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DISSERTATION ABSTRACT

Jon Aycock

Doctor of Philosophy

Department of Mathematics

September 2022

Title: Families of Di↵erential Operators Acting on Overconvergent Hilbert Modular
Forms

We construct di↵erential operators acting on overconvergent Hilbert modular

forms. This extends work of Katz in the case of p-adic Hilbert modular forms in

[Kat78], and of Harron–Xiao and Liu for overconvergent Siegel modular forms

in [HX14, Liu19a]. The result has applications to the construction of p-adic L-

functions in the presence of a Damerell-type formula.
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CHAPTER I

INTRODUCTION

In this thesis, we construct di↵erential operators acting on overconvergent

Hilbert modular forms. This extends work of Katz in the case of p-adic Hilbert

modular forms, and of Harron–Xiao and Liu for overconvergent Siegel modular

forms. The result has applications to the construction of p-adic L-functions.

1.1 Motivation

In [Ser72], Serre introduced the idea of using p-adic families of modular

forms to p-adically interpolate values of L-functions. In particular, he used the

family of Eisenstein series with q-expansion

2G2k(q) = ⇣(1� 2k) + 2
1X

n=1

�2k�1(n)q
n
.

He showed that congruences between the coe�cients of qn for n � 1

for particular values of k imply the existence of such a congruence between the

constant terms ⇣(1 � k) as well, and used this to show that (an appropriate

normalization of) the Riemann zeta function is p-adically continuous when

restricted to inputs of negative odd integers. This is one construction of the

Kubota–Leopoldt p-adic zeta function, which interpolates the values of the

Riemann zeta function at negative odd integers.

Serre was able to use a well-known family of modular forms whose values at

the cusp 1 are equal to special values of the Riemann zeta function. Though the

result was generalized to Dedekind zeta functions for totally real fields in [DR80],

these families can be tricky to come up with in more generality. One important

addition to the theory was Katz’s use of di↵erential operators, in particular those

built from the Gauss–Manin connection r, as a key ingredient in the construction

of these families in [Kat76, Kat78]. Katz’s operators give a p-adic analog of the
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Maass–Shimura operators which Shimura used to prove algebraicity results in

[Shi76, Shi00], and which were adapted by Harris to prove algebraicity results for

higher rank groups in [Har81, Har86].

Katz leveraged this idea to p-adically interpolate the zeta function for a CM

field K using Hilbert modular forms on its maximal totally real subfield K
+. He

started with a holomorphic Eisenstein series and used successive powers of these

di↵erential operators to produce a family of not necessarily holomorphic Eisenstein

series. By Damerell’s formula (in e.g. [GS81] and described in Appendix A), sums

of the values of these Eisenstein series at the CM points of the modular curve give

the central values L(�, s0) of the L-functions for a specific class of Hecke characters

�, known as characters of type A0. Viewing the zeta function as a function on the

space of characters, this fact reduces the p-adic interpolation of ⇣K to the study of

how powers of the Gauss–Manin connection behave p-adically.

As noted in his introduction, Katz’s method only succeeds when we can

choose an “ordinary” CM type, which is only possible when every prime above p in

the totally real field K
+ splits in K/K

+. This is due to the fact that his di↵erential

operators are only defined over the ordinary locus, which does not contain the CM

points that are supersingular at p. The present work extends these operators to

be defined on the overconvergent loci, using methods from [Liu19a] and using the

geometry developed in [AIP15, AIP16]. This extension allows Damerell’s formula to

be used in more general situations, whenever the Eisenstein series is defined at the

CM points.

1.2 Description of Results

The present work culminates in the following theorem, which is Theorem

4.6.2 in the body of the dissertation:

2



Theorem 1.2.1. Fix a tuple v = (vp)p|p with each vp > 0. For each embedding

� : F ! K, and any k � 1, there is a di↵erential operator rk

�
acting on families of

nearly v-overconvergent Hilbert modular forms, which raises the weight by 2k� and

the type by k. The operators rk

�
and r`

⌧
commute for any pair of embeddings � and

⌧ .

These rk

�
are the p-adic analogs of the Maass-Shimura operators

in the Archimedean case, as we prove in Section 3.5. The absence of these

“overconvergent” operators in [Kat78] prevented Katz from constructing p-adic

L-functions for CM fields in the case that the CM points were not ordinary; i.e.,

when p is not split in K/K
+. The overconvergent operators for elliptic modular

forms have been previously constructed, and are used in [AI19] to construct p-adic

L-functions for quadratic imaginary fields; our construction lays the groundwork to

generalize that construction to a general CM field.

In defining the di↵erential operators, we work rigid analytically. However,

we give a discussion of the integrality of the operator in Section 4.7.

As in [AIP16], we are careful to make a distinction between two possible

meanings of the phrase “Hilbert modular form.” Given a totally real field F , the

term may refer to the automorphic forms on either of the following groups:

G = ResOF /Z GL2, or G
⇤ = G⇥ResOF /Z Gm Gm.

For any commutative ring R, the R-points of G are the 2 ⇥ 2 invertible matrices

with entries in OF ⌦Z R, while the R-points of G⇤ are those matrices from G(R)

with determinant in R
⇥ ⇢ (OF ⌦Z R)⇥. Each of these groups has an advantage:

G has a nicer Hecke theory including a commutative Hecke algebra; while G
⇤

allows us to use geometric tools, since its associated PEL-type moduli problem is

representable by a Shimura variety. The inclusion G
⇤ ⇢ G gives a restriction map

3



from the space of automorphic forms on G to those on G
⇤, and in fact there is an

explicit geometric criterion that picks out the space of automorphic forms for G

inside the space of automorphic forms for G⇤. In the following, we focus first on

G
⇤ so that we may use the geometric tools it a↵ords us, after which we shift our

attention to this criterion which allows us to transport our results to the group G.

We get the following theorem, Theorem 5.4.2 in the body of this dissertation, which

allows these operators to be used in either situation:

Theorem 1.2.2. The di↵erential operators rk

�
constructed in Theorem 1.2.1

preserve the space of Hilbert modular forms for G inside the space of Hilbert

modular forms for G
⇤.

In Chapter 2, we give a geometric construction of Hilbert modular forms

fort he group G
⇤. In Section 2.4, we give a comparison theorem that shows that our

geometric Hilbert modular forms, when viewed over C, are equivalent to the usual

notion of Hilbert modular forms in terms of holomorphic functions on a symmetric

space. In Chapter 3, we repeat this for nearly Hilbert modular forms, including a

description of a Maass–Shimura di↵erential operator in each setting, and a proof

that they correspond. Chapter 4 then uses this as a basis to construct analogous

spaces of p-adic Hilbert modular forms, and then overconvergent and nearly

overconvergent Hilbert modular forms, as well as a Maass–Shimura di↵erential

operator in this setting. Finally, in Chapter 5, we transport our results from G
⇤

to G.

1.3 Relationship to Recent Developments

This dissertation adds to the recent investigations into extending p-adic

di↵erential operators past the ordinary locus, or into when the ordinary locus is

empty, including those in [dSG14, dSG19, EM20, Urb14, Liu19a, Liu19b]. Shortly

4



after posting the paper on which this dissertation is based on the arXiv, the

author learned from Giacomo Graziani that his dissertation [Gra20] (currently in

preparation) is closely related. His dissertation uses the VBMS (vector bundles

with marked sections) formalism present in e.g. [AI19], while we use (g, Q)-modules

as in [Liu19a].

In [HX14], the authors ask whether or not their construction can be adapted

to avoid a choice of the Hodge filtration. Building on the work of [AI19, Liu19a],

this work answers that question in the a�rmative. Additionally, other works note

that in order to use nearly overconvergent Hilbert modular forms to interpolate the

values of p-adic L-functions, a “canonical splitting of the Hodge filtration” must

be chosen; see for example the introduction to [AI19] for this in the situation of

Damerell’s formula. Our methods translate this into a need for a canonical choice

of frame for the relative de Rham cohomology of the modular curve in the nearly

holomorphic case. Seeing as a canonical trivialization (i.e., a frame) for the modular

sheaf ! must already be chosen in Serre’s setting, this is a natural bit of data to

consider. For the nearly overconvergent case, we take preimages of the Andreatta–

Iovita–Pilloni torsors for overconvergent Hilbert modular forms in the space of

frames for the de Rham cohomology.

This construction works for elliptic modular forms, and seems eminently

generalizable to be used for the automorphic forms on more groups, such as

Hilbert–Siegel and hermitian modular forms. The author of this dissertation is

currently working on a sequel extending his approach to the higher rank setting, in

particular Hilbert–Siegel modular forms.
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1.4 Notation and Conventions

Fix a totally real field F of degree [F : Q] = d > 1. Its ring of integers will

be denoted OF , and its inverse di↵erent will be denoted d�1. Its Galois closure is

F
Gal, with ring of integers OGal.

For a p-adic local field K, let OK be its ring of integers, and m for the

maximal ideal in OK . We also write O1 = OK/m for the residue field, and

Om = OK/mm for the local ring extending it.

When the local field K contains FGal as a subfield, we say that K splits

F . In this case, there are d independent embeddings of F into K. The set of such

embeddings is denoted I.

Given a prime ideal p of F lying over p in Q, write Fp for the completion

of F in the p-adic metric. This is a finite extension of Qp. Write the local inverse

di↵erent as d�1
p .

For any integer N , let µN denote the group of Nth roots of unity.

6



CHAPTER II

HILBERT MODULAR FORMS

Fix an integer N . In this section, we give a geometric construction of Hilbert

modular forms over F of level �1(N), and a comparison to the theory in terms

of holomorphic functions. This serves as a base for our geometric construction of

nearly Hilbert modular forms in Chapter III.

2.1 Weights

Let K be a local field that splits F , so that F ⌦Q K = K
d; in this section

we take K = R, but we state it in generality so that we may use this in Chapter

IV. Let I denote the set of embeddings F ! K, noting that there are d distinct

embeddings. Consider the algebraic group T = ResOF /Z Gm. The weight space of

classical Hilbert modular forms is the space of characters of the split torus T/K .

Each embedding � : F ! K determines a character of T/K via the formula

� : T/K(R)! R
⇥
, �(c⌦ r) = �(c)r.

All algebraic characters of T/K can be written in terms of these characters - for any

character , there exists some tuple of integers (k�)� such that

(c⌦ r) =
Y

�

(�(c)r)k� .

We often write such a character as a formal sum  =
X

�2I

k��. In this way, we

identify the space of characters of T/K with Z[I], the free abelian group on the set

I of embeddings F ! K.

2.2 Moduli Setup

Let c be a fractional ideal of F , p a prime number, and N � 5 an integer

prime to p. A c-polarized Hilbert–Blumenthal abelian variety (HBAV, we suppress

c from the notation) defined over a base scheme S is a tuple (A, ◆, ,�) where

7



– A! S is an semi-abelian scheme1 of relative dimension d,

– ◆ : OF ! End(A) is a ring homomorphism known as a real multiplication on

A,

–  : µN ⌦Z d�1 ! A is a closed embedding known as a level structure, and

– � : A⌦OF c! A
_ is a c-polarization.

If c is principal, we say (A, ◆, ,�) is principally polarized. Often, we will

use A as a shorthand for the entire string. Let S be a scheme over SpecZ [N�1],

X ! S be the moduli space of HBAVs over S, and ⇡ : A ! X be the universal

HBAV over X.

Remark 2.2.1. In the definition of HBAV, we really want A to be an abelian

variety, rather than a semi-abelian scheme. If we take this alternate definition,

and write Y as the moduli space of these varieties, then X is a projective toroidal

compactification of Y . Write C = X \ Y , and refer to C as the boundary or

the cusps. Allowing semi-abelian schemes in the definition of HBAV is similar

to talking about the moduli space of generalized elliptic curves and the universal

generalized elliptic curve when discussing elliptic modular forms.

The Hodge bundle is

! = ⇡⇤⌦
1
A/X

.

This is locally free of rank d as a sheaf of OX-modules, with an action of OF

induced by the real multiplication. There is a largest open subscheme X
R of X,

such that ! restricts to a locally free sheaf of OF ⌦Z OXR-modules. If we use an

a�ne scheme S = SpecO as our base and every prime number that ramifies in

1A group scheme which is an extension of an abelian variety by a torus

8



F is invertible in O, then X
R = X. On the other hand, if O is a finite field of

characteristic p, and p ramifies in F , then X
R is of codimension 2. The space X

R is

known as the Rapoport locus, and the condition that a HBAV A corresponds to a

point of XR is called the Rapoport condition. A reference for this is [AIP16].

Recall that, in Section 2.1, we fixed a local field K that splits F . Over X/K ,

the bundle ! decomposes as a direct sum ! =
M

�2I

!
�
, so that each element c 2 OF

acts on !
�
as multiplication by �(c) 2 K.

2.3 Hilbert Modular Forms

For a tuple of positive integers  = (k�)� 2 Z�1[I], we can form the line

bundle over XR

/K
by

!

:= !

⌦k�1
�1 ⌦ · · ·⌦ !⌦k�d

�d . (2.1)

Definition 2.3.1. A Hilbert modular form of level �1(N) and weight  = (k�)� is

a global section of !

. The K-vector space of Hilbert modular forms of level �1(N)

and weight  is thus H0(XR
,!


).

Write T
⇥
!

:= IsomXR,F (OF ⌦Z OXR ,!) for the X
R-scheme whose points

are OF ⌦ OXR-linear isomorphisms from OF ⌦ OXR to !. We view this as the

frame bundle of ! taking the OF -module structure into account. Over XR, ! is a

vector bundle whose fiber over an open set U looks like OF ⌦OU . The points of T⇥
!

correspond to bases for this free OF ⌦ OU -module: for any ↵ 2 T
⇥
!
, the element

↵(1 ⌦ 1) gives a basis for ! as an OF ⌦ OXR-module. This space T
⇥
!

has an action

of T/XR
⇠= AutXR,F (OF ⌦OXR) by precomposition: for any g 2 T and any ↵ 2 T

⇥
!
,

g · ↵ is the composition

OF ⌦OXR
g�! OF ⌦OXR

↵�! !.

9



In fact, T⇥
!

is a T-torsor. This implies that its sheaf of functions of is graded by the

characters of T/K . The graded portion corresponding to the weight  = (k�)� is

the line bundle !

defined in Equation (2.1), and we find that the ring of Hilbert

modular forms is the ring of functions on T
⇥
!
,
L

2Z[I] ! = O
T

⇥
!
.

The grading is defined as follows. Each line bundle !

can be recovered from

O
T

⇥
!
by considering the homogeneous functions with the property that for any g 2

T, any HBAV A, and any frame ↵ : OF ⌦Z OXR
⇠�! !,

f(A,↵g) =
⇣Y

�(g)�k�

⌘
f(A,↵) = (g�1)f(A,↵). (2.2)

Somewhat less explicitly, we may view these as functions from T
⇥
!

to the rank one

representation W of T, defined over K. The action of T is g · w = (g)w, and the

functions are homogeneous in the sense that f(A,↵g) = g
�1 · f(A,↵).

Remark 2.3.2. Homogeneous functions on T
⇥
!

which are homogeneous as in

Equation (2.2) are identified with sections of !

as follows. The pullback of ! from

X
R to T

⇥
!

is canonically trivialized by ↵, giving a trivialization ↵� of !
�
for each �,

and thus a trivialization ↵ of !

with ↵(1) =

N
�
↵�(1)⌦k� 2 !


. Acting on the

trivialization by some g 2 T(K) sends ↵� to �(g)↵�, and (g↵) = (g)↵.

Take a section v of !

defined on all of XR

/K
, and pull it back to a

section over T⇥
!
. Its value v(A,↵) at a point corresponding to a HBAV A with a

trivialization ↵ of its cotangent bundle is a multiple f(A,↵) of the canonical basis

↵(1) for the line bundle !

. Since v was pulled back from a section defined over

X
R, we have that v(A,↵) = v(A,↵g) for any g 2 T(K). But the canonical

trivialization of the fiber of !

over (A,↵g) is (g) times that of the canonical

trivialization over (A,↵). Thus we have

f(A,↵g) = (g�1)f(A,↵). (2.3)

10



Thus we give the following alternate definition for Hilbert modular forms.

Definition 2.3.3. Let R0 be a ring. A Hilbert modular form of level �1(N) and

weight  = (k�)�, defined over R0 is an algebraic function f 2 O
T

⇥
!
which satisfies

the homogeneity property of Equation (2.3). Write the space of such functions as

O
T

⇥
!
[�].

Remark 2.3.4. While we defined Hilbert modular forms defined over a ring R0,

we can patch this definition together over a�ne open sets to give a definition for

Hilbert modular forms defined over some scheme S.

Following Katz in [Kat78, Section 1.2], we give the following interpretation

of Definition 2.3.3. For any R0-algebra R, and any HBAV A defined over R

equipped with a trivialization ↵ of its cotangent bundle, we should get a number

f(A,↵) 2 R subject to the following conditions:

– the number f(A,↵) 2 R depends only on the isomorphism class of the pair

(A,↵);

– f commutes with extension of scalars, in the sense that, for any R0-algebra

morphism i : R! R
0

f(A⇥SpecR SpecR0
,↵⌦R R

0) = i(f(A,↵));

– and f satisfies the homogeneity condition from Equation (2.3),

f(A,↵g) = (g�1)f(A,↵).

Many important examples of Hilbert modular forms, such as Eisenstein

series, are in fact defined over some finite extension of Z
⇥
1
N

⇤
. However, the analytic

picture involving holomorphic functions on a symmetric space in fact recovers

11



Hilbert modular forms defined over C. One should keep this in mind when reading

the next section, in which we give this perspective.

2.4 Holomorphic Hilbert Modular Forms

In this section we connect the geometric construction above to the view of

Hilbert modular forms as holomorphic functions on a symmetric space.

Following [Kat78], let OGal denote the ring of integers in the Galois closure

of F . We have d distinct embeddings � : OF ! OGal; For any OGal-algebra A, we

get a ring homomorphism

OF ⌦Z A!
Y

�

A, n⌦ a 7! (�(n)a)�.

When A is a flat OGal-module, this is an injection. When the discriminant of F is

invertible in A, it is a surjection. In particular, when A = R is the real numbers,

we get a ring isomorphism OF ⌦Z R !
Q

�
R. Note that R is an OGal-algebra

because F is totally real. Writing R as an OGal-algebra is the same as fixing an

embedding OGal ! R, which then identifies the embeddings OF ! OGal with

the real embeddings of F . Thus we may index the product over the set I of real

embeddings of F .

Let h = {z 2 C | Im(z) > 0} be the complex upper half-plane, with its usual

action of the group GL+
2 (R) of invertible 2 ⇥ 2 matrices with real coe�cients and

positive determinant given by the formula

� · z =
az + b

cz + d
, for all � =

0

B@
a b

c d

1

CA 2 GL+
2 (R).

