(x) = P(property values|X = x, ignition) (2.20)

µ( f ire costs, x, property values) = E( f ire costs|X = x, property values, ignition)

(2.21)
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Where ?? is the treatment intensity score model and ?? is the conditional outcome

model and X is a vector of controls. If either model can be expected to converge,

than the doubly robust estimator is expected to converge.

As was outlined in section ??, fire spreads at a rate dictated by local

and adjacent fuels, weather and soil conditions along with fuel moisture. Fire

suppression choices on the other hand are a response to threatened assets, fire

intensity at the front of the fire and cost of available resources. The data that is

available and used by fire managers to make suppression decisions is exceptionally

dense and high-dimensional. This makes estimating fire suppression costs difficult

to estimate without conditioning the data on either the burned region or some

other kernel weighting scheme. In fact, most other studies either implicitly

condition on the kernel represented by the fire boundary or by fire-relevant

conditions found at the point of ignition. In truth, the kernel that maps the time

and spatially-varying environmental factors to a causally valid and sufficiently rich

prediction of suppression costs is highly fire and thus data-dependent. Further,

how the forest service simulates fire spread in real-world applications using the

FlamMap application is well understood, and is laid out sufficiently in Finney

(2006).24

D/DML, in this case, functions in a ’partially linear regression’

framework with a set of spatially-varying controls, X30km,i, continuous treatment

Property Values and outcome PerAcreS uppression (costs). There are two

equations in the partial linear regression system:

24 In general, fire simulation is analyzed using static environmental conditions with burn paths
being generated following a minimum travel time (MTT) fire spread model, which is incorporated
into the FlamMap simulation following Finney (2002). These minimum travel times can be used to
label Isochrome fire boundaries, the are within which is calculated and reported as total acreage.
Thus, functions of fuels, wind speed and direction as well as digital elevation model information
contain all of the variation required to learn the rules to generate conditional suppression costs.
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PerAcreS uppressioni = ✓Property Valuei,20km + f (Xi,30km) + vi (2.22)

Property Valuei,20km = g(Xi,30km) + "i (2.23)

This procedure admits any machine learning procedure to estimate the set

of nonlinearities in the system

⌘0 = { f (Xi,30km), g(Xi,30km)} (2.24)

Which will recover the correct parameter ✓ in a score system,  whose

Gateaux derivative vanishes when evaluated at the true parameter ✓, ie,

@⌘,g (Xi,30km, f si, pvi,20km; ✓, ⌘̂)[⌘0 � ⌘̂] = 0 (2.25)

This condition will be satisfied so long as ⌘̂ = {ĝ, f̂ } is well specified and

that Rg,R f , the mean square error convergence rates for the chosen learning

algorithms are sufficiently fast.25

However, in order to believe that the function of interest will produce

estimates that converge to ⌘0, it is necessary to outline how a vision transformer,

proposed and tested in Dosovitskiy et al. (2021), uses inputs to produce

predictions.

25 X. Chen and White (1999) has asymptotic results for neural networks, guaranteeing
sufficiently fast (better than n�

1
4 ) convergence if the goal is direct estimation of the conditional

mean parameterized by a neural network, which is more than sufficient for DDML. For certain sub-
classes of problem, this rate can be considerably faster. For more information, see Farrell, Liang,
and Misra (2021).
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2.5.1 Transformer. Transformers are a special form of neural network

originally proposed in Vaswani et al. (2017) to translate between languages in a

natural language framework, and have since been applied successfully in many

of the large-scale language generation models. Their success is in part due to the

ability to learn latent long-range context for words in text to successfully produce

a good translation. They do this by treating positional information as a weak

structure rather than a strict one, allowing the model to utilize ordering where

important and ignoring it when it is not. Traditional time series models impose

strong priors on the structure of the data- observations in t + 1 are generally

’more related’ to observations in t and t + 226 Instead, the model uses the inputs

themselves, words represented by large learned vector representations, to learn

whether ordering is important or not and in what way.27

They achieve this by utilizing a so-called attention framework. Attention is

a simple yet powerful way to learn data-dependent interconnections. It’s useful to

this work for the reader to understand the attention mechanism from an intuitive

standpoint. In the classic encoder, each word-vector representation is weighted

into three separate equal-length vectors with distinct uses: a query, a key and

a value. Each word uses its ’key’ vector to essentially advertise what content it

contains, and a ’query’ vector to search for keys (words in the text) that have

content that informs the meaning of the word producing the query. This is done by

simply performing a matrix multiplication of keys and queries and then converting

26 Of course, this structure can be defined more loosely, but in every case, very distant
observations are less related to the current period than more proximal ones

27 The words in the sentence "The child threw a rock at New York diner" have vastly different
meanings than "Rock diner threw a child at New York", but "The child threw a rock at diner in New
York" are roughly equivalent in meaning to the first.
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the resulting product into a probability distribution via the softmax function.28

Then, from that advertised key-query match weight, a sum of values weighted by

the distribution from the query key product is passed into a standard position-

wise feedforward layer. Positional information can be included either as a separate

dimension of the vector inputs, or included as some transformation of the vector

allowing the model to utilize order when it is helpful and ignore it when it is not.

Vision transformers use this strategy instead to learn data-dependent long-

distance dependencies in an image important to classification, by dividing an

image into equal-sized patches and using those patches in place of word vectors.

This approach is a departure from most computer vision frameworks that use

convolution neural networks, which require multiple layers of overlapping filters

to learn useful image-wide patterns in the data. This theoretically allows the

algorithm in a single layer to learn more distant relationships than those available

to a single convolution layer. This property of attention makes it very useful in

wildfire applications.

Models of wildfire spread, like the ones used by the forest service, are

latent sequences of currently-ignited cells, where cells at time t are determined

by what cells are actively burning in time t � 1, environmental conditions,

and type of fuel present in the cell. The issue is that a fire front at time t can

be simultaneously in very distant locations. This aspect can lead to varied

expected day-level-expenditures on fire suppression, even given identical cell-

level characteristics. If a fire manager is expected to protect location a at time t

and location b at time t + 10, the cost outcome to do so will be much different than

28 The softmax function, where z is a vector of inputs, produces a vector � where individual
entries are equal to �(z)i =

eziP
i ezi
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the case where a fire manager must protect location a and b simultaneously over a

10 day period.

2.5.2 Combining Minimum Travel Time, NVC and Transformer

Decoders. Transformers are one of many suitable neural models capable of

adjusting for spatial confounders in wildfire suppression costs.29 Using the

graphical framework of Bronstein, Bruna, Cohen, and Veličković (2021), The

attention mechanism can be thought of as learning an adjacency graph G(v, e),

which propagates ’signals’ ⇢ composed from vertex data xi along edges ei to all

other nodes v�i following the function

hu = '

0
BBBBB@xu,

X

v2V
a(xu, xv)⇢(xv)

1
CCCCCA (2.26)

Where a(xu, xv) 2 [0, 1]. This, importantly, is a permutation invariant

function, meaning, for permutation operator P

'

0
BBBBB@x1u,

X

v2V
a(x1u, xv)⇢(xv)

1
CCCCCA = '

0
BBBBB@x2u,

X

v2V
a(x2u, xv)⇢(xv)

1
CCCCCA ,8x1u 2 X and 8x2u 2 PX (2.27)

In other words, to the extent that positional information is important in X,

it must somehow be represented explicitly within the features of the node vectors

xu.

Logged, per-acre-costs are particularly suited to be accumulated in this

way by combining fire spread with E(NVC) for a given cell. Fire spread models

29 A sufficiently deep convolutional neural network may also be able to perform well on this
task, but would potentially risk losing long-range dependencies. Additionally, a message-passing
GCN with nodes aligning to points from a fire spread model and connections aligning to time steps
would also be able to control for some of the variation, but would require additional engineering
to allow for differential fire spread paths.
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are spatial graph frameworks, where each node is ’stateful’, taking on a value of

’ignited’ or ’not yet ignited’. From some initial set of ignited nodes and given burn

rate properties, time of fire arrival can be estimated for every node connected

to the initial set.30 This creates a graph whose connections are determined by

node data, specifically fuel model inputs, wind speed, wind direction, slope and

aspect which can be combined to produce Rothermel’s fire spread rate r for every

neighboring cell, as described in ??. This creates data-driven risk linkages between

nodes that occur through canopy-canopy and ground fire spread at the same

time. However, local information is required to determine if a canopy fire will

initiate - which is driven by the canopy base height as well as canopy density and

height. Furthermore, in the presence of a crown (or canopy) fire, long-range

connections on this unobserved ignition graph can be drawn that come from

’spotting’ behavior, or when wind blows embers over long distances and start new

ignitions far from the fire front. Importantly, the connections on both graphs are

entirely built based on node-characteristics and relative positional information.

Thus, the E(NVC) from a given action can be calculated by traversing,

conditional on ignition at cell i, ’future’ nodes along some expected fire spread

graph while summing across E(NVC). As was outlined in section 2.3.2, NVC

is a function of fire intensity, resources present, local governance’s weighting

of each resource, the probability of any given burn intensity and those factors’

interaction. Thus, positional information of homes in a wildland urban interface

alongside fuels, fuel conditions and any other Values at Risk (VAR) are necessary

controls for a fire cost model. This location-level E(NVC) can be compared to

expected suppression cost in the cell, which is a function of accessibility, terrain,

30 See Finney (2002) for more details
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available resources and weather conditions as was described in section 2.2. If

E(NVC) > cost, then a fire manager will likely undertake the action, incurring a

per-acre-cost.31

Thus, the minimum travel time graph structure can be modeled in a neural

network via the weighted graph structure in ??, where a link is instantiated as

a(xignited node, xtarget node), dependent on relative elevation between the two nodes,

fuel models and weather conditions, while effort required to suppress the fire’s

pathway is modeled by ⇢(xv). This graph structure is however not fixed - as a fire

manager may suppress one fire front

Importantly, E(NVC) can be viewed as an accumulation of elements,

each of which is a product of the probability of ignition and local values—each

functions of local cell conditions, accumulated along a graph linked by spread

dynamics. The unconditional, expected cost of suppression at a given location

is specified by a function of information present within the local cell, as well

as accessibility to that cell. In this way, expected total per-acre costs should be

calculable through a time-invariant adjacency graph where unobservable future

changes in weather or conditions enter as changes in node probabilities that

weight expected benefit of suppression, with connection presence determined

by the ’frozen’ values in X.

