
HOMOLOGICAL ALGEBRA FOR POLYNOMIAL MACKEY RINGS OVER

PRIME CYCLIC GROUPS.

by

ROSS CASEBOLT

A DISSERTATION

Presented to the Department of Mathematics
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosphy

September 2022



DISSERTATION APPROVAL PAGE

Student: Ross Casebolt

Title: Homological Algebra for Polynomial Mackey Rings over Prime Cyclic Groups

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosphy degree in the Department of Mathematics
by:

Nicholas Proudfoot Chair
Robert Lipshitz Core Member
Nicolas Addington Core Member
Boris Botvinnik Core Member
Anthony Hornof Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded September 2022

ii



© 2022 Ross Casebolt

iii



DISSERTATION ABSTRACT

Ross Casebolt

Doctor of Philosphy

Department of Mathematics
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Title: Homological Algebra for Polynomial Mackey Rings over Prime Cyclic Groups

Let Cl denote the cyclic group of prime order l and let k be a field. We define

a Mackey k-algebra k[xθ] which is constructed by adjoining a free commutative

variable to the free side of the constant Mackey functor k. When char(k) is

relatively prime to l we show that there is a an equivalence of categories between

k[xθ] − Mod and the category of modules over a certain twisted group ring. We

calculate the free side of a certain Ext object Ext∗k[xθ](k, k) in the two cases when

char(k) is relatively prime to l and when char(k) = l = 2.
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CHAPTER I

INTRODUCTION

Introduction

Let G be a finite group. Mackey functors over G serve as the natural

coefficients for G-equivariant cohomology in the same way that abelian groups do

for singular cohomology [May96]. Mackey functors and their homological algebra

are much less understood than that of abelian groups. We will investigate some

examples of homological algebra with Mackey functors in this thesis. Considering

the special case G = Cl, the cyclic group of prime order l, we focus on defining

a type of polynomial ring in the category of Mackey functors and computing the

internal Ext object for the residue field Mackey functor.

In this thesis we will focus on Mackey functors over the cyclic groups of prime

order l with a fixed field k. We will define a Mackey functor k[xθ] which arises by

adjoining a free commutative variable to the free side of the constant coefficient

Mackey ring k. For a field k with characteristic relatively prime to l, we will prove

that the category of Mackey modules over a Mackey k-algebra R is equivalent to

the category of ordinary modules over a certain “twisted group ring”. When k

has characteristic l, the category is more complicated. We end by calculating the

Mackey Ext ring Ext∗R(k, k) both when char(k) 6= l and when char(k) = l = 2.

In both cases, we investigate resolutions of the residue field and the associated Ext

groups, establishing a component of Koszul duality in some cases.

Before stating the results in more detail, we begin with some brief background

information. Let G be a finite group. The structure of a Mackey functor F includes
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an abelian group F(G/H) for each subgroup H of G, along with various restriction

and transfer maps between these values of F . In the case G = Cl, this takes a

simple form: a Mackey functor F over Cl is the data of two abelian groups Fθ :=

F(Cl/e) and F• := F(Cl/Cl), with maps of abelian groups p∗ : Fθ → F•, p∗ : F• →

Fθ, and an automorphism t : Fθ → Fθ. These maps satisfy the following relations:

p∗ ◦ p∗ =
l−1∑
i=0

ti, p∗ ◦ tn = p∗ for all n,

tn ◦ p∗ = p∗ for all n, and tl = idFθ .

We will draw these Mackey functors as Fθ F•

p∗

t

p∗

Mackey functors have

been studied extensively and can be read about in [Dre73], [Dre71], [Gre71], and

[Web00].

The category of Mackey functors over Cl is equipped with a tensor product

called the box product −�−. Mackey rings are defined to be monoids in the

monoidal category of Mackey functors with the box product. Unravelling the

definitions, a Mackey ring R is a Mackey functor where both Rθ and R• are rings,

p∗ and t are ring maps, and p∗ is a map of R•-modules. If k is a ring, an important

example of a Mackey ring is k, the “constant coefficient” Mackey ring:

k k

lidk

idk

idk

We can define a left Mackey module over a Mackey ring R to be a Mackey

functor M with a unital and associative structure map µM : R�M → M. It
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turns out that a Mackey functor M is a k-module if and only if Mθ and M• are

k-modules, p∗, p
∗, and t are k-linear, and p∗ ◦ p∗ = l · idM• .

The main object of interest in this paper is the commutative Mackey k-

algebra k[xθ]. This Mackey functor has k[xθ]θ = k[x1, . . . , xl] with t(xi) = xi+1 mod l

and comes equipped with the following universal property: for any commutative

Mackey k-algebra S and any element y ∈ Sθ, there is a unique map of Mackey

k-algebras f : k[xθ] → S for which fθ(x1) = y. This property is similar to the

universal property of polynomial algebras over a field k, which was our motivation

in defining and studying this object.

The category of R-modules for a Mackey ring R is abelian with enough

projectives and injectives, so the usual machinery of homological algebra applies.

In particular, we can talk about Ext∗R(M,N ). If R is a Mackey ring and M and

N are R-modules, then Ext∗R(M,N ) is the •-side of an internal Ext object denoted

Ext∗R(M,N ). That is, Ext∗R(M,N ) is a Mackey functor and Ext∗R(M,N )• =

Ext∗R(M,N ). When M = N this is a Mackey ring via the Yoneda product [Wei94].

Our aim in this paper is to investigate the case Ext∗k[xθ](k, k). We will show the

following results:

Theorem 1.1.1. Ext∗k[xθ](k, k)θ is an exterior k-algebra on l generators in two

cases:

1. When char(k) is relatively prime to l, and

2. when char(k) = l = 2.

In the case when char(k) is relatively prime to l, the theory simplifies

somewhat. In this case, for any Mackey k-algebra R the structure of an R-module
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M is determined solely by the Rθ-module structure of Mθ and the action of t on

Mθ. Here one can use a Koszul resolution [Mac63] to compute the Ext Mackey

functors of k as a k[xθ]-module, since the this resolution is exact.

However, when char(k) = l the category is more complicated. When char(k)

is relatively prime to l we can give k a finite projective resolution, but when

char(k) = l = 2 any resolution for k as a k[xθ]-module must be infinite. For the

case char(k) = l = 2, we exhibit a short exact sequence of k[xθ]-modules ending

with a certain module M and beginning with
⊕∞

i=0M. We then stitch this short

exact sequence with itself (infinitely many times) to get a projective resolution of k

as a k[xθ]-module. From there, we compute Ext∗k[xθ](k, k) and show that its θ-side is

an exterior k-algebra on 2 generators. It is remarkable that, despite the resolution

being infinite and complicated, the Ext groups are themselves very simple. We end

by calculating a portion of the •-side ring structure.

One difficulty in the case char(k) = l is that while k[xθ]θ = k[x1, . . . , xl], a

nice polynomial ring, k[xθ]• is a more complicated ring requiring infinitely many

ring generators. Even for char(k) = l = 2, k[xθ]• is a ring with two seperate infinite

families of generators, along with many relations. To manage this, we rely heavily

on a decomposition of k[a0, a1, . . . , b1, b2, . . . ]/ ∼ as a k[a0]-module, over which

it is the sum of an infinite rank free module and an infinite rank sum of k’s. The

complexity of this ring is the main obstacle in extending the results to the case

where char(k) = l > 2.

5



CHAPTER II

BACKGROUND

We now develop the necessary background information on Mackey functors.

Definition 2.0.1. Let Cl be a finite cyclic group of prime order l. A Mackey

functor F over Cl consists of abelian groups Fθ and F• and maps of abelian groups

t : Fθ → Fθ, p∗ : Fθ → F•, and p∗ : F• → Fθ which satisfy the following identities:

tl = idFθ p∗ ◦ t = p∗

t ◦ p∗ = p∗ p∗ ◦ p∗ =
l−1∑
i=0

ti.

A map of Mackey functors f : F → G consists of two maps of abelian groups,

fθ : Fθ → Gθ and f• : F• → G•, which satisfy the following identities:

tG ◦ fθ = fθ ◦ tF f• ◦ p∗,F = p∗,G ◦ fθ fθ ◦ p∗F = p∗G ◦ f•.

There are two particularly important Mackey functors, the free functors

Fθ(Z) and F•(Z):

Fθ(Z) : Zl Z F•(Z) : Z Z2

∇

t

∆

p∗

idZ

p∗

The maps in Fθ(Z) are ∇ : (a1, . . . , al) 7→ a1 + · · · + al and ∆: a 7→ (a, a, . . . , a),

and t acts as cyclic permutation on Zl. The maps in F•(Z) are p∗ : a 7→ (0, a) and

p∗ : (a, b) 7→ a+ bl. We will present Fθ(Z) where Fθ(Z)θ is generated by the element
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g = (1, 0, 0, . . . , 0) as a Z[Cl]-module. We also identify the element 1• = (1, 0) ∈

F•(Z) and its image under p∗, denoted 1θ ∈ Fθ(Z). The images of these elements

determine all maps out of Fθ(Z) and F•(Z), respectively. This is stated precisely in

the following proposition.

Proposition 2.0.2. For any Mackey functor G,

Hom(F•(Z),G) ∼= G• Hom(Fθ(Z),G) ∼= Gθ

where the isomorphisms are f 7→ f•(1•) and h 7→ hθ(g). [RAE19]

Definition 2.0.3. Let F and G be Mackey functors. The box product F�G is the

Mackey functor with

(F�G)θ = Fθ ⊗ Gθ

(F�G)• = ((Fθ ⊗ Gθ)⊕ (F• ⊗ G•))/ ∼

where ∼ is defined as

aθ ⊗ p∗(b•) ∼ p∗(aθ)⊗ b•

p∗(a•)⊗ bθ ∼ a• ⊗ p∗(bθ)

t(aθ)⊗ t(bθ) ∼ aθ ⊗ bθ
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for any aθ ∈ Fθ, bθ ∈ Gθ, a• ∈ F•, and b• ∈ G•. The map t is induced by the

diagonal action t(a ⊗ b) = t(a) ⊗ t(b). The map p∗ is induced by the inclusion

Fθ ⊗ Gθ → (Fθ ⊗ Gθ) ⊕ (F• ⊗ G•). The map p∗ is induced by the map aθ ⊗ bθ 7→∑l
i=1 t

i(aθ) ⊗ ti(bθ) and a• ⊗ b• 7→ p∗(a•) ⊗ p∗(b•). The box product is symmetric

monoidal with unit F•(Z).

Using the box product we can define a ring object in the category of Mackey

functors over Cl.

Definition 2.0.4. Let R be a Mackey functor. We say that R is a Mackey ring if

there are maps ι : F•(Z) → R and µR : R�R → R such that (ι�idR) ◦ µR = idR

and µR ◦ (µR�idR) = µR ◦ (idR�µR).

Proposition 2.0.5. [Rae19, Theorem 2.2.2] Let R be a Mackey functor. Then

R is a Mackey ring if and only if Rθ and R• are rings, p∗ and t are ring maps,

and p∗ is a map of left R•-modules (with Rθ as a left R•-module induced from p∗).

A commutative Mackey ring is a Mackey ring where Rθ and R• are commutative

rings.

Definition 2.0.6. Let R be a Mackey ring. A Mackey functor N is a left R-

module if there is a map µM : R�M → M which is unital and associative.

A map of left R-modules f : M → N is a map of Mackey functors such that

f ◦ µM = µN ◦ (idR�f). Right R-modules are defined similarly.