12



Then write hF =
Y

�2I

h for the product of d copies of h indexed by the real

embeddings of F ; it has a similar action of GL+
2 (OF ⌦ R) given by the formula

� · (z�)� =

✓
�(a)z� + �(b)

�(c)z� + �(d)

◆

�

, for all � =

0

B@
a b

c d

1

CA 2 GL+
2 (OF ⌦ R).

Fix some N � 5, and let �1(N) be the following congruence subgroup.

�1(N) =

8
>>>><

>>>>:

0

B@
a b

c d

1

CA 2 SL2(F )

�����

a, d 2 1 +NOF

b 2 c�1d

c 2 Ncd�1

9
>>>>=

>>>>;

.

Remark 2.4.1. In the case of modular forms (F = Q), congruence subgroups

must be subgroups of SL2 Z. Note however that �1(N) need not be a subgroup

of SL2 OF . Rather, we should allow congruence subgroups � to be commensurable

with that group: there is a common subgroup H of both � and SL2 OF which has

finite index in both. For the subgroup �1(N) above, let b be an integral ideal of OF

contained in both c�1d and cd�1, and use

H =

8
>>>><

>>>>:

0

B@
a b

c d

1

CA 2 SL2(F )

�����

a, d 2 1 +NOF

b 2 b

c 2 Nb

9
>>>>=

>>>>;

.

The reader may check that this is indeed a a common subgroup of SL2 OF and

�1(N), and that it has finite index in both.

To each z = (z�)� 2 hF and each fractional ideal c, we associate a complex

c-polarized HBAV (Az, ◆z, z,�z) along with a OF ⌦C-basis for its Lie algebra. This

will give us a map hF ! T
⇥
!
(C), so that we can pull back complex modular forms

to be functions on hF . For a fractional ideal c and z 2 hF , let

Lz = d�1 + c�1
z ⇢ OF ⌦ C.

13



This lattice can be equipped with a c-polarization associated to the alternating

pairing

h, i : Lz ⇥ Lz ! d�1c�1
, ha+ bz, c+ dzi = ad� bc.

This descends to a c-polarization �z on the complex torus Az = (OF ⌦ C)/2⇡iLz.

This torus has a natural OF -module structure given by acting on the first factor.

We can also give a natural level structure. Identify the N -torsion of Az with the

quotient 1
N
Lz/Lz. This has a subgroup 1

N
d�1

/d�1. Then we can use the level

structure

µN ⌦ d�1 !
✓

1

N
Z/Z

◆
⌦ d�1 =

1

N
d�1

/d�1
,! 1

N
Lz/Lz = A[N ].

The first map is the inverse of the exponential isomorphism k

N
+ Z 7! e

2⇡ik/N .

Notice that by writing Az = (OF ⌦ C)/2⇡iLz, we are identifying Lie(Az) =

OF ⌦ C. Thus, in order to trivialize the cotangent bundle, we just have to give a

functional OF ⌦ C ! OF ⌦ C. We choose the identity map, and denote it by dw.

We think of it as the di↵erential that sends each path in OF ⌦ C to its endpoint

minus its starting point. Let ↵ : OF ⌦ C! ⌦1
A
be the trivialization sending 1⌦ 1 to

dw.

This gives an embedding � : hF ! T
⇥
!
(C). Since we have defined (complex)

Hilbert modular forms as functions on T
⇥
!
(C) in Definition 2.3.3, we can pull

back complex Hilbert modular forms to be functions on hF . We give the following

classical definition of holomorphic Hilbert modular forms, and then prove that all

such forms are the pullback of Hilbert modular forms defined over C in the sense of

Definition 2.3.3.

14



Definition 2.4.2. A holomorphic Hilbert modular form of level �1(N) and weight

 = (k�)� is a holomorphic function hF ! C satisfying the homogeneity condition

f(� · z) =
 
Y

�

(�(c)z + �(d))k�

!
f(z), for all � =

0

B@
a b

c d

1

CA 2 �1(N).

If F = Q, then we also need a growth condition at the cusps.

Write M(N) for the vector space of holomorphic Hilbert modular forms

of level �1(N) and weight , and recall from Definition 2.3.3 that the set of

Hilbert modular forms of level �1(N) and weight  can be written O
T

⇥
!
[�]. Let

�
⇤ : O

T
⇥
!
[�] ! M(N) be the pullback along the map � : h ! T

⇥
!
(C) described

above.

Theorem 2.4.3. The pullback �⇤ gives an isomorphism O
T

⇥
!
[�] ⇠�!M(N).

Proof. First we show that the image of �⇤ actually lands in M(N). Fix f 2

O
T

⇥
!
[�]. Certainly �⇤

f is a function hF ! C; we omit the proof that it is

holomorphic. Rather, we should focus on the homogeneity property from Definition

2.4.2.

For simplicity, we begin with the assumption that f has level �1(1). Pick

some arbitrary � 2 �1(1),

� =

0

B@
a b

c d

1

CA , a, d 2 OF , b 2 cd�1
, c 2 c�1d.

In particular, � · z =
⇣
�(a)z�+�(d)
�(c)z�+�(d)

⌘

�

. Recall that elements of OF are included into

OF ⌦ C ⇠=
Q

�
C by n 7! (�(n))�. Since addition and multiplication happens

componentwise, and each � is a ring homomorphism, we may even write � · z =

az+b

cz+d
=
⇣
�(a)z�+�(d)
�(c)z�+�(d)

⌘

�

.

15



Note that � 2 �1(1) gives a linear isomorphism from OF ⌦ C to itself that

sends Lz into itself; thus

Lz = zc�1 + d�1 = �Lz = (az + b)c�1 + (cz + d)d�1
.

Since Lz = (az+ b)c�1+(cz+d)d�1, we have that (cz+d)�1
Lz =

⇣
az+b

cz+d

⌘
c�1+d�1 =

L�·z. This gives us a homothety of lattices between Lz and L�·z, which descends to

an isomorphism Az
⇠= A�·z. However, the rescaling by cz + d means that the pairs

(Az, dw) and (A�·z, dw) are not isomorphic. In fact, we get an isomorphism between

the pairs (Az, dw) ⇠= (A�·z, (cz + d)dw). Using the homogeneity property, we find

f(Az, dw) = f(A�·z, (cz + d)dw) = 
�1(cz + d)f(A�·z, dw).

The first term in the equality is �⇤(f)(z), and the last is �1(cz + d)�⇤(f)(� · z).

Unfolding the definition of the character , we get the desired transformation

property

f(� · z) =
 
Y

�

(�(c)z + �(d))k�

!
f(z), for all � =

0

B@
a b

c d

1

CA 2 �1(1).

Thus, if f is homogeneous in the sense of Definition 2.3.3, then �⇤
f is homogeneous

in the sense of Definition 2.4.2, so �⇤
f 2M(N).

Now, we need to prove that �⇤ is a bijection, which we do by giving an

inverse map. Every element of O
T

⇥
!
[�] is determined by its values on the fibers

over the open locus Y (C) ⇢ X(C) without the cusps. Now we just have to see that,

given the function �⇤
f , we can recover f ; i.e., given the values f(Az, dw), we can

find f(A,!) for any complex abelian variety A and any nonvanishing di↵erential !

on A.

Note that the integral homology H1(A,Z) has an action of OF induced by

the action of OF on A. A choice of di↵erential ! on A gives us the following lattice

16



L! ⇢ OF ⌦ C:

L! =

⇢Z

⌘

! | ⌘ 2 H1(A,Z)
�
.

Then A is isomorphic to A! = (OF ⌦ C)/2⇡iL!, and in fact, the pair (A,!) is

isomorphic to the pair (A!, dw). One can choose an embedding d�1 ! L! such that

L!/d�1 is torsion-free. So this quotient is projective, and thus is isomorphic to c�1

by the classification of projective OF -modules. We can split this projection to write

L! as a direct sum of two submodules; the first isomorphic to d�1, and the second

isomorphic to c�1. Write them as z(1)d�1 and z
(2)c�1. We can tweak z

(2) so that

z
(2)
� /z

(1)
� has positive imaginary part by replacing z

(2)
� by its negative if necessary.

Then z = z
(1)

z(2)
2 hF , and z

(2)
Lz = L!.

This gives us a homothety of lattices between Lz and L!, which descends

to an isomorphism Az
⇠= A. Taking the di↵erentials into account, we find

that the pairs (Az, z
(2)dw) and (A,!) are isomorphic. Thus we have f(A,!) =

(z(2))�1
f(Az, dw) = (z(2))�1

�
⇤(f)(z), and f is completely determined by �⇤(f).

Thus �⇤ is invertible.

For the case when f has level �1(N), a similar proof holds. We just have

to see that �1(N) is exactly the set of elements g 2 G(R) such that the action of

g preserves both the isomorphism class of the abelian varieties Az and the level

structure. The level structure is the embedding  : 1
N
d�1

/d�1 ! 1
N
Lz/Lz; this

should be thought of as taking the OF -module isomorphism 1
N
Lz/Lz ! Az[N ] and

restricting it to 1
N
d�1

/d�1 ⇢ 1
N
Lz/Lz. Any � 2 �1(1) gives an automorphism

of 1
N
Lz/Lz, and � ·  is the level structure given by precomposing  by this

automorphism. Note that � 2 �1(N) if and only if

� =

0

B@
a b

c d

1

CA , a, d 2 1 +NOF , b 2 cd�1
, c 2 Nc�1d.
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Thus, for any n 2 d�1 and m 2 c�1, � ·  should send n

N
+ m

N
z + Lz to an+cm

N
+

bn+dm

N
z + Lz. But

an+cm

N
= n

N
+ (a�1)n+cm

N
2 n

N
+ d�1, since (a � 1)n and cm are

both elements of Nd�1. This is enough to see that � preserves the level structure,

since  only cares about the restriction of this isomorphism to elements of the form

n

N
+ d�1 for n 2 d�1.

Remark 2.4.4. Essentially, the proof that �⇤ is bijective relies on two facts. First,

the image of the composition hF
��! T

⇥
!
! X(C) is Y (C), and f is determined

by its values on the fibers over Y (C). Second, once you know the value of f on

one element of each fiber, you can find the values over the entire fiber by using the

homogeneity condition.
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CHAPTER III

NEARLY HILBERT MODULAR FORMS

In Chapter II, we explained how to view Hilbert modular forms as geometric

objects. Here, in we extend that construction to nearly Hilbert modular forms. In

Section 3.1 and we discuss an extension of the modular sheaf that is important for

this construction. In Sections 3.3 and 3.4, we build the sca↵olding a di↵erential

operator r� for each real embedding � of the field F , using the Gauss–Manin

connection as a key ingredient. Finally, in Section 3.6, we shift our focus to

holomorphic functions and the classical Maass–Shimura operators ��

. The section

ends by setting up a “realization functor” �⇤ that assigns a nearly holomorphic

function to each nearly Hilbert modular form as constructed in Section 3.5. Finally,

we prove that our operators r� and ��

correspond in the sense that the following

square commutes.

N
⌫


N ⌫



N
⌫+�
+2� N ⌫+�

+2�

r�

�
⇤

�
⇤

�
�



Here N
⌫


is the space of nearly Hilbert modular forms of weight  and type ⌫, as

constructed in Section 3.5; and N ⌫


is the space of nearly holomorphic Hilbert

modular forms of weight  and type ⌫, as constructed in Section 3.6.

This serves as a motivation for the construction of r� in Section 4.6, since

that will be entirely analogous to the construction of r� here. For an application

of ��

to the values of p-adic L-functions for CM fields using Damerell’s formula, see

the Appendix A.
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3.1 The de Rham Sheaf

Another important sheaf is the relative de Rham cohomology H
1
dR
(A/X) =

R
1
⇡⇤⌦•

A/X
of A ! X. This sheaf has a natural subsheaf H which is locally free of

rank 2 as a sheaf of OF ⌦Z OXR-modules;1 over K, it fits into an exact sequence of

sheaves of OF ⌦Z OXR-modules known as the Hodge filtration:

0! ! ! H! !
_ ! 0. (3.1)

Over K, ! and its dual !_ are locally free of rank 1 as sheaves of OF ⌦Z OXR-

modules, so they are projective. Thus the sequence splits, though non-canonically.

In addition, H admits a nondegenerate alternating pairing with respect to which

! is a maximal totally isotropic subspace, which gives the explicit isomorphism

between H/! and !_.

Finally, we note that H splits as a direct sum H =
L

�
H� as ! did. This

gives a similar exact sequence for each embedding �:

0! !
�
! H� ! !

_
�
! 0.

This sequence gives a filtration !
�
⇢ H� of H�, which induces filtrations on

Symk H� for each k, with Filr Symk H� = !
k�r

�
⌦ Symr H�. We also get a filtration

on SymH :=
N

�
Symk� H� indexed by the partially ordered set Z�0[I], where a

pure tensor
N

�
s� is in Fil⌫ SymH for ⌫ = (r�)� if s� 2 Filr� Symk� H� for all �.

In particular, Fil0 SymH = !

, where ⌫ = 0 means ⌫ = (0)�.

3.2 Associated Bundles

So far we have discussed two important bundles ! and H on X. In addition,

we used ! to build the bundles !

, whose sections are Hilbert modular forms of

weight ; we explicitly related these bundles to spaces of functions on the frame

1In fact, H1
dR(A/X) agrees with H over Y R. This H is a canonical extension of H1

dR(A/Y
R), a

locally free sheaf of OF ⌦Z OF -modules of rank 2, to such a sheaf defined over all of XR.
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bundle T
⇥
!
. In this section, we will give a more general version of this construction

of so called “associated bundles” which will be built out of the whole H.

We start with three groups. Write T = AutF,XR(!) for the automorphism

group of ! as an OF ⌦ OXR-module. Over an open set where ! is trivial, T is

isomorphic to ResOF /Z Gm. Then let G = AutF,XR(H) be the automorphism

group of H as an OF ⌦ OXR-module. Over an open set where H is trivial, G is

isomorphic to ResOF /Z GL2; this explains its name, since we have been calling that

group G since Section 1. Finally, write Q = AutF,XR(! ⇢ H) for the subgroup of

G = AutF (H) consisting of automorphisms fixing the sub-bundle !. If we restrict

to an open set where both ! and H are trivial, we can choose a basis for H whose

first element is a basis for !; in this basis, the group G is simply a matrix group,

and Q consists of the upper triangular matrices.

For each of the three groups, we have an associated torsor. As before, let

T
⇥
!

= IsomX,F (OF ⌦ OXR ,!), noting that T⇥
!

is a T-torsor. We also consider the

G-torsor T⇥
H = IsomX,F ((OF ⌦OX)�2

,H) and the Q-torsor T⇥,+
H = Isom+

X,F
((OF ⌦

OX)�2
,H), where the + superscript denotes the fact that we should only consider

isomorphisms that respect the filtrations; i.e., isomorphisms ↵ : (OF ⌦ OX)�2 ! H

so that the restriction ↵|OF⌦OX to the first component is an isomorphism OF ⌦

OX ! !. If we think of these isomorphisms as simply giving bases for the fibers

of H, we can think of T⇥,+
H as the subobject of T⇥

H consisting of bases whose first

vector is a basis for !, and T
⇥
!

as the quotient of T⇥,+
H obtained by forgetting the

second basis vector. These maps of torsors correspond to the maps of groups: the

first to the inclusion Q ! G, and the second to the projection Q ! T which picks

out the top left entry of the upper triangular matrix.
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Finally, we explore the concept of “associated bundles.” Let T⇥ ! S be

a torsor for some group H, and let V be a representation of H. Then we say that

the contracted product T⇥ ⇥H V is an associated bundle, where sections of the

contracted product over an a�ne open U = SpecR are homogeneous functions

(T⇥ ⇥H V )(U) = {v : OT⇥(U)! V (R) | v(↵h) = h
�1 · v(↵) for all h 2 H(R)}.

Example 3.2.1 (Associated Bundles to !). In Remark 2.3.2, we showed

that sections of the line bundles !

are certain homogeneous functions on T

⇥
!
.

Specifically, write  = (k�)�. This corresponds to a one-dimensional representation

(⇢,W) of T given by the formula ⇢(g) =
Q

�
�(g)k� . Then !


is given as a

contracted product by !

= T

⇥
!
⇥T W.

These bundles can in fact be recovered from T
⇥,+
H as well. Let W also

denote the inflation to Q via the map Q! T. Then T
⇥,+
H ⇥QW

⇠= T
⇥
!
⇥TW

⇠= !

.

3.3 The Gauss–Manin Connection

The relative de Rham cohomology admits a Gauss–Manin connection, which

extends to a connection on H with logarithm poles on the boundary C. We denote

it by r : H ! H ⌦ ⌦1
X
(logC). It induces a principal connection on T

⇥
H , and a

connection on any associated bundle T
⇥
H ⇥G V for any representation V of G.

We can describe it in terms of the action of the Lie algebra. Specifically,

let U = SpecR ⇢ X be an a�ne open for which H|U is trivial, and we pick D

a derivation R ! R, viewing it as an element of TX(U).2 Then the covariant

derivative in the direction of D is a linear map r(D) : H ! H, which also

commutes with the action of OF . Any frame ↵ 2 T
⇥
H gives a natural basis for the

2The exterior derivative d : R ! ⌦1
U gives rise to a directional derivative d(D) : R ! R for

any D 2 TX(U). The directional derivative in the direction of D is a derivation on R, and every
derivation arises this way.
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fibers, and r(D) is given in this basis by some matrix X(D,↵) 2 M2(OF ⌦Z R) (if

U meets the boundary, it will actually be in M2(OF ⌦ZFracR) with logarithm poles

over C). This is g(R), where g is the Lie algebra of G.

The map ↵ 7! X(D,↵) is G-equivariant for the Ad action of G on g, in

the sense that X(D,↵g) = Ad(g�1)(X(D,↵)) for all g 2 G. This is the standard

condition for r to induce a principal connection on T
⇥
H . One can see this formula

at the level of linear algebra by using g as a change of basis matrix, and noting that

the Ad action of G on g is given by conjugation.

Let V be a representation of G, so that it is also a representation of g. Then

the associated bundle T
⇥
H ⇥GV acquires a connection whose covariant derivative rV

can be described as

rV (D)(f)(↵) = Df(↵) +X(D,↵) · f(↵). (3.2)

The action on pure tensors f ⌦ r 2 V ⌦ R is D(f ⌦ r) = f ⌦ D(r) and X(D,↵) ·

(f ⌦ r) = (X(D,↵) · f)⌦ r.

Remark 3.3.1. One might think of functions to V ⌦ R as R-linear combinations

of vectors in V . The Df(↵) term in Equation (3.2) di↵erentiates the function r 2

R using the exterior derivative, while the X(D,↵) · f(↵) term di↵erentiates the

sections of V . This shows that it is a natural form for a connection that might be

easier to describe in other ways.

