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DISSERTATION ABSTRACT
Ross Casebolt
Doctor of Philosphy
Department of Mathematics
September 2022

Title: Homological Algebra for Polynomial Mackey Rings over Prime Cyclic Groups

Let C; denote the cyclic group of prime order [ and let k be a field. We define
a Mackey k-algebra k[zg] which is constructed by adjoining a free commutative
variable to the free side of the constant Mackey functor k. When char(k) is
relatively prime to [ we show that there is a an equivalence of categories between
k[zq] — Mod and the category of modules over a certain twisted group ring. We
calculate the free side of a certain Ext object Mz[x 9]@, k) in the two cases when

char (k) is relatively prime to [ and when char(k) =1 = 2.
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CHAPTER I

INTRODUCTION

Introduction

Let G be a finite group. Mackey functors over G serve as the natural
coefficients for G-equivariant cohomology in the same way that abelian groups do
for singular cohomology [May96]. Mackey functors and their homological algebra
are much less understood than that of abelian groups. We will investigate some
examples of homological algebra with Mackey functors in this thesis. Considering
the special case G = (), the cyclic group of prime order [, we focus on defining
a type of polynomial ring in the category of Mackey functors and computing the

internal Ext object for the residue field Mackey functor.

In this thesis we will focus on Mackey functors over the cyclic groups of prime
order | with a fixed field k. We will define a Mackey functor k[z4] which arises by
adjoining a free commutative variable to the free side of the constant coefficient
Mackey ring k. For a field k£ with characteristic relatively prime to [, we will prove
that the category of Mackey modules over a Mackey k-algebra R is equivalent to
the category of ordinary modules over a certain “twisted group ring”. When k
has characteristic [, the category is more complicated. We end by calculating the
Mackey Ext ring Ext% (k, k) both when char(k) # [ and when char(k) = [ = 2.

In both cases, we investigate resolutions of the residue field and the associated Ext

groups, establishing a component of Koszul duality in some cases.

Before stating the results in more detail, we begin with some brief background

information. Let G be a finite group. The structure of a Mackey functor F includes
2



an abelian group F(G/H) for each subgroup H of GG, along with various restriction
and transfer maps between these values of F. In the case G = (7, this takes a
simple form: a Mackey functor F over C} is the data of two abelian groups Fy :=
F(C)/e) and F, := F(Cy/Cy), with maps of abelian groups p,: Fy — Fo, p*: Fo —

Fy, and an automorphism ¢: Fy — Fy. These maps satisfy the following relations:

-1
p*OP*ZZti, peot" =p, foralln,
1=0

t"op* =p* forall n, and th = idz,.

D=
>
We will draw these Mackey functors as + Fy L F, Mackey functors have

*

P
been studied extensively and can be read about in [Dre73], [Dre71], [Gre71], and

[Web00].

The category of Mackey functors over C} is equipped with a tensor product
called the box product —[J—. Mackey rings are defined to be monoids in the
monoidal category of Mackey functors with the box product. Unravelling the
definitions, a Mackey ring R is a Mackey functor where both Ry and R, are rings,
p* and t are ring maps, and p, is a map of Re-modules. If £ is a ring, an important
example of a Mackey ring is k, the “constant coefficient” Mackey ring:

lidy,

idkdkmk
%/
idg

We can define a left Mackey module over a Mackey ring R to be a Mackey

functor M with a unital and associative structure map pr: RUM — M. It



turns out that a Mackey functor M is a k-module if and only if My and M, are

k-modules, p., p*, and ¢ are k-linear, and p, o p* = [ - idp4,.

The main object of interest in this paper is the commutative Mackey k-
algebra k[zg]. This Mackey functor has k[zglg = k[z1, ..., 2] with t(x;) = ;11 moa
and comes equipped with the following universal property: for any commutative
Mackey k-algebra & and any element y € Sy, there is a unique map of Mackey
k-algebras f: k[xy] — S for which fy(x1) = y. This property is similar to the
universal property of polynomial algebras over a field k, which was our motivation

in defining and studying this object.

The category of R-modules for a Mackey ring R is abelian with enough
projectives and injectives, so the usual machinery of homological algebra applies.
In particular, we can talk about Exty (M, N). If R is a Mackey ring and M and
N are R-modules, then Ext} (M, N) is the e-side of an internal Ext object denoted
Exty (M, N). That is, Exty (M, N) is a Mackey functor and Exty (M, N ), =
Extyk (M, N). When M = N this is a Mackey ring via the Yoneda product [Wei94].
Our aim in this paper is to investigate the case mz[me](ﬁ, k). We will show the

following results:

Theorem 1.1.1. ME[:@](& k)g is an exterior k-algebra on | generators in two

cases:
1. When char(k) is relatively prime to I, and

2. when char(k) =1=2.

In the case when char(k) is relatively prime to [, the theory simplifies

somewhat. In this case, for any Mackey k-algebra R the structure of an R-module

4



M is determined solely by the Ry-module structure of My and the action of ¢ on
M. Here one can use a Koszul resolution [Mac63] to compute the Ext Mackey

functors of k as a k[zg]-module, since the this resolution is exact.

However, when char(k) = [ the category is more complicated. When char (k)
is relatively prime to [ we can give k a finite projective resolution, but when
char(k) = [ = 2 any resolution for k as a k[xp]-module must be infinite. For the
case char(k) = | = 2, we exhibit a short exact sequence of k[xy]-modules ending
with a certain module M and beginning with @;-, M. We then stitch this short
exact sequence with itself (infinitely many times) to get a projective resolution of k
as a k[rg]-module. From there, we compute Ext;, 1(k, k) and show that its f-side is
an exterior k-algebra on 2 generators. It is remarkable that, despite the resolution
being infinite and complicated, the Ext groups are themselves very simple. We end

by calculating a portion of the e-side ring structure.

One difficulty in the case char(k) = [ is that while k[zglg = k[x1,..., 3], a
nice polynomial ring, k[zg]e is @ more complicated ring requiring infinitely many
ring generators. Even for char(k) = [ = 2, k[xg]e is a ring with two seperate infinite
families of generators, along with many relations. To manage this, we rely heavily
on a decomposition of k[ag,ay, ..., by, be,...]/ ~ as a k[ag]-module, over which
it is the sum of an infinite rank free module and an infinite rank sum of £k’s. The

complexity of this ring is the main obstacle in extending the results to the case

where char(k) =1 > 2.



CHAPTER II

BACKGROUND

We now develop the necessary background information on Mackey functors.

Definition 2.0.1. Let C; be a finite cyclic group of prime order l. A Mackey
functor F over C; consists of abelian groups Fy and F, and maps of abelian groups

t: Fog — Fo, pe: Fo — Fo, and p*: Fo — Fy which satisfy the following identities:

tl:id]:g Px Ol = D
-1

top*=p" p*op*zztz.
=0

A map of Mackey functors f: F — G consists of two maps of abelian groups,

fo: Fo — Go and fuo: Fe — Ga, which satisfy the following identities:

tgofo=Joolr Jeoper=nigofo foopFr =DpG0 fe

There are two particularly important Mackey functors, the free functors

Fo(Z) and Fo(Z):

v D=
F(Z): 7 'z F(Z): w2z
v i
p

The maps in Fy(Z) are V: (ay,...,q) = a1 + -+ +a; and A: a — (a,a,...,a),
and t acts as cyclic permutation on Z!. The maps in F4(Z) are p,: a — (0,a) and
p*: (a,b) — a+ bl. We will present Fy(Z) where Fy(Z)y is generated by the element

6



g = (1,0,0,...,0) as a Z[Cj]-module. We also identify the element 1, = (1,0) €
Fo(Z) and its image under p*, denoted 1y € Fy(Z). The images of these elements
determine all maps out of Fy(Z) and F,(Z), respectively. This is stated precisely in

the following proposition.

Proposition 2.0.2. For any Mackey functor G,

Hom(F.(Z),G) = G. Hom(Fy(Z),G) = Gy

where the isomorphisms are f — fo(1ls) and h +— hg(g). [RAE19]

Definition 2.0.3. Let F and G be Mackey functors. The box product FUG is the

Mackey functor with

(FOG)g = Fo @ Gy

(FOG)e = (Fo @ Gp) ® (Fe ®Gs))/ ~

where ~ 1is defined as

Qg ®p*(bo) ~ p*(a9> & bo
p*(ao) & bg ~ e ®p*(69)

t(ag) X t(bg) ~ g K bg



for any ag € Fy, by € Gy, ae € Fo, and by € G,. The map t is induced by the
diagonal action t(a @ b) = t(a) @ t(b). The map p. is induced by the inclusion
Fo @Gy — (Fo ® Gy) @ (Fe @ Gs). The map p* is induced by the map ag @ by +—>
S ti(ag) @ ti(by) and ae @ by > p*(as) @ p*(bs). The box product is symmetric

monoidal with unit Fo(Z).

Using the box product we can define a ring object in the category of Mackey

functors over Cj.

Definition 2.0.4. Let R be a Mackey functor. We say that R is a Mackey ring if

there are maps v: Fo(Z) — R and pr: ROR — R such that ((Oidg) o pr = idg
and pr o (prUidr) = pr o (idrOpr).

Proposition 2.0.5. [Rael9, Theorem 2.2.2] Let R be a Mackey functor. Then

R is a Mackey ring if and only if Rg and Re are rings, p* and t are ring maps,
and p, is a map of left Re-modules (with Ry as a left Ro-module induced from p*).
A commutative Mackey ring is a Mackey ring where Ry and Ro are commutative

Tings.

