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THESIS ABSTRACT 

Alison Deak 

Master of Science 

Department of Geography

September 2022 

Title: Simulating the Effects of Prescribed Fire on Forested Landscapes, Siskiyou Mountains, USA 

Land managers, scientists, and policymakers have increasingly promoted and invested in 

prescribed fire to reduce wildfire risk and restore fire-adapted ecosystems. We investigate the amount 

of prescribed fire needed to meet these goals in the Siskiyou Mountains of northwest California and 

southwest Oregon using a forest-succession model. Specifically, we ask, how much prescribed fire is 

required to maintain carbon storage and reduce the severity and extent of wildfires under divergent 

climate change scenarios? 

A prescribed fire frequency of fifteen years was found adequate for maintaining carbon 

storage on sites. Prescribed fire lowered the severity of wildfires at a local-scale and was most effective 

under a warmer and wetter climate. These results suggest targeting treatments in areas with high social-

ecological concern and within climactic and topographic gradients most conducive to its effects will 

provide opportunities to decrease the risk of high-severity fire and contribute to meeting climate 

mitigation goals.  
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CHAPTER I. 

INTRODUCTION 

Consensus amongst land managers and scientists continues to converge on the need to 

increase the use of prescribed fires, or fires set intentionally to achieve treatment objectives, to 

restore fire-adapted ecosystems and reduce wildfire risk (Kolden, 2019; Levy, 2022; Schultz et al., 

2019; Stephens et al., 2020; A. H. Taylor et al., 2021). Meanwhile, Indigenous communities are 

increasingly asserting their sovereignty and traditions by revitalizing cultural burning practices 

(Adlam et al., 2021; Lake et al., 2017; Marks-Block & Tripp, 2021). As more partnerships form 

between land managers, tribes, and other stakeholders to restore fire-adapted ecosystems and 

manage wildfire risk (Davis et al., 2021; Lake, 2021), a key question remains: how much prescribed 

fire do land managers need to be implementing to meet these goals, especially given climate change? 

Specifically, we ask, what prescribed frequency or extent of prescribed fire is needed to maintain 

carbon stores on the landscape and reduce the severity and extent of wildfires under divergent 

climate change scenarios? 

This question is particularly important to ask for landscapes with mixed-severity fire regimes 

because they are the most widespread, yet challenging, for scientists and managers in the western US 

to understand (Agee, 2005; Halofsky et al., 2011; Schoennagel et al., 2004). Mixed severity fire 

regimes are those that experience a spectrum from low to high fire severity effects. Forests with 

mixed-severity fire regimes are adapted to small and frequent fires that leave behind heterogeneous 

patchworks of forest at various stages of the successional process. In the past, fires burning across 

this patchwork were influenced not only by fuels, topography, and weather, but also by differences 

in vegetative composition and structure within a mosaic of patches created by previous fires (Agee, 
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1993; Halofsky et al., 2011). The heterogeneity created by these uneven burning patterns is strongly 

related to ecosystem structure and function and plays a crucial role in the sustainability and resiliency 

of ecosystems (Perry et al., 2011; Turner et al., 2013).  

The Siskiyou Mountains of northwest California and southwest Oregon, and the larger 

Klamath Mountains ecoregion, are a hub for research aimed at understanding mixed-severity fire 

regimes (Donato et al., 2009; Halofsky et al., 2011) and the potential for vegetative shifts driven by 

climate change and altered fire regimes (Damschen et al., 2010; Serra-Diaz et al., 2018; Tepley et al., 

2017). The Siskiyou Mountains are a biodiverse landscape with a rich history of fire, having been 

actively stewarded by Indigenous peoples using cultural burning practices for millennia prior to 

Euro-American settlement (Knight et al., 2022). It is well understood that through these practices, 

Indigenous peoples lowered stand densities and helped maintain the old growth characteristics of 

forests (Agee, 1993), reduced fire hazard and the buildup of fuels (Sensenig et al., 2013; Long et al., 

2021), and maintained a diversity of habitats (Kimmerer & Lake, 2001; Lewis, 1973). The average 

fire return interval was between eight and 20 years with most fires occurring in spring and fall until 

the late 1800s when Euro-American settlement disrupted pre-settlement fire regimes (Knight et al., 

2022; Metlen et al., 2018; A. H. Taylor & Skinner, 2003).  

By the end of the 19th century many Indigenous groups had been displaced and the United 

States Forest Service (USFS) effectively eliminated any remaining Indigenous cultural burning 

beginning in 1910 with a campaign to eliminate fires set by those residing in the area (LaLande & 

Pullen, 1999, p. 260). Other fires on the landscape were also suppressed through policies such as the 

10 AM policy of 1935 which mandated that all fires be extinguished by 10 AM the day after being 

reported (Pyne, 1997). Despite widespread consensus that forests would benefit from increased low- 

to moderate-severity fire (Kolden, 2019), the USFS continues to suppress and rapidly contain nearly 

98% of wildfires (USFS, 2015). By doing so, federal fire managers are “preferentially selecting for 
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more damaging fires that burn under more extreme conditions” (Dunn et al., 2020). Consequently, 

the dry forests of the Pacific Northwest adapted to frequent low- to mixed-severity fire are 

experiencing a “fire deficit” (Haugo et al., 2019; Marlon et al., 2012). When fires do burn in this 

landscape, they are larger and more severe than the estimated historic range of variation due to fuels 

buildup and climate change (Haugo et al., 2019; Parks & Abatzoglou, 2020) leading to drastic effects 

on long-term carbon storage.  

Although fire suppression has increased the United States’ aboveground carbon stores 

during the 20th century, carbon sequestration is expected to decline over the 21st century (Hurtt et al., 

2002) as a result of increased difficulty suppressing larger and more severe wildfires. This is 

concerning because forests in the Pacific Northwest have enormous carbon sequestration potential 

due to their longevity and high productivity (Hudiburg et al., 2009; Smithwick et al., 2002). Frequent, 

low-severity fires through prescribed fire, cultural burning, and wildland fires managed for resource 

benefits (i.e., managed fires) alongside thinning treatments reduce severity and spread rate of 

subsequent fires, decrease extreme fire behavior by reducing the loading and continuity of fuels 

available to burn (Cochrane et al., 2012; Fernandes, 2015), decrease tree mortality (Kalies & Kent, 

2016), and sustain ecosystem services, such as carbon sequestration. 

Carbon stabilization, or the maintenance of carbon stocks through time, reduces the risk of 

carbon being returned to the atmosphere through combustion during fire events (Hurteau et al., 

2019; Hurteau & Brooks, 2011). Although carbon storage may be immediately lowered following a 

prescribed burn operation where younger trees are killed, older trees storing larger amounts of 

carbon are more likely to survive in burned areas that have been treated. This results in a net 

increase of carbon over time that is less prone to high-severity fire due to decreased fuel loads and 

therefore, less likely to convert to a less productive or non-forested state following a high-severity 

event (Figure 1; Hurteau et al., 2019; Hurteau & Brooks, 2011). Although Hurteau and Brooks 
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(2011) only define carbon stabilization to include aboveground carbon, soil organic carbon is also at 

increased risk of combustion from the accumulation of fuel loads (Pellegrini et al., 2018; Restaino & 

Peterson, 2013; Zhou et al., 2022). Therefore, this definition of carbon stabilization has been 

expanded to include the maintenance of both aboveground and soil organic carbon stocks through 

time.  

Figure 1. Theoretical relationship between carbon storage and carbon stability, i.e., the maintenance 
of carbon stocks through time. (a) Fire suppression increases carbon storage but increases the 
potential for combustion during high-severity fire events which can deplete carbon storage and 
convert forest to a shrubland or grassland, reducing its long-term potential for carbon storage. (b) 
Frequent low-severity fire from prescribed fires, reduces short-term carbon storage but reduces the 
risk of carbon loss due to lowered risk of combustion and therefore promotes carbon stability. 
Adapted from Hurteau & Brooks (2011). 