The Gauss–Manin connection is also used to define the Kodaira–Spencer

map. Consider the following composition.

!⌦! ! !⌦H Id⌦r���! !⌦H⌦⌦1
X
(logC)! !⌦!_⌦⌦1

X
(logC)! ⌦1

X
(logC). (3.3)
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This morphism is surjective, and over K it identifies ⌦1
X
(logC) with the summand

L
�
!
⌦2
�

of !⌦2. Write this isomorphism as KS: ⌦1
X
(logC)

⇠�!
L

�
!
⌦2
�
. We will also

use the projection KS� : ⌦1
X
(logC)! !

⌦2
�
.

Remark 3.3.2. There are natural Hecke actions on the space of sections of

⌦1
X
(logC) and on !⌦2

�
. The projection KS� is not equivariant with respect to these

actions. While we do not consider Hecke actions in this dissertation, it is important

enough to the general theory that this fact should be mentioned.

3.4 (g, Q)-modules

In the previous section, we described how the Gauss–Manin connection

r on H descends to a covariant derivative on the associated bundles T⇥
H ⇥G V

for any representation V of G. However, this does not, for example, descend to

a connection on the associated bundles for T⇥
!

or T⇥,+
H . Seeing as Example 3.2.1

realized Hilbert modular forms as sections of associated bundles to T
⇥
!
, we need

something more to be able define a covariant derivative acting on the space of

Hilbert modular forms.

As it turns out, the torsor T⇥,+
H will be an important intermediary.

Representations of Q will be necessary in order to define the weights of nearly

Hilbert modular forms, and a compatible action of the Lie algebra g will give us

the action of r. How exactly these actions should be compatible is codified in the

notion of a (g, Q)-module; to define them, we follow the exposition of [Liu19a].

Remark 3.4.1. The idea of a (g, K)-module has existed in the theory for much

longer, especially in the representation theoretic approach to the subject. These

are a fairly natural generalization; the action of the Lie algebra is necessary for a

description of di↵erential operators, but rather than describing the weights in terms
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of representations of the maximal compact subgroup K of the real points of G, we

describe it in terms of the group Q.

Let g = LieG and q = LieQ be the Lie algebras of G and of its Borel

subgroup Q, respectively.

Definition 3.4.2. A (g, Q)-module defined over an algebra E is an algebraic

representation V of both g and Q on locally free E-modules, satisfying the

following compatibility conditions.

1. The action of q ⇢ g is the same as that induced by Q.

2. For any g 2 Q, X 2 g, and v 2 V ,

Ad(g)(X) · v = g ·X · g�1 · v.

Any representation V of G has a natural action of g and of Q. These actions

will be compatible in both senses above. In fact, any finite rank (g, Q)-module

arises this way, c.f. [Liu19a, Remark 2.7].

In order to produce a (g, Q)-module, one can start with a representation V

of Q and form a basis of g whose first elements are a basis of q ⇢ g. The elements

of q act in the way induced by Q, so one only needs to give formulas for the action

of the rest in a compatible way.

Remark 3.4.3. Another way to describe a (g, Q)-module V is to pick some ring R

and extend the Q(R)-module V (R) to a representation bV (R) of an open subgroup

bQ(R) ⇢ G(R) containing Q(R). Since bQ(R) is open in G(R), its Lie algebra is g.

One then checks that the action of g preserves V (R) as a subspace of bV (R), and

then calculates the formulas for the action, which will automatically be compatible.

These formulas will only involve scalars from R, so they will define a (g, Q)-module
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over R. If the scalars all come from a subring of R and the basis is defined over

that subring, then the formulas will define a (g, Q)-module over that subring. This

is done e.g. in [Liu19a, Section 2.3] (“a more conceptual proof” after Equation

(2.5)) for R = Zp; we will use this method in Section 3.5 as well.

Let V be a (g, Q)-module. The formula in Equation (3.2) shows that the

Gauss–Manin connection on the bundle associated to a G-module is given in terms

of the exterior derivative and the action of g. Thus one might hope that we can

define a connection on V := T
⇥,+
H ⇥Q V . This is most of the content of the following

proposition.

Proposition 3.4.4. Let V be a (g, Q)-module. Then there is an integrable

connection rV on the associated bundle V := T
⇥,+
H ⇥Q V given by the formula

rV(D)(v)(↵) = Dv(↵) +X(D,↵) · v(↵).

Proof. The formula certainly gives a map O
T

⇥,+
H
! O

T
⇥,+
H
⌦ ⌦1

X
(logC). In order

to show that it gives a connection on V , we have to show that the homogeneity

property holds, rV(v)(↵g) = g
�1 · rV(v)(↵). In fact, it holds for each term

separately, and we treat them separately. First,

Dv(↵g) = D(g�1 · v(↵)) = g
�1 ·Dv(↵).

The first equality is by the homogeneity of v, and the second by the chain rule for

the exterior derivative d. Then,

X(D,↵g) · v(↵g) = Ad(g�1)(X(D,↵)) · g�1 · v(↵) = g
�1 ·X(D,↵) · g · g�1 · v(↵).
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This reduces to g
�1 · X(D,↵) · v(↵). Here we have used the second compatibility

condition for (g, Q)-modules in the second equality. Thus we have

rV(D)(v)(↵g) = Dv(↵g) +X(D,↵g) · v(↵g)

= g
�1 ·Dv(↵) + g

�1 ·X(D,↵) · v(↵)

= g
�1 ·rV(v)(↵).

This is what we wanted to show. The connection is integrable because d and r

both are.

3.5 Nearly Hilbert Modular Forms

Nearly Hilbert modular forms are sections of certain vector bundles. In

particular, there should be finite rank representations V ⌫


of Q for all  2 Z[I] and

⌫ = (r�)� 2 Z�0[I] so that a nearly holomorphic Hilbert modular form of weight

 and type ⌫ is a section of V⌫

= T

⇥,+
H ⇥Q V

⌫


. Each individual V ⌫


is not a (g, Q)-

module, which complicates the definition of the di↵erential operators. However,

there is an inclusion V
⌫1

⇢ V

⌫2


whenever ⌫i = (r(i)� )� and r
(2)
� � r

(1)
� for all �, and

the union V =
S
⌫
V
⌫


is a (g, Q)-module. It will satisfy g�V ⌫


⇢ V

⌫+�


. Thus, by

Proposition 3.4.4 and the forthcoming Remark 3.5.4, we will obtain a connection

rV on V =
S
⌫
V⌫

satisfying

rV(V⌫) ⇢
M

�

V⌫+�

⌦ !⌦2

�
⇢ V ⌦ ⌦1

X
(logC)

The specifics are laid out in the rest of the section.

For now, we fix an auxiliary prime ` which is unramified in F/Q, L an `-adic

field which splits F , and OL its ring of integers. Let I denote the set of embeddings

of F into L.

We fix a weight  =
P

�
k�� 2 Z[I], with W the corresponding 1-

dimensional representation of T defined over OL. We build the (g, Q)-module V

following the course laid out in Remark 3.4.3 and [Liu19a].
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We begin by giving names to important, non-algebraic subgroups of G(OL).

We will use the neighborhood IG(OL) � Q(OL), which contains the lower parabolic

subgroup Q
�
IG
(OL) and the Levi subgroup H(OL),

IG(OL) =

8
><

>:

0

B@
a b

c d

1

CA 2 G(OL) | c 2 pOF ⌦OL

9
>=

>;
,

Q
�
IG
(OL) =

8
><

>:

0

B@
a 0

c d

1

CA 2 G(OL) | c 2 pOF ⌦OL

9
>=

>;
,

H(OL) =

8
><

>:

0

B@
a 0

0 d

1

CA 2 G(OL)

9
>=

>;
.

Note that Q�
IG
(OL) projects onto T(OL) by picking out the top left entry a. We

inflate the representation W(L) from T(OL) to Q
�
IG
(OL). We have a unique

choice of `-adic topology on the finite dimensional Banach space W(L); consider

the `-adic analytic induction bV(OL) = IndIG(OL)

Q
�
IG

(OL)
W(L), which is the set of

`-adic analytic functions � : IG(OL) ! W(L) which are homogeneous with

respect to the action of Q�
IG
(OL) in the sense that �(hx) = h · �(x) for all

x 2 IG(OL), h 2 Q
�
IG
(OL). It is a representation of IG(OL) by right translation:

(g · �)(x) = �(xg) for all g, x 2 IG(OL).

By the Iwahori decomposition, every coset Q�
IG
(OL)x 2 Q

�
IG
(OL)\IG(OL)

can be written as

Q
�
IG
(OL)x = Q

�
IG
(OL)

0

B@
1 Y

0 1

1

CA .

This is for some unique choice of Y 2 OF ⌦ OL, so that each � 2 bV is determined

by its values on these matrices. We note that the coset spaces Q�
IG
(OL)\IG(OL)
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and H(OL)\Q(OL) are the same, down to the choice of representatives, and view

bV as an algebraic representation defined over OL which consists of `-adic analytic

functions from the coset space H\Q to W. This allows us to write bV(R) = W ⌦

Orig

H\Q, where Orig

H\Q is the space of `-adic analytic functions on the rigid space H\Q.

For any OL-algebra R, we have natural coordinates on (H\Q)(R) ⇠= OF ⌦

R ⇠=
Q

�
R called Y� for each embedding � : F ! L.3 By the standard theory

of rigid spaces (in e.g. [Nic07]), the ring of `-adic analytic functions on H\Q is

Orig

H\Q(SpR) = RhY i, the space of power series over R in the variables Y� whose

coe�cients go to 0 `-adically.

One may explicitly compute the action of IG(OL) on bV(OL), obtaining the

formula

(g · P )(Y ) = (a+ Y c) · P ((a+ Y c)�1(b+ Y d)), g =

0

B@
a b

c d

1

CA

Here Y and the entries of g are viewed as elements of the ring OF ⌦ OL. The

induced action of Q(OL) and g(OL) may be computed from this formula. For

Q(OL), this is simple: substitute 0 for c in the formula above. This gives the

induced action of q(OL) on bV(OL). To describe the action of the rest of g(OL),

we need a basis. Since g(OL) =
Q

�
gl2(OL), we may specify the actions of

{µ�
�
| � : F ! L}, where µ

�
�
is the element of

Q
gl2(OL) which is

0

B@
0 0

1 0

1

CA in the

entry corresponding to �, and the zero matrix in all other entries. With our fixed

choice of coordinates Y�, we find that

µ
�
�
· P (Y ) = Y�"� · P (Y )� Y

2
�

@

@Y�
P (Y ).

3This is where we use the fact that our auxilliary prime ` is unramified.
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Here "� 2 Lie(T) =
Q

gl1(OL) is the tuple with a 1 in the entry corresponding to �

and 0 in all other entries, acting naturally on W. Specifically, "� · w = k�w for any

w 2 W.

Notice that the space of polynomials W[Y ] is preserved by the actions

of both Q(OL) and g(OL), though it is not preserved by IG(OL). These are the

algebraic functions on the scheme H\Q. We have thus defined a (g, Q)-module

structure on V = W ⌦ OH\Q, where now OH\Q is the space of algebraic functions

on the coset space H\Q. Over OL, this is the polynomial ring OH\Q(R) = OL[Y ] =

OL[Y�]�.

Now we fix an algebra R over the ring of integers in the Galois closure of

F such that the discriminant of F is invertible in R. Over R, we may write V =

W ⌦ OH\Q = W[Y ] where Y = (Y�)� is our natural set of coordinates, and we

can extend any basis for q to a basis for g by using {µ�
�
}. We have actions given by

formulas. For Q,

(g · P )(Y ) = a · P (a�1(b+ Y d)), g =

0

B@
a b

0 d

1

CA .

For g, we specify the action of the µ
�
�
.

µ
�
�
· P (Y ) = Y�"� · P (Y )� Y

2
�

@

@Y�
P (Y ). (3.4)

These formulas give compatible actions since they were compatible on bV.

Remark 3.5.1. The coordinates Y are simply indeterminates at this stage. Later,

we will turn certain algebraic functions to V into smooth functions on hF by

substituting Y� with s� = 1
2iy�

, where y� is the imaginary part of our coordinates

z� on hF . The notation can be confusing at first, since the same letter is used for a

quantity and 1
2i times its reciprocoal, but it is standard as in e.g. [Liu19a].
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Remark 3.5.2. If we replace R by a subring O ⇢ R, then g(O) is a subalgebra of

g(R) =
Q

�
gl2(R). Thus these formulas can still be used to describe the action, but

we have to be careful about what elements of the direct product we consider. This

is particularly important if p ramifies in F when R = K is our chosen p-adic field

and O = OK is its ring of integers.

Not only does the action of Q preserve the degree of the polynomial, it

preserves the degree in each variable Y
� separately. Thus V has an exhaustive

filtration indexed by the partially ordered set Z�0[I], such that V ⌫


is the space

of polynomials of degree at most r� in the variable Y�. The Lie algebra q also

preserves the filtration. Write g =
L

�
g� over K. Since g� is generated by q�

and µ
�
�
, it preserves the degree as a function of Y⌧ for each ⌧ 6= �, and raises the

degree as a function of Y� by at most 1 by the formula in Equation (3.4). We have

g�V ⌫


⇢ V

⌫+�


. Unlike V, each piece V
⌫


has finite rank

Q
�
(1+ r�), meaning that its

associated bundle V⌫

= T

⇥,+
H ⇥Q V

⌫


has finite rank as a vector bundle.

Definition 3.5.3. The sheaf of nearly holomorphic Hilbert modular forms of

weight  is V = T
⇥,+
H ⇥Q V. The sheaf of nearly holomorphic Hilbert modular

forms of weight  and type ⌫ is V⌫

= T

⇥,+
H ⇥Q V

⌫


. The K-vector space of nearly

holomorphic Hilbert modular forms of weight  and type ⌫ is thus H0(X,V⌫

).

Remark 3.5.4. Using the filtration, we can refine the statement of Proposition 3.4.4.

Define the di↵erential operator r� to be the composition

V
rV��! V ⌦ ⌦1

X
(logC)

1⌦KS�����! V ⌦ !⌦2
�
⇠= V+2�.

Then r�(D) is given by the action of X(D�,↵) 2 g�, where D� is the projection of

D 2 ⌦1
X
(logC) onto the summand !⌦2

�
. Thus it sends V⌫


into V⌫+�


⌦ !⌦2

�
⇠= V⌫+�

+2�.
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Specifically, r� raises the weight of a nearly holomorphic Hilbert modular form by

2� and its type by �.

Recall Remark 3.5.2, which stated that g(OK) ⇢
Q

�
gl2(OK) may be a

strict inclusion if K is a p-adic field and p ramifies in F . In this case, D� may not

be an integral element of the Lie algebra even if D is. So r� may not actually act

integrally. We discuss this in Section 4.7.

Note that we have written r� with no reference to  or ⌫, since they are

clear from context while � is not. In addition, write  =
P

�
k�� in order to make

better sense of what character + 2� corresponds to.

It is known (c.f. [Kat78, Lemma 2.1.14]) that r� and r⌧ commute for any

pair of embeddings � and ⌧ . This is done by reducing to the case of working over

C, where we have the explicit formulas which will be given in the next section.

These formulas define commuting operators over C, which are transported to being

commuting operators over any base ring. Thus we may unambiguously write r0

for the di↵erential operator that raises weights by 0 =
P

�
2k0

�
� and types (k�)�.

3.6 Nearly Holomorphic Hilbert Modular Forms

In Section 2.4, we described holomorphic Hilbert modular forms over C in

terms of holomorphic functions on the product hF =
Y

�2I

h of upper half spaces. We

then set up a realization functor by giving a map � : hF ! T
⇥
!

and pulling back.

In this section, we will do the same for nearly holomorphic Hilbert modular forms,

with the added bonus that the di↵erential operator described in Remark 3.5.4 will

correspond to the classical Maass–Shimura operator.

The complex space hF has coordinates (z�)�2I ; for each � 2 I, we get a

pair of di↵erential operators @

@z�
and @

@z�
. One way to characterize holomorphic

functions is to say that a smooth function f : hF ! C is holomorphic if and only
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if @f

@z�
= 0 for all �. Here we generalize this to the notion of a nearly holomorphic

function.

Definition 3.6.1. A function f is nearly holomorphic of type ⌫ = (r�)� if @
r�+1

f

@z
r�+1
�

=

0 for each �. A function f is nearly holomorphic if there exists a tuple of integers

⌫ = (r�)� such that f is nearly holomorphic of type ⌫.

In particular, a holomorphic function is nearly holomorphic of type (0)�.

Remark 3.6.2. There is another characterization of nearly holomorphic functions.

Following the conventions in [Liu19a], write s� = 1
z��z�

. Then a function f is nearly

holomorphic of type ⌫ = (r�)� if and only if it can be written as a polynomial in

the variables s� with degree at most r� as a polynomial in s� alone, and for which

the coe�cients are holomorphic functions. There are no algebraic relations between

these s�’s, so this polynomial is uniquely determined by f .

Remark 3.6.3. In [Liu19a], the author’s nearly holomorphic functions are

polynomials in the variables sij, where sij is the ij entry of the matrix (z � z)�1.

In contrast, in [Shi00, 13.2], the author uses ri to denote a set of functions that

play this role, noting that we may take them to be the entries of this matrix. We

note that in the Hilbert case, s� = 1
z��z�

= 1
2iy�

where y� is the imaginary part

of z�. The theory is often presented in terms of this y�; we have chosen to use s�

to follow [Liu19a] more closely. This y� is not related to the coordinate Y� that we

chose for the coset space H\Q.

In the vein of Definition 2.4.2, define nearly holomorphic Hilbert modular

forms as follows.

Definition 3.6.4. A nearly holomorphic Hilbert modular form of level �1(N),

weight  = (k�)�, and type (r�)� is a nearly holomorphic function hF ! C of type
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(r�)� satisfying the homogeneity condition

f(� · z) =
 
Y

�

(�(c)z + �(d))k�

!
f(z), for all � =

0

B@
a b

c d

1

CA 2 �1(N).

If F = Q, then we also need a growth condition at the cusps.

Write N
⌫


(N) for the vector space of holomorphic Hilbert modular forms

of level �1(N), weight  and type ⌫. We also define the classical Maass–Shimura

operator as in e.g. [Shi00].

Definition 3.6.5. The weight  Maass–Shimura operator at �, denoted ��

, acts on

functions by the formula

(��

f)(z) =

1

2⇡i
s
k�
�

@

@z�
s
�k�
�

f(z). (3.5)

If f is a nearly holomorphic Hilbert modular form of weight  and type (r�)�, then

�
�


f is a nearly holomorphic modular form of weight  + 2� and type ⌫ + �. Write

�
n�


for the composition

�
n�


= �

�

+2(n�1)� � · · · � �� .