Remark 2.0.7. Let M be a Mackey functor and R be a Mackey ring. Then M

is an R-module if Mθ is an Rθ-module, M• is an R•-module, p∗ and p∗ are R•-

module maps and t(rθmθ) = t(rθ)t(mθ) for any rθ ∈ Rθ and mθ ∈ Mθ. A map of

Mackey functors f is a map of R-modules if fθ is a map of Rθ-modules and f• is a

map of R•-modules.
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The Mackey rings we will consider in this paper are all commutative, so the

distinction between left and right Mackey modules is unimportant for us.

The category of R-modules is also monoidal with its own product �R and

unit R.

Definition 2.0.8. Let R be a commutative Mackey ring and M and N be R-

modules. Define M�RN := coeq(M�R�N ⇒ M�N ) where the two maps

are µM�idN and idM�µN .

Similar to the roles that Fθ(Z) and F•(Z) play as free Mackey functors in the

category of Mackey functors, the two main examples of free functors in the category

of R-modules are F•(R) = R�F•(Z) ∼= R and Fθ(R) = R�Fθ(Z). We will denote

Fθ(R) as Fθ(Rθ) in the future.

There are also distinguished elements 1• ∈ R• and 1θ ∈ Rθ, the ring units.

We denote the element 1θ ⊗ g ∈ Fθ(Rθ)θ also by g.

Proposition 2.0.9. Let R be a Mackey ring and let M be a R-module. The map

f 7→ f•(1•) is an isomorphism HomR(R,M)
∼=−→ M• and the map h 7→ hθ(g) is an

isomorphism HomR(Fθ(Rθ),M)
∼=−→Mθ.

Proof. Routine.

We can present Fθ(Rθ) in several ways. One way is with Fθ(Rθ)θ = Rl
θ,

Fθ(Rθ)• = Rθ with t acting as cyclic permutation on Rl
θ, p∗ : (a0, . . . , al−1) 7→∑l−1

i=0 ai for a0, . . . , al−1 ∈ Rθ and p∗ : a 7→ (a, . . . , a) for a ∈ Rθ. In this

presentation, Fθ(Rθ) has the R-module structure where r(a0, . . . , al−1) =
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(ra0, (t
−1r)a1, (t

−2r)a2, . . . ) is the Rθ action on Fθ(Rθ)θ and Fθ(Rθ)• has the

induced R•-action since Rθ is an R•-module from the Mackey ring structure of

R.

We say that an R-module is free if it is a direct sum of copies of R and

Fθ(Rθ).

Proposition 2.0.10. [Rae19, Theorem 2.2.2] Free R-modules are projective. In

particular, R and Fθ(Rθ) are projective. [Rae19]

There is another presentation of Fθ(Rθ) which is more useful in our

calculations. Fθ(Rθ) : Rl
θ Rθ

p∗

t

p∗

Here, we view Fθ(Rθ)θ as the free

Rθ-module Rθ〈g, tg, . . . , tl−1g〉, where t acts by t(utig) = t(u)ti+1g, where u ∈ Rθ

and t(u) ∈ Rθ. We identify u ∈ Rθ = Fθ(Rθ)• with p∗(ug). We define p∗ as∑l−1
i=0 uit

ig 7→
∑l−1

i=0 t
l−i(ui)p∗(g) and p∗ as p∗(ug) 7→

∑l−1
i=0 t

i(u)tig. Here, Rθ acts

diagonally on Fθ(Rθ). We will temporarily call this Mackey functor Fθ(Rθ)
conc for

sake of convenience.

Proposition 2.0.11. Fθ(Rθ) ∼= Fθ(Rθ)
conc.

Proof. The isomorphism is f : Fθ(Rθ)θ → Fθ(Rθ)
conc
θ , (a0, . . . , al−1) 7→

∑l−1
i=0(tiai)t

ig

and u 7→ p∗(ug).

Definition 2.0.12. [Rae19] Let R be a commutative Mackey ring and M and N be

R-modules. The internal Hom object in the category of R-modules is HomR(M,N )

which is the Mackey functor

10



HomR(Fθ(R)�M,N ) HomR(M,N ).

p∗

t

p∗

The map t is induced by s�idM, where s is the map s : Fθ → Fθ, g 7→ tg. The map

p∗ is induced by r∗�idM, where r∗ is the map r∗ : R → Fθ(Rθ), 1• 7→ p∗(g). The

map p∗ is induced by r∗�idM, where r∗ is the map r∗ : Fθ(Rθ)→ R, g 7→ p∗(1•).

Definition 2.0.13. Let R be a Mackey ring and M and N be R-modules. The

internal Ext object in the category of R-modules is Ext∗R(M,N ) which is the

Mackey functor

ExtR(Fθ(R)�M,N ) ExtR(M,N )

Our main computational interest in this thesis is the above Ext object,

specifically Ext∗k[xθ](k, k)θ. It should be noted that Ext∗R(M,N )• = Ext∗R(M,N )

for a Mackey ring R and R-modules M and N .

Finally, it will be important for us to understand box products of free

R-modules. Since F•(R) is the unit for �R, we only need to determine

Fθ(Rθ)�RFθ(Rθ). This is R�Fθ(Z)�Fθ(Z), and so is determined by the following

result.

Lemma 2.0.14. [Rae19] Let Cl be a finite cyclic group of prime order and let

Fθ(Z) be the free Mackey functor on the θ-side in the category of Mackey functors

over Cl. Then Fθ(Z)�Fθ(Z) ∼=
⊕l

i=1Fθ(Z), where the map is gi 7→ g�tig.

This last lemma is useful in our computations of Ext∗k[xθ](k, k)θ.
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CHAPTER III

CONSTRUCTION AND PROPERTIES OF POLYNOMIAL MACKEY RINGS.

We will be working in the category of Mackey functors over the group Cl,

the cyclic group of order l for a fixed prime l. Moreover, we will fix a field k of

characteristic q.

Definition 3.0.1. For l = 2, define k[xθ] to be the Mackey functor with

k[xθ]θ = k[x, y], k[xθ]• = k[a0, a1, . . . , b1, b2, . . . ]/I

where I is the ideal (anam − a0an+m, anbm − 2am+n, bnbm − 2bn+m). The ring maps t

and p∗ are defined by

t : x 7→ y, p∗ : an 7→ (x+ y)(xy)n, p∗ : bn 7→ 2(xy)n.

The map p∗ is a k-linear map defined by the relation p∗ ◦ t = p∗ and

p∗ : x
n+1yn 7→ an, p∗ : x

nyn 7→ bn.

The value of p∗ is extended to other monomials by induction

p∗(x
n+myn) = a0p∗(x

n+m−1yn)− p∗(xn+m−1yn+1)

and similarly for p∗(x
nyn+m).

For l = 2 we give a very concrete definition of k[xθ], but for char(k) 6= l we

give a less explicit definition.
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Definition 3.0.2. For l > 2 and char(k) 6= l, define k[xθ] to be the Mackey functor

with

k[xθ]θ = k[x0, . . . , xl−1] k[xθ]• = k[x0, . . . , xl−1]Cl .

The ring maps t and p∗ are defined by

t : xi 7→ xi+1 mod (l), p∗ : f(x0, . . . , xl−1) 7→
l−1∑
i=0

tif(x0, . . . , xl−1).

The map p∗ is defined by f(x0, . . . , xl−1) 7→ 1
l

∑l−1
i=0 t

if(x0, . . . , xl−1), which is well

defined because
∑l−1

i=0 t
if(x0, . . . , xl−1) is Cl-invariant.

We will prove in this section that when l = 2 and char(k) 6= 2 these definitions

agree. For the rest of this chapter we will assume l = 2. We will return to the case

l > 2 in the next chapter.

Proposition 3.0.3. k[xθ] is a Mackey algebra over k.

Proof. We begin by checking that k[xθ] is a well-defined Mackey ring. Note that

the relations p∗ ◦ t = p∗ and t ◦ p∗ = p∗ follow by definition of p∗ and p∗. We begin

by showing that p∗ ◦ p∗ = id + t.

We show that p∗ ◦ p∗ = id + t by induction. First, note that

p∗(p∗(x
nyn)) = p∗(bn) = 2xnyn = xnyn + xnyn = (id + t)(xnyn), and

p∗(p∗(x
n+1yn)) = p∗(an) = xn+1yn + xnyn+1 = (id + t)(xn+1yn).

13



Now, suppose that p∗(p∗(x
n+iyn)) = (id + t)(xn+iyn) for all i ≤ m. Then

p∗(p∗(x
n+m+1yn)) = a0p∗(x

n+myn)− p∗(xn+myn+1)

= p∗(p∗(x
n+myn)p∗(x)− p∗(xn+myn+1))

= p∗(p∗(x
n+myn))p∗(p∗(x))− p∗(p∗(xn+myn+1))

= (id + t)(xn+myn)(id + t)(x)− (id + t)(xn+myn+1)

= (xn+myn + xnyn+m)(x+ y)− (xn+myn+1 + xn+1yn+m)

= xn+m+1yn + xn+1yn+m + xn+myn+1 + xnyn+m+1

− (xn+myn+1 + xn+1yn+m)

= xn+m+1yn + xnyn+m+1 = (id + t)(xn+m+1yn)

as desired. By induction, p∗ ◦ p∗ = id + t on all of k[x, y].

Next, we need to show that p∗(u)v = p∗(up
∗(v)) for any u ∈ k[x, y] and

v ∈ k[a0, . . . , b1, . . . ]/I. We will first show that this relation holds when u is any

monomial xn+kyn ∈ k[x, y] and v is a generator an or bn in k[a0, . . . , b1, . . . ]/I.

14



We check the four following base cases for monomials xn+1yn and xnyn:

Case 1 :

p∗(x
n+1ynp∗(am)) = p∗(x

n+1xn(xm+1ym + xmym+1))

= p∗(x
n+m+2yn+m + xn+m+1yn+m+1)

= p∗(x
n+m+1yn+m)p∗(x)− p∗(xn+m+1yn+m+1)

+ p∗(x
n+m+1yn+m+1)

= an+ma0 = anam = p∗(x
n+1yn)am.

Case 2 :

p∗(x
n+1ynp∗(bm)) = p∗(x

n+1yn(2xmym)) = 2p∗(x
n+m+1yn+m)

= 2an+m = anbm = p∗(x
n+1yn)bm.

Case 3 :

p∗(x
nynp∗(am)) = p∗(x

nyn(xm+1ym + xmym+1))

= p∗(x
n+m+1yn+m + xn+myn+m+1)

= p∗((id + t)(xn+m+1yn+m)) = p∗(2x
n+m+1yn+m)

= 2p∗(x
n+m+1xn+m) = 2an+m = bnam

= p∗(x
nyn)am.
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Case 4 :

p∗(x
nynp∗(bm)) = p∗(x

nyn(2xmym))

= 2p∗(x
n+myn+m) = 2bn+m = bnbm

= p∗(x
nyn)bm.

Next, we show that p∗(x
n+myn)a0 = p∗(x

n+mynp∗(a0)) by the definition

p∗(x
n+myn) = p∗(x

n+m−1yn)a0 − p∗(xn+m−1yn+1):

p∗(x
n+myn)a0 = p∗(x

n+m+1yn) + p∗(x
n+myn+1) = p∗(x

n+myn(x+ y))

= p∗(x
n+mynp∗(a0)).

Therefore, since p∗ ◦ t = p∗ and p∗ is k-linear by definition, we have p∗(u)a0 =

p∗(up
∗(a0)) for any u ∈ Rθ.