2.5.3 The adjustment model. To adjust for all other covariates that

drive changes in cost, two separate stacked decoders that loosely resembles

Compact Convolution Transformers laid out in Hassani et al. (2021) is built to

learn f and g from the beginning of this section. Beginning with a raster image,

sized 1001x1001x34 (see fig C1 for the input used for the CZU complex fire

31 These per-acre accumulations can be negative even in densely developed areas if the expected
growth of the fire is sufficiently large because log( cost

acre ) = log(cost) � log(acre)
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from August 202032) the model must transform the input into a sequence. The

model achieves this by condensing information into tokens by using a single-layer

convolution,33 reducing the height and width of the image, but increasing the

number of channels, to a final size of 500 ⇥ 500 ⇥ 110.

This image is then patched into a sequence of 2500 patches, as seen in

figure C2, where each patch is of size 10 ⇥ 10 ⇥ 110, as visualized in figure C3

and then each is flattened to a feature vector of size 11000 ⇥ 1. These vectors

are collapsed to a smaller 2870 features. Three attention modules, called ’heads’,

attend to these patch-level features using the key, query and value mechanism

described earlier, where each head is of size 3 ⇤ 490, for an inner-dimension of size

1470. 34 Within these heads, positional information is injected into the queries

and keys using the two dimensional rotary positional embedding technique

described in Su, Lu, Pan, Wen, and Liu (2021). 5 transformer-encoder blocks are

then stacked35 and passed to a linear activation that condenses the layer from

2870 to 574 (20% of the original dimension) where tabular non-spatial data

are concatenated to this vector, including regional coordination center the fire

manager reports to, resources currently deployed elsewhere and month of year.

This is passed through a fully connected layer 10% of the prior layer, followed by a

32 All figures in this document are contained in the appendix: for figures relevant to this chapter
see C

33 This convolution layer has a 6 ⇥ 6 kernel, with a stride of 1, and same padding to create a new
image with 110 channels. This new latent image is then passed through an adaptive max pooling
layer that produces a 500x500x110 latent image for use by the transformer.

34 Odd numbers in the shapes of internal dimensions are primarily a function of compute
resource limitations, particularly of graphical memory, which was limited in this case to 24 GB.

35 I exclude the residual connections and layer normalization in this description for brevity, but
they are included in the model

62



SeLU activation, followed by a fully connected layer which is then passed to a final

linear activation.36

To prevent the model overfitting, several transformations are performed.

Mix-up regularization, where inputs and outputs in each batch are occasionally

replaced with the convex combination of two inputs and the label replaced

with the corresponding output, with mixing probability ↵ generated according

to an alpha distribution as described in Zhang, Cisse, Dauphin, and Lopez-Paz

(2018). The maximum mixing level ↵ is set to be very low (10%), as perfect

mixes between inputs is likely to include corrupt information. This is the primary

mechanism to prevent overfit, but coarse dropout and shift/rotate transformations

are also applied to the training image pipeline. To prevent overfitting on the

tabular data, the first five epochs are trained on raster images only, with tabular

data replaced with randomly generated inputs.

Batch sizes are forced to be small due to the size of the inputs and the

limited graphical memory, so learning is done over 4 subsets of 5 in mini-

batches of size 20, using the pytorch implementation of the AdamW optimization

algorithm; engineered initially in Loshchilov and Hutter (2019), to guide updates

in the weights. This algorithm allows for ’true’ L2 regularization, which is

important for good behavior in a DDML estimate. A relatively slow learning rate

of 3.0 ⇥ 10�5 is used, with a weight-decay value of 2.5 ⇥ 10�6, and modulated

throughout training by a cosine annealing with warm restarts learning rate

scheduler, where restarts occur every 2000 steps, and the model is trained in total

for 155 epochs, where 5 of those epochs are raster-only.

36 This makes the model multi-modal.
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2.5.4 ’Causal’ Model. Verifying whether the engineering ’makes sense’

or not requires a documentation of assumptions. In general, this work takes the

approach of past works investigating the link of property value to suppression

cost—conditional independence. This is not to say that conditional independence

necessarily is satisfied in this case, but rather as a mechanism to validate past

estimates of the elasticity parameter.37 To fully select covariates to adjust for,

a comprehensive non-parametric causal structural model is built using studies

of wildfire spread done by the forest service, validated links describing how

amenities are affected by risk-associated variables and lastly, how suppression

resources are allocated to wildfires in the contiguous United States.

Achieving a causal estimate of our outcome amounts to combining all of

the models discussed, and identifying identified factors that may lead to non-

causal association. To keep them organized, they have been written out in table

E2.38 A graphical representation of this table is drawn, using the dagitty tool in

fig C6. This causal model’s pathways are well verified by the existing literature,

and as a whole represent a small step towards relaxing the typical assumption of

exogenous amenities and also include an added ’algorithmic bias’ pathway.

Returning to the introduction, the work laid out five potential associative

pathways that may influence the association between property value and

suppression costs. In the given causal model, they appear in separate pathways.

37 The core idea of this causal identification strategy being that either the conditional outcome
from treatment is causal, or that the treatment level assignment (treatment intensity model) is
causal.

38 All tables in this document are contained in the appendix: for tables relevant to this chapter
see D
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– Direct Path: This represents the ’direct effect’ of property value on

suppression costs. This can be seen in the pathway Property Values !

VAR! S trategic Concerns! Resource Assignments! Cost Per Acre

– The "Amenities" Path: This represents the association (potential) between

how amenities increase property values and simultaneously may be affected

by fuels, fire risk, etc.. This can be seen in the pathway Property Values  

Amenities  Fuels ! S trategic Concerns ! Resource Assignments !

Cost Per Acre. It also is represented by the path traveling through VAR:

Property Values  Amenities  In f rastructure/Public Values ! VAR !

S trategic Concerns! Resource Assignments! Cost Per Acre

– The Procedural Path: This represents how homeowners may choose locations

where it is more costly to defend because defense costliness is related

to amenities. This is represented by the pathway Property Values  

Amenities  In f rastructure ! S a f ety ! S trategic Concerns !

Resource Assignments! Cost Per Acre

– The "Model Loop" Path: This path represents how using property values

may distort fire managers’ objectives. This path is represented by

Property Values! S CI ! Budget ! Resource Assignments! Cost Per Acre

The most important way portion of this exercise is to identify a sufficient

control set to pass to the model from the prior subsection. In full, adjustment

for weather inputs (that may affect fire spread), fuels (local to property and

relevant for fires), Infrastructure that is protected/provides protection, such as

cell towers and roads, public resources, such as national parks/forest service land,

and property locations/population density. To fully describe these causal factors, a
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thorough and sufficient dataset to describe this minimal adjustment set is outlined

in the next section.

2.6 Data

The data for this study is partly spatial and partly tabular in nature, and

is gathered from several public-facing datasets. Dynamic panel data of resource

assignment to fires and complexes comes from a public store of updates from

IROC and local fire managers to IRWIN (Integrated Reporting of Wildland-Fire

Information) used to calculate total costs and number of burned acres, as well

as find the central location of the fire Wamack, Green, and Stringer (n.d.). This

data is updated every minute, though the values change only when fire managers

submit new information. That is, the frequency of changes is not constant, and

only some data is shown at a time. In addition, strategic information on assets

at risk as well as a forest service calculated accessibility layer that approximates

maximum movement speed in the United States come from the WFDSS (Wildfire

Decision Support System) WFDSS (n.d.). Weather data is gathered from both

the NARR/NCEP dataset - Mesinger et al. (2006), which is a gridded dataset of

meteorologic data with a resolution of 36x36 km and the CPC, which provides

information on drought conditions in an area for a given month from the same

source. Early fire location information comes from a combination of latitude and

longitude reported coordinates from the IRWIN database, but also regionally

located using the VIIRS fire satellite product, which consists of a 375 meter

resolution fire detection, alongside a measure of estimated ’intensity’ of burn

in the given cell, called Fire Radiative Power (FRP.) VIIRS Level 1 Processing

Group At Ocean SIPS (2017). Fuel models, elevation (and associated DEM

characteristics), Vegetation Cover are all sourced from the LANDFIRE 2019
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remapping of the 2016 data - inputs used actively to assess management choices

in wildfire decision scenarios used by fire managers and wildfire simulations to

understand and predict spread LANDFIRE (2019). Data on development come

from the National Land Cover Database, using the ’impermeable’ measure,

specifically that that has been linked to development Wickham, Stehman,

Sorenson, Gass, and Dewitz (2021). Lastly, a set of raster layers with a resolution

of 270x270, representing forest service models of probabilistic fire risk, generated

from repeated simulated fire seasons in 2016 are included as a proxy for expected

risk in a given location Short et al. (n.d.). These inputs include conditional flame

lengths, or the expected height of a flame, conditional on being ignited, and

seasonal burn probabilities from 2016. To limit the number of included layers,

a single raster layer created from the PAD shapefiles created in Prior-Magee et al.

(2020) is used to understand which areas are under environmental protection.

Lastly, a 100m resolution raster layer of disaggregated 2017 ACS US population

linked to Microsoft’s open source building dataset is created in Huang, Wang, Li,

and Ning (2020), and can be downloaded from Huang (2020). This allows for a

much finer grained understanding of where individuals live in the region around

the fire, without directly controlling for property values or directly adjusting for

individual homes. For an example of these data, see figure C1, which shows a

raster input for the CZU complex fire in 2020.

All fires reported through IRWIN occurring in the Contiguous United

States are included, so long as they grew to a size of greater than one acre,

have a reported final cost of greater than ten dollars. The LANDFIRE, WFDSS,

NARR, NLCD, Huang and Short raster layers are stacked to create a single CONUS
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strategic consideration set. From this large raster, a uniform 30 ⇥ 30 km39 study

area; unconditional on fire size, is assigned to each wildfire centered around the

point of ignition. This raster image is a 1001 ⇥ 1001 ⇥ 34 matrix, and is fed to the

transformer model discussed in section 2.4.

Data are split into 10 folds which each consist of roughly equally sized non-

overlapping training and validation/testing sets for both tabular and raster data,

linked by a common ID. In total, information about 1750 wildfires is included,

making training samples for each fold 1575 in size with 175 observations held out

for validation and analysis in the D/DML procedure. Each observation is linked

by a unique character string from the IRWIN database, labeled ’Irwin ID’ and to a

34 layer raster and tabular, non-spatial data. Raster data can be seen in table E1,

and tabular data used by the transformer are regional indicators 40 (GACC), along

with binary indicators for Initial Fire Strategy, month of year and the total number

of personnel assigned to other fires.

From the WFDSS, several other metrics are used in the linear regression

model that are unneccessary for the transformer but bring the linear model in line

with past estimation, namely, distance to Inventoried Roadless Areas, National

Recreation Areas, Class I Airsheds, Wilderness Designated Areas and Census

Designated Places. In addition to the distance metrics, binary indicators for fires

beginning inside of (I = 1) or outside of these regions (I = 0) are included.