This raises the weight by 2n� and the type by n�. Since the partial deriatives

commute, and @s�
@z⌧

= 0 when � 6= ⌧ , we may unambiguously write �
0


for the

composition that raises the weight by 20 and the type by 0 for any 0.

Remark 3.6.6. The factor of 1
2⇡i in Equation (3.5) is a normalization factor required

to make this an algebraic operation. Our choice of which abelian variety Az is

associated to each z 2 h, as well as the choice to use dw as the di↵erential, are

other normalization factors; our choices here follow [Kat78]. With these choices, we

compare ��

to r� directly, rather than requiring another normalization factor.

Our comparison theorem will be built very similarly to Theorem 2.4.3.

Specifically, we will construct a function hF ! T
⇥,+
H such that the composition
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hF ! T
⇥,+
H ! T

⇥
!

is the function � we used in Section 2.4; we will call this lift � as

well. Then pulling back along � will give us a function valued in V
⌫


; setting Y = 0

will give us a W-valued function. Forgetting the action of T, this is simply a C-

valued function. Write, somewhat abusively, �⇤
0 for the composition of the pullback

�
⇤ with the projection V

⌫


! W that evaluates at Y = 0.

Once we have established that �⇤
0 is an isomorphism, we will show that

the di↵erential operator r� described in Remark 3.5.4 corresponds to the Maass–

Shimura operator ��

by showing that the following square commutes.

N
⌫


N ⌫



N
⌫+�
+2� N ⌫+�

+2�

r�

�
⇤
0

�
⇤
0

��

Following [Liu19a], we describe two bases for H1
dR
(Az), and put them

together to find a suitable basis that we may use to extend � as previously defined.

In this discussion we use the fact that H1
dR
(A) is the C-linear dual of Lie(A) ⌦R C,

and that Lie(Az) ⇠= OF ⌦ C.

We have a natural basis for Lie(Az) ⇠= OF ⌦ C as an OF ⌦ R-module given

by 1 and z. This extends to an OF ⌦ C-basis of Lie(Az) ⌦R C; let ↵ and � be the

elements of the dual basis, defined by

↵ (c1 + c2z) = c1, �(c1 + c2z) = c2.

We may also use the natural C-action on Lie(Az) to get a splitting of Lie(Az) ⌦R

C = Lie(Az) � Lie(Az). The space Lie(Az) ⌦R C has two actions of C: one on the

first component and one on the second. Write Lie(Az) for the subspace on which

these actions agree v⌦ c = cv⌦ 1; and Lie(Az) for the subspace on which they di↵er

by complex conjugation, v ⌦ c = cv ⌦ 1. The dual space to Lie(Az) ⇠= OF ⌦ C is
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simply the cotangent bundle ⌦1
Az
; we have a basis dw for this space, which is the

simply the natural identification Lie(Az)! OF ⌦C. The complement of ⌦1
Az
, which

we called Lie(Az), is also naturally identified with OF ⌦ C, and let dw denote the

functional given by this identification.

Neither of these pairs of functionals is quite the basis we want. In order

for the chosen basis to be a lift of the function � described in Section 2.4, we need

to choose a basis with dw as the first element. Then, we need another element of

H
1
dR
(Az) to extend this to a basis of the whole space. We have two useful choices.

First, we might choose a slight rescaling of the second basis, (dw,�dw s).

This rescaling is necessary for the basis to respect the pairing, and in fact this is

the basis we choose to use when we define the extension � : hF ! T
⇥,+
H .

However, we might instead choose the basis (dw, �). This has the advantage

that the di↵erential operator is given by an explicit element of the Lie algebra.

Specifically, via the identification ! ⌦OF !
⇠= ⌦1

X
, the basis dw gives a basis for

⌦1
X
, and a dual basis D = (D�)� for TX . Writing dw� and �� for the corresponding

basis of H1
dR
(Az)(�) for each � 2 I, we have that r(D�)(dw�) = ��. Thus, in this

basis, the di↵erential operator r� acts via the Lie algebra element µ�
�
, for which

we have an explicit formula. This also has the benefit of being a holomorphic basis:

for a nearly Hilbert modular form f 2 O
T

⇥,+
H
⇥Q V, we have that the function

z 7! f(Az, dw, �) can be written as a polynomial Pf (Y ) in the variables Y� with

holomorphic functions as coe�cients.

The final piece of the puzzle, then, is to relate these two bases to each other.

The action of Q gives us

(dw,�dw s)

0

B@
1 s

0 1

1

CA = (dw, �) or, (dw,�dw s) = (dw, �)

0

B@
1 �s

0 1

1

CA .

36



In particular, if write f(Az, dw, �) = Pf (Y ), we have

f(Az, dw,�dw s) = f

0

B@Az, (dw, �)

0

B@
1 �s

0 1

1

CA

1

CA

=

0

B@
1 s

0 1

1

CA · f(Az, dw, �)

=

0

B@
1 s

0 1

1

CA · Pf (Y )

= Pf (s+ Y )

Thus �⇤
0(f)(z) = Pf (s) is a polynomial in the variables s� with holomorphic

functions of z as coe�cients. If f has type ⌫ = (r�)� in the sense that f 2 O
T

⇥,+
H
⇥Q

V
⌫


, then �⇤

0(f) is nearly holomorphic of type ⌫ by our alternate characterization in

Remark 3.6.2.

This process is reversible since Pf (Y ) can be recovered from Pf (s). Thus, to

prove that �⇤
0 : V⌫ ! N

⌫


(N) is a valid realization functor, we just have to show that

�
⇤
0(f) satisfies the transformation property, �⇤

0(f)(� · z) = (cz + d)�⇤
0(f)(z). We

have

(Az, dw,�dw s) ⇠= (A�·z, (cz + d)dw,�(cz + d)�1dw s).

Similar to replacing dw by (cz + d)dw, the action of � replaces dw by (cz + d)dw

and s by s

|cz+d|2 , which has the net e↵ect of replacing the product �dw s by �(cz +

d)�1dw s. Thus we get the required transformation property by using the formula

37



for the action of Q on V:

�
⇤
0(f)(� · z) =

0

B@
(cz + d)�1 0

0 (cz + d)

1

CA · �⇤
0(f)(z) = (cz + d)�1

�
⇤
0(f)(z).

We have proved,

Theorem 3.6.7. The map �⇤
0 : V⌫ ! N

⌫


(N) is an isomorphism.

We are left to show that this intertwines the di↵erential operators r� and

�
�


.

Theorem 3.6.8. The operator r� is the correct analog of the Maass–Shimura

operator ��

, in the sense that �⇤

0 � r� = �
�


� �⇤

0.

Proof. We have formulas for each operator, and we compare them. Let Pf (Y ) be

the polynomial with coe�cients which are holomorphic functions of z such that

f(Az, dw, �) = Pf (Y ). By the formula in Equation (3.4.4), write

(r� · f) (Az, dw, �) =
@Pf

@z�
(Y ) + µ

�
�
Pf (Y ).

Here the operator @

@z�
di↵erentiates the coe�cients of Pf . Using the formula for the

action of µ�
�
, we get

(r� · f) (Az, dw, �) =
@Pf

@z�
(Y ) + Y�"�Pf (Y )� Y

2
�

@

@Y�
Pf (Y ).

The action of "� is just multiplication by k�. Applying the realization functor, we

get

(�⇤
0 � r�)(f)(z) =

@Pf

@z�
(s) + k�s�Pf (s)� s

2
�

@Pf

@Y�
(s). (3.6)

Now we should compare this to (��

��⇤

0)(f). We have that �⇤
0(f) = Pf (s). Note that

@s⌧
@z�

= 0 if � 6= ⌧ , and

@s�

@z�
=

@

@z�

1

z� � z�
= � 1

(z� � z�)2
= �s2

�
. (3.7)
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Using the definition of ��

and the product rule, we get

(��

· �⇤

0(f))(z) = s
k�
�

@

@z�

�
s
�k�
�

Pf (s)
�
=

✓
s
k�
�

@

@z�
s
�k�
�

◆
Pf (s) +

@

@z�
(Pf (s)) . (3.8)

Here, the derivative in @Pf

@z�
(s) acts only on the coe�cients of Pf ; on the other hand,

@

@z�
(Pf (s)) refers to the derivative of the whole nearly holomorphic function Pf (s).

The product rule gives

@

@z�
(Pf (s)) =

@Pf

@z�
(s) +

@Pf

@Y�
(s) · @s�

@z�
=

@Pf

@z�
(s)� s

2
�

@Pf

@Y�
(s).

On the other hand, using Equation (3.7), we have

@

@z�
s
�k�
�

= �k�s�k��1
�

@s�

@z�
= k�s

k�+1
�

, s
k�
�

@

@z�
s
�k�
�

= k�s�.

Plugging the previous two equations into Equation 3.8, we get

(��

· �⇤

0(f))(z) = k�s�Pf (s) +
@Pf

@z�
(s)� s

2
�

@Pf

@Y�
(s). (3.9)

Comparing Equations (3.6) and (3.9), we conclude.

3.7 Splitting the Hodge Filtration

This section is included to give some intuition for why certain objects might

show up in this theory. In it, we attempt to explain why the (g, Q)-module V is a

natural object to consider by giving an interpretation of its relationship with W. It

is not necessary in order to follow the results and proofs of this dissertation.

We have not yet talked about one of the most important features of the

theory of nearly Hilbert modular forms: the choice of splitting of the Hodge

filtration. Recall from Equation (3.1) that the bundles ! and H fit into the

following exact sequence of sheaves of OF ⌦ OX-modules known as the Hodge

filtration:

0! ! ! H! !
_ ! 0
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We also recall that we defined the group schemes G, H, and Q in terms of these

objects. We had G, the group of automorphisms of H that preserve the pairing; H

the group of automorphisms of !; and Q, the group of automorphisms of H that

preserved ! as a subsheaf.

Pick a trivialization ↵0 : OF ⌦ OX ! !, and extend it to a trivialization ↵

of H such that ↵(1, 0) = ↵0(1) and h↵(1, 0),↵(0, 1)i = 1. This gives a splitting

of the Hodge filtration. Specifically, ↵(0, 1) projects to a basis !0 2 !
_; every

element of !_ can be written uniquely as a constant multiple of this element, c!0.

Then we define an inclusion ⌘ : !_ ! H by sending c!
0 to c↵(0, 1). This induces a

decomposition of H as an internal direct sum H = Span{↵(1, 0)}� Span{↵(0, 1)} =

! � ⌘ (!_).

In this basis, we can write G as a group of 2 ⇥ 2 matrices, with Q as the

subgroup of upper triangular matrices. We also embed T into Q as a subgroup H

of diagonal matrices; write h 2 T as the diagonal matrix

0

B@
h 0

0 h
�1

1

CA. The group H

preserves the direct sum decomposition H = ! � !_.

On the other hand, while Q does preserve the subspace ! ⇢ H, it does

not preserve the complement ⌘ (!_); in fact, Q acts transitively on the set of such

complements, while H is the subset that preserves each decomposition. Thus

the set of splittings of the Hodge filtration is a Q-set, and the stabilizer of each

splitting is H. So any choice of a splitting gives an isomorphism between the set of

splittings of the Hodge filtration and the coset space H\Q.

Now recall that the representation V of Q is the set W ⌦ OH\Q. We

should think of this as the space of functions from H\Q to W, or once a choice

of a splitting of the Hodge filtration is chosen, perhaps as the space of functions

from the set of splittings of the Hodge filtration to W. Given an element of
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T
⇥,+
H , we can think of the trivialization of H as giving us a trivialization of !

along with a choice of splitting of the Hodge filtration. (It also gives a basis for

the complement ⌘ (!_), but for this section we will ignore this fact.) We get the

following philosophical result: a nearly Hilbert modular form is a gadget that takes

in a splitting of the Hodge filtration and splits out a Hilbert modular form.

Note that a nearly Hilbert modular form f is an honest Hilbert modular

form if it doesn’t depend on the choice of splitting. On the algebraic side, this

happens if and only if it descends to a function on the quotient T⇥
!

of T⇥,+
H . On the

complex analytic side, this happens if and only if the nearly holomorphic function f

is actually holomorphic.

When F = Q, this conversation is more explicit. Working over C, we have a

natural splitting of the Hodge filtration given by H = !�!, where ! is the space of

holomorphic di↵erentials on the universal elliptic curve A, and ! ⇠= !
_ is the space

of anti-holomorphic di↵erentials. The coset representatives of H\Q are matrices of

the form 0

B@
1 Y

0 1

1

CA , Y 2 Hom(!_
,!) ⇠= !

⌦2
.

There are only a few sections of !⌦2, and none of them are holomorphic. In fact,

they are all multiples of the function E2 � 3
⇡y

= E2 + 12
2⇡is, where E2 is a

normalized Eisenstein series of weight 2. As a function on h, it satisfies the weight

2 modularity condition. Now let f(z) be a holomorphic modular form of weight k,

so �kf = ks

2⇡if + 1
2⇡i

@f

@z
is a nearly holomorphic modular form of weight k + 2. Since

1
12(kE2+

12ks
2⇡i )f = 2⇡ik

12 E2f +ksf also satisfies the weight k+2 modularity condition,

their di↵erence @f = @f

@z
� 2⇡ik

12 E2f satisfies the weight k+ 2 modularity condition as

well, and it is holomorphic. This @f is the holomorphic projection of �kf , and it is
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an honest holomorphic modular form of weight k + 2 when viewed as a function on

h.

In the sense above, the nearly holomorphic function �kf corresponds to a

certain nearly modular form rf . This nearly modular form takes a splitting ⌘ of

the Hodge filtration and spits out a modular form, which corresponds to a function

on h. There is one splitting ⌘0 of the Hodge filtration for which the function on h

corresponding to (rf)(⌘0) is actually the nearly holomorphic function �kf , and one

splitting ⌘holo of the Hodge filtration for which the function on h corresponding to

(rf)(⌘holo) is actually holomorphic. All other splittings fall somewhere in between.
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CHAPTER IV

P -ADIC THEORY

Let K be a p-adic field that splits F , as in Section 2.1. As established in

Section 1.4, OK is its ring of integers, and m the unique maximal ideal in OK . For

any m � 1, let Om = OK/mm, so that in particular O1 is the residue field OK/m,

which has characteristic p. In this section we work over the bases S = SpecOK and

Sm = SpecOm.

4.1 Weights

Recall the discussion of weights in the Archimedean theory, from Section

2.1. In the Archimedean theory, weights were characters of the algebraic group T =

ResOF /Z Gm. For the p-adic theory, weights are instead characters of the constant

group scheme T(Zp).

The weight space W , a rigid analytic space defined over K associated to the

algebra ZpJT(Zp)K. The Cp-points of W parametrize continuous homomorphisms

T(Zp) ! C⇥
p
, which are the p-adic weights of Hilbert modular forms. As a rigid

analytic space, it is isomorphic to a finite disjoint union of open unit balls of

dimension d, where each component is labeled by a (finite order) character of the

torsion subgroup of T(Zp). A character of T(Zp) is called algebraic if it is in Z[I],

and locally algebraic if it is the product of a finite order character and an algebraic

character. Locally algebraic characters are dense in the weight space.

For any value1 w 2 v(OF ), the rigid analytic group T has two important

subgroups. The first, T0
w
, consists of units congruent to 1 modulo (p)w. The second,

Tw, is generated by T0
w
and T(Zp).

1If p ramifies with index e, w 2 1
eZ. Writing (p)w should make sense as an ideal of OF , and we

will sometimes write p
w abusively even if there is no such element.
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Let A be an a�noid algebra, and let  : T(Zp) ! A
⇥ be a family of

characters parametrized by the a�noid space U = SpA. As asserted in [AIP16],

such a character is w-analytic for some w, meaning that it factors as a composition

as follows for some linear map  :

T0
w
(Zp) = 1 + p

w(OF ⌦ Zp)
logF��! p

wOF ⌦ Zp

 �! pA
exp��! 1 + pA ⇢ A

⇥
. (4.1)

There is a universal character un : W ⇥ T(Zp) ! C⇥
p
, where un(x, t)

evaluates the character associated to the point x at the input t 2 T(Zp),

corresponding to the natural character T(Zp) ! OKJT(Zp)K sending g to g. The

universal character is 1-analytic.

For a family of p-adic, or overconvergent, Hilbert modular forms, its weight

should be a family of characters; if the family of p-adic Hilbert modular forms is

parametrized by a rigid space U , so should be the family of weights. Any family

of characters parametrized by a space U is specified by pulling back the universal

character by a map U !W .

4.2 Canonical Subgroups for Ordinary HBAVs

In this section we discuss ordinary HBAVs and their properties. Consider an

HBAV A1 defined over the residue field O1, and a prime ideal p of F lying over p.

Consider the pn-torsion of A1,

A1[p
n] = {a 2 A1 | x · a = 0 for all x 2 pn}.

For our fixed A1, there are two possibilities for the sizes of these subgroups. Either

#A1[pn] = Nm(p)n for all n, or #A1[pn] = 1 for all n. In the first case, we say that

A1 is ordinary, while in the second we say that A1 is supersingular.
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For an HBAV A defined over OK , we say that A is ordinary or supersingular

depending on its base change A1 = A⇥OK O1 to the residue field. If A1 is ordinary,

we say A is ordinary, and if A1 is supersingular, we say that A is supersingular.

There is a test for whether or not A1 is ordinary depending on the value of

a modular form, known as the Hasse invariant. Let q = Nm(p), Fr be the relative

q-power Frobenius map A1 ! A
(q)
1 , defined by the following diagram:

A1

A
(q)
1 A1

SpecO1 SpecO1

Fr

Frabs

Frabs

In this diagram, both maps A1 ! SpecO1 are the structure maps. The maps

SpecO1 ! SpecO1 and A1 ! A1 are both the absolute Frobenius maps, which

are the identity on points, but pulling back functions raises them to the qth power.

The bottom right square is a pullback diagram which defines A(q)
1 , and the relative

Frobenius Fr fits in as the dashed arrow by the universal property of the pullback.

Remark 4.2.1. In fact, A(q)
1
⇠= A1, which is easiest to see in terms of equations.

Since A1 is an abelian variety, it is projective. Embed it into some projective

space; it is the zero set of some collection of homogeneous polynomials {fi}i2I ,

and since it is defined over O1, the coe�cients of these polynomials are elements

of O1. Then A
(q)
1 is the zero set of the polynomials {f (q)

i
}i2I , where f

(q)
i

is the

polynomial obtained from fi by raising all of its coe�cients to the q power. Since

the coe�cients are in O1, raising them to the q power is the identity, and A
(q)
1 is the

same subvariety of the same projective space as A1 was. This is one advantage of
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using the relative q-power Frobenius map instead of p-power. For elliptic curves,

this is spelled out in e.g. [Sil09, Example II.4.6]. We will not distinguish between

the two for the rest of this section.