While the use of prescribed fire to maintain ecosystem services, restore fire-adapted 

ecosystems, and manage wildfire risk is promising, current fuels mitigation treatments have not 

reached the pace and scale needed to do so (Kolden, 2019; Vaillant & Reinhardt, 2017). However, 

this is rapidly changing. With the United States’ passage of the 2021 Infrastructure Investment and 

Jobs Act, billions of additional dollars are being invested towards land management over the next 

decade. The 2022 USFS Wildfire Crisis Strategy aims to treat an additional 8 million hectares (20 

million acres) of National Forest lands and over 12 million hectares (30 million acres) of other 

Federal, State, Tribal, and private lands. Strategically investing these funds and positioning 
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treatments will be critical for addressing wildfire risk to ecosystems and communities across the 

nation.  

Landscape simulation models offer a powerful way for managers to elucidate the amount of 

fire at different scales required to meet these ambitious treatment goals in various landscapes and 

experiment with different treatment frequencies and extents on landscapes. Through this paper, we 

demonstrate how increasing prescribed fire frequency and extent within a landscape can alter the 

trajectory of future fire regimes and stabilize carbon stocks in the Siskiyou Mountains under climate 

change. We analyzed changes in aboveground and soil organic carbon storage at a local-scale 

(simulated as 30-meter landscape cells) and fire regime attributes at the landscape scale by testing the 

following hypotheses: (1) cells with increased prescribed fire frequency will have lower yet more 

stable aboveground and soil organic carbon storage in all climate scenarios due to lowered carbon 

consumption during wildfire events; (2) the severity of wildland fires occurring on the study 

landscape will decrease with increased prescribed fire frequency and extent in all climate scenarios; 

and (3) The median size of the largest wildland fires on the study landscape will decrease with 

increasing prescribed fire frequency and extent in all climate scenarios.  
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CHAPTER II.  

METHODOLOGY 

Study area 

The study area comprises 171,179 hectares within the Siskiyou Mountains known as the 

“Serpentine Siskiyous” for their distinct nutrient-poor serpentine soils (Griffith et al., 2016). The 

Siskiyou Mountains are the northernmost range of the larger Klamath Mountains ecoregion and 

extend in an east-west direction along the California-Oregon border between the Coast and Cascade 

Ranges. (Figure 1a and 1b). Elevation in the study area ranges from 27–1620 m above sea level (USGS, 

2020).  

 
Figure 2. Study landscape. (a) Landownership of the study area and surrounding area. Data source: 
USGS Gap Analysis Project (2018). (b) Wildfires greater than 1,000 acres in size occurring across the 
study area between 1984 and 2018. Reburn areas are indicated by a darker hue on the map. Data 
source: USFS & USGS (2018) 
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Vegetation in the Siskiyou Mountains is exceptionally diverse due to elevational and climatic 

gradients, soil parent materials, and mixed-severity fire regime, with a heterogeneous mixture of 

conifer and hardwood forests, shrublands, and prairies of perennial grasses and oak woodlands 

being present throughout (Agee, 1991; Whittaker, 1960). In the serpentine Siskiyous, Douglas fir 

(Pseudotsuga mensiezii) and western white pine (Pinus monticola) are common and Jeffrey Pine (Pinus 

Jeffreyi), endemic oak species (Quercus spp.), ceanothus species (ceanothus spp.), and many forb species 

have evolved to grow in the nutrient poor soils.  

The study area is characterized by a Mediterranean climate with long, hot summers and cool, 

wet winters (Whittaker, 1960). Mean minimum January and maximum June temperatures across the 

study area are 1.7°C and 28.9 °C, respectively, with an average annual precipitation of 1,803 mm 

(1991-2020; NCEI, 2020).  

The study area is currently managed primarily by the Rogue River and Six Rivers National 

Forests (91.4%) with a small portion of the remaining landscape falling within private land 

ownership (8.3%) and management by the Bureau of Land Management (1.2%) and Oregon and 

California state parks and recreation departments (0.1%, Figure 1b). This landscape is the ancestral 

homeland of and was traditionally managed by the Chetco, Coquille, Cow Creek Band of Umpqua, 

Karuk, Shasta, Takelma, Tolowa Dee-ni’, Tututni, and Yurok peoples.  

Overview of simulation model 

Using the raster-based dynamic forest landscape change model LANDIS-II (Scheller et al., 

2007), we simulated changes in biomass and fire regimes. This model has been widely used to 

simulate forest succession and response to disturbance, treatment, and climate change scenarios in 

the western U.S. (Cassell et al., 2019; Duveneck et al., 2014; Liang et al., 2018; Serra-Diaz et al., 

2018; Syphard et al., 2011). We chose the LANDIS-II modeling framework due to its ability to 
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simultaneously simulate the effects of climate change and disturbance on forest succession at a 

landscape-scale over long-time periods.  

LANDIS-II uses species’ life history attributes to simulate vegetation change driven by 

disturbance and succession (Mladenoff, 2004; Scheller et al., 2007). LANDIS-II simulates species-

age cohorts, meaning species are discretely grouped into user-specified age bins that are altered 

simultaneously by disturbance, succession, and management. Each species is parameterized with its 

own life history attributes, such as shade and fire tolerance, longevity, and seed dispersal ability, and 

is responsive to changes in climate due to optimal temperature ranges and drought tolerance. 

Processes, such as competition, growth, and mortality are simulated independently for each species-

age cohort within each site, while other processes, such as fire and seed dispersal, are simulated both 

within and across sites.   

We used the LANDIS-II core v7 with the Net Ecosystem Carbon and Nitrogen (NECN) 

succession extension v6.9 (Scheller et al., 2011) to simulate forest growth, reproduction, and 

mortality. NECN tracks above and belowground carbon and nitrogen pools and fluxes while 

limiting cohort growth based on leaf area index, soil water availability, temperature, growing space 

capacity, and nitrogen availability at monthly timesteps (Lucash et al., 2018; Scheller et al., 2011). 

Weather inputs to NECN include temperature, precipitation, relative humidity, and wind speed and 

direction. We used the Biomass Output extension to obtain total aboveground biomass for each 

species at 10-year timesteps (Scheller & Mladenoff, 2004).  

Both fire and forest management were simulated across the landscape. The Social-Climate 

Related Pyrogenic Processes and their Landscape Effects (SCRPPLE) v3.2 extension was used to 

simulate natural, human-accidental, and prescribed fire (Scheller et al., 2019). Fire spread and species 

mortality resulting from fire is based on user-defined inputs and algorithms in the model dictating 

ignition, intensity, and suppression for each of the three types of wildland fire. At daily time steps, 
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the probability of ignition, spread, and mortality is calculated for each cell based on fire weather 

index, topography, and vegetation dynamics. To simulate forest harvest and management, we used 

the Biomass Harvest extension v4.4 (Gustafson et al., 2000). This extension simulates the removal 

of biomass through harvesting activities and the replanting of species following harvest. User-

defined prescriptions dictate the amount of biomass removed from specified species-age cohorts 

within forest stands. The Dynamic Biomass Fuels Extension v3.0.1 was used to determine fuel types 

and amounts across the landscape (Syphard et al., 2011). This extension is required by the biomass 

harvest extension to inform where harvest occurs on the landscape based on fuel loads. 

Model parameterization, validation, and calibration 

All R scripts used to parameterize, validate, and calibrate model inputs are publicly available 

on the LANDIS-II Foundation GitHub page (https://github.com/LANDIS-II-Foundation). Data 

sources used to parameterize model inputs and perform calibration are included in Table 1. 