Definition 2.0.6. Let R be a Mackey ring. A Mackey functor N is a left R-
module if there is a map pp: ROM — M which is unital and associative.
A map of left R-modules f: M — N is a map of Mackey functors such that

fopm=pno (idgf). Right R-modules are defined similarly.

Remark 2.0.7. Let M be a Mackey functor and R be a Mackey ring. Then M
is an R-module if My is an Ry-module, M, is an R,-module, p* and p, are R,-
module maps and t(rgmg) = t(rg)t(my) for any ry € Ry and my € My. A map of
Mackey functors f is a map of R-modules if fj is a map of Ry-modules and f, is a

map of Re-modules.



The Mackey rings we will consider in this paper are all commutative, so the

distinction between left and right Mackey modules is unimportant for us.

The category of R-modules is also monoidal with its own product [z and

unit K.

Definition 2.0.8. Let R be a commutative Mackey ring and M and N be R-
modules. Define MORN := coeq( MORON = MUON) where the two maps

are pypidy and ida Oy

Similar to the roles that Fy(Z) and F.(Z) play as free Mackey functors in the
category of Mackey functors, the two main examples of free functors in the category
of R-modules are Fo(R) = ROF(Z) = R and Fyp(R) = ROFy(Z). We will denote
Fy(R) as Fy(Ryp) in the future.

There are also distinguished elements 1, € R, and 1y € Ry, the ring units.

We denote the element 1y ® g € Fy(Ry)y also by g.

Proposition 2.0.9. Let R be a Mackey ring and let M be a R-module. The map
f = fu(1,) is an isomorphism Homg(R, M) = M, and the map h — hg(g) is an
isomorphism Homg(Fp(Ry), M) = M.

Proof. Routine. O

We can present Fy(Ry) in several ways. One way is with F»(Rg)s = ng,
Fo(Rg)e = Ry with ¢ acting as cyclic permutation on R, p.: (ag,...,a;_1)
Zi;(l)ai for ap,..., a1 € Rgand p*: a — (a,...,a) for a € Ry. In this
presentation, F»(Ry) has the R-module structure where r(ag,...,a;—1) =

9



(rag, (t7'r)ay, (t72r)ag, ... ) is the Ry action on Fy(Ry)s and Fy(Ry). has the
induced R,-action since Ry is an R,-module from the Mackey ring structure of

R.

We say that an R-module is free if it is a direct sum of copies of R and

Fo(Ro).

Proposition 2.0.10. [Rael9, Theorem 2.2.2] Free R-modules are projective. In

particular, R and Fy(Ry) are projective. [Rael9]

There is another presentation of Fy(Ry) which is more useful in our
Px

4
calculations. Fp(Ry): ¢ R}, Ro Here, we view Fyp(Ry)g as the free
e —

*

p
Re-module Ry{g,tg,...,t'""1g), where t acts by t(ut'g) = t(u)titlg, where u € Ry

and t(u) € Ry. We identify u € Ry = Fy(Ry)e with p.(ug). We define p, as

S wttg v ST (u)pa(g) and p*oas pa(ug) = SO ti(u)tlg. Here, Ry acts
diagonally on Fy(Ry). We will temporarily call this Mackey functor Fy(Ry)®"¢ for

sake of convenience.

Proposition 2.0.11. Fy(Ry) = Fy(Rg)" .

Proof. The isomorphism is f: Fy(Rg)g — Fo(Re)§, (a0, ..., a11) = Yoo (tia;)tlg

and u — p.(ug). O

Definition 2.0.12. [Rael9] Let R be a commutative Mackey ring and M and N be
R-modules. The internal Hom object in the category of R-modules is Homzp (M, N')

which 1s the Mackey functor

10



/\

t@mn(}"g(R)DM,N) Homp (M, N).

\/

*

P
The map t is induced by sUidn,, where s is the map s: Fy — Fy, g — tg. The map

P« 18 induced by r.Oidn, where 1, is the map r.: R — Fp(Ry), 1o — pi(g). The

map p* is induced by r*Oidy,, where r* is the map r*: Fo(Rg) — R, g — p*(1s).

Definition 2.0.13. Let R be a Mackey ring and M and N be R-modules. The
internal Ext object in the category of R-modules is Extn (M, N') which is the

Mackey functor

/_—\
@tR(Fg(R)DM,N) Erte(M,N)
~_

Our main computational interest in this thesis is the above Ext object,
specifically Exty, 1(k, k)o. It should be noted that Extn (M, N)s = Exty (M, N)
for a Mackey ring R and R-modules M and N

Finally, it will be important for us to understand box products of free
R-modules. Since F(R) is the unit for O, we only need to determine
Fo(Re)OrFo(Rg). This is ROF(Z)OFs(Z), and so is determined by the following

result.

Lemma 2.0.14. [Rael9] Let Cy be a finite cyclic group of prime order and let
Fo(Z) be the free Mackey functor on the 0-side in the category of Mackey functors
over Cy. Then Fo(Z)OFy(Z) = @._, Fo(Z), where the map is g; — gOt'g.

This last lemma is useful in our computations of MZ[:@](E’ k)g.

11



CHAPTER III

CONSTRUCTION AND PROPERTIES OF POLYNOMIAL MACKEY RINGS.

We will be working in the category of Mackey functors over the group Cj,
the cyclic group of order [ for a fixed prime [. Moreover, we will fix a field £ of

characteristic q.

Definition 3.0.1. For | = 2, define k[xy| to be the Mackey functor with

klxolo = K[z, y], klzole = Kklag,a1,...,b1, b, ... ]/1

where I is the ideal (anam — aoQnim, Anbm — 20m4n, bybm — 2b440m). The ring maps t

and p* are defined by

trx=y,  pliag— (x+y)(oy)", Pt by 2(zy)"

The map py is a k-linear map defined by the relation p, ot = p, and

pe: 2"y = ay, Pyt Y™ > by,

The value of p, is extended to other monomials by induction

n+m, n n+m—1 n) o

p*<$ Yy ) = aop*(a: Yy

and similarly for p,(x™y™t™).

For [ = 2 we give a very concrete definition of k[zg], but for char(k) # [ we

give a less explicit definition.
12



Definition 3.0.2. For [ > 2 and char(k) # 1, define klxy| to be the Mackey functor

with

klzolo = k[zo, ..., x1-1] k[zele = K[z0, ..., 111]°"

The ring maps t and p* are defined by
U2 7= Tig1 mod (1) P f(xo, ... T11) > Ztif(ﬂl?o, T,

The map p. is defined by f(xq,...,x1_1) — %zl._é t' f(xo, ..., x1_1), which is well

7=

defined because Zﬁ;é t'f(zo, ..., x1-1) is Ci-invariant.

We will prove in this section that when [ = 2 and char(k) # 2 these definitions
agree. For the rest of this chapter we will assume [ = 2. We will return to the case

[ > 2 in the next chapter.

Proposition 3.0.3. k[xy| is a Mackey algebra over k.

Proof. We begin by checking that k[zy] is a well-defined Mackey ring. Note that
the relations p, ot = p, and t o p* = p* follow by definition of p, and p*. We begin

by showing that p* o p, = id + .

We show that p* o p, = id + ¢ by induction. First, note that
p(p«(2"y")) = p*(bn) = 22"y" = 2"y" + 2"y" = (id + £)(z"y"), and

P (pu(a™ ") = 97 (an) = 2"y 4oy = (d ) (@),

13



Now, suppose that p*(p,(z" ")) = (id + t)(z""y™) for all i < m. Then

P (e (2" YM)) = agpu(aTY") — pu(@" Ty

= P (e (2" Y pu () — pu(a™ Ty )

= P (e (@™ TY"))p* (pu () — p* (pu (@™ Ty )
= (id + ) (2" T™y™) (id + t)(x) — (id + ¢)(a™ ™y )
= (@Y 2"y (x4 y) — (@Y Ty

_ xn—l—m—‘rlyn + xn—l—lyn—i-m + l,n—i—myn—&—l + Inyn—i-m—i—l

- (xn—&-m n+1 +xn+1 n+m>

Y Y

— xn+m+1yn 4 xnyn+m+1 — (ld 4 t>($n+m+1yn>
as desired. By induction, p* o p, = id + ¢ on all of k[x, y].

Next, we need to show that p,(u)v = p.(up*(v)) for any v € kfz,y| and
v € klag,...,b1,...]/I. We will first show that this relation holds when w is any

monomial z"**y" € k[z,y] and v is a generator a, or b, in klag,...,b1,...]/I.

14



n+1,n

We check the four following base cases for monomials ™" y™ and x"y™:

Case 1:
(2" Ty p (am)) = pu(a™ e (@M Y™+ 2y )
— p*(xn+m+2yn+m 4 xn—l—m—}—lyn—i-m—l-l)
=, (anrerlyner)p* (.’L’) —p, (xn+m+1yn+m+1)
4 D, (xn—i—m—l—l yn+m+1)
= Op4+mA0 = Anlm = p*(xn-&—lyn)am‘
Case 2 :

p*<xn+1ynp*(bm)) — p*(anrlyn(zxmym)) — 2p*(xn+m+1yn+m)

= 2 1m = Qb = pu(@™ 1Y)y

Case 3 :

p*(:c"y”p*(am)) — p*(:c"y”(:cmﬂym 4 xmmerl))

n+m+1 n—i—m_i_xn—i-m

= p.(x y k)

Y

= p.((id + ) (2" Ty ) = p, (2"

1
= 2p, (2" T = 24, 40 = bpag,

= pe(2"Y")ap,.