Now, we want to show that p∗(u)c = p∗(up
∗(c)) for c = ai, bi. To do so,

we induct on m. Let c be any of the generators aj or bj for k[xθ]•. Suppose that

p∗(x
n+iyn)c = p∗(x

n+iynp∗(c)) for all i < m. Then we have

p∗(x
n+myn)c = (p∗(x

n+m−1yn)a0 − p∗(xn+m−1yn+1))c

= p∗(x
n+m−1ynp∗(c))a0 − p∗(xn+m−1yn+1p∗(c))

= p∗(x
n+m−1ynp∗(c)p∗(a0))− p∗(xn+m−1mn+1p∗(c))

= p∗(x
n+m−1yn(x+ y)p∗(c))− p∗(xn+m−1mn+1p∗(c))

= p∗(x
n+mynp∗(c) + xn+m−1yn+1p∗(c))− p∗(xn+m−1yn+1p∗(c))

= p∗(x
n+mynp∗(c)).
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Therefore, by induction we have p∗(x
n+myn)c = p∗(x

n+mynp∗(c)) for all n, m, and

where c is any of the generators aj or bj.

Next, we show that p∗(x
n+myn)c = p∗(x

n+mynp∗(c)) where c is aiaj, aibj,

or bibj. We can use the relations aibj = 2ai+j and bibj = 2bi+j to reduce to the

previous case where c is a single generator and the case c = aiaj is as follows:

p∗(x
n+myn)aiaj = p∗(x

n+mynp∗(ai))aj = p∗(x
n+myn(x+ y)xiyi)aj

= p∗(x
i+n+m+1yi+n + xi+n+myi+n+1)aj

= p∗(x
i+n+m+1yi+n)aj + p∗(x

i+n+myi+n+1)aj

= p∗(x
i+n+m+1yi+np∗(aj)) + p∗(x

i+n+myi+n+1p∗(aj))

= p∗((x
i+n+m+1yi+n + xi+n+myi+n)p∗(aj))

= p∗(x
n+myn(x+ y)xiyip∗(aj)) = p∗(x

n+mynp∗(ai)p
∗(aj))

= p∗(x
n+mynp∗(aiaj)).

Since p∗(x
n+myn)c = p∗(x

n+mynp∗(c)) for any n, m, and any product c = aiaj, aibj,

or bibj, then the relation p∗(x
n+myn)c = p∗(x

n+mynp∗(c)) holds for any monomial

c by induction. Since p∗ ◦ t = p∗ and p∗ is a k-linear map we can conclude that

p∗(v)u = p∗(vp
∗(u)) for any v ∈ Rθ and any u ∈ R•.

These relations show that k[xθ] is a well-defined Mackey ring. That k[xθ] is a

Mackey algebra over k follows from the map k → k[xθ].
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Proposition 3.0.4. Let G be a commutative Mackey algebra over k and z ∈ Gθ.

Then there is a unique map of Mackey algebras f : k[xθ]→ G such that fθ : x 7→ z.

Proof. By the universal property of k-algebras there is a unique map of k-algebras

fθ : k[x, y]→ Gθ such that x 7→ z and y 7→ tz. Now, define f• : k[xθ]• → G• by

f• : an 7→ p∗(z
n+1tzn), f• : bn 7→ p∗(z

ntzn).

It remains to check that f• is well-defined and that all the squares commute.

To show that f• is well-defined we must show that f• : I → 0. In particular,

we must show that

f•(an)f•(am) = f•(an+m)f•(a0),

f•(an)f•(bm) = 2f•(an+m), and

f•(bn)f•(bm) = 2f•(bn+m).

We begin by showing the first relation holds.

f•(an)f•(am) = p∗(z
n+1tzn)p∗(z

m+1tzm)

= p∗(z
n+1tznp∗(zm+1tzm)) = p∗(z

n+1tzn(zm+1tzm + zmtzm+1))

= p∗(z
n+m+2tzn+m + zn+m+1tzn+m+1)

= p∗(z
n+m+1tzn+m)p∗(z)− p∗(zn+m+1tzn+m+1) + p∗(z

n+m+1tzn+m+1)

= p∗(z
n+m+1tzn+m)p∗(z) = f•(an+m)f•(a0).
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Next, we show that the second relation holds.

f•(an)f•(bm) = p∗(z
n+1tzn)p∗(z

mtzm)

= p∗(z
n+1tznp∗(p∗(z

mtzm)) = p∗(z
n+1tzn(2zmtzm))

= 2p∗(z
n+m+1tzn+m) = 2f•(an+m).

Finally, we show that the third relation holds.

f•(bn)f•(bm) = p∗(z
ntzn)p∗(z

mtzm)

= p∗(z
ntznp∗(p∗(z

mtzm))) = p∗(z
ntzn(2zmtzm))

= 2p∗(z
n+mtzn+m) = 2f•(bn+m).

Therefore, f• is a well-defined map of rings.

Next, we wish to show that the pair fθ, f• constitute a well-defined map of

k-Mackey algebras. This requires checking that the appropriate squares commute,

namely that

p∗ ◦ fθ = f• ◦ p∗,

fθ ◦ p∗ = p∗ ◦ f•,

t ◦ fθ = fθ ◦ t.

The latter two relations are all between ring maps, so it suffices to check that these

hold on the ring generators. In particular, we see that t ◦ fθ = fθ ◦ t because

t(fθ(x)) = tz = fθ(y) = t(fθ(y)) = t(tz) = z = fθ(x) = fθ(t(y)).
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Similarly, we see that fθ ◦ p∗ = p∗ ◦ f• because

fθ(p
∗(an)) = fθ(x

n+1yn + xnyn+1) = zn+1tzn + zntzn+1

= (id + t)(zn+1tzn) = p∗(p∗(z
n+1tzn)) = p∗(f•(an)),

and

fθ(p
∗(bn)) = fθ(2x

nyn) = 2zntzn

= (id + t)(zntzn) = p∗(p∗(z
ntzn)) = p∗(f•(bn)).

We will next show that the last relation holds by induction. In particular, we

will induct on m for monomials xn+myn. First, note that by definition we have

f•(p∗(x
nyn)) = f•(bn) = p∗(z

ntzn) = p∗(fθ(x
nyn)),

f•(p∗(x
n+1yn)) = f•(an) = p∗(z

n+1tzn) = p∗(fθ(x
n+1yn)).
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Now, suppose that f• ◦ p∗ = p∗ ◦ fθ for all monomials of the form xn+iyn where

i < m. Then we have

f•(p∗(x
n+myn)) = f•(p∗(x

n+m−1yn)p∗(x)− p∗(xn+m−1yn+1))

= f•(p∗(x
n+m−1yn))f•(p∗(x))− f•(p∗(xn+m−1yn+1))

= p∗(fθ(x
n+m−1yn))p∗(fθ(x))− p∗(fθ(xn+m−1yn+1))

= p∗(fθ(x
n+m−1yn)p∗p∗(fθ(x))− fθ(xn+m−1yn+1))

= p∗(fθ(x
n+m−1yn)(fθ(x) + tfθ(x))− fθ(xn+m−1yn+1)

= p∗(fθ(x
n+myn + xn+m−1yn+1 − xn+m−1yn+1))

= p∗(fθ(x
n+myn))

as desired. Therefore, we are guaranteed a map of k-Mackey algebras sending x 7→

z for any z ∈ Gθ. It remains to see that f is uniquely determined by the choice of z.

But this is clear from the definition of k[xθ].

Proposition 3.0.5. If 2 is a unit in k, then k[xθ]• ∼= k[z, w].

Proof. We will show the map of rings f : k[xθ]• → k[z, w],

an 7→
zwn

2n
, bn 7→

wn

2n−1

is an isomorphism. The above formulas give a map k[a, b] → k[z, w] and we need to

check it sends the ideal I := (anam − an+ma0, anbm − 2an+m, bnbm − 2bn+m) to 0. It
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suffices to check this on the generators an, bm, which we do below:

1. f̂(anam − an+ma0) =

(
zwn

2n

)(
zwm

2m

)
−
(
zwm+n

2m+n

)
z

=
z2wm+n

2m+n
− z2wm+n

2m+n
= 0.

2. f̂(anbm − 2an+m) =

(
zwn

2n

)(
wm

2m−1

)
− 2

(
zwm+n

2m+n

)
=
zwm+n

2m+n−1
− 2zwm+n

2m+n
= 0.

3. f̂(bnbm − 2bm+n) =

(
wn

2n−1

)(
wm

2m−1

)
− 2

(
wm+n

2m+n−1

)
=

wm+n

2m+n−2
− 2wm+n

2m+n−1
= 0.

Therefore, f̂ sends I → 0, so f̂ induces the map f described above.

Now, let ι : k[z, w] → k[xθ]• be the map z 7→ a0 and w 7→ b1. We will now

show that f and ι are inverses. It is trivial that f ◦ ι = id, and

(ι ◦ f)(an) = ι

(
zwn

2n

)
=
a0b

n
1

2n
= an

(ι ◦ f)(bn) = ι

(
wn

2n−1

)
=

bn1
2n−1

= bn.

Therefore, ι ◦ f = id and f ◦ ι = id, so f is an isomorphism of rings.

Corollary 3.0.6. When l = 2 and char(k) 6= 2, the definitions of 3.0.1 and 3.0.2

agree.

Proposition 3.0.7. Let A = k[a0, a1, . . . ]/(anam + a0an+m) be the k-subalgebra

of k[xθ]• generated by the ai, and B = k〈bm|m ≥ 1〉. Then k[xθ]• = A ⊕ B as a

k[a0]-module. Also, A is a free k[a0]-module on the basis {1, ai|i > 0} and
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B ∼= k[a0]/(a0)〈bm|m > 0〉.

Proof. We can take the set {an0am, bi|n ≥ 0,m, i > 0} as a k-basis for k[xθ]•, derived

from the monomials in the an and the bm using the relations anam = a0an+m and

anbm = 0. The result follows routinely from this.

Proposition 3.0.8. k[xθ] is generated by the elements xnyn and xn+1yn as a

k[a0]-module, and thus also as an k[xθ]•-module.

Proof. It suffices to show that every monomial in k[x, y] is in the k[a0]-span of

{xnyn, xn+1yn|n ≥ 0}. We will prove this by induction. First, notice that

xn+2yn = xn+1yn(x+ y)− xn+1yn+1 = xn+1ynp∗(a0)− xn+1yn+1

and for m ≥ 2

xn+myn = xn+m−1yn(x+ y)− xn+m−1yn+1 = xn+m−1ynp∗(a0)− x(n+1)+(m−2)yn+1.

Therefore, by induction on m we deduce that all monomials of the form xn+myn are

in the k[a0]-span of {xn+1yn, xnyy|n ≥ 0}. We also have xnyn+1 = xnyn(x + y) −

xn+1yn = xnynp∗(a0) − xn+1yn, so for all n ≥ 0 we have xnyn+1 is in the k[a0]-span

of {xm+1ym, xmym|m ≥ 0}. A similar argument to above shows that all xnyn+m are

also in the k[a0]-span of {xn+1yn, xnyn|n ≥ 0}.

Lemma 3.0.9. k[xθ]θ is free as a k[a0]-module via p∗, on the basis

{xn+1yn, xnyn | n ≥ 0}.
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Proof. Note that this is indeed a generating set for k[xθ]θ even over k[a0], but it

remains to find linear independence. It is a classical result that k[x, y] is a free

k[x + y, xy]-module with the basis {1, x}. Furthermore, since k[x + y, xy] ∼=

k[x+ y][xy] as k-algebras, then k[x+ y, xy] = k[x+ y]〈1, (xy)n〉 as k[x+ y]-modules.

Therefore, k[xθ]θ is free as a k[a0]-module over the basis {1(xy)n, x(xy)n}.

In this section we have expanded on the free commutative k-algebra generated

by one element on the θ-side. For good measure, we point out that one can also

consider the free commutative k-algebra generated by one element on the •-side.