The dual isogeny to the relative Frobenius, V : Â1 ! Â1 is known as

verschiebung. Vershiebung is either separable, if A1 is ordinary, or inseparable, if

A1 is supersingular at p for some p lying over p.

Fix an HBAV A1 defined over an O1-algebra R1 such that ⌦1
A1

is a free

OF ⌦ R1-module of rank 1 (i.e., A1 satisfies the Rapoport condition). Then choose

a trivialiation ↵ : OF ⌦ R1 ! ⌦1
A1
, and let ! = ↵(1). Using the decomposition

⌦1
A1
⇠=

L
�
⌦1

A1
(�), we get an R1-basis {!�}� for ⌦1

A1
, where !� is the image of !

after projecting to ⌦1
A1
(�).

The polarization � induces a perfect, OF -linear pairing ⌦1
A1
⇥ T

Â1
! R1. Let

{⌘�}� be the dual basis to {!�}�, and notice that pullback by Fr gives a skew-linear

map T
Â1
! T

Â1
, such that

Fr(c⌘) = c
q Fr(⌘). (4.2)

Notice that, since �(cq) = �(c)q, this map is OF -linear. Thus, if ⌘ is dual to an

element of ⌦1
A1
(�), so is Fr(⌘). Define the function Ha� to be the coe�cient

Fr(⌘�) 7! Ha�(A1,↵)⌘�.

We note that this satisfies a homogeneity property: for any c 2 OF ⌦ R1, c · ↵ gives

the new dual basis {�(c)�1
⌘�}�. Using Equation (4.2), we see that

Fr(�(c)�1
⌘�) = �(c)�q Fr(⌘�).

Writing each side of the equation above in terms of the Hasse invariant, we get

Ha�(A1, c↵)�(c)
�1
⌘� = �(c)�q Ha�(A1,↵)⌘�.
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Multiplying both sides by �(c) and comparing coe�cients, we find

Ha�(A1, c↵) = �(c)1�q Ha�(A1,↵). (4.3)

Definition 4.2.2. For any abelian variety A1 as above and any trivialization ↵ of

its cotangent bundle, define the Hasse invariant at �, Ha�, to be coe�cient

Fr(⌘�) 7! Ha�(A1,↵)⌘�

By Equation (4.3), we see that Ha� is a Hilbert modular form of weight (q � 1)�.

For every prime p lying over p, let Ip be the set of embeddings F ! K which

“belong to p.” Specifically,

Ip = {� 2 I | OF

��! OK ! O1 factors through the reduction OF ! OF/p}.

Then define the Hasse invariant at p, Hap, to be the product

Hap(A1,↵) =
Y

�2Ip

Ha�(A1,↵).

These are Hilbert modular forms of weight
P

�2Ip(q � 1)�; we also call them partial

Hasse invariants. Finally, define the full Hasse invariant Ha to be the product

Ha(A1,↵) =
Y

�2I

Ha�(A1,↵) =
Y

p|p

Hap(A1,↵).

This is a Hilbert modular form of parallel weight q � 1.

Remark 4.2.3. The partial Hasse invariants Ha� are only defined over the Rapoport

locus. However, as noted in [AIP16, Remark 3.1, page 11], the products Hap extend

to be defined over the whole modular curve.

An abelian variety A1 over O1 will be ordinary at p, i.e., V will be separable,

if and only if Ha(A1,↵) 6= 0 for some trivialization ↵ of ⌦1
A1
. The homogeneity

property shows that one may check this condition for any choice of ↵. We say A1

is ordinary at p if Hap(A1,↵) 6= 0 for some trivialization ↵. The product formula
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Ha =
Q

p Hap shows that A1 is ordinary at p if and only if it is ordinary at p for all

p dividing p.

Remark 4.2.4. When F = Q, this story simplifies somewhat, since an HBAV is

just an elliptic curve. Here an elliptic curve is canonically polarized; let E be an

elliptic curve, Fr : E ! E be the relative p-power Frobenius, and note that we can

view its dual isogeny as a map V : E ! E. Since Fr has degree p, we can factor the

multiplication by p map as [p] = V � Fr, and since Fr is (totally) inseparable, it has

trivial kernel, giving that the p-torsion is E[p] = ker[p] = kerV . This shows that

#E[p] = #kerV , which is 1 if V is inseparable and p if V is separable.

So we should find a way to determine whether V is separable or inseparable.

In general, an isogeny f : E ! E
0 is separable if and only if the pullback on

cotangent bundles f ⇤ : ⌦1
E0 ! ⌦1

E
is nonzero, see e.g. [Sil09, III.4.2c]. Since the

cotangent bundles are rank 1, we only have to check whether V ⇤ is nonero, or that

V
⇤(!) 6= 0 for a single generator ! 2 ⌦1

E
. This is essentially what the Hasse

invariant does for us; more specifically, Ha checks whether or not the dual to this

map is nonzero.

Remark 4.2.5. Though we have taken the view that Hilbert modular forms

should be thought of as functions on T
⇥
!
, here it is useful to realize that the

Hasse invariant is a section of a line bundle on X, the moduli space of HBAVs.

Specifically, this view allows us to see that its zero locus, consisting of points that

correspond to supersingular HBAVs, is a closed subscheme X
ss ⇢ X. On the other

hand, the complement of Xss, which consists of points that correspond to ordinary

HBAVs, is a dense open subscheme X
ord ⇢ X. We call Xss the supersingular locus,

and X
ord is the ordinary locus.
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Let d�1
p be the local inverse di↵erent in the completion Fp. If A is ordinary

at p, then as an algebraic group, we have A[pn] ⇠= d�1
p ⌦ µpn ⇥OF/pn. The maximal

connected subgroup d�1
p ⌦ µpn is called the canonical subgroup of level pn of A,

denoted Cpn = Cpn(A). For n1  n2, we have Cpn1 ⇢ Cpn2 , and the union over all n

gives the canonical subgroup of level p1 of A, denoted Cp1 . For n  1, let Cpn be

the maximal connected subgroup of A[pn]. This is the canonical subgroup of level

p
n, and it is precisely the subgroup of A[pn] generated by all the groups Cpn for p

dividing p.

Remark 4.2.6. For all n  1, the only point of d�1
p ⌦ µpn over a field of

characteristic p is the identity; this accounts for the fact that A[pn] and OF/pn

both have size Nm(p)n over the special point S1 of S, even though #A[pn] =

Nm(p)2n at the generic point SpecK. In this sense, we can think of the canonical

subgroup as the “kernel of the reduction map”.

For any n < 1 and m < n, we have the following as in [CEF+16, Equation

(9)]. It is valid for any ordinary abelian variety A.

⌦1
A/Om

= (Lie(A))D = (Lie(A)[pn])D = (Lie(A)[pn]�)D = (LieCn(A))
D

Here A[pn]� is the connected component of the identity, which is the canonical

subgroup Cn. We are allowed to consider the p
n-torsion because we are working

over Om for m < n. Then, since the Tate module is isomorphic to the Lie algebra

of a p
n-torsion group,

(LieCn(A))
D ⇠= (TpCn(A))

D ⇠= C
D

n
(A)⌦Om.

This shows that the cotangent bundle ⌦1
A/Om

is isomorphic to the dual of the

canonical subgroup C
D

n
(A) ⇠= OF/p

nOF . This is also true in families; write
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X
ord

m
:= X

ord ⇥OK Om, and Aord

m
= Aord ⇥OK Om. Then

⌦1
Aord

m /Om
⇠= C

D

n
(Aord

m
). (4.4)

Remark 4.2.7. Let A ! T be a family of HBAVs parametrized by some S-scheme

T . We view this as an HBAV defined over T . Then if A is ordinary, its canonical

subgroup is also a family Cpn ! T . For any T
0 ! T , we can define the fiber

product A ⇥T T
0 which will also be ordinary; its canonical subgroup will be the

fiber product Cpn ⇥T T
0.

4.3 p-adic Hilbert Modular Forms

In Chapter II, we described Hilbert modular forms as functions on the

torsor T⇥
!
, the frame bundle of the pushforward of the relative cotangent bundle

! = ⇡⇤⌦1
A/X

of the universal HBAV ⇡ : A ! X. In the p-adic setting, however,

the cotangent bundle is not as well-behaved as one might hope. In Section 4.2

we described canonical subgroups and the Hodge–Tate map, which connected

these canonical subgroups Cpn to the cotangent bundle ⌦1
A
. We will use canonical

subgroups as a replacement for the cotangent bundle in the p-adic setting.

Recall that the ordinary locus Xord is an open subscheme of X, and let

Aord = A ⇥X X
ord be the universal ordinary HBAV. Since Aord is ordinary, it

has a canonical subgroup Cp1 , and the Hodge–Tate map gives an isomorphism

⌦1
Aord ! Cp1 defined over Xord ⇥OK Om for any m. This gives rise to a morphism

(not an isomorphism) ⌦1
Aord ! Cp1 over OK .

For all n < 1, let T⇥
Cpn

= IsomXord(Cpn , d�1 ⌦ µpn) be the set of OF -linear

isomorphisms from the canonical subgroup Cpn of the universal ordinary HBAV

Aord over the ordinary locus Xord to d�1 ⌦ µpn . This is a torsor for the group of

OF -linear automorphisms of d�1 ⌦ µpn ; when n < 1, this automorphism group is

isomorphic to AutF (d�1 ⌦ µpn) ⇠= (OF/p
nOF )

⇥ = T(Z/pnZ).
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When n = 1, consider instead the formal scheme T⇥
Cp1

= lim �
n

T
⇥
Cpn

. This is

a formal torsor for the group lim �
n

T(Z/pnZ) ⇠= T(Zp), known as the Igusa tower. A

function on T⇥
C1
p

takes in a pair (A, u) of an HBAV A defined over an OK-algebra R

and a trivialization u : Cpn ! d�1 ⌦ µpn and returns an element of R.

Definition 4.3.1. Let R0 be a complete and separated OK-algebra, and  a

character of T(Zp). A p-adic Hilbert modular form of level �1(N) and weight 

defined over R0 is an algebraic function f 2 OT⇥
Cp1

which satisfies the homogeneity

property

f(A, gtu) = (g�1)f(A, u). (4.5)

Write the space of such functions as OT⇥
Cp1

[�].

Remark 4.3.2. Let R1 be a normal OK-algebra which is p-adically complete,

separated, and topologically of finite type. Let Rm = R1⌦OK Om. Given a classical

Hilbert modular form f , i.e., a function on T
⇥
!
, defined over R1, we now describe

how to view it as a p-adic Hilbert modular form.

Each isomorphism u : Cp1 ! d�1 ⌦ µp1 restricts to an isomorphism on the

p
n-torsion, un : Cp1 ! d�1 ⌦ µp1 . We dualize, obtaining isomorphisms uD

n
: (d�1 ⌦

µpn)D ! C
D

pn for each n. Now fix some m � 1. When m < n, composing with the

isomorphism of Equation (4.4) we obtain, for any pair (A, u) of an ordinary HBAV

A and a trivialization u : Cp1(A) ! d�1 ⌦ µp1 , a trivialization ↵n : (d�1 ⌦ µpn)D !

⌦1
A/Om

. In fact, for a fixed m, this trivialization ↵n is independent of n (as long as

m < n). This gives us an isomorphism T
⇥
Cpn
⇠= T

⇥
!
⇥XR X

ord. We also have that

(d�1 ⌦ µpn)D ⇠= OF ⌦ Rm. Using this viewpoint, one sees that, in an appropriate

category of locally ringed spaces,

T⇥
Cp1

= lim �
n

T
⇥
!
⇥XR X

ord

m
. (4.6)
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Thus, a p-adic Hilbert modular form f defined over R1 is a coherent system of

classical Hilbert modular forms (fm)1m=1 defined over Rm with the caveat that we

only care about their values over the ordinary locus, rather than over the whole

Rapoport locus XR.

Notice that the homogeneity property in Equation (4.5) includes a

transpose, as well as putting the group element on the opposite side of the

trivialization compared to Equation (2.3). This is because of the step in the process

above where we have to dualize the automorphism – the dual of gtu becomes uD
g,

which looks much closer to the form taken by the latter equation. In fact, this is

how we check the homogeneity condition.

Since T is a group of 1 ⇥ 1 matrices, the transpose map is just the identity;

we could have left it out. However, in the case of higher rank groups, this is a

crucial piece, so we include it here.

The ring of p-adic Hilbert modular forms of level �1(N) is OT⇥
Cp1

. By the

discussion in Remark 4.3.2, the ring O
T

⇥
!
of classical Hilbert modular forms maps

to the ring of p-adic Hilbert modular forms, simply by reducing the classical Hilbert

modular form modulo mm for each m. This map is injective with dense image (see

[Hid04]), which justifies saying that the ring of p-adic Hilbert modular forms is the

completion of the ring of Hilbert modular forms; this is a good thing, as it was the

initial motivation behind Serre’s introduction of p-adic modular forms in [Ser72].

4.4 Overconvergent Loci and Partial Canonical Subgroups

For each of the g primes p of F lying over p, we have a partial Hasse

invariant Hap defined in Definition 4.2.2. This is a Hilbert modular form defined

over the finite field O1. We would like to choose a lift of this to a Hilbert modular
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form defined over OK , i.e., a Hilbert modular form Haliftp defined over OK such that

Haliftp (A,↵) ⌘ Hap(A⇥OK O1,↵⇥OK O1) (mod m).

Unfortunately, this is not always possible. However, we are always able to produce

such a lift of a power of the Hasse invariant Hawp for some positive integer w. We

will refer to this lift as Haw,lift
p . Note that an HBAV A defined over OK is ordinary

at p if and only if Haw,lift
p (A,↵) is a unit for some choice of ↵. In addition, because

of the transformation property that comes with Haw,lift
p being a Hilbert modular

form of weight
P

�2Ip w(q � 1)�, the p-adic valuation of Haw,lift
p (A,↵) does not

depend on the choice of ↵.

Define the Hodge height Hdgp for each prime p,

Hdgp(A) = min

⇢
1

w
vp(Ha

w,lift
p (A,↵)), 1

�
.

The condition that A is ordinary at p if and only if Haw,lift
p (A,↵) is a unit translates

to the condition that A is ordinary at p if and only if Hdgp(A) = 0.

Consider a tuple v = (vp)p of rational numbers vp 2 (0, 1)\Q, indexed by the

primes p. For each such tuple, we construct the v-overconvergent locus X(v), which

is a normal formal scheme that classifies HBAVs A with Hdgp(A) < vp for all p.

This description gives a well-defined subset of the rigid analytic fiber X (v) ⇢ X ; we

take a formal model X0(v) for it by taking admissible formal blowups as in [AIP16,

Section 3.2], and we normalize the resulting formal scheme in X (v) to obtain the

formal overconvergent locus X(v). We also consider the formal completion of the

ordinary locus Xord inside X; since an ordinary HBAV has Hdgp(A) = 0 for all p, we

have an inclusion Xord ! X(v) for any tuple v.

For each tuple v with vp <
1
pn

for all p, the canonical subgroup of level pn

on Xord extends to a canonical subgroup Cn ! X(v) over the v-overconvergent
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locus. Its fiber over the ordinary locus is locally isomorphic to the formal group

scheme d�1 ⌦ µpn . Its fiber over the complement X(v) \ Xord is isomorphic to a

di↵erent formal group scheme, but both become isomorphic to each other and to

the constant group scheme OF/p
nOF at the rigid fiber.

We move to the rigid fiber Cn ! X (v) in order to define In =

IsomX (v),F (d�1 ⌦ µpn , Cn), the group of OF -linear isomorphisms between d�1 ⌦ µpn

and Cn. The forgetful map hn : In ! X (v) is a finite étale cover with Galois group

AutF (d�1 ⌦ µpn) = T(Z/pnZ). We then let In be the formal model of In obtained

by normalizing X(v) inside In, and let hn also refer to the covering In ! X(v). We

call In and In “partial Igusa towers”.

Remark 4.4.1. Here we are really using the fact that the fibers of the rigid space

Cpn are all isomorphic, even though the fibers of the formal model Cpn are not.

This partial Igusa tower In is supposed to be the overconvergent version of the

full Igusa tower T⇥
Cp1

from Section 4.3, classifying trivializations of the canonical

subgroup. Over the rigid fiber X (v), In literally does this. However, this becomes

more complicated over the special point when the fibers of Cpn are no longer all

isomorphic to each other.

The canonical subgroups help us pick out an important subsheaf F ⇢ !,

which is described in [AIP16, Proposition 3.4].

Proposition 4.4.2. There is a unique subsheaf F of ! which is locally free of rank

1 as a OF ⌦Z OIn-module and contains p

supp{vp}
p�1 !. Moreover, for all 0 < w <

n� supp{vp} p
n

p�1 , we have OF -linear maps

HTw : C
D

pn ! h
⇤
n
(F)/pwh⇤

n
(F).
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These induce isomorphisms

HTw ⌦ 1: CD

pn ⌦ (OIn/p
wOIn)! h

⇤
n
(F)/pwh⇤

n
(F). (4.7)

Sketch. We sketch the proof, referring to [AIP16, Proposition 3.4], and [AIP15,

Proposition 4.3.1], for a full proof.

The maps HTw and the sheaf F are constructed at the same time, and then

we check that HTw has the required properties of being OF -linear and inducing the

isomorphism in Equation (4.7). Let A(v) = A ⇥X X(v) be the universal object

over X(v). Pick any basis e01, . . . , e
0
d
of the rigid group d�1 ⌦ µpn , and for each point

(A, u) of In we get a basis e1, . . . , ed for ⌦1
Cpn by ej = u

D(e0
j
) 2 CD

pn
⇠= ⌦1

CD
pn
. Recall

that the inclusion Cpn ! A(v) induces a pullback ⌦1
A(v) ! ⌦1

Cpn
. Lift each ej to an

element ẽj 2 ⌦1
A(v) such that ẽj maps to ej for each j. The sheaf F is the subsheaf

of ⌦1
A(v) generated by ẽ1, . . . , ẽd. The map HTw is determined by sending ej to ẽj

for each j. In loc. cit. the authors give the details of the construction.

Remark 4.4.3. The fact that ! ⇢ F ⇢ p

supp{vp}
p�1 ! shows that F ⌦OK K = ! ⌦OK

K as families of modules. Their rigid fibers give di↵erent integral structures to

the rigid analytification of !, and only F gives a locally free sheaf of OF -modules.

Specifically, the rigid fiber of ! and the rigid fiber of F should be thought of as two

versions of “the ball of radius 1” inside the analytification of ! pulled back to In.