15



Case 4 :
Pa(2"y"p* (b)) = pu(2"y" (22"y™))
— 2p*<xn+myn+m) — 2bn+m — bnbm

= pu("Y" ) by

Next, we show that p.(z"™y™)ag = p«(x"T™y"p*(ag)) by the definition

n+m,,n n+m—1,n

Pt y") = pu(2 y")ao — pu(am iy ).
pe(a" My )ag = pe(a" T YY) 4 (@Y = pu (e (@ 4 y))
= p.(2"""y"p" (ao)).
Therefore, since p, ot = p, and p, is k-linear by definition, we have p,(u)ay =
ps(up*(ag)) for any u € Ry.
Now, we want to show that p,(u)c = p.(up*(c)) for ¢ = a;,b;. To do so,
we induct on m. Let ¢ be any of the generators a; or b; for k[zg],. Suppose that

n+i, n n—+1i, n, %

(2" T'y™)e = po (2" Ty"p*(c)) for all i < m. Then we have

p*(xn—&-myn)c — (p*(l,n—f—m—lyn)ao _ p*(l,n-l—m—lyn-i—l))c

n+m—1, n,_* n+m—1, n+1, %

= p.(z Y (c))ao — pi(x y" " p*(c))

n+m—1, n,_* n+m—1, n+1, *

= pu(z y"p*(c)p*(ao)) — pu(z m" i p*(c))
= pu (@™ (@ + y)pt(e) — pu(@™T T Im ¥ (c)

= p.(a" Ty p* () + 2Ty " pH(e) — pe (2T Ty ()

n+m, n,_*

= p.(2""yY"p" (c)).

16



Therefore, by induction we have p, (" y")c = p.(z"T"y"p*(c)) for all n, m, and

where ¢ is any of the generators a; or b;.

Next, we show that p.(z"""y")c = p.(x"T"y"p*(c)) where ¢ is a;a;, a;b;,

or b;b;. We can use the relations a;b; = 2a,4; and b;b; = 2b;; to reduce to the

previous case where c is a single generator and the case ¢ = a,a; is as follows:

n+m, n

pe (@Y aia; = p(2"TY P (a))a; = pu(2"TY (@ + y)2'y)ay

i+n+m-+1 i+n+mi+n+m

— p*<$ y i+n+1)

Yy a;

i+n+m, i+n+1

gt aj + p.(x y )a;

i—i—n)

= P Y

=P, (mi+n+m+1yi+np* (aj)) + Ds (xi—l—n-‘rmyi—kn-f—lp* (aj))

=, ( (xi—&—n—o—m—l-lyi—i-n 4 xi+n+myi+n>p* (aj ))

(a;)) = p ("™ y"p*(a;)p* (a;))

n+m, n 1, %

= pu (2" (x + y)2'y'p

Since p, (2" Ty = p. (2" "y"p*(c)) for any n, m, and any product ¢ = a;a;, a;b;,
p Y p J J

or b;bj, then the relation p,(z"*"y")c = p.(x"T"y"p*(c)) holds for any monomial
¢ by induction. Since p, ot = p, and p, is a k-linear map we can conclude that

pe(v)u = pi(vp*(u)) for any v € Ry and any u € R,.

These relations show that k[zy| is a well-defined Mackey ring. That k[xy] is a

Mackey algebra over k follows from the map k — k[zy].

17
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Proposition 3.0.4. Let G be a commutative Mackey algebra over k and z € Gy.

Then there is a unique map of Mackey algebras f: k[zg] — G such that fy: z — z.

Proof. By the universal property of k-algebras there is a unique map of k-algebras

fo: klz,y] — Gy such that x — z and y — tz. Now, define f,: k[x4]e — Go by

for an > pa(2"TH2"), fo: bp = pu(2"t2").

It remains to check that f, is well-defined and that all the squares commute.

To show that f, is well-defined we must show that f,: I — 0. In particular,

we must show that

fe(@n) fo(am) = fo(@nim)fe(ao),
fO(an>f0(bm) = 2f0<an+m)7 and
fO(bn)fO(bm) = 2fc(bn+m)'

We begin by showing the first relation holds.

folan) fo(am) = po(2" 2" )p. (27T H2™)
— p*(zn—l—ltznp*(zm—i—ltzm)) — p*(2n+ltzn(2m+lt2’m + thzm—l—l))

=p (Zn+m+2tzn+m 4 Zn+m+1tzn+m+1>
— Px

n+m+1t2n+m> n+m+1t2n+m+1> + P (Zn+m+1t2n+m+1>
*

:p*(z p*<2) —p*(Z

= p*<zn+m+lt2n+m)p*<z) = fo(@nim)fe(ao).
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Next, we show that the second relation holds.

fe(an) fo(bm) = ps (Zn+1tzn)p* (2"t2"™)
= P (2" (pu(22™)) = pu(2THE" (22ME2™))

= 2, (2" T = 2 f (Appm).

Finally, we show that the third relation holds.

f-(bn>f-<bm) = P+« (Zntzn)p* (thzm)
= p«(2"12"p" (p (212"™))) = pu(2"12"(22712"™))

= 2p, (2" T2 = 2 fo (b))

Therefore, f, is a well-defined map of rings.

Next, we wish to show that the pair fy, fo constitute a well-defined map of
k-Mackey algebras. This requires checking that the appropriate squares commute,

namely that

P« © fo = fooDs,
Joop"=p ofs,
tofg= foot.

The latter two relations are all between ring maps, so it suffices to check that these

hold on the ring generators. In particular, we see that t o fy = fy ot because

t(fo(x)) =tz = foly) = t{fo(y)) = t(tz) = 2 = fo(x) = fo(t(y))-
19



Similarly, we see that fy o p* = p* o f, because

fg(p*(an)) = f9($n+1y" _{_xnyn-‘rl) — g g gt

= (id + t)("1t2") = p*(pu (") = p* (fa(an)),

and

fo(p*(bn)) = fo(22"y") = 22"t2"

= (id 4 £)(2"t2") = p"(p«(2"t2")) = p*(fo(bn))-

We will next show that the last relation holds by induction. In particular, we

will induct on m for monomials z""y". First, note that by definition we have

Je:(x"y")) = fo(bn) = p(2"t2") = p.(fo(z"y")),

Fou(@™ T y™) = falan) = pu(z"T2") = pu(fo(a™y™)).

20



Now, suppose that f, o p, = p, o fp for all monomials of the form z" " where

17 < m. Then we have

fopu(z™y™) = folpa (™Y i) — pu(a™ Ty
= fope (@) fo(pa() — folpi(a™ 7Ty )
= p(fo(a" ™ y")p(fo(x)) — pu(fo(a" T 1y ™ )
= pe(fo (™ "y )P pu(fo(2)) — fo(z" M Hy™HY)
= p(fola™ Ny (fol@) + tfo(x)) — fola™™~y™)
= pa(fo(z™ My 4 gty gramelyntdy)

= p(foa™™y"))

as desired. Therefore, we are guaranteed a map of k-Mackey algebras sending x +—
z for any z € Gy. It remains to see that f is uniquely determined by the choice of z.

But this is clear from the definition of k[zg]. O

Proposition 3.0.5. If 2 is a unit in k, then klxg|s = k[z, w].

Proof. We will show the map of rings f: k[xsle — k[z, w],

is an isomorphism. The above formulas give a map kla, b] — k[z, w] and we need to

check it sends the ideal Z := (a,am — Gpnimo, Gnbm — 20 1m, bpbm — 2bp 1) to 0. It
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suffices to check this on the generators a,, b,,, which we do below:

R PR ™ Zwm—‘rn
1. f(anam - an-i—maO) = ( on ) ( om ) - ( 2m-+n )Z

ZZ,wm—i-n = wm+n

2m+n 2m+n

=0.
A 2" 2™
o -~ () (20) 2 ()
= 0.

Zwm+n 22wm+n

o 2m+n71 B 2m+n

m—+n
. w™ m+n
3. fbubm — 2bmin) = (in) ( ) 2 (2%“ 1>

mern m+n

- 2m+n—2 B Qm—i-n 1 -

Therefore, f sends Z — 0, so f induces the map f described above.

Now, let ¢: k[z,w] — k[zg|s be the map z — a¢ and w +— b;. We will now

show that f and ¢ are inverses. It is trivial that f o =id, and

wofa =1 (G ) = =a

2n 2n "
w" by

Therefore, 1o f =id and f ot =1id, so f is an isomorphism of rings.

Corollary 3.0.6. When | = 2 and char(k) # 2, the definitions of 3.0.1 and 8.0.2

agree.

Proposition 3.0.7. Let A = kag,aq,...]/(anam + ao@nim) be the k-subalgebra
of k[zgle generated by the a;, and B = k{b,|m > 1). Then klxgle = AD B as a

k[ao]-module. Also, A is a free k[ao]-module on the basis {1,a;|i > 0} and
22



B = klao] /(o) {by|m > 0).

Proof. We can take the set {a{a,,,b;ln > 0,m,i > 0} as a k-basis for k[zgls, derived
from the monomials in the a, and the b,, using the relations a,a,, = aga,,, and
apby, = 0. The result follows routinely from this. O
Proposition 3.0.8. k[xg| is generated by the elements x™y" and x"'y™ as a

klag|-module, and thus also as an k[xg|e-module.