But this is much simpler:

Proposition 3.0.10. Let k[x•] be the Mackey algebra over k with

k[x•]θ = k[x•]• = k[x]

and maps

t = p∗ = idk[x], p∗ = 2.

Let G be a k-algebra and z ∈ G•. Then there is a unique map of k-algebras

f : k[x•]→ G such that f•(x) = z.

Proof. Routine.
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CHAPTER IV

K[Xθ]-MODULES WHEN L−1 ∈ K

We begin this section by fixing a prime order cyclic group Cl and a field k

with char(k) 6= l. Recall the definition of k[xθ] from Definition 3.0.2. We will

now investigate k[xθ] and its modules in this setting. Under the assumption that

l is invertible in k, it turns out that k[xθ] is a nicely behaved object essentially

determined by everything on the θ-side. We will prove a result generalizing this

to more general Mackey k-algebras with l−1 ∈ k which tells us that k[xθ]-modules

are determined by their underlying k[xθ]θ-modules along with the action of Cl.

Lemma 4.0.1. Let R be a Mackey k-algebra and M be an R-module. Let

j : MCl
θ →Mθ be the inclusion map. The maps

(1/l)p∗ ◦ j : MCl
θ →M• and p̃∗ : M• →MCl

θ

are inverse R•-module maps, where j ◦ p̃∗ = p∗.

Proof. First, note that (1/l)p∗(p∗(z)) = z for all z ∈MCl
θ . This is because

(1/l)p∗(p∗(z)) = (1/l)
(∑

tn
)

(z) = (1/l)
∑
Cl

z = z,

so p̃∗ ◦ (1/l)p∗ ◦ j = idMCl
θ

. Finally, since p∗ ◦ p∗ = lidM• and im p∗ ⊂ MCl
θ

then p∗ ◦ j ◦ p̃∗ = lidM• as well.
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Corollary 4.0.2. If M is a k-module then M is isomorphic to the k-module

Mθ MCl
θ .

Note that Proposition 3.0.5 is a special case of Lemma 4.0.1 for l = 2.

Definition 4.0.3. Let R be a commutative k-algebra with an action of Cl on R.

Let R[Cl]tw be the ring which is R〈Cl〉 as an R-module and

t

(∑
Cl

ait
i

)
=
∑
Cl

t(ai)t
i+1

for a generator t ∈ Cl. We call R[Cl]tw the “twisted group ring”.

Note that an R[Cl]tw-module M is the same as an R-module M together with

an additive map t : M → M such that tl = idM and t(rm) = t(r)t(m) for all r ∈ R

and m ∈M .

Remark 4.0.4. For t ∈ Cl and r ∈ Rθ we have the basic relation t · r = t(r) · t in

(R[Cl]tw)θ.

Theorem 4.0.5. Let R be a k-algebra as Mackey functors over Cl, where l is a

prime and k is a field with l−1 ∈ k. There is an equivalence of categories between

R-Mod and Rθ[Cl]tw-mod.

Proof. Let R be a k Mackey algebra. Let U be the forgetful functor from R-mod to

R[Cl]tw-Mod sending M to Mθ and a map f to fθ, and let G be the functor from

R[Cl]tw-Mod to R-mod such that G : M 7→ M, where

Mθ = M, M• = MCl ,
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p∗ =
∑

tm, and p∗ = i is the canonical inclusion map.

Mθ inherits an action of Cl by nature of being a R[Cl]tw-module, via the action of

t ∈ R[Cl]tw on Mθ. Let G(f) be the map of R Mackey modules with G(f)θ = f and

G(f)• = f̃ , where f̃ is the unique map f̃ : MCl → NCl , y 7→ f(y). Note that this is

well-defined since if y ∈ MCl then ty = y for all t ∈ Cl, hence tf(y) = f(ty) = f(y),

so f(MCl) ⊆ NCl . Since f is a map of Rθ[Cl]tw-modules, we have f(rx) = rf(x)

for any x ∈ Mθ and any r ∈ Rθ and f(tn(x)) = tnf(x), hence G(f)θ is a map of

Rθ-modules. Since Rθ is also an R•-module, this means that f , and hence f̃ , is also

a map of R•-modules. Therefore, G(f) is a map of R-modules.

To show that U and G constitute an equivalence of categories we need to find

a unit and counit, namely natural isomorphisms ε : UG → IdR−Mod and η : GU ←

IdR[Cl]tw−Mod. We can take ε to be the identity.

Next, consider the map η = (ηM) where ηM is the map of Mackey R modules

with ηM,θ = idMθ
and ηM,• = p∗M. This is well-defined since im p∗ ⊆ MCl , so

this makes sense. We next need to see that ηM is a map of R-modules. It suffices

to show that ηM is a map of Mackey functors such that ηθ is a map of Rθ-modules

and η• is a map of R•-modules. We can see that ηM is a map of Mackey functors

by inspection and ηθ is a map of Rθ-modules and η• is a map of R• modules

because M is an R-module.

Finally, since iNClθ
is injective and hence a monomorphism, we can conclude

that

ηN ,• ◦ f• = p̃∗N ◦ f• = G(fθ) ◦ p̃∗M = G(fθ) ◦ ηM,•.
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Therefore, η is natural. Moreover, both ηN ,θ and ηN ,• are isomorphisms (ηN ,•

is an isomorphism since p∗M surjects onto its image and is injective since p∗ ◦ p∗ =

l · idM• is an isomorphism), so each ηM is an isomorphism and thus η is a natural

isomorphism. Therefore, G and U constitute an equivalence of categories.

Applying the above results to k[xθ] leads us to want to understand

k[xθ]θ[Cl]tw. The following result calculates this ring:

Proposition 4.0.6. The ring map

(k[xθ])θ[Cl]tw ← k〈x, t〉/(tl = 1, x(tnxt−n) = (tnxt−n)x)0≤n≤l−1

defined by x 7→ x1, t 7→ t, is an isomorphism. Furthermore, (k[xθ])θ[Cl]tw ∼=

k[x1, . . . , xl]〈1, t, . . . , tl−1〉 as a k[x1, . . . , xl]-module.

Proof. This can be seen by checking the vector space isomorphism.

Let G : Rθ[Cl]tw − Mod → R − Mod be the functor defined in the proof of

Theorem 4.0.5. Recall G(M)θ = M and G(M)• = MCl .

Corollary 4.0.7. Let R be a Mackey k-algebra and let M and N be Rθ[Cl]tw-

modules. Then G(M)�RG(N) ∼= G(M ⊗Rθ N).

Proof. By Theorem 4.0.5 it is enough to check the isomorphism after applying U to

both sides, and then it is obvious.

Koszul Complex for Mackey functors over Cl

We now use the above machinery to investigate the homological algebra of the

Mackey ring k[xθ]. It turns out the there is a Mackey functor analog of the Koszul
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complex for k as a k[x1, . . . , xl]-module which is exact as well. Constructing this

relies on the equivalence of categories above.

Proposition 4.1.1. k[x1, . . . , xl] is a projective k[xθ]θ[Cl]tw-module, where rti · a =

rti(a) for r, a ∈ k[x1, . . . , xl].

Proof. First, this definition of k[x1, . . . , xl] as a k[xθ]θ[Cl]tw-module is well-defined.

To see this, notice that by construction tl = idk[x1,...,xl], so

tl · a = tl(a) = idk[x1,...,xl]a = a = 1 · a.

Moreover, for r, a, b ∈ k[x1, . . . , xl] we have

(rti) · (ab) = rti(ab) = rti(a)ti(b) = rti(a)(ti · b) = (rti(a)ti) · b = (rti · a) · b,

so k[x1, . . . , xl] is a well-defined k[xθ]θ[Cl]tw.

Now, consider the k[xθ]θ[Cl]tw-module map f : k[xθ]θ[Cl]tw → k[x1, . . . , xl],

where f : 1 7→ 1 and t 7→ 1 and the k[x1, . . . , xl]-module map g : k[x1, . . . , xl] →

k[xθ]θ[Cl]tw, where g : a 7→ 1
l

∑l−1
i=0 at

i. Note that g is also a k[xθ]θ[Cl]tw-module

map, since

g((at) · b) = g(at(b)) =
1

l

l−1∑
i=0

at(b)ti = at

(
1

l

l−1∑
i=0

ti−1

)
= atg(b)

for any a, b ∈ k[x1, . . . , xl]. Moreover, g is a splitting for f , since

(f ◦ g)(1) = f

(
1

l

l−1∑
i=0

ti

)
=

1

l

l−1∑
i=0

1 = 1.

Therefore, k[x1, . . . , xl] is a summand of k[xθ]θ[Cl]tw and hence is projective.
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Proposition 4.1.2. Let N := k[x1, . . . , xl]〈e1, . . . , el〉 be the free k[x1, . . . , xl]-

module on the basis e1, . . . , el. Let

P• := k[x1, . . . , xl]→
l−1∧

N → · · · →
2∧
N →

1∧
N → k[x1, . . . , xl]

ε−→ k

be the usual Koszul complex for k[x1, . . . , xl] with differential

d : ei1∧· · ·∧ein 7→
∑

j(−1)j+1xijei1∧· · ·∧ êij ∧· · ·∧ein. This is also a projective

resolution of k[xθ]θ[Cl]tw-modules, where the Cl action is given by t(αei1 ∧ . . . ein) =

t(α)ei1+1 ∧ · · · ∧ ein+1 for t ∈ Cl, α ∈ k[x1, . . . , xl] and ei+l := ei.

Proof. By standard theory, the Koszul complex resolving k as a k[x1, . . . , xl]-

module is exact. The following calculation shows that d(tω) = td(ω).

d(t(ei1 ∧ · · · ∧ ein)) = d(ei1+1 ∧ · · · ∧ eil+1)

=
∑
j

(−1)jxij+1ei1+1 ∧ · · · ∧ êij+1 ∧ · · · ∧ ein+1

=
∑
j

(−1)jt(xij)t(ei1) ∧ · · · ∧ t(êij) ∧ · · · ∧ t(ein)

= t

(∑
j

(−1)jxijei1 ∧ · · · ∧ êij ∧ · · · ∧ ein

)
= td(ei1 ∧ · · · ∧ ein).

It remains to see that the modules in the resolution are projective. For 0 <

n < l, the action of Cl on n-element subsets of {1, . . . , l} is free (since l is prime).

Let S = {S1, . . . , Sl} be a collection of n-element subsets of {1, . . . , l} which is fixed

under the action of Cl. Denote eSi := ei1 ∧ · · · ∧ ein , where Si = {i1, . . . , in}, with
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i1 < i2 < · · · < in. Then we have that k[x1, . . . , xl]〈eS1 , ..., eSl〉 is a direct summand

of
∧nN as a k[x1, . . . , xl]-module. The other summands correspond to different

choices of S. For each choice of S, k[x1, . . . , xl]〈eS1 , . . . , eSl〉 is also closed under the

Cl action by construction, so it is moreover a k[xθ]θ[Cl]tw-submodule. In fact, it

is a free k[xθ]θ[Cl]tw-module of rank 1 and hence
∧nN ∼=

⊕
( ln)/l

k[xθ]θ[Cl]tw as a

k[xθ]θ[Cl]tw-module for 0 < n < l. By 4.1.1, k[x1, . . . , xl] is a projective k[xθ]θ[Cl]tw-

module as well. Therefore, the sequence P• is also an exact sequence of projective

k[xθ][Cl]tw-modules.