For the transformer model, all inputs are normalized using the common

min-max normalization technique to be consistent with traditional computer

39 plus 30 meters for a center cell
40 As these metrics enter with more than one layer of weights, this work implicitly includes

interactions of these with the raster data
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vision inputs, leaving them to range from 0-1.41 To maintain coefficient

consistency across estimation methods, label variables, namely per-acre costs

and total property value are first logged, and then normalized to N(0, 1), by

first subtracting the training sample outcome mean from the value and dividing

by estimated training outcome standard deviation. This allows for a quick

transformation to recover predictions of logged per acre fire costs to allow for

a comparison of linear regression estimates of the conditional effect of interest

to the transformer’s predictions of those same estimates, without forcing the

transformer to perform in an environment for which it is not optimized.

A full set of descriptive statistics can be seen in table: E1. Additionally,

full correlation tables utilizing ⌧ non-parametric correlations are reported in C11.

Total fire suppression expenditure, broken down by management region and split

out by individual fire are available to be seen in C13i.

2.7 Results

2.7.1 Difference in estimated ATE of Property Value on Suppression

Costs. Performing the analysis, the results are fairly clear, the ‘causal’ effect of

property value on suppression costs per acre as described by the SCI and following

works is much smaller when using DDML to adjust for spatially varying covariates.

The estimate derived in this study implies a .06% increase in per acre suppression

costs for every 1% increase in property values within twenty kilometers, versus the

prior estimate of .11%. The point ignition values, using covariates derived from

Gebert et al. (2007), are significantly higher as well, with an estimate of the ACE

41 For rasters with known maximum and minimum, those layer-wide values are used, else
estimated minimum and maximum, generated through random sampling of points from the full
image, are used
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equal to a .16% increase in suppression costs for every 1% increase in property

values.42 Results can be seen in full in table E3.

Another benefit is that the DDML model, out of sample, significantly

improves fit over the in-sample reports from both this studies’ R2 and past

estimates’ R2 at a respectable .859, meaning roughly 86% of the variation in

wildfire per-acre expenditure is explained by the conditional outcome model and

property value. Though R2 is sensitive to over-inclusion of variables, it is not when

using out of sample R2, implying these models are indeed learning the majority of

the causal variation from the included variables.

However, we can visualize the mis-specification bias in the model by

examining the salience maps from the conditional outcome model and the

treatment intensity model. Though salience maps are not robust to adversarial

disturbance of the inputs, they do provide a good visualization as to how the

model is using spatial inputs. Using the CZU complex fire as an example, we

can see how each submodel learns variation to adjust for in f̂ and ĝ. This fire

resulted from a series of lightning strikes in the Western region of the south-San

Francisco Bay Area, in 2020. Many high-value homes were at risk, with a large

city-center in Cupertino to the Northeast. Winds were initially blowing from the

ocean in a North-east direction. In figure C7, there are several regions the model

’pays attention to’ that overlap in a way that is not easily controlled for by simply

including an average of the burned area/using ignition location controls. Looking

at the inputs in figure C1 and comparing them to the activation maps seen in C7,

the model is in both cases using inputs near small communities, as well as areas

with exceptionally low accessibility. This indicates that property values, and likely

42 This is higher than estimates found in Gebert et al. (2007), but not significantly so, as .11%
falls within the confidence interval for this estimate
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amenities in particular serve as good controls for nearby strategic concerns and

fire risk.

These point-estimates are also significantly lower than historic point

estimates from Gebert et al. (2007), which are roughly .11%.43 Results conditional

on being in the Western United States (common in the literature), despite a

significantly smaller sample size are smaller (though not significantly so) than

comparable point-ignition level estimates. It must be noted, that most analyses

implicitly condition on fire size by only including fires over a given acreage-

generally restricting observations to those fires over 100 acres. Though, given

the causal model, that potentially makes these estimates non-causal, to get a valid

comparison between past estimates of fire suppression costs per acre and these, a

conditional prediction should be evaluated.

2.7.2 Model Comparisons. Despite good out of sample performance

on the relatively simple predictive task of per-acre suppression cost, there is a

need for caution before adoption in the transformer-based SCI. Overall, there are

three main reasons for concern - first ease of adoption, second lack of quantile

predictions and third only having a single model across multiple agencies.

Importantly, fire managers over many years of experience with the WFDSS

and its cost predictions are simply used to working with the outputs of the original

stratified cost index—and its shortcomings. Given its usage for 13 years in the

forest service, the model outputs of the SCI cost estimate are very interpretable to

individuals who plan for fire actions. A fire manager or accountant can understand

when an environmental variable outside of the SCI’s consideration set will

43 In these early results, Western Region results do not necessarily reject the results from Gebert
et al. (2007), but as more predictions are produced I expect the confidence intervals to shrink
considerably.
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likely bias a cost estimate produced, either downward or upward, and thus can

articulate why the fire I manage may need more or less resources than the model

suggests. The ViT estimate; while having access to all spatial variation, may or

may not adequately condition on what the fire manager in question thinks is

important, and thus may lead to fire managers asking for more or less resources

than is efficient given it is less interpretable. Corrections for this could be made

by producing a salience map, but even then they are not fully able to capture the

discord between what the local expert thinks is important and what the model

does.

Second, current models, in addition to a traditional mse-based OLS

prediction produce quantile estimates (usually 25th and 75th percentiles) of per

acre costs based on estimates derived from extreme coefficient bounds. This

allows them to produce a model-consistent range of possible per-acre costs a fire

manager may face, and gives the manager considerable flexibility in requesting

resources. Doing this with the ViT-based model in its current form is not possible

because pixel-level coefficients do not come equipped with standard errors and

estimates produced therefore do not represent a distribution, rather, a single point

estimate of expected cost. This prevents fire managers from understanding what

an acceptable expense ’overage’ or ’deficiency’ is in context of these estimates. A

further model for deployment should likely utilize quantile loss; originally laid out

in Koenker and Hallock (2001), or a more modern version like that seen in Ben-

Or, Kolomenkin, and Shabat (2020) to similarly produce ranges of estimates for

per-acre costs.

Lastly, prediction power is only one of many concerns of a model in use

for fire suppression resource assignment. In practice, fire management in the
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US occurs across a complex tapestry of agencies, each with their own concerns

and priorities that should be weighted in the model. The SCI directly conditions

on these by building separate models for each agency and subdivisions within

those agencies.44 While the neural model of fire costs should be able to similarly

condition its predictions, it is not guaranteed to, and may underserve certain

groups and agencies in favor of ’better-fit’ elsewhere. A proper implementation

of this for public use should produce separate models for each agency and region

either by conditioning data to each area, or by finetuning some core ’backbone’

model on agency-specific data.

2.7.2.1 A note on implied efficiency. A reader who is versed in classical

microeconomics may question what implications the lack of correlation with

property values, when surely market value of property should serve as a good

signal for fire suppression effort. Answering the question of ’optimal suppression’

thoughtfully is very complex and is being investigated currently.45 To identify

what is optimal in a suppression context requires understanding not only the

full non-market value of resources at risk, but also how those non-market values

contribute in turn to market-based values of property.

The author therfore conditions the statement that the machine learning

model implies summed property value is not a factor in suppression choices by fire

managers; to: summed property value, conditional on all environmental amenities

and property location does not appear to have an effect on per-acre suppression

costs on average.

44 For instance, Eastern vs. Western United States GACC
45 see Plantinga et al. (2021) and ongoing, unpublished work by economist Josh Olsen for more

research on how property value factors into optimal suppression
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This is a much different statement than the one that implies property value

has no importance in fire suppression effort, rather, that it features minimally on

top of property presence/density and environmental amenities.

2.7.3 Evaluating the Conditional ATEs. Examining the trend of

P(Suppression Cost|X, Acres) as acres increase in figure C10, I find similar results

to those identified previously in the literature: the effect conditional on small

fires is noisy and high and the role of property value appears to decrease as

acreage increases. Mechanically, this makes sense, as our outcome is a decreasing

artificial function of acres- ln(Suppression Cost
Total Acreage ). One point of interest is to examine

the conditional estimates of property value to look for any evidence of the fourth

causal pathway - ie, the model-loop path. Exploiting the fact that cost-monitoring

is only available once a monitored fire exceeds 300 acres, we gain access to a

reasonable test for the existence and sign of such a path by using logic modified

from the familiar regression discontinuity design (RDD).

For fire i, the estimated effect of moving from class D to class E on manager

responsiveness to nearby property value under a standard non-parametric RDD

specification can be represented by examining a binary indicator D for treatment,

which toggles based on whether or not the final fire acreage falls above or below

the 300 acre threshold. The target estimand in potential outcomes notation then

is E[Y1 � Y0|Acres = 300,X] where Y1 is per acre costs when the fire is assigned (at

random) class E (the treatment), Y0 is per-acre-costs when the fire is assigned class

D.

Our problem reduces to a relatively simple case when our running variable;

’acres’, is a continuous variable that satisfies:
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(2.28)

Yi = P(↵ + ⌧D + �1(Xi,1 � c) + �2D(Xi,1 � c) + "i|Xi,2)

D = 1 () Xi,1 > c, Xi,1 ⌘ acres, Xi,2 ⌘ log(total property value), c ⌘ 300 acres
(2.29)

Where ⌧ represents the quantity of interest, and can be interpreted as

the percent change However, our so-called ’running variable’; acres, is likely a

potential outcome of suppression effort which we indirectly measure through per-

acre cost.

However, the effect appears to decrease quickly up to fires with total

acreages earning a classification of ’D’, after which the estimated "causal" effects

increase slightly and stabilize. This cutoff is more meaningful than it appears

however, as WFDSS forecasts of total suppression costs that all fire managers have

access to are only provided to managers overseeing fires larger than class D (fires

greater than 300 acres.) The difference between class D fires and fires of size class

C and larger is statistically significant (as can be seen in figure C9), providing

some evidence that the ’SCI’ causal pathway is in fact meaningful, and appears

to exert some upward pressure on per acre suppression expenditures. Estimates

of total property value on per-acre-costs when restricting our sample to fires >

100 acres in size are .048, with an upper bound on the 95% confidence interval

of approximately 0.10. This rejects the hypothesis that the coefficients from the

nonlinear system are identical to the coefficients in past studies or those in the

replicated OLS system.
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Further evidence of the ’monitored’ effect comes in the form of correlation

between actual estimated final costs and total property value. Estimates produced

by the approach described in section 2.4 are less than 1
4 as correlated to total

nearby property value as published estimates of final costs.46 Even though the

work did not set out to produce a less biased estimator, using causal foundations

for the estimate appears to have produced that result.