Proof. It suffices to show that every monomial in k[x,y| is in the k[ag]-span of

{amy", 2"y |n > 0}. We will prove this by induction. First, notice that

xn+2yn — xn+1yn(x + y) o InJrlynJrl — :L,nJrlynp* (a()) o xn+1yn+1

and for m > 2

xn—i—myn _ xn-l—m—lyn(x + y) i xn+m—1yn+1 _ l,n—l—m—lynp*(ao) . x(n+1)+(m—2)yn+1'

Therefore, by induction on m we deduce that all monomials of the form z"*™y™ are
in the k[ag]-span of {z""'y" z"y¥In > 0}. We also have z"y" ™! = z"y"(z + y) —

"y = 2"y"p*(ag) — 2™ y", so for all n > 0 we have x"y" ™! is in the k[ag]-span
of {a™Tly™ x™y™|m > 0}. A similar argument to above shows that all z"y"*™ are

also in the k[ag]-span of {z"™1y™ z"y"|n > 0}. O

Lemma 3.0.9. k[zglg is free as a k[ag|-module via p*, on the basis

{$n+1yn,l.nyn | n Z O}
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Proof. Note that this is indeed a generating set for k[zg|y even over k[ag], but it
remains to find linear independence. It is a classical result that k[x,y] is a free

klx + y, zy]-module with the basis {1, z}. Furthermore, since k[z + y, ry] =

k[z + y][xy] as k-algebras, then klx + vy, zy| = k[z + y|(1, (zy)") as k[z + y]-modules.

Therefore, k[zglg is free as a klag]-module over the basis {1(zy)", z(zy)"}. O

In this section we have expanded on the free commutative k-algebra generated
by one element on the #-side. For good measure, we point out that one can also
consider the free commutative k-algebra generated by one element on the e-side.

But this is much simpler:

Proposition 3.0.10. Let k[z,] be the Mackey algebra over k with

klze]p = k[zs]s = k2]

and maps

t=p" =idya),  p.=2.

Let G be a k-algebra and z € G,. Then there is a unique map of k-algebras
f: k[zs] = G such that fo(x) = z.

Proof. Routine. n
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CHAPTER IV

K[X,-MODULES WHEN L' € K

We begin this section by fixing a prime order cyclic group C; and a field k
with char(k) # [. Recall the definition of k[zy]| from Definition 3.0.2. We will
now investigate k[zg| and its modules in this setting. Under the assumption that
[ is invertible in k, it turns out that k[xy| is a nicely behaved object essentially
determined by everything on the f-side. We will prove a result generalizing this
to more general Mackey k-algebras with ™! € k which tells us that k[zs]-modules

are determined by their underlying k[xg]s-modules along with the action of Cj.

Lemma 4.0.1. Let R be a Mackey k-algebra and M be an R-module. Let

j: Mgl — My be the inclusion map. The maps
(1/Dpeoj: M = My and §*: My = M5!

are inverse Re-module maps, where j o p* = p*.

Proof. First, note that (1/1)p*(p.(2)) = z for all z € MS". This is because
A/0p" (0.(2)) = (/) (Do) () = (D Y2 = =,

sop o (1/l)pyoj = id, ;. Finally, since p, o p* = lidp, and im p* C /\/lecl
6

then p, o j o p* = lidy, as well.
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Corollary 4.0.2. If M is a k-module then M is isomorphic to the k-module

A
My ME
N

Note that Proposition 3.0.5 is a special case of Lemma 4.0.1 for [ = 2.

Definition 4.0.3. Let R be a commutative k-algebra with an action of C; on R.
Let R[CY] be the ring which is R(C}) as an R-module and

t (Z a,ﬂ’) = Zt(ai)t”l
o)

G
for a generator t € C;. We call R[C)y, the “twisted group ring”.

Note that an R[C}],-module M is the same as an R-module M together with
an additive map ¢: M — M such that #! = idy, and t(rm) = t(r)t(m) for all r € R

and m € M.

Remark 4.0.4. For t € () and r € Ry we have the basic relation ¢ - r = ¢(r) - ¢ in

(RIC]tw)e-

Theorem 4.0.5. Let R be a k-algebra as Mackey functors over Cy, where l is a
prime and k is a field with |71 € k. There is an equivalence of categories between

R-Mod and Ry[C)]s,-mod.

Proof. Let R be a k Mackey algebra. Let U be the forgetful functor from R-mod to
R[C})w-Mod sending M to My and a map f to fp, and let G be the functor from
R[C}]s-Mod to R-mod such that G: M — M, where

My = M, My = M,
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Py = Z t", and p* = 7 is the canonical inclusion map.

My inherits an action of C; by nature of being a R[C}];,-module, via the action of
t € R[C)]w on My. Let G(f) be the map of R Mackey modules with G(f)y = f and
G(f)e = f, where f is the unique map f: M — N y — f(y). Note that this is
well-defined since if y € M then ty = y for all t € C}, hence tf(y) = f(ty) = f(y),
so f(M©) C N%. Since f is a map of Ry[Cj]s,-modules, we have f(rx) = rf(z)
for any © € My and any r € Ry and f(t"(z)) = t"f(x), hence G(f)q is a map of
Rg-modules. Since Ry is also an R,-module, this means that f, and hence f , is also

a map of R,-modules. Therefore, G(f) is a map of R-modules.

To show that U and G constitute an equivalence of categories we need to find
a unit and counit, namely natural isomorphisms €: UG — Idr_p0q and n: GU <+

IdR(c)),,—Mod- We can take € to be the identity.

Next, consider the map 1 = (na) where 7, is the map of Mackey R modules
with nye = idy, and nue = piy. This is well-defined since im p* C M, so
this makes sense. We next need to see that n, is a map of R-modules. It suffices
to show that n, is a map of Mackey functors such that 7y is a map of Ry-modules
and 7, is a map of Re,-modules. We can see that 1, is a map of Mackey functors
by inspection and 7 is a map of Rp-modules and 7, is a map of R, modules

because M is an R-module.

o, 18 injective and hence a monomorphism, we can conclude

Finally, since ¢ %

that

TIN e © fo :ﬁj\/’ o fo - g(f@) Oﬁj\/{ = g(f@) CTNM,e-
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Therefore, 1 is natural. Moreover, both 1y g and 7y . are isomorphisms (7.
is an isomorphism since p’, surjects onto its image and is injective since p, o p* =
[ -id g, is an isomorphism), so each 7,4 is an isomorphism and thus 7 is a natural

isomorphism. Therefore, G and U constitute an equivalence of categories. O

Applying the above results to k[zy]| leads us to want to understand

k[x4]9[Ci]4w- The following result calculates this ring:

Proposition 4.0.6. The ring map

(k[wo])o[Cllew < k{a, 1) /(1" = La(t"2t™") = ("2t ™")2)onzi1

defined by x — x1, t — t, is an isomorphism. Furthermore, (k[zg])o[Ciltw =
klzy, ...z, t, ... 7Y as a klxy, ..., z;]-module.
Proof. This can be seen by checking the vector space isomorphism. O

Let G: Ry[Ci]iw — Mod — R — Mod be the functor defined in the proof of
Theorem 4.0.5. Recall G(M)y = M and G(M), = M.

Corollary 4.0.7. Let R be a Mackey k-algebra and let M and N be Ry[C)]sp-

modules. Then G(M)OrG(N) = G(M ®g, N).

Proof. By Theorem 4.0.5 it is enough to check the isomorphism after applying U to

both sides, and then it is obvious. O

Koszul Complex for Mackey functors over C;

We now use the above machinery to investigate the homological algebra of the

Mackey ring k[zg]. It turns out the there is a Mackey functor analog of the Koszul
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complex for k as a k[xy,...,z;]-module which is exact as well. Constructing this

relies on the equivalence of categories above.

Proposition 4.1.1. k[xy,..., x| is a projective k[z]o|C)]u-module, where rt* - a =

rt'(a) forr,a € klzy, ..., 7).

Proof. First, this definition of k[zq, ..., 2] as a k[xg]s[C}]w,-module is well-defined.

To see this, notice that by construction ¢ = idg(ey,... z]s SO

.....

Moreover, for r,a,b € k[xy, ..., ;] we have

(rt") - (ab) = rt'(ab) = rt'(a)t'(b) = rt'(a)(t' - b) = (rt'(a)t’) - b= (rt' - a) - b,

so k[z1,..., 2] is a well-defined k[zg][Ci]tw
Now, consider the k[zg]g[Ci]i,-module map f: k[xglo[Cilew — K[z1,. .., 7],
where f: 1 +— 1 and t — 1 and the k[zy,...,x;]-module map g: k[xq,..., 2] —

k[26)9[Ci] 1w, Where g: a +— 1 Z —,at'. Note that g is also a k[z]s[Ci]s-module

map, since

g((at) - b) = _ %Z ~ at (% it“) — atg(b)

i=0
for any a,b € k[z1,...,x;]. Moreover, g is a splitting for f, since
= =
oo =s(130) - 13
i=0 1=0
Therefore, k[z,...,x;] is a summand of k[x]s[C}]w, and hence is projective. O
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Proposition 4.1.2. Let N := klzy,...,z|{eq,...,e) be the free k[xq, ..., x]-

module on the basis ey, ..., e;. Let

-1

2 1
P.::k[xl,...,xl]%/\N—w-.—>/\N—>/\N—>k[x1,...,xl]i>k

be the usual Koszul complex for klz, ..., x;] with differential
d: ey N Nej, v+ (=17 g e Ao Aeg -+ Aey,,. This is also a projective
resolution of k|xg)e[Cilw-modules, where the Cy action is given by t(ae;, A ...e;) =

t(a)e, 41 A Nej 1 fort € C), o € kl[xq, ..., 2] and ey = e;.