Proposition 4.1.3. Let G be the functor (k[xθ])θ[Cl]tw − Mod → k[xθ] − Mod

in Theorem 4.0.5. Then G(k) ∼= k, G(k[xθ][Cl]tw) ∼= Fθ(k[x1, . . . , xl]), and

G(k[x1, . . . , xl]) ∼= k[xθ].

Proof. The isomorphisms G(k) ∼= k, G(k[xθ][Cl]tw) ∼= Fθ(k[x1, . . . , xl]), and

G(k[x1, . . . , xl]) ∼= k[xθ] follow from the fact that kθ = k where t = id,

k[xθ]θ = k[x1, . . . , xl] where t is the map xi 7→ xi+1, and

Fθ(k[x1, . . . , xl]) ∼= k[x1, . . . , xl]〈g, tg, . . . , tl−1g〉 where t is the map tng 7→

tn+1g.

Theorem 4.1.4. Ext∗k[xθ](k, k)θ is isomorphic to the exterior k-algebra on l

generators.

Proof. Let P• be the resolution of k as a k[xθ][Cl]-module from Proposition 4.1.2

(above). Then P• is a projective resolution of k as a k[xθ][Cl]-module, so we have
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Ext∗k[xθ](k, k)θ = H∗(Homk[xθ](Fθ(k[xθ])�k[xθ]G(P•), k))

∼= H∗(Homk[xθ](G(k[xθ][Cl]tw)�k[xθ]G(P•), k))

∼= H∗(Homk[xθ](G(k[xθ][Cl]tw ⊗k[x1,...,xl] P•), k))

∼= H∗(Homk[xθ][Cl]tw(k[xθ][Cl]tw ⊗k[x1,...,xl] P•, k))

∼= H∗(Homk[x1,...,xl](P•, k)) ∼= Ext∗k[x1,...,xl]
(k, k).

Finally, by a classical result Ext∗k[x1,...,xl]
(k, k) is an exterior k-algebra on l

generators, giving the desired result.

Remark 4.1.5.

Extik[xθ](k, k)• = H i(Homk[xθ](G(P•), k)

= H i(Hom(k[xθ])θ[Cl]tw(P•, k))

∼= Hom(k[xθ])θ[Cl]tw

(
i∧
N, k

)
=


k i = 0, 1, l − 1, l⊕

(li)/l
k 2 ≤ i ≤ l − 2

The multiplication structure for Ext∗(k[xθ])θ[Cl]tw
(k, k)• is complicated.
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CHAPTER V

K[Xθ]-MODULES OVER C2 WHEN char(K) = 2

We now begin analyzing k[xθ]-modules over the group C2 when char(k) = 2.

Unlike the case when l−1 ∈ k, the case char(k) = l is much more difficult. We will

explore this case for l = char(k) = 2. In this section, we will exhibit a short exact

sequence of k[xθ]-modules which we stitch together to form a projective resolution

of k. This in turn gives us a construction for Ext∗R(k, k), the internal Ext object,

from which we compute the additive and multiplicative structures.

One of the surprises in this case is that we need an infinite resolution of k,

though this resolution turns out to have a periodicity to it. We build this resolution

by finding a four-term exact sequence ending in a submodule of Fθ(k[xθ]). This

submodule appears naturally as the kernel of a Koszul-like complex. We find that

Ext∗k[xθ](k, k)θ is nonzero in only finitely many degrees, though, while Ext∗k[xθ](k, k)•

is nonzero in infintely many degrees.

From now on, we will refer to k[xθ] as R.

Constructing the free resolution of k

Definition 5.1.1. Let M be the R-submodule of Fθ(Rθ) given by

Mθ = Rθ〈g + tg〉

M• = k〈ar0p∗(xnyng)〉n,r≥0
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The map p∗ is defined by p∗ : p∗(x
nyng) 7→ xnyn(g + tg). The map p∗ is defined by

p∗ : x
nyn(g + tg) 7→ 0 and p∗ : x

n+myn(g + tg) 7→ am0 p∗(x
nyng). The map t is defined

by t : xnym(g + tg) 7→ xmyn(g + tg).

Proposition 5.1.2. M is a well-defined R-submodule of Fθ(Rθ).

Proof. It suffices to show that M is closed under the maps p∗, p
∗, and t, since tM,

p∗,M, and p∗M are restrictions of the corresponding maps for Fθ(Rθ), and that

M• and Mθ are well-defined R• and Rθ-submodules of Fθ(Rθ)• and Fθ(Rθ)θ,

respectively. These are all routine verifications.

Lemma 5.1.3. 0 → M α−→ Fθ(Rθ)
β−→ Fθ(Rθ) is exact, where α is the inclusion

map and β is determined by βθ : g 7→ g + tg.

Proof. First, notice that

βθ(g + tg) = (g + tg) + t(g + tg) = 0,

so βθ ◦ αθ = 0. Also notice that

β•(p∗(x
nyng)) = p∗(x

nynβθ(g)) = p∗(x
nyn(g + tg)) = p∗(x

nyng + xnyntg)

= p∗(x
nyng + t(xnyng)) = p∗(2x

nyng) = 0,

so β• ◦ α• = 0 as well.
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It remains to find the kernel of β. First, notice that ker βθ = 〈g + tg〉 ⊆

im αθ. We wish to show that ker β• ⊆ im α•. Since Fθ(Rθ)• is spanned over R• by

elements p∗(x
nyng), p∗(x

n+1yng) for n ≥ 0 and we know that p∗(x
nyng) ∈ ker β•, it

suffices to show that elements in R•〈p∗(xn+1yng)〉 ∩ ker β• are zero.

To that end, first notice that

ai0amp∗(x
n+1yng) = ai0p∗(p

∗(am)xn+1yng) = ai0p∗((x+ y)xn+m+1yn+mg)

= ai0p∗(p
∗(a0)xn+m+1yn+mg) = ai+1

0 p∗(x
n+m+1yn+mg),

and the bi’s kill p∗(x
n+1yng), so we can write any arbitrary element of

R•〈p∗(xn+1yng)〉 ⊂ Fθ(Rθ)• as
∑

j cja
mj
0 p∗(x

nj+1ynjg) where each cj ∈ k.

Then we have

0 = β•

(∑
cja

mj
0 p∗(x

nj+1ynjg)
)

=
∑

cja
mj
0 p∗(x

nj+1ynj(g + tg))

=
∑

cja
mj
0 p∗(x

nj+1ynjg + t(xnj+1ynj tg))

=
∑

cja
mj
0 p∗(x

nj+1ynjg + ynj+1xnjg)

=
∑

cja
mj
0 p∗((x+ y)xnjynjg) =

∑
cja

mj
0 p∗(p

∗(anj)g)

=
∑

cja
mj
0 anjp∗(g).
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Therefore,
∑
cja

mj
0 anj = 0, and since the an are linearly independent over k[a0] we

can conclude that
∑

j|nj=n cja
mj
0 = 0 for each choice of n. Therefore,

∑
j

cja
mj
0 p∗(x

nj+1ynjg) =
∑
n

∑
j|nj=n

cja
mj
0 p∗(x

n+1yng) =
∑
n

 ∑
j|nj=n

cja
mj
0

 p∗(x
n+1yng)

=
∑
n

0p∗(x
n+1yng) = 0.

Therefore, ker β• ⊆ im α• and thus ker β = im α as desired.

Remark 5.1.4. Let Q be the cokernel of the inclusion ι : M→ Fθ(Rθ). The short

exact sequence

0→M→ Fθ(Rθ)
q−→ Q → 0

is not split.

Proof. Notice that both Mθ and Qθ are fixed by t. Therefore, any splitting would

imply that Fθ(Rθ) were also fixed by t, which is not the case.

Theorem 5.1.5. There is an exact sequence of R-modules:

0→
⊕
i≥1

M ⊕αi−−→
⊕
i≥1

Fθ(Rθ)
⊕βi−−→

⊕
i≥1

Fθ(Rθ)
γ−→
⊕
i≥0

R δ−→M→ 0.

The map αi : M→ Fθ(Rθ) is the inclusion map.

The map ⊕βi :
⊕

i≥1Fθ(Rθ)→
⊕

i≥1Fθ(Rθ) is defined by gi 7→ gi + tgi.
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The map γ :
⊕

i≥1Fθ(Rθ)→
⊕

i≥0R is defined by gi 7→ xiyi1θ,0 + 1θ,i.

The map δ :
⊕

i≥0R →M is defined by 1•,i 7→ p∗(x
iyig).

Proof. The exactness of the (α, β) spot follows from Lemma 5.1.3. We will now

show that ker γ = im ⊕ βi. To see that γθ ◦ ⊕βi,θ = 0, notice that

(γθ ◦ ⊕βi,θ)(gi) = γθ(gi + tgi) = xiyi10,θ + 1i,θ + t(xiyi10,θ + 1i,θ) = 0.

This shows that im ⊕ βi ⊆ ker γ.

Next, we will see that ker γ ⊆ im ⊕ βi. Let
∑

j ujgj + vjtgj ∈ ker γθ, where

uj, vj ∈ Rθ. Let πi :
⊕

i≥0Rθ → Rθ be the projection onto the ith summand. Then

we have

(uj + vj)1i,θ = πj

(
γθ

(∑
j

ujgj + vjtgj

))
= πi(0) = 0,

so uj + vj = 0 since the annihilator of 1i,θ is 0 for all i. Therefore,

∑
j

ujgj + vjtgj =
∑
j

ujgj + ujtgj =
∑
j

uj(gj + tgj) =
∑
j

βj,θ(ujgj)

= βθ

(∑
j

ujgj

)
∈ im βθ.

Therefore, ker γθ = (gi + tgi)i≥1 = im ⊕ βθ as desired.

Next, we investigate ker γ•. Let A = k[a0, a1, . . . ]/(anam + a0an+m)n,m be the

37



k-subalgebra of R• generated by the ai, and B = k〈bm|m > 0〉. Notice that R• =

A⊕B as a k[a0]-module. Furthermore, since

γ•(p∗(x
n+1yngi)) = p∗(x

n+i+1yn+i10,θ + xn+1yn1i,θ)

= an+i10,• + an1i,• ∈
⊕

A ⊂
⊕
R•

and

γ•(p∗(x
nyngi)) = p∗(x

n+iyn+i10,θ + xnyn1i,θ)

= bn+i10,• + bn1i,• ∈
⊕

B ⊂
⊕
R•

we can see that ker γ• = ker(⊕πA ◦ γ•) ⊕ ker(⊕πB ◦ γ•), where πA and πB are the

projections of k[a0]-modules R• → R•/B ∼= A and R• → R•/A ∼= B.

First, note that γ•(p∗(x
nyngi)) = bn+i10,• + bn1i,• 6= 0 for all n and i, so

p∗(x
nyngi) 6∈ ker γ• for all n and i. However,

γ•(amp∗(x
nyngi)) = ambn+i10,• + ambn1i,• = 010,• + 01i,• = 0,

so amp∗(x
nyngi) ∈ ker γ• for all n, m, and i. Since each bm annihilates

Fθ(Rθ)• = Rθ, it remains to determine which sums of the form
∑
ci,mp∗(x

nyngi) are

in ker γ•. Let πi,n be the k[a0]-module projection
⊕
R• → B, which picks out the

k[a0] component of
⊕
R• spanned by bn1i,•. Then we can see that

cn,ibn1i,• = πn,i

(
γ•

(∑
cn,ip∗(x

nyngi)
))

= πn,i(0) = 0
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therefore cn,i = 0 for each n and i. Thus
∑
cn,ip∗(x

nyngi) = 0. Therefore, ker(⊕πB ◦

γ•) = 〈amp∗(xnyngi)|m,n, i ≥ 0〉.