The estimated value for ✓—logged property value’s affect on logged per-

acre suppression costs, also varies across management regions, which can be

seen in C5. Only the coordination regions covering California (ONCC and OSCC),

the Southwestern United States (SWCC) and the Rocky Mountains (RMCC) have

coefficients that are distinguishable from 0. However, these regions also represent

four of the top five47 largest coordination regions by suppression spending for the

2020 and 2021 seasons, as is seen in figure C13i.

In general, though the conditional effects do not alone validate the model,

they do seem to provide evidence in support of assumptions made in the structural

causal model, even those that are not included in the underlying learning model.

2.8 Conclusion

Accurately estimating fire suppression costs for fire managers has been

a stated goal of the forest service for 15 years, and much work has been done

trying to produce good causal estimates. These estimates of the ACE, without

carefully controlling for spatial variation in the covariates, appear to be positively

biased. This result is quite important for the forecasting community, however,

46 Neither estimate is strongly correlated, however-WFDSS produces a forecast that has a
coefficient of .05 and transformed estimates (from logged per-acre to total-suppression of the
predictions produced by this paper produce a coefficient of .009

47 The Pacific Northwest (NWCC) spent more on wildfires in this time frame than the Southwest
region (SWCC)
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as forecasters appear to have introduced an algorithmic bias for fires occurring

near masses of expensive property. There does appear to be some attempt to

de-correlate the measure of estimated cost from property values, as estimated

final costs are only very weakly correlated with nearby property value, but there

still appears to be some distortionary effect that occurs once fires are eligible for

monitoring.

Though property value has served as a very good proxy for nearby risk to

structures, it is not necessarily a good covariate to include when trying to produce

good predictions, and one can produce extremely good results without relying

on those values. The cost of including the value of privately owned land in a

model is that Using computer vision techniques developed in the last two years,

this work can produce more accurate and less stilted towards property value

estimates of final cost - potentially alleviating an increasing concern of unequal

cost assignment in fire suppression expenditure.

There is much room for future work-on the algorithmic front, optimizations

in network architecture to fully make use of the wildfire communities knowledge

base and restrict the solution space of the model to something more restrictive

than a transformer’s may boost performance. Additionally, there is much room to

decrease the noise on predictions and potentially find more accurate estimates of

conditional effects.
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APPENDIX A

CH 1 FIGURE APPENDIX
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Figure A4. Predictions vs. estimation: Comparing cross-validated prediction
performance with bias in random-forest-based 2SLS

(i) In- and out-of-sample MSE for predictions of x
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Figure A6. Explaining unrestricted/narrow neural networks’ bimodal distributions
of �̂

(i) Comparing bias in �̂: Approximately
linear (no hidden layers) vs. ‘deeper’ neural
networks
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The y axis of Panel a depicts the second-stage estimate �̂, and the x axis represents the depths of
the cross-validated neural networks. “Depth 1” implies no hidden layers—directly linking the input
and output (approximating linear regression). Horizontal line segments in a connect the two
possible depths that the model chose between. The solid dot marks the chosen depth (by cross
validation). 84



Figure A7. Distributions of estimates under heterogenous treatment effects

This figure illustrates the densities of the estimates from 500 simulations of the scenario outlined in E.3. Only 2SLS is used in this case as a
comparison against an XGboost-based first stage, cross fit on two folds and linearized as described in J. Chen et al. (2020). 7 instruments are
used, with a �(.5, 4) distributed coefficient shared between all 7.
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Table A1. Simulation results: Mean and standard deviation for methods and
DGPs

Low-complexity case High-complexity cases

7 strong instruments 100 mixed instruments
(A) (B) (C) (D)

Naive OLS 1.038 1.335 1.334 1.223
(0.007) (0.020) (0.019) (0.046)

First stage: OLS 1.000 1.058 1.056 1.023
(0.007) (0.040) (0.039) (0.042)

LIML (Fuller) 1.000 1.000 0.998 1.000
(0.008) (0.044) (0.043) (0.043)

Split-sample IV 1.001 1.062 1.060 1.025
(0.007) (0.041) (0.040) (0.043)

Jackknife IV (JIVE) 1.000 0.998 0.996 1.000
(0.017) (0.044) (0.044) (0.044)

First stage: PCA 1.000 1.032 1.026 1.016
(0.007) (0.042) (0.041) (0.045)

First stage: Post-Lasso selection 1.000 1.026 1.023 1.013
(0.007) (0.044) (0.042) (0.042)

First stage: Lasso 1.007 1.100 1.098 1.042
(0.007) (0.045) (0.045) (0.045)

First stage: Neural net 1.008 1.215 1.209 1.110
(0.029) (0.180) (0.176) (0.105)

First stage: Neural net, shallow 1.002 1.069 1.065 1.030
(0.018) (0.066) (0.067) (0.049)

First stage: Neural net, narrow 1.008 1.213 1.210 1.100
(0.027) (0.183) (0.185) (0.103)

First stage: Boosted trees 1.008 1.254 1.255 1.121
(0.007) (0.041) (0.039) (0.047)

First stage: Random forest, CV 1.071 1.562 1.563 1.316
(0.008) (0.033) (0.034) (0.058)

This table provides the means and standard deviations of the distributions illustrated in
Figure A2. Each column contains a separate DGP: (a) contains the low-complexity DGP
with 7 (equally) strong instruments; (b)–(d) contain the three high-complexity cases with
100 instruments of mixed strengths. Rows differ by estimator. For each DGP-estimator
combination, we summarize the estimates for the parameter of interest (�) across 1,000
iterations using a mean and standard deviation (the standard deviation is in parentheses).
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Table A2. Simulation results: Decomposing bias components (means from
simulation)

Bias components

(a + b)c a b c
Estimator Bias Cov(x̂, e) Cov(x̂, u) 1/Var(x̂) Var(x̂) Var(x) Cov(x, x̂) Corr(x, x̂) Cov(x, u)

Panel A DGP: Low-complexity case
Naive OLS 0.04 0 1.01 0.04 26.41 26.41 26.41 1 1.01
First stage: OLS 0 0 0.01 0.04 25.41 26.41 25.41 0.98 1.01
Split-sample IV 0 0 0.02 0.04 25.42 26.41 25.42 0.98 1.01
Jackknife IV (JIVE) 0 0 0.01 0.05 20.76 21.74 20.76 0.98 1.01
First stage: PCA 0 0 0.01 0.04 25.41 26.41 25.41 0.98 1.01
First stage: Post-Lasso selection 0 0 0.01 0.04 25.41 26.41 25.41 0.98 1.01
First stage: Lasso selection 0.01 0.17 0.01 0.04 25.08 26.41 25.25 0.98 1.01
First stage: Neural net 0.01 0.1 0.05 0.05 20.52 21.67 20.61 0.98 0.99
First stage: Neural net, narrow 0.01 0.09 0.04 0.05 20.52 21.67 20.61 0.98 0.99
First stage: Neural net, shallow 0 0 0.03 0.05 20.71 21.67 20.71 0.98 0.99
First stage: Boosted trees 0.01 0.01 0.2 0.04 25.51 26.41 25.52 0.98 1.01
First stage: Random forest, CV 0.07 1.08 0.62 0.04 24.01 26.41 25.09 1 1.01

Panel B DGP: High-complexity case 1
Naive OLS 0.22 0 0.15 1.56 0.64 0.64 0.64 1 0.15
First stage: OLS 0.02 0 0.01 1.77 0.56 0.64 0.56 0.94 0.15
Split-sample IV 0.03 0 0.01 1.79 0.56 0.64 0.56 0.93 0.15
Jackknife IV (JIVE) 0 0 0 1.77 0.57 0.65 0.57 0.94 0.15
First stage: PCA 0.02 0 0.01 2.02 0.5 0.64 0.5 0.88 0.15
First stage: Post-Lasso selection 0.01 0 0.01 1.79 0.56 0.64 0.56 0.93 0.15
First stage: Lasso selection 0.04 0.02 0 1.92 0.52 0.64 0.54 0.93 0.15
First stage: Neural net, shallow 0.03 0 0.02 1.77 0.57 0.64 0.57 0.94 0.15
First stage: Neural net, narrow 0.1 0.01 0.05 1.75 0.57 0.64 0.58 0.96 0.15
First stage: Neural net 0.11 0.01 0.06 1.74 0.58 0.64 0.58 0.96 0.15
First stage: Boosted trees 0.12 0.03 0.04 1.91 0.52 0.65 0.55 0.95 0.15
First stage: Random forest, CV 0.32 0.06 0.09 2.04 0.49 0.65 0.56 0.99 0.15

Panel C DGP: High-complexity case 2
Naive OLS 0.33 0 0.35 0.95 1.06 1.06 1.06 1 0.35
First stage: OLS 0.06 0 0.03 1.66 0.6 1.06 0.6 0.76 0.35
Split-sample IV 0.06 0 0.03 1.76 0.57 1.06 0.57 0.73 0.35
Jackknife IV (JIVE) 0 0 0 1.65 0.61 1.06 0.61 0.76 0.35
First stage: PCA 0.03 0 0.02 1.75 0.57 1.06 0.57 0.74 0.35
First stage: Post-Lasso selection 0.02 0 0.01 1.75 0.57 1.06 0.57 0.74 0.35
First stage: Lasso selection 0.1 0.04 0.01 2.11 0.48 1.06 0.52 0.73 0.35
First stage: Neural net 0.21 0.03 0.13 1.49 0.7 1.06 0.73 0.84 0.35
First stage: Neural net, narrow 0.21 0.04 0.12 1.52 0.68 1.06 0.71 0.84 0.35
First stage: Neural net, shallow 0.06 0 0.04 1.63 0.62 1.06 0.62 0.76 0.35
First stage: Boosted trees 0.25 0.07 0.07 1.83 0.55 1.06 0.62 0.81 0.36
First stage: Random forest, CV 0.56 0.16 0.22 1.51 0.66 1.06 0.82 0.98 0.35

Panel D DGP: High-complexity case 3
Naive OLS 0.34 0 0.35 0.95 1.06 1.06 1.06 1 0.35
First stage: OLS 0.06 0 0.04 1.66 0.61 1.06 0.61 0.76 0.35
Split-sample IV 0.06 0 0.04 1.76 0.57 1.06 0.57 0.73 0.35
Jackknife IV (JIVE) 0 0 0 1.64 0.61 1.06 0.61 0.76 0.36
First stage: PCA 0.03 0 0.02 1.76 0.57 1.06 0.57 0.73 0.35
First stage: Post-Lasso selection 0.03 0 0.02 1.74 0.58 1.06 0.58 0.74 0.35
First stage: Lasso selection 0.1 0.04 0.01 2.1 0.48 1.06 0.52 0.73 0.35
First stage: Neural net 0.22 0.03 0.13 1.49 0.69 1.06 0.73 0.84 0.36
First stage: Neural net, narrow 0.21 0.04 0.12 1.53 0.67 1.06 0.71 0.84 0.36
First stage: Neural net, shallow 0.07 0 0.05 1.63 0.62 1.06 0.62 0.76 0.36
First stage: Boosted trees 0.25 0.07 0.07 1.83 0.55 1.06 0.62 0.81 0.36
First stage: Random forest, CV 0.56 0.16 0.22 1.51 0.66 1.06 0.82 0.98 0.35

A cell’s value provides the given statistic’s mean (column) in 1,000 iterations of the given
combination of DGP (Panel) and estimator (row). We omit LIML as it is not a two-stage
method and thus does not produce x̂.
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Figure C1. Example Spatial Input for Transformer: CZU Complex Fire 30 ⇥ 30 km
An example input (OOS) that is used for a ViT model. This input is centered at the

reported ignition location, though early (pre-response) VIIRS detections are
included as a separate raster layer to help correct for incorrect ignition locations.