Proof. By standard theory, the Koszul complex resolving k as a k[z1, ..., x]-

module is exact. The following calculation shows that d(tw) = td(w).

d(t(e, N---Nei,)) =d(eg 1 Ao A €il+1)

—_—
= $z] 1€ 41 Ao Nejpr N A€t

:Z tlag ) t(en) N AED) A+ Atles,)
J

I
~

(Z(—l)fxijeil Ao NG A A ein> = td(e;, A+ Neg).

J

It remains to see that the modules in the resolution are projective. For 0 <
n < I, the action of C; on n-element subsets of {1,...,1} is free (since [ is prime).
Let S = {S51,...,S;} be a collection of n-element subsets of {1,...,1} which is fixed

under the action of Cj. Denote eg, := €;; A --- Ae; , where S; = {iy,...,i,}, with
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iy < iy < --- < i,. Then we have that k[zy,...,z/(es,, ..., es,) is a direct summand
of A" N as a k[z1,...,z;]-module. The other summands correspond to different
choices of S. For each choice of S, k[xy,...,x{es,,...,es,) is also closed under the
C) action by construction, so it is moreover a k[xy]o|Ci|t,-submodule. In fact, it

is a free k[z9]s[Ci]i-module of rank 1 and hence A" N = @(D/lﬁ[xg]g[Cl]tw as a
k[xql]|Ci]i-module for 0 < n < 1. By 4.1.1, k[xq, ..., 2] is a projective k[zq]o[Ci]1w-

module as well. Therefore, the sequence P, is also an exact sequence of projective

k[x4][Ci]-modules.

Proposition 4.1.3. Let G be the functor (k[zg])s[Ciltw — Mod — k[ze] — Mod
in Theorem 4.0.5. Then G(k) = k, G(klzo)[Cllww) = Fo(klzy,...,21]), and
G(k[xq,...,x1]) = k[zq].
Proof. The isomorphisms G(k) = k, G(k[zo][Cllww) = Fo(klzy,...,x]), and
G(k[xq,...,x1]) = k[zg] follow from the fact that k, = k where ¢t = id,

k[xglg = k|x1, ..., x;] where t is the map z; — z;,1, and

Folklxy,...,x1]) = klxy, ..., 2i){g,tg, ..., t""1g) where t is the map t"g
tntlg. O

Theorem 4.1.4. Exty, . (k,k)g is isomorphic to the exterior k-algebra on |

generators.

Proof. Let P, be the resolution of k as a k[x,][C]-module from Proposition 4.1.2

(above). Then P, is a projective resolution of k as a k[zy|[C;]-module, so we have
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Extyi,,) (, K)o = H* (Homyg,) (Fo(k[2e]) Ogag G (Pe), k)
= H*(Homy(zy) (G (k[2][Clltw) Tpiog G (Fe), k)
= H*(Homyge) (G (k[26][Clltw @ar
= H* (Hompy) (0, (K (0] [Clltw @iy

,,,,,

& H*(Homk[xl ..... ml] (P., k)) & EXtZ[Il wl} (k, k)

-----

Finally, by a classical result Exty,,

generators, giving the desired result.

Remark 4.1.5.

Extly,, (k. k)o = H'(Homy, (G(P.). k)

= H'(Hom yzy)),(CrJen (Po: k)

k i=0,1,1—1,1

= Hom (E[26])6[Cl)tw (/\N k?) =

Nk 2<i<i—2
()1

The multiplication structure for Ext(yi,.1), il (k,k)e is complicated.
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CHAPTER V

K[Xo-MODULES OVER C; WHEN char(K) = 2

We now begin analyzing k[xy]-modules over the group Cy when char(k) = 2.
Unlike the case when 7! € k, the case char(k) = [ is much more difficult. We will
explore this case for | = char(k) = 2. In this section, we will exhibit a short exact
sequence of k[zg]-modules which we stitch together to form a projective resolution
of k. This in turn gives us a construction for Ext} (k, k), the internal Ext object,

from which we compute the additive and multiplicative structures.

One of the surprises in this case is that we need an infinite resolution of k,
though this resolution turns out to have a periodicity to it. We build this resolution
by finding a four-term exact sequence ending in a submodule of Fy(k[xy]). This
submodule appears naturally as the kernel of a Koszul-like complex. We find that
Ext}(,, (k, k)o is nonzero in only finitely many degrees, though, while Exty, (£, k).

is nonzero in infintely many degrees.

From now on, we will refer to k[zy] as R.

Constructing the free resolution of k

Definition 5.1.1. Let M be the R-submodule of Fg(Rg) given by

My = Ry(g +tg)

M = Eagp. (Y g) ) nr>0
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The map p* is defined by p*: p.(x"y"g) — x"y"(g + tg). The map p. is defined by
s "y (g +tg) — 0 and p.: "™y (g + tg) — al'p«(x"y"g). The map t is defined

by t: x"y™(g + tg) — ™y (g + tg).

Proposition 5.1.2. M is a well-defined R-submodule of Fo(Rp).

Proof. 1t suffices to show that M is closed under the maps p,, p*, and ¢, since £,
P«m, and ph are restrictions of the corresponding maps for F»(Ry), and that
M, and My are well-defined R, and Ry-submodules of Fy(Ry)e and Fy(Ry)s,

respectively. These are all routine verifications. O

Lemma 5.1.3. 0 — M 5 F4(Ry) LN Fo(Ry) is exact, where o is the inclusion

map and [ is determined by By: g — g + tg.

Proof. First, notice that

Bo(g +tg) = (g +tg) +t(g +1tg) =0,

S0 g o ag = 0. Also notice that

Bo(p:(x"y"g)) = p(2"Y" Bo(9)) = p(2"y" (9 + tg)) = pu(2"y"g + 2"y "tg)

= p(z"y"g +t(z"y"g)) = p.(22"y"g) = 0,

SO e 0 tg = 0 as well.
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It remains to find the kernel of 5. First, notice that ker 8y = (g + tg) C
im «ap. We wish to show that ker 8, C im «,. Since Fy(IRy)e is spanned over R, by

elements p,(z"y"g), p«(z"Ty"g) for n > 0 and we know that p,(z"y"g) € ker S,, it

suffices to show that elements in R, (p.(z""'y"g)) N ker 3, are zero.

To that end, first notice that

agamp«(2"y"g) = afp. (P (am)2" Yy g) = abp.((@ 4 y)a" Ty g)

xn—i—m—&—l n-+m n+m—+1, n+m

= agp.(p*(ao) y"t"g) = afp.(x y""g),

and the b;’s kill p,(z""y"g), so we can write any arbitrary element of
Re(p.(xz"y"g)) C Fo(Ro)e as Y cjag’ pa(a"5y™ g) where each ¢; € k.

Then we have

0= 0, (Z cjagbjp*(x"ﬁly"jg)) = Z ciag p(z" Yy (g + tg))
= cjag pu(a" Ty g+t Y itg))
=D ciag pu(a Ty g 4y ag)
= Z cjap’ pu((z +y)x™y™ig) = Z cjag s (p*(an,)g)

— Z ¢iap” an,pi(g)-
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Therefore, Y c;aq” an; = 0, and since the a,, are linearly independent over k[ag| we

can conclude that > cjay”’ = 0 for each choice of n. Therefore,

jlnj=n

ZC]CLO p* n]—l-l yig Z Z C]CLO p* n—i—lyng)zz Z Cjaglj p*<xn+1yng)

J n jlng=n n \Jjlnj=n

= 0p.(a"y"g) = 0.

Therefore, ker 5, C im «a, and thus ker f = im « as desired. O

Remark 5.1.4. Let Q be the cokernel of the inclusion ¢: M — Fy(Ry). The short
exact sequence

is not split.

Proof. Notice that both My and )y are fixed by t. Therefore, any splitting would

imply that Fy(Ry) were also fixed by ¢, which is not the case.

Theorem 5.1.5. There is an exact sequence of R-modules:

0— PM 2 P Fo(Ro) 2 P Fo(Re) > PR M 0.
i>1 i>1 i>1 >0
The map o;: M — Fo(Ry) is the inclusion map.

The map ®B;: @1 Fo(Re) — D>, Fo(Re) is defined by gi — gi + tg;.
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The map ~: @221 Fo(Rp) — @iZOR is defined by g; — 'y lgo + g,

The map §: @zzoR — M is defined by 1s; — s (z'y'g).

Proof. The exactness of the («, ) spot follows from Lemma 5.1.3. We will now

show that kery =im @ ;. To see that 7y o ®f; 9 = 0, notice that
(6 0 ®Bi0)(9:) = Y0(gi + tgi) = 2'y' Lo + Lig + t(z'y Lo + 159) = 0.

This shows that im & 3; C ker ~.

Next, we will see that kery C im & ;. Let Zj u;g; + vitg; € keryy, where
uj,v; € Ry. Let m;: @120 Ry — Ry be the projection onto the ¢th summand. Then

we have

(uj 4+ v;) L9 = m; (79 (Z u;g; + thgj)) =m;(0) =0,

J

so u; + v; = 0 since the annihilator of 1,4 is 0 for all ¢. Therefore,

D wigi+uitg; =Y gy +ustg; = > ui(g;+tg;) = D Bralusg;)
' ' j j

J J

= ﬁg (Z Ujgj> € 1im 69.
J
Therefore, ker vp = (g; + tg:)i>1 = im @ fy as desired.