Next, we classify which elements are in ker(⊕πA ◦ γ•). Let∑
j cja

mj
0 p∗(x

nj+1ynjgij) ∈ ker γ• with cj ∈ k. Let $n,i be the k[a0]-module

projection
⊕
R• → k[a0]〈an1i,•〉. Then we have

∑
j|nj=n,ij=i

cja
mj
0 an1i,• = $n,i

(
γ•

(∑
cja

mj
0 p∗(x

nj+1ynjgij)
))

= $n,i(0) = 0,

so
∑

j|nj=n,ij=i cja
mj
0 = 0. Therefore,

∑
cja

mj
0 p∗(x

nj+1ynjgi) =
∑
n

∑
i

∑
j|nj=n,ij=i

cja
mj
0 p∗(x

n+1yngi)

=
∑
n

∑
i

 ∑
j|nj=n,ij=i

cja
mj
0

 p∗(x
n+1yngi)

=
∑
n

∑
i

0 = 0,

thus ker(⊕πA ◦ γ•) = 0. Thus ker γ• = R•〈amp∗(xnyngi)|i, n,m ≥ 0〉.

Lastly, we can see that R•〈amp∗(xnyngi)|i, n,m ≥ 0〉 ⊆ im β• since

a0p∗(x
nyngi) = p∗((x+ y)xnyngi) = p∗(x

n+1yngi + xnyn+1gi)

= p∗(x
n+1yngi + xn+1yntgi) = p∗(x

n+1yn(gi + tgi))

= ⊕βi,•(p∗(xn+1yngi)).
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Therefore, ker γ• = im β• and thus ker γ = im β as desired.

Finally, we will show that im γ = ker δ. First, notice that

(δθ ◦ γθ)(gi) = δθ(x
iyi10,θ + 1i,θ) = xiyiδθ(10,θ) + δθ(1i,θ)

= xiyip∗(p∗(g)) + p∗(p∗(x
iyig)) = xiyi(g + tg) + (xiyig + t(xiyig)) = 0.

Therefore, δ ◦ γ = 0.

It remains to see that ker δ ⊆ im γ. First, note that since bm annihilates

Fθ(Rθ)• and hence it annihilates M• as well, bm1i,• ∈ ker δ for all i,m. Let∑
j cja

nj
0 amj1ij ,• ∈ ker δ• where cj ∈ k. Then

0 = δ•
(
a
nj
0 amj1ij ,•

)
=
∑

cja
nj
0 amjp∗(x

ijyijg) =
∑

cja
nj
0 p∗(p

∗(amj)x
ijyijg)

=
∑

cja
nj
0 p∗((x+ y)xij+mjyij+mjg) =

∑
cja

nj
0 p∗(p

∗(aij+mj)g)

=
∑

cja
nj
0 aij+mjp∗(g).

Therefore, we conclude that
∑
cja

nj
0 aij+mj = 0. Since the elements an are linearly

independent over k[a0], this means that
∑

j|ij+mj=N cja
nj
0 = 0. Therefore,

∑
j

cja
nj
0 amj1ij ,• =

∑
N

∑
j|ij+mj=N

cja
nj
0 amj1N−ij ,• =

∑
N

 ∑
j|ij+mj=N

cja
nj
0

 aNp∗(g)

=
∑
N

0aNp∗(g) = 0.
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Therefore, ker δ• = 〈bm1n,•|n ≥ 0,m ≥ 1〉. Lastly, note that

γ•(p∗(gm+n) + p∗(x
mymgn))

= p∗(x
m+nym+n10,θ + 1m+n,θ) + p∗(x

m+nym+n10,θ + xmym1n,θ)

= bm1n,•,

so ker δ• ⊆ im γ• as desired.

We now finally show that ker δθ ⊆ im γθ. Let
∑
ci1i,θ ∈ ker δ. Then we have

0 = δ
(∑

ci1i,θ

)
=
∑

cix
iyi(g + tg) =

(∑
cix

iyi
)

(g + tg)

hence
∑
cix

iyi = 0. Therefore, we have

∑
ci1i,θ =

∑
ci1i,θ +

(∑
cix

iyi
)

10,θ =
∑

ci
(
1i,θ + xiyi10,θ

)
,

so ker δ ⊆ 〈1i,θ + xiyi10,θ〉. Importantly,

xiyi1θ,j + 1θ,i+j = xiyi1θ,j + xi+jxi+j1θ,0 + xi+jyi+j1θ,0 + 1θ,i+j

= xiyi(1θ,j + xjyj1θ,0) + xi+jyi+j1θ,0 + 1θ,i+j

= xiyiγθ(gj) + γθ(gi+j) = γθ(x
iyigj + gi+j).

Therefore, ker δθ = im γθ and thus ker δ = im γ as desired.
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Proposition 5.1.6. There is an infinite length free resolution P∗ → k of the form

P∗ = . . .
f4−→
⊕
i≥0

Fθ(Rθ)
f3−→
⊕
i≥0

R f2−→ Fθ(Rθ)
f1−→ Fθ(Rθ)

f0−→ R ε−→ k → 0.

For n ≥ 1 the modules in the resolution are

P3n =
⊕

i1,...,in−1≥1, in≥0

R,P3n+1 =
⊕

i1,...,in≥1

Fθ(Rθ), and P3n+2 =
⊕

i1,...,in≥1

Fθ(Rθ).

1. The map f0 : Fθ(Rθ) → R is defined by f0,θ : g 7→ x1θ and the map

f1 : Fθ(Rθ)→ Fθ(Rθ) is defined by f1,θ : g 7→ yg + xtg.

2. The map f2 :
⊕

i≥0R → Fθ(Rθ) is defined by f2,• : 1i,• 7→ p∗(x
iyig).

3. For n ≥ 1, the maps f3n :
⊕

i1,...,in≥1Fθ(Rθ)→
⊕

i1,...,in−1≥1,in≥0R are

f3n = ⊕γ, gI 7→ xinyin1(i1,...,in−1,0),θ + 1I,θ.

4. For n ≥ 1, the maps f3n+1 :
⊕

i1,...,in≥1Fθ(Rθ) →
⊕

i1,...,in≥1Fθ(Rθ) are

f3n+1 = ⊕β, gI 7→ gI + tgI .

5. For n ≥ 1, the maps f3k+2 :
⊕

i1,...,in−1≥1,in≥0R →
⊕

i1,...,in−1≥1Fθ(Rθ) are

f3n+2 = ⊕Iδ, 1I,• 7→ p∗(x
inying(i1,...,in−1)).

Proof. We begin by showing that ker ε = im f0. First, because

(εθ ◦ f0,θ)(g) = εθ(x1θ) = 0
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we see that im f0 ⊆ ker ε. Also, since f0,θ(g) = x and f0,θ(tg) = y then ker εθ =

(x, y) ⊆ im f0,θ. Furthermore, since

f0,•(p∗(x
nyng)) = p∗(x

nynf0,θ(g)) = p∗(x
nyn(x1θ)) = an

and

f0,•(p∗(x
n−1yng)) = p∗(x

n−1ynf0,θ(g)) = p∗(x
nyn1θ) = bn

then ker ε• = (an, bn) ⊆ im f0,•, thus ker ε = im f0.

Next, we will show that ker f0 = im f1. First, because

(f0,θ ◦ f1,θ)(g) = f0,θ(yg + xtg) = y(xg) + x(yg) = 0

we have im f1 ⊆ ker f0.

Let ug + vtg ∈ ker f0,θ for u, v ∈ Rθ. Then we have

0 = f0,θ(ug + vtg) = ux+ vy,

so ux = vy. Since (x, y) is a regular sequence in Rθ, this means there is some w ∈

Rθ such that xyw = ux = vy, and consequently ug + vtg = wyg + wxtg. Therefore,

f1,θ(wg) = w(yg + xtg) = ug + vtg,

so ker f0,θ ⊆ im f1,θ. Finally, we will show that ker f0,• ⊆ im f1,•. First, recall that

p∗(x
sj+1ysjg) = a0p∗(x

sjysjg) + p∗(x
sjysj+1g)

43



so we may write any element in ker f0,• as
∑

j cja
mj
0 p∗(x

njynjg) +

dja
rj
0 p∗(x

sjysj+1g) ∈ ker f0,• where cj, dj ∈ k. First, note that

f0,•(a0p∗(x
nyn+1g)) = a0(p∗(x

n+1yn+11θ)) = a0bn+1 = 0

and that

f1,•(p∗(x
n+1yng)) = p∗(x

n+1ynf1,θ(g)) = p∗(x
n+1yn(yg + xtg))

= p∗(x
n+1yn+1g + xn+2yntg) = p∗(x

n+1yn+1g) + p∗(t(x
n+2yntg))

= p∗(x
n+1yn+1g) + p∗(x

nyn+2g)

= p∗(x
n+1yn+1g) + a0p∗(x

nyn+1g) + p∗(x
n+1yn+1g)

= a0p∗(x
nyn+1g).

Therefore, we will now show that elements of the form
∑

j cja
mj
0 p∗(x

njynjg) +

djp∗(x
sjysj+1g) in ker f0,• are in im f1,•. To that end, notice that

0 = f0,•

(∑
j

cja
mj
0 p∗(x

njynjg) + djp∗(x
sjysj+1g)

)

=
∑
j

cja
mj
0 p∗(x

njynjf0,θ(g)) + djp∗(x
sjysj+1f0,θ(g))

=
∑
j

cja
mj
0 p∗(x

njynj(x1θ)) + djp∗(x
sjysj+1(x1θ))

=
∑
j

cja
mj
0 p∗(x

nj+1ynj1θ) + djp∗(x
sj+1ysj+11θ)

=
∑
j

cja
mj
0 anj + djbsj+1.
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This implies that
∑

j|nj=n cja
mj
0 = 0 for all n ≥ 0 and that

∑
j|sj=s djbs+1 = 0 for all

s ≥ 0. Therefore,

∑
j

cja
mj
0 p∗(x

njynjg) + djp∗(x
sjysj+1g)

=
∑
n

∑
j|nj=n

cja
mj
0 p∗(x

nyng) +
∑
s

∑
j|sj=s

djp∗(x
sys+1g)

=
∑
n

 ∑
j|nj=n

cja
mj
0

 p∗(x
nyng) +

∑
s

∑
j|sj=s

dj

 p∗(x
sys+1g)

=
∑
n

0p∗(x
nyng) +

∑
s

0p∗(x
sys+1g) = 0.

Therefore, ker f0,• = R•〈a0p∗(x
nyn+1)〉 ⊆ im f1,•, so ker f0 = im f1.

Now, we will show that ker f1 =M = im f2. First, note that

(f1,• ◦ f2,•)(1i,•) = f1,•(p∗(x
iyig)) = p∗(x

iyif1,θ(g)) = p∗(x
iyi(yg + xtg))

= p∗(x
iyi+1g + xi+1yitg) = p∗(x

iyi+1g + t(xi+1yitg))

= p∗(2x
iyi+ 1g) = 0,

so f1 ◦ f2 = 0. Next, let ug + vtg ∈ ker f1,θ for some u, v ∈ Rθ. Then we have

0 = f1,θ(ug + vtg) = u(yg + xtg) + vt(yg + xtg) = uyg + uxtg + vxtg + vyg,

so uy + vy = 0 giving u = v. Thus ug + vtg = u(g + tg) ∈ Mθ, so ker f1,θ = im f2,θ.