It is not possible to visualize all rasters, so the image is a sample of layers
available to the model. In particular, the viridis scale coloring is a hillshade DEM

model using a 30x30 elevation raster, the red color layer is the NLCD Impermeable
measure representing development, and the greens (black - light green) represent
travel times for resources in the area where light green is the slowest speed and

no shading represents as-fast-as-highway travel.
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Figure C2. Example Spatial Input for Transformer, with Cut Lines
An example input (OOS) that is used for a ViT model. Lines drawn are where a
single ’token’s’ bounds lie, with each square roughly corresponding to a single

observation in some latent sequence. By weighting values in these rectangles and
using relative placement of the token, the model is able to learn context-inclusive
information about risk to structures and suppressability within a given location.

This input is centered at the reported ignition location, though early
(pre-response) VIIRS detections are included as a separate raster layer to help

correct for incorrect ignition locations. Not all layers can be effectively visualized,
so this is a sample of layers avaialble to the model. In particular, the viridis scale is

a hillshade DEM model using a 30x30 elevation raster, the red color layer is the
NLCD Impermeable measure representing development, and the greens (black -
light green) represent travel times for resources in the area where light green is

the slowest speed and no shading represents as-fast-as-highway travel.
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Figure C3. Example Single Patch Inputs 3 ⇥ 3 km
A single token’s range of focus. This input is 9 separate sections of image from

figure C2 that cover a 3x3 km area, represent a single token’s focus area, and can
be found spread around the image in that figure. Not all layers can be effectively
visualized, so this is a sample of layers available to the model. In particular, the

viridis scale is a hillshade DEM model using a 30x30 elevation raster, the red color
layer is the NLCD Impermeable measure representing development, and the

greens (black - light green) represent travel times for resources in the area where
light green is the slowest speed and no shading represents as-fast-as-highway

travel.
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Figure C5. Regional Estimates of
✓ : Conditional Estimates of Elasticity with Respect to Property Value

Top: Shown are predictions derived from the ViT model of per-acre suppression cost against true
value of per acre suppression cost. Bottom:Estimates of �g in nonlinear system, where g represents

what coordination region the fire occurred in.
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Figure C6. SCM: Property Value’s Effect on Fire Suppression
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Figure C7. SCM: Property Value’s Effect on Fire Suppression

Out of sample ’saliency’ maps for each model. Saliency maps identify which pixels receive the largest share of total
"attention" across all 34 input dimensions. Brighter colors represent pixels where attention is paid, whereas black

pixels represents relatively less attention being paid. Bar charts are gradients for the tabular inputs, and can be seen
as a ’feature’ importance, independent of the actual values of those features, but conditional on the values of the

images. IE: IF this fire was seen in the southwest, region (GACC: SWCC), predictions for costs would be substantially
different than if this fire were observed in the Northwest Region, NWCC. Left: property values transformer model,

Right: fire suppression costs per acre transformer model.
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Figure C8. Train/Validation Loss for Twin Transformers

Training/Validation loss for Each Transformer, as seen in fold 1, across 155 epochs. Top: data on fire suppression
costs, bottom: data on total property value. The blue line tracks in-sample, training loss while the orange line tracks

out-of-sample validation loss
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Figure C9. Effects of Property Value on Suppression Costs, Conditioned on Monitoring

Estimates of �c in nonlinear system, where c represents whether the wildfire qualifies for cost-monitoring in WFDSS,
as determined by class (and therefore size) of fire. Given the estimates themselves are conditional on acres, these

cannot be thought of as truly ’causal’, but given the assumption of conditional ignorability, this represents a significant
effect.
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Figure C10. Conditional Effects of Property Value on Fires of Differing Sizes

Estimates of �c in nonlinear system, where c represents wildfire size, by class.
Given the estimates themselves are conditional on acres, these cannot be thought

of as truly ’causal’. Green rectangle highlights the classes of wildfires that are
eligible for cost monitoring
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Figure C11. ⌧ Correlation A: Non-Parametric Correlations Between Predictor Variables and Economic Variables of
Interest

(i) Correlation Map - Full Variable Set Point of Ignition
(ii) Correlation Map - Property Value/Income Variables Point

of Ignition

This figure shows the Kendall ⌧ correlation values for differing subsets of variables and predictions. Included are variables that are
represented in traditional SCI cost estimates, such as property value but also covariates of interest such as total income within 5 and 20

kilometers.
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Figure C12. ⌧ Correlation B: Non-Parametric Correlations Between Predictor Variables

(i) Correlation Map - Locational Information Point of Ignition
(ii) Correlation Map - Fuel Model Variables Point of Ignition

This figure shows the Kendall ⌧ correlation values for predictor variables used in wildfire cost and spread prediction and the ViT cost
predictions
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Figure C13. Regional Statistics: Coordination-Center Level Figures

(i) Regional Expenditures broken out by incident and
management region

(ii) Conditional Estimates of ✓
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Figure C14. Integrated Gradients: Holiday Farm Fire

All images are compared against the baseline that consists of the ’average‘ image.
top left: Full attribution image, focusing on elevation (blue), NLCD

Imperviousness measure (red), and forest/fuel disturbance (green) top right:
Cougar Dam gets highlighted, as well as roads near the resevoir, but dam itself is
not. bottom left: Focus on Blue River, OR. mid right: recent logged patches to
the north of Blue River are highlighted when within the burn perimeter. bottom

right: Point of ignition - power station nearby is highlighted, as is the rising
elevation in the direction away from the wind, but not on the east side of ignition.
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Figure C15. Integrated Gradients: Silverado Wildfire

All images are compared against the baseline that consists of the ’average‘ image.
bottom left: Full attribuition image, with focuses on NLCD Imperviousness (red),

burn probability (green) and aspect (blue). top left: Rattlesnake Canyon Dam
receiving an abnormally high local downweighting of Aspect - an identifier of

man-made structure being a sudden change from 0 (no facing) to East Facing. top
left: High burn probability gets highlighted when adjacent to likely suppression

resouces, in this case, the fire reservoir. bottom right: Model uses aspect to
identify the hill - a landfill where harmful gasses can often be ignited and

complicate suppression efforts.
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Figure C16. Compact Convolutional Multimodal Transformer

Diagrammatic illustration of the modified vision transformer.
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Table E1. Data and Descriptive Statistics

Variable Name Mean Maximum Minimum Std.Dev Source
Raster Data| - - - - -
Aspect, (degrees) 103.76 359 -1 117.61 Landfire
Elevation (meters) 757 14505 -282 728.59 Landfire
Slope (percent) .1531 1 0 .1876 Calculated
Distance From
Ignition, Normed
0-1

- 1 0 - IRWIN
database
(Calculated)

Vegetation Departure
(percent)

63.54 100 0 32.08 Landfire

Existing Vegetation
Cover (discrete)

179.38 399 11 111.15 Landfire

Forest Canopy Height
(meters)

58.86 510 0 92.28 Landfire

Forest Canopy Bulk
Density (100kg

m3 )
2.55 45 0 5.76 Landfire

Forest Canopy Base
Height (meters)

3.70 100 0 9.49 Landfire

Forest Canopy Cover
(percentage points)

18.71 100 0 29.13 Landfire

Fuel Vegetation
Cover (binned)

93.45 172 11 34.05 Landfire

Fuel Vegetation
Height (meters)

397.75 651 11 233.03 Landfire

Fuel Disturbance
(percent)

13.45 633 0 75.83 Landfire

Continued on next page
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Table E1 – continued from previous page
Variable Name Mean Maximum Minimum Std.Dev Source

Scott and Burgan
Fire Behavior Fuel
Model (40 classes)

125.88 204 91 34.95 Landfire

2019 Impervious
Surface
Conterminous United
States

.939 127 0 7.03 NLCD

Population Grid
(2017)

8.30 9902 0 3.41 Huang
Population
Product

Communication
Towers (rasterized
binary mask)

.133 1 0 .3405 WFDSS

Response Time
(Categorical)

2.82 7 0 1.21 WFDSS

Privately Owned
Land

.9 1 0 .0459 WFDSS

Conditional Flame
Length, Class 1-6
(percent)~

- 1 0 - Short et
al. Dataset
(2020)

Unconditional Burn
Probability

.006 1 0 .0087 Short et
al. Dataset
(2020)

Protected Areas Mask .035 1 0 .0099 PAD
Fire Radiative Power
(FRP), kW

.1644 1317.6 0 5.103 VIIRS
(NASA)

Continued on next page
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Table E1 – continued from previous page
Variable Name Mean Maximum Minimum Std.Dev Source

Climate/Weather
Rasters|

- - - - -

Soil Moisture (ml) 273.7 688.70 0 174.7 NOAA/
Gridmet

Daily Max
Temperature
(Celsius)

27.53 43.26 -7.61 7.735 NOAA/
Gridmet

Monthly Moisture
Anomaly

-29.28 157 -251 39.62 National
Weather
Service
(CPC)

Precipitation Rate
(Past Week, 86,400m

day )
<.0001 .0012 0 .0001 NOAA/

Gridmet
10m Wind Speed
(m/s)

.0321 .1304 0 .0190 NOAA/
Gridmet

10m Wind Direction
(normalized degrees)

.460 1 0 .3125 NOAA/
Gridmet

Mean vapor pressure
deficit

1.53 9.83 0 0.09 Gridmet

Fuel Moisture (100
hr)

17.61 .28 33.2 21.9 Gridmet

Energy Release
Component (BTU)

50.836 0 131.85 24 Gridmet

Resource/Tabular
Data

- - - - -

Continued on next page
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Table E1 – continued from previous page
Variable Name Mean Maximum Minimum Std.Dev Source

Burned Acres 5982.3 589,835 1.2 29,794.7 IRWIN
Database

Logged Final Cost
ln( cost

acre )
4.722 12.23 -1.576 2.151 IRWIN

Database
(Calculated)