Next, we investigate kervy,. Let A = k[ao, a1, . ..]/(@n@m + @0Gnim)nm be the
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k-subalgebra of R. generated by the a;, and B = k(b,,|m > 0). Notice that Re =

A ® B as a k[ap]-module. Furthermore, since

%(p*(fcnﬂy"gi)) =, (xn+i+1yn+z'10’9 4 :c”“y"h,g)

= Gptiloe +anlie € @A C @Ro

and

Yo (pe(2"y"gi)) = pu (2" Ty 1o + 2"y 15 9)

= bntiloe +balie € B C PR,

we can see that kerv, = ker(®ma 0 v,) @ ker(®mp o ), where m4 and 75 are the

projections of k[ag]-modules Ry, — Ro/B = A and Re — R./A = B.

First, note that ve(p«(2"y"¢;)) = bpyiloe + bulie # 0 for all n and i, so

p«(z"y"g;) & ker v, for all n and i. However,
/y.(amp*(xnyngi» = ambn—i-il(),o + ambnli,o - 010,0 + Oli,o =0,

SO amp«(2"y"g;) € ker v, for all n, m, and i. Since each b, annihilates
Fo(Rp)e = Ry, it remains to determine which sums of the form > ¢; ,,p.(2"y"g;) are
in ker v,. Let m;,, be the k[ap]-module projection @ Re — B, which picks out the

k[ao] component of @ R, spanned by b,1;,. Then we can see that

Cn,ibnli,o = Tn; <’70 (Z Cn,lp*(xnyngl))> - ﬂ-n,i(o) =0
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therefore ¢, ; = 0 for each n and 7. Thus ) ¢, ;p.(2"y"g;) = 0. Therefore, ker(Gmp o

7o) = (ampa(z™y"g:) |m,n, i > 0.

Next, we classify which elements are in ker(®my o 7). Let
> cjag ' pe(z"ityig; ) € kerv, with ¢; € k. Let @, ; be the k[ag]-module

projection @ Re — k[ap](anlie). Then we have

Z ¢y anlie = Wn; (% (Z Cj“?jp*(wnj+lynjgij)>>

Jlnj=n,ij=i

= ’ZD»,M(O) = 0,

mj _
SO Zj\nj:mj:i cjay’ = 0. Therefore,

ch'agnfp*(:v”ﬁly”jg ZZ Z cjag” p(2™ 1y g;)

i jlnj=n,i;=i

S 3> 31 D S PRER

j|nj=n,ij:i

:}2230:&

thus ker(®m4 0 7e) = 0. Thus kerve = Re(amps«(2"y"g;)|i,n, m > 0).

Lastly, we can see that Re{a,p.(z"y"g;)|i,n,m > 0) Cim [, since

aop«("y"g;) = p((x + y)2"y"g;) = p (2" Ty g + 2"y )

=po(a" Ny gi + @

- @ﬁz,o(p*( n+1yngz))

n+1l, n

"yttg) = po(@" Ty (g5 + tgi)
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Therefore, ker 74 = im 3, and thus kery = im [ as desired.

Finally, we will show that im v = ker d. First, notice that

(60 079)(9:) = Sa(x'y o9 + 1;0) = 2y 09(10,9) + Sa(1i0)

= 2'y'p*(p(9)) + P (p(z'Y'g)) = 2"y’ (g + tg) + (z'y'g + t(z'y'g)) = 0.

Therefore, 6 oy = 0.

It remains to see that kero C im ~. First, note that since b,, annihilates
Fy(Rp)e and hence it annihilates M, as well, b,,1;, € kerd for all i, m. Let

Zj cjagjamjlijy. € ker d, where ¢; € k. Then

0= b (a5 am, Liy) = D jag am,pu(27y"79) = D cjaq pu(p’ (am,)7"y"g)
= ciay’pu((z + )z Ty g) = ciag . (p* (@i 4m, )9)

= Z €y’ Giym, P+ (9)-

Therefore, we conclude that > cjagj Ui pm; = 0. Since the elements a,, are linearly

independent over k[ag], this means that > cjay’ = 0. Therefore,

Jlig+mi=N

j _ j _ j
> oy am lie =Y Y e am Iy ie = ) > ciay’ | anp.(g)
j

N jlij+m;=N N jlij+m;=N

= ZOaNp*(g) =0.
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Therefore, ker 64 = (b, 1, 6|7 > 0,m > 1). Lastly, note that

Ve (p* (gm-i-n) + D« (xmymgn))
= pu(@™T"Y" o0 + Lingng) + (@Y M g9 4+ 2™y ™ 1)

= bm]-n,o;

so ker §, C im 7, as desired.

We now finally show that ker dy C im 7y. Let > ¢;1;9 € kerd. Then we have
0=4 (Z Cilz’,9> = aa'y'(g+tg) = (Z cixiy’) (g +tg)
hence Y ¢;z'y" = 0. Therefore, we have

Z cilip = Z cilig + <Z CzSCZZf) lop = Z Ci (11,0 + ﬂfiyilo,e) ;

so kerd C (1,4 + 2'y'1o4). Importantly,

'y g+ Lo = oY Lo + 22 g0 + 2y g0 + 1pi44
= 1"y (1g; + 27y 1) + 2y 10 + 1piyj

= ﬂciyi%(gj) + ’79(gi+j) = ’Y@(l‘iyigj + gz‘+j)-

Therefore, ker §g = im 7y and thus ker § = im ~ as desired.
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Proposition 5.1.6. There is an infinite length free resolution P, — k of the form

Po=... 5 PF(R) L PR Fo(Ro) L Fo(Re) RS k0.

>0 >0

Forn > 1 the modules in the resolution are

Pin = D R.Pumi1= O Fo(Ro), and Psa= O FolR).

1yein—121,  in20 15050021 i1sin>1

1. The map fo: Fo(Rg) — R is defined by fop: g — xlg and the map

fi: Fo(Ro) — Fo(Ryp) is defined by fi1o: g — yg + xtg.
2. The map f2: @gR — Fo(Ry) is defined by foe: 10+ p.(Tiy'g).

3. Forn > 1, the maps f3,: @il 77777 P51 Fo(Ry) — EBil 77777 i1 10 Roare

fon =@, g1 = Y Ly w1000 + 16

4. Forn > 1, the maps fani1: €D, i>1 Fo(Ro) — D, i >1 Fo(Rp) are

.....

Jant1 = ®B, gr = g1 + tgs.
5. Forn > 1, the maps fary2: €D, >0 R = D, .. i 131 Fo(Ry) are

f3n+2 = 6915; 1[,0 — p*(mznylng(“ ..... infl))'

Proof. We begin by showing that kere = im f;. First, because

(€9 0 fo,0)(9) = €a(x1p) =0
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we see that im f; C kere. Also, since fog(g) = x and foe(tg) = y then kerey =

(z,y) Cim foe. Furthermore, since

foe(Pe(2"y"9)) = pu(2"y" fo.0(9)) = P (2"y" (21p)) = an

and

Joo(pe(z"'y"9)) = p(a" Y fo0(9)) = pu(a"y 1) = by,

then ker e, = (an,b,) Cim fy,, thus kere = im f;.

Next, we will show that ker f; = im f;. First, because

(foo o f1.0)(9) = foe(yg + xtg) = y(xg) + z(yg) =0

we have im f; C ker fj.

Let ug + vtg € ker fy for u,v € Rg. Then we have

0= foa(ug +vtg) = ux + vy,

so ux = vy. Since (x,y) is a regular sequence in Ry, this means there is some w €

Ry such that xyw = ux = vy, and consequently ug + vtg = wyg + watg. Therefore,

fro(wg) = w(yg + xtg) = ug + vtg,

so ker fop Cim f1. Finally, we will show that ker fyo C im f; .. First, recall that

pe (2%t Y% g) = agp. (z¥y* g) + p.(z%y it g)
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so we may write any element in ker foo as y cjay”’ pa(xhiytig) +

djag p.(x%iy*itlg) € ker fo.o where ¢;,d; € k. First, note that

foe(aops(z"y"*1g)) = ao(ps (2" 'y" 1)) = agbpi1 =0

and that

Jre(Pe(@" 1y g)) = pu (@Y fro(g)) = p(@™ Y (yg + atyg))

— p*(xnﬂynﬂg + x”“y”tg) = D, ($n+lyn+lg) +p*(t<l‘n+2yntg))

:L,n-i-l n+1 n, n+2

= pu(2"TY" T g) + pu(2"Y"g)

xn—l—l n+1 n, n+1 n+1, n+1

= p (2" YT g) + aop.(2"Y" T g) 4 pu (2" Y g)

= agp(2"y"g).

Therefore, we will now show that elements of the form cjay’ pu(xhiytig) +

dip«(z*y**1g) in ker fp o are in im f; .. To that end, notice that

0= Joe (Z cjay’ pe(a™y™ g) + d;p. (:rsfysf“g)>

J

= ciag pu(@™y" foo(9)) + dipu(x*y™ ™ fo0(g))
J

=3 iy paay (1) + dopa (2 (1)
J

- Z cjap  pi(a™ Ty 1) + djp, (2% Yt )
J

— m;
= E C;ay anj+djbsj+1.