Lastly, we will show that ker f1,• ⊆ M•. To that end, from the computation

above we can see that f1,•(p∗(x
nyng)) = 0 so Rθ〈p∗(xnyng)〉 ⊆ ker f1,•. Let
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∑
j cja

mj
0 p∗(x

nj+1ynjg) ∈ ker f1,•. Then we have

0 = f1,•

(∑
j

cja
mj
0 p∗(x

nj+1ynjg)

)
=
∑
j

cja
mj
0 p∗(x

nj+1ynjf1,θ(g))

=
∑
j

cja
mj
0 p∗(x

nj+1ynj(yg + xtg)) =
∑
j

cja
mj
0 p∗(x

nj+1ynj+1g + xnj+2ynj tg)

=
∑
j

cja
mj
0 (p∗(x

nj+1ynj+1g) + p∗(x
nj+2ynj tg))

=
∑
j

cja
mj
0 (p∗(x

nj+1ynj+1g) + p∗(x
njynj+2g))

=
∑
j

cja
mj
0 (p∗(x

nj+1ynj+1g) + a0p∗(x
njynj+1g) + p∗(x

nj+1ynj+1g))

=
∑
j

cja
mj+1
0 p∗(x

njynj+1g).

By the linear independence of the p∗(x
njynj+1g) over k[a0] we deduce that∑

j|nj=n cja
mj+1
0 p∗(x

nyn+1g) = 0 and thus
∑

j|nj=n cja
mj
0 = 0. Therefore, we have

∑
j

cja
mj
0 p∗(x

nj+1ynjg) =
∑
n

∑
j|nj=n

cja
mj
0 p∗(x

n+1yng) =
∑
n

0p∗(x
n+1yng) = 0.

Therefore, ker f1,• = Rθ〈p∗(xnyng)〉 ⊆ M• = im f2,•. Thus ker f1 = im f2 as desired.

Finally, the fact that ker f2 = im f3, ker f3n = im f3n+1, ker f3n+1 = im f3n+2,

and ker f3n+2 = im f3(n+1) follows from the previous theorem. Therefore, the

sequence is exact, as desired.
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Computation of the Ext∗k[xθ](k, k) Mackey functors

Proposition 5.2.1. Let ψ ∈ HomR(Fθ(Rθ)�Fθ(Rθ), k) be the map defined by

ψ : g�g 7→ 1θ, and ψ : tg�g 7→ 0.

The map Fθ(k)→ HomR(Fθ(Rθ), k), g 7→ ψ is an isomorphism of R-modules.

Proof. Let f : Fθ(k) → HomR(Fθ(Rθ), k) be the map g 7→ ψ. First, we will show

that fθ is surjective. Let α ∈ HomR(Fθ(Rθ)�Fθ(Rθ), k). Consider

α(g�g)g + α(tg�g)tg ∈ Fθ(Rθ). Then we have

fθ(α(g�g)g + α(tg�g)tg) : g�g 7→ α(g�g)ψ(g�g) + α(tg�g)tψ(g�g)

= α(g�g)1θ + α(tg�g)0 = α(g�g),

and also

fθ(α(g�g)g + α(tg�g)tg) : tg�g 7→ α(g�g)ψ(tg�g) + α(tg�g)tψ(tg�g)

= α(g�g)0 + α(tg�g)1θ = α(tg�g).

Furthermore, since tk = idk, we have

fθ(α(g�g)g + α(tg�g)tg)(tg�tg) = tfθ(α(g�g)g + α(tg�g))(g�g)

= tα(g�g) = α(tg�tg),

and
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fθ(α(g�g)g + α(tg�g)tg)(g�tg) = tfθ(α(g�g)g + α(tg�g))(tg�g)

= tα(tg�g) = α(g�tg).

Therefore, α = f(α(g�g)g + α(tg�g)tg), so fθ is surjective.

Next, we will show that ker fθ = 0. Let ag + btg ∈ ker fθ. Then we have

aψ + btψ = 0, so aψ + btψ : g�g 7→ 0 and aψ + btψ : tg�g 7→ 0. But then

a = a1θ = aψ(g�g) + btψ(g�g) = 0

and

b = b1θ = aψ(tg�g) + btψ(tg�g) = 0,

so ag + btg = 0. Therefore, fθ is injective.

Next, we will see that f• is an isomorphism of R•-modules. First, let

α ∈ HomR(Fθ(Rθ), k). Consider the element α(g)p∗(g) ∈ Fθ(Rθ)θ. Then

f•(α(g)p∗(g))(g) = α(g)f•(p∗(g))(g) = α(g)p∗(fθ(g))(g)

= α(g)p∗(ψ)(g) = α(g)1θ = α(g).

Therefore, f• is surjective.

It remains to see that f• is injective. Let ap∗(g) ∈ ker f•. Then we have

a = a1θ = ap∗(ψ)(g) = ap∗(fθ(g))(g) = af•(p∗(g))(g) = f•(ap∗(g))(g) = 0,

48



so f• is also injective. This shows that f is an isomorphism, as desired.

Lemma 5.2.2. Let φ ∈ HomR(R, k) be the map 1• 7→ 1•. The map defined by

f : k → HomR(R, k)

1• 7→ φ

is an isomorphism of R-modules.

Proof. Similar to above.

Proposition 5.2.3. The map f ∗0 : HomR(P0, k)→ HomR(P1, k) is 0.

The map f ∗1 : HomR(P1, k)→ HomR(P2, k) is 0.

The map f ∗2 : HomR(P2, k)→ HomR(P3, k) is defined by ψ 7→ p∗(φ0).

The maps f ∗3n : HomR(P3n, k)→ HomR(P3n+1, k) are defined by φI 7→ p∗(ψI).

The maps f ∗3n+1 : HomR(P3n+1, k)→ HomR(P3n+2, k) are defined by

ψI 7→ ψI + tψI .

The maps f ∗3n+2 : HomR(P3n+2, k)→ HomR(P3(n+1), k) are defined by

ψI 7→ p∗(φi1,...,in,0).

Proof. We begin by proving that f ∗0 = 0. Let φ be the generator of HomR(P0, k) ∼=

k. Then we have

f ∗0,•(φ)θ : g 7→ φθ(x1θ) = xφ(1θ) = 0

in k•. Therefore, f ∗0 = 0.

49



Next, we prove that f ∗1 = 0. Let ψ be the generator of HomR(P1, k) ∼= Fθ(k).

Then we have

f ∗1,θ(ψ)θ : g�g 7→ ψ(f1,θ(g)�g) = ψ((yg + xtg)�g) = yψ(g�g) + xψ(tg�g) = y1θ + x0

= 0

and similarly

f ∗1,θ(ψ)θ : tg�g 7→ ψ(f1,θ(g)�tg) = ψ((yg + xtg)�tg) = ψ(yg�tg + xtg�tg)

= 0.

Therefore, f ∗1 = 0.

Now, we describe f ∗2 . Let ψ be the generator of HomR(P2, k) ∼= Fθ(k) and let

φi be the generators of HomR(P3, k) ∼=
⊕

i≥0 k. Then we have

f ∗2,θ(ψ)θ : 1i,θ�g 7→ ψθ(f2,θ(1i,θ)�g) = ψθ(x
iyi(g + tg)�g) = xiyiψθ((g + tg)�g)

= xiyi (ψθ(g�g) + ψθ(g�tg)) = xiyi(1θ + 0) = xiyi1θ

and similarly

f ∗2,θ(ψ)θ : 1i,θ�tg 7→ ψθ(f2,θ(1i,θ)�tg) = ψθ(x
iyi(g + tg)�tg) = xiyiψθ((g + tg)�tg)

= xiyi (ψθ(g�tg) + ψθ(tg�tg)) = xiyi(0 + 1θ) = xiyi1θ

Since xiyi1θ = 1θ in k precisely when i = 0, otherwise xiyi1θ = 0, then f ∗2,θ : ψ 7→

p∗(φ0).
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Next, we describe the maps f ∗3n. Let φJ be the generators of

HomR(P3n, k) ∼=
⊕

i1,...,in−1>0,in≥0 k. Then we have

f ∗3n,•(φJ)θ : gI 7→ φJ,θ(x
inyin1i1,...,in−1,0,θ + 1I,θ)

= xinyinφJ,θ(1i1,...,in−1,0,θ) + φJ,θ(1I,θ).

Note that if in = 0, then i0, . . . , in−1, 0 = I, so f ∗3n,•(φJ)θ(gi1,...,in−1,0) = 0.

Otherwise, if in > 0, then xinyinφJ,θ(1i1,...,in−1,0,θ) + φJ,θ(1I,θ) = φJ,θ(1I,θ) in

kθ. Since φJ,θ(1I,θ) = 1θ exactly when J = I, otherwise φJ,θ(1I,θ) = 0, then we have

f ∗3k,• : φI 7→ p∗(ψI) and f ∗3k,• : φi1,...,in−1,0 7→ 0.

Next, we describe the maps f ∗3n+1. Let ψJ be the generators of

HomR(P3n+1, k) ∼=
⊕

i1,...,in>0Fθ(k). Then we have

f ∗3n+1(ψJ)θ : gI�g 7→ ψJ,θ((gI + tgI)�g) = ψJ,θ(gI�g + tgI�g) = ψJ,θ(gI�g)

and similarly

f ∗3n+1(ψJ)θ : gI�g 7→ ψJ,θ((gI + tgI)�tg) = ψJ,θ(gI�tg + tgI�tg) = ψJ,θ(tgI�tg)

= tψJ,θ(gI�g).

Since ψI,θ(gJ�g) = 1θ exactly when J = I and t1θ = 1θ, then f ∗3n+1,θ(ψJ) =

ψJ + tψJ .

Finally, we describe the maps f ∗3n+2. Let ψJ be the generators of
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HomR(P3n+2, k) ∼=
⊕

I Fθ(k). Then we have

f ∗3n+2(ψJ)θ : 1I,θ�g 7→ ψJ,θ(x
in+1yin+1(gi1,...,in + tgi1,...,in))�g)

= ψJ,θ(x
in+1yin+1(gi1,...,in�g + tgi1,...,in�g)) = (xin+1yin+1ψJ,θ(gi1,...,in�g))

= xin+1yin+11θ.

Note that this is 0 exactly in+1 6= 0, otherwise it is 1θ. Therefore, f ∗3n+2,θ(ψJ) =

p∗(φi1,...,in,0).

Proposition 5.2.4. 1. Ext0
R(k, k) = HomR(R, k)/0 ∼= k

2. Ext1
R(k, k) = HomR(Fθ(Rθ), k)/0 ∼= Fθ(k)

3. Ext2
R(k, k) = k〈ψ + tψ〉 k〈p∗(ψ)〉 ∼= k

0

1

4. Ext3
R(k, k) = 0 k〈φ0〉

0

0

0

5. For n > 1, Ext3n
R (k, k) = 0 k〈φI |in = 0〉

0

0

0

6. For n > 1, Ext3n+1
R (k, k) = 0

7. For n > 1, Ext3n+2
R (k, k) = 0 k〈p∗(ψI)〉

0

0

0
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Proof. Since f ∗0 = f ∗1 = 0 then Ext1
R and Ext0 are canonically isomorphic

to HomR(P1, k) and HomR(P0, k), respectively. We begin by finding ker f ∗2 . Let

aψ + btψ ∈ ker f ∗2,θ. Then we have

f ∗2,θ(aψ + btψ) = ap∗(φ0) + btp∗(φ0) = (a+ b)p∗(φ0),

so a+ b = 0. Therefore, a = b and so ker f ∗2,θ = k〈ψ + tψ〉. Also, notice that

f ∗2,•(p∗(ψ)) = p∗(f
∗
2,θ(ψ)) = p∗(p

∗(φ0)) = 2φ0 = 0,

so ker f ∗2,• = k〈p∗(ψ)〉. Therefore, we see that

Ext2
R(k, k) = k〈ψ + tψ〉 k〈p∗(ψ)〉

0

1 as desired.