Final Cost (Total)
(1000s)

2,012.7 193,000.0 .17625 10,893.4 IRWIN
Database

GACC (Regional
Indicators)~

- 1 0 - IRWIN
Database

Point of Ignition - - - - IRWIN
Database

Logged Total
Property value,
20 km

19.58 25.00 0.00 2.69 Census CPS

Total Property value,
20 km (1000s)

1,879,436.8 71,734,696 0.00 4,844,174.5 Census CPS

Logged Total
Property value, 5
km

13.28 21.44 0.00 6.38 Census CPS

Total Property value,
5 km (1000s)

55,888.4 2,049,296.7 0.00 176,732.5 Census CPS

Total Personnel
Assigned to Other
Fires at time of
Ignition

2806.64 8921 3.0 2817.4 IRWIN
Database
(Calculated)

Initial Fire Strategy
(Point Protect)

.02 1 0 0.101 IRWIN
Database

Continued on next page
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Table E1 – continued from previous page
Variable Name Mean Maximum Minimum Std.Dev Source

Initial Fire Strategy
(Full Suppression)

.90 1 0 0.49 IRWIN
Database

Initial Fire Strategy
(Monitor)

.037 1 0 0.13 IRWIN
Database

Initial Fire Strategy
(Confine)

.0319 1 0 0.12 IRWIN
Database

Ignited in
Inventoried Roadless
Area (IRA) WFDSS

0.001 1 0 .034 WFDSS

Ignited in National
Recreation Area
(NatRec) WFDSS

.001 1 0 .034 WFDSS

Ignited in Class I
Airshed

.029 1 0 .163 WFDSS

Ignited in Wilderness
Area

.0606 1 0 .2386 WFDSS

Distance to Class I
Airshed (km)

117.7 595.9 0 96.0 WFDSS

Distance to National
Recreation Area
(distNatRec) (km)

328.6 1,079.1 0 227.9 WFDSS

Distance to
Inventoried Roadless
Area (distIRA) (km)

89.2 544.6 0 100.0 WFDSS

Distance to
Wilderness Area
(km)

65.2 401.9 65.2 76.0 WFDSS

Continued on next page
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Table E1 – continued from previous page
Variable Name Mean Maximum Minimum Std.Dev Source

Distance to Census
Desginated Place
(km)

11.9 79.1 0 11.4 NHGIS

|: Raster data summary statistics are estimated through random sampling
where values are not included in raster metadata.
~: Collection of values with ranges defined by row
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Table E2. Causal Equations

Outcome Name Function Source
Private Property (PP) f1(Am, Characteristics) 1, 2, 3, 4, 5
Amenities (Am) f2(Public Values, Infrastructure,Topography,wth, Fuels) 1, 2, 3, 4, 5, 23
Weather (wth) f3(wind, precipitation, soil/fuel moisture) 27, Assumed
fuels f4(soil/fuel moisture, logging, regional ecosystem, property locations) 12, 13, 14, 19, 24, 27,

6, 7, 8
Values at Risk(VAR) f5(Infrastructure,Public Resources,PP) 16, 9, 10, 12, 13, 21,

22, 23, 26, 27
BurnIntensity(BI) f6(fuels, topography,wind, precipitation,Historic Wild f ire) 12, 13, 14, 15, 18, 22 ,

25, 27
Strategic Concerns (SC) f7(fuels, soil/fuel moisture,wind, precipitation,VAR, sa f ety,GACC, BI) 6, 7, 8, 9, 10, 11, 12,

13, 16, 17,18, 21
Stratified Cost Index (SCI) f8(weather, acres,VAR, topography,GACC, fuels) 9, 6
Initial Response Acres (ra) f9(fuels, topography,wth, f pr) 13, 14, 15
Initial Response Perimeter
(fpr)

f10(ra, topography, fuels) 13, 14, 15

Final Acres (fa) f11(ra, f pr, f f p, ra f ) 13, 14, 15, 9
Final Fire Perimeter (ffp) f12(ra, f pr, ra f , f a) 13, 14, 15, 9
Historic Fire Suppression (hfs) f13(Historic Wild f ire,Historic Logging,GACC) 11, 24, 25, 22
Logging(l) f13(fuels,Historic Logging,GACC) 11, 21
Resources Assigned to Fire (raf) f14(S C,Contract Price, Budget) 7, 16, 23
Cost Per Acre (cpa) f14(raf,Contract Price) 7, 9, 10, 16, 22
Budget f15(S CI,Acres, S C) 8, 9
Contract Price f17(GACC,Year) 6, 26
Safety f18(Topography, BI,wth) 23

Continued on next page
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Table E2 – continued from previous page
Outcome Name Function Source

Italic Variable: Unobserved
Non-Italic Variable: Observed

green: Treatment
blue: Outcome

1: Poudyal et al. (2010), 2: C. Mason and Quigley (1996), 3: Kain and Quigley (1970), 4: Rodriguez and Sirmans (1994)
5: Heyman et al. (2019), 6: Hand et al. (2016), 7: Hand et al. (2014a)

8: Hand et al. (2014b)
9: Gebert et al. (2007), 10: Gebert and Black (2012), 11: Busenberg (2004)

12: Alexander and Cruz (2013), 13: Finney (2002), 14: Rothermel (1972), 15: Rothermel (1983), 16: Scott et al. (2013)
17: Thompson, Calkin, Finney, Gebert, and Hand (2013)

18: Thompson et al. (2015)
19: Marlon et al. (2012), 20: Martin and Hillen (2016)

21: Jin et al. (2015), 22: Buma, Weiss, Hayes, and Lucash (2020)
23: Bayham and Yoder (2020), 24: Wibbenmeyer and Robertson (2021), 25: Marchal et al. (2017), 26: Gorte and Economics (2013)

27: Boychuk, Braun, Kulperger, Krougly, and Stanford (2008)
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Table E3. Results: All Fire Sizes

Data Set All GACC Regions Western Region Eastern Region

Variable D/DML Point Ignition Data, OLS D/DML Point Ignition Data, OLS D/DML Point Ignition Data, OLS

log(total property value) 0.0114 0.1603*** 0.0101 0.1974*** 0.0337
(standard errors) (0.036) (0.034) (0.039) (0.04) (0.044) (0.069)

(lower bound, upper bound) (-0.041, 0.056) (0.103, 0.220) (-0.067, 0.075) (0.120, 0.275) (-0.11, 0.12) (-0.166, 0.099)

N 1750 1750 931 931 770 770
R2 (IS) .93 .398 .93 .47 .93 .21

R2 (OOS) .859 0.003 .859 0.010 .859 -0.10
R2 (OOS, SCI Baseline) .56 -.25 .22 -.2 .34 -.4

Controls Used
Aspect/Slope/Elevation X X X X X X

Forest Service Spread Model Controls X X X X X X
Private Property X X X X X X

Fuel Model Fixed Effects X X X X X X
LANDFIRE data X X X X X X

Resources Currently Deployed Elsewhere X X X X X X
GACC Fixed Effects X X X X X X

NARR/Gridmet weather variables X X X X X X
Total Impacted Homes ⇥ X ⇥ X ⇥ X
Population Location X ⇥ X ⇥ X ⇥

Full Suppression Strategy Designation X X X X X X
Other Strategy Fixed Effects ⇥ X ⇥ X ⇥ X
Month of Year Fixed Effects X X X X X X
Distances to/Ignition within...
National Recreation Areas ⇥ X ⇥ X ⇥ X

Class I Airshed ⇥ X ⇥ X ⇥ X
Communication Towers X X X X X X

Inventoried Roadless Areas (IRA) ⇥ X ⇥ X ⇥ X
National Recreation Areas ⇥ X ⇥ X ⇥ X

Critical Habitat Region ⇥ X ⇥ X ⇥ X
National Park Service Buildings ⇥ X ⇥ X ⇥ X

Critical Habitat Region ⇥ X ⇥ X ⇥ X
Census Designated Place ⇥ X ⇥ X ⇥ X

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table E4. Results: Fires over 100 Acres

Data Set All GACC Regions Western Region

Variable D/DML Point Ignition Data, OLS D/DML Point Ignition Data, OLS

log(total property value) 0.0136 0.1110*** 0.0145 0.1636***

(standard errors) (0.04) (0.033) (0.042) (0.04)
(lower bound, upper bound) (-0.056, 0.084) (0.048, 0.175) (-0.067, 0.088) (0.086, 0.240)

N 1345 1345 736 736
R2 (IS) .90 .47 .90 .48

R2 (OOS) 0.91 0.01 0.91 -.01
R2 (OOS, SCI Baseline) .46 -.34 .10 -.3

Controls Used
Aspect/Slope/Elevation X X X X

Forest Service Spread Model Controls X X X X
Private Property X X X X

Fuel Model Fixed Effects X X X X
LANDFIRE data X X X X

Resources Currently Deployed Elsewhere X X X X
GACC Fixed Effects X X X X

NARR/Gridmet weather variables X X X X
Total Impacted Homes ⇥ X ⇥ X
Population Location X ⇥ X ⇥

Full Suppression Strategy Designation X X X X
Other Strategy Fixed Effects ⇥ X ⇥ X
Month of Year Fixed Effects X X X X
Distances to/Ignition within...
National Recreation Areas ⇥ X ⇥ X

Class I Airshed ⇥ X ⇥ X
Communication Towers X X X X

Inventoried Roadless Areas (IRA) ⇥ X ⇥ X
National Recreation Areas ⇥ X ⇥ X

Critical Habitat Region ⇥ X ⇥ X
National Park Service Buildings ⇥ X ⇥ X

Critical Habitat Region ⇥ X ⇥ X
Census Designated Place ⇥ X ⇥ X

*** p < 0.01, ** p < 0.05, * p < 0.1
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Table E5. Results: Nonlinear Ignition-Point Models

Data Set All GACC Regions

Variable XGBoost Random Forest

log(total property value) 0.0640 0.110
(standard errors) - -

(lower bound, upper bound) - -

N 2779 2779
R2 (IS) - -

R2 (OOS) 0.456 0.412

Controls Used
Aspect/Slope/Elevation X X

Forest Service Spread Model Controls X X
Private Property X X

Fuel Model Fixed Effects X X
LANDFIRE data X X

Resources Currently Deployed Elsewhere X X
GACC Fixed Effects X X

NARR/Gridmet weather variables X X
Total Impacted Homes X X
Population Location X X

Full Suppression Strategy Designation X X
Other Strategy Fixed Effects X X
Month of Year Fixed Effects X X
Distances to/Ignition within...
National Recreation Areas X X

Class I Airshed X X
Communication Towers X X

Inventoried Roadless Areas (IRA) X X
National Recreation Areas X X

Critical Habitat Region X X
National Park Service Buildings X X

Critical Habitat Region X X
Census Designated Place X X

*** p < 0.01, ** p < 0.05, * p < 0.1
All estimates are produced from a 5-fold, twice repeated and cross-validated version of the model,
where hyperparameters are chosen by grid search. Gaussian Processes and Elastic Net Models were also evaluated,
but both struggled to perform out of sample (R2

OOS < .15)
Estimates of the standard errors failed to converge for these models, and thus are not reported
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E.1 Appendix: Math
E.1.1 Wedge a covariance and correlation. Recall that e = x � x̂, i.e.e is

the first-stage prediction’s residual.