Table 1. Sources used to parameterize inputs to model. 
Extension Parameter Data sources 

Climate library Climate regions Abatzoglou & Brown (2012) 
Climate scenarios PRISM Climate Group (2021) 

Forest succession 
(NECN) 

Species Fire Effects Information System (https://www.feis-
crs.org/feis/#) 
North American Silvics Manual (Burns & Honkala, 
1990) 
Long et al. (2018) 
TRY plant trait database (Kattge et al., 2020) 
USGS Vegetation Atlas of North America (Thompson 
et al., 2006) 
Loudermilk et al. (2014) 
Serra-Diaz et al. (2018) 

Functional groups See Appendix E for full list 
Initial communities Forest Inventory & Analysis (USFS, 2021) 

LEMMA (Ohmann & Gregory, 2002) 
Woodall et al. (2010) 
Keyser (2019) 
Riccardi et al (2007) 
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Soils Soil Web (Walkinshaw et al., 2020) 
STATSGO (Schwarz & Alexander, 1995) 
Wilson et al. (2013) 
West (2014) 
Forest Inventory & Analysis (USFS, 2021) 

Fire (SCRPPLE) 

Suppression 1/3-arc second resolution Digital Elevation Model 
(USGS, 2020) 
Roads (US Census Bureau, 2001) 
WUI data (Radeloff et al., 2018) 
Wilderness areas (Wilderness Connect, 2021) 

Spread 1/3-arc second resolution Digital elevation models 
(USGS, 2020) 
Abatzoglou (2013) 
LANDFIRE (2014) 

Severity Monitoring Trends in Burn Severity (USFS & USGS, 
2021) 

Ignitions Short (2021) 
Prescribed fire National Fire Plan Operations Reporting System 

(USGS, 2021) 
Species mortality Fire and Tree Mortality Database (Cansler et al., 2020) 

First Order Fire Effects Severity Model (Hood & Lutes,
2017) 

Biomass harvest Harvest scenarios Maxwell et al (2020) 

Climate regions 

NECN requires grouping cells throughout the study landscape into homogenous climate regions. 

Three climate regions were delineated for the study landscape based on 30-year average (1991-2020) 

precipitation, maximum temperature, and minimum temperature values for months during the 

growing season (i.e., months with an average temperature greater than 5°C) at 4-km resolution from 

the PRISM Climate Group (2021). Unsupervised classification using K-means clustering and 

Clustering Large Applications (CLARA) delineated three climate regions on the study landscape; the 

K-means clustering analysis produced a larger silhouette index (i.e., measurement of how well

clusters have been classified) indicating better overall performance. The output from this analysis 

was used to generate climate regions from which homogenous daily weather is simulated (See 

Extension Data sources Parameter 

Table 1, continued 
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Appendix A for workflow).  

Simulated climate scenarios 

Daily historical and future weather data based on climate change scenarios were retrieved 

from the USGS Geodata Portal (https://cida.usgs.gov/gdp/) for each of the three climate regions. 

For climate scenarios, we used statistically downscaled global climate model (GCM) data from 

CMIP5 (K. E. Taylor et al., 2012) utilizing a modification of the Multivariate Adaptive Constructed 

Analogs method (Abatzoglou & Brown, 2012). Predicted daily precipitation (mm), minimum and 

maximum relative humidity (%), maximum near-surface air temperature (K), windspeed (m/s), and 

wind direction were obtained using area weighted grid statistics for each of the three climate regions. 

We selected the CNRM-CM5 climate model to represent historical data (1950-2005) due to its 

availability through the USGS Geodata Portal and its strong predictive performance in the Pacific 

Northwest (Rupp et al., 2013). To simulate historical climate, annual data were randomly selected 

during each year of the simulation (Table 2a). We simulated two high-emissions climate models to 

capture the spectrum of predicted climate change across the climate regions identified on the 

landscape for the period 2020-2070. The first represents a large increase in annual precipitation with 

a moderate increase in temperature (henceforth, the “warmer and wetter” scenario). The second 

represents a large decrease in precipitation with a larger increase in temperature (henceforth, the 

“warmer and drier” scenario; Table 2b).  

Table 2a. Average annual precipitation, maximum daily temperature, minimum daily temperature in 
the contemporary climate scenario for each climate region. 

Climate scenario 
(CMIP5 climate model) 

Climate 
region 

Annual 
precipitation 

Average 
maximum 

temperature 

Average 
minimum 

temperature 

Contemporary (1950-2005) 
(CNRM-CM5) 

1 160 mm 18.4°C 4.9°C 
2 267 mm 17.7°C 5.6°C 
3 340 mm 17.1°C 5.0°C 
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Table 2b. Change in annual precipitation, average maximum daily temperature, and average 
minimum daily temperature in the climate change scenarios for each climate region. Changes in 
precipitation and temperature for climate change scenarios are the difference between the five-year 
averages of temperature variables at the beginning (2020-2025) and end (2065-2070) of the simulated 
climate change scenarios. 

Climate scenario 
(CMIP5 climate model) 

Climate 
region 

Change in 
annual 

precipitation 

Change in 
average 

maximum 
temperature 

Change in 
average 

minimum 
temperature 

Warmer & drier 
(GCM8.5 MIROC-ESM-CHEM) 

1 -57 mm +4.1°C +3.5°C
2 -95 mm +3.4°C +3.0°C
3 -123 mm +4.0°C +3.4°C

Warmer & wetter 
(GCM8.5 CNRM-CM5) 

1 +40 mm +2.8°C +3.0°C
2 +59 mm +2.3°C +2.5°C
3 +77 mm +2.6°C +2.8°C

Initial vegetative communities 

To develop initial vegetative communities, we interpolated USFS Service Forest Inventory 

and Analysis (FIA) data (USFS, 2022) based on gradient nearest neighbor (GNN) maps developed 

by the Landscape Ecology, Modeling, and Mapping Analysis (LEMMA) group (Ohmann & 

Gregory, 2002). 30-meter resolution species distribution, stand age, and forest type raster data from 

LEMMA were masked to the study landscape extent and FIA plots were iteratively assigned to each 

cell based on whether species composition, forest type, and/or stand age within FIA plots matched 

the LEMMA GNN maps. Sequential map codes were then assigned for each unique FIA plot. Cells 

designated as developed, industrial, open water, and agricultural were made inactive. A total of 666 

unique vegetative communities were distributed across the study area.  

Shrub species grouped by genus and tree species identified within greater than 10% of FIA 

plots within the defined study landscape were simulated (see Appendix B for full list of species 

simulated). Tree ages were computed using the large tree height growth equations from the USFS 

Forest Vegetation Simulator (Keyser, 2019). Shrub ages were then input into cells based on stand 



 13 

age from the corresponding FIA plot (See Appendix C). Initial tree biomass was estimated using the 

component ratio method (Woodall et al, 2011) as used by FIA. Initial shrub biomass was calculated 

for each shrub functional group using allometric equations from Riccardi et al. (2007) based on plot-

level FIA data for species height and cover percent (See Appendix D for aboveground carbon 

comparisons to FIA-derived aboveground carbon estimates).  

Species parameters were obtained from the literature and available datasets. These included 

the USFS Fire Effects Information System (https://www.feis-crs.org/feis/), North American Silvics 

Manual (Burns & Honkala, 1990), Long et al. (2018), the TRY plant trait database (Kattge et al., 

2020), US Geological Survey Vegetation Atlas of North America (Thompson et al., 2006), and from 

previous studies utilizing LANDIS-II (Loudermilk et al., 2014; Serra-Diaz et al., 2018). (The sources 

used to parameterize functional group parameters are available in Appendix E.) 

We validated initial communities across the landscape by comparing the distributions of each 

cell of the simulated landscape’s leaf area index (LAI) during June of the first time step to the 

MODIS Level-4 LAI product (Myneni & Park, 2015) and LAI values calculated from the ICESat-2 

ATL03 product (Neumann et al, 2021) using methods by Zhang et al. (2021). LAI is a unitless 

measurement of canopy foliage considered to be a reliable proxy for aboveground net primary 

productivity (Asner et al., 2003). Although LAI values at each cell showed poor agreement with both 

MODIS and ICESat-2 derived values, the distribution of LAI values fell within the range of values 

expected by these datasets (for more information see Appendix F). 

Soils  

NECN requires soil inputs to simulate forest succession and calculate species growth within 

cells. Soil depth, drainage class, percent sand, and percent clay data were acquired from the UCDavis 

SoilWeb application (Walkinshaw et al., 2020). The UCDavis SoilWeb application aggregates current 
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US Department of Agriculture Natural Resource Conservation Service soil survey data across all soil 

layers within 800-m grid cells. These data were manipulated to the correct NECN parameters, 

coordinate reference system, extent, and resolution then masked to the study landscape. Soil carbon 

and nitrogen was calculated based on soil carbon estimates in 20-cm layers to 1-meter depth from 

the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical 

Dynamics (West, 2014). These data were summed across depths, cropped, reprojected, and 

calculated to estimate ratios of carbon and nitrogen within each soil pool (Parton et al., 1987, 1988). 

Field capacity and wilting point data was calculated using STATSGO shapefiles, whereas field 

capacity is based on the volumetric content of soil water retained at a tension of 1/3 bar and wilting 

point is the volumetric content of soil water retained at a tension of 15 bars (Schwarz & Alexander, 

1995). The initial amount of below ground dead coarse roots were interpolated across the landscape 

from FIA data (USFS, 2022) based on carbon estimates from coarse roots greater than 0.1 inch in 

diameter and multiplying by 44% based on the ratio from Mattson and Zhang (2019). Surficial dead 

woody material was derived from Wilson et al.'s (2013) forest carbon stocks of the contiguous 

United States (2000-2009). 

Fire 

We derived lightning, human-accidental, and prescribed fire parameters based on empirical 

data. Between 1992 and 2018, an average of seven wildfires were ignited within the study area 

annually, burning an average of 8,243 hectares (Figure 2b). Human-caused ignitions were the most 

common source of ignition, making up 65% of all ignitions (Short, 2021). Fire was calibrated to 

closely match annual area burned (mean: 8,243 ha), fire size (mean: 1,239 ha), and average fire 

severity (50% low, 26% moderate, 24% high) for the period 1992 to 2017 in the study area (see 

Appendix G; USDA Forest Service & US Geological Survey, 2021). 
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SCRPPLE calculates differenced Normalized Burn Ratio (dNBR) for each cell on the 

landscape burned during a fire event; dNBR is a commonly used index calculated from remotely 

sensed imagery to assess wildfire severity based on changes in the spectral responses of vegetation in 

burned areas. The severity of wildfires and cells affected by wildfire were categorized using a dNBR 

threshold for low, moderate, and high severity classes of fires occurring within the study landscape. 

Fires occurring within a 1-km buffer of the study area from 1984-2019 were subset from the 

Monitoring Trends in Burn Severity fire occurrence dataset (MTBS; USDA Forest Service & US 

Geological Survey, 2021b) and analyzed. Each fire in MTBS data has significant burn severity 

thresholds determined by analysts based on the range of dNBR and Relativized dNBR values found 

(Eidenshink et al., 2007). dNBR values consistently less than 200 were identified as low severity, 

between 200 and 439 as moderate severity, and values equal or greater than 440 as high severity. 

Kernel density maps of historical ignition locations of lightning and human-accidental 

ignitions (Short, 2021) were used to determine each cell’s probability of ignition. We parameterized 

maximum suppression to occur on cells within the wildland-urban interface (i.e., zones of transition 

between the developed and natural environments with higher fire risk), moderate suppression to 

occur on cells representing roads, and light suppression to occur on cells representing ridgelines. We 

parameterized the model so that fires ignited by lightning in wilderness areas would not be 

suppressed.  

Fire spread in SCRPPLE is based on an empirical relationship between historical daily fire 

spread and fire weather index, effective wind speed calculated from slope, uphill slope azimuth, 

windspeed, wind direction, and fine fuels loading in each cell on the day of fire spread (Scheller et 

al., 2019). Mortality at the cell is determined based on a relationship between mortality (USDA 

Forest Service & US Geological Survey, 2021a) and effective wind speed, the previous year’s climatic 

water deficit and actual evapotranspiration (Abatzoglou et al., 2018), fine fuels loading (calculated by 
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LANDIS-II), and ladder fuels (LANDFIRE, 2014) on the day of spread. Fire severity calculated as 

dNBR is determined at the scale of the species cohort. Species cohort mortality was derived based 

on species’ bark thickness, a measure used by the model to determine species’ susceptibility to 

mortality at different fire severities; this was parameterized using empirical values from the Fire and 

Tree Mortality Database (Cansler et al., 2020) and bark thickness coefficients from the First Order 

Fire Effects Model (Hood & Lutes, 2017) when empirical values were not available.  

Prescribed fires were parameterized to burn at the lowest severity class and could occur 

anywhere outside of wilderness areas. Only one prescribed fire could be ignited each day and only 

during favorable climatic conditions based on relative humidity, fire weather index, wind speed, and 

temperature thresholds. Four prescribed fire scenarios were simulated representing (1) no prescribed 

fire (henceforth the “No-Rx” treatment scenario), (2) business-as-usual, (3) a moderate increase, and 

(4) a large increase (Table 2). In the business-as-usual treatment scenario (“1x-Rx”), we simulated the 

mean prescribed fire size and frequency of annual ignitions on the study area between 2002 and 

2021. Historical prescribed fire data for the 1x-Rx treatment scenario were derived from the USGS 

National Fire Plan Operations Reporting System dataset (https://usgs.nfpors.gov/) finding an 

average of five prescribed fires ignited on the landscape annually burning between 1.6 and 54 

hectares each. The mean size of prescribed fires on the landscape was 14 hectares (USGS, 2021). 

For the moderate increase treatment scenario (“3x-Rx”) and large increase treatment scenario (“10x-

Rx”), the average number and size of prescribed fires were multiplied by three and ten times, 

respectively (Table 3). We chose the moderate increase scenario to demonstrate how current 

treatment goals set by the USFS (USDA Forest Service, 2022) may affect the study area and the 

large increase scenario to ensure the landscape experienced a strong response to prescribed fire. 
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Table 3. Treatment scenarios simulated across climate scenarios. 

Prescribed fire scenario Number of fires 
ignited annually 

Maximum fire 
size (hectares) 

No prescribed fire (No-Rx) 0 0 
Business-as-usual (1x-Rx) 5 14 
Moderate increase (3x-Rx) 15 48 
Large increase (10x-Rx) 50 140 

Timber harvesting 

Timber harvest was simulated using the business-as-usual scenario developed by Maxwell et 

al. (2020) based on 2012 county-level timber receipts and reports from National Forests within the 

Klamath ecoregion. Under this scenario, most harvesting occurs on private industrial lands in the 

form of clear cuts and harvesting on Federal lands generally occurs with a goal of promoting old-

growth characteristics through thinning operations. Harvest was parameterized to treat 278 hectares 

of the landscape every five years (see Appendix H). 

Scenarios 

To isolate the effects of prescribed fire on vegetation and fire regimes under climate change, 

a total of twelve scenarios were simulated using combinations of each climate and treatment 

scenario for a 50-year period. Each scenario was replicated three times for a total of 36 model runs 

(i.e., 3 climate scenarios * 4 prescribed fire scenarios * 3 replicates = 36 model runs).  

Analysis 

All data processing, model parameterization, model calibration, and data analyses were 

completed using R v4.2.0 (R Core Team, 2022) in RStudio 2022.02.03 (RStudio Team, 2022) with 

the following packages: dplyr (Wickham et al., 2022), ggplot2 (Wickham, 2016), ggpubr 
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(Kassambara, 2020), and terra (Hijman, 2022). R scripts can be found on the online repository 

(https://github.com/alideak/Landis-Siskiyous-Code.git).  

Landscape-scale analyses 

Aboveground carbon consumed by each ignition type was compared across scenarios. 

SCRPPLE calculates the mortality of aboveground biomass during each fire in g/m2. The biomass 

consumed by each ignition type was summed across all years of the simulation, averaged across 

repetitions, and converted to Tg of carbon per hectare. 

Burn severity was analyzed using the mean dNBR of all wildfires occurring across scenarios. 

To analyze the change in dNBR values through time across climate and treatment scenarios, a 

regression analysis was conducted using the ggpubr package (Kassambara, 2020) in R with dNBR as 

the dependent variable and simulation year as the independent variable. dNBR values for each year 

and combinations of climate and treatment scenarios were averaged across repetitions.  

Burn severity was further analyzed based on the slope and aspect of cells burned during 

wildfire events. Slope and aspect values were derived from a 1/3 arc second digital elevation model 

of the landscape (US Geological Survey, 2020) and each burned cell was analyzed to find the dNBR 

value during wildfire events. dNBR values were averaged across repetitions of simulations based on 

their slope (greater than or less than 20°), aspect (north- or south-facing), and climate region for the 

first and last 25 years of simulations of each climate and treatment scenario.  

The distributions of area burned by wildfire were analyzed to understand how climate and 

prescribed fire frequency and extent effected the average area burned by wildfire. Both human-

accidental and lightning ignited fire data were filtered to find the largest 50% of fires in all treatment 

and climate scenarios across repetitions and log-transformed to achieve a normal distribution prior 

to conducting analysis. To compare means across scenarios, we ran Bartlett’s test for 

homoscedasticity, followed by a one-way analysis of variance (ANOVA) using a the unique 
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combinations of climate and treatment scenarios as the independent variable. We also used a two-

way ANOVA to with treatment and climate scenarios as the independent variables. To analyze the 

statistical difference between scenarios, we used post-hoc Tukey’s honestly significant difference 

test.  

Local-scale analyses 

The effect of increasing prescribed fire frequency on aboveground and soil organic carbon 

storage was analyzed by comparing cells with prescribed fire applied at increasing frequencies and 

cells that had experienced a high-severity wildfire. We began by finding the amount of aboveground 

and soil organic carbon of every cell at each time step and the ignition type and severity of burned 

cells. We then summed the number of prescribed fires and wildfires that had occurred within each 

cell on the landscape during each simulation. To identify cells for analysis, we filtered cells to retain 

only cells where no wildfire occurred with between one and seven prescribed fires applied 

throughout the simulation at specified and equal intervals and cells that had experienced a single 

high-severity wildfire during the first five years of the simulation. Cells were grouped based on the 

type and amount of fire that occurred on each cell and climate scenario. For analysis, we calculated 

the mean and standard deviation of aboveground and soil organic carbon storage across these 

groups at one-year intervals. 

Similarly, cells were isolated across all climate and treatment scenarios to understand how 

prescribed fire effected burn severity locally. We found all cells where wildfire was not preceded by 

prescribed fire and cells treated with prescribed fire and subsequently burned in wildfire events. Cells 

were analyzed based on the length of time between prescribed fire and wildfire events and 

proportion of cells burning within each severity class.  
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CHAPTER III. 

RESULTS 

Landscape-scale 

The amount of aboveground carbon consumed by wildfires was lowest in the 10x-Rx 

scenario in all climate scenarios (Figure 3). However, the greatest total aboveground carbon 

consumption occurred during the 10x-Rx scenario due to carbon loss during prescribed fire events. 

Across climate scenarios, the largest amount of carbon consumed during wildfire events occurred in 

the warmer and drier climate scenario. Aboveground carbon consumed in the 10x-Rx scenario 

consistently remained below 100 Tg throughout the simulation period when calculated with wildfires 

alone but surpassed 150 Tg with carbon consumption during prescribed fire events included in the 

sum. 

Figure 3. Average aboveground carbon consumed by ignition type during the 50-year simulations 
across climate and treatment scenarios. The aboveground carbon values reported are the sum of all 
aboveground carbon consumed during each ignition type of each simulation averaged across three 
repetitions of each climate and treatment scenario. 
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Prescribed fire produced the strongest effect in the warmer and wetter climate scenario, with 

mean dNBR showing a downward trend through time in every treatment scenario and the largest 

effect taking place in the 3x-Rx and 10x-Rx scenarios (Figure 4). Fire severity also declined across 

treatment scenarios in the warmer and drier climate scenario, with the greatest decrease in the no-Rx 

scenario. During the historical climate scenario, fire severity increased in the no-Rx and 10x-Rx 

scenarios but decreased in the 1x-Rx and 3x-Rx scenarios. The average fire severity on the landscape 

during most years was moderate and there were only one to three years during each 50-year 

simulation where the mean dNBR fell within the high-severity category.  

Figure 4. Change in mean burn severity, as measured by dNBR, of wildfires for each simulation 
year across treatment and climate scenarios 
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Wildfire severity was more variable when analyzed across topographic variables, climate 

regions, and climate scenarios (Figure 6). In a historical climate scenario, there were little to no 

changes in severity during the no-Rx and 10x-Rx scenarios although increases in severity occurred 

on in the wettest climate region (climate region 3) on south aspects in the No-Rx treatment scenario. 

Severity decreased across all topographies and climactic gradients in the 3x-Rx scenarios, with the 

greatest decreases in the third (wettest) climate region on north-facing aspects and on slopes less 

than 20 degrees. In a warmer and drier climate, severity decreased across all climactic and 

topographical variables in the third climate region, with the least change on south-facing aspects. On 

south-facing aspects, severity increased in the second and third climate region, with the exception 

that severity remained nearly the same in the driest (first) climate region in the 10x-Rx scenario. In a 

warmer and wetter climate scenario, severity also decreased across climactic and topographical 

variables although slightly increased on north-facing aspects in the 1x-Rx scenario.  
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Figure 6. Change in the mean burn severity between the first and last 25 years of the simulation by 
treatment scenario and faceted by climate scenario and topographical variables. The color represents 
each of the three distinct climate regions. 

The distribution of the largest 50 percent of wildfires did not vary significantly across each 

unique scenario (Figure 5). Upon a two-way ANOVA with treatment scenarios and climate scenarios 

as independent variables, significant differences were found between treatment scenarios (p < 0.05) 

and climate scenarios (p < 0.001). Further analysis with the Tukey’s honestly significant difference 

post-hoc test showed significant differences between the No-Rx and 1x-Rx scenarios and the warmer 

and drier climate scenario with both the historical and warmer and wetter climate scenarios (p < 

0.001). 

Figure 5. The distributions of area burned by the largest 25 percent of wildfires across treatment 
and climate scenarios. The median area burned is shown by vertical lines.  
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(Figure 7). Results show that above and below ground carbon storage was maintained through time 

on sites where three prescribed fire treatments were ignited during a 50-year simulation period. 

Across climate scenarios, in cells where two prescribed fires were ignited, total carbon increased to 

nearly 15,000 g/m2. At frequencies greater than four prescribed fires per 50-year simulation period, 

carbon storage declined. 

In cells that experienced a high-severity fire during the first five years of the simulation, 

carbon storage decreased substantially below 5,000 g/m2. In these cells, carbon storage showed a 

sharp drop in carbon storage below 5,000 g/m2 that took between twenty and thirty years to 

rebound to the previous carbon storage amounts. In comparison, a single prescribed fire led to a 

slight decrease in carbon storage that quickly rebounded. These trends are consistent across climate 

scenarios. 

When aboveground and soil organic carbon were separately analyzed, aboveground carbon 

decreased over the simulation period with greater than one prescribed fire per 50-year simulation 

period, but soil organic carbon increased until prescribed fire frequency surpassed once per ten-year 

simulation period and following high-severity wildfire. At a frequency of three prescribed fires per 

50-years, the amount of aboveground and soil organic carbon within cells was nearly equivalent,

each equaling ~5,000 g/m2. 
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Figure 7. Mean total, aboveground, and soil organic carbon storage of cells with increasing 
prescribed fire treatment frequency across climate scenarios. Plots are faceted vertically by climate 
scenarios and horizontally by prescribed fire frequency. The error bar represents the standard 
deviation of each carbon pool on the landscape at each time steps. 

Prescribed fire increased the likelihood of low-severity wildfires on cells following prescribed 

fires across climate scenarios (Figure 8). Across all climate scenarios, 11% more sites burned at a low 

severity during wildfires ignited in the 25 years following treatment. Cells were more likely to burn at 

a low severity in a warmer and wetter scenario than in the historical and warmer and drier climate 

scenarios. 
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Figure 8. (a) the proportion of cells experiencing each severity class during wildfire events not 
preceded by wildfire events or prescribed fire across treatment and climate scenarios. (b) the 
proportion of cells burning at each severity class during wildfires following prescribed fire 
treatments. Results are shown by the number of years since the previous prescribed fire treatment 
and facetted by climate scenario. 
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CHAPTER IV. 

DISCUSSION 

Our hypotheses predicted that increased prescribed fire frequency would lower but stabilize 

above and belowground carbon storage due to lowered carbon consumption during wildfire events 

and decrease the severity and size of future wildfires.  

Analysis at the local scale showed prescribed fire stabilized carbon storage on cells where 

prescribed fires was applied up to three times per 50-year simulation period. At greater prescribed 

fire frequencies, carbon storage declined over the simulation period. When aboveground and soil 

organic carbon pools were separately analyzed in cells with increasing prescribed fire frequency, we 

found an upward trend in soil organic carbon until prescribed fire frequency surpassed once per ten-

year simulation period (similar to analysis by Pellegrini et al. (2018) finding an increase in soil organic 

carbon following frequent burning across conifer forest ecosystems). These results indicate a 

prescribed fire frequency of 15 years is adequate to maintain carbon storage at 10,000 g/m2 under 

both drier and wetter climate change scenarios. However, attempting to increase carbon storage by 

using lower frequencies of prescribed fire treatments may in turn, lead to a greater potential for a 

high-severity fire that could ultimately destabilize long-term carbon storage (as shown by Figure 1).  

As hypothesized, we found that increasing the application of prescribed fire by three and ten 

times the contemporary prescribed fire frequency and extent reduced aboveground carbon 

consumption during wildfires. Reducing aboveground carbon consumption during wildfire events 

has direct effects on the amount of carbon emissions emitted during wildfire events (Restaino & 

Peterson, 2013). As greater attention is paid to public health issues stemming from increased wildfire 

smoke exposure to communities, prescribed fire provides an opportunity to distribute emissions 

resulting from large smoke events during the wildfire season throughout the year when smoke may 
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be more manageable due to better burning conditions (D’Evelyn et al., 2022). 

Although prescribed fire was found to lower the severity of future wildfires, it was found to 

be relatively ineffective at decreasing the size of wildfires. Moreover, the effects of treatment on 

severity and area burned at a landscape-scale was largely overshadowed by the effects of climate. On 

a landscape scale, we found prescribed fire produced the strongest effects in the warmer and wettest 

climate scenario and within the wettest climate region on the landscape. In a warmer and drier 

climate scenario, there were minimal changes in the driest climate region, increases in severity on 

south-facing aspects, and the largest area burned during wildfire events occurred. At a local scale, 

prescribed fire was effective at lowering the severity of future wildfires, especially in the warmer and 

wetter climate change scenario. 

Combined, these findings suggest that the placement of treatments matters. Targeting 

treatments in areas of social-ecological concern, such as near the wildland-urban interface and areas 

with high ecological or cultural value, and within climactic gradients and topographies found to be 

most effective for reducing fire severity will provide opportunities for managers to decrease the risk 

of high-severity wildfire. Targeting treatments further allows land managers to leverage existing 

treatments and take advantage of limited funding and capacity for fuels reduction projects to reduce 

fire risk at scale (North et al., 2021). Forest managers may also want to consider alternative 

management solutions under divergent climate change scenarios when considering the placement of 

treatments. 

Limitations 

Fuels reduction techniques, such as thinning, were not intentionally placed to precede 

prescribed fire on the landscape. These treatments have been found to be important for influencing 

the behavior of prescribed fires and the spread of wildfires on the landscape. This may have 
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contributed to the elevated losses of carbon from prescribed fire and increased prescribed fire 

frequency and extent not having the expected effects on wildfire severity and area burned at a 

landscape-scale. 

It is also important to recognize that the study area exists within a larger landscape and was 

parameterized to only show the impacts of fires ignited within its borders. Although outside the 

scope of this study, forest management, climate change, and disturbance on the surrounding 

landscape also plays an important role in determining the trajectory of fire regimes and vegetation 

within the study area and across the larger landscape. 
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CHAPTER V.  

CONCLUSION 

The 2022 Wildfire Crisis Strategy (USFS, 2022) recognized the east slope of the Siskiyou 

Mountains as one of 29 landscapes at high-risk for catastrophic wildfires with shovel-ready projects 

in the US although it was not awarded initial investments for fuels reduction projects through the 

Bipartisan Infrastructure Law. As more funding sources become available for this work, it is 

important to consider how treatments may impact the landscape, the appropriate frequency and 

extent of prescribed fire needed to restore fire-adapted ecosystems, and how differing climate 

scenarios may affect how prescribed fire impacts the landscape.  

As climate change mitigation strategies increasingly turn towards natural climate solutions, 

forest management has received much attention for its ability to mitigate the global impacts of 

climate change through carbon sequestration (Griscom et al., 2017; Silva et al., 2022). Although 

prescribed fire could be viewed as a threat to carbon storage and fire suppression has increased 

carbon storage in forests over the past century, this carbon is increasingly vulnerable to combustion 

during high-severity wildfire events. Properly used at the correct frequency, prescribed fire has the 

potential to maintain carbon storage while having tangible effects on other land management goals, 

including biodiversity conservation, scenic and recreational value of landscapes, and reduced fire risk 

to adjacent communities.  

Our study showed a prescribed fire frequency of 15 years suitable for stabilizing 

aboveground and soil organic carbon storage in all climate scenarios. With increased funding, 

Federal agencies may have increased capacity to implement treatments to reduce fire risk. Our 

results suggest that by treating priority locations on public lands with the highest potential for 

catastrophic wildfires and at this prescribed fire frequency, managers can proactively reduce the 
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likelihood that these areas will experience destabilizing effects on carbon storage, reduce the amount 

of carbon lost during wildfire events, and reduce the severity of wildfires locally. Coupling thinning 

treatments with prescribed fire may further improve the outcomes of these management actions. 

We suggest future research explore how similar treatments may alter results over longer time 

periods with treatments more strategically placed across the landscape. More treatments may be 

located to leverage existing treatments and burned areas, as well as to protect wildland-urban 

interface communities. Future research may also quantify the funding and workforce capacity 

required to implement such treatments to inform realistic management solutions. 
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APPENDICES 

APPENDIX A. CLIMATE REGION CLASSIFICATION 
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APPENDIX B. SPECIES SIMULATED 

Species ID Scientific name Common name Functionalgroup 
ArbuMenz Arbutus menziesii Pacific madrone Hardwood 
Arctosta Arctostaphylos canascens Hoary manzanita Shrub_xeric 
Arctosta Arctostaphylos columbiana Hairy manzanita Shrub_xeric 
Arctosta Arctostaphylos nevadensis Pinemat manzanita Shrub_xeric 
Arctosta Arctostaphylos patula Greenleaf manzanita Shrub_xeric 
Arctosta Arctostaphylos viscida Whiteleaf manzanita Shrub_xeric 
CaloDecu Calocedrus decurrens California incense cedar Conifer 
Ceanothu Ceanothus cuneatus Buck brush Shrub_xeric 
Ceanothu Ceanothus pumilus Dwarf ceanothus Shrub_xeric 
Ceanothu Ceanothus velutinus Snowbrush ceanothus Shrub_xeric 
ChryChry Chrysolepis chrysophylla Golden chinqapin Hardwood 
Frangula Frangula californica Coffeeberry Shrub_xeric 
Frangula Frangula purshiana Cascara Shrub_xeric 
Garrya Garrya buxifolia Boxleaf silk tassel Shrub_xeric 
Garrya Garrya fremontii Bearbrush Shrub_xeric 
GaulShal Gaultheria shallon Salal Shrub_mesic 
MahoNerv Mahonia nervosa Cascade barberry Shrub_mesic 
NothDens Lithocarpus densiflora Tanoak Hardwood 
PinuJeff Pinus jeffreyi Jeffrey pine Conifer 
PinuLamb Pinus lambertiana Sugar pine Conifer 
PinuMont Pinus monticola Western white pine Conifer 
PseuMenz Pseudotsuga menziesii Douglas fir Conifer 
Quercus Quercus sadleriana Deer oak Shrub_xeric 
Quercus Quercus vacciniifolia Huckleberry oak Shrub_xeric 
Rhododen Rhododendron macrophyllum Pacific rhododendron Shrub_mesic 
Rhododen Rhododendron occidentale Western azalea Shrub_mesic 
Rubus Rubus leucodermis Whitebark raspberry Shrub_mesic 
Rubus Rubus parviflorus Thimbleberry Shrub_mesic 
Rubus Rubus ursinus Pacific blackberry Shrub_mesic 
Vacciniu Vaccinium ovatum Evergreen huckleberry Shrub_mesic 
Vacciniu Vaccinium parvifolium Red huckleberry Shrub_mesic 
WhipMode Whipplea modesta Common whipplea Shrub_mesic 
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APPENDIX C. TREE AND SHRUB AGES 
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APPENDIX D. ABOVEGROUND CARBON STORAGE 
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APPENDIX E. NECN SPECIES PARAMETERIZATION TABLE 

Species N Fixer GDD 
Min* 

GDD 
Max* 

Min January 
Temp (c) 

Drought 
Tolerance 

Leaf 
Longevity 

Epicormic 
Resprout 

Lignin Content 

Leaf Fine Root Wood Coarse 
Root 

ArbuMenz            

CaloDecu            

ChryChry            

NothDens            

PinuJeff     10       

PinuLamb            

PinuMont            

PseuMenz            

Arctosta  2 2 2 10   18 32 14 31 

Ceanothu  3 3 3 9   16  16  

Frangula  8 8 8 9   15  15  

Garrya     12 30      

GaulShal  6 6 6 9 30  32 32   

MahoNerv  7 7 7 9 30      

Quercus  1 1 1 1 1 1 1 1 1 1 

Rhododen     9   32 32   

Rubus  5 5 5 9   25  20  

Vacciniu     9   26 11 17  

WhipMode  6 6 6 12       

  

SOURCES 
Estimated based on known parameters of other species FRED database (Iversen et al., 2021)  

Thompson et al. (2015 Neill & Puettmann (2013) 
Thompson et al. (2006 Copeland & Harrison (2015) 

Estimation based on Thompson et al. (2006) & Thompson et al. (2015) Huff et al. (2018) 
Serra-Diaz et al. (2018 National Ecological Observatory Network (2021)  

TRY database (Kattge et al., 2020)  Meerdink et al. (2016) 
Loudermilk et al. (2014) Friesen (1991) 

Berner & Law (2016) Rundel (1979) 
Fire Effects Information System (Abrahamson, n.d.) Paramaterized using HydroPSO 
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Species 

C:N Ratio 
Max 

ANPP 
Max 

Biomass Leaf Fine Root Wood Coarse 
Root Litter 

ArbuMenz        
CaloDecu        
ChryChry        
NothDens        
PinuJeff        

PinuLamb        
PinuMont        
PseuMenz        
Arctosta  32      
Ceanothu  11      
Frangula        
Garrya        

GaulShal  32      
MahoNerv        
Quercus 1 1 1 1 1  1 

Rhododen 13 11      
Rubus  11   22   

Vacciniu  11   22   
WhipMode 

       
 
Footnotes 
1 Based on Quercus chrysolepsis - According to Nixon (2002) Quercus vaccinifolia falls into the oak subgroup golden oaks, 

and Quercus chrysolepsis was the only golden oak species available in the database.  
2 Based on Arctostaphylus pringlei, the only manzanita in the database 
3 GDD based on the min and max of and temp based on mean of Ceanothus spinosus and Ceanothus thyrsiflorus, the only 

two Ceanothus species in the database 
4 Based on mean between Vaccinium parvifolium and Vaccinium ovalifolium 
5 Based on Rubus parviflorus; GDD Max based on Whipplea modesta - couldn't get cohorts to reproduce with such a low 

GDD max 
6 Given a min january temp of -1 and GDD matching Arbutus mensiezii because according to 

https://www.dnr.wa.gov/publications/amp_nh_whimod.pdf Whipplea modesta is often found alongside Gaultheria 
shallon (GaulShal) and Arbutus mensiezii (ArbuMenz); GaulShal distribution closely matches Arbutus mensiezii as well 
so also GDD and min temp also assigned same GDD and min temp as ArbuMenz 

7 Based on Berberis fremontii 
8 Based on min and max of Frangula californica and Frangula purshiana 
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9 For those associated with the TRY database, if the species tolerance to drought was designated as low, medium or 
high, it was given a drought tolerance of 0.7, 0.8, or 0.9, respectively. If it was given an integer value of 1-5 (with 1 
being low tolerance to drought), it was given a drought tolerance of 0.7(if 1 or 2, rounded), 0.8 (3 or 4, rounded), or 
0.9 (5, rounded).  
If multiple species within a functional group had different drought tolerances, the value was averaged (for example, 
Ceanothus cuneatus has a high drought tolerance and Ceanothus velutinus has a low drought tolerance, so the Ceanothu 
functional group was given a drought tolerance of 0.8). 

10 If described as "drought tolerant," they were given a tolerance of 0.9 
11 Based on mean fine root C:N ratio for all within genus in database - shifted up to 40 because cohorts wouldn't 

reproduce otherwise 
12 Described as being drought tolerant, so given a tolerance of 0.9 
13 Based on mean of Rhododendron macrophyllum and R. occidentale 
14 Based on Arctostaphylos viscida 
15 Based on Frangula californica 
16 Based on Ceanothus cuneatus  
17 Based on Vaccinium parvifolium 
18 Based on Arctostaphylos glandulosa 
19 Based on mean of Quercus agrifolia, Q. douglasii, and Q. lobata 
20 Based on Rubus ursinus 
21 Based on Arctostaphylos uva-ursi 
22 Based on the mean of all species with genus in database, from Quested et al, 2003 
23 Based on Rubus allegheniensis 
24 Based on mean of Rubus phoenicolasius and R. saxatilis 
25 Based on Rubus saxatilis 
26 Based on mean of Vaccinium myrtillus, V. uliginosum, and V. vitis-idaea 
27 Based on root C:N ratio for Ceanothus fendleri 
28 Based on mean fine root C:N for Frangula alnus and F. caroliniana - the only Frangula species in FRED database 
30 FEIS describes these species as evergreen, similar to Arctostaphylos, therefore, leaf longevity was set at 1.5 years to 

mirror the leaf longevity of Arctostaphylos 
31 According to Kron et al., Arctostaphylos spp. is phylogentically closely related to Arbutus Mensiezii so unknown 

parameters where set to match those of A. mensiezii 
32 Based on mean of Ericaceae spp in TRY database 

* GDD Min based on 1% and GDD Max based on 99% GDD on 5° base in Thompson et al. (2006) and Thompson
et al., 2005 
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APPENDIX F. VALIDATION OF LANDIS-II INITIAL COMMUNITIES MAP USING LAI 

FROM REMOTE SENSING PRODUCTS 

Methods 

As LANDIS-II computes and produces LAI maps for June of each timestep, it is possible to validate 

the initial communities map interpolated for the study area using remotely sensed data. Although there are 

several of these products available, I chose the following two remote sensing products to do so: (1) 

MOD15A2H Moderate Resolution Imaging Spectroradiometer (MODIS) Level 4, Combined Fraction of 

Photosynthetically Active Radiation (FPAR) and LAI product (Myneni & Park, 2015) and (2) Ice, Cloud, and 

Land Elevation Satellite-2 (ICESat-2) ATL03 product (Neumann et al., 2021). MODIS offers four Level 4, 

Combined FPAR and LAI products: 500-meter composite datasets produced at 4- and 8-day intervals for 

data acquired by the Terra and Aqua satellites or solely the Terra satellite. The algorithm used to calculate LAI 

is based on empirical relationships between normalized differenced vegetation index values calculated from 

MODIS red and near-infrared bands and known LAI values for 13 known biomes and landcover types (Mu 

et al., 2013). These FPAR/LAI products are widely used for analyzing LAI over large land areas and have 

been found to perform reasonably well within a certainty of ±1 LAI (Yan et al., 2016).  

Using the MODIS/VIIRS Land Products Global Subsetting and Visualization Tool (ORNL DAAC, 

2018), MOD15A2H Version 6 MODIS Level 4, Combined FPAR/LAI 4-day composite data acquired by the 

Terra satellite was acquired for the study landscape for the time period between June 1 and June 4, 2020. 

These data were reprojected to 30-meter resolution and masked to the extent of the initial communities map. 

Invalid data values were filtered, and the raster was multiplied by the recommended scale factor of 0.01 to 

derive estimated LAI across the landscape 

NASA launched ICESat-2 in September 2018 carrying the Advanced Topographic Laser Altimeter 

System (ATLAS), an instrument that actively maps surface elevation using a 532-nm laser and photon-

counting detection technology. The laser is split into six beams arranged in pairs of two (a strong and weak 

beam) spaced approximately 3.3-km apart (A. L. Neuenschwander & Magruder, 2019). Through this 
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technology, the ATL03 product is acquired; this product provides the height above the WGS84 ellipsoid (i.e., 

elevation), latitude, longitude, and time of all photon data recaptured by the ATLAS instrument which has 

recently been used for the first to time by Zhang et al. (2021) to effectively estimate LAI. ICESat-2 ATL03 

data (Neumann et al., 2021) acquired on June 2, 2020, between latitudes of 41 and 43° north and longitudes 

of 123 and 124° west were downloaded. Using the Photon Research and 4 Engineering Analysis Library 

v3.28 (PhoREAL) toolbox, the number of photons returning from the ground and canopy and descriptive 

statistics for ground and canopy elevation were computed from beams one, three, and five for all photons 

returned from 0.01° latitude segments along each beam. Strong beams were selected for analysis because 

Neuenschwander et al. (2020) Neuenschwander et al. (2020) found that canopy heights were significantly 

underestimated by weak beams. LAI for each 0.01° latitude segment was calculated along each beam’s track 

using Zhang et al.’s (2021) equation:  

𝐿𝐴𝐼 =
𝐶
𝐺
	× 	ln	(1 +	

𝑅!
𝜌!
𝜌"
	× 	𝑅"

) 

where C is the clumping index, G is the distribution of foliage, 𝜌! is the number of photons returned 

from the canopy (𝑣), 𝑅" is the number of photons returned the ground (𝑔), and #!
#"

 is the ratio of canopy and 

ground reflectance. A clumping index of 0.69 was used based on a mean clumping index for mixed leaf tree 

cover (Chen et al., 2005). Assuming distribution of canopy foliage is random on the landscape, G equaling 0.5 

was input, similar to Zhang et al (2021) and #!
#"

 was input as 1/3 following methods used by Neuenschwander 

and Magruder (2016). Using the minimum and maximum latitude and longitude values provided in the 

statistics calculated with PhoREAL, it was possible to find all LANDIS-II and MODIS cells within the same 

spatial extent and calculate descriptive statistics that could then be compared to the ICESat-2 LAI values. To 

avoid allowing outliers to have undue influence on LAI, median values for both LANDIS-II and MODIS 

cells within each 0.1° ICESat-2 segment were calculated and analyzed. 

Results 

Overall, LANDIS-II LAI values fell within the range of values as expected by ICESat-2 and MODIS. 
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ICESat-2 was found to have a marginally larger mean LAI value (of 3.2) than LANDIS-II and MODIS with 

mean LAI values of 2.6 and 2.1, respectively. ICESat-2 also showed the largest range in LAI values, varying 

from a minimum LAI of 1.0 to a maximum LAI of 6.2. LANDIS-II ranged from 0.4 to 5.0 while MODIS 

had the smallest range of values, from 0.8 to 4.6. 

Although, LANDIS-II did not show a clear relationship with either ICESat-2 or MODIS LAI values, 

LAI values from ICESat-2 and MODIS demonstrated agreement among one another suggesting some 

reliability in the estimation of LAI between both methods. ICESat-2 however did appear to produce larger 

values than expected by MODIS.  

�ŽŵƉĂƌŝƐŽŶ�ŽĨ�>�E�/^Ͳ//�ĚĞƌŝǀĞĚ�>�/�ǀĂůƵĞƐ�ĨŽƌ�ĐĞůůƐ�ŝŶ�ŝŶŝƟĂů�ĐŽŵŵƵŶŝƟĞƐ�ŵĂƉ�ƚŽ�/��^ĂƚͲϮ�ĂŶĚ�
MODIS derived LAI values
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APPENDIX G. SCRPPLE FIRE CALIBRATION 
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APPENDIX H. TIMBER HARVEST SCENARIOS 

Source: Maxwell et al, 2020 

Owner 
ship 

# of 
cells Hectares Prescription 

Proportio
n 

landscape 

Area 
harvested (per 

5-year
timestep) 

2 801,797 72,162 Large scale thinning: punching holes in canopy 
to promote old growth structure 9.2% 0.08% 

2 801,797 72,162 Sudden oak death sanitation 9.2% 0.02% 

2 801,797 72,162 Promotion of sugar pine, removal of 
competition 9.2% 0.02% 

2 801,797 72,162 Reduce fire risk by reducing ladder fuels, 
(remove trees < 14 inches dbh) 9.2% 0.11% 

2 801,797 72,162 
Reduce fire risk by reducing ladder fuels, using 
mechanical thinning (remove trees < 30 inches 
dbh) 

9.2% 0.11% 

5 75,102 6,760 Timber harvest clear cut with replanting 1.0% 0.03% 

5 75,102 6,760 Post disturbance replanting 1.0% 0.01% 

6 40,367 3,633 Timber harvest small clear cut with replanting 1.3% 0.02% 

6 40,367 3,633 Post disturbance replanting 1.3% 0.01% 

7 106,894 9,620 Large scale thinning: punching holes in canopy 
to promote old growth structure 4.2% 0.04% 

7 106,894 9,620 Sudden oak death sanitation 4.2% 0.01% 

7 106,894 9,620 Promotion of sugar pine, removal of 
competition 4.2% 0.01% 

7 106,894 9,620 Low intensity fire based on 4-ft flame length 4.2% 0.01% 

7 106,894 9,620 Mixed Lethal Fire based on 6-ft flame length 4.2% 0.01% 

7 106,894 9,620 Reduce fire risk by reducing ladder fuels, 
(remove trees < 14 inches dbh) 4.2% 0.03% 

7 106,894 9,620 
Reduce fire risk by reducing ladder fuels, using 
mechanical thinning (remove trees < 30 inches 
dbh) 

4.2% 0.05% 

7 106,894 9,620 Timber harvest patch cut with replanting 4.2% 0.02% 

8 128,710 11,584 Low intensity fire based on 4-ft flame length 6.6% 0.01% 

8 128,710 11,584 Mixed Lethal Fire based on 6-ft flame length 6.6% 0.01% 

8 128,710 11,584 
Reduce fire risk by reducing ladder fuels, 
(remove trees < 14 inches dbh), small target 
area 

6.6% 0.04% 

8 128,710 11,584 
Reduce fire risk by reducing ladder fuels, using 
mechanical thinning (remove trees < 30 inches 
dbh) 

6.6% 0.04% 

Source: Maxwell et al, 2020 

Ownerships 
2 Federal, BLM and non-specified FS lands 7 Wilderness area treatments 
5 Private industrial forest lands  8 Wildland urban interface 
6 Private non-industrial forest lands 
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