4.5 Overconvergent Hilbert Modular Forms

Fix a tuple v such that vp <
1
pn

for all i. We have our canonical subgroup

Cpn ! X(v) of level pn and a partial Igusa tower In.

Write evD1 : In ! CD

n
for the map sending u to u

D(1). This descends to a

map of formal schemes evD1 : In ! CD

n
by the universal property of the relative

normalization. Following [AIP16], define the formal a�ne morphism �w : T
⇥
F ,w
!
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In, for any n � 1 < w  n � sup{vp} p
n

p�1 , as follows. For every normal p-adically

complete and separated, flat OK-algebra R and for every morphism � : Spf(R) !

In, its R-valued points over � classify frames ↵ : �⇤(F) ! OF ⌦Z R, such that

HTw(evD1 (u)) ⌘ ↵
�1(1) (mod p

w). The reference cited above writes this as needing

to send 1 to 1 in the composite

OF/p
nOF

u
D

�! CD

n
(R)

HTw��! �
⇤F/p

w
�
⇤(F)

↵�! OF ⌦Z R/p
w
R. (4.8)

The map �w : T
⇥
F ,w
! In is a formal torsor for the group T0

w
. Composing with the

projection In ! X(v) gives a formal torsor pr
w
: T⇥

F ,w
! X(v) for the group Tw.

The rigid fiber is denoted T ⇥
F ,w

.

Remark 4.5.1. In [AIP16], this is called IW+
w
. In other references, such as [AIP15,

Liu19a], there are two related formal torsors: one is called IW+
w
, while the other is

T⇥
F ,w

. In the case of Hilbert modular forms, the two coincide – we use the second

name here so that our discussion in Section 4.6 better parallels that of [Liu19a,

Section 3.4].

For any representation (,W) of Tw, we may construct a corresponding

sheaf !
,w

on X (v). Over an a�noid open U = SpR ⇢ X (v) when !|U is trivial,

sections of !
,w

correspond to functions

H
0(X (v),!

,w
) =

�
f : T ⇥

F ,w
(U)! W ⌦R | f(A,↵g) = g

�1 · f(A,↵)
 
.

Definition 4.5.2. Let  be a w-analytic weight. A v-overconvergent Hilbert

modular form of level �1(N) and weight  is a section of !
,w

defined over X (v).

The K-vector space of v-overconvergent Hilbert modular forms of level �1(N) and

weight  is thus H0(X (v),!
,w

).

56



An overconvergent Hilbert modular form is a v-overconvergent Hilbert

modular form for some tuple v with each vp > 0. The K-vector space of

overconvergent Hilbert modular forms is the union
S

v
H

0(X (v),!
,w

).

Remark 4.5.3. In Remark 4.3.2, we saw how to view classical Hilbert modular forms

as p-adic Hilbert modular forms. The idea is that, over the ordinary locus, there

is a tight connection between the canonical subgroup of the universal ordinary

HBAV Cp1(Aord) and the Hodge bundle !. Since overconvergent Hilbert modular

forms are p-adic modular forms, we would like to use the canonical subgroup when

describing them. However, the full canonical subgroup Cp1 does not extend past

the ordinary locus at all – if we want to use the canonical subgroup, we have to

extend one of the finite level canonical subgroups Cpn . The sheaf F fills in the

extra information that we would otherwise lose by not having the full canonical

subgroup of infinite level. The compatibility condition, requiring that 1 be sent to

1 in Equation (4.8), essentially means that the trivialization u of Cpn controls as

much as possible about the trivialization ↵ of F .

4.6 Nearly Overconvergent Hilbert Modular Forms and the Main

Construction

There is a natural homomorphism Q ! T that picks out the top left

entry. Let Q0
w
be the rigid analytic group which is the preimage of T0

w
under this

projection, and Qw the preimage of Tw.

We have previously considered the OK-schemes T⇥
!

= IsomX(OF ⌦Z OX ,!)

and T
⇥,+
H = Isom+

X
([OF ⌦Z OX ]

�2
,H), where the + superscript means that the

isomorphisms should respect the filtrations. We write T ⇥
!,an

and T ⇥,+
H,an

for their rigid

analytifications, and T ⇥
!,an

(v) and T ⇥,+
H,an

(v) for their base changes to X (v). We have
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a map T ⇥,+
H,an

(v) ! T ⇥
!,an

(v) given by forgetting everything but the isomorphism on

the submodules OF ⌦Z OX (v) and !.

Then let T ⇥
F ,w
! Iw ! X (v) be the rigid fiber of the chain of morphisms

defined in Section 4.4. This T ⇥
F ,w

maps to T ⇥
!,an

as well.2 We thus form the fiber

product

T ⇥,+
H,w

(v) := T ⇥,+
H,an

(v)⇥T ⇥
!,an(v)

T ⇥
F ,w

(v).

The map ⇡+
w
: T ⇥,+

H,w
(v)! X (v) is a torsor for the group Qw.

Let  be a w-analytic weight. There is an associated rigid analytic

representation W,w of Tw, which we inflate to Qw. In similar fashion to the

holomorphic case, we define the analytic (g, Qw)-module V,w by

V,w = W,w ⌦OH\Q

We give g(K) the same basis as before; since Qw is open in Q, its Lie

algebra is still q ⇢ g. We define the actions of g(K) and Qw(K) by the same

formulas,

(g · P )(Y ) = a · P (a�1(b+ Y d)) for all g =

0

B@
a b

0 d

1

CA 2 Qw(R),

(µ�
�
· P )(Y ) = Y�"� · P (Y )� Y

2
�

@

@Y�
P (Y ).

Compatibility is checked in the same way. Since the action of Qw preserves

the degree of each Y�, there is a Qw-submodule V
⌫

,w
⇢ V,w consisting of

polynomials with degree at most r� in the variable Y� for each �. Since g�

2It does not map to the rigid fiber of the formal completion of T⇥
! , as the points of either space

should be OF ⌦Z OK-bases for the respective sheaves, which do not match up. The points of T ⇥
!,an

are instead OF ⌦K-bases for !.
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preserves the degree as a function of Y⌧ for each ⌧ 6= �, and raises the degree as

a function of Y� by at most 1, we have g�V ⌫

,w
⇢ V

⌫+�
,w

.

Definition 4.6.1. The sheaf of nearly v-overconvergent Hilbert modular forms of

level �1(N), w-analytic weight , and type ⌫ is V⌫
,w

(v) = T ⇥,+
H,w

(v) ⇥Qw V
⌫

,w
. A

nearly overconvergent Hilbert modular form of level �1(N), w-analytic weight ,

and type ⌫ is a section of V⌫
,w

(v) for some v with each vp satisfying 0 < vp <
1
pw
.

Proposition 3.4.4 gives us a connection r,w : V,w ! V,w ⌦ ⌦1
X (v)(logC),

and the Kodaira–Spencer morphism gives us our di↵erential operators,

r�,w : V,w ! V+2�,w

The discussion of Remark 3.5.4 applies, giving

r�,w : V⌫,w ! V⌫+�
+2�,w.

Each r�,w commutes with r⌧,w for any pair of embeddings �, ⌧ 2 I. Thus

we may unambiguously write r0,w for the di↵erential operator that raises weights

by 0 =
P

�
2k0

�
�, and types by ⌫ 0 = (k0

�
)�. We can also base change to X (v0) for

any v
0 = (v0p) with 0 < v

0
p < vp for each p | p.

This construction works just as well for a single weight  as it does for

the universal w-analytic weight un
w
, and pulling back by the inclusion of an

a�noid open U ⇢ Ww allows us to apply these di↵erential operators to families

parametrized by U .

We summarize these results in the following theorem.

Theorem 4.6.2. Fix a tuple v = (vp) with 0 < vp <
1
pw

for all i. For each

embedding � : F ! K, and any k � 1, there is a di↵erential operator rk

�

acting on families of nearly v-overconvergent Hilbert modular forms of w-analytic
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weight, which raises the weight by 2k� and the type by k. The operators rk

�
and r`

⌧

commute for any pair of embeddings � and ⌧ .

4.7 Integrality

As constructed, this di↵erential operator is defined over K. However, when

p is unramified in F , it is defined over OK . Each module V
⌫


is defined over Z, but

our description and the basis we chose are only defined over K a priori. It is true

that the connection r is defined over OK in general; however, there is a problem to

defining r� when p is ramified in F .

Over K, we can decompose g =
L

�
g�. Any trivialization ↵ 2 T

⇥,+
H over an

a�ne open U = SpecR defined over K determines a trivialization of !, and thus of

M

�

!
⌦2
�
⇠= ⌦1

X
(logC).

We let D 2 TX(U) be the direction dual to that trivialization, and X(D,↵) 2 g(R)

such that r(D)(v)(↵) = (X(D,↵) · v) (↵). In fact, we get a basis D_
�
for each !⌦2

�
;

we embed that sheaf as a summand of ⌦1
X
(logC) and view the set {D_

�
} as a basis

of the latter sheaf. Let D� 2 TX(U) be dual to D
_
�
. We have X(D�,↵) 2 g�(R),

and
P

�
D� = D giving

P
�
X(D�,↵) = X(D,↵). Specifically, X(D,↵) 2 g(R)

corresponds to the tuple (X(D�,↵))� 2
L

�
g�(R). Under this formalism, we have

r�(v)(↵) = d(v)(D�)(↵) + (X(D�,↵) · v) (↵).

With this in mind, we turn to integrality. When p is unramified in F , the

decomposition g =
L

�
g� manifests over OK , and r� acts integrally. However,

when p ramifies, there is no guarantee that X(D�,↵) 2 g(OK) under the

assumption that X(D,↵) 2 g(OK). However, we can quantify by how much this

fails, and we do so using the following lemma, formulated and proved by the author

for the discussion in this section.
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Lemma 4.7.1. Let n = (n�)� 2
Q

�
OK. There exists some ` not depending on n

such that p`n 2 OF ⌦OK ⇢
Q

�
OK.

Proof. Pick a Z-basis {e1, . . . , ed} for OF , and order the embeddings of F into K,

{�1, . . . , �d}. The OK-linear map OF ⌦ OK !
Q

�
OK is given in this basis by the

matrix

M� =

0

BBBB@

�1(e1) . . . �d(e1)

...
. . .

...

�1(ed) . . . �d(ed)

1

CCCCA

It is classical that detM2
�
= � is the discriminant of F/Q. Further, the index of the

image of this OK-linear map is #OK/(detM�). Let p be the maximal ideal in OK

and write (detM�) = p` for some `. We have #OK/p` = p
f`, where f is the residue

field degree. Thus pf`(n�)� 2 OF ⌦ OK whenever (n�)� 2
Q

�
OK . This exponent

does not depend on the choice of n, so the lemma is proven.

Remark 4.7.2. In fact, we can say more. Since (
Q

�
OK) /(OF ⌦ OK) is a OK-

module of order pf`, it is killed by p
` - the worst case scenario is that the quotient

is indecomposable, and thus isomorphic to the indecomposable module OK/p`. This

module has size p
f`, but is killed by p

`.

We use this to prove more about the Lie algebra g.

Corollary 4.7.3. Let X = (X�)� 2 g(OK) ⇢
Q

�
gl2(OK) ⇢ g(K). View X�

as the tuple (0, . . . , X�, . . . , 0) in
Q

�
gl2(OK) ⇢ g(K). Then there exists some `

independent of X such that p`X� 2 g(OK).

Proof. Pick ` as in Lemma 4.7.1. Note that the elements of g(OK) should be

viewed as 2 ⇥ 2 matrices with entries in OF ⌦ OK , while X� is a priori a tuple

of 2 ⇥ 2 matrices with entries in OK . We may instead view X� as a 2 ⇥ 2 matrix
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with entries in
Q

�
OK . Scaling X� by p

` simply scales its entries, so by our choice

of ` the entries of p`X� are in OF ⌦OK , and p
`
X� 2 g(OK).

By the corollary, we have p
`
X(D�,↵) 2 g(OK). Thus p`X(D�,↵) acts

integrally.

X(D�,↵) · (V ⌫


(OK)) ⇢

1

p`
V
⌫+�


(OK) ⇢ V
⌫+�


(K).

On the level of sheaves, the above translates to

r�(V⌫(OK)) ⇢
1

p`
V⌫+�
+2�(OK) ⇢ V⌫+�

+2�(K).

This allows us to control denominators.
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CHAPTER V

DESCENT TO G

5.1 Two Groups

The phrase “Hilbert modular form” is ambiguous in that it can refer to the

space of automorphic forms on one of two groups. The group G = ResOF /Z GL2 is

one. For any commutative ring R, its R-points are

G(R) = GL2(OF ⌦Z R).

Determinants of such matrices live in T = ResOF /Z Gm. Recall that over K, T is a

split torus; its diagonal subgroup is isomorphic to Gm. The second group, denoted

G
⇤, is defined as the fiber product G⇤ = G ⇥T Gm. It is a subgroup of G, with

R-points

G
⇤(R) = {g 2 G(R) | det(g) 2 1⌦R

⇥ ⇢ (OF ⌦R)⇥}.

Each group has advantages. The Hecke theory for G is canonical, while

the theory for G⇤ is not. In fact, unlike G, G⇤ has a noncommutative Hecke

algebra. On the other hand, while both are the groups of interest in a PEL type

moduli problem, only the moduli problem associated to G
⇤ is representable by a

scheme. This is the reason why the previous sections were only concerned with the

automorphic forms on G
⇤.

Since G
⇤ is a subgroup of G, we may restrict the automorphic forms on

G to the group G
⇤, viewing them as automorphic forms on the latter group.

This allows us to use the geometric viewpoint of the previous sections to study

automorphic forms on G. In the next section, we describe the weights of such form,

and following [AIP16] we record the geometric condition that distinguishes these

restricted forms from other automorphic forms on G
⇤.
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5.2 Weights

In Section 2.1, we introduced the weight space for overconvergent modular

forms on G
⇤; here we continue with the weight space for G, including the weight of

a restricted modular form.

The space of algebraic weights for G is {characters of T/K} ⇥ Z, with a map

to the algebraic weights for G⇤ given by ⇢ : (✓, w) 7! 2✓ + wNmF/Q. In particular,

if (✓, w) is a weight for G, ⇢(✓, w)(g) = ✓(g)2 · (NmF/Q(g))w for any g 2 T(Zp). If

we have a modular form of weight (✓, w) on G, its restriction to G
⇤ will have weight

⇢(✓, w).

The space of p-adic weights for G is {characters of T(Zp)} ⇥ Zp. The map

⇢ sending a p-adic weight for G to a p-adic weight for G⇤ uses the same formula as

above.

Let f be an automorphic form on G
⇤ of weight ✓2 · Nmw

F/Q. It can be

extended to an automorphic form on G if, for all ✏ 2 O⇥,+
F

, we have

f(A, ◆, , ✏�,!) = ✓(✏)f(A, ◆, ,�,!). (5.1)

We will avoid using this criterion. It is included to stress the fact that

whether or not an automorphic form on G
⇤ extends to G can be detected

geometrically. We will opt instead to use a criterion involving the symmetric space.

This will be enough, as Proposition 5.4.1 can be stated in terms of classical Hilbert

modular forms and easily transported to the space of overconvergent ones.

5.3 Descent of Modular Forms

We can quantify the di↵erence between automorphic forms on G
⇤ and

automorphic forms on G using the adèlic viewpoint. Let K+
1 be a maximal

compact subgroup of the connected component of the identity G(R)+ in G(R), and

K
⇤
1 the same for G⇤(R). Let K0(N) and K

⇤
0(N) be the natural choices of compact
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open subsets of the finite adèles, consisting of matrices which are upper triangular

modulo N . The inclusion G
⇤ ! G induces a map on the symmetric spaces

G
⇤(R)+/K⇤

1Z(G⇤(R)) ! G(R)+/K+
1Z(G(R)) which ends up being a bijection.

Thus automorphic forms on G and automorphic forms on G
⇤ are functions on the

same space. The only di↵erence comes from the congruence subgroups

�⇤
0(N) = G

⇤(Q) \K
⇤
0(N) =

8
><

>:

0

B@
a b

c d

1

CA 2 SL2(OF ) | c ⌘ 0 (mod N)

9
>=

>;
,

�G

0 (N) = G(Q) \K0(N) =

8
><

>:

0

B@
a b

c d

1

CA 2 GL+
2 (OF ) | c ⌘ 0 (mod N)

9
>=

>;
.

(5.2)

For any ✏ 2 O⇥,+
F

, let g✏ =

0

B@
✏ 0

0 1

1

CA. Equation (5.1) is simply a translation

of the fact that g✏ 2 �G

0 (N), while g✏ 62 �⇤
0(N). In a strict sense, this is the only

discrepancy, as �⇤
0(N) and these matrices g✏ together generate �G

0 (N).

We define an action of O⇥,+
F

on the space of automorphic forms on G
⇤ of

weight ⇢(⌫, w) to be

✏ · f = f |g✏. (5.3)

The discussion above implies that f is a modular form for G if and only if O⇥
F
acts

on f via its nebentypus.

5.4 Descent of Operators

At the moment, the di↵erential operators r� are defined as maps that

send Hilbert modular forms on G
⇤ to Hilbert modular forms on G

⇤. A priori, if

f is a nearly overconvergent Hilbert modular form for G, r�f is only a nearly

overconvergent Hilbert modular form for G⇤. We will argue that it extends to G.
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Proposition 5.4.1. The action of O⇥,+
F

defined in Equation (5.3) commutes with

the Gauss–Manin connection r : H! H⌦ ⌦1
X
.

Proof. This is classical, and seen e.g. as a special case of [Shi00, Proposition

12.10(2)].

For another proof, we note that the slash operator is defined in such a way

that it commutes with the exterior derivative d defined for di↵erential forms. Since

r arises as a di↵erential in the spectral sequence associated to a filtered de Rham

complex whose di↵erentials are this d, it commutes with the slash operator as well.

This leads to our second Main Theorem.

Theorem 5.4.2. The di↵erential operators r� constructed in Theorem 4.6.2

preserve the space of Hilbert modular forms for G inside the space of Hilbert

modular forms for G
⇤.

Proof. This is essentially a special case of Proposition 3.4.4. The fiber of T⇥,+
H over

some point x corresponding to a HBAV (A, ◆, ,�) only depends on the substring

(A, ◆), so we may identify the fibers over any x with the fibers over g✏ · x. Under

this identification, the slash operator is just the natural action of Q 3 g✏ on V⌫

,

and we proved that this action commutes with r =
L

�
r� in the previously cited

proposition. Thus the fact descends to each r�.
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APPENDIX

DAMERELL’S FORMULA

This text is adapted from a note published on the author’s website. It

is independent from the rest of the dissertation, but is included to show the

arithmetic application that motivated the construction of the di↵erential operators

in the main body of the text.