Corr(x̂, e) =
Cov(x̂, e)
�x̂�e

=
Cov(x̂, x)
�x̂�e

� Var(x̂)
�x̂�e

=
Cov(x̂, x)
�x̂�e

�x

�x
� �x̂

�e

=
Corr(x̂, x)�x

�e
� �x̂

�e

= ��1
e

✓
Corr(x̂, x)�x � �x̂

◆
(F1)

E.1.2 Appendix: MLP/Neural cross-validation procedure. Unlike
many of the other methods explored in this paper, MLP (Multi-Layer Perceptrons)
are difficult to cross-validate in a consistent way. This is for three main reasons.

The first reason is due to one of neural methods’ advantages for prediction
problems—that they are highly adaptable to many different problem spaces,
varying both in more traditional hyper-parameters such as learning-rate
and neural network width, but also in much-more nuanced choices such as
optimization method or input structure. “Neural Networks,” despite the term’s
usage in many settings, is actually less of a single model and more a label placed
on an entire class of iteratively-optimized models. The work’s aim has been to use
“off-the-shelf” machine learning methods to understand what empirical concerns
exist when placing these models naively in an otherwise-recognizable econometric
instrumental variables setting, but for a neural network, the off-the-shelf model
is highly dependent on the problem at hand. Unfortunately, this advantage of
MLPs and other Neural Networks makes a full grid-search of the hyper-parameter
space intractable. This requires us to restrict the grid-space somewhat to create a
tractable solution, while allowing the model a good shot at choosing the “correct”
specification. This restriction potentially handicaps the neural model’s flexibility,
and may produce higher average out-of-sample loss than the full set of model
specifications could potentially produce.

Second, neural networks are computationally expensive to train—each
combination of hyperparameters must be trained separately over many iterations,
and for most optimization procedures it is useful to utilize different re-orderings of
the data-set to reach a satisfactory loss-minimizing point. Even for less-complex
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data such as ours with relatively few observations, cross-validating even 100
hyperparameter combinations over 1000 synthetic datasets leads to prohibitively
long training periods given our computational resources.

Last, neural networks are sensitive to their initialization point, which is not
the case for any of our other methods included in this analysis. Unlike most other
methods, neural-class models can find values for one of a number of potential
loss-minimizing local optima for its parameters, and while those local optima can
perform similarly well, they do not necessarily produce identical predictions and
can fail on different subsets of data in different ways.

These differences make analyzing how cross-validating a neural network
dictates hyper-parameters given a reasonable loss function more interesting
because the choices a five-fold cross-validation approach might make are
indicative of how the most flexible model chooses a specification given different
search spaces. For our cross-validation, we use a five-fold cross-validation
procedure to match our other methods, and use mean-squared error as our loss
function. We fix a few hyperparameters in place—we use no regularization on the
weights, and use an “Adam” optimizer with it’s out-of-box/off-the-shelf learning
rate of .001. We trained all models over 40 epochs, and used a batch-size of 10
observations. One unusual step we take is to introduce a leaky rectified linear
activation function (ReLU) activation function to connect hidden layers. This was
done to prevent the model from suffering from “dying weights” which is when
parameters accidentally force a large number of activations to inappropriately
“ignore” activations due to a(x) = 0 for all or many values of x.1

We began by creating three separate hyper-parameter search spaces
distinguished by maximum-allowable width and depth. The ’shallow/wide’ neural
networks are allowed to choose from hidden-layer representations that are 16,
32, 64, 256, and 512 nodes in hidden layer width respectively. This model is
then restricted to contain at most a single hidden layer, but is also allowed to
choose from a model that maps inputs to outputs directly, using a linear activation
function. This functional form is sensible given x is linear in z for our DGPs.
Excluding the 0-hidden layer case would prevent the cross-validation procedure
from finding the easiest approximation for a linear functional form. The cross-
validation procedure allows differences in regulation by choosing between a
dropout rate of .1 or .2.

The ’narrow/deep’ neural network is instead allowed to choose from a
representation with two, three, four, or five hidden layers each with a number of

1 ReLU was tried initially, however using ReLU on our data seemingly led to a complete
shutdown of the predictive power when we attempted it on our weaker-instrument setting. Even
using dropout, the MLP’s performance was poor in predicting out of sample. We cannot be certain
that the dying weights problem was the cause of this issue, but adding a slight negative slope for
activations less than 0 seems to have mitigated the behavior.
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nodes (width) equal to 16, 32, or 64. This model, too, is allowed to choose from
the simple linear mapping of inputs to output, for the same reasons as above.

The last search space, referred to as the “unrestricted” neural network is
allowed to choose from any combination of the hyperparameters offered to the
narrow or shallow networks—from zero through five hidden layers and using the
full complement of widths.

To get a sense of how these search-spaces choose models on average, these
three search spaces were used to cross-validate over our first 25 datasets, from
which we generated a full list of 125 folds. These cross-dataset folds were then
used to find, for each search space, the average out of sample MSE across all 125
folds.

From the set of available models available to every search space and for
each iteration, we chose two models at random weighted by their average out
of sample MSE. These probabilities were chosen using the weighted upper-tail
normal CDF, normalized such that all weights for a given search space sum to one.
Formally, where i is a given set of hyperparameters, j is a search-space and µ j is
the mean out of sample MSE for a given search space:

pchosen
i, j =

Z 1

zmse
i, j

1p
2⇡

e�
z
2 dz , (F2)

zmse
i, j :=

msei, j � µ j

se(msej)
. (F3)

For each iteration and using the probabilities above, two models are chosen
at random for each search space, and then cross-validated again using a 5-fold
procedure. The “winning” model is chosen by lowest out-of-sample MSE, and is
used to predict x̂ for the first stage.

For a visual explanation and overview of the results from the selection
method, see Figure A6.

E.1.3 Low-bias methods. Because machine learning algorithms are
designed to minimize loss (maximizing fit), the fact that Cov(x̂, e) , 0 is partially
by design. To see this fact, consider any prediction method that minimizes mean-
squared error (MSE)—conditional on the training data {x, z}:

MSE(x̂, x|x, z) =
✓
x � E[x̂ | x, z]

◆2

|              {z              }
(Bias of x for x̂)2

+E
h

(x̂ � E[x̂ | x, z])2
��� x, z

i

|                          {z                            }
Cond. Var(x̂)

+E
h
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��� x, z

i

|         {z         }
Cond. Var(")

(F4)
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where " is the irreducible error—the unknowable disturbance from the DGP of x,
i.e.x = f (z) + ".2

Equation (F4) highlights that in an MSE-minimization problem, x̂ is
the only component of MSE that a learning algorithm can change (x, z, and "
are all data dependent). This fact leads to the widely discussed variance-bias
tradeoff—an arbitrary estimator will generally face a negotiate between low-
variance predictions and low-bias predictions. Many traditional econometric
estimators result from prioritizing zero bias and then selecting the minimum-
variance estimator from this class of unbiased estimators. As (F4) points out,
these estimators could reduce their out-of-sample MSE by accepting some bias
and reducing variance. This tradeoff is at the heart of the prediction improvement
many out-of-the-box algorithms offer relative to plain OLS.
E.2 Appendix: Neural approaches to measuring causal response

Neural networks and their offspring offer just such a route to explore data
that falls outside of the traditional bounds, whether that is to use transformers for
text data, or convolutional neural networks (CNNs) for imaging. However, many
of the same problems apply to these tools as were outlined in the paper. In order
to make full use of them in a two stage approach, the same stringent restrictions
are required to generate meaningful and unbiased coefficients in a two-stage
framework. Indeed, when running a cross-validated feed-forward network to
produce a meaningful first stage estimation with our high-complexity data most
simulations with any hidden layers simply reproduced an approximation of � close
to that of naive OLS.3 There is a burgeoning field of research in machine learning
that strives to understand IV problems under less-parametric (though generally
still somewhat parametric) causal structures and these methods are seeing success
in both simulated and real-world data. The downside to using these powerful
methods is that they require a new framework in which to understand them, and
make interpretation of treatment effects more challenging.

The first of the recent batch of machine learning instrumental variables
papers is referred to as “Deep IV” Hartford et al. (2017). The authors throw away
the linear functional form for x = f (z, u) in the “first stage,” but assume linearly
additive confounding variables and learn the causal structure with a two-part one-
pass neural network model. The authors do this by recasting the econometric
approach to instrumental variables into two interlinked problem spaces -
estimating the conditional distribution g(x|z) and then using the approximation
of x given z to predict y. This creates difficulties because such methods produce
good counterfactual predictions, but have a harder time matching the clean
interpretable causal effect of X on y when compared to traditional econometric

2 These expectations are conditional on the given dataset; " and x̂ are conditionally independent
by definition. The expectation term is conditional on data observed, so for simplicity, the term
ED(x̂(z; D)) will simply be referred to as x̂.

3 See Appendix Section E.1.2 for full details of the MLP methods.

122



approaches. Further, because of the flexibility in functional form, models of
this category tend to have more trouble outside of supp(ztrain) or supp(g(x|ztrain))
that are observed in a training sample - and it’s difficult to apply a post-analysis
structure to such a model to gather understanding on counterfactuals where ztest is
considerably different than ztrain. Further, many other methods have been created
and can be used to estimate instrument-identified causal effects using a similar
semi-parametric two-stage function that can identify complex functional forms
in either first or second stages Bennett et al. (2020) and Xu et al. (2020) and
improve on edge-of-support marginal effects.4 Both of these papers and Deep
IV are able to produce causal inferences using images as instruments—something
that a regression would not be able to meaningfully do without some form of pre-
model dimensionality reduction.

Neural approaches to causal inference are also not limited to use semi-
parametric structural forms for heterogenous treatment effects. Kilbertus et al.
(2020) created a neural network to identify the total set of conditional causal
effects given a fully non-parametric instrumental variable analysis. (With the very
reasonable assumption placed on the function of unobserved noise that it does not
feature infinite discontinuities, for example.)