Next, we calculate Ext3
R(k, k). First, note that f ∗3,•(φ0) = 0 and therefore

f ∗3,θ(p
∗(φ0)) = 0 as well. Let

∑n
i=1 ciφi ∈ ker f ∗3,•. Then we have

0 = f ∗3,•

(
n∑
i=0

ciφi

)
=

n∑
i=0

cip∗(ψi),

but the p∗(ψi) are linearly independent, so we must have each ci = 0. Thus,

ker f ∗3,• = k〈φ0〉. Now, let
∑m

i=1 cip
∗(φi) ∈ ker f ∗3,θ. Then we have

0 = f ∗3,θ

(
m∑
i=1

cip
∗(φi)

)
= p∗

(
m∑
i=1

cif
∗
3,•(φi)

)
= p∗

(
m∑
i=1

cip∗(ψi)

)
=

m∑
i=1

ci(ψi + tψi),

so by linear independence of the elements ψi + tψi over k we must have all ci = 0.

Therefore, ker f ∗3,θ = k〈p∗(φ0)〉. Finally, since f ∗2,θ(ψ) = p∗(φ0), then f ∗2 (tψ) =

53



tp∗(φ0) = p∗(φ0) and f ∗2 (p∗(ψ)) = p∗(p
∗(φ0)) = 0. Therefore, im f ∗2,θ = k〈p∗(φ0)〉 and

im f ∗2,• = 0. Therefore, we see that Ext3
R(k, k) = 0 k〈φ0〉

0

0

0

as desired.

Next, we compute Ext3n
R (k, k) for n > 1. By a similar calculation to above,

ker f ∗3,• = k〈φi1,...,in−1,0〉 and ker f ∗3,θ = k〈p∗(φi1,...,in−1,0)〉. Since f ∗3(n−1)+2,θ(ψI) =

p∗(φi1,...,in−1,0), then we also have f ∗3(n−1)+2,θ(tψI) = tp∗(φi1,...,in−1,0) = p∗(φi1,...,in−1,0)

and f ∗3(n−1)+2,•(p∗(ψI)) = p∗(p
∗(φi1,...,in−1,0)) = 2p∗(φi1,...,in−1,0) = 0. Therefore,

im f ∗3(n−1)+2,θ = k〈p∗(φi1,...,in−1,0)〉 and im f ∗3(n−1)+2,• = 0. Therefore, we see that

Ext3n
R (k, k) = 0 k〈φI |in = 0〉

0

0

0

as desired.

Next, we compute Ext3n+1
R (k, k) for n > 0. Since f ∗3n+1,θ(ψI) = ψI + tψI ,

then ker f3n+1,θ = k〈ψI + tψI〉. Also, ker f ∗3n+1 = k〈p∗(ψI)〉 since f ∗3n+1,•(p∗(ψI)) =

p∗(f
∗
3n+1,θ(ψI)) = p∗(ψI + tψI) = p∗(2ψI) = 0. Now, since f ∗3n,•(φI) = p∗(ψI) and

thus f ∗3n,θ(p
∗(φI)) = p∗(p∗(ψI)) = ψI + tψI , then im f ∗3n = ker f ∗3n+1. Therefore,

Ext3n+1
R (k, k) = 0 as desired.

Finally, we compute Ext3n+2
R (k, k) for n > 0. Since f ∗3n+2,θ(ψ∗) = p∗(φi1,...,in,0)

then f ∗3n+2,θ(tψI) = tp∗(φi1,...,in,0) = p∗(φi1,...,in,0), so ψI + tψI ∈ ker f ∗3n+2,θ. Let∑n
l=1 clψJl + ditψJl ∈ ker f ∗3n+2,θ. Then we have

0 = f ∗3n+2,θ

(
m∑
l=1

clψJl + dltψJl

)
=

m∑
l=1

clp
∗(φil1 ,...,iln ,0) + dltp

∗(φil1 ,...,iln ,0)

=
m∑
l=1

(cl + dl)p
∗(φil1 ,...,iln ,0).

Since the p∗(φil1 ,...,iln ,0) are linearly independent over k, this means cl + dl = 0

and thus cl = dl. Therefore, ker f ∗3n+2,θ = k〈ψI + tψI〉. Also, since f ∗3n+2,•(p∗(ψI)) =

p∗(f
∗
3n+2,θ(ψI)) = p∗(p

∗(φi1,...,in,0)) = 2φi1,...,in,0 = 0, then ker f ∗3n+2,• = k〈p∗(ψI)〉. It
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remains to find im f ∗3n+1. Since f ∗3n+1,θ(ψI) = ψI + tψI and thus f ∗3n+1,•(p∗(ψI)) =

p∗(f
∗
3n+1,θ(ψI)) = p∗(ψI + tψI) = p∗(2ψI) = 0, then im f ∗3n+1,θ = k〈ψI + tψI〉 and

im f ∗3n+1,• = 0. Therefore, we see that Ext3n+2
R (k, k) = 0 k〈p∗(ψI)〉

0

0

0

as desired.

Computation of products in Ext∗k[xθ](k, k)

Proposition 5.3.1. The map ω : Fθ(Rθ) → Fθ(Rθ)�Fθ(Rθ), where g 7→ g�g, is

the unique counital, coassociative map.

Proof. This is a straightforward calculation checking the necessary equations.

Remark 5.3.2. To multiply two classes in Ext∗R(k, k)θ represented by cocycles

u : Pn�Fθ(Rθ) → k and v : Pm�Fθ(Rθ) → k in Ext∗R(k, k), we take the product

[u][v] to be the class represented by the cocycle

Pn+m�Fθ(Rθ)
idPn+m�ω
−−−−−−→ Pn+m�Fθ(Rθ)�Fθ(Rθ)

ũm�idFθ(Rθ)−−−−−−−→ Pm�Fθ(Rθ)
v−→ k,

where ũ : P∗�Fθ(Rθ)→ P∗−n is a lifting of u.

Theorem 5.3.3. Let αx, αy ∈ HomR(Fθ(Rθ)�Fθ(Rθ), k) be the maps

αx : g�g 7→ 1θ, tg�g 7→ 0, and αy : g�g 7→ 0, tg�g 7→ 1θ.

Then Ext∗R(k, k)θ is an exterior algebra on the classes [αx] and [αy] in Ext1
R(k, k)θ.
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Proof. We begin by computing lifts of αx. In particular, let α̃x,0 : Fθ(Rθ)�Fθ(Rθ)→

R and α̃x,1 : Fθ(Rθ)�Fθ(Rθ)→ Fθ(Rθ) be the maps

α̃x,0,θ : g�g 7→ 1θ, tg�g 7→ 0 and α̃x,1,θ : g�g 7→ tg, tg�g 7→ tg.

First, note that

(εθ ◦ α̃x,0,θ)(g�g) = εθ(1θ) = 1θ = αx,θ(g�g)

and

(εθ ◦ α̃x,0,θ)(tg�g) = εθ(0) = 0 = αx,θ(tg�g),

so α̃x,0 is a lift of αx.

Next, we will see that α̃x,1 is a lift of α̃x,0. This is because

(f0,θ ◦ α̃x,1,θ)(g�g) = f0,θ(tg) = y1θ = α̃x,0,θ(yg�g)α̃x,0,θ((yg + xtg)�g)

= α̃x,0,θ(f1,θ�idFθ(Rθ)(g�g))

and

(f0,θ ◦ α̃x,1,θ)(tg�g) = f0,θ(tg) = y1θ = α̃x,0,θ(yg�g)α̃x,0,θ((yg + xtg)�g)

= α̃x,0,θ(f1,θ�idFθ(Rθ)(tg�g)).
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Next, we will calculate lifts of αy. In particular, similarly to αx, let

α̃y,0 : Fθ(Rθ�Fθ(Rθ)→ R and α̃y,1 : Fθ(Rθ)�Fθ(Rθ)→ Fθ(Rθ) be the maps

α̃y,0,θ : g�g 7→ 0, tg�g 7→ 1θ, and α̃y,1,θ : g�g 7→ g, tg�g 7→ g.

First, note that

(εθ ◦ α̃y,0,θ)(g�g) = εθ(0) = 0 = αy,θ(g�g)

and

(εθ ◦ α̃y,0,θ)(tg�g) = εθ(1θ) = 1θ = αy,θ(tg�g),

so α̃y,0 is a lift of αx.

Next, we will see that α̃y,1 is a lift of α̃y,0. This is because

(f0,θ ◦ α̃y,1,θ)(g�g) = f0,θ(g) = x1θ = α̃y,0,θ(xtg�g)α̃y,0,θ((yg + xtg)�g)

= α̃y,0,θ(f1,θ�idFθ(Rθ)(g�g))

and

(f0,θ ◦ α̃y,1,θ)(tg�g) = f0,θ(g) = x1θ = α̃y,0,θ(xtg�g)α̃y,0,θ((yg + xtg)�g)

= α̃y,0,θ(f1,θ�idFθ(Rθ)(tg�g)).

It remains to compute [αx][αy] and [αy][αx], since Ext2
R(k, k)θ ∼= k and

ExtnR(k, k) = 0 for n > 2. The following computations show that

57



[αx][αy] = [αy][αx] = [ψ + tψ] ∈ Ext2
R(k, k)θ:

(αy,θ ◦ α̃x,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(g�g) = αy,θ(α̃x,1,θ�idFθ(Rθ)(g�g�g))

= αy,θ(tg�g) = 1θ

(αy,θ ◦ α̃x,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(tg�g) = αy,θ(α̃x,1,θ�idFθ(Rθ)(tg�g�g))

= αy,θ(tg�g) = 1θ

(αx,θ ◦ α̃y,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(g�g) = αx,θ(α̃y,1,θ�idFθ(Rθ)(g�g�g))

= αx,θ(g�g) = 1θ

(αx,θ ◦ α̃y,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(tg�g) = αx,θ(α̃y,1,θ�idFθ(Rθ)(tg�g�g))

= αx,θ(tg�g) = 1θ.

Furthermore, from the following calculations we see that [αx]
2 = [αy]

2 = 0:

(αx,θ ◦ α̃x,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(g�g) = αx,θ(α̃x,1,θ�idFθ(Rθ)(g�g�g))

= αy,θ(tg�g) = 0
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(αx,θ ◦ α̃x,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(tg�g) = αx,θ(α̃x,1,θ�idFθ(Rθ)(tg�g�g))

= αx,θ(tg�g) = 0

(αy,θ ◦ α̃y,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(g�g) = αy,θ(α̃y,1,θ�idFθ(Rθ)(g�g�g))

= αy,θ(g�g) = 0

(αy,θ ◦ α̃y,1,θ�idFθ(Rθ) ◦ idFθ(Rθ))(tg�g) = αy,θ(α̃y,1,θ�idFθ(Rθ)(tg�g�g))

= αy,θ(g�g) = 0.

By previous computation, we know that ExtnR(k, k)θ = 0 for n > 2, so this

determines Ext∗R(k, k)θ as a k-algebra.
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Cole, G. Comezanã, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G.
Lewis Jr., R.J. Piacenza, G. Triantafillou, S. Waner, CBMS Reg. Conf. Ser.
Math 91, Washington, DC, 1996.

[Rae19] Daniel Raeis, Mackey functors over the group Z/2 and computations in
homological algebra, Ph.D. thesis, University of Oregon, 2019.

[Web00] P. Webb, A guide to Mackey functors, Handbook of Algebra 2 (2000),
805–836.

[Wei94] Charles A. Weibel, An Introduction to Homological Algebra, Cambridge
Studies of Advanced Mathematics, vol. 38, Cambridge University Press,
Cambridge, 1994.

60