J
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This implies that > cjay? = 0 for all n > 0 and that > dibst1 = 0 for all

jlnj=n Jlsj=s

s > 0. Therefore,

> ciag pula"y" g) + dip.(x*iy> T g)

J
S SPIRTUNLINES 3 pRINEALh

n jlnj=n s Jlsj=s
— Z Z cjay”’ (x™y"g) +Z Z dj | p(z°y*Hyg)
n Jlnj=n jlsj=s

= Op.(a"y"g) + ZOP* (z°y*Hg) = 0.

Therefore, ker foo = Re{agp«(z"y™™)) Cim fi., so ker fo = im fi.

Now, we will show that ker fi = M =im f,. First, note that

(fre 0 f2,0)(Lie) = fre(p(2'Y'9)) = pu(2'y' fr0(9)) = pu(2'y (yg + xtg))
= p(a'y™ g + 2 ytg) = pu(a'y T g + t(z" Y tg))

= p.(22'yi + 1g) = 0,
so fio fa = 0. Next, let ug + vtg € ker f; 9 for some u,v € Ry. Then we have
0= firo(ug + vtg) = u(yg + xtg) + vt(yg + xtg) = uyg + uxtg + vatg + vyg,

so uy + vy = 0 giving v = v. Thus ug + vtg = u(g + tg) € My, so ker f1 o =im fo.
Lastly, we will show that ker f;, € M,. To that end, from the computation

above we can see that fi4(p«(2"y"g)) = 0so Ry(p«(2"y"g)) C ker f1,. Let
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> cjay” pu(x"iTlynig) € ker f1 .. Then we have

0= (z <>) S @y Fr(g))
7

J

— Z Cjagwp*(xnjﬂynj(yg + atg)) = chagljp*(xanrlynfrlg + xnj+2ynjtg)
j J

= cjap? (pu(a Ty g) + pu(a" TPy i tg))
= cjap? (pu (" Ty g) + pu(aiyn )

= cjag” (po(x" Y g) + aopu(a"y"H g) + pa(a Tyt g))

- Z %JJr (z"iy"tg).

nj+1

By the linear independence of the p.(z™y™ ™ g) over k[ag] we deduce that

D jns=n cjaglﬁlp*(a:”y”“g) =0 and thus 3, _, c¢jag”’ = 0. Therefore, we have

chao p*( n]+1yn]g Z Z CJCLO p* RS y"g ZOP* a1 Jg _0

J n jlnj=n

Therefore, ker f1.4 = Ry(p«(2"y"g)) C Mo =1im fo,. Thus ker f; =1im f, as desired.

Finally, the fact that ker fo = im f3, ker f5,, = im f5,41, ker fa,41 = im f3,40,
and ker f3, o = im f3(,11) follows from the previous theorem. Therefore, the

sequence is exact, as desired. O
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Computation of the Ext;, ,(k, k) Mackey functors

Proposition 5.2.1. Let ¢ € Homg(Fo(Rg)OFg(Ry), k) be the map defined by

v gUg — 1y, and v tgUg — 0.

The map Fo(k) — Homgy(Fo(Ry), k), g — 1 is an isomorphism of R-modules.

)y =

Proof. Let f: Fy(k) — Hompy(Fy(Ry), k) be the map g — 1. First, we will show
that fy is surjective. Let a € Homg (Fp(Rg)TFy(Ry), k). Consider

a(gdg)g + a(tgOg)tg € Fy(Rp). Then we have

fola(gOg)g + a(tgOg)tg): g0g — a(g0g)y(g0g) + a(tglg)ty(gtg)

= a(g0g)1s + a(tgOg)0 = a(gdy),

and also

fola(gOg)g + a(tglg)tg): tgOg = a(glg)w(tgDg) + a(tgUg)td(tgTg)

= a(90g)0 + a(tgOg)1ly = a(tgOyg).

Furthermore, since t; = id;, we have

fola(90g)g + a(tgOg)tg)(tgCtg) = tfo(a(g0g)g + a(tglyg))(90g)

= ta(glyg) = a(tglty),

and
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Jo(a(gbg)g + altgUg)tg)(gltg) = tfo(a(gyg)g + a(tgly))(tgUy)
= ta(tglyg) = a(glty).
Therefore, o = f(a(g0g)g + a(tgdg)tg), so fy is surjective.

Next, we will show that ker fy = 0. Let ag + btg € ker fy. Then we have

ap + bty = 0, so ayy + btyy: glg — 0 and ayp + bty : tglUg — 0. But then

a = aly = ap(gdg) + btyp(gCg) =0

and

b =bly = ap(tgOyg) + bty (tgdg) = 0,
so ag + btg = 0. Therefore, fy is injective.

Next, we will see that f, is an isomorphism of R,-modules. First, let

a € Homp (Fy(Ry), k). Consider the element a(g)p.(g) € Fy(Rg)s. Then

Je(a(9)p(9))(9) = alg) fo(p(9))(9) = a(g)p«(fo(9))(9)

Therefore, f, is surjective.

It remains to see that f, is injective. Let ap.(g) € ker f,. Then we have

a = aly = ap.(¥)(9) = ap.(fo(9))(9) = afe(p.(9))(9) = folap.(9))(9) = 0,
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so fe is also injective. This shows that f is an isomorphism, as desired.

Lemma 5.2.2. Let ¢ € Homg (R, k) be the map 14 — 1,. The map defined by

[k — Homyp(R, k)

le = ¢

1s an isomorphism of R-modules.

Proof. Similar to above.

Proposition 5.2.3. The map fi: Homg(Po, k) — Homg (Py, k) is 0.
The map fi: Homg (P, k) — Homg (P2, k) is 0.
The map f5: Homp (P2, k) — Homg(Ps, k) is defined by ¥ — p*(do).

The maps f3,: Homg (Psn, k) — Homg (Psni1, k) are defined by ¢r — p.(vr).

The maps f5,,1: Homg (Pspi1, k) = Homp (Pspia, k) are defined by
P = Y+ 1Yy
The maps fs, .o Homp (Pspio, k) = Homp (Psny1), k) are defined by

Y1 = P (Piy,in0)-

Proof. We begin by proving that fi = 0. Let ¢ be the generator of Homy (Py, k) =

k. Then we have

fro(@)o: g do(zle) = xd(1g) = 0

in k,. Therefore, fj = 0.
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Next, we prove that f; = 0. Let ¢ be the generator of Homy (Py, k) = Fy(k).

Then we have

fro()e: 90g = ¥(f10(9)0g) = ¥((yg + xtg)0g) = y¥(g0g) + 29 (tg0g) = ylp + 20

=0

and similarly

fro(W)e: tg0g — ¥(fre(9)0tg) = ¥((yg + xtg)Ttg) = ¥ (ygOtg + xtgTtg)

=0.

Therefore, f; = 0.

Now, we describe f3. Let ¢ be the generator of Homy (P, k) = Fp(k) and let

¢: be the generators of Homp (Ps, k) = €D, k. Then we have

f30(@)o: 1i90g — vo(f2,0(1i9)0g) = the(z'y' (g + tg)Og) = x'y"ve((g + tg)Og)

= 2"y (Yo(g0g) + ve(90tg)) = 2'y* (1o + 0) = 2'y'1y

and similarly

foo(W)o: 1ig0tg — Vo(f0(1i0)0tg) = o'y’ (g9 + tg)Otg) = 2'y'y((g + tg)Otg)

= &'y (Po(90tg) + Po(tgOtg)) = x'y"(0 + 1g) = 2'y'1y

Since 2'y’ly = 1y in k precisely when i = 0, otherwise 2'y'ly = 0, then f5,: ¢ —

P*<¢o)-
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Next, we describe the maps f5,. Let ¢; be the generators of

Homg, (Psn, k) = @1;1 ..... in—1>0,in>0 k. Then we have

Sana(@2)o: gr = Gro(x™y™1i i 100+ 110)

= 2"y ¢10(Ls,,.in100) + Dro(1r0)-

Note that if i, = 0, then g, ...,i,1,0 = I, 50 f3, J($5)0(Gir,....in_1.0) = 0.
Otherwise, if ’ln > 0, then xinyinfbjﬁ(lil,...,in,1,0,0> + (b‘],g(l[’g) = (b‘],g(l[’g) n
ky. Since ¢9(179) = 1y exactly when J = I, otherwise ¢;9(179) = 0, then we have

f3*k:7.: ¢I — p*(¢]) a’nd f3*k’.: ¢i1,...,in_1,0 — O

Next, we describe the maps f3, ;. Let 1; be the generators of

Homg (Pani1,k) = D, ;. w0 Fo(k). Then we have

fan1(W)e: 9109 = V50((g1 + tgr)Og) = v0(9:0g + tg:0g) = s6(9:0g)

and similarly

Sanp1(s)e: g10g = ye((gr + tgr)Otg) = Yye(g:10tg + tgrOtg) = 1 16(tg:0tg)

= tY50(9:09).