A.1 Introduction

In [Ser72], Serre gave a construction of the Kubota–Leopoldt p-adic zeta

function using the theory of p-adic of modular forms and the fact that the values

of holomorphic Eisentein series at the cusps are related to the values of the zeta

function. This construction was generalized in [DR80] to construct the p-adic zeta

functions of totally real fields.

These two “interpolation” results were preceded by “algebraicity” results:

up to a renormalization, the values of these zeta functions at certain inputs are in

fact algebraic numbers, so that it makes sense to ask about congruences between

them. For quadratic imaginary fields, this study was initiated by Damerell,

and completed using the Maass–Shimura operators and the theory of nearly

holomorphic modular forms. From here, p-adic interpolation of the zeta functions of

quadratic imaginary fields, and then for CM fields,1 were given by Katz in [Kat76]

and [Kat78] respectively, though with conditions on p.

Here, we make explicit the relationship between values of Eisenstein series

at CM points and values of zeta functions for CM fields. We begin by describing

the L-functions to be interpolated in Section 2, introducing Hilbert modular forms

1Recall that a CM field is a totally imaginary field K which is a degree 2 extension of a totally
real field F .
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in Section 3. Once we have both tools, we relate them in Section 4. Section 5 gives

some reasons one might care about the result.

An excellent technical reference on the theory of nearly holomorphic

automorphic forms is [Shi00], which summarizes and builds on earlier results of

Shimura and Maass. Katz’s construction of p-adic L-functions has been extended in

the case of quadratic imaginary fields by Andreatta and Iovita in [AI19]; the author

of the present note is working to extend this to the case of CM fields.

A.1.1 Notation, Conventions, and Assumed Knowledge. We

assume the reader has taken a first course in algebraic number theory (e.g. out of

[Mil20]) and has a basic understanding of complex analysis.

A.2 L-functions

For this section, we fix a totally real field F of degree d, and a CM extension

K = F (↵). For simplicity, we assume that the ring of integers is OK = OF + ↵OF .2

We also fix a CM type of K; for each real embedding � : F ! R, we choose a

preferred embedding of K into C which agress with � when restricted to F , which

we also call �. Thus the set of complex embeddings of K is the set of �’s and all

�’s as � runs over the real embeddings of F . Write I for the set of real embeddings

of F .

A.2.1 The 1-variable L-function. The standard, 1-variable

Dedekind zeta function of K can be written, for Re(s) > 1, as the sum over all

nonzero ideals of OK .

⇣K(s) =
X

a

1

Nm(a)s
. (A.1)

2If F is a PID, this is possible because K/F is quadratic. If not, this decomposition should be
OK = OF + ↵a for a fractional ideal a of F .
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We may rewrite this in order to make most of the summation happen with elements

of the field itself. Pick representatives a1, . . . , ah for the class group of OK , and note

that every integral ideal a can be written as a = a�1
i
(↵) for some i and some ↵ 2 ai.

Writing a as a�1
i
(↵) for some i and some ↵ 2 ai is unique up to rescaling ↵

by a unit in O⇥
K
. In the quadratic imaginary case, we can sum over all elements

of ai, and divide by #O⇥
K

to account for repetition. When K is not quadratic

imaginary, its unit group is infinite, and we can no longer do this. We should

instead view ai as a O⇥
K
-set, where u · ↵ = u↵ for any unit u and ↵ 2 ai. This

action is useful because each orbit ↵O⇥
K
2 ai/O⇥

K
corresponds to a unique integral

ideal a�1
i
(↵), and each integral ideal a�1

i
(↵) corresponds to a unique orbit ↵O⇥

K
.

In fact, for reasons that will arise later, we will look at orbits for the

restricted action of O⇥,+
F
⇢ O⇥

K
consisting of totally positive units u with �(u) > 0

for every real embedding � of F . The association ↵O⇥,+
F

7! a�1
i
(↵) is then

[O⇥
K

: O⇥,+
F

]-to-one, where [O⇥
K

: O⇥,+
F

] is the index of the subgroup O⇥,+
F

in O⇥
K
.3 Thus we write the following, where the innermost sum is over cosets

0 6= ↵O⇥,+
F
2 ai/O⇥,+

F
.

⇣K(s) =
1

[O⇥
K
: O⇥,+

F
]

hX

i=1

X

↵O⇥,+
F

Nm(ai)s

Nm(↵)s
. (A.2)

A.2.2 Hecke Characters. We will give a definition in terms of Hecke

characters in order to write down the (d + 1)-variable zeta function in all cases.

However, in order to avoid delving into the idèlic theory, we give the following

ideal-theoretic definition of a Hecke character, instead of the standard one.

3This index is finite. In particular, [O⇥
F : O⇥,+

F ]  2d, so that O⇥,+
F is a finitely generated

Abelian group of the same rank as O⇥
F . Since O⇥

K also has the same rank as O⇥
F , so O⇥,+

F ⇢ O⇥
K

is an inclusion of finitely generated Abelian groups of the same rank. The quotient is finitely
generated of rank 0, hence finite; its size is the index we’re looking for.
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Definition A.2.1. An unramified Hecke character is a homomorphism � : IK !

C⇥ from the group of fractional ideals of K to the complex numbers. An

unramified Hecke character � is unitary if |�(a)| = 1 for all ideals a 2 IK . We say

that � has infinity type (k1,�, k2,�)� if � can be written as a product of characters

� = �u�1, where �u is unitary and �1((↵)) =
Q

�
�(↵)k1,��(↵)k2,� for all principal

ideals (↵).

Remark A.2.2. Unramified, unitary Hecke characters � have the property that

�((↵)) = 1 for all principal ideals (↵).

We note that ramified Hecke characters exist. For simplicity, we only work

with unramified Hecke characters, but some of what we say will be true for all

Hecke characters. We distinguish these statements and constructions by writing

“(unramified) Hecke character” when the unramified hypothesis is not needed.

In particular, we note that the map a 7! Nm(a)s is an unramified Hecke

character of infinity type (s, s)�. For any (unramified) Hecke character �, write:

L(�, s) =
X

a

�(a)

Nm(a)s
, L(��1

, 0) =
X

a

1

�(a)
.

When � = Nms, we see that L(��1
, 0) = ⇣K(s). More generally, L(�Nmk

, s) =

L(�, s� k) for any (unramified) Hecke character � and any two complex numbers k

and s.

A.2.3 The (d+1)-variable L-function. We build the (d+1)-variable

L-function following Equation (A.2). Again, the innermost sum is over cosets 0 6=

↵O⇥
F
2 ai/O⇥

F
.

L(�, (s�, t�)�) =
1

[O⇥
K
: O⇥

F
]

hX

i=1

X

↵O⇥
F

�(ai)

�(↵)
Q

�
�(↵)s��(↵)t�

. (A.3)

70



Note that L(�, s) = L(�, (s, s)�), and changing the CM type at � (i.e., replacing

the preferred choice of complex embedding � by �) interchanges the variables s�

and t�.

Remark A.2.3. For this to be well-defined, we need the sum s� + t� to be

independent of �, since ↵ is only defined up to a totally positive unit in F . Write

S0 for this common value. If we replace ↵ by u↵ for some u 2 O⇥,+
F

, �(u↵) =

�(u)�(↵) does not change; since � is unramified and unitary, we have �(u) = 1.

However, we must also check that

Y

�

�(u↵)s��(u↵)t� =
Y

�

�(↵)s��(↵)t� . (A.4)

Since �(u) = �(u), the left hand side di↵ers from the right hand side by a factor of

Y

�

�(u)s�+t� =
Y

�

�(u)S0 =

 
Y

�

�(u)

!S0

= Nm(u)S0 = 1.

Thus we have verified the equality in Equation (A.4), and so we see that

the function defined in Equation (A.3) is independent of the choices of the

representatives ↵ 2 ↵O⇥,+
F

.

This is why we describe it as a (d + 1)-variable L-function when it looks like

there are 2d variables - once the common sum S0 = s� + t� is chosen, the choice

of s� forces the choice of t�, and vice-versa. Thus we are left with d + 1 variables;

one way to choose these variables is to vary S0 and the s�’s, though there is no

preferred way to choose.

A.3 Hilbert Modular Forms

For now, we focus on the totally real field F of degree [F : Q] = d. There are

many ways of viewing Hilbert modular forms over F . In this section we describe

three.

(a) Hilbert modular forms as functions on the space of lattices,
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(b) Hilbert modular forms as holomorphic functions on a symmetric space, and

(c) Hilbert modular forms as sections of a line bundle on a moduli space of Abelian

varieties.

The first description will be important for relating values of certain Hilbert

modular forms to the values of the (d+ 1)-variable L-function. The second is where

the Maass–Shimura operators will be described. The third will be important for

applications to algebraicity.

A.3.1 Setup. Fix a set of representatives a1, . . . , ah for the class group

of F . Note that this also serves as a complete set of isomorphism classes of locally

free OF -modules of rank 1.

Each fractional ideal ai lives naturally in F . Since R is a flat Abelian group,

we may also view ai as a subset of F ⌦Z R ⇠=
Q

�
R, where the isomorphism sends

a pure tensor n ⌦ t 2 F ⌦ R to the tuple (�(n)t)� 2
Q

�
R. Each ai ⇢ F ⌦ R is

a discrete subgroup; we assign a volume to the quotient (F ⌦ R)/ai by choosing a

fundamental domain D
4, and defining the volume of the quotient to be the volume

of this subset of F⌦Z R. We also refer to this as the covolume of the lattice ai.

We scale the representatives ai for the class group. Let Vi denote the

covolume of ai in F ⌦ R, and � the discriminant of F . Replace ai by the lattice
2d
p

|�|
dp
Vi

ai ⇢ F ⌦ R; this need not be a fractional ideal of F , but it is a lattice

in F ⌦ R with covolume
p

|�|. In particular, the choice of ai is unique, and the

representative of the class consisting of principal ideals is OF .

A.3.2 Lattices. We describe Hilbert modular forms as functions on a

space of lattices. First, we should define what a lattice is.

4
D is a connected subset of F ⌦ R such that, for all x 2 F ⌦ R, exactly one element d 2 x + ai

is in D.
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Definition A.3.1. Consider the vector space F ⌦Z C. It has the structure of a OF -

module by acting on the first component, and a real vector space by acting on the

second component. A lattice, or more precisely an OF -lattice in F ⌦ C, is a discrete

OF -submodule L of F ⌦ C which is locally free of rank 2 as an OF -module, and

which spans F ⌦ C over R.

Since a lattice L is locally free of rank 2 as an OF -module, it is isomorphic

to ai1 � ai2 for two indices i1 and i2, where ai refers to one of the representatives

of the class group of F chosen above. Picking an isomorphism, we may write L =

!1ai1 � !2ai2 for some !1,!2 2 (F ⌦ C)⇥.

We say two lattices L and L
0 are homothetic if there is some � 2 (F ⌦ C)⇥

for which �L = {�` 2 F ⌦C | ` 2 L} = L
0. By scaling L = !1ai1 +!2ai2 , we see that

any lattice is homothetic to a lattice of the form ai1 + ⌧ai2 for some ⌧ 2 (F ⌦ C)⇥;

e.g., for ⌧ = !2
!1
.

We now define Hilbert modular forms in terms of functions on lattices.

Definition A.3.2. Let L be the set of OF -lattices in F ⌦ C, and let k = (k�)� be

a tuple of integers indexed by the real embeddings of F . A Hilbert modular form of

weight k is a function f : L! C satisfying some analytic conditions (to be specified

in the next section) and the homogeneity property

f(�L) =

 
Y

�

�(�)�k�

!
f(L) for all � 2 (F ⌦ C)⇥.

Here, if � = n⌦ z 2 F ⌦C is a pure tensor, we write �(�) = �(n)z. It is nonzero for

all � if � 2 (F ⌦ C)⇥.

Notice that f is determined by its values on lattices of the form ai1 � ⌧ai2 .
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Remark A.3.3. In Section A.4.1, we will give our first example of a Hilbert modular

form using this viewpoint. This will be the easiest way for us to relate its values to

the values of the L-functions.

A.3.3 Holomorphic Functions. Hilbert modular forms can also be

viewed as holomorphic functions on a symmetric space. Let h ⇢ C be the upper

half-plane consisting of complex numbers with positive imaginary part. Then define

hF to be the product of d copies of h, indexed by the real embeddings of F . We

write z = (z�)� for elements of hF .

We have an action of the group SL2 F on hF given by the formula
0

B@
a b

c d

1

CA · (z�)� =

✓
�(a)z� + �(b)

�(c)z� + �(d)

◆

�

.

This action gives us the following definition.

Definition A.3.4. A holomorphic Hilbert modular form of weight k = (k�)� is a

holomorphic function f : hF ! C such that |f(z)| is bounded as every Im(z�) goes

to 1 at once5 and which satisfies the transformation property

f(� · z) =
 
Y

�

(�(c)z� + �(d))k�

!
f(z) for all � =

0

B@
a b

c d

1

CA 2 SL2 OF .

To connect this with the previous definition, we have to associate a lattice

to each z 2 hF . In fact, the space of lattices is disconnected, while hF is connected

– a modular form in the sense of Definition A.3.2 is actually a collection of Hilbert

modular forms in the sense of Definition A.3.4, one for each connected component.

Thus we should actually associate multiple lattices to each element of hF .

View z 2 hF as an element of F ⌦ C � hF . To every triple (ai1 , ai2 , z), we

associate a lattice ai1 + zai2 = {a1 + a2z 2 F ⌦ C | aj 2 aij}. This allows us to

5This condition is important for F = Q and automatic for d > 1.
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translate between Definitions A.3.2 and A.3.4. Note that the same lattice may be

written in di↵erent ways.

For a Hilbert modular form fL viewed as a function on the space of lattices,

we build a function fh(ai1 , ai2 ,�) : hF ! C for each orered pair (ai1 , ai2) by the

formula fh(ai1 , ai2 , z) = fL(ai1 +zai2). One may check that this function satisfies the

requisite transformation property. The analytic conditions mentioned in Definition

A.3.2 correspond to the function fh(ai1 , ai2 ,�) being holomorphic and bounded at

the cusps.

Now, for each ordered pair (ai1 , ai2), fix a holomorphic modular form

fh(ai1 , ai2 ,�) : hF ! C. Every lattice !1ai1 + !2ai2 is homothetic to ai1 + zai2

for some z 2 hF . Specifying that fL(ai1 + zai2) = fh(ai1 , ai2 , z), the homogeneity

property then determines fL on all lattices.

Remark A.3.5. Viewing Hilbert modular forms as functions on the space of OF -

lattices in F ⌦ C will give a tight connection to the relevant values of L-functions.

However, one of the important pieces of the theory, the Maass–Shimura operator,

is best understood in the realm of holomorphic functions. We give both viewpoints

here, and a rough translation between them, in order to take advantage of both

sides of the theory. The third viewpoint, in terms of algebraic geometry, is given for

the purpose of one of our applications. The next section introduces this, and ties it

back to the viewpoint involving lattices.

A.3.4 Geometry. In order to motivate the following discussion, we

give a preliminary definition of classical modular forms; they may be viewed as a

special case of Hilbert modular forms over the totally real field F = Q.

Definition A.3.6. Fix a base ring R. A modular form defined over R is an

algebraic function f that assigns to every pair (E,!) of an elliptic curve E defined
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over some R-algebra S and a basis ! for ⌦1
E/S

as an S-module, an element of S.

A modular form of weight k is such a function which satisfies the homogeneity

property that for any c 2 S
⇥, f(E, c!) = c

�k
f(E,!).

Remark A.3.7. Since ⌦1
E/S

is a free S-module of rank 1, any two bases !1,!2 for

⌦1
E/S

are related by !1 = c!2 for a unique c 2 S
⇥. Thus the value of f(E,!) for

any ! is determined by the value of f(E,!0) for some fixed !0.

Elliptic curves are one-dimensional examples of Abelian varieties. In order

to generalize the definition above, one may look at more general classes of Abelian

varieties of higher dimension, or endowed with extra structure. For Hilbert modular

forms, we consider Hilbert–Blumenthal Abelian varieties.

Definition A.3.8. Fix a ring R, and let F be a totally real field of dimension d. A

Hilbert–Blumnenthal Abelian variety, or HBAV, is a tuple (A, ◆, ,�) consisting of

– an Abelian variety A of relative dimension d over R,

– a real multiplication ◆ : OF ! End(A),

– a level structure  , and

– a polarization �.

For our purposes, the level structure  is trivial, and we suppress it from the

notation.

Remark A.3.9. In general, the moduli space of HBAVs is represented by a stack,

rather than a scheme. However, with enough level structure, the moduli space

is “rigidified” to be represented by a scheme. When we do not fix a polarization

as part of the data, this never happens. For our purposes, we will have no level

76



structure, which will mean that we have to deal with stacks; we will ignore the

issues that come up.

The real multiplication ◆ gives ⌦1
A/R

the structure of an OF ⌦ R-module. For

a dense open subspace of the moduli space of HBAVs, this is a free module of rank

1. In this case, we can form its frame bundle consisting of bases ! for ⌦1
A/R

which

generate it as an OF⌦R-module. Any two such bases !1,!2 are related by !1 = c!2

for a unique c 2 (OF ⌦R)⇥.

Definition A.3.10. Fix a base ring R. A Hilbert modular form defined over R is

an algebraic function f that assigns to every tuple (A, ◆,�,!) of an HBAV (A, ◆,�)

defined over some R-algebra S and a basis ! for ⌦1
E/S

as an OF ⌦ S-module, an

element of S. A Hilbert modular form of weight (k�)� is such a function which

satisfies the homogeneity property that for any c 2 (OF ⌦ S)⇥, f(A, ◆,�, c!) =
�Q

�
�(c)�k�

�
f(A, ◆,�,!). Here � acts on pure tensors n ⌦ s 2 (OF ⌦ S)⇥ by

�(n⌦ s) = �(n)⌦ s.

The algebraic geometry involved gives a way to investigate algebraicity, and

in fact the integrality, of the values of Hilbert modular forms. The modular forms

we consider will be defined over Z. Thus the algebraicity of their values will depend

on the algebraicity of the inputs at which we evaluate them; the integrality will

depend on those inputs and on the structure of the moduli space of HBAVs viewed

as a stack, which will contribute some predictable denoninators.

We connect this section back to the theory of lattices. Let (A, ◆,�) be

an HBAV defined C, and let ! 2 ⌦1
A/R

be a basis. The choice of ! gives an

isomorphism between Lie algebra Lie(A) = H1(A,R) and F ⌦ C, by sending a

path � 2 H1(A,R) to
R
�
!. To (A, ◆,�,!), we associate the lattice {

R
�
! | � 2

H1(A,Z) ⇢ H1(A,R)}.
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On the other hand, to any lattice L, we associate the complex torus A =

(F ⌦ C)/L. Since OF acts on (F ⌦ C) through the first component, and L is stable

under this action, we may associate an endomorphism structure ◆. Further, there is

a natural alternating pairing on F ⌦ C which induces a polarization on A, assuring

us that it is the set of complex points of an Abelian variety, given by the formula

((z�)�, (w�)�) 7!
X

�

Im(z�w�).