In spite of the massive technical improvements these models have made,
trying to extract a beta-equivalent from the existing models is difficult, though
interpretable machine learning methods do exist. Unfortunately, extracting
meaningful information using prediction-explanation methods such as Ribeiro,
Singh, and Guestrin (2016) about how a result is produced, or to infer what
kind of economic information can be gathered from the weights within a model,
neural networks are hard to interpret Wang, Wang, and Zhao (2019). This makes
comparing such models to traditional 2SLS or econometric approaches for ATE
approximation difficult—and produces complications in choosing benchmarks as
to how to evaluate them.
E.3 Appendix: The complications of machine learning and the monotonicity

assumption
One often overlooked assumption in instrumental variables irrelevant

under the assumption of constant treatment effects, but, without guaranteed
constant treatment effects, is referred to as ’monotonicity’ of heterogenous
treatment effects. If a researcher is willing to simply find the ’Local Average
Treatment Effects’ or LATE J. Angrist and Pischke (2009), 2SLS can under certain
circumstances recover that estimate. Simply put, this means that while treatment
effects can vary across our population, response of endogenous variable xi to
instrument zi must move in the same direction for all individuals i. For canonical

4 The methodology contained in Xu et al. (2020) is particularly useful, because it does not
predict X directly, but rather applies Neural Networks to the task of learning polynomial forms
to pass through first and second stages in a 2SLS (with an L2 penalty) and may mostly avoid
components a and b as described earlier.
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cases of binary instruments and treatments, this boils down to an assumption of
’no defiers’.

Our results as written do not conclude one way or another about the
implications of the monotonicity assumption with regards to the machine learning
in the first stage, as our primary datasets feature homogenous treatment effects
are constant and equal to �. However, relaxing from constant treatment effects to
continuous, monotonicity-preserving and heterogenous treatment effects, under
some circumstances using nonlinear methods can lead to inefficiency in estimates
of the LATE.

To illustrate a very simple example, imagine a case estimating the
coefficient �1 where xi = 1 +

P7
v=1 zi ⇤ �i + "i + ui, where �i ⇠ �(.5, 4), thus E(�i) = 2,

min(�i) = 0, Y = 1 + Xi�1 + ui + ✏i and all error terms ✏i, "i, ui N(0, 1). This extends
the strengthened exclusion restriction from E(z|") = 0 to E(z|") = E(z|⌘X) = 0 where
⌘ = �i � E(�i).5 In this case, the instruments are not weak, but have weak effects
on varying members of the sample. If a machine learning algorithm conditions
its predictions on the instruments directly, and the coefficients �i are sufficiently
varied, ˆxssml will only be a better estimate in expectation.6

In this case; under the stronger exclusion restriction described above and
using a MLSLS strategy as described in J. Chen et al. (2020) with a non-linear
meta-model, will produce an unbiased result, but also may result in inflated
standard errors relative to a 2SLS or SSIV approach. This is because, under
this kind of monotonicity, linear IV becomes a weighted average of marginal
treatment effects.7 If the econometrician believes this type of variation exists,
the assumptions required for 2SLS’ validity are strong, and MLSLS’ are stronger.
ML makes no guarantees on recovering this weighted sum in the same manner,
so there exists important future work to examine how exactly this may impact
structural estimates of �.

5 See J. Heckman, Urzua, and Vytlacil (2006) for the original treatment of ⌘ in the IV case.
6 See A7 for a simulation of this. As noted by J. Chen et al. (2020) in appendix D, the

asymptotic results for MLIV are not directly comparable here.
7 which the reader should turn to J. J. Heckman and Vytlacil (2005) and J. Heckman et al.

(2006) to see a formal treatment of.
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APPENDIX F
APPENDIX CHAPTER 2

F.1 Model Training and Hyperparameter Selection
The conditional ViT models were trained using Pytorch, on a single

Nvidia RTX3090 GPU. Initial batchsize was selected following the recommended
protocol: ’as big as can fit in memory’, which resulted in batch sizes of 5, and 2
for the initial model and final model respectively. Accumulating gradients across
multiple steps, actual batch size b was defined as b 2 {8, 16, 32, 64, 128}, and was
considered one of the many hyperparameters to select from in the model.

The ADAMW1 optimizer was chosen and fixed to update the weights,
to allow for ’true’ L2 normalization as described in the work that proposed the
technique. Then, hyperparameter sets were selected to be depth of transformer,
transformer head size, convolutional kernel size, study area, multi-layer
perceptron latent dimension, as well as two versions of the class token.

F.1.1 Hyper Parameter Selection. A single out of sample test was
performed using grid search over the combination of hyperparameters above,
and found a depth of 5 sequential encoder layers to be marginally better than
the largest transformer (6 layers). By far the most important hyperparameter
choices were learning rate and batch size. Batch sizes of 16 and 32 performed
very well, while batch sizes of 8 or less tended to be unstable during training,
and batch sizes of 64 or 128 overfit the training regimin, and led to poor out-of-
sample performance. Learning rates, selected from {1e�5, 2e�5, 3e�5, 5e�5and1e�4},
tended to prefer smaller learning rates, even with the cosine annealing learning
rate scheduler.

The convolutional kernel also proved critical, and an unusually large kernel
was selected, 13 ⇥ 13 appeared to be the most performant kernel. It’s unclear
whether this is because there are important variations in texture over larger areas,
or if the model would be well served to add a second convolution layer to the
encoding step.

F.1.2 On instability. Many times, due to mechanical failure, power loss,
or unnoticed memory leak, the training was interrupted for both the selection
models and also the final evaluation at otherwise random intervals. The author
did not set up a stateful dataset function, meaning once the model is restarted
from a save point it would be using the same data in the same groups in the same
order, which can give misleading estimates of performance. To get around this,
when the model failed, the initial seed was multiplied by the last successful epoch,
re-randomizing the ordering of the data.

1 as proposed in Loshchilov and Hutter (2017)
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F.2 Integrated Gradient estimation of Cost-Important Factors in Selected
Fires

Integrated gradients are a common approach to get pixel/channel-level
importance of features in natural images. A good approximation of the non-linear
’importance’ can be calculated by

@ f
@x
⇤ x

However, in cases where the gradient is saturated for variable x, it can
mislead readers into believing features are not important when they have
diminishing responses. Given a ’baseline’ image represented by a H ⇥ W ⇥ C
matrix, whose activation is believed to be 0 across all classes, integrated gradients
calculate the integral from activations at that 0 point to the observed image.

Unlike typical applications of the technique, activations of ’0’ are actually
quite challenging to find. This is because, after normalization, an activation of 0
represents the exact average-costed fire, conditional on ignition.

Several images were tried to find this ’true’ 0 image for this study, but the
one that worked is the ’average baseline’, which found the pixel-level average of
all images in the set and combined them. i.e.for X 2 X, Xavg =

Pn
i=0 X
n .

These integrated gradients appeared impressive, and can be interpreted as
the model doing substantially well at identifying features that would lead to risk,
as well as the likelihood that they would be at risk, given the ignition, it’s equally
likely given the size of the image that this represents apophenia bias.

That being said, the results are intriguing, and thus they were included
in the figures here to examine. Used in these figures are two wildfires from the
2020 season whose boundaries and events are validated an well understood,
first, the Holiday Farm Wildfire in Lane County and second, the Silverado
Wildfire near Irvine California. These incidents were well documented, and
controversy/challenges were covered well. The model appears to align with
reports and information contained in incident command logs (aside from
considerations arising from smoke, which the model is unlikely to be able to find)
all of which are publicly available on inciweb.

Results from these estimations can be seen in figures C14 and C15.
F.3 Out of Distribution Performance

The dataset was reconstructed over the early months of 2022 (Conducted
exactly on data drawn at 04-22-2022) to include all wildfires occurring from
December 30th, 2019 to March 30th of 2022 to collect a new set of fires whose
properties would closely resemble the actual forecasting problem at hand.

Using fires from 2022, which had a number of abberant, out of season
wildfires, a new training/testing split was created to determine if the fire cost
prediction model would; without modification, generalize to new types of
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damaging wildfires, as well as fires burning under seasonal-weather-regional
combinations unseen in the training data .2

Once the old model was refined and tested, a new model was developed
to determine how much this performance could be improved by modifying
hyperparameters, both those associated with the model directly but also those
attached to the data generation process. Notably, increasing individual ’study
area’ images from 15km ⇥ 15km to a larger field of vision, 20km ⇥ 20km while
maintaining similar resolution in the latent space - ie, 1001 ⇥ 1001 becomes 1334
⇥ 1334 after the convolution step.

Despite improving the performance of the model in both the property
value and suppression cost per acre cases, estimates of the effect of property
value on suppression costs are nearly indistinguishible from those generated from
the baseline model, and come at the cost of being generated after seeing initial
results. Thus, the original model estimates are provided to minimize the author’s
bias from creeping into the engineering choices.

The results for the fire cost portion of the model are fairly consistent with
the original model, with one notable exception - out of sample performance
improved in Californian regions. This makes some sense, as Californian wildfires
tend to be, on average, larger (in acreage terms), and typically burn for longer
and thus potentially threaten communities further away from the point of ignition.
For both of these reasons, and thus having access to pixels further from the
ignition point is likely to be more valuable
F.4 The Non-linear model Hypothesis (testing other regression models)

One possibility is that the immense computational power required to
train the ViT model in this work is not worth the effort, and that comparable
if not higher quality results can be produced by point-level data, simply used
nonlinearly.

Using the expanded 2022 dataset from the prior section, several tree based
models were crossvalidated and tested for out of sample performance to check the
hypothesis.

Gaussian processes, often cited as a go to solver for nonlinear regression
problems, performed only marginally better than OLS estimates or regularized
linear models (which themselves improve on OLS estimates), but the tree-based
methods performed better than either. It is unclear why the gaussian process
regression performed poorly, despite typically being the best nonlinear regression
solver available for datasets of reasonable size. It is possible that a different kernel
than the traditional RBF kernel would improve estimates given the outcome
rejects on tests for being normally distributed, though it is unclear how much
room there is for improvement. More likely, the number of covariates makes

2 A criticism one might level is that given month of year and weather patterns, along with
sufficiently strong spatial fixed effects could uniquely identify wildfires and thus map these
combinations to their exact per-acre costs.
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learning the gaussian process sufficiently well to perform well on the observed
outcome while simultaneously conditioning out variables required to block causal
pathways provide too much flexibility to a gaussian process while also being able
to perform well out of sample.

These models were able to improve markedly on linear models, implying
there is indeed some advantage to nonlinearity in this problem, but none of the
crossvalidated models exceeded the performance achieved by the ViT model used

To see how these point-level models differed from the raster-based ViT in
terms of estimating the effect of property value on suppression costs per acre, a
doubly robust meta-model was constructed, and the coefficient ✓ was estimated.
Unfortunately, predictions from these models failed to converge for standard error
reporting, but point estimates are reported regardless.
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