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DISSERTATION ABSTRACT

David Graham Wyrick

Doctor of Philosophy

Department of Biology

September 2022

Title: Contextual Modulation of Naturalistic Behavior and Sensory Processing

Forming representations of the sensory world and navigating within it require an

animal to actively interact and sample key aspects of the environment. In the olfactory

system, many organisms search for food by actively sensing the odor environment,

employing search programs to successfully navigate across turbulent odor plumes to

the source. In the visual system, we effortlessly perceive the world of light, shadow,

color, and movement as a stable, predictable, and unified percept. We use this

perception to extract information about the outside world we live in, to move our

eyes across a line of text, and critically, to move through our environment. Here,

we present three studies investigating how animal behavior and sensory processing

interact to produce the complex dynamics we observe in behavioral and neural data.

In Chapter II, we characterized the dynamics of olfactory search behavior in freely

moving mice using latent state space modelling. We identified behavioral motifs that

constitute the overall search strategy of the mouse. By segmenting the behavior into

these identifiable and reoccurring motifs, we determined that mice actively sample

the environment in a sniff-synchronized, two-state strategy to gain information about

concentration gradient cues.
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In Chapter III, we linked theoretical predictions from a spiking neural network

model to observations from electrophysiological recordings in mouse visual cortex and

to the behavioral state of the animal. We connect mechanisms in our model to neural

activity by modeling the locomotion-induced perturbations in cortex as an increase

in variance of the input currents to excitatory neurons, which decreases the gain of

single neurons and an acceleration of stimulus-processing speed.

In Chapter IV, we quantified the effects of temporal context and expectation on

the sensory processing of natural images in mouse visual cortex. We found that all

areas we recorded from predominately encode for the temporal context in which the

images were presented in. In other words, it matters how and when a stimulus

is presented to an animal. Overall, the conjunctive encoding of representations

of natural scenes and temporal context was modulated by the expectation about

sequential events.

This dissertation consists of previously published co-authored material.

v



CURRICULUM VITAE

NAME OF AUTHOR: David Graham Wyrick

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, Oregon, USA
Washington State University, Pullman, WA, USA

DEGREES AWARDED:

Doctor of Philosophy in Biology, 2022, University of Oregon
Bachelor of Science in Physics, 2013, Washington State University

AREAS OF SPECIAL INTEREST:

Neural dynamics, sensory coding, serotonin, psychedelics, causality, complexity

PROFESSIONAL EXPERIENCE:

Graduate Research Assistant, University of Oregon
Electro-Optics Scientist, Boeing Company

PUBLICATIONS:

David G Wyrick* , Hannah Choi, Nicholas Cain , Rylan Larsen, Jerome
Lecoq, Marina Garrett, Luca Mazzucato. Differential encoding of temporal
context and expectation across the visual hierarchy. BioRxiv. 2022.

Philip RL Parker, Eliott TT Abe, Natalie T Beatie, Emmalyn SP Leonard, Dylan
M Martins, Shelby L Sharp, David G Wyrick, Luca Mazzucato, Cristopher
M Niell. Distance estimation from monocular cues in an ethological
visuomotor task. BioRxiv. 2021.

David G Wyrick, Luca Mazzucato. State-dependent regulation of cortical
processing speed via gain modulation. Journal of Neuroscience 41 (18).
2021.

vi



Teresa M Findley*, David G Wyrick*, Jennifer L Cramer, Morgan A
Brown, Blake Holcomb, Robin Attey, Dorian Yeh, Eric Monasevitch,
Nelly Nouboussi, Isabelle Cullen, Jeremea O Songco, Jared F King,
Yashar Ahmadian, Matthew C Smear. Sniff-synchronized, gradient-guided
olfactory search by freely moving mice. eLife 10:e58523. 2021.

A-N Chené*, D Wyrick*, J Borissova, M Kuhn, A Hervé, S Ramírez Alegría,
C Bonatto, J-C Bouret, R Kurtev. Improving distances to Galactic Wolf-
Rayet stars. Wolf-Rayet Stars: Proceedings of an International Workshop
held in Potsdam, Germany, 1.–5. June 2015

Sheng-Ting Hung, Shiva K Ramini, David G Wyrick, Koen Clays, Mark G
Kuzyk. The role of the polymer host on reversible photodegradation in
disperse orange 11 dye. Proc. SPIE 8474, Optical Processes in Organic
Materials and Nanostructures, 84741A. 2012.

vii



ACKNOWLEDGEMENTS

I would like to thank my mentor, Luca Mazzucato, for his support and guidance

throughout the past half decade. His unwavering enthusiasm and energy provided a

perfect counterbalance to my deep-set skepticism of scientific progress (as it pertains

to disentangling the complexity of brains). I am forever grateful for the engaging

discussions I was able to have with him. He has helped me become a more precise

scientist, a more structured writer, and yes, a more optimistic person. Thank you

to all of my academic mentors - Matt Smear, Cris Niell, Yashar Ahmadian, James

Murray, Santiago Jaramillo, and Kip Keller - for serving on my committee and helping

to guide my research.

Next, I would like to acknowledge my experimental colleagues, whose data we

computational neuroscientists so desperately want and need. Much of the work

contained within this dissertation and outside it would not have been possible without

you. Thank you to Reese Findley and Matt Smear, for collaborating with me on the

olfactory search project and helping me start my graduate career with a success.

Thank you to Phil Parker, Angie Michaiel, and Cris Niell, for sharing their precious

data on psychedelics with me. Even though I didn’t necessarily find what I was

looking for, I learned an immense amount and am inspired to keep investigating.

Thank you to Evan Vickers, who can collect more data than any one person can

analyze. I would also like to acknowledge all of the scientists and organizations that

share data to the field at large. The data portion of Chapter III and IV was collected

and shared by scientists at the Allen Institute for Brain Science. Thank you for such

a monumental survey of data. Open science is better science. And thank you to

all of the collaborators I have been fortunate enough to work with and learn from -

viii



Hannah Choi, Marina Garrett, Amin Nejatbakhsh, Francesco Fumarola, and Stefano

Recanatesi.

I would be remiss not to acknowledge the members - past and present - of the

neurotheory group. It is not an exaggeration to say that Elliott Abe helped convince

me to finish graduate school. Not because he had a compelling argument to stay, but

because he consistently reminded me that he didn’t want to be the only computational

person in our class. One is the loneliest number they say. All jokes aside, I am grateful

for his words of encouragement during those early days. Throughout our studies, he

has always been there to lend a helping hand, or to have an intellectual discussion

with. His work ethic and enthusiasm for neuroscience inspired me to dig deeper. To

Nicu Istrate, thank you for being my friend / housemate during covid times. To

the old guard - Gabe Barello, Caleb Holt, Takafumi Arakaki - thank you for your

mentorship, friendship, and computer wizardry. I should not have been given sudo

privileges, but you gave them to me anyway. To the present members of the joint labs

- Lia Papadopolous, Audra McNamee, Christian Schmidt, Ben Lemberger, Matthew

Trappett, James Murray, Danny Burnham - I will miss you all. I am grateful to have

been part of this scientific community. Maybe Elliott was on to something after all.

And finally, I would like to express my deepest gratitude to my friends and family,

who supported me through this ordeal we call graduate school. I could not have done

it without you.

ix



This work is dedicated to my mom, for trusting me to find my own way; to my dad,

for supporting me despite our disagreements; to my sister, for showing me what true

grit looks like; to my brother, for inspiring me to look inward; to Kevin2, for the

conversations; and to Leigh, for loving me when I needed it most.

x



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Chapter II: Quantifying active sensation . . . . . . . . . . . 5

1.2. Chapter III: Moving through the visual world . . . . . . . . . 6

1.3. Chapter IV: Temporal context and expectations modulate the visual
experience . . . . . . . . . . . . . . . . . . . . . . . . 7

II. SNIFF-SYNCHRONIZED, GRADIENT-GUIDED OLFACTORY SEARCH BY
FREELY MOVING MICE . . . . . . . . . . . . . . . . . . . . . 8

2.1. Author contributions . . . . . . . . . . . . . . . . . . . . 8

2.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5. Methods and Materials . . . . . . . . . . . . . . . . . . . 46

2.6. Bridge to Chapter III . . . . . . . . . . . . . . . . . . . . 66

2.7. Supplemental Figures . . . . . . . . . . . . . . . . . . . . 68

III. STATE-DEPENDENT REGULATION OF CORTICAL PROCESSING SPEED
VIA GAIN MODULATION . . . . . . . . . . . . . . . . . . . . 84

3.1. Author contributions . . . . . . . . . . . . . . . . . . . . 84

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . 123

xi



Chapter Page

3.6. Bridge to Chapter IV . . . . . . . . . . . . . . . . . . . . 133

IV. DIFFERENTIAL ENCODING OF TEMPORAL CONTEXT AND
EXPECTATION UNDER REPRESENTATIONAL DRIFT ACROSS THE
VISUAL HIERARCHY . . . . . . . . . . . . . . . . . . . . . . 134

4.1. Author contributions . . . . . . . . . . . . . . . . . . . . 134

4.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . 146

4.5. Methods . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.6. Supplemental Figures . . . . . . . . . . . . . . . . . . . . 156

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . 158

xii



LIST OF FIGURES

Figure Page

2.1. Behavioral assay for freely-moving olfactory search . . . . . . . . . . 14

2.2. Mice use concentration gradient cues in turbulent flow to perform search 17

2.3. Distributions of sniffs and nose positions during search task . . . . . . 20

2.4. Quantifying kinematic parameters during olfactory search . . . . . . . 22

2.5. Kinematic rhythms synchronize with the sniff cycle selectively during olfactory
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6. Recurring movement motifs are sequenced diversely across mice and consistently
across stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7. Behavioral motifs can be categorized into two distinct groups . . . . . 31

2.8. Motif onsets synchronize to the sniff cycle . . . . . . . . . . . . . . 33

2.9. The allocentric spatial distribution of investigation and approach occupancy 36

2.10. Occupancy maps indicate an advantage for investigation of both sides . . 40

2.11. Calibrating alignment of video frames with sniff signal . . . . . . . . 68

2.12. Characterizing the odor stimulus conditions . . . . . . . . . . . . . 69

2.13. Session statistics across trainer sessions . . . . . . . . . . . . . . . 70

2.14. Mice generalize search task to novel odorants and variable |C| session . . 71

2.15. Idiosyncratic occupancy distributions across individual mice . . . . . . 72

2.16. Sniff synchronization shuffle test . . . . . . . . . . . . . . . . . . 73

2.17. Kinematic rhythms for premature initiations during the intertrial interval and
between decision line and reward port during trials . . . . . . . . . . 74

2.18. Motif statistics and examples and linear decoder results for 80:20 experiments 75

2.19. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 6 states . . . . . . . . . . . . . 76

xiii



Figure Page

2.20. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 10 states . . . . . . . . . . . . 77

2.21. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 20 states . . . . . . . . . . . . 78

2.22. Motif shapes across individuals . . . . . . . . . . . . . . . . . . . 79

2.23. Shuffle test for the difference in sniff synchronization between investigation and
approach motifs for movement parameters . . . . . . . . . . . . . . 80

2.24. Shuffle test for sniff synchronization of motif onset for investigation and approach
motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.25. The allocentric spatial distribution of investigation and approach occupancy for
individual mice . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.26. Occupancy maps indicate an advantage for investigation of both sides for both
stay trials and switch trials . . . . . . . . . . . . . . . . . . . . 83

3.1. Conceptual summary of the main results. . . . . . . . . . . . . . . 101

3.2. Biological plausible model of cortical circuit . . . . . . . . . . . . . 103

3.3. Linking gain modulation to changes in cluster timescale. . . . . . . . . 107

3.4. Perturbations control stimulus-processing speed in the clustered network. 111

3.5. Linking gain modulation to changes in processing speed. . . . . . . . . 116

3.6. Single-cell responses to perturbations. . . . . . . . . . . . . . . . . 119

3.7. Locomotion effects on visual processing are mediated by gain modulation. 122

3.8. Anticipation of stimulus decoding persists even after matching the distribution
of firing rates across behavioral conditions, but reduces the change in peak
decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1. Presenting images in a variety of stimulus contexts determines single cell activity
along the visual hierarchy . . . . . . . . . . . . . . . . . . . . . 137

4.2. Decoding of natural images across different stimulus contexts . . . . . 140

4.3. Decoding responses to expected and unexpected natural images reveals possible
predictive coding mechanism in RSP . . . . . . . . . . . . . . . . 141

4.4. Decoding of stimulus contexts using the population responses to the same
natural image . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



Figure Page

4.5. Representational drift revealed from decoding the epoch in which an image was
presented in . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6. Generalization performance under representational drift . . . . . . . . 147

4.7. Validation of decoding results with field standard electrophysiological and two-
photon functional datasets . . . . . . . . . . . . . . . . . . . . . 156

4.8. Generalization of main sequence image representations extends to transition
control context . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xv



LIST OF TABLES

Table Page

1. Parameters for the clustered network used in the simulations. . . . . . . 88

2. Model parameters for the reduced two-cluster network . . . . . . . . . 92

3. Classification of state-changing perturbations. . . . . . . . . . . . . 114

xvi



CHAPTER I

INTRODUCTION

Trying to understand perception by understanding neurons is like trying to

understand a bird’s flight by studying only feathers. It just cannot be done.

- David Marr, Vision: A Computational Approach, 1982

We are products of our context, in each moment.

- J. Jones

Let’s talk about numbers. It is estimated that the observable Universe contains

100 billion galaxies, spanning a diameter of 8.8 x 1026 meters. In this immensity, our

own galaxy hosts 300 billion stars, 1 of which we call home. Orbiting at a favorable

distance of 1.5 x 108 m and with a significant portion of heavy elements, life began and

ended for 99% of all species to appear on earth. Fast forward through 3.7 billion years

of evolution to the last cosmic second. The human brain contains roughly 86 billion

neurons, with up to 500 trillion synaptic connections. In only the last few hundred

years, humans have used their 3 pound gooey masses together in the scientific pursuit

to understand the Universe. Modern computing (a CPU can perform at 300 billion

floating point operations per second) and neural recording technologies (a 2-photon

microscope can record from 10,000s of neurons across the cortex simultaneously)

have uniquely positioned the scientific community to investigate the investigator. Or

at least a distant relative of the investigator, like the mouse, in this dissertation. So,

how do we even begin to tease apart the complexity of the brain and the behavior it

manifests?

Fundamental to the science of biology is observation. An evolutionary biologist

observes the natural world - the different types of animals and plants that constitute

a local environment - to say something about the underlying processes that shaped
1



the origin and dynamics of the species of interest. A molecular biologist observes the

inner workings of cells, mini universes unto themselves, to form hypotheses about the

molecular mechanisms driving some biological function. A neuroscientist observes

the activity of neurons - while attempting to control the sensory input the animal

observes - to understand how representations of the sensory world are encoded and

manipulated by the brain to generate behavior. Historically, this was conducted

while an animal was under anesthesia or while an awake animal was head restricted

to limit the sensory inputs to those determined by the experimenter and allow

imaging and electrophysiological technologies to be utilized. But this disrupts the

loop for which the brain evolved to perform. That is, to interpret the sensory world

whilst simultaneously interacting and changing it. Sensory representations guide the

behavior of an animal in it’s environment. In turn, animal behavior - movement -

shapes the sensory input the animal observes.

Connecting the function of neural circuits to the emergent behavior of animals

is a paramount goal in the field. Once an after thought in the analysis of neural

data, characterizing the phenomenology of naturalistic animal behavior is of vital

importance for understanding how populations of neurons process the sensory world.

Indeed separating the analysis of neural data and behavior, through techniques like

head-fixation and trial averaging, is no longer proving adequate when it comes to

explaining neural activity in sensory areas. Recent studies have shown that movement

related signals - locomotion (Niell and Stryker, 2010), arousal (Stringer et al., 2019b),

respiration (Tort et al., 2018), and uninstructed “task-irrelevant” movements like facial

twitches (Musall et al., 2019) - pervade areas across the brain, including sensory areas.

Why may this be the case? Put simply, sensing the environment is not a passive

process. It requires an animal to actively move through the world to sample sensory

2



scenes. Furthermore, movement - through eye saccades, whisking, self-motion, etc

- directly changes the spatiotemporal statistics of sensory stimuli that an animal is

exposed to (Wachowiak, 2011; Michaiel et al., 2020). Thus, it is not surprising to

observe such ubiquitous representations of behavior, especially in sensory areas.

In the olfactory system, active sensation through sniffing is required to expose

olfactory bulb neurons to odorants in the environment. Sniffing entrains neural

activity of these sensory neurons and even areas further up the hierarchy like the

primary olfactory cortex and pre-frontal cortex (Shusterman et al., 2011; Tort et al.,

2018). Ethologically, active sensation through sniffing enables animals to navigate

turbulent odor environments to sources of food or mates. An experimental paradigm

which allowed mice to perform this behavior unrestrained, in a freely moving context

would provide further insights into the behavioral strategies animals use and how

these relate to the underlying neural activity. In chapter II, we tackle the first task

in this pair and investigate behaving animals in an ethologically relevant olfactory

search task. By developing a novel method for quantifying animal behavior, we were

able to monitor the animal’s movements moment by moment and connect them to

the external contexts (i.e. environmental variables like odor concentration gradients,

or task vs no-task) in which the animal was operating in. With this quantification, we

were able to characterize the strategies animals use while actively sensing an olfactory

scene. We learned that mice actively move their snout in a sniff-synchronized way

that only appeared during goal-directed, odor-guided behavior. Crucially, this was

only observable in a freely-moving context, where the animal was able to initiate trials

of olfactory search.

Like olfaction, vision is not a passive process. It entails active scanning

of the eyes across the visual scene (Yarbus, 1967). The traditional feedforward,

3



hierarchical view of visual processing consists of the brain constructing, in each

moment, a representation of the world from bottom-up sensory evidence (Van Essen,

1979). This view, while still a mainstay of our understanding, has been modified

to encompass context-dependent modulations of visual responses by top-down and

lateral connections between cortices and by neuromodulatory input (Khan and Hofer).

What emerges is a view of visual processing that is strongly influenced by internal

models of the world (Fiser et al., 2016), expectations (Poort et al., 2015), the state of

the animal (Musall et al., 2019), and the statistics of the natural world (Field, 1987).

In other words, the context in which an animal processes visual information. The

most salient example is that of self-motion, where it has been shown that projections

from anterior cingulate and secondary motor cortex into primary visual cortex (V1)

send motor-related signals that can change to reflect new sensory feedback when

visuomotor coupling is inverted (Keller et al., 2012). These top-down signals into V1

can be understood in terms of a prediction-based and context-dependent processing

of the sensory world (Keller and Mrsic-Flogel, 2018), where behavior and sensory

processing form a closed loop process. In chapter III and IV, we investigate internally

driven (through the state of the animal) and externally driven (through experimental

conditions) contextual modulations of visual processing in an effort to understand

this interplay between behavior and sensory processing.

As a whole, this dissertation is focused on how context - both externally and

internally driven - shapes naturalistic behavior and sensory processing. In the

broadest sense, context can be defined as the behavioral state(s) of the animal while

recording from neural populations. Is the animal running or at rest? Is the animal

whisking or spontaneously moving its face? Context can be the specific characteristics

of the environment an animal is in or the particular stimuli an animal is exposed to.

4



Are there odor gradients present or not? Are the visual stimuli presented expected

or unexpected? A deeper understanding of the context in which animals engage in

behavior and the context in which we record neuron populations will allow us to

bridge the gap between neural circuits and behavior. We conclude this chapter with

the abstracts for Chapters II - IV.

1.1 Chapter II: Quantifying active sensation

For many organisms, searching for relevant targets such as food or mates

entails active, strategic sampling of the environment. Finding odorous targets

may be the most ancient search problem that motile organisms evolved to solve.

While chemosensory navigation has been well characterized in micro-organisms

and invertebrates, spatial olfaction in vertebrates is poorly understood. We have

established an olfactory search assay in which freely-moving mice navigate noisy

concentration gradients of airborne odor. Mice solve this task using concentration

gradient cues and do not require stereo olfaction for performance. During

task performance, respiration and nose movement are synchronized with tens of

milliseconds precision. This synchrony is present during trials and largely absent

during inter-trial intervals, suggesting that sniff-synchronized nose movement is a

strategic behavioral state rather than simply a constant accompaniment to fast

breathing. To reveal the spatiotemporal structure of these active sensing movements,

we used machine learning methods to parse motion trajectories into elementary

movement motifs. Motifs fall into two clusters, which correspond to investigation

and approach states. Investigation motifs lock precisely to sniffing, such that the

individual motifs preferentially occur at specific phases of the sniff cycle. The

allocentric structure of investigation and approach indicate an advantage to sampling

5



both sides of the sharpest part of the odor gradient, consistent with a serial sniff

strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse

olfactory search and guides ongoing work into the underlying neural mechanisms.

1.2 Chapter III: Moving through the visual world

To thrive in dynamic environments, animals must be capable of rapidly and

flexibly adapting behavioral responses to a changing context and internal state.

Examples of behavioral flexibility include faster stimulus responses when attentive and

slower responses when distracted. Contextual or state-dependent modulations may

occur early in the cortical hierarchy and may be implemented via top-down projections

from cortico-cortical or neuromodulatory pathways. However, the computational

mechanisms mediating the effects of such projections are not known. Here, we

introduce a theoretical framework to classify the effects of cell-type specific top-down

perturbations on the information processing speed of cortical circuits. Our theory

demonstrates that perturbation effects on stimulus processing can be predicted by

intrinsic gain modulation, which controls the timescale of the circuit dynamics. Our

theory leads to counter-intuitive effects such as improved performance with increased

input variance. We tested the model predictions using large-scale electrophysiological

recordings from the visual hierarchy in freely running mice, where we found that a

decrease in single-cell intrinsic gain during locomotion led to an acceleration of visual

processing. Our results establish a novel theory of cell-type specific perturbations,

applicable to top-down modulation as well as optogenetic and pharmacological

manipulations. Our theory links context, connectivity, dynamics, and information

processing via gain modulation.