Write d⌧ for the natural di↵erential on C with coordinate ⌧ , viewed as an F ⌦ C-

basis for F ⌦ C. The lattice L can be recovered from A by considering the integrals
nR

�

d⌧
⇡
| � 2 H1(A,Z)

o
.

We now have three separate ways to view Hilbert modular forms. Our

next step is to give some examples of Hilbert modular forms, and use all three

viewpoints to use them to learn about L-values.

A.4 Damerell’s Formula

Damerell’s formula relates the values of the zeta functions described above

to the values of certain Hilbert modular forms, known as Eisenstein series. We give

a description of the pieces that go into the construction.

A.4.1 Holomorphic Eisenstein Series. We give examples of Hilbert

modular forms, in terms of Definition A.3.2. First, note that we have an action of

O⇥,+
F

on any lattice L, induced by the action of OF . Denote the set of orbits of this

action by L/O⇥,+
F

, and write the orbit of ↵ 2 L by ↵O⇥,+
F
2 L/O⇥,+

F
.

Definition A.4.1. Let k > 2 be an integer. The holomorphic Eisenstein series of

parallel weight k is the function on the space of lattices

Gk(L) =
X

0 6=↵O⇥,+
F 2L/O⇥,+

F

1Q
�
�(↵)k

.

78



Here the sum is over nonzero orbits of the action of O⇥,+
F

on L. This is independent

of the choice of representatives ↵ since
Q

�
�(u)k = Nm(u)k = 1 for any totally

positive unit u and any integer k.

The holomorphic avatar has a simple formula on the connected component

corresponding to lattices of the form OF + zOF . We write it

Gk(z) =
X

(c,d)

1Q
�
(�(c)z� + �(d))k

. (A.5)

The sum is over nonzero representatives (c, d) of the diagonal action of O⇥,+
F

on

OF �OF . i.e., we choose exactly one pair (c, d) from the elements (cu, du) as u runs

over the totally positive units u 2 O⇥,+
F

, but we exclude (0, 0) from the sum. It

converges absolutely using the fact that Im(z�) > 0 for all �.

We conclude this section with a proposition relating the values of this

Eisenstein series at certain lattices to certain values of the (d + 1)-variable L-

function.

Proposition A.4.2. Let K be a CM field with totally real subfield F , and fix

a1, . . . , ar a set of representatives for the class group of K. Fix a CM type for K

and an unramified, unitary Hecke character �. Then

L(�, (k, 0)�) =
1

[O⇥
K
: O⇥,+

F
]

rX

i=1

�(ai)Gk(ai).

Proof. Recall that

L(�, (s�, t�)�) =
1

[O⇥
K
: O⇥,+

F
]

rX

i=1

X

↵O⇥
F

�(ai)

�(↵)
Q

�
�(↵)s��(↵)t�

.

The innermost sum is over representatives ↵ of nonzero orbits of the O⇥,+
F

action

on ai. We can pull out a factor of �(ai) from the innermost sum, and set �(↵) = 1

79



since � is unramified and unitary. We are left to verify that

Gk(ai) =
X

↵O⇥
F

1Q
�
�(↵)k

.

This is exactly the sum from Definition A.4.1.

A.4.2 Maass–Shimura Operators. An important player in the

story is the Maass–Shimura operator.

Definition A.4.3. Let f be a Hilbert modular form of parallel weight k. Write

z = (z�)� = (x� + iy�)� for the coordinate on hF , and s� = (z� � z�)�1 = 1
2iy�

. The

weight k Maass–Shimura operator at � ��
k
acts on f by the formula

�
�

k
(f) = s

k�
�

@

@z�
s
�k�
�

f = k�s�f +
@f

@z�
.

The resulting function is a nearly holomorphic modular form of weight k + 2� and

type �.6 We iterate the Maass–Shimura operator by the formula

�
j�

k
(f) =

�
�
�

k+2j��2� � · · · � ��k+2� � ��k
�
(f).

The resulting function is a nearly holomorphic modular form of weight k + 2j� and

type j�. Using the fact that the partial derivatives @

@z�
commute for di↵erent �, one

may show that a similar definition gives a well-defined operator �
P

j��

k
, which sends

a holomorphic Hilbert modular form of weight k to a nearly holomorphic Hilbert

modular form of weight k +
P

2j�� and type
P

j��.

Remark A.4.4. Note that we do not define what it means for a function hF ! C to

be a nearly holomorphic Hilbert modular form, or what its type is. The reader may

take it to be the definition that

6Weight k+2� refers to the weight k = (k⌧ )⌧ where k⌧ = k for ⌧ 6= � and k� = k+2. In general,
weight k +

P
2j�� refers to the weight k = (k⌧ )⌧ where k� = k + 2j� for all �.
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(a) a nearly holomorphic modular form of type 0 is simply a holomorphic modular

form,

(b) the vector space nearly holomorphic modular forms of type
P

j�� includes

the vector space of nearly holomorphic modular forms of type
P

�
j
0
�
� where

0  j
0
�
 j� for all �, and

(c) if f is a nearly holomorphic modular form of weight k and type
P

⌧
j⌧⌧ , then

�
�

k
f is a nearly holomorphic modular form of weight k+2� and type �+

P
⌧
j⌧⌧ .

When 2j� < k� for all �, this process produces all nearly holomorphic modular

forms of weight k and type
P

j��.

A.4.3 Nearly Holomorphic Eisenstein Series. Write Gk,j :=

�

P
� j��

k
Gk for j = (j�)�. We find a formula for this in the following proposition.

Proposition A.4.5. Let k > 2 be an integer, and j = (j�)� a tuple of non-negative

integers. Then a formula for Gk,j is

Gk,j(z) =

 
Y

�

k(k + 1) . . . (k + j � 1)sj�
�

!
X

(c,d)

Q
�
(�(c)z� + �(d))j�Q

�
(�(c)z� + �(d))k+j�

.

Proof. We will prove this by induction, noting that the base case j = (0)� we

may compare with Equation (A.5). For the induction step, we want to verify that

Gk,j+� = �
�

k+j
Gk,j. Since ��k+j

f = (k + 2j�)s�f + @f

@z�
, we may factor out the terms

involving variables that do not depend on z� (including z�, but not including s�)

and simply verify, using that formula, that

�
�

k+2j

✓
s
j�
�

X 1

(�(c)z� + �(d))k+j�

◆
= (k� + j�)s

j�+1
�

X (�(c)z� + �(d))

(�(c)z� + �(d))k+j�+1
.

(A.6)

Write f = s
j�
�

P
1

(�(c)z�+�(d))k+j� . For the first term of ��
k+2jf , we have

(k + 2j�)s�

✓
s
j�
�

X 1

(�(c)z� + �(d))k+j�

◆
.
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The term @f

@z�
splits into two terms by the product rule.

@f

@z�
=
@s

j�
�

@z�

X 1

(�(c)z� + �(d))k+j�
+ s

j�
�

@

@z�

X 1

(�(c)z� + �(d))k+j�

Call these terms 2a and 2b respectively. Term 2a simplifies using the formula

@s
j�
�

@z�
= �j�sj�+1

�
, and combines with the (k + 2j�)s�f term to produce

[(k + 2j�)� j�] s
j�+1
�

X 1

(�(c)z� + �(d))k+j�
= (k+j�)s

j�+1
�

X (�(c)z� + �(d))

(�(c)z� + �(d))k+j�+1

(A.7)

We calculate term 2b.

s
j�
�

@

@z�

X 1

(�(c)z� + �(d))k+j�
= (k + j�)s

j�+1
�

X ��(c)(z� � z�)

(�(c)z� + �(d))k+j�+1
(A.8)

Note that we have added an extra factor of s� before the sum, in exchange for

adding a factor of s�1
�

= z� � z� to the numerator of every term inside the sum.

We now add the final result from Equation (A.7) to that from Equation (A.8)

to obtain ��
k+2jf . We have arranged for the factors in front to match, as well

as the denominators for each term in the sum, so that we only have to add the

numerators.

�
�

k+j
f = (k + j�)s

j�+1
X �(c)z� + d� � �(c)(z� � z�)

(�(c)z� + �(d))k+j�+1
.

Use the fact that �(c)z� + d� � �(c)(z� � z�) = �(c)z + �(d) to compare with

Equation (A.6).

We now have values for the Gk,j that will be used to relate their values at

CM points to the values of the L-functions from the previous section.

A.4.4 Damerell’s Formula. Fix representatives a1, . . . , ah for the

class group of K, and let � be an unramified, unitary Hecke character. We write

the (d + 1)-variable L-function, recalling that the inner sum is over nonzero cosets
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0 6= ↵O⇥,+
F
2 ai/O⇥,+

F
.

L(�, (s�, t�)�) =
1

[O⇥
K
: O⇥,+

F
]

hX

i=1

X

↵O⇥,+
F

�(ai)Q
�
�(↵)s��(↵)t�

.

We have left our a factor of �(↵) from the denominator; these are forced to be 1 by

the assumptions that � be unramified and unitary.

In the previous section, we gave the formula for Gk,j as a holomorphic

function on hF . As a function on lattices, we have

Gk,j(L) =

 
Y

�

k(k + 1) . . . (k + j� � 1)sj�
�

!
X

↵O⇥,+
F

Q
�
�(↵)j�Q

�
�(↵)k+j�

. (A.9)

Here the sum is over nonzero orbits 0 6= ↵O⇥,+
F
2 L/O⇥,+

F
. Compare to Equation

(A.6) to see that this is the correct formula, at least for lattices L = OF + zOF .

We might describe y� = 1
2is�

as the “covolume of L at �”, noting that
Q

�

1
2is�

is the

covolume of L.

Theorem A.4.6 (Damerell’s Formula). Fix an integer k > 2, a tuple j = (j�)�

of positive integers indexed by the real embeddings of F , and an unramified unitary

Hecke character �. Then we may relate special values of the (d + 1)-variable L-

function with the values of various Eisenstein series at lattices corresponding to

fractional ideals of K as follows:

L(�, (k + j�,�j�)�) =
P

h

i=1 �(ai)Gk,j(ai)

[O⇥
K
,O⇥,+

F
]
�Q

�
k(k + 1) . . . (k + j� � 1)sj��

� .

Proof. Compare Equations (A.9) and (A.3).

A.5 Takeaways

In this section we describe some applications for Damerell’s formula as

discussed in the previous two sections. Specifically, we carry over the setup from

Section 3: fix a totally real field F of degree d, and a CM extension K = F (↵) with

OK = OF + ↵OF . We also fix a CM type of K, i.e., a preferred extension of each
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real embedding � : F ! R to a complex embedding K ! C which we also call �.

Thus the set of complex embeddings of K is the set of all �’s and all �’s as � runs

over the real embeddings of F .

A.5.1 Algebraicity of L-Values: Damerell’s Theorem. In order

to talk about algebraicity, we recall the algebraic definition from Section A.3.4. For

simplicity, we focus on the quadratic imaginary case.

Definition A.5.1 (Definition A.3.6). Fix a base ring R. A modular form defined

over R is an algebraic function f that assigns to every pair (E,!) of an elliptic

curve E defined over some R-algebra S and a basis ! for ⌦1
E/S

as an S-module,

an element of S. A modular form of weight k is such a function which satisfies the

homogeneity property that for any c 2 S
⇥, f(E, c!) = c

�k
f(E,!).

In particular, given a modular form f defined over a number field H, an

elliptic curve E defined over H, and a generator ! 2 ⌦1
E/H

, the value f(E,!) 2 H

is algebraic. A similar definition, and a similar statement about algebraicity, can be

made for nearly modular forms.

To prove the algebraicity of certain values of L-functions, we can use our

previous results relating these values to the values of Eisenstein series. Eisenstein

series are in fact defined over Z, so it will be enough to show that evaluating

their complex avatars at the CM points of the modular curve corresponds to

evaluating their algebraic avatars at a pair consisting of an elliptic curve defined

over a number field H and a generator dw 2 ⌦1
E/C which is explicitly related to an

algebraic generator ! 2 ⌦1
E/H

by a constant dw = c · !.

In fact, each point of the upper half plane ⌧ 2 h corresponds to a specific

complex elliptic curve E⌧ and a chosen basis dw 2 ⌦1
E/C. Any complex torus is an

elliptic curve; we let L⌧ denote the lattice Z + ⌧Z ⇢ C, and write E⌧ = C/L⌧ .
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The projection C ! E⌧ gives an isomorphism between the cotangent bundle of

E⌧ and the cotangent bundle of C. Writing w for the coordinate on C, we get a

generator dw of ⌦1
E⌧/C. Evaluating the holomorphic function at ⌧ 2 h corresponds

to evaluating the algebraic function at the pair (E⌧ , dw).

When ⌧ = ↵ is a CM point, the corresponding elliptic curve E↵ has complex

multiplication by the quadratic imaginary field K = Q(↵). A celebrated result in

explicit class field theory gives that this E↵ is defined over the Hilbert class field H

of K. We also have that ⇡dw is defined over H, so that

Gk (E↵, ⇡dw) = ⇡
�k
Gk(E↵, dw) = ⇡

�k
Gk(↵) 2 H.

Thus by Damerell’s Formula (Theorem A.4.6), we have

L(�, k + j,�j)
⇡k

=

P
h

i=1 �(ai)Gk,j(ai)/s(ai)j

k(k + 1) . . . (k + j � 1)(#O⇥
K
)⇡k
2 H(µh).

Here we write s(ai) for the covolume of ai in F ⌦Z C. Notice that since � is a

character of a group of order h, it takes values in the hth roots of unity µh. This

is a standard algebraicity result showing that, up to a “period” ⇡k, the value

L(�, k + j,�j) lives in a particular number field. Above we wrote H(µh), but

many authors would bound it more precisely by writing H(the values of �). In

addition to algebraicity, there are integrality results, bounding the denominators of

⇡
�k
L(�, k + j,�j) 62 OH(µh).

A similar construction can be carried out for a general CM field K, using

Hilbert modular forms on its maximal totally real subfield and Hilbert Blumenthal

Abelian varieties in place of elliptic curves. We omit it here, as it is nearly the

same once we have the geometric desctiption of Hilbert modular forms from Section

A.3.4.
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A.5.2 p-adic Interpolation. One application that requires the

algebraicity and integrality results described in the previous section is the

construction of the p-adic L-function for a CM field. These are laid out carefully in

[Kat76] and [AI19] for quadratic imaginary K (respectively for p split in K and p

nonsplit in K), and in [Kat78] for a general CM field K (under the assumption that

all primes of the maximal totally real subfield K
+ of K which divide p are split in

K/K
+). The case when primes above p are nonsplit in K/K

+ is not settled. Very

roughly, the construction goes like this.

First, we relate the values of the L-function at certain inputs to the values of

certain modular forms. We then modify it to write

Lp(�, (k + j�,�j�)�) =
⇣Q

p|p 1� �(p) Nm(p)k
⌘
L(�, (k + j�,�j�)�) =

= [predictable constants]
P

h

i=1 �(ai)G
[p]
k,j
(ai).

Here Lp is the function to be interpolated, and it is modified from L by removing

the Euler factor at p. We also have G
[p]
k,j
, the p-depletion of the Eisenstein series

Gk,j. When K is quadratic imaginary, one might describe G
[p]
k,j

in terms of its q-

expansion as the form whose nth Fourier coe�cient is 0 whenever n is a power of p,

whose nth Fourier coe�cient is the same as that for Gk,j when n is prime to p.

Second, we prove congruences modulo p
n between the values Gk,0(ai) and

Gk0,0(ai) whenever k ⌘ k
0 (mod (p � 1)pn�1). For K quadratic imaginary, this is

established using a q-expansion principle in [Ser72]. Serre’s intended use is to p-

adically interpolate the standard Riemann zeta function, but the result is useful

here as well.

Finally, we prove congruences modulo p
n between �

P
j��

k
f and �

P
j
0
��

k
f

whenever f is a p-depleted form and each j� ⌘ j
0
�
(mod (p� 1)pn�1). From here we
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have the neccessary congruences to claim that Lp(�,�) is p-adically continuous as a

function of the d + 1 variables. Thus by the p-adic density of the set of characters

of infinity type (k + j�,�j�)� in the set of all p-adic characters, we get a unique

extension of Lp to a continuous function on the set of all p-adic characters, which is

the p-adic L-function.

Remark A.5.2. Note that this is a very rough outline of the arguments. In

particular, we made no reference to formal or rigid geometry which is a key tool

in defining Hilbert modular forms in a p-adic setting, or to the Frobenius and Up

operators that give an algebraic way to p-deplete forms. We also made no reference

to how the behavior of p takes this result from one proven in the 1970’s when p

splits to one proven in the 2010’s when p is nonsplit; we note here that it has to do

with whether or not the HBAVs with CM by K are ordinary at p.
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forms, Annales scientifiques de l’École Normale Supérieure Ser. 4, 14
(1981), no. 1, 77–120 (en). MR 82m:10046

88



[Har86] , Arithmetic vector bundles and automorphic forms on Shimura
varieties, II, Compositio Mathematica 60 (1986), no. 3, 323–378 (en). MR
869106

[Hid04] Haruzo Hida, p-adic automorphic forms on Shimura varieties, Springer
Monographs in Mathematics, Springer-Verlag, New York, 2004. MR 2055355

[HX14] Robert Harron and Liang Xiao, Gauss–Manin connections for p-adic
families of nearly overconvergent modular forms, Ann. Inst. Fourier
(Grenoble) 64 (2014), no. 6, 2449–2464. MR 3331170

[Kat76] Nicholas M. Katz, p-adic interpolation of real analytic Eisenstein series,
Ann. of Math. (2) 104 (1976), no. 3, 459–571. MR 506271

[Kat78] , p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3,
199–297. MR 513095

[Liu19a] Zheng Liu, Nearly overconvergent Siegel modular forms, Annales de
l’Institut Fourier 69 (2019), no. 6, 2439–2506 (en).

[Liu19b] , p-adic L-functions for ordinary families on symplectic groups,
Journal of the Institute of Mathematics of Jussieu (2019), 1–61.

[Mil20] James S. Milne, Algebraic number theory (v3.08), 2020, Available at
www.jmilne.org/math/, p. 166.

[Nic07] Johannes Nicaise, Formal and rigid geometry: an intuitive introduction, and
some applications.

[Ser72] J.P. Serre, Formes modulaires et fonctions zêta p-adiques, Proc. Internat.
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