Since ¥re(gs0g) = 1g exactly when J = I and tly = 1y, then f5, ., o(¢s) =

Y+t

Finally, we describe the maps f3,.,. Let ¢; be the generators of
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Homy (Psni2, k) = @, Fo(k). Then we have

77777

— xzn+l y2n+1 19

Note that this is 0 exactly i,11 # 0, otherwise it is 1y. Therefore, fs, ,o4(1s) =

P*(% ..... in,o)- O

Proposition 5.2.4. 1. Exty(k, k) = Homz (R, k)/0 =k

2. Euty (k, k) = Homg (Fy(Rp), k)/0 = Fo(k)

0

~ T
3. Euty(kk)= 1 k(i +t) k(ps(¥)) =k
C kvt
0
4. Extp(kk)= 020 k(o)
0
/ON
5 Forn>1, Erty(k,k)= 020 r\oﬁmin =0)
6. Forn > 1, Bzt (k, k) =0
0
/—\\
7. F 1, Ext'P(kk)= o220 k(p.
orn > Bty (k, k) 0 \/(p (1))
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Proof. Since fi = ff = 0 then Ext; and Ext’ are canonically isomorphic
to Homg (Py, k) and Homg (P, k), respectively. We begin by finding ker f;. Let

ayp + bty € ker f7,. Then we have

fag(ay +btp) = ap™(¢o) + btp™(do) = (a + b)p* (o),

0 a+ b = 0. Therefore, a = b and so ker f5, = k(1) + t3). Also, notice that

fe@:(¥)) = pu(f24(1)) = pu(p*(d0)) = 2¢0 = O,

so ker f3, = k(p.(¢¥)). Therefore, we see that

0
/\

Exth (k. k)= 1 C k(¢ + t) E(p.(v)) as desired.
~_ -

Next, we calculate Extj, (k, k). First, note that f3e(#0) = 0 and therefore

fa0(0*(¢0)) = 0 as well. Let 377" | ¢;¢; € ker f3,. Then we have
0=fsa <Z Cz¢z‘> = cip(n),
=0 =0

but the p,(1;) are linearly independent, so we must have each ¢; = 0. Thus,

ker f5, = k{¢o). Now, let 37", c;p*(¢i) € ker f3,. Then we have

0= f3y (Z Cz‘p*(¢i)> =p' (Z Cz’f§,.<¢i)> =p (Z Cip*(wi)) = Z ci(Vi + tiy),

i=1

so by linear independence of the elements v; + t; over k we must have all ¢; = 0.

Therefore, ker f5, = k(p*(¢o)). Finally, since f5,(¢)) = p*(¢o), then f5(ty) =
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tp*(¢o) = p*(¢o) and f3(p«(¢¥)) = p«(p*(d0)) = 0. Therefore, im f, = k({p*(¢o)) and

0
7
im f;, = 0. Therefore, we see that Ext}(k,k)= o2 0 - k(po) as desired.
0

Next, we compute M?{l (k,k) for n > 1. By a similar calculation to above,
ker f§o = K(®iy,..inr0) and ker f5y = k(p*(¢i,..i,_10))- Since f3, 1) 0,(r) =
P*(@is,.in-1,0), then we also have f3,, 1.5 o(t0r) = " (Piy,..in10) = P*(in,in-1,0)

and fgn 1)+2,0 (p*<¢1>> = p*(p*(gbilwwinfl,o)) = 2p*(¢i1,...,inf1,0) = 0. Therefore,

im f3, 1400 = kPG, 1,00)) and im f5, )5, = 0. Therefore, we see that

0
Ext¥(k,k) = o2 0 /_?(&qﬁ[]in =0) as desired.
S

Next, we compute Ext®' ™ (k, k) for n > 0. Since f5, 1 ,(t1) = ¥; + toy,

then ker fani19 = k(1 + tr). Also, ker Sing1 = k(p. (1)) since f§n+1,.(p*(¢1)) =
Pe(f50410(W01)) = pu(1 + t1) = pu(2¢01) = 0. Now, since f3, ,(¢1) = p.(¢r) and
thus f3, 4(p*(¢1)) = p*(p<(¥1)) = Y1 + ty, then im f35, = ker f3, ;. Therefore,

Ext3 ! (k, k) = 0 as desired.

Finally, we compute Ext"?(k, k) for n > 0. Since Finio.0(¥s) = 0" (bis,.in0)

then f3, o o(tr) = tp*(di,..in0) = P*(Biy,.in0)s 50 Y1 + b1 € ker f3, 5. Let

> ey citby, + dithy, € ker f5 5. Then we have

Since the p*(éy,, ,...i, 0) are linearly independent over k, this means ¢; +d; = 0

77777

and thus ¢; = d;. Therefore, ker f5 ,, = k(sr + tr). Also, since f3,,5 o(p«(¢1)) =

Pe(f3n420(W1)) = Pu(p™(is....1n.0)) = 204,00 = 0, then ker f3 ., o = k(p.(¢¥1)). Tt
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remains to find im f3, .. Since f3,,,(¢r) = ¥r + tr and thus f35, . J(p«(¥1)) =

Pe(f3ni10(¥1)) = (o1 + t1) = pu(2¢r) = 0, then im f3 ., 5 = k(47 + tbr) and
/ONk

im f3,.1,=0. Therefore, we see that Ext?**(k,k)= o2 0 (p«(?r))

0
as desired. [
Computation of products in Exty, \(k, k)

Proposition 5.3.1. The map w: Fyp(Ry) — Fo(Re)OFg(Ry), where g — gUg, is

the unique counital, coassociative map.

Proof. This is a straightforward calculation checking the necessary equations. O

Remark 5.3.2. To multiply two classes in Ext} (k, k)g represented by cocycles
u: P,OFg(Re) — k and v: P,,00Fy(Ry) — k in Exti(k, k), we take the product

[u][v] to be the class represented by the cocycle

id imOidz, (g,

Ow v
P DFo(Ry) —" Py OFy(Rg) D Fp(Ry) s PoOFy(Ro) > k,

where @: P.OFy(Ry) — Pa_y, is a lifting of w.

Theorem 5.3.3. Let v, oy € Homp (Fo(Re)OFy(Ry), k) be the maps
ay: glg = 1y, tglg+— 0, and «y: glg— 0, tgllg > 1.

Then Exty(k,k)g is an exterior algebra on the classes [a,] and [o,] in Exty (k, k)o.
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Proof. We begin by computing lifts of a,. In particular, let &, o: Fy(Ro)OFo(Re) —
R and a1 Fo(Ro)OFy(Re) — Fo(Re) be the maps

ag00: gUg— 1p, tglg— 0 and &y 19: gUg — tg, tglg — tg.

First, note that

(€0 © @r0,0)(90g) = €a(1p) = 19 = ayp(90g)

and

(€0 0 dz0,0)(tgUg) = €9(0) = 0 = ap(tg0yg),
SO (i, is a lift of a.

Next, we will see that &, ; is a lift of &, . This is because

(fo,0 © Gz10)(909) = foe(tg) = ylo = dap6(y909)da00((yg + xtg)dg)

= Gip0,0(f1,001d 7, (R, (909))

and

(fo,p 0 az10)(tg0g) = foe(tg) = ylo = du0,0(y90g)0u00((yg + xtg)Og)

= ,0,0(f1,00id 5, (R, (tg0g)).
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Next, we will calculate lifts of ay,. In particular, similarly to a, let

CNYy,oi fg(RgDFg(Rg) — R and &%12 fg(Rg)ng(Rg) — fg(Rg) be the maps

Qyog: glg— 0, tgllg— 1o, and ayi14: gUg— g, tgllg—g.

First, note that

(€9 0 Ay 0,0)(90g) = €(0) = 0 = vy p(g0g)

and

(€9 0y 0,0)(tglg) = €o(1g) = 1 = vy 0(tg0g),
SO Oy is a lift of ay.
Next, we will see that a,,; is a lift of &, . This is because

(foo 0 ay16)(909) = foe(g) = v1p = ay0e(xtg0g)dy06((yg + rtg)0g)

= Gy0,0(f1,00id 7, (r) (909))

and

(fon 0 dy10)(tg0g) = foe(g) = xlg = dy00(atg0g)d, 06((yg + xtg)Og)

= ay,0,0(f1,000id 7, (r,) (tg0g)).

It remains to compute [a,][o,] and [o,][a,], since Ext (k, k)s = k and

ExtR (k, k) = 0 for n > 2. The following computations show that
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][] = [oy ][] = [¥ + 1] € Exctiz (k, k)o:

(vy,0 0 Qg1 o0id 7y (Ry) © 17, (Ry)) (90g) = vy 0(de,1,000id 5, (ry) (900g0g))

= ay9(tgOg) = 1

(a0 0 Qg1 00id 7y (Ry) © idr, (R ) (tg0g) = (a1 s0id 7, (g (tg0g0yg))

= aye(tglg) = 1o

(a0 Gy 1 600id 7y (Ry) © id 7, (Re) ) (90g) = @ g(dy,1,000id 5, (7, (90g0g))

= 9(90g) = 1y

(Oéw,g o &y,l,QDidfg(Rg) o idfe(Rg))@ng) = Oéx’g(&y’l,gmidfg(Re)(thng))

= . 0(tg0g) = 1p.

Furthermore, from the following calculations we see that [a,]* = [a,]* = 0:

(a0 © Gz 1,001 7, (Ry) © 1d 7, (Ry) ) (909) = (A1 00id £, (ry) (90909))

= aye(tgg) =0
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(Qz0 0 Gp1,001d 7, (Ry) © 17, (Ry)) (t909) = 0t 9(Gip 1,90id 7, (g,) (tg0g0g))

=, (tgdg) =0

(0 © Gy 1,0001d 75y (R © id 7y (R,)) (909) = vy 0( Gy, 1,601id 7, (r,) (9090g))

= ayp(90g) =0

(Oéyﬁ (@) &y,l,GDid}'g(Rg) (@) id]-'g(Rg))(thg> = Oéy’g(ONé%l,gDid]:e(Rg)(thng))

= oy 9(90g) = 0.

By previous computation, we know that Exty (k,k)g = 0 for n > 2, so this

determines Exty (k, k) as a k-algebra.
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