6



1.3 Chapter IV: Temporal context and expectations modulate the visual

experience

The classic view that neural populations in the visual cortex preferentially encode

responses to visual stimuli has been strongly challenged by recent experimental

studies. A large fraction of variance in visual responses in rodents can be attributed

to behavioral state and movements, trial-history, or salience. Here, we present

a comprehensive experimental and theoretical study showing that the cortical

visual hierarchy differentially encodes the temporal context and expectation of

naturalistic visual stimuli. We measured layer-specific neural responses to expected

and unexpected sequences of natural scenes across three visual areas using 2p imaging

in behaving mice: the primary visual cortex (V1), the posterior medial higher order

visual area (PM), and retrosplenial cortex (RSP). We found that all three areas

predominantly encode for the temporal context in which the images were presented.

Information about image identity in neural population activity only emerged when

images were presented within a recurring sequence, and decreased along the visual

hierarchy. We found that the conjunctive encoding of temporal context and image

identity was modulated by the emergence of expectation about sequential events. We

found enhanced oddball responses, signaling expectation violation, in V1 and PM. We

found evidence for predictive coding in RSP, where the oddball response recapitulated

the identity of the missing image. We further found evidence for representational drift

in visual responses in all areas on the timescale of minutes. Despite this drift, the

population responses in V1 and PM, but not in RSP, maintained stable encoding

of visual information. Our results establish temporal context and expectation as

substantial encoding dimensions in the visual hierarchy and suggest that differential

responses along the visual hierarchy instantiate a predictive coding mechanism.
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CHAPTER II

SNIFF-SYNCHRONIZED, GRADIENT-GUIDED OLFACTORY SEARCH BY

FREELY MOVING MICE

2.1 Author contributions

Originally published as Teresa M Findley*, David G Wyrick*, Jennifer

L Cramer, Morgan A Brown, Blake Holcomb, Robin Attey, Dorian Yeh, Eric

Monasevitch, Nelly Nouboussi, Isabelle Cullen, Jeremea O Songco, Jared F King,

Yashar Ahmadian, Matthew C Smear. Sniff-synchronized, gradient guided olfactory

search by freely moving mice. eLife, 2021. 10:e58523. *Authors contributed equally.

TF and MS conceived the study. MB, TF, and MS designed, built, and maintained the

behavioral rig. TF, JC, BH, RA, DY, EM, NN, IC, JS, and JK trained mice. JC and

TF performed naris occlusion experiments. DW and TF established and implemented

Deeplabcut tracking, DW and YA designed and performed the AR-HMM analysis.

TF, DW, BH, YA, and MS analyzed data and wrote the manuscript.

2.2 Introduction

Sensory observations are often made in concert with movements (Ahissar and

Assa, 2016; Gibson, 1966). During active search behavior, animals make sampling

movements in order to extract relevant sensory information from the environment

(Gibson, 1962; Schroeder et al., 2010). Sampling behavior is flexible, and can be

customized for the problem the animal is trying to solve (Kleinfeld et al., 2006; Yarbus,

1967). In the brain, sensory and motor systems interact extensively (Andersen and

Mountcastle, 1983; Duhamel et al., 1992; McGinley et al., 2015b; Musall et al., 2019;

Niell and Stryker, 2010; Poulet and Hedwig, 2006; Sommer and Wurtz, 2008; Stringer

et al., 2019b), which reflects the importance of interpreting self-induced stimulus
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dynamics (Sperry, 1950; von Holst and Mittelstaedt, 1950; Webb, 2004). Here, we

show how mice sample the environment while navigating a noisy odor gradient.

Navigating by chemical cues may be one of the most ancient problems motile

organisms evolved to solve, and it remains crucial in the lives of almost all modern

species. Unicellular organisms and some invertebrates navigate chemical gradients

by chemotaxis (Bargmann, 2006; Berg, 2000; Lockery, 2011). In essence, their

movement programs can be described as having two states: they move straight when

the concentration is increasing and reorient their movements when the concentration

is decreasing. Whereas chemical gradients are stable and informative at the spatial

scale of these organisms, for many larger or flying organisms, odor gradient cues

do not provide useful positional information (Crimaldi et al., 2002; Murlis et al.,

1992). At this larger spatial scale, turbulent airflow moves odor molecules in dynamic

spatiotemporal patterns, disrupting concentration gradients and nullifying classical

chemotaxis strategies. Instead, olfactory cues often gate movements that depend

on other sensory modalities. Here too, these organisms’ behavioral structure can

be described as transitions between two states: detection of odor promotes upwind

movement while the absence of odor promotes crosswind casting movement (Kennedy

and Marsh, 1974; van Breugel and Dickinson, 2014; Vickers and Baker, 1994). In

this behavioral program, known as odor-gated anemotaxis, odor cues gate behavioral

responses to positional information provided by another modality. In both chemotaxis

and odor-gated anemotaxis, search tasks can be described with a two-state search

model.

In comparison to invertebrates, our understanding of olfactory search behavior

in vertebrates is more rudimentary, even in commonly-studied rodent models. In

these animals, access to the olfactory environment is gated by respiration, which is in
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turn responsive to incoming olfactory stimulation (Kepecs et al., 2006; Wachowiak,

2011). Novel odors evoke rapid sniffing, during which respiration synchronizes with

whisker, nose, and head movements on a cycle-by-cycle basis (Kurnikova et al., 2017;

Moore et al., 2013; Ranade et al., 2013). Thus, during active mammalian olfaction,

sensory and motor systems interact in a closed loop via the environment, as is true for

other sensory modalities such as vision or somatosensation (Ahissar and Assa, 2016;

Gibson, 1966). The cyclical sampling movements coordinated by respiration further

synchronize with activity in widespread brain regions (Karalis and Sirota, 2018; Kay,

2005; Macrides et al., 1982; Vanderwolf, 1992; Yanovsky et al., 2014; Zelano et al.,

2016) similarly to correlates of locomotor, pupillary, and facial movements observed

throughout the brain (McGinley et al., 2015a; Musall et al., 2019; Niell and Stryker,

2010; Stringer et al., 2019b). Respiratory central pattern generators may coordinate

sampling movements to synchronize sensory dynamics across modalities with internal

brain rhythms (Kleinfeld et al., 2014).

Previous work has shown that rodents follow odor trails, where the concentration

gradient is steep and stable, with rapid sniffing accompanied by side-to-side head

movements(Jones and Urban, 2018; Khan et al., 2012). In these conditions, serial

sniffing and stereo olfactory cues guide movements of the nose. Likewise, moles used

concentration comparisons across space and time to locate a food source in a sealed

experimental chamber in which a lack of airflow allowed for even diffusion of a chemical

gradient (Catania, 2013). In this study, when input to the nares was reversed, moles

navigated towards odor sources at a distance, but demonstrated significant deficits

at identifying odor location when near the source. Behavioral modeling in mice

further supports that inter-naris concentration comparison plays a more important

role in search near the source (Liu et al., 2020). Thus, both serial sniffing and stereo
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cues can guide olfactory search behavior. The sensory computations and movement

strategies employed during navigation of an airborne odor plume are less clear. In

previous experiments where rodents searched in airborne odor plumes, mice developed

a memory-based strategy of serially sampling each possible reward location for the

presence of odor, turning search tasks into detection tasks (Bhattacharyya and Singh

Bhalla, 2015; Gire et al., 2017). Thus, it remains unclear whether mammals can

follow noisy concentration gradients under turbulent conditions.

To better understand the sensory computations and sampling strategies for

olfactory search, we designed a two-choice behavioral assay where mice use olfactory

cues to locate an odor source while we monitor sniffing and movements of the head,

nose, and body. We found that mice use a concentration gradient-guided search

strategy to navigate olfactory environments that contain turbulent flow. We found

that these navigational behaviors are robust to perturbations including introduction

of a novel odorant, varying the concentration gradient, and naris occlusion. Given

the fundamental importance of sniffing to olfactory function, we hypothesized that

mice would selectively sample the environment such that nose movement would be

tightly coupled to respiration. Consistent with this hypothesis, we found that mice

synchronize rhythmic three-dimensional head movements with the sniff cycle during

search. These sniff-synchronized movement rhythms are prominent during trials,

and largely absent during the inter-trial interval, suggesting that sniff synchronous

movement is a pro-active strategy rather than a reactive reflex. To find structure

in this search strategy, we used unsupervised computational methods to parse

movement trajectories into discrete motifs. These movement motifs are organized into

two distinguishable behavioral states corresponding to investigation and approach,

reminiscent of the two-state olfactory search programs described in smaller organisms.
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Temporally, investigation motifs lock to the sniff cycle with precision at a tens of

milliseconds scale. Spatially, patterns of investigation and approach usage indicate

a strategic advantage for investigating across the steepest part of the odor gradient.

Our findings reveal the microstructure of olfactory search behavior in mice, identifying

sensory computations and movement strategies that are shared across a broad range

of species.

2.3 Results

2.3.1 Olfactory search in noisy gradients of airborne odor

We developed a two-alternative choice task in which freely-moving mice report

odor source location for water rewards (Methods and Fig. 2.1A). To capture the

search behavior, we measured respiration using nasal thermistors (McAfee et al.,

2016) and video-tracked the animal’s body, head, and nose position in real time at

80 frames/s (Fig. 2.1B,E and Fig. 2.11). The mouse initiates a trial by inserting

its nose in a port (Fig. 2.1C; “Initiation”), which activates odor release from two

ports at the opposite end of the arena. The mouse reports the location of higher odor

concentration by walking toward it (Fig. 2.1C; “Search”). In previous studies, rodents

performing olfactory search tasks developed memory-guided foraging strategies. In

essence, animals run directly to potential odor sources and sample each in turn, thus

converting the search tasks to detection tasks (Bhattacharyya and Singh Bhalla, 2015;

Gire et al., 2017). To prevent mice from adopting sample-and-detect strategies, our

task forces mice to commit to a decision at a distance from the actual source. Using

real-time video-tracking (Lopes et al., 2015), we enforced a virtual “decision line”,

such that the trial outcome is determined by the mouse’s location when it crosses this

decision line (Fig. 2.1C; “Outcome”). For stimuli, we deliver odor from two separate

flow-dilution olfactometers, giving independent control over odor concentration on
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the two sides. To test olfactory search over a range of difficulties, we presented four

odor patterns, defined by the ratio of odor concentration released from the two sides

(100:0, 80:20, 60:40, 0:0).

We measured the spatiotemporal distribution of odor using a photoionoization

detector (PID) in a 5x7 grid of sampling locations (Fig. 2.1D and Fig. 2.12). Pinene

was used for the majority of experiments, because it is a neutral-valence odorant

that is sensitively detected by the PID. As designed, varying the concentration ratios

produced across-trial averaged gradients of different magnitudes. Airflow in the arena

Figure 2.1 (next page). Behavioral assay for freely-moving olfactory search. A)
Diagram of experimental chamber where mice are tracked by an overhead camera
while performing olfactory search. B) Top. Nose and head position are tracked using
red paint at the top of the head. Sniffing is monitored via an intranasally implanted
thermistor.Bottom. Example of sniffing overlaid on a trace of nose position across
a single trial. C) Diagram of trial structure. Initiation. Mice initiate a trial via
an initiation poke (grey oval). Search. Odor is then released from both odor ports
(grey rectangles) at different concentrations. Outcome. Mice that cross the decision
line (red) on the side delivering the higher concentration as tracked by the overhead
camera receive a reward at the corresponding water port (blue ovals). D) Color maps
of average odor concentration across 15 two-second trials captured by a 7x5 grid
of sequential photoionization detector recordings. Rows represent side of stimulus
presentation (left or right). Odor concentration beyond the decision line were not
measured. E) Comparison of sniff recordings taken with an intranasally implanted
thermistor and intranasally implanted pressure cannula. These are implanted on
the same mouse in different nostrils. Top. Example trace of simultaneous pressure
cannula (blue) and thermistor (red) recordings with inhalation points (as detected
in all future analyses) overlaid on the traces in their respective colors. Bottom Left.
Histogram of peak latencies (pressure inhalation onset – thermistor inhalation onset).
14/301 inhalations (4.7%) were excluded as incorrect sniff detections. These were
determined as incorrect, because they fell more than 2 standard deviations outside the
mean in peak latency (mean = 1.61585ms, SD = ±14.93223ms). Bottom Right. Peak
latencies, defined as the difference between pressure inhalation onset and thermistor
inhalation onset, plotted against instantaneous sniff frequency.

13



A B

C

D

B Inhalations
Exhalations

Time

Te
m

p
e

ra
tu

re

100:0

Le
ft

R
ig

ht

Initiation 
poke

Water poke

Water poke

Odor 
ports

Decision line

O
do

r 
co

nc
en

tr
at

io
n

Initiation Search Outcome

E Pressure Cannula
Thermistor

500 ms

0.1

0.2

0

sn
iff

 f
re

q
u

e
n

cy
 (

H
z)

6

9

0

3

fr
a

ct
io

n
 o

f 
to

ta
l

0 40-40
peak latency (ms)

0 40-40
peak latency (ms)

Figure 2.1.

is turbulent, imposing temporal fluctuations on the odor gradient (Video 2). Thus,

our assay tests an animal’s ability to navigate noisy odor gradients.

Mice learn the olfactory search task rapidly and robustly. We trained mice in

the following sequence (Fig. 2.2A): First, naïve, water-restricted mice obtained water

rewards from all ports in an alternating sequence (“water sampling”). In the next

phase of training, we added odor stimulation such that odor delivery alternated in the
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same sequence as reward, so that the mice would learn to associate odor with reward

ports (“odor association”). Following these initial training steps, mice were introduced

to the olfactory search paradigm. Odor was pseudo-randomly released from either the

left or right odor source (“100:0“), signaling water availability at the corresponding

reward port. Almost all mice performed above chance in the first session (Fig. 2.2B;

binomial test, p < 0.05 for 24 out of 25 mice, 75 ± 9.2% correct, mean ± s.d.). Within

4 sessions, most animals exceeded 80% performance (19 out of 26). Following 100:0,

mice were introduced to the 80:20 condition with mean performance across mice in

the first session reaching 60% (Fig. 2.13D). Most subjects improved to exceed 70%

performance over the next 7 sessions (17 out of 24). The mice that did not were

excluded from subsequent experiments.

Next, we tested whether mice trained to search pinene plumes would generalize

their search behavior to a novel odorant. We chose vanillin as the novel odorant,

because, unlike pinene, vanillin does not activate the trigeminal fibers of the nose

(Cometto-Muniz and Abraham, 2010; Doty et al., 1978; Hummel et al., 2009). Thus

we could test whether trigeminal chemosensation is necessary for performance in our

task. We found no differences in performance between vanillin and pinene sessions

for these mice (Fig. 2.14A; Wilcoxon rank-sum test, p = 0.827, n = 3). These data

suggest that this search behavior generalizes across odors and does not rely on the

trigeminal system.

2.3.2 Mice can use gradient cues in turbulent flow

We reasoned that mice would solve this task using odor gradient cues. To

vary odor gradients between trials, we trained mice in sessions with interleaved

concentration ratios (100:0, 80:20, 60:40) across the trials of a session. In addition to

these concentration ratios, odor omission probe trials (0:0) were randomly interleaved
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into all experimental sessions. During these trials, airflow was identical to 80:20 trials,

but air was directed through an empty vial rather than a vial containing odorant

solution. These odor omission trials served a two-fold purpose: they acted as controls

to ensure behavior was indeed odor-guided and they allowed us to observe how absence

of odor impacts search behavior. On these probe trials, mice performed at chance

(binomial test, p = 0.9989), with longer trial durations (Wilcoxon rank-sum test,

p < 0.05) and more tortuous trajectories (Wilcoxon rank-sum test, p < 0.05) than

on non-probe trials (Fig. 2.2C; n = 19, all data from 80:20 condition with probe

trials). Performance drops with the concentration ratio (∆C), consistent with our

reasoning that mice would use odor gradient cues in this task (Fig. 2.2D; pairwise

Figure 2.2 (next page). Mice use concentration gradient cues in turbulent flow to
perform search. A) Initial training steps. Water Sampling. In this task, mice
alternate in sequence between the initiation, left, and right nose pokes to receive
water rewards. Odor Association. Next, mice run the alternation sequence as above
with without water rewards released from the initiation poke, making its only utility
to initiate a trial. Further, odor is released on the same side of water availability
to create an association between odor and reward. Odor Search. Here, mice initiate
trials by poking the initiation poke. Odor is then randomly released from the left
or right odor port. Correct localization (see Fig. 2.1C, decision line) results in a
water reward and incorrect is deterred by an increased inter-trial interval (ITI). B)
Performance curve across sessions for the Odor Search (100:0) training step (n =
26). c-f) Session statistics for four different experiments. Each colored line is the
average of an individual mouse across all sessions, black points are means across
mice, and whiskers are ±1 standard deviation across mice. Top. Percent of correct
trials. Middle. Average trial duration. Bottom. Average path tortuosity (total
path length of nose trajectory/shortest possible path length). C) Odor omission.
The 80:20 concentration ratio (Fig. 1) and odor omission (0:0) conditions randomly
interleaved across a session. Data shown includes all sessions for each mouse (n = 19).
D) Variable ∆C, Constant |C|. Three concentration ratio conditions (100:0, 80:20,
60:40) randomly interleaved across a session. Data shown includes all sessions for
each mouse (n = 15). E) Constant ∆C, Variable |C|. Concentration ratio conditions
90:30 and 30:10 randomly interleaved across a session (n = 5). Data shown for first
session only. F) Data shown includes all naris occlusion sessions, even if the mouse
did not perform under every experimental condition.
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Figure 2.2.

Wilcoxon rank-sum tests, p < 0.05, n = 15). Varying the concentration ratio from

80:20 to 60:40 did not affect trial duration or path tortuosity, defined as actual path

length divided by direct path length (Fig. 2.2D; pairwise Wilcoxon rank-sum tests,

p > 0.05). However, trial duration and path tortuosity were slightly, but statistically

significantly longer in the 100:0 condition (pairwise Wilcoxon rank-sum tests, p <

0.05).

Given that these results were obtained using a single absolute concentration (|C|)

across ratios, mice could be solving our task with two distinct categories of sensory
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computation. One possibility is that information about source location is extracted

from the odor gradient. An alternative strategy would be to make an odor intensity

judgement that gates a response to positional information from non-olfactory cues,

such as wind direction, visual landmarks, or self-motion. This computation would

be reminiscent of the odor-gated visual and mechanosensory behaviors observed in

insects (Álvarez-Salvado et al., 2018; Kennedy and Marsh, 1974; van Breugel and

Dickinson, 2014). To distinguish between these possible strategies, we tested mice in

sessions interleaving the air dilution ratios 90:30 and 30:10. 30 is the correct answer

in one condition and incorrect in the other, so that mice cannot use an intensity

judgement strategy to perform well in both ratio conditions. In both conditions,

mice performed equally well in the first session of training (Fig. 2.2E; Wilcoxon rank-

sum test, p = 0.465, n = 5). This equal performance is true within the first 20 trials

of the session (Fig. 2.14; Wilcoxon rank-sum test, p = 0.296). These results indicate

that odor gradients guide olfactory search under these conditions.

We next asked how the mice are sensing the concentration gradient. Many

mammals can use stereo-olfaction: comparing odor concentration samples between

the nares (Catania, 2013; Parthasarathy and Bhalla, 2013; Porter et al., 2007; Rabell

et al., 2017; Rajan et al., 2006). To test the role of stereo comparisons in our olfactory

search task, we performed naris occlusion experiments. Mice were tested in three

conditions on alternating days: naris occlusion, sham occlusion, and no procedure. We

found that naris occlusion did not significantly impact performance or path tortuosity

(pairwise Wilcoxon rank-sum tests, p > 0.05). When compared with the no-stitch

condition, the naris stitch condition resulted in a slight, but statistically significant,

increase in trial duration (pairwise Wilcoxon rank-sum test, p < 0.05).
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This is not true when the stitch condition is compared with the sham condition

(pairwise Wilcoxon rank-sum test, p > 0.05) indicating this may be a result of

undergoing a surgical procedure. These overall results indicate that stereo comparison

is not necessary in this task (Fig. 2.2F; n = 13), and that temporal comparisons

across sniffs (Catania, 2013; Parabucki et al., 2019) play a larger role under our task

conditions.

2.3.3 Sniff rate and occupancy are consistent across trials and gradient

conditions

To investigate active sampling over the time course of trials, we tracked the

animals’ sniffing, position, and posture during behavioral sessions. Next, the mice

emitted a rapid burst of sniffs, then sniffed more slowly as they approached the

target (Fig. 2.3A). In this active behavioral state, inhalation and sniff durations

were shorter during trials than during inter-trial intervals (p ≪ 0.01 for all mice;

Kolmogorov-Smirnov test; Fig. 2.3B,C), and strikingly shorter than those observed in

head-fixed rodents (Bolding and Franks, 2017; Shusterman et al., 2011; Wesson et al.,

Figure 2.3 (next page). Distributions of sniffs and nose positions during search task.
A) Above. Sniff raster plot for three sessions. Each black point is an inhalation, each
row is a trial aligned to trial initiation (dashed line). Rows are sorted by trial length.
Blue region represents trial initiation to trial end. Below. Mean instantaneous sniff
rate across all trials for all mice aligned to time from trial initiation. Thin lines
are individual mice, the thick line is the mean across mice, and shaded region is
±1 standard deviation. B) Histogram of inhalation duration time across all mice
(n = 11). Thick lines and shaded regions are mean and ±1 standard deviation,
thin lines are individual mice. Green: within-trial sniffs, Pink: inter-trial interval
sniffs. C) Histogram of sniff duration time across all mice (n = 11). D) The nose
traces of each trial across a single session, colored by chosen side. E) Location of
all inhalations across a single session, colored by chosen side.F) Two-dimensional
histogram of occupancy (fraction of frames spent in each 0.5 cm² bin). Colormap
represents grand mean across mice (n = 19). G) Grand mean sniff rate colormap
across mice (n = 11).
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Figure 2.3.

2009). After the decision, there is a second rapid burst of sniffing followed by a long

exhalation or pause during reward anticipation and retrieval (Fig. 2.3A). The overall

sniff pattern was consistent across trials with an inhalation just before trial initiation

followed by a long exhalation or pause at the beginning of the trial (Fig. 2.3A). During

this sniffing behavior, the mice moved their nose through tortuous trajectories that

were not stereotyped from trial to trial (Fig. 2.3D,E). Although individual mice
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showed position biases (Fig. 2.15), these biases were not systematic across mice,

so that the across-mouse mean occupancy distribution was evenly distributed across

the two sides of the arena (Fig. 2.3F; n = 19). Consistent with this sniffing and

movement pattern, the sniff rate was highest near the initiation port, and slower

on the approach to target (Fig. 2.3G). These measures of active sampling were not

statistically distinguishable across gradient or naris occlusion conditions, but changed

significantly on odor omission probe trials, with more fast sniffing and head turns

overall.

2.3.4 Mice synchronize three-dimensional kinematic rhythms with

sniffing during olfactory search

To test the hypothesis that nose movement locks to respiration during olfactory

search, we aligned movement dynamics with the sniff signal. Using Deeplabcut

(Mathis et al., 2018; Mathis and Mathis, 2020), we tracked the position of three

points: tip of snout, back of head, and center of mass (Fig. 2.4A). From the dynamics

of these three points, we extracted the kinematic parameters nose speed, head yaw

velocity, and Z-velocity (Fig. 2.4B-D). Synchrony between movement oscillations

and sniffing is apparent on a sniff-by-sniff basis (Fig. 2.5), consistent across mice,

and selectively executed during olfactory search. On average, nose speed accelerates

during exhalation, peaks at inhalation onset, and decelerates during inhalation (Fig.

2.5A.i).

Head yaw velocity, which we define as toward or away (Fig. 2.4; centripetal or

centrifugal) from the body-head axis, reaches peak centrifugal velocity at inhalation,

decelerates and moves centripetally over the course of inhalation (Fig. 2.5A.ii).

Although our videos are in two dimensions, we can approximate movement in depth

by analyzing the distance between the tip of the snout and the back of the head
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Figure 2.4. Quantifying kinematic parameters during olfactory search. A) Schematic of
kinematic parameters. Left. Two example frames from one mouse, with the three tracked
points marked: tip of snout, back of head, and center of mass. B) Quantified kinematic
parameters: “nose speed”: displacement of the tip of the snout per frame (12.5ms inter-
frame interval). “Yaw velocity”: change in angle between the line segment connecting snout
and head and the line segment connecting head and center of mass. Centrifugal movement
is positive, centripetal movement is negative. “Z-velocity”: change in distance between
tip of snout and back of head. Note that this measure confounds pitch angle and Z-axis
translational movements. C) Segments of example trajectories. Left. The trajectory of the
nose during one second of trial time. Green: path during inhalations. Black: path during
the rest of the sniff. Right. Same for an inter-trial interval trajectory. D) Traces of sniff
and kinematic parameters during the time windows shown in C. Color scheme as in C

(Fig. 2.4B). This measure confounds pitch angular motion and vertical translational

motion, so we conservatively refer to this parameter as “z-velocity”. Because mice

point their head downward during task performance, shortening of the distance

between the tip of the snout and the back of the head indicates downward movement,
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while increases in the distance correspond to upward movements. The z-velocity

reaches peak upward velocity at inhalation onset, decelerates and goes downward

during inhalation, and rises again at exhalation (Fig. 2.5A.iii). These modulations

were absent from trial-shuffled data (Fig. 2.16; permutation test, p < 0.001).

Cross-correlation and spectral coherence analysis further demonstrate the synchrony

between nose movement and sniffing (Fig. 2.5B,C). These results demonstrate that

kinematic rhythms lock to sniffing with tens of millisecond precision, consistent with

a previous report demonstrating that rats make similar movements during novel odor-

evoked investigative behavior (Kurnikova et al., 2017). Our findings show that precise

cycle-by-cycle synchronization can also be a feature of goal-directed odor-guided

behavior. Mice selectively deploy this pattern of sniff-synchronized three-dimensional

nose movement. For nose speed, yaw velocity, and z-velocity, sniff synchrony is

significantly reduced during the inter-trial interval when the mouse is returning from

the reward port to initiate the next trial, even when the mouse is sniffing rapidly.

Modulations in nose speed were slightly different than trial-shuffled data, showing

that sniff-synchronized movement is not totally absent during the inter-trial interval,

whereas modulations in yaw velocity and z-velocity were indistinguishable from trial-

shuffled data (Fig. 2.16). This difference between within-trial and between-trial

sniff synchrony was not contingent on the mouse’s slower nose speed during the ITI

(Fig. 2.5A). Kinematic synchrony was the same when only periods of high-speed

nose movement in the ITI are included in the analysis (Fig. 2.17). This reduction

of kinematic synchrony when the mouse is not performing the task suggests that

sniff synchronized movement is not an inevitable biomechanical accompaniment to

fast sniffing, but rather reflects a strategic behavioral state. Further support for this
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idea comes from analyzing time intervals when the mouse attempts to initiate a trial

before the end of the inter-trial interval.

After such premature attempts at trial initiation, the mice execute sniff-

synchronized movement, despite the absence of the experimenter-applied odor

stimulus (Fig. 2.17). Lastly, sniff synchrony changes dramatically in the time interval

between crossing the virtual decision line and entering the reward port, when odor is

still present yet the animal has committed to a decision (Fig. 2.17). Taken together,

our observations indicate that sniff synchronous movement is a proactive, odor-seeking

strategy rather than a reactive, odor-gated reflex.

2.3.5 State space modeling finds recurring motifs that are sequenced

diversely across mice

In our olfactory search paradigm, the overall rhythm of nose movement

synchronizes with sniffing (Fig. 2.4 and 2.5), and yet the mice move through a different

trajectory on every trial (Fig. 2.3D). Given this heterogeneity, it was not obvious to

us how to best quantify common features of movement trajectories across trials and

Figure 2.5 (next page). Kinematic rhythms synchronize with the sniff cycle selectively
during olfactory search. i-iii) Nose speed, yaw velocity, and z-velocity respectively (see
Fig. 2.4 for definitions). A) Top. Color-plot showing movement parameter aligned to
inhalation onset for within-trial sniffs taken before crossing the decision line. Taken
from one mouse, one behavioral session. Dotted line at time 0 shows inhalation
onset, the second line demarcates the end of the sniff cycle, sorted by duration. Data
are taken from one behavioral session. Middle. Color-plot showing each movement
parameter aligned to inhalation onset for inter-trial interval sniffs taken before the
first attempt at premature trial initiation. Bottom. Sniff-aligned average of each
movement parameter. Thin lines represent individual mice (n = 11), bolded lines
and shaded regions represent the grand mean ± standard deviation. Green: within-
trial sniffs, Pink: inter-trial interval sniffs. B) Normalized cross correlation between
movement parameter and sniff signal for the same sniffs as above. C) Spectral
coherence of movement parameter and sniff signal for the same sniffs as above.
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Figure 2.5.

subjects. Rather than guess at suitable features, we used an unsupervised machine

learning tool, modeling the movement data with an Auto-Regressive Hidden Markov

Model (AR-HMM) (Murphy, 2012; Poritz, 1982). This model parses continuous

sequential data into a discrete set of simpler movement motif sequences, similarly

to “Motion Sequencing” (MoSeq) (Wiltschko et al., 2015). We fit AR-HMMs to the
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allocentric three-point coordinate data (front of snout, back of head, and center of

mass) pooled across a subset of mice and trial conditions (See Methods and Fig.

2; e.g. 80:20, 90:30, nostril stitch). Models were then tested for their ability to

explain a separate set of held-out trials (see Methods). These models defined discrete

movement patterns, or “motifs”, that recur throughout our dataset (e.g., Fig. 2.6A).

We fit different AR-HMM models each constrained to find a particular number of

motifs (between 6 and 100) and found that the cross-validated log-likelihood of these

fits continued to rise up to 100 motifs (Fig. 2.18). For visualization, we will focus on

a model with 16 states, which we narrow to 11, by excluding rare motifs that take up

<5% of the assigned video frames (Fig. 2.6B and 6-figure supplement 1C,D). Models

with more or fewer states gave equivalent results (Fig. 2.19-2.21).

The motifs extracted by this model have interpretable spatiotemporal trajectories

on average (Fig. 2.6B; Video 6), although averaging masks considerable across-

instance variability (Video 7). Across trials for a given mouse, motifs occurred

in consistent but non-stereotyped sequences (Fig. 2.6C; Video 5). Across mice,

the model identified consistent behavioral features as motifs (Fig. 2.22), but most

mice were uniquely identifiable from how they sequenced motifs across trials. A

classifier trained to decode mouse identity from the motif sequences on a trial by

trial basis was able to perform above chance for 8 out of 9 mice (Fig. 2.6D; p <

0.01). Across the different concentration ratios (Fig. 2.2D), movement sequences

were not statistically distinguishable (Fig. 2.6E). The only condition that gave

distinguishable motif patterns were the odor omission trials (0:0), in which the mice

made longer, more tortuous trajectories (Fig. 2.2C). Thus, although this model is

sensitive enough to decode mouse identity (Fig. 2.6D), it does not detect stimulus-

dependent modifications of sampling behavior, suggesting that the mice do not modify
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their sampling behavior in a gradient-dependent manner, at least in the movement

parameters we measured. This lack of modification ran counter to our expectations,

because we reasoned that making the task harder would make the mice adjust their

strategy to maintain high performance. We speculate that this absence of an adaptive

strategy is due to impulsivity.

2.3.6 Movement motifs reveal two-state organization of olfactory search

Many behaviors have hierarchical structure that is organized at multiple temporal

scales. Brief movements are grouped into progressively longer modules, and are

ultimately assembled into purposive behavioral programs (Berman et al., 2016;

Gallistel, 1982; Weiss, 1968).

Figure 2.6 (next page). Recurring movement motifs are sequenced diversely across
mice and consistently across stimuli A) 8 example frames from one instance of a
behavioral motif with tracking overlaid. B) Average motif shapes. Dots and lines
show the average time course of posture for 8 frames of each of the 11 motifs (n =
9 mice). All instances of each motif are translated and rotated so that the head is
centered and the head-body axis is oriented upward in the first frame. Subsequent
frames of each instance are translated and rotated the same as the first frame. Time
is indicated by color (dark to light). Background color in each panel shows the color
assigned to each motif. C) Across-trial motif sequences for two behavioral sessions
for one mouse. Trials are separated into trials where the mouse chose left and those in
which the mouse chose right. Trials are sorted by duration. Both correct and incorrect
trials are included. Color scheme as in B. D) Linear classifier analysis shows that mice
can be identified from motif sequences on a trial by trial basis. Grayscale represents
the fraction of trials from a given mouse (rows) that are decoded as belonging the data
of a given mouse (columns). The diagonal cells represent the accuracy with which
the decoded label matched the true label, while off-diagonal cells represent trials that
were mislabeled by the classifier. Probabilities along rows sum to 1. Cells marked
with asterisks indicate above chance performance (label permutation test, p < 0.01).
E) Linear classifier analysis identifies odor omission trials above chance, but does
not discriminate across odor concentration ratios (n = 9 mice). F) Cross-validated
log-likelihood (evaluated on trials not used for model fitting) for fit AR-HMM models
with different numbers of motifs, S, shows that model log-likelihood does not peak or
plateau up to S = 100.
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Figure 2.6.

Olfactory search programs in smaller organisms are often organized into two

overarching states: move straight when concentration is increasing, and reorient when

concentration is decreasing (Bargmann, 2006; Gomez-Marin et al., 2011; Kennedy and

Marsh, 1974; Lockery, 2011; van Breugel and Dickinson, 2014; Vickers and Baker,
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1994). We hypothesized that olfactory search motifs in mice are organized similarly.

To reveal higher-order structure in the temporal organization of these motifs, we

applied a clustering algorithm that minimizes the Euclidean distance between rows

of the Markov transition matrix (i.e., purely based on the conditional probabilities of

motifs following them). This clustering separated motifs into two groups (Fig. 2.7A),

with several distinct properties. These properties were present in models with more or

fewer states (Fig. 2.19-2.21). Based on these differences (see below), we label these

groups as putative “investigation” and “approach” states. First, investigation and

approach motifs cluster their onset times in the trial, with investigation motifs tending

to occur early in the trial, while approach motifs tend to begin later (Fig. 2.7B).

Grouping motifs into these higher-order states shows a consistent trial sequence,

with trials beginning with investigation and ending with approach (Fig. 2.7C,D).

Importantly, entering the approach state is not a final, ballistic commitment to a given

water port – switches from approach back to investigation were common (Fig. 2.7C,D;

Video 8). This pattern suggests that the mice are continuously integrating evidence

about the odor gradient throughout their trajectory to the target. Second, these

states correlated with distinct sniff rates and movement speeds. During investigation

motifs, the mice moved more slowly and sniffed more rapidly, whereas the approach

states were associated with faster movement and slower sniffing (Fig. 2.7E). Third,

the sniff-synchronized kinematic rhythms (Fig. 2.4 and 5) were distinct in the two

states (Fig. 2.7F; Kolmogorov-Smirnov test, p < 0.01). Specifically, nose speed

and yaw velocity are more synchronized with sniffing during the investigation state

(Fig. 2.7F). Given the consistent sequence from investigation to approach and given

that mice sniff faster during the early part of trial, these differences in kinematic

parameters could reflect across-trial tendencies instead of within-trial synchrony.
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To test this possibility, we calculated the Kolmogorov-Smirnov statistic, which

quantifies the difference between two cumulative distributions, for real and trial-

shuffled data (Fig. 2.23). This analysis showed that nose speed and yaw velocity

modulation exceeded what would be expected from across-trial tendencies (1000

shuffles, p < 0.001), while the z-velocity modulation did not (p = 0.31). Switches

between the investigation and approach state mark behavioral inflection points that

can be identified from trial to trial. We reason that these behavioral inflection points

are a signature of key moments in the mouse’s evolving decision process. Thus,

Figure 2.7 (next page). Behavioral motifs can be categorized into two distinct groups,
which we putatively label as investigation (blue) and approach motifs (orange). A)
Transition probability matrix. Grayscale represents the log probability with which a
given motif (rows) will be followed by another (columns). Clustering by minimizing
Euclidean distance between rows reveals two distinct blocks of motifs. We label
the top-left block as “investigation” and the bottom-right block as “approach”. B)
Distribution of onset times for each motif, normalized by trial duration. Investigation
motifs tend to occur early in trials, while approach motifs tend to occur later (n = 9
mice). C) Across-trial motif sequences for two behavioral sessions for one mouse, with
motifs classified into investigation and approach. Trials are separated into correct
trials (above) and incorrect trials (below). Motif sequences are sourced from the
same data as Fig. 2.6C. D) Temporal details of investigation-approach transitions
with overlaid sniff signal. Data come from a subset of trials shown in Fig. 2.7C. In
the sniff signal, green represents inhalations, black represents the rest of the sniff. E)
Investigation and approach motifs differ in nose speed and sniff rate. Individual
markers represent one motif from one mouse. Marker shapes correspond to the
individual mice (n = 4). Sniff rate and nose speed are normalized within mice. F)
Investigation and approach motifs differ in the kinematic rhythms (same parameters
as in Figures 4 and 5). Thin lines represent individual mice (n = 4), thick lines and
shaded regions represent the grand mean ± standard deviation. Blue: within-trial
sniffs, orange: inter-trial interval sniffs. Top. Nose speed modulation, defined by a
modulation index (maxspeed-minspeed)/(max+min) calculated from the grand mean,
is significantly greater for investigation motifs than approach motifs (Fig. 2.23; p <
0.001, permutation test). Middle: Yaw velocity modulation is significantly greater for
investigation motifs than approach motifs (Fig. 2.23; p < 0.001, permutation test).
Bottom: Z-velocity modulation does not significantly differ between approach motifs
and investigation motifs (p = 0.31, permutation test).
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our analysis can provide a framework for temporal alignment of diverse movement

trajectories with simultaneously-recorded physiological data (Markowitz et al., 2018).

2.3.7 Investigation motif onsets are precisely locked to sniffing

If motif transitions correspond to relevant behavioral events, their temporal

structure should correlate with the temporal structure of neural activity (Markowitz

et al., 2018). During fast sniffing, respiration matches with the rhythms of head

movement (Fig. 2.4 and 5), whisking, and nose twitches (Kurnikova et al., 2017;
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Moore et al., 2013; Ranade et al., 2013). These motor rhythms correlate with activity

in numerous brain regions, including brainstem, olfactory structures, hippocampus,

amygdala, and numerous neocortical regions (Karalis and Sirota, 2018; Kay, 2005;

Macrides et al., 1982; Vanderwolf, 1992; Yanovsky et al., 2014; Zelano et al., 2016).

We hypothesized that movement motifs would lock with these behavioral and neural

rhythms, so we aligned sniff signals with motif onset times. Importantly, the breath

signal was not input to the model.

This alignment revealed a striking organization of motif sequences relative to the

sniff rhythm. For example, the onset times of motif 6 (dark blue) occurred in a precise

timing relationship with sniffing (Fig. 2.8A). To visualize the timing relationship

between onsets of all motifs and sniffing, we calculated the equivalent of a peri-

stimulus time histogram for inhalation times relative to the onset time of each motif,

and took the grand mean across all mice (Fig. 2.8B; n = 4). Further, to determine how

motif onset times are organized relative to the sniff cycle, for each motif we calculated

a histogram of motif onset in sniff phase coordinates (Fig. 2.8C; relative position

in the sniff cycle). Sharp peaks are apparent in both histograms for investigation

motifs, and less so for approach motifs (quantified below; Fig. 2.8B,C). Importantly,

these timing relationships are consistent across mice, with some motifs tending to

occur early in the sniff cycle during inhalation, and others occurring later in the

sniff cycle (Fig. 2.8D). Thus, parsing diverse movement trajectories into sequences of

recurring movement motifs reveals additional sniff-synchronized kinematic structure

in a consistent manner across mice.

Are motif onsets timed with respect to inhalation times, or do they coordinate

with the entire sniff cycle? In other words, is motif onset probability more

modulated in time or phase? To quantify the sniff synchronization of motif
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Figure 2.8. Motif onsets synchronize to the sniff cycle. A) Alignment of the sniff signal
to an example motif. Top. Color scheme shows sniff cycles aligned to the onsets of motif
6 (blue). Motif instances are in chronological order. Green: inhalation, black: rest of
sniff. Bottom. Peristimulus time histogram of inhalation times aligned to the onset of
motif 6. B) Alignment of sniff signal to onset times of all motifs across mice (n = 4).
Colormap represents the grand means for peristimulus time histograms of inhalation times
aligned to the onset of motifs. C) Alignment of motif onset times in sniff phase. Colormap
represents peristimulus time histograms of motif onsets (bin width = 12.5ms) times aligned
to inhalation onset, with all sniff durations normalized to one. Dotted line shows the mean
phase of the end of inhalation. D) Motifs alignment to sniff phase is consistent across mice.
Thin lines represent individual mice, black points are means, and whiskers are ±1 standard
deviation (n = 4 mice). E) Investigation motifs are more synchronized to the sniff cycle than
approach motifs. Dots represent the modulation index in time on the x coordinates and in
phase on the y-coordinates. Filled dots represent motifs that are significantly modulated in
both time and phase (p < 0.01, permutation test). Half-filled dots represent motifs that are
significantly modulated in time (left half filled) or phase (right half filled).

onset times, we calculated a modulation index (MI=(max-min)(max+min)) for each

motif’s across-mouse mean histogram (n = 4). To test whether these trial-by-trial

modulation indices exceeded what would be expected from across-trial tendencies,

we compared real and trial-shuffled data (Fig. 2.24). All investigation motifs were
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significantly modulated for both time and phase coordinates (Fig. 2.8E; filled symbols,

permutation test, p < 0.001), with some having higher MI in time, and others in

phase. One approach motif was significantly modulated in time coordinates (Fig.

2.8E; right-half filled symbol, p = 0.003), while two approach motifs were significantly

modulated in phase coordinates (Fig. 2.8E; left-half filled symbols, p = 0.015 and

p < 0.001). Comparing the modulation indices between time and phase coordinates

does not reveal a consistent pattern of modulation in time vs phase – some motifs had

higher MI in phase, others in time. Thus, our data are inconclusive as to how motif

onsets organize relative to the sniff cycle. Nevertheless, these analyses demonstrate

that kinematic inflection points synchronize with breathing during olfactory search.

Given that breathing synchronizes to other motor and brain rhythms, these motifs

likewise correlate to the structure of activity of many neurons. Thus our analysis will

be a useful tool to pinpoint behaviorally relevant activity in widespread brain regions.

2.3.8 Investigation and approach occupancy maps suggest a serial sniff

comparison strategy

We propose that motif transition times indicate “decision points” at which the

animal chooses its next move (Markowitz et al., 2018). The transitions between

investigation and approach motifs are particularly relevant, since investigation motifs

may correspond to an evidence-gathering state, while approach motifs may correspond

to a reward-gathering state. What kind of sensory evidence guides transitions between

investigation and approach? Although we cannot determine the precise odor inputs

the mice acquire on a sniff-by-sniff basis, we reasoned that we could elucidate the

search strategy by examining aggregate across-trial patterns in allocentric maps of

investigation and approach occupancy.
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As expected from the temporal structure of investigation and approach (Fig.

2.7C,D), the mice primarily investigate near the initiation port (Fig. 2.9A; n =

9 mice), and primarily approach close to the decision line (Fig. 2.9A; orange).

Along the longitudinal axis of the arena, the two occupancy maps overlap in a

region between initiation port and decision line (Fig. 2.9A; black) where overall

occupancy also peaks (Fig. 2.3F). Along the lateral axis of the arena, on average the

overlap region is roughly centered on the lateral midline between left and right sides

(Fig. 2.9A). However, this centered position is not representative of the individual

mice, which have their overlap region in different positions relative to the lateral

midline, with some on the left, and others on the right (Fig. 2.25A). However, if

trials are oriented such that the chosen side is always up in the occupancy maps,

the overlap region is displaced toward the chosen side of the arena in all individual

mice (Fig. 2.25B). Thus, the mice primarily switched states while located on the side

they would ultimately choose. To quantify the overlap between states, we calculated

a relative occupancy index, defined as the difference in investigation and approach

occupancy divided by their sum (Fig. 2.9C; I.A.I). For this index, a bin where the mice

primarily investigated has a positive value, while a bin primarily occupied during the

approach state has a negative value. Along the longitudinal axis, most of the change

in this index occurred between inflection points at 5 and 10 cm, which we define as a

“transition zone” for the analyses below (Fig. 2.9D).

Along the lateral axis of the arena, I.A.I was quite variably distributed across

mice, both for the entire occupancy map, and within the transition zone (Fig.

2.9E), consistent with the individual mouse occupancy maps (Fig. 2.25A). Orienting

trials with respect to the chosen side demonstrates a clearer pattern, with primarily
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investigation on the unchosen side, and primarily approach on the chosen side (Fig.

2.9F and 2.25B).

Occupancy maps allowed us to further evaluate hypotheses about the search

strategy mice use in these conditions. One hypothetical strategy is that the mice

memorize absolute concentrations across trials and compare each individual sniff to

an internal threshold learned over previous trials (single-sniff hypothesis). Another

possible strategy would be serial sniff comparison, where the mouse senses changes

between sequential samples within individual trials (serial-sniff hypothesis). These

hypotheses make distinct predictions about where the mouse should sample. For the

single-sniff hypothesis, the most informative location to sample is directly downwind

of the odor ports, where concentration differences between left and right trials are

maximal (Fig. 2.12). For gradient sensing, the optimal location is instead across

the lateral midline, where the gradients are sharpest (Fig. 2.12). We tested these

Figure 2.9 (next page). The allocentric spatial distribution of investigation and
approach occupancy. A) Colormaps show two-dimensional histograms of the
occupancy density (1 cm2 bins, n = 9 mice) with investigation density in blue,
approach density in orange, and overlap shown by darker coloring (key in top-left
corner). Histograms around the colormaps show the state occupancy projected onto
the longitudinal (top) and lateral (left) axes of the arena. B) Occupancy distributions
after the right-choice trials are flipped upward so that the chosen side is always facing
up in the diagram. C) Relative usage is quantified with an investigation approach
index (I.A.I.), defined as the difference between investigation and approach occupancy
divided by their sum. Blue and orange triangles are visual aids that represent the
I.A.I. D) Relative occupancy density of investigation and approach (I.A.I.), plotted
along the longitudinal axis of the arena from the initiation port to the decision line.
We define the region between 5 cm and 10 cm as a ‘transition zone’, in which most
transitions between investigation and approach take place. Thin lines are individual
mice (n = 9), thick line and shaded region are mean ± s.e.m. E) I.A.I. plotted along
the lateral axis in real space (i.e., left-right orientation) for all occupancy throughout
the arena (left) and for the transition zone only (right). Thin lines are individual
mice (n = 9), thick line and shaded region are mean ± s.e.m. F) Same as e), but
after the lateral axis has been reoriented so that the chosen side is always up.
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Figure 2.9.

predictions by comparing occupancy maps between correct and incorrect trials.

For the single-sniff strategy, the mouse should get it correct more often when it

investigates downwind of the odor ports, while a serial sniff hypothesis predicts that

correct trials should show increased investigation at the midline.

Correct and incorrect trials yielded qualitatively similar occupancy maps (Fig.

2.10A). To quantify their differences, we first compared their occupancy indices along

the longitudinal axis of the arena. (Fig. 2.10B,C). Correct trials featured significantly

higher I.A.I (greater investigation) in the latter part of the transition zone, while past

the decision zone the I.A.I was higher for incorrect trials (Fig. 2.10C; permutation
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test, p < 0.001, n = 9 mice). Thus, increased investigation in the transition zone

was associated with correct trials, while increased investigation near the decision

line was associated with incorrect trials. This pattern suggests that investigation

is not inherently advantageous to olfactory search irrespective of location. Instead,

it matters where the mouse investigates, and some locations are less advantageous.

Notably, absolute concentrations are most discriminable near the decision line (Fig.

2.12C), suggesting that mice may not be able to capitalize on this cue under these

conditions.

We next quantified state occupancies along the lateral axis within the transition

zone (Fig. 2.10D-F). Correct trials featured significantly increased investigation at

and on the unchosen side of the midline relative to incorrect trials (Fig. 2.10G;

permutation test, p < 0.001, n = 9 mice). By definition, occupancy of the unchosen

side precedes a crossing of the midline to get to the chosen side. This suggests

an advantage to sampling both sides of the midline, consistent with a serial-sniff

gradient sensing strategy. Further, investigation more laterally, downwind of the odor

port, was increased on incorrect trials, suggesting that sampling this location was not

advantageous for task performance, contrary to the single-sniff absolute concentration

hypothesis. Approach occupancy showed a different pattern, with significantly higher

approach at and around the midline on incorrect trials, and a significant increase in

approach occupancy closer to the chosen water port (Fig. 2.10H; permutation test, p

< 0.001). Consistent with these observations, on correct trials I.A.I showed significant

elevation at the midline and into the unchosen side of the arena, while increased I.A.I

of the chosen side was associated with incorrect trials (Fig. 2.10I; permutation test,

p < 0.001). Altogether, these results suggest that it is advantageous to sample both

sides of the midline in this task, consistent with the serial-sniff hypothesis.
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An important consideration in interpreting these results pertains to the

construction of our task. Before choosing a side, the mice have to turn out of the

initiation port in one direction or the other on every trial. On some trials they stay

and choose the side of the first turn, while on other trials they switch and choose

the other side. A single-sniff hypothesis predicts that if the mouse happens to turn

first toward the correct side, it will tend to encounter above threshold concentrations

during the turn, and should therefore tend to transition to approach without crossing

Figure 2.10 (next page). Occupancy maps indicate an advantage for investigation of
both sides. A)Colormaps show two-dimensional histograms of the occupancy density
(1 cm2 bins, n = 9 mice) with investigation density in blue, approach density in
orange, and overlap shown by darker coloring (key in top-left corner). Histograms
around the colormaps show the state density projected onto the longitudinal (top)
and lateral (left) axes of the arena. Left: correct trials. Right: incorrect trials. B)
Investigation approach index (I.A.I.) for correct (purple) and incorrect (green) trials.
Thick lines and shaded region are mean ± s.e.m., thin lines are individual mice. C)
Difference in I.A.I. between correct and incorrect trials along the longitudinal axis
(2.5 cm bins, n = 9). Thick line is the across-mouse mean difference, thin gray lines
are 1000 permutations in which correct and incorrect trial labels were scrambled. D)
Investigation occupancy along the lateral axis, within the transition zone (5–10 cm
longitudinal) for correct and incorrect trials. Thick lines and shaded region are mean
± s.e.m., thin lines are individual mice. E) Approach occupancy along the lateral
axis, within the transition zone (5–10 cm longitudinal) for correct and incorrect trials.
Thick lines and shaded region are mean ± s.e.m., thin lines are individual mice. F)
I.A.I. along the lateral axis, within the transition zone (5–10 cm longitudinal) for
correct and incorrect trials. Thick lines and shaded region are mean ± s.e.m., thin
lines are individual mice. G) Difference in investigation occupancy between correct
and incorrect trials along the lateral axis, within the transition zone. Thick blue
line is the across-mouse mean difference, thin blue lines are 1000 permutations in
which correct and incorrect trial labels were scrambled. H) Difference in approach
occupancy between correct and incorrect trials. Thick orange line is the across-
mouse mean difference, thin orange lines are 1000 permutations in which correct
and incorrect trial labels were scrambled. I)Difference in I.A.I. between correct and
incorrect trials. Thick orange line is the across-mouse mean difference, thin orange
lines are 1000 permutations in which correct and incorrect trial labels were scrambled.
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Figure 2.10.

the midline. However, if the mouse turns first to the incorrect side, threshold crossings

will tend not to occur and the mouse can initiate approach before crossing the midline.

Thus, this hypothesis predicts that correct vs incorrect occupancy differences

should occur at different positions along the lateral axis for stay and switch trials.

To test this prediction, we performed the same analyses separately for stay and

switch trials. Although not identical, both stay and switch trials showed significantly
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increased investigation at and on the unchosen side of the midline for correct trials

(Fig. 2.26). This analysis demonstrates that the apparent advantage of sampling

across the midline is not an artefact of the asymmetry between switch and stay trials.

Taken together, investigation and approach occupancy mapping provides further

evidence suggesting that mice use a serial-sniff strategy to sense gradient cues in

this task (Catania, 2013).

2.4 Discussion

This study elucidates sensory computations and movement strategies for

olfactory search by freely-moving mice. Mice learn our behavioral task in days, after

which they perform approximately 150 trials daily, sometimes for months. Task

performance worsens for shallower odor gradients at a fixed absolute concentration,

but is unaffected by varying absolute concentrations at a fixed concentration gradient.

Taken together, these results show that mice can navigate noisy gradients formed

by turbulent odor plumes. This gradient-guided search is robust to perturbations

including novel odorant introduction and naris occlusion. These results give insight

into sensory computations for olfactory search and constrain the possible underlying

neural mechanisms.

Mice perform this task with a strategic behavioral program. During search,

mice synchronize rapid three-dimensional head movements with fast sniffing. This

synchrony is not a default accompaniment of fast sniffing – synchrony is absent

when the mice are not searching. Movement trajectories are not stereotyped, but

vary considerably across trials. To manage this complexity, we took an unsupervised

computational approach to parse heterogeneous trajectories into a small number of

movement motifs that recur across trials and subjects. This analysis captures common

movement features across mice, but individual mice can be identified by how they
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sequence these motifs. Our model was not constrained to find structure at a specific

timescale, and consequently identified very brief, simple motifs. To find higher-order

temporal structure in the data, we clustered motifs by their transition probabilities,

which revealed two clear categories, putatively corresponding to investigation and

approach. Investigation motifs tend to be executed early in the trial, and entail

slower movement, faster sniffing, and more sniff synchrony than approach motifs.

Even so, approach motifs are not ballistic commitments to an answer – switches from

approach to investigation occurred on many trials. Lastly, the onset times of motifs

were precisely locked to sniffing, with investigation motifs starting at characteristic

phases of the sniff cycle.

The allocentric structure of investigation and approach suggests that the

investigation state is not inherently advantageous. Rather, where the mouse

investigates matters for performance. This dependence of performance on location

indicates the spatial distribution of informative features in this olfactory scene.

Notably, incorrect trials feature more investigation directly downwind of the odor

source, along the axis of maximal odor concentration, which would be optimal if the

mouse were using a single-sniff, absolute concentration strategy (Fig. 2.12C). Thus,

these analyses provide further evidence that the mice do not capitalize on absolute

concentration information to guide performance in this task. Instead, correct trials

feature more investigation at and across the axis of maximal odor gradient (Fig.

2.12D), reminiscent of an object localization strategy observed in Egyptian fruit bats.

When approaching an object, these bats do not center their sonar beams directly at

the object, but rather point them off axis, so that the maximum slope of the acoustic

profile intersects the object (Yovel et al., 2010)). Likewise, in this task mice do not

gain an advantage by centering their sniffing directly downwind of the odor sources,
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but rather perform best when they investigate the location of the steepest slope of

the odor gradient, consistent with a serial-sniff gradient sensing strategy. Thus, our

unsupervised computational analysis of airborne odor tracking supports the idea that

sampling off axis can be an optimal strategy for localization across diverse sensory

systems and species (Yovel et al., 2010).

Olfactory navigation can be either guided or gated by odor (Baker et al., 2018).

Some organisms operate in a regime where diffusion forms smooth chemical gradients,

in which classical chemotaxis strategies can be effective (Bargmann, 2006; Berg, 2000;

Gomez-Marin and Louis, 2012; Lockery, 2011). In contrast, other organisms, such

as flying insects, often operate in a highly turbulent regime where concentration

gradients are not reliably informative (Crimaldi et al., 2002; Murlis et al., 1992; Riffell

et al., 2008). By design, mice in our task operate in an intermediate regime, where

turbulent odor plumes close to the ground form noisy gradients (Gire et al., 2017;

Riffell et al., 2008). By varying the absolute concentration and the concentration

difference between the two sides, we tested whether performance in this regime is

guided or gated by odor. Because behavior varies with the gradient and not the

absolute concentration (Fig. 2.2C-E), we have shown that mice are guided by gradient

cues in this regime. Further, performance is higher when the mice sample both sides

of the midline, suggesting that they sense the gradient by comparing sniff sequences

across time.

Our naris occlusion experiments demonstrate that performance is statistically

indistinguishable with naris occlusion, suggesting that stereo olfaction does not play

a major role in our task. This finding contrasts with previous studies of olfactory

navigation in a different regime: following a depositional odor trail. In these

studies, stereo manipulations had small but significant effects on performance, and
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led to changes in movement strategy (Jones and Urban, 2018; Khan et al., 2012).

Importantly, a study of olfactory search in moles showed that stereo reversal did

not affect navigation at a distance from the target, but reversed turning behavior

in the target’s immediate vicinity (Catania, 2013). These results suggest that stereo

cues may be informative near a source, where gradients are steep, but that stereo

cues play less of a role at a greater distance from the source where gradients are

more shallow. In this more distant condition, serial sniff comparisons have been

hypothesized as a potential sensory computation for odor gradient following (Catania,

2013). We propose that our task design, in which mice must commit to a side at a

distance from the source, forces mice out of the stereo regime, and into the serial sniff

comparison regime. Neurons sensitive to sniff-to-sniff odor concentration changes

have been observed in the olfactory bulb of head-fixed mice (Parabucki et al., 2019),

providing a potential physiological mechanism for this sensory computation.

On the other hand, physiological mechanisms revealed in head-fixed mice may

not generalize to the freely-moving search condition. The external stimulus obtained

by moving the nose through a noisy gradient differs dramatically from the square

odor pulses delivered during head-fixed or odor-poke olfactory tasks. Further, the

sniff statistics we observe in our mice are qualitatively faster than those reported in

head-fixed mice under most conditions (Bolding and Franks, 2017; Shusterman et al.,

2011; Wesson et al., 2009). One exception is that mice sniff fast in response to a

novel odor (Wesson et al., 2009). Such fast stimulation impacts the responsiveness

of olfactory sensory neurons (Esclassan et al., 2012; Ghatpande and Reisert, 2011;

Verhagen et al., 2007). In addition to the temporal properties of odor transduction,

short- and long-term synaptic and network plasticity mechanisms will influence the

olfactory bulb’s responses during fast sniffing (Beshel et al., 2007; D’iaz-Quesada

44



et al., 2018; Gupta et al., 2015; Jordan et al., 2018; Mandairon and Linster, 2009;

Patterson et al., 2013; Zhou et al., 2020). Without tapping into the fast sniffing

regime, the understanding we can gain from head-fixed studies in olfaction will be

incomplete at best. In the future, it will be necessary to complement well-controlled

reductionist behavioral paradigms with less-controlled, more natural paradigms like

ours.

Mice execute a strategic behavioral program when searching, synchronizing fast

sniffing with three-dimensional head movements at a tens of milliseconds timescale.

It has long been known that rodents investigate their environment with active sniffing

and whisking behaviors (Kepecs et al., 2006; Wachowiak, 2011; Welker, 1964). More

recent work has established that under some conditions sniffing locks with whisking,

nose twitches, and head movement on a cycle-by-cycle basis (Kurnikova et al., 2017;

Moore et al., 2013; Ranade et al., 2013). Sniffing also synchronizes with brain

oscillations not only in olfactory regions, but also in hippocampus, amygdala, and

neocortex (Karalis and Sirota, 2018; Kay, 2005; Macrides et al., 1982; Vanderwolf,

1992; Yanovsky et al., 2014; Zelano et al., 2016). Respiratory central pattern

generators may coordinate sampling movements to synchronize sensory dynamics

across modalities with internal brain rhythms (Kleinfeld et al., 2014). Further,

locomotor and facial movement, which are often synchronized to respiration, drive

activity in numerous brain regions, including primary sensory areas (McGinley et al.,

2015a; Musall et al., 2019; Niell and Stryker, 2010; Stringer et al., 2019b). Why

are respiration and other movements correlated with activity in seemingly unrelated

sensory regions? In the real world, sensory receptors operate in closed loop with

movement (Ahissar and Assa, 2016; Gibson, 1966). Consequently, sensory systems

must disambiguate self-induced stimulus dynamics from changes in the environment.
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Further, active sampling movements can provide access to sensory information that

is not otherwise available to a stationary observer (Gibson, 1962; Schroeder et al.,

2010; Yarbus, 1967). Widespread movement-related signals may allow the brain to

compensate for and capitalize on self-induced stimulus dynamics (Poulet and Hedwig,

2006; Sommer and Wurtz, 2008; Sperry, 1950; von Holst and Mittelstaedt, 1950;

Webb, 2004). Our work advances understanding of how sensation and movement

interact during active sensing.

Rigorously quantifying the behavior of freely-moving animals is more feasible

than ever, thanks to recent developments in machine vision, deep learning, and

probabilistic generative modeling (Datta et al., 2019; Gomez-Marin et al., 2014;

Mathis and Mathis, 2020), as our work shows. In particular, the motifs we have

defined provide a compact description of the behavior, while still capturing the

idiosyncrasies of individual mice. Importantly, these motifs can be grouped into two

larger-scale behavioral states that we putatively call “investigation” and “approach”.

Two-state search strategies are common across phylogeny (Bargmann, 2006; Berg,

2000; Kennedy and Marsh, 1974; Lockery, 2011; van Breugel and Dickinson, 2014;

Vickers and Baker, 1994). In smaller organisms, state switches have provided a useful

behavioral readout for understanding the neural mechanisms of odor-guided behavior

(Bi and Sourjik, 2018; Larsch et al., 2015; Baker et al., 2018). Here, we have shown

that where switches between investigation and approach occur in allocentric space

can reveal the location of informative features in an olfactory scene. The transition

points between ‘investigation’ and ‘approach’ serve as a principled template against

which to compare neural activity. Our work thus establishes a framework for studying

neural mechanisms of active sensing in an unrestrained mammal.
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2.5 Methods and Materials

Custom-written task control, analysis, and visualization code is available at

https://github.com/SmearLab/Freely-moving-olfactory-search (Findley et al, 2021).

2.5.1 Animals: Housing and Care

All experimental procedures were approved by the Institutional Animal Care

and Use Committee (IACUC) at the University of Oregon and are compliant with

the National Institutes of Health Guide to the Care and Use of Laboratory Animals.

C57BL/6J mice (2-14 months old) from the Terrestrial Animal Care Services (TeACS)

at University of Oregon (19 male, 7 female) were used for behavioral experiments.

Mice were housed individually in plastic cages with bedding and running wheels

provided by TeACS. Mice were fed standard rodent chow ad libitum, and were water

restricted, receiving a daily allotment (1mL - 1.5mL) of acidified or chlorinated water.

Animal health was monitored daily, and mice were taken off water restriction if they

met the ‘sick animal’ criteria of a custom IACUC-approved health assessment.

2.5.2 Behavioral Assay Design

2.5.2.1 Arena and Task Structure

Mice were trained to perform a two-choice behavioral task where they must

locate an odor source for a water reward. This 15 x 25cm behavioral arena was

largely custom designed in lab (all designs available upon request). The behavioral

arena contains a custom designed and 3D-printed honeycomb wall through which

continuous clean air is delivered to the arena and a latticed wall opposite to

the honeycomb allowing airflow to exit the arena. Two odor tubes (Cole-Parmer

Instrument Company, #06605-27) are embedded inside the honeycomb wall and

consistently deliver either clean or odorized air. There are three nose pokes in

the arena: one trial initiation poke and two reward pokes. The initiation poke is
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embedded inside the latticed wall (where airflow exits) and is poked to initiate trials.

The left and right reward pokes are embedded in the left and right arena walls against

the honeycomb airflow delivery and are used for water reward delivery. Mice initiate

odor release by entering the initiation poke. If the mouse locates the odor source

successfully (by entering the quadrant of the arena containing the correct odor port),

water ( 6µL - 8µL) is available at the corresponding nose poke. An intertrial interval

of 4 seconds is then initiated. If the mouse goes to the incorrect side, water is not

made available and they must wait an increased intertrial interval of 10 seconds.

2.5.2.2 Odor Delivery

Odor is delivered to the arena using two custom designed and built olfactometers.

For a single olfactometer, air and nitrogen are run through separate mass

flow controllers (MFCs) (Alicat Scientific, #MC-100SCCM-RD) that can deliver

1000mL/min and 100mL/min at full capacity, respectively. We can use these MFCs

to control the percentage of total nitrogen flow (100mL/min) that runs through liquid

odorant. Consequently, we can approximately control the amount of odor molecules

in the resulting odorized air stream. Total flow is maintained at 1000mL/min (for

example, if we are delivering 80mL/min of nitrogen, we will deliver 920mL/min of

air). Nitrogen MFC output is directed through a manifold (NResearch Incorporated,

#225T082) with embedded solenoids that direct flow to one of four possible vials.

These vials contain odorant diluted in mineral oil or are empty. To odorize air,

nitrogen is directed through a vial containing liquid odorant. The nitrogen aerosolizes

the odorant and combines with airflow MFC output at the exit point of the manifold.

If nitrogen is directed through an empty vial, un-odorized nitrogen will combine

with airflow at the exit point. The resulting combined flow of air and nitrogen is

then directed to a final valve (NResearch Incorporated, #SH360T042). Odorized air
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continuously runs to exhaust until this final valve is switched on at which point clean

air is directed to exhaust and odorized air to the behavioral assay. Therefore, we can

control the percentage of odorized flow (using the MFCs), the presence or absence of

odorized flow (using the vials and solenoids), and the flow of odorized air to the assay

(using the final valve). There are two olfactometers (one for each odor port), which

are calibrated weekly to match outputs using a photoionization detector (PID).

2.5.2.3 Video tracking

We use a Pointgrey Fly Capture Chameleon 3.0 camera (FLIR Integrated

Imaging Solutions Inc, #CM3-U3-13Y3C) for video tracking. We capture frames at

80Hz at 1200x720 pixel resolution. All real-time tracking is executed using a custom

Bonsai program. We isolate the mouse’s centroid by gray scaling a black mouse on a

white background and finding the center of the largest object. We track head position

by applying red paint on the mouse’s implant between the ears and thresholding the

real-time HSV image to identify the center of the largest red shape. We can then

identify nose position by calculating the extremes of the long axis of the mouse shape

and isolating the extreme in closer proximity to the head point. These three points

are sent to python at 80 Hz for real-time tracking in our assay. We use this real-time

tracking to determine successful odor localization; if the mouse enters the quadrant

of the arena that contains the correct odor port, it has answered correctly. Bonsai

is an open source computer vision software available online (Lopes et al., 2015), and

our custom code is available upon request.

For more rigorous behavioral analysis, we increased our tracking accuracy by

using the open source tracking software Deeplabcut (Mathis et al., 2018; M. W.

Mathis and Mathis, 2020). All Deeplabcut tracking occurred offline following

experimentation.
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2.5.2.4 Sniff Recordings

We record sniffing using intranasally implanted thermistors (TE Sensor Solutions,

#GAG22K7MCD419; see Methods: Surgical Procedures). These thermistors are

attached to pins (Assmann WSW Components, #A-MCK-80030) that can be

connected to an overhead commutator (Adafruit, #736) and run through a custom-

built amplifier (Texas Instruments, #TLV2460, amplifier circuit design available upon

request).

2.5.2.5 Software

All behavioral experiments were run using custom code in Python, Bonsai, and

Arduino. Behavioral boards designed at Janelia Research Farms that use Arduino

software and hardware were used to control all hardware. Bonsai was used to execute

real-time tracking of animals, and Python was used run the assay, communicate with

Arduino and Bonsai, and save data during experiments. All programs used are open

source, and all custom code is available upon request.

2.5.3 Surgical Procedures

For all surgical procedures, animals were anesthetized with 3% isoflurane;

concentration of isoflurane was altered during surgery depending on response of the

animal to anesthesia. Incision sites were numbed prior to incision with 20mg/mL

lidocaine.

2.5.3.1 Thermistor Implantation

To measure respiration during behavior, thermistors were implanted between

the nasal bone and inner nasal epithelium of mice. Following an incision along the

midline, a small hole was drilled through the nasal bone to expose the underlying

epithelium 2mm lateral of the midline in the nasal bone. The glass bead of the

thermistor was then partially inserted into the cavity between the nasal bone and
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the underlying epithelium. Correct implantation resulted in minimal damage the

nasal epithelium. The connector pins were fixed upright against a 3cm headbar

(custom designed and 3D printed) placed directly behind the animals’ ears and the

thermistor wire was fixed in place using cyanoacrylate. The headbar was secured

against a small skull screw (Antrin Minature Specialties, #B002SG89OI) implanted

above cerebellum. A second skull screw was placed at the juncture of the nasal bones

to secure the anterior portion of the implant. All exposed skull and tissue were secured

and sealed using cyanoacrylate. At the end of surgery, a small amount of fluorescent

tempera red paint (Pro Art, #4435-2) was applied to the center of the headbar for

tracking. Immediately following surgery, animals received 0.1mg/kg buprenorphine

followed by 3 days of 0.03mg/kg ketoprofen. All but 9 mice were implanted prior to

training. Mice that were implanted post-training were taken off water restriction at

least 2 days prior to surgery and were not placed back on water restriction for at least

one week following all analgesic administration.

2.5.3.2 Naris Occlusion

To test the necessity of stereo olfaction as a sampling strategy, we occluded

the nostrils of C57BL/6J mice using 6-0 gauge surgical suture (SurgiPro,

#MSUSP5698GMDL). Mice were given 0.03mg/kg ketoprofen and topical lidocaine

on the nostril prior to induction. Suture was either pulled through the upper lip

of the nostril and maxillary region to fully occlude the desired nostril or looped at

the upper lip of the nostril for a sham stitch. Commercially available VetBond was

applied to protect the suture knot. To ensure full occlusion, a small water droplet

was placed on the occluded nostril. The absence of bubbles or seepage indicated a

successful occlusion. Occlusion was re-tested in the same manner directly before each
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experimental session. All stitches were removed within a week of application, and

animals were stitched a total of 3 times per nostril.

2.5.4 Behavioral Training

All mice were trained to locate an odor source from one of two possible sources in

the olfactory arena. Mice were removed from training and future experiments if they

lost sniff signal or did not exceed 50 trials/perform above 60% correct in 15 sessions.

The training process was divided into four primary stages.

2.5.4.1 Water Sampling

Mice were trained to alternate between the three pokes in the behavioral arena.

Water ( 5 - 8µL) was made available at the nose pokes in the following order: initiation

port, left reward port, initiation port, right reward port (repeat). Mice were trained

in this task for 30 minutes per session until the mouse completed 70 iterations. This

took mice 2-9 sessions. Data are only shown for 19 mice, because earlier iterations of

the system did not save training data.

2.5.4.2 Odor Association

Mice were trained in the same sequence as water sampling. However, in odor

association, water availability was removed from the initiation poke, and odor was

released from whichever side water was available. Therefore, the mouse must initiate

water availability by poking the initiation poke and then is further guided to the

correct reward port by odor release. This task taught mice to initiate trials using

the initiation poke and to associate odor with reward. However, in this step, odor is

not required for reward acquisition as the task alternates left and right trials. Mice

were trained in this task for 30 minutes per session until the mouse completed 70

iterations. This took mice 1-5 sessions. Data are only shown for 19 mice, because

earlier iterations of the system did not save training data.
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2.5.4.3 100:0 condition

Mice were given the same task as odor association, but with odor now randomly

being released from the left or right odor port following an initiation poke. 10% of

these trials were randomly 0:0 condition trials. To correctly answer, animals had to

enter the quadrant of the arena (as tracked by the overhead camera) where odor was

being released. If they answered correctly, water was made available at the reward

port on the corresponding side. If they answered incorrectly, water was not made

available and the mouse received an increased intertrial interval. Mice were trained

in this task for 40 minutes per session until they exceeded 80% accuracy, which took

1-4 sessions (n = 26).

2.5.4.4 80:20 condition

When trials were initiated in this task, odor was released from both odor ports,

but at differing concentrations. The animal had to enter the quadrant containing the

odor port releasing the higher concentration. In this case, 80 means that the nitrogen

MFC was set to 80mL/min on one olfactometer (see Methods: Behavioral Assay).

Therefore, one odor port would release roughly 80% of the total possible odorant

concentration. If one olfactometer was set to 80, then the other olfactometer would

be set to 20 in this condition. 10% of these trials were randomly 0:0 condition. Mice

were trained in this task for 40 minutes per session, taking 1-9 sessions to exceed 60%

performance (n = 24).

2.5.5 Behavioral Experiments

2.5.5.1 Variable ∆C, Constant |C|

This experiment tested how performance and sampling strategy changes with

task difficulty. In this experiment, mice performed a two-choice behavioral task where

they located an odor source for a water reward at varying concentration differences

53



between the two ports. This experiment interleaved several possible conditions: 100:0

(all odor released from one port or the other), 80:20 (odor is released from both ports

at different concentrations: 80% of the total possible airborne concentration and 20%

of the total possible airborne concentration), and 60:40 (60% and 40%). Additionally,

there was a control condition where all system settings were the same as the 80:20

condition, but nitrogen flow was directed through a clean vial so that the final flow was

not odorized. 10% of the total number of trials were the 0:0 condition. Mice ran 40

minute experimental sessions and totaled 5-50 sessions (n = 19). These experiments

were run with 1% liquid dilution of pinene.

2.5.5.2 Novel Odorant

This experiment tested how mice generalized our olfactory search task. A subset

of mice were run with 1% liquid dilution of vanillin, which, unlike pinene, does not

activate the trigeminal system (n = 3).

2.5.5.3 Constant ∆C, Variable |C|

This experiment tested if the animals use a thresholding strategy based on a fixed

concentration threshold to solve the localization task. We ran this experiment using

air dilution delivering the concentration ratios 90:30 and 30:10 interleaved randomly

(n = 5). Mice ran 40 minute sessions and we analyzed data from the first session.

2.5.5.4 Naris Occlusion

This experiment tested the necessity of stereo olfaction in our localization task.

Mice were run in the interleaved experiment (see above) initially. However, after

observing no differences between concentration groups, we continued this experiment

running mice in the 80:20 and 0:0 conditions only. Mice were run in one of five

categories: left occlusion, left sham stitch, right occlusion, right sham stitch, and no

stitch (see Methods: Surgical Procedures). Mice ran 40 minute experimental sessions
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and totaled 5-30 sessions (n = 13). Stitches were always removed after 4 days. These

experiments were run using 1% pinene dilutions.

2.5.6 Mapping the Olfactory Environment

We used a photoionization detector (PID, Aurora Scientific Inc, #201A) to

capture real time odor concentration at a grid of 7x5 sampling locations in the assay.

Using vials of 50% liquid dilution of pinene, we captured 15 two-second trials per

sampling point. Odor maps were generated using the average concentration detected

across all trials at each location. These maps were smoothed via interpolation across

space. Discriminability maps in Figs. 1-supplement 2C and D were calculated

with ROC analysis on the PID data (Green and Swets, 1966). To generate the

distributions, each two second trial was divided into 25 ms chunks (approximately

the mean inhalation duration during the task). For each space bin, the mean value of

each 25 ms chunk was compiled into a distribution of odor concentration values for

right and left trials (the different gradient conditions were pooled for this analysis).

To map concentration gradient discriminability, 25 ms samples from each bin were

assembled into a pseudosample, such that each sampling position had a concentration

value. The gradient angle in each bin of this pseudosample was then calculated

(imgradient function in MATLAB), and compiled into a distribution of angles for

right and left trials (the different gradient conditions were pooled for this analysis).

For both absolute concentration and gradient maps, the area under the ROC curve

was calculated for each bin, scaled to between -1 and 1, and absolute valued, and

these were assembled into a map and smoothed. Values are thresholded and shown

at low bit depth (8 grayscale values) to facilitate perception of where the auROC

values are highest.
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2.5.7 Data Analysis

Analyses of odormaps, sniffing, DLC tracking, and motif sequences were

performed in MATLAB. Inhalation and exhalation times were extracted by finding

peaks and troughs in the temperature signal after smoothing with a 25ms moving

window. Sniffs with duration less than the 5th percentile and greater than the 95th

percentile were excluded from analysis. For alignment of movement with sniffing,

tracking and motif sequences were shifted forward in time by 25ms (two frames), the

temporal offset revealed by video calibration (Fig. 1).

2.5.7.1 Figure 1

Odormaps were visualized by smoothing the PID sampling grid with a gaussian,

and colored using Cubehelix (Green, 2011).

2.5.7.2 Figure 2

Sessions where mice performed less than 60% correct on 80:20 (90:30 for Constant

∆C, Variable |C|), were less than 80 trials, or had any missing folders or files were

excluded. Trials longer than 10s were excluded. Percent correct was calculated by

dividing the correct trials by total trials in a single session and was averaged across

all sessions, all mice. Trial duration was measured between nose poke initiation and

reward poke and was averaged across all trials, all sessions, all mice. Tortuosity was

measured by dividing the total path length by the shortest possible path length and

was averaged across all trials, all sessions, all mice.

Statistical tests were performed in python using the scipy package (Jones et al.,

2001). A binomial test was used to test statistical significance of above chance

performance. Wilcoxon rank-sum tests were used for all group comparisons with

pairwise comparisons for more than two groups. Two group comparisons were tested
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using all trials pooled together and pairwise comparisons of three groups or more were

tested across mice using individual mouse averages.

2.5.7.3 Figure 3

Occupancy and sniff rate colormaps were generated by down-sampling the

tracking data to a 50x30 grid of bins (0.5 cm2). Occupancy colormaps are a 2D

histogram of the nose position data. Sniff rate histograms were generated by dividing

the sniff count in each position bin by the corresponding bin in the occupancy

histogram. Both histograms were gaussian-smoothed, and colored using Cubehelix

(Green, 2011). Grand means are shown in Fig. 2.3F,G, while individual mouse

occupancy heatmaps are shown in Fig. 2.4. Maps were colored using Cubehelix

(Green, 2011).

2.5.7.4 Figure 4 and 5

Nose speed, yaw velocity, and z velocity were calculated from the 3-point position

time-series generated by Deeplabcut. For analysis, a 400ms window centered on

each inhalation time was extracted from the kinematic timeseries. Colormaps in Fig.

2.4 show traces surrounding individual sniffs, while colormaps were generated using

Bluewhitered (Childress, 2020). For within-trial sniffs, only those inhaled before the

decision line were included. The inter-trial interval sniffs are taken from the time

of reward port entry to the time of the first initiation port entry in the inter-trial

interval. For cross-correlation and coherence analysis, we aligned the time-series of

sniffing and kinematic parameters from the entire trial, or from the interval between

reward and initiation port in the inter-trial interval. Tracking glitches were excluded

by discarding trials or inter-trial intervals that contained frames with nose speed

above a criterion value (100 pixels per frame).
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2.5.7.5 Figure 6

Average motif shapes were generated from the mean positions of the nose, head,

and body points from the first 8 frames of every instance of a given motif as determined

by the AR-HMM. Decoding analysis is described in the following section.

2.5.7.6 Figure 7

The transition probability matrix was clustered by minimizing Euclidean distance

between rows. For analyses separating investigation and approach sniffs, sniffs were

defined as investigation or approach sniffs based on the state at the inhalation time.

Colors for investigation and approach were selected from the Josef Albers painting,

Tautonym, (B) (Albers, 1944).

2.5.7.7 Figure 8

Figures are generated by motif-onset triggered averages of inhalation times

determined as described above. Fig. 2.8B,C are the grand mean of the motif onset-

triggered average for each motif. Maps were colored using Cubehelix (Green, 2011).

Sniff phase (relative time in sniff) was determined by dividing the motif onset latency

from inhalation by the total duration (i.e., inhalation time to inhalation time) of

each sniff. Modulation index was calculated as the difference between maximum and

minimum instantaneous sniff rate, divided by the sum (max-minmax+min).

2.5.7.8 Figures 9, 9-supplement 1, 10, and 10-supplement-1

Investigation and approach occupancy maps were generated by down-sampling

the tracking data to a 25x15 grid of bins (1 cm2). Occupancy maps are a 2D histogram

of the nose position data, compiled separately for investigation and approach frames

(see below for details of ARHMM analysis). In plots where the data are re-oriented

with respect to the choice, the lateral axis of all right-choice trials has been flipped so

that the trajectories always end on the left side (top side in the displayed occupancy
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maps). Both histograms were normalized to the total occupancy in a given bin

(i.e., investigation + approach), gaussian-smoothed, and merged and colored using

a scheme adapted from fluorescence microscopy. Grand means (n = 9) are shown

in Figs. 2.9A,B, 10A, and S16, while individual mouse mean occupancy maps are

shown in Fig. 2.25. Investigation approach index (I.A.I) is calculated as the difference

between investigation and approach occupancies over their sum, for a given bin. I.A.I

is taken from histograms which are the projection of the 2D maps onto the longitudinal

or lateral axes. The “transition zone” is defined as the region between 5-10 cm from the

longitudinal axis origin (i.e., the initiation port), and lateral axis histograms are taken

from within this region in Figs. 10D-F and S16. Correct-incorrect occupancy and

index differences are grand mean of the individual mouse differences in Figs. 2.10C,G-

I and S16. These differences are evaluated statistically against a null distribution

generated by scrambling the correct and incorrect trial labels 1000 times and re-

running this analysis. Importantly, these shuffles are performed within mice before

taking the post-shuffle grand means, so that these null distributions incorporate both

within-mouse and across-mouse variability.

2.5.7.9 Sniff synchronization

Sniff cycles were compared with kinematics to determine the extent of movement

modulation at individual sampling points. Individual sniffs were cross-correlated with

each kinematic signal (i.e. nose speed) at -200ms from inhalation onset to +200ms

from inhalation onset. To further determine synchrony between the two signals,

we measured the coherence of signal oscillation between sniff signals and individual

kinematic measurements at -200ms from inhalation onset to +200ms from inhalation

onset.
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2.5.8 Auto-Regressive Hidden Markov Model

Let xt denote the 6-dimensional vector of nose-head-body coordinates at video-

frame t (sampled at 80 Hz), with components (xnose, ynose, xhead, yhead, xbody, ybody).

We fit an auto-regressive hidden Markov model (AR-HMM) to mouse trajectory data,

x
(i)
t , across trials (indexed by (i)) from 13 out of 15 mice (two mice were excluded a

priori due to low task performance). These mice performed olfactory search under the

following experimental conditions: variable ∆C, constant |C| (9 mice); naris occlusion

(7 mice); and constant ∆C, variable |C| experiments (5 mice).

2.5.8.1 The generative view

Viewed as a generative model (that generates simulated data), the AR-HMM has

two “layers": a layer of hidden discrete states (corresponding to discrete movement

motifs), and an observed layer which is the continuous trajectory xt. We denote

the temporal sequence of discrete states by zt. In each time-step, zt ∈ {1, 2, . . . , S},

i.e. it is one of an S number of states, or movement motifs. The discrete hidden

states evolve in time according to a Markov chain: going from time-step t to t + 1,

the discrete state may change to another state according to a transition probability

matrix πz1,z2 , which denotes the conditional probability of switching to z2 having

started in z1. The probability distribution over the initial state, zt=1, of the Markov

chain at the start of each trial was taken to be the uniform distribution.

Now suppose for time steps t1 to t2 (inclusive) the discrete layer remained in state

z. The continuous or autoregressive part of the model dictates that, over this time

interval, the continuous trajectory, xt, evolves according to a linear autoregressive

(AR) process. The parameters of this AR process can be different in different states

or motifs, z. In other words, xt is governed by
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xt = Azxt−1 + bz + εt t1 ≤ t ≤ t2 (2.1)

where Az is a 6 × 6 matrix and bz is a 6 × 1 vector, and the noise vector εt is

sampled from the multi-variate zero-mean gaussian distribution N (0, Qz) where Qz

is a 6× 6 noise covariance matrix. Moreover, the parameters Az, bz, and Qz depend

on the discrete state z, and in general are different in different discrete states. The

simple stochastic linear dynamics described by Eq. (2.1) can describe simple motions

of the mouse, such as turning left/right, dashing towards a certain direction, freezing

(when Az is the identity matrix and bz is zero), etc. The switches between these

simple behaviors allow the model to generate complex trajectories.

The AR-HMM model is an example of a model with latent variables, which in

this case are the discrete state sequence z
(i)
t in each trial. The model, as a whole,

is specified by the set of parameters (π, {Az}, {bz}, {Qz}), which we will denote by

θ. For a d-dimensional trajectory (d = 6 here) and S states, comprises S(S − 1) +

S(d2 + d+ d(d+ 1)/2) = S(S − 1 + 3d(d+ 1)/2) parameters.

2.5.8.2 Model fits

Models with latent variables are often fit using the expectation-maximization

(EM) algorithm which maximizes the likelihood of the model in terms of the

parameters θ ≡ (π, {Az}, {bz}, {Qz}) for a given set of observed data {x(i)
t }. In

this work, we did not use the EM algorithm, but adopted a fully Bayesian approach

in which both the hidden variables and the model parameters were inferred by drawing

samples from their posterior distribution (?). The posterior distribution combines the

model likelihood and Bayesian priors imposed on its parameters, according to Bayes’

rule. If we denote the joint-likelihood of observed trajectories, {x(i)
t }, and the latent

variables, {z(i)t }, by P ({x(i)
t , z

(i)
t }|θ) and the prior distribution over model parameters
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by P (θ), then up to normalization, the joint posterior distribution of latent variables

and model parameters is given by

P ({z(i)t },θ|{x(i)
t }) ∝ P ({(x(i)

t , z
(i)
t )}|θ)P (θ) (2.2)

For the AR-HMM model, the (logarithm of the) joint log-likelihood is given by

logP ({x(i)
t , z

(i)
t }|θ) =

∑
i

Ti∑
t=2

[
log π

z
(i)
t−1,z

(i)
t

+ logN (x
(i)
t |A

z
(i)
t
x
(i)
t−1 + b

z
(i)
t
, Q

z
(i)
t
)
]
(2.3)

where Ti is the length of trial i, and we use the notation N(x|µ, Q) =

e−
1
2
(x−µ)

T
Q−1(x−µ)/

√
|2πQ| to denote the density at point x of a multivariate gaussian

with mean vector µ and covariance matrix Q.

We imposed loose conjugate priors on the model parameters, which were

factorized over the parameters of the AR process, ({Az}, {bz}, {Qz}), in different

discrete states z, and the different rows of the Markov transition matrix, π. On

the rows of π, we imposed Dirichlet distribution priors with uniform distribution

means, and concentration hyperparameter α, which was set to 4. We imposed matrix

normal inverse-Wishart priors on the AR parameters, independently for different

discrete states. Under this prior, the noise covariance Qz has an inverse Wishart

distribution with a “scale matrix" hyperparameter, which was set to the d×d (= 6×6)

identity matrix, and a “degrees-of-freedom" scalar hyperparameter set to d + 2 = 8.

Conditional on Qz, the remaining AR parameters, (Az,bz), have a joint multivariate

normal distribution under the prior, which can be specified by the prior mean and

joint prior covariance matrix of Az and bz. The prior means of Az and bz were set to

the d × d identity matrix and the d-dimensional zero vector, respectively, while the
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prior covariance matrix of the concatenation (Az,bz) was given by the tensor product

of Qz and the (d + 1) × (d + 1) (= 7 × 7) identity matrix (equivalently, under this

prior, bz and different columns of Az are independent and uncorrelated, while each of

these column vectors has a prior covariance equal to the (prior) AR noise covariance,

Qz).

Bayesian model inference was carried out by sampling from (instead of

maximizing) the joint posterior distribution of the model parameters and latent state

variables conditioned on the observed trajectory data, Eq. (2.2). We did this by Gibbs

sampling (an example of Markov Chain Monte Carlo; not to be confused with the

Markov Chain in the AR-HMM model), which works in a manner conceptually similar

to the EM algorithm: it switches between sampling z
(i)
t in all trials, conditioned

on previously sampled parameters, and then sampling the parameters θ given the

previous sample of {z(i)t }. To carry out this model inference procedure, we used the

Python package developed by M. J. Johnson and colleagues, publicly available at

https://github.com/mattjj/pyhsmm.

We ran the Gibbs sampler for 300 iterations, and burned the first 200 samples,

retaining 100. We used the remaining samples to obtain the posterior probabilities

of hidden discrete states at each time step of each trial (by calculating the frequency

of different state in that time step and trial, across the retained Gibbs samples), as

well as posterior expectation of the model parameters (by calculating their averages

over the retained Gibbs samples). We refer to the AR-HMM with parameters given

by these latter posterior expectations as the “fit model".

2.5.8.3 Model selection

We fit AR-HMM’s with different numbers of states (motifs), S, to mouse

trajectory data pooled across animals. To evaluate the statistical goodness-of-fit
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of these fit model and select the best S (the number of states or motifs), we evaluated

the log-likelihoods of fit models on trajectory data from a held-out set of trials,

not used for model fitting. The corresponding plot of log-likelihoods is shown in

Figure 6F. As seen, the log-likelihood keeps increasing with S, up to S = 100. This

shows that, up to at least S = 100, additional motifs do have utility in capturing

more variability in mouse trajectories. These variabilities may include differences in

movement across mice, as well as movement variations in the same mouse but across

different trials or different instances of the same movement; for example, a clockwise

head turn executed with different speeds in different instances or trials. In the AR-

HMM model, the AR observation distribution of a given Markov state corresponds

to a very simple (linear) dynamical system which cannot capture many natural and

continuous variations in movement, such as changes in movement speed. Nevertheless

AR-HMM models with higher S can capture such variations with more precision,

by specializing different discrete Markov states, with different AR distributions, to

movement motifs of different mice, or, for example, to capture different speeds of the

same qualitative movement motif.

The goal for this modelling was to give a compact description of recurring

movement features across animals and conditions, suitable for visualization and

alignment. For these purposes, the goodness-of-fit did not provide a suitable criterion,

because the log-likelihood plots did not peak or plateau even at very large numbers

of states. Guided by visual inspection, we thus chose the model with S = 16, for the

main figures (Fig. 2.6-8). Although this was a somewhat arbitrary choice, we show

that the findings in Figures 6, 7, and 8 do not depend on the choice of S – models

with S = 6, 10, or 20 gave equivalent results (Fig. 2.19-2.21).
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2.5.8.4 MAP sequences

The Gibbs sampling algorithm which we used for model inference yields (timewise

marginal) Maximum A Posteriori (MAP) estimates of the latent variables {z(i)t }, as

follows. Using the Gibbs samples for the latent variables we can estimate the posterior

probability of the mouse being in any of the S states in any given time-step of a given

trial. We made MAP sequences by picking, at any time step and trial, the state

with the highest posterior probability. The inferred MAP motifs tended to have high

posterior probability, which exceeded 0.8 in 66.2% of all time-steps across the 17195

trials in the modeled dataset.

2.5.9 Decoding analysis

We decoded experimental conditions and animal identities from single-trial MAP

motif sequences inferred using the AR-HMM model. Specifically, we trained multi-

class decoders with linear decision boundaries (Linear Discriminant Analysis) to

decode the above categorical variables from the single-trial empirical state transition

probability matrices derived from the MAP sequence of each trial. If ẑ(i)t is the motif

MAP sequence for trial i, the empirical transition probability, π̂(i)
a,b, from state a to

state b (a, b ∈ {1, . . . , K}), for that trial was calculated by:

π̂
(i)
a,b ≡

n
(i)
a,b∑K

c=1 n
(i)
a,c

(2.4)

n
(i)
a,b ≡

T (i)−1∑
t=1

I(ẑt = a)I(ẑt+1 = b) (2.5)

where T (i) is the length of trial i, and I(·) is an indicator function, returning 1

or 0 when its argument is true or false, respectively.
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We used the decoder to either classify experimental condition or mouse identity,

in different trials (Fig. ??D,E). For decoders trained to classify the trials’

experimental condition, we used pooled data across mice. For decoders trained to

classify mouse identity, we only used data from the 80-20 odor condition. Data

was split into training and test dataset in a stratified 5-fold cross-validation manner,

ensuring equal proportions of trials of different types in both datasets. The trial

type was the combination of left vs right decision, experimental condition, and mouse

identity.

To calculate the statistical significance of decoding accuracies, we performed an

iterative shuffle procedure on each fold of the cross-validation. In each shuffle, the

training labels which the classifer was trained to decode were shuffled randomly across

trials of the training set, and the classifer’s accuracy was evaluated on the unshuffled

test data-set. This shuffle was performed 100 times to create a shuffle distribution

of decoding accuracies for each fold of the cross-validation. From these distributions

we calculated the z-score of decoding accuracy for each class in each cross-validation

fold. These z-scores were then averaged across the folds of cross-validation and used

to calculate the overall p-value of the decoding accuracy obtained on the original

data.

2.6 Bridge to Chapter III

In this chapter, we investigated the behavioral strategies mice employ during

olfactory search. Studying behavior as a stand-alone project is a necessary first step

in describing what an animal is actually doing moment to moment before recording

from sensory neural populations. We developed the methods necessary to accomplish

this for a freely moving paradigm like we have here, but is also applicable in a

more restricted head-fixed set-up. This method segmented the mouse’s behavior into
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identifiable and reoccurring behavioral states, which we can use to align to periods of

interest in neural activity. In Chapter III, we do something similar with locomotion.

We analyze neural activity during periods when the animal is at rest and when the

animal is moving and found an acceleration of visual processing in the neural data.

While this chapter looked at active sensation in the olfactory system, Chapter III

looks at active sensation in the visual system.
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2.7 Supplemental Figures

Figure 2.11. Calibrating alignment of video frames with sniff signal. A) Sinusoidal signals
(5, 8, 10, and 15 Hz) were simultaneously sent to the analog input channel (used to capture
sniffing) and to a phosphor-display oscilloscope (Tektronix). The display of the oscilloscope
was reflected by mirrors to allow it to be video-captured inside the behavioral arena. B)
The timing relationship is given by the lag between peaks in the analog input channel and
the vertical peaks in the position of the oscilloscope trace. Analog input led video frames
by 23.5 ± 15.7 ms (mean ± sd; approximately two frames at 80 frames/second).
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Figure 2.12. Characterizing the odor stimulus conditions. A) Color maps of average
odor concentration across 15 two-second trials captured by a 7x5 grid of sequential
photoionization detector recordings. - Each row represents trial type (left correct or right
correct). 80:20 odor condition (see Methods: Behavioral Training: 80:20). B) Same as A,
for the 60:40 odor condition (see Methods: Interleaved: 60:40). C) Absolute concentration
discriminability map based on PID recordings (see methods). Darker shades indicate
regions where absolute concentrations are most discriminable according to ROC analysis.
Essentially, these regions downwind of the odor ports have the largest differences in absolute
concentration between left and right trials. D) Concentration gradient discriminability map
based on PID recordings. Darker shades indicate regions where odor concentration gradient
angles are most discriminable according to ROC analysis. Essentially, this region around
the lateral midline of the arena has the largest differences in concentration gradient between
left and right trials.
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Figure 2.13. Session statistics across trainer sessions. Individual mice are depicted by colored
lines, average across mice are black points, and whiskers are ±1 standard deviation from the
average across mice. Mice 2054-2062 did not have trainer 1 and 2 recorded (this accounts
for increasing n) and mice were commonly removed from the experiment if they lost sniff
signal (this accounts for the reducing n). Above. Number of trials performed or percent of
correct trials. Middle. Average trial duration. Below. Average trial path tortuosity (total
path length/shortest possible path length). A) Session statistics for the first trainer, water
sampling (n = 19). B) Session statistics for the second trainer, odor association (n = 19).
C) Session statistics for the third trainer, 100:0 or olfactory search (n = 26). Mice perform
above 70% in first session. D) Session statistics for final training step, 80:20, that preceded
experiments shown in Figure 2 (n = 24).
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Figure 2.14. Mice generalize search task to novel odorants and variable |C| session. A)
Performance, trial duration, and trial tortuosity (total path length/shortest possible path
length) for the last session of pinene training in 80:20 and the first session of vanillin in
80:20 across mice (n = 3). B) Grouped by stimulus condition (90:30, 30:10, 0:0), each line
represents the rolling average across mice (window = 10) for the first session (n = 5). Shaded
regions represent ±1 standard deviation.
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Figure 2.15. Idiosyncratic occupancy distributions across individual mice. Two-dimensional
histogram of occupancy (fraction of frames spent in each 0.5cm² bin).

72



Figure 2.16. Sniff synchronization shuffle test. Sniff-aligned grand mean (n = 11 mice) of A)
nose speed, B) yaw velocity, and C) Z-velocity for within-trial (Top) and inter-trial interval
(Bottom) sniffs, overlaid on 1000 iterations of trial-shuffled grand means. Thin black lines
represent individual iterations, all of which are shown.
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Figure 2.17. Kinematic rhythms for premature initiations during the intertrial interval and
between decision line and reward port during trials. Sniff-aligned average of A) nose speed,
B) yaw velocity, and C) Z-velocity. Thin lines represent individual mice (n = 11), bolded
lines and shaded regions represent the grand mean ± standard deviation. Top. Green:
within-trial sniffs from the time between crossing the decision line and entering the reward
port. Pink: inter-trial interval sniffs from the time between the first premature trial initiation
attempt and the successful initiation of the next trial. Bottom. Green: within-trial sniffs
at nose speeds above the threshold 15 cm/s. Pink: inter-trial interval sniffs at nose speeds
above the threshold 15 cm/s.
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Figure 2.18. Motif statistics and examples and linear decoder results for 80:20
experiments.A) Example nose trace across a single trial colored by motif identity. B) Linear
decoder (Fig. 3.6; Methods: Linear decoding section) results for Variable |C| experiments
(n = 5). C) Fraction of motif usage across all mice (n = 8) for the model with S = 16.
Black points are individual mice, black line is average across mice, and shaded region is ±1
standard deviation. Colors on x axis represent motifs used in analysis (Fig. 3.6) and y axis
are fractions of frames that motif occupies. D) The average dwell time of each motif across
all mice (n = 8) for the model with S = 16. Black points are individual mice, black line is
average across mice, and shaded region is ±1 standard deviation. Colors on x axis represent
motifs used in analysis (Fig. 3.6) and y axis are fractions of frames that motif occupies.
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Figure 2.19. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 6 states
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Figure 2.20. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 10 states
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Figure 2.21. Motif shapes, sequences, transition matrices, and sniff synchronization for an
AR-HMM capped at a maximum of 20 states
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Figure 2.22. Average first 8 frames of the 11 commonly used motifs across individuals. Dots
and lines show the average time course of posture for 8 frames of each of the 11 motifs.
All instances of each motif are translated and rotated so that the head is centered and the
head-body axis is oriented upward in the first frame. Subsequent frames of each instance
are translated and rotated the same as the first frame. Time is indicated by color (dark to
light). Each color/column represents a single motif and each row an individual mouse.
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Figure 2.23. Shuffle test for the difference in sniff synchronization between investigation and
approach motifs for movement parameters. We quantified the difference by calculating the
Kolmogorov-Smirnov statistic for the comparison between the sniff triggered averages in the
two states, first for real data, and then for 1000 iterations of trial-shuffled data. Red shows
the value for the real data, while the black histogram plots the distribution of Kolmogorov-
Smirnov statistic for the 1000 iterations.
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Figure 2.24. Shuffle test for sniff synchronization of motif onset for investigation and
approach motifs. We calculated a modulation index (MI = (max - min)(max + min) for
each motifs’ across-mouse mean histogram (n = 4), and calculated the same for 1000 trial-
shuffled across-mouse mean histograms. Blue and orange lines give the value from the real
data, while the black histogram shows the distribution of MI across shuffle iterations.
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Figure 2.25. The allocentric spatial distribution of investigation and approach occupancy for
individual mice. A) Colormaps show two-dimensional histograms of the occupancy density
(1 cm2 bins, n = 9 mice), with investigation density in blue, approach density in orange,
and overlap shown by darker coloring (key in top left corner). Each map corresponds to a
single mouse. Trials are oriented with respect to real space, such that the left side of the
arena faces up in the figure. B) Same as a, except that trials are re-oriented so that the
chosen side always faces up in the figure.
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Figure 2.26. Occupancy maps indicate an advantage for investigation of both sides for both
stay trials and switch trials. A) Occupancy map analysis for “stay” trials (trials where the
mouse chooses the side it first turned to, analyses as in Fig. 2.10). B) Occupancy map
analysis for “switch” trials (trials where the mouse chooses the opposite side from its first
turn).
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CHAPTER III

STATE-DEPENDENT REGULATION OF CORTICAL PROCESSING SPEED

VIA GAIN MODULATION

3.1 Author contributions

Originally published as David G Wyrick, Luca Mazzucato. State-dependent

regulation of cortical processing speed via gain modulation. Journal of Neuroscience,

2021. 41(18):3988–4005. LM designed research. LM and DW performed research;

LM and DW wrote the paper; DW analyzed data.

3.2 Introduction

Animals respond to the same stimulus with different reaction times depending

on the context or the behavioral state. Faster responses may be elicited by expected

stimuli or when the animal is aroused and attentive (Niemi and Näätänen, 1981).

Slower responses may occur in the presence of distractors or when the animal is

disengaged from the task (Grueninger and Pribram, 1969; Treisman and Gelade, 1980;

Desimone and Duncan, 1995). Experimental evidence suggests that neural correlates

of these contextual modulations occur early in the cortical hierarchy, already at the

level of the primary sensory cortex (Jaramillo and Zador, 2010; Samuelsen et al.,

2012). During the waking state, levels of arousal, attention, and task engagement

vary continuously and are associated with ongoing and large changes in the activity

of neuromodulatory systems (Lee et al., 2014; Pinto et al., 2013; Fu et al., 2014) as

well as cortico-cortical feedback pathways (Guo et al., 2014; Chen et al., 2017; Nelson

et al., 2013; Leinweber et al., 2017; Zhang et al., 2014). Activation of these pathways

modulate the patterns of activity generated by cortical circuits and may affect their
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information-processing capabilities. However, the precise computational mechanism

underlying these flexible reorganizations of cortical dynamics remains elusive.

Variations in behavioral and brain state, such as arousal, engagement and

body movements may act on a variety of timescales, both slow (minutes, hours)

and rapid (seconds or subsecond), and spatial scales, both global (pupil diameter,

orofacial movements) and brain subregion-specific; and they can be recapitulated by

artificial perturbations such as optogenetic, chemogenetic or electrical stimulation.

These variations have been associated with a large variety of seemingly unrelated

mechanisms operating both at the single cell and at the population level. At the

population level, these mechanisms include modulations of low and high frequency

rhythmic cortical activities (McGinley et al., 2015b); changes in noise correlations

(Cohen and Maunsell, 2009; Dadarlat and Stryker, 2017); and increased information

flow between cortical and subcortical networks (McGinley et al., 2015b). On a

cellular level, these variations have been associated with modulations of single-cell

responsiveness and reliability (Dadarlat and Stryker, 2017); and cell-type specific

gain modulation (McGinley et al., 2015b). These rapid, trial-by-trial modulations of

neural activity may be mediated by neuromodulatory pathways, such as cholinergic

and noradrenergic systems (Lee et al., 2014; Pinto et al., 2013; Fu et al., 2014;

Reimer et al., 2016), or more precise cortico-cortical projections from prefrontal

areas towards primary sensory areas (Guo et al., 2014; Chen et al., 2017; Nelson

et al., 2013; Leinweber et al., 2017; Zhang et al., 2014). The effects of these cortico-

cortical projections can be recapitulated by optogenetic activation of glutamatergic

feedback pathways (Zagha et al., 2015). In the face of this wide variety of physiological

pathways, is there a common computational principle underlying the effects they elicit

on sensory cortical circuits?
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A natural way to model the effect of activating a specific pathway on a

downstream circuit is in the form of a perturbation to the downstream circuit’s

afferent inputs or recurrent couplings (Mazzucato et al., 2019; Huang et al., 2019).

Here, we will present a theory explaining how these perturbations control the

information-processing speed of a downstream cortical circuit. Our theory shows

that the effects of perturbations that change the statistics of the afferents or the

recurrent couplings can all be captured by a single mechanism of action: intrinsic gain

modulation, where gain is defined as the rate of change of the intrinsic input/output

transfer function of a neuron measured during periods of ongoing activity. Our theory

is based on a biologically plausible model of cortical circuits using clustered spiking

network (Amit and Brunel, 1997). This class of models capture complex physiological

properties of cortical dynamics such as state-dependent changes in neural activity,

variability (Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012; Mazzucato

et al., 2015, 2016; Rostami et al., 2020) and information-processing speed (Mazzucato

et al., 2019). Our theory predicts that gain modulation controls the intrinsic temporal

dynamics of the cortical circuit and thus its information processing speed, such that

decreasing the intrinsic single-cell gain leads to faster stimulus coding.

We tested our theory by examining the effect of locomotion on visual processing

in the visual hierarchy. We found that locomotion decreased the intrinsic gain of

visual cortical neurons in the absence of stimuli in freely running mice. The theory

thus predicted a faster encoding of visual stimuli during running compared to rest,

which we confirmed in the empirical data. Our theoretical framework links gain

modulation to information-processing speed, providing guidance for the design and

interpretation of future manipulation experiments by unifying the changes in brain
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state due to behavior, optogenetic, or pharmacological perturbations, under the same

shared mechanism.

3.3 Methods

3.3.1 Spiking network model

Architecture. We modeled the local cortical circuit as a network of N = 2000

excitatory (E) and inhibitory (I) neurons (with relative fraction nE = 80% and

nI = 20%) with random recurrent connectivity (Fig. 3.2). Connection probabilities

were pEE = 0.2 and pEI = pIE = pII = 0.5. Nonzero synaptic weights from pre-

synaptic neuron j to post-synaptic neuron i were Jij = jij/
√
N , with jij sampled

from a gaussian distribution with mean jαβ, for α, β = E, I, and standard deviation

δ2. E and I neurons were arranged in p clusters. E clusters had heterogeneous

sizes drawn from a gaussian distribution with a mean of N clust
E = 80 E-neurons

and 20% standard deviation. The number of clusters was then determined as

p = round(nEN(1 − nbgr)/N
clust
E ), where nbgr = 0.1 is the fraction of background

neurons in each population, i.e., not belonging to any cluster. I clusters had equal size

N clust
I = round(nIN(1−nbgr/p). Clusters were defined by an increase in intra-cluster

weights and a decrease in inter-cluster weights, under the constraint that the net input

current to a neuron would remain unchanged compared to the case without clusters.

Synaptic weights for within-cluster neurons where potentiated by a ratio factor J+
αβ.

Synaptic weights between neurons belonging to different clusters were depressed by

a factor J−
αβ. Specifically, we chose the following scaling: J+

EI = p/(1 + (p− 1)/gEI),

J+
IE = p/(1 + (p− 1)/gIE), J−

EI = J+
EI/gEI , J−

IE = J+
IE/gIE and J−

αα = 1− γ(J+
αα − 1)

for α = E, I, with γ = f(2 − f(p + 1))−1, where f = (1 − nbgr)/p is the fraction

of E neurons in each cluster. Within-cluster E-to-E synaptic weights were further

multiplied by cluster-specific factor equal to the ratio between the average cluster
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Model parameters for clustered network simulations
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.6 mV

jIE mean E-to-I synaptic weights ×
√
N 0.6 mV

jEI mean I-to-E synaptic weights ×
√
N 1.9 mV

jII mean I-to-I synaptic weights ×
√
N 3.8 mV

jE0 mean E-to-E synaptic weights ×
√
N 2.6 mV

jI0 mean I-to-I synaptic weights ×
√
N 2.3 mV

δ standard deviation of the synaptic weight distribution 20%
J+
EE Potentiated intra-cluster E-to-E weight factor 14

J+
II Potentiated intra-cluster I-to-I weight factor 5

gEI Potentiation parameter for intra-cluster I-to-E weights 10
gIE Potentiation parameter for intra-cluster E-to-I weights 8
rext Average baseline afferent rate to E and I neurons 5 spks/s
V thr
E E-neuron threshold potential 1.43 mV

V thr
I I-neuron threshold potential 0.74 mV

V reset E- and I-neuron reset potential 0 mV
τm E- and I-neuron membrane time constant 20 ms
τrefr E- and I-neuron absolute refractory period 5 ms
τs E- and I-neuron synaptic time constant 5 ms

Table 1. Parameters for the clustered network used in the simulations.

size N clust
E and the size of each cluster, so that larger clusters had smaller within-

cluster couplings. We chose network parameters so that the cluster timescale was 100

ms, as observed in cortical circuits (Jones et al., 2007; Mazzucato et al., 2015, 2019).

Parameter values are in Table 1.

Neuronal dynamics. We modeled spiking neurons as current-based leaky-integrate-

and-fire (LIF) neurons whose membrane potential V evolved according to the

dynamical equation
dV

dt
= − V

τm
+ Irec + Iext ,

where τm is the membrane time constant. Input currents included a contribution

Irec coming from the other recurrently connected neurons in the local circuit and

an external current Iext = I0 + Istim + Ipert (units of mV s−1). The first term
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I0 = NextJα0rext (for α = E, I) is a constant term representing input to the E or

I neuron from other brain areas and Next = nENpEE; while Istim and Ipert represent

the incoming sensory stimulus or the various types of perturbation (see Stimuli and

perturbations below). When V hits threshold V thr
α (for α = E, I), a spike is emitted

and V is then held at the reset value V reset for a refractory period τrefr. We chose

the thresholds so that the homogeneous network (i.e.,where all J±
αβ = 1) was in a

balanced state with average spiking activity at rates (rE, rI) = (2, 5) spks/s (Amit

and Brunel, 1997; Mazzucato et al., 2019). Post-synaptic currents evolved according

to the following equation

τsyn
dIrec
dt

= −Irec +
N∑
j=1

Jij
∑
k

δ(t− tk) ,

where τs is the synaptic time constant, Jij are the recurrent couplings and tk is the

time of the k-th spike from the j-th presynaptic neuron. Parameter values are in

Table 1.

Sensory stimuli. We considered two classes of inputs: sensory stimuli and

perturbations. In the “evoked” condition (Fig. 3.4a), we presented the network one

of four sensory stimuli, modeled as changes in the afferent currents targeting 50% of

E-neurons in stimulus-selective clusters; each E-cluster had a 50% probability of being

selective to a sensory stimulus (mixed selectivity). In the first part of the paper (Fig.

3.1-3.6, I-clusters were not stimulus-selective. Moreover, in both the unperturbed and

the perturbed stimulus-evoked conditions, stimulus onset occurred at time t = 0 and

each stimulus was represented by an afferent current Istim(t) = Iextrstim(t), where

rstim(t) is a linearly ramping increase reaching a value rmax = 20% above baseline

at t = 1. In the last part of the paper (Fig. 3.7), we introduced a new stimulation
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protocol where visual stimuli targeted both E and I clusters in pairs, corresponding

to thalamic input onto both excitatory and inhibitory neurons in V1 (Zhuang et al.,

2013; Miska et al., 2018; Kloc and Maffei, 2014; Khan et al., 2018). Each E-I cluster

pair had a 50% probability of being selective to each visual stimulus. If a E-I cluster

pair was selective to a stimulus, then all E neurons and 50% of I neurons in that pair

received the stimulus. The time course of visual stimuli was modeled as a double

exponential profiles with rise and decay times of (0.05, 0.5)s, and peak equal to a

20% increase compared to the baseline external current.

External perturbations. We considered several kinds of perturbations. In the

perturbed stimulus-evoked condition (Fig. 3.4b), perturbation onset occurred at time

t = −0.5 and lasted until the end of the stimulus presentation at t = 1 with a

constant time course. We also presented perturbations in the absence of sensory

stimuli (“ongoing” condition, Fig. 3.2-3.3); in that condition, the perturbation was

constant and lasted for the whole duration of the trial (5s). Finally, when assessing

single-cell responses to perturbations, we modeled the perturbation time course as a

double exponential with rise and decay times [0.1, 1]s (Fig. 3.6). In all conditions,

perturbations were defined as follows:

– δmean(E), δmean(I): A constant offset Ipert = zI0 in the mean afferent currents

was added to all neurons in either E or I populations, respectively, expressed

as a fraction of the baseline value I0 (see Neuronal dynamics above), where

z ∈ [−0.1, 0.2] for E neurons and z ∈ [−0.2, 0.2] for I neurons.

– δvar(E), δvar(I): For each E or I neuron, respectively, the perturbation was a

constant offset Ipert = zI0, where z is a gaussian random variable with zero mean

and standard deviation σ. We chose σ ∈ [0, 0.2] for E neurons and σ ∈ [0, 0.5]

for I neurons. This perturbation did not change the mean afferent current
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but only its spatial variance across the E or I population, respectively. We

measured the strength of these perturbations via their coefficient of variability

CV (α) = σα/µα, for α = E, I, where σ and µ = I0 are the standard deviation

and mean of the across-neuron distribution of afferent currents.

– δAMPA: A constant change in the mean jαE → (1 + z)jαE synaptic couplings

(for α = E, I), representing a modulation of glutamatergic synapses. We chose

z ∈ [−0.1, 0.2].

– δGABA: A constant change in the mean jαI → (1 + z)jαI synaptic couplings

(for α = E, I), representing a modulation of GABAergic synapses. We chose

z ∈ [−0.2, 0.2].

The range of the perturbations were chosen so that the network still produced

metastable dynamics for all values.

Inhibition stabilization. We simulated a stimulation protocol used in experiments

to test inhibition stabilization (Fig. 3.2c). This protocol is identical to the δmean(I)

perturbation during ongoing periods, where the perturbation targeted all I neurons

with an external current Ipert = zI0 applied for the whole length of 5s intervals,

with z ∈ [0, 1.2] and 40 trials per network and 10 networks for each value of the

perturbation.

Simulations. All data analyses, model simulations, and mean field theory

calculations were performed using custom software written in MATLAB, C and

Python. Simulations in the stimulus-evoked conditions (both perturbed and

unperturbed) comprised 10 realizations of each network (each network with different

realization of synaptic weights), with 20 trials for each of the 4 stimuli. Simulations

in the ongoing condition comprised 10 different realizations of each network, with
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Model parameters for the reduced two-cluster network
Parameter Description Value
jEE mean E-to-E synaptic weights ×

√
N 0.8 mV

jEI mean I-to-E synaptic weights ×
√
N 10.6 mV

jIE mean E-to-I synaptic weights ×
√
N 2.5 mV

jII mean I-to-I synaptic weights ×
√
N 9.7 mV

jE0 mean E-to-E synaptic weights ×
√
N 14.5 mV

jI0 mean I-to-I synaptic weights ×
√
N 12.9 mV

J+
EE Potentiated intra-cluster E-to-E weight factor 11.2

rext Average baseline afferent rate to E and I neurons 7 spk/s
V thr
E E-neuron threshold potential 4.6 mV

V thr
I I-neuron threshold potential 8.7 mV

τs E- and I-neuron synaptic time constant 4 ms
nbgr Fraction of background E neurons 65%

Table 2. Parameters for the simplified two-cluster network used for the mean-field theory
analysis (the remaining parameters are in Table 1.

40 trials per perturbation. Each network was initialized with random synaptic

weights and simulated with random initial conditions in each trial. Sample sizes

were similar to those reported in previous publications (Mazzucato et al., 2015,

2016, 2019). Dynamical equations for the leaky-integrate-and-fire neurons were

integrated with the Euler method with a 0.1ms step. Code to simulate the model

with δvar(E) perturbation and to perform the decoding analysis on the Allen

Institute Neuropixel dataset has been uploaded to: https://github.com/mazzulab/

cortical_processing_speed. Code to reproduce the full set of perturbations

investigated in this paper are available upon request to the corresponding author.

3.3.2 Mean field theory

We performed a mean field analysis of a simplified two-cluster network for leaky-

integrate-and-fire neurons with exponential synapses, comprising p + 2 populations

for p = 2 (Amit and Brunel, 1997; Mazzucato et al., 2019): the first p representing
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the two E clusters, the last two representing the background E and the I population.

The infinitesimal mean µn and variance σ2
n of the postsynaptic currents are:

µn = τm
√
N

(
nEpEEjEE

(
fJ+

EErn + J−
EE(

p−1∑
l=1

rl + (1− pf)rbgrE ) +
jE0

jEE

rext

))
−τm

√
N (nIpEIjEIrI) ,

µbgr = τm
√
N

[
nEpEEjEE

(
J−
EE

p∑
l=1

rl + (1− pf)rbgrE +
jE0

jEE

rext

)
− nIpEIjEIrI

]
,

µI = τm
√
N

[
nEpIEjIE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpII(jIIrI + jI0rext)

]
(3.1)

σ2
n = τm

√
N

(
nEpEEj

2
EE

(
f(J+

EE)
2rn + (J−

EE)
2(

p−1∑
l=1

rl + (1− pf)rbgrE ))

))
−τm

√
N
(
nIpEIj

2
EIrI

)
,

σ2
bgr = τm

√
N

[
nEpEEj

2
EE

(
(J−

EE)
2

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpEIj

2
EIrI

]
,

σI = τm
√
N

[
nEpIEj

2
IE

(
f

p∑
l=1

rl + (1− pf)rbgrE

)
− nIpIIj

2
IIrI

]
, (3.2)

where rn, rl = 1, . . . , p are the firing rates in the p E-clusters; rbgrE , rI , rext are the

firing rates in the background E population, in the I population, and in the external

current. Other parameters are described in Architecture and in Table 2. The network

attractors satisfy the self-consistent fixed point equations:

rl = Fl[µl(r), σ
2
l (r)] , (3.3)
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where r = (r1, . . . , rp, rbgr, rI) and l = 1, . . . , p, bgr, I, and Fl is the current-to-rate

transfer function for each population, which depend on the condition. In the absence

of perturbations, all populations have the LIF transfer function

Fl(µl, σl) =

(
τrefr + τm

√
π

∫ Θl

Hl

eu
2

[1 + erf(u)]
)−1

, (3.4)

where Hl = (V reset − µl)/σl + ak and Θl = (V thr
l − µl)/σl + ak. k =

√
τs/τm

and a = |ζ(1/2)|/
√
2 are terms accounting for the synaptic dynamics (Fourcaud and

Brunel, 2002). The perturbations δvar(E) and δvar(I) induced an effective population

transfer function F eff on the E and I populations, respectively, given by (Mazzucato

et al., 2019):

F pert
α (µα, σα) =

∫
DzFα(µα + zσzµ

ext
α , σ2

α) , (3.5)

where α = E, I and Dz = dz exp
(
−z2/2/

√
2π
)

is a gaussian measure of zero mean

and unit variance, µext
α = τm

√
Nnαpα0jα0rext is the external current and σz is the

standard deviation of the perturbation with respect to baseline, denoted CV(E) and

CV(I). Stability of the fixed point equation 3.3 was defined with respect to the

approximate linearized dynamics of the instantaneous mean ml and variance s2l of

the input currents (Mazzucato et al., 2015, 2019):

τs
dml

dt
= −ml + µl(rl) ; τs

ds2l
2dt

= −s2l + σ2
l (rl) ; rl = Fl(ml(r), s

2
l (r)) , (3.6)

where µl, σ
2
l are defined in 3.1-3.2 and Fl represents the appropriate transfer function

3.4 or 3.5. Fixed point stability required that the stability matrix

Slm =
1

τs

(
∂Fl(µl, σ

2
l )

∂rm
− ∂Fl(µl, σ

2
l )

∂σ2
l

∂σ2
l (r)

∂rm
− δlm

)
, (3.7)
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was negative definite. The full mean field theory described above was used for the

comprehensive analysis of Fig. 3.3. For the schematic of Fig. 3.3c, we replaced the

LIF transfer function 3.4 with the simpler function F̃ (µE) = 0.5(1 + tanh(µE)) and

the δvar(E) perturbation effect was then modeled as F̃ eff (µ) =
∫
DzF̃ (µE+zσzµext).

Effective mean field theory for a reduced network. To calculate the potential

energy barrier separating the two network attractors in the reduced two-cluster

network, we used the effective mean field theory developed in (Mascaro and Amit,

1999; Mattia et al., 2013; Mazzucato et al., 2019). The idea is to first estimate the

force acting on neural configurations with cluster firing rates r = [r̃1, r̃2] outside the

fixed points (3.3), then project the two-dimensional system onto a one-dimensional

trajectory along which the force can be integrated to give an effective potential E. In

the first step, we start from the full mean field equations for the P = p+2 populations

in 3.3, and obtain an effective description of the dynamics for q populations “in focus”

describing E clusters (q = 2 in our case) by integrating out the remaining P−q out-of-

focus populations describing the background E neurons and the I neurons (P − q = 2

in our case). Given a fixed value r̃ = [r̃1, . . . , r̃q] for the q in-focus populations,

one obtains the stable fixed point firing rates r′ = [r′q+1, . . . , r
′
P ] of the out-of-focus

populations by solving their mean field equations

r′β(r̃) = Fβ[µβ(r̃, r
′), σ2

β(r̃, r
′)] , (3.8)

for β = q + 1, . . . , P , as function of the in-focus populations r̃, where stability is

calculated with respect to the condition (3.7) for the reduced (q + 1, . . . , P ) out-of-

focus populations at fixed values of the in-focus rates r̃. One then obtains a relation

between the input r̃ and output values r̃out of the in-focus populations by inserting
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the fixed point rates of the out-of-focus populations calculated in (3.8):

routα (r̃) = Fα[µα(r̃, r
′(r̃)), σ2

α(r̃, r
′(r̃))] , (3.9)

for α = 1, . . . , q. The original fixed points are r̃∗ such that r̃∗α = routα (r̃∗).

Potential energy barriers and transfer function gain. In a reduced network with

two in-focus populations [r̃1, r̃2] corresponding to the two E clusters, one can visualize

Eq. (3.9) as a two-dimensional force vector r̃ − rout(r̃) at each point in the two-

dimensional firing rate space r̃. The force vanishes at the stable fixed points A and B

and at the unstable fixed point C between them (Fig. 3.3c). One can further reduce

the system to one dimension by approximating its dynamics along the trajectory

between A and B as (Mascaro and Amit, 1999):

τs
dr̃

dt
= −r̃ + rout(r̃) , (3.10)

where y = rout(r̃) represents an effective transfer function and r̃ − rout(r̃) an

effective force. We estimated the gain g of the effective transfer function as g =

1− rout(r̃min)−rout(r̃min)
r̃min−r̃max

, where r̃min and r̃max represent, respectively, the minimum and

maximum of the force (see Fig. 3.3c). From the one-dimensional dynamics (3.10) one

can define a potential energy via ∂E(r̃)
∂r

= r̃ − rout(r̃). The energy minima represent

the stable fixed points A and B and the saddle point C between them represents the

potential energy barrier separating the two attractors. The height ∆ of the potential

energy barrier is then given by

∆ =

∫ C

A

dr̃[r̃ − rout(r̃)] , (3.11)
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which can be visualized as the area of the curve between the effective transfer function

and the diagonal line (see Fig. 3.3).

3.3.3 Experimental data

We tested our model predictions using the open-source dataset of neuropixel

recordings from the Allen Institute for Brain Science (Siegle et al., 2019). We focused

our analysis on experiments where drifting gratings were presented at four directions

(0 45 90 135 and one temporal frequency (2 Hz). Out of the 54 sessions provided, only

7 sessions (6 male, 1 female) had enough trials per behavioral condition to perform

our decoding analysis. Of these 7 sessions, 3 were recorded in wild-type male mice, 3

in transgenic male mice, and 1 in a transgenic female mouse. Neural activity from the

visual cortical hierarchy was collected and, specifically: primary visual cortex (V1) in

5 of these 7 sessions, with a median value of 75 neurons per session; lateral visual area

(LM): 6 sessions, 47 neurons; anterolateral visual area (AL): 5 sessions, 61 neurons;

posteromedial visual area (PM): 6 sessions, 55; anteromedial visual area (AM): 7

sessions, 48 neurons. We matched the number and duration of trials across condition

and orientation and combined trials from the drifting gratings repeat stimulus set,

and drifting grating contrast stimulus set. To do this, we combined trials with low-

contrast gratings (0.08, 0.1, 0.13, 0.2) and trials with high-contrast gratings (0.6,

0.8, 1) into separate trial types to perform the decoding analysis, and analyzed the

interval [−0.25, 0.5] seconds aligned to stimulus onset.

For evoked activity, running trials were classified as those where the animal

was running faster than 3 cm/s for the first 0.5 seconds of stimulus presentation.

During ongoing activity, behavioral periods were broken up into windows of 1 second.

Periods of running or rest were classified as such if 10 seconds had elapsed without

a behavioral change. Blocks of ongoing activity were sorted and used based on the
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length of the behavior. Out of the 54 sessions provided, 14 sessions had enough

time per behavioral condition (minimum of 2 minutes) to estimate single-cell transfer

functions. Only neurons with a mean firing rate during ongoing activity greater than

5Hz were included in the gain analysis (2119 out of 4365 total neurons).

3.3.4 Stimulus decoding

For both the simulations and data, a multi-class decoder was trained to

discriminate between four stimuli from single-trial population activity vectors in a

given time bin (Jezzini et al., 2013). To create a timecourse of decoding accuracy,

we used a sliding window of 100ms (200ms) in the data (model), which was moved

forward in 2ms (20ms) intervals in the data (model). Trials were split into training and

test data-sets in a stratified 5-fold cross-validated manner, ensuring equal proportions

of trials per orientation in both data-sets. In the model, a leave-2-out cross-validation

was performed. To calculate the significance of the decoding accuracy, an iterative

shuffle procedure was performed on each fold of the cross-validation. On each shuffle,

the training labels were shuffled and the classifer accuracy was predicted on the

unshuffled test data-set. This shuffle was performed 100 times to create a shuffle

distribution to rank the actual decoding accuracy from the unshuffled decoder against

and to determine when the mean decoding accuracy had increased above chance. This

time point is what we referred to as the latency of stimulus decoding. To account

for the speed of stimulus decoding (the slope of the decoding curve), we defined the

∆-Latency between running and rest as the average time between the two averaged

decoding curves from 40% up to 80% of the max decoding value at rest.

3.3.5 Firing rate distribution match

To control for increases of firing rate due to locomotion (Fig. 3.7b), we matched

the distributions of population counts across the trials used for decoding in both
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behavioral conditions. This procedure was done independently for each sliding

window of time along the decoding time course. Within each window, the spikes

from all neurons were summed to get a population spike count per trial. A log-

normal distribution was fit to the population counts across trials for rest and running

before the distribution match (Fig 3.8a left). We sorted the distributions for rest and

running in descending order, randomly removing spikes from trials in the running

distribution to match the corresponding trials in the rest distribution (Fig 3.8a right).

By doing this, we only removed the number of spikes necessary to match the running

distribution to rest distribution. For example, trials where the rest distribution had

a larger population count, no spikes were removed from either distribution. Given we

performed this procedure at the population level rather than per neuron, we checked

the change in PSTH between running and rest conditions before and after distribution

matching (Fig 3.8b).

3.3.6 Single-cell gain

To infer the single-cell transfer function in simulations and data, we followed the

method originally described in (Recanatesi et al., 2020) (see also (Lim et al., 2015;

Pereira and Brunel, 2018) for a trial-averaged version). We estimated the transfer

function on ongoing periods when no sensory stimulus was present. Briefly, the

transfer function of a neuron was calculated by mapping the quantiles of a standard

gaussian distribution of input currents to the quantiles of the empirical firing rate

distribution during ongoing periods (Fig. 3.3e). We then fit this transfer function

with a sigmoidal function. The max firing rate of the neuron in the sigmoidal fit was

bounded to be no larger than 1.5 times that of the empirical max firing rate, to ensure

realistic fits. We defined the gain as the slope at the inflection point of the sigmoid.
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3.3.7 Single-cell response and selectivity

We estimated the proportion of neurons that were significantly excited or

inhibited by cortical state perturbations in the model (Fig. 3.6) or locomotion in the

data (Fig. 3.7) during periods of ongoing activity, in the absence of sensory stimuli.

In the model, we simulated 40 trials per network, for 10 networks per each value of the

perturbation. Only in this perturbation-response condition in the absence of sensory

stimuli, the perturbation was modeled as a double exponential with rise and decay

times [0.2, 1] (Fig. 3.3a), with 0.5s of unperturbed activity preceding perturbation

onset. In the data, we binned the spike counts in 500ms windows for each neuron after

matching sample size between rest and running conditions, and significant difference

between the ongoing and perturbed epochs was assessed with a rank-sum test.

We estimated single neuron selectivity to sensory stimuli in each condition from

the average firing rate responses rai (t) of the i-th neuron to stimulus a in trial t. For

each pair of stimuli, selectivity was estimated as

d′(a, b) =
mean [r(t)a]− mean

[
r(t)b

]√
1
2
(var[r(t)a] + var[r(t)b])

,

where mean and var are estimated across trials. The d’ was then averaged across

stimulus pairs.

3.4 Results

To elucidate the effect of state changes on cortical dynamics, we modeled the

local circuit as a network of recurrently connected excitatory (E) and inhibitory (I)

spiking neurons. Both E and I populations were arranged in clusters (Amit and

Brunel, 1997; Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015; Schaub et al.,

2015; Mazzucato et al., 2019), where synaptic couplings between neurons in the
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Figure 3.1. Conceptual summary of the main results. a) In a network model of sensory
cortex featuring clusters of excitatory and inhibitory neurons with metastable dynamics,
state changes are induced by external perturbations controlling the timescale of cluster
activation during ongoing activity. The neural mechanism underlying timescale modulation
is a change in the barrier height separating attractors, driven by a modulation of the intrinsic
gain of the single-cell transfer function. b) During evoked activity, onset of stimulus encoding
is determined by the activation latency of stimulus-selective cluster. External perturbations
modulate the onset latency thus controlling the stimulus processing speed. The theory shows
that the effect of external perturbations on stimulus-processing speed during evoked activity
(right) can be predicted by the induced gain modulations observed during ongoing activity
(left). c) Locomotion induced changes in intrinsic gain in the visual cortical hierarchy during
darkness periods. d) Locomotion drove faster coding of visual stimuli during evoked periods,
as predicted by the induced gain modulations observed during ongoing activity.

same cluster were potentiated compared to neurons in different clusters, reflecting

the empirical observation of cortical assemblies of functionally correlated neurons

(Fig. 3.2a; Kiani et al., 2015; Song et al., 2005; Perin et al., 2011; Lee et al., 2016).

In the absence of external stimulation (ongoing activity), this E-I clustered network
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generates rich temporal dynamics characterized by metastable activity operating in

inhibition stabilized regime, where E and I post-synaptic currents track each other

achieving tight balance (Fig. 3.2c). A heterogeneous distribution of cluster sizes

leads to a lognormal distributions of firing rates (Fig. 3.2b). Network activity was

characterized by the emergence of the slow timescale of cluster transient activation,

with average activation lifetime of τ = 106 ± 35 ms (hereby referred to as “cluster

timescale," Fig. 3.2b), much larger than single neuron time constant (20ms; Litwin-

Kumar and Doiron, 2012; Mazzucato et al., 2015).

Figure 3.2 (next page). Biological plausible model of cortical circuit. a) Left:
Schematics of the network architecture. A recurrent network of E (black triangles)
and I (red circles) spiking neurons arranged in clusters is presented sensory
stimuli targeting subsets of E clusters, in different cortical states implemented by
perturbations. Inset shows a membrane potential trace from representative E neuron.
Right: Synaptic couplings Jij for a representative clustered network, highlighting
the block diagonal structure of potentiated intra-cluster synaptic weights for both
E and I clusters, and the background E and I populations (bgr). Cluster size was
heterogeneous (inset). b) Representative neural activity during ongoing periods; tick
marks represent spike times of E (black) or I (red) neurons. The network dynamics
is metastable with clusters transiently activity for periods of duration τ . Inset: The
cumulative distributions of single-cell firing rates (in the representative network are
lognormal (blue: empirical data; orange: lognormal fit). c) When increasing the
inhibitory drive (afferent current to the I population, same as δmean(I) perturbation),
both E and I firing rates decrease (black and red curve in right panel, mean±s.e.m.
across 10 simulated networks), highlighting the paradoxical effect, signature of the
inhibition stabilized regime (Tsodyks et al., 1997). Beyond δmean(I)=50% the E
population shuts down and the I population rebounds (dashed vertical line). d)
Left: State-changing perturbation affecting the mean of the afferent currents to
E populations (knobs represent changes in afferent to three representative E cells
compared to the unperturbed state). Right: Histogram of afferent inputs to E-cells in
the perturbed state (brown, all neurons receive a 10% increase in input) with respect
to the unperturbed state (grey). e) Left: State-changing perturbation affecting the
variance of afferent currents to E populations. Right: In the perturbed state (brown),
each E-cell’s afferent input is constant and sampled from a normal distribution with
mean equal to the unperturbed value (grey) and 10% CV.
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Figure 3.2.

To investigate how changes in cortical state may affect the network dynamics

and information processing capabilities, we examined a vast range of state-

changing perturbations (Fig. 3.2d-e, Table 3). State changes were implemented

as perturbations of the afferent currents to cell-type specific populations, or as

perturbations to the synaptic couplings. The first type of state perturbations
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δmean(E) affected the mean of the afferent currents to E populations (Fig. 3.2d).

E.g., a perturbation δmean(E)=10% implemented an increase of all input currents to

E neurons by 10% above their unperturbed levels. The perturbation δmean(I) affected

the mean of the afferent currents to I populations in an analogous way. The second

type of state perturbations δvar(E) affected the across-neuron variance of afferents to

E populations. Namely, in this perturbed state, the afferent current to each neuron

in that population was sampled from a normal distribution with zero mean and fixed

variance (Fig. 3.2e, measured by the coefficient of variability CV(E)=var(E)/mean(E)

with respect to the unperturbed afferents). This perturbation thus introduced a

spatial variance across neurons in the cell-type specific afferent currents, yet left the

mean afferent current into the population unchanged. The state perturbation δvar(I)

affected the variance of the afferent currents to I populations analogously. In the third

type of state perturbations δAMPA or δGABA, we changed the average GABAergic

or glutamatergic (AMPA) recurrent synaptic weights compared to their unperturbed

values. We chose the range of state perturbations such that the network still retained

non-trivial metastable dynamics within the whole range. We will refer to these state

changes of the network as simply perturbations, and should not be confused with

the presentation of the stimulus. We first established the effects of perturbations on

ongoing network dynamics, and used those insight to explain their effects on stimulus-

evoked activity.

3.4.1 State-dependent regulation of the network emergent timescale

A crucial feature of neural activity in clustered networks is metastable attractor

dynamics, characterized by the emergence of a long timescale of cluster activation

whereby network itinerant activity explores the large attractor landscape (Fig.

3.2b). We first examined whether perturbations modulated the network’s metastable
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dynamics and introduced a protocol where perturbations occurred in the absence of

sensory stimuli (“ongoing activity”).

We found that perturbations strongly modulated the attractor landscape,

changing the repertoire of attractors the network activity visited during its itinerant

dynamics (Fig. 3.3a). Changes in attractor landscape were perturbation-specific.

Perturbations increasing δmean(E) (δmean(I)) induced a consistent shift in the

repertoire of attractors: larger perturbations led to larger (smaller) numbers of co-

active clusters. Surprisingly, perturbations that increased δvar(E) (δvar(I)), led to

network configurations with larger (smaller) sets of co-activated clusters. This effect

occurred despite the fact that such perturbations did not change the mean afferent

input to the network. Perturbations affecting δAMPA and δGABA had similar effects

to δmean(E) and δmean(I), respectively.

We then examined whether perturbations affected the cluster activation

timescale. We found that perturbations differentially modulated the average cluster

activation timescale τ during ongoing periods, in the absence of stimuli (Fig. 3.3b). In

particular, increasing δmean(E), δvar(E), or δAMPA led to a proportional acceleration

of the network metastable activity and shorter τ ; while increasing δmean(I), δvar(I)

or δGABA induced the opposite effect with longer τ . Changes in τ were congruent

with changes in the duration of intervals between consecutive activations of the same

cluster (cluster inter-activation intervals).

3.4.2 Changes in cluster timescale are controlled by gain modulation

What is the computational mechanism mediating the changes in cluster

timescale, induced by the perturbations? We investigated this question using mean

field theory, where network attractors, defined by sets of co-activated clusters, are

represented as potential wells in an attractor landscape (Mascaro and Amit, 1999;
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Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015; Mattia and Sanchez-Vives,

2012; Mazzucato et al., 2019). Let us illustrate this in a simplified network with

two clusters (Fig. 3.3c). Here, the attractor landscape consists of two potential

wells, each well corresponding to a configuration where one cluster is active and the

other is inactive. When the network activity dwells in the attractor represented by

the left potential well, it may escape to the right potential well due to internally

generated variability. This process will occur with a probability determined by the

height ∆ of the barrier separating the two wells: the higher the barrier, the less

likely the transition (Hänggi et al., 1990; Litwin-Kumar and Doiron, 2012; Mattia

and Sanchez-Vives, 2012; Mazzucato et al., 2019).

Mean field theory thus established a relationship between the cluster timescale

and the height of the barrier separating the two attractors. We found that

perturbations differentially control the height of the barrier ∆ separating the two

attractors (Fig. 3.3d), explaining the changes in cluster timescale observed in the

simulations (Fig. 3.3b).

Since reconstruction of the attractor landscape requires knowledge of the

network’s structural connectivity, the direct test of the mean field relation between

changes in attractor landscape and timescale modulations is challenging. We thus

aimed at obtaining an alternative formulation of the underlying neural mechanism

only involving quantities directly accessible to experimental observation. Using

mean field theory, one can show that the double potential well representing the

two attractors can be directly mapped to the effective transfer function of a neural

population (Mascaro and Amit, 1999; Mazzucato et al., 2019; Mattia et al., 2013).

One can thus establish a direct relationship between changes in the slope (hereby

referred to as “gain") of the intrinsic transfer function estimated during ongoing
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periods and changes in the barrier height ∆ separating metastable attractors (see

Fig. 3.3c-d and Methods). In turn, this implies a direct relationship between

gain modulation, induced by the perturbations, and changes in cluster activation

timescale. In particular, perturbations inducing steeper gain will increase well depths

and barrier heights, and thus increase the cluster timescale, and vice versa. Using

mean field theory, we demonstrated a complete classification of the differential effect

of all perturbations on barrier heights and gain (Fig. 3.3d).

We then proceeded to verify these theoretical predictions, obtained in a simplified

two-cluster network, in the high dimensional case of large networks with several

Figure 3.3 (next page). Linking gain modulation to changes in cluster timescale.a)
Clustered network activity during a representative unperturbed ongoing trial hops
among different metastable attractors (grey box: attractor with 3 co-active clusters).
Right: Perturbations strongly modulate the attractor landscape (color-coded curves:
frequency of occurrence of network attractors with different number of co-active
clusters, for different values of the representative δmean(E) perturbation, mean
occurrence across 5 sessions). b) Perturbations induce consistent changes in the
average cluster activation timescale τ (mean±S.D. across 10 simulated sessions) and
in the single neuron intrinsic gain (∆Gain=Gain(pert.)-Gain(unpert.), estimated as
in panel e bottom panel: color-coded markers represent different perturbations, linear
regression, R2 = 0.96). c) Schematic of the effect of perturbations on network
dynamics in a two-cluster network, captured by a double-well potential (top panel).
Potential wells represent two attractors where either cluster is active (A and B;
left: unperturbed), separated by a barrier with height ∆. Mean field theory links
perturbation effects on the barrier height (top right, lower barrier) to changes in the
intrinsic neuronal gain (bottom right, lower gain). d) Mean field theory predictions
linking the height of the barrier ∆ separating the attractors to the intrinsic cell
gain, for all perturbations (linear regression of ∆ vs gain). e) Inferring the single
cell intrinsic transfer function from spiking activity during ongoing periods. By
recasting the distribution of spike counts (left) into quantiles (top center), one can
match those values to corresponding quantiles of a gaussian input current distribution
(bottom center) to obtain the current-to-rate function (right). d): A single-cell
transfer function (bottom, empirical data in blue; sigmoidal fit in brown) can be
estimated by matching a neuron’s firing rate distribution during ongoing periods
(top) to a gaussian distribution of input currents (center, quantile plots; red stars
denotes matched median values).
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Figure 3.3.

clusters using simulations. While barrier heights and the network’s attractor

landscape can be exactly calculated in the simplified two-cluster network, this task

is infeasible in large networks with a large number of clusters where the number

of attractors is exponential in the number of clusters. On the other hand, changes
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in barrier heights ∆ are equivalent to changes in gain, and the latter can be easily

estimated from spiking activity (Fig. 3.3b-d). We thus tested whether the relation

between gain and timescale held in the high-dimensional case of a network with

many clusters. We estimated single-cell transfer functions from their spiking activity

during ongoing periods, in the absence of sensory stimuli but in the presence of

different perturbations (Fig. 3.3e, Lim et al. (2015); Recanatesi et al. (2020)).

We found that network perturbations strongly modulated single-cell gain in the

absence of stimuli, verifying mean field theory predictions in all cases (Fig. 3.3e).

In particular, we confirmed the direct relationship between gain modulation and

cluster timescale modulation: perturbations that decreased (increased) the gain also

decreased (increased) cluster timescale (Fig. 3.3b, R2 = 0.96). For all perturbations,

gain modulations explained the observed changes in cluster timescale.

3.4.3 Controlling information processing speed with perturbations

We found that changes in cortical state during ongoing activity, driven by

external perturbations, control the circuit’s dynamical timescale. The neural

mechanism mediating the effects of external perturbations is gain modulation, which

controls the timescale of the network switching dynamics. How do such state changes

affect the network information processing speed?

To investigate the effect of state perturbations on the network’s information-

processing, we compared stimulus-evoked activity by presenting stimuli in an

unperturbed and a perturbed condition. In unperturbed trials (Fig. 3.4a), we

presented one of four sensory stimuli, modeled as depolarizing currents targeting

a subset of stimulus-selective E neurons with linearly ramping time course. Stimulus

selectivities were mixed and random, all clusters having equal probability of being

stimulus-selective. In perturbed trials (Fig. 3.4b), in addition to the same sensory
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stimuli, we included a state perturbation, which was turned on before the stimulus

and was active until the end of stimulus presentation. We investigated and classified

the effect of several state changes implemented by perturbations affecting either the

mean or variance of cell-type specific afferents to E or I populations, and the synaptic

couplings. State perturbations were identical in all trials of the perturbed condition

for each type; namely, they did not convey any information about the stimuli.

We assessed how much information about the stimuli was encoded in the

population spike trains at each moment using a multiclass classifier (with four class

labels corresponding to the four presented stimuli, Fig. 3.4c). In the unperturbed

condition, the time course of the cross-validated decoding accuracy, averaged across

stimuli, was significantly above chance after 0.21 + / − 0.02 seconds (mean±s.e.m.

across 10 simulated networks, black curve in Fig. 3.4c) and reached perfect accuracy

after a second. In the perturbed condition, stimulus identity was decoded at chance

level in the period after the onset of the state perturbation but before stimulus

presentation (Fig. 3.4c), consistent with the fact that the state perturbation did not

convey information about the stimuli. We found that state perturbations significantly

modulated the network information processing speed. We quantified this modulation

as the average latency to reach a decoding accuracy between 40% and 80% (Fig.

3.4c, yellow area), and found that state perturbations differentially affected processing

speed.

State perturbations had opposite effects depending on which cell-type specific

populations they targeted. Increasing δmean(E) monotonically improved network

performance (Fig. 3.4d, left panel): in particular, positive perturbations induced

an anticipation of stimulus-coding (shorter latency), while negative ones led to

longer latency and slower coding. The opposite effect was achieved when increasing
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Figure 3.4. Perturbations control stimulus-processing speed in the clustered network.
a-b) Representative trials in the unperturbed (a) and perturbed (b) conditions; the
representative perturbation is an increase in the spatial variance δvar(E) across E neurons.
After a ramping stimulus is presented at t = 0 (black vertical line on raster plot; top
panel, stimulus time course), stimulus-selective E-clusters (brown tick marks represent their
spiking activity) are activated at a certain latency (brown vertical line). In the perturbed
condition (b), a perturbation is turned on before stimulus onset (gray-dashed vertical line).
The activation latency of stimulus-selective clusters is shorter in the perturbed compared to
the unperturbed condition. c) Left: schematic of stimulus-decoding analysis. A multi-class
classifier is trained to discriminate between the four stimuli from single-trial population
activity vectors in a given time bin (curves represent the time course of population activity
in single trials, color-coded for 4 stimuli; the purple circle highlights a given time bin along
the trajectories), yielding a cross-validated confusion matrix for the decoding accuracy at
that bin (central panel). Right: Average time course of the stimulus-decoding accuracy in
the unperturbed (black) and perturbed (brown) conditions (horizontal brown: significant
difference between conditions, p < 0.05 with multiple bin correction). d-f: Difference in
stimulus decoding latency in the perturbed minus the unperturbed conditions (average
difference between decoding accuracy time courses in the [40%,80%] range, yellow interval
of c; mean±S.D. across 10 networks) for the six state-changing perturbations (see Methods
and main text for details; the brown star represents the perturbation in b-c).

δmean(I), which slowed down processing speed (Fig. 3.4d, right panel). State

perturbations that changed the spatial variance of the afferent currents had

counterintuitive effects (Fig. 3.4e). We measured the strength of these perturbations

via their coefficient of variability CV (α) = σα/µα, for α = E, I, where σ and µ are the
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standard deviation and mean of the across-neuron distribution of afferent currents.

Perturbations δvar(E) that increased CV (E) led to faster processing speed. The

opposite effect was achieved with perturbations δvar(I) inducing a spatial variance

across afferents to I neurons, which slowed down stimulus-processing speed (Fig.

3.4e). Perturbations δAMPA which increased the glutamatergic synaptic weights

improved performance proportionally to the perturbation. The opposite effect was

achieved by perturbations δGABA that increased the GABAergic synaptic weights,

which monotonically decreased network processing speed (Fig. 3.4f). We thus

concluded that afferent current perturbations differentially modulated the speed at

which network activity encoded information about incoming sensory inputs. Such

modulations exhibited a rich dynamical repertoire (Table 3).

3.4.4 Gain modulation regulates the network information processing

speed

Our mean field framework demonstrates a direct relationship between the effects

of perturbations on the network information processing speed and its effects on

the cluster timescale (Fig. 3.3). In our simplified network with two clusters,

stimulus presentation induces an asymmetry in the well depths, where the attractor B

corresponding to the activated stimulus-selective cluster has a deeper well, compared

to the attractor A where the stimulus-selective cluster is inactive. Upon stimulus

presentation, the network ongoing state will be biased to transition towards the

stimulus-selective attractor B with a transition rate determined by the barrier height

separating A to B. Because external perturbations regulate the height of such barrier

via gain modulation, they control in turn the latency of activation of the stimulus-

selective cluster. We thus aimed at testing the prediction of our theory: that the

perturbations modulate stimulus coding latency in the same way as they modulate
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cluster timescales during ongoing periods; and, as a consequence, that these changes

in stimulus coding latency can be predicted by intrinsic gain modulation. Specifically,

our theory predicts that perturbation driving a decrease (increase) in intrinsic gain

during ongoing periods will induce a faster (slower) encoding of the stimulus.

We thus proceeded to test the relationship between perturbations effects on

cluster timescales, gain modulation, and information processing speed. In the

representative trial where the same stimulus was presented in the absence (Fig. 3.4a)

or in the presence (Fig. 3.4b) of the perturbation δmean(E)= 10%, we found that

stimulus-selective clusters (highlighted in brown) had a faster activation latency in

response to the stimulus in the perturbed condition compared to the unperturbed one.

A systematic analysis confirmed this mechanism showing that, for all perturbations,

the activation latency of stimulus-selective clusters was a strong predictor of the

change in decoding latency (Fig. 3.5a right panel, R2 = 0.93). Moreover, we found

that the perturbation-induced changes of the cluster timescale τ during ongoing

periods predicted the effect of the perturbation on stimulus-processing latency during

evoked periods (Fig. 3.5b,d). Specifically, perturbations inducing faster τ during

ongoing periods, in turn accelerated stimulus coding; and vice versa for perturbations

inducing slower τ .

We then tested whether perturbation-induced gain modulations during ongoing

periods explained the changes in stimulus-processing speed during evoked periods,

and found that the theoretical prediction was borne out in the simulations (Fig.

3.5c,e). Let us summarize the conclusion of our theoretical analyses. Motivated by

mean field theory linking gain modulation to changes in transition rates between

attractors, we found that gain modulation controls the cluster timescale during

ongoing periods, and, in turn, regulates the onset latency of stimulus-selective clusters
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Latency Activity Response τ Gain
δmean(E)↗ ↘ E[↗], I[↗] E[↗], I[↗] ↘ ↘
δmean(I)↗ ↗ E[↘], I[↘] E[↘], I[mixed] ↗ ↗
δvar(E)↗ ↘ E[↗], I[↗] E[mixed], I[mixed] ↘ ↘
δvar(I)↗ ↗ E[↘], I[=] E[↘], I[↘] ↗ ↗
δAMPA↗ ↘ E[↗], I[↗] E[↗], I[↗] ↘ ↘
δGABA↗ ↗ E[↘], I[↘] E[↘], I[mixed] ↗ ↗
Locomotion ↘ E[↗], I[↗] E[mixed], I[mixed] ↘ ↘

Table 3. Classification of state-changing perturbations. Effect of on neural activity of an
increasing (↗) state-changing perturbation: latency of stimulus decoding (’Latency’, Fig.
3.2e); average firing rate modulation (’Activity’) and response to perturbations (’Response’,
proportion of cells with significant responses) of E and I cells in the absence of stimuli (Fig.
3.3); cluster activation timescale (’τ ’, Fig. 3.4b); single-cell intrinsic gain modulation at
rest (’Gain’, Fig. 3.5e). ↗,↘,= represent increase, decrease, and no change, respectively.
’Mixed’ responses refer to similar proportions of excited and inhibited cells. The effect of
locomotion is consistent with a perturbation increasing δvar(E).

upon stimulus presentation. Changes in onset latency of stimulus-selective clusters

explained changes in stimulus-coding latency. We thus linked gain modulation to

changes in stimulus-processing speed (Fig. 3.5, Table 3).

3.4.5 Physiological responses to perturbations

Our results show that cortical processing speed can be accelerated or slowed

down via external perturbations. We found that different types of perturbations may

induce similar effects on processing speed: a dynamical acceleration may be obtained

by either increasing the mean or the variance of the external input to E neurons,

or either decreasing the mean or the variance of external inputs to I neurons. A

dynamical deceleration may be obtained by the opposite perturbations. In order to

devise an experimental test of our theory to dissect the specific effects of each type

of perturbation, we then examined the single-cell responses to perturbations. By

combining single-cell responses with dynamical effects, we will be able to isolate the

effects of each perturbation.
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We characterized single-cell responses to perturbations during ongoing periods,

in the absence of sensory stimuli (Fig. 3.6). For this perturbation-only condition, we

introduced perturbation time course modeled as a double exponential, to estimate

single-cell responses to a physiologically plausible perturbation profile in the absence

of sensory stimuli. We found that perturbations differentially affected neuronal

responses in a cell-type specific way. Perturbations changed the average population

firing rates, and led to complex patterns of response across E and I populations

(Fig. 3.6). Specifically, perturbations increasing δmean(E) induced higher firing rates

and induced proportionally excited responses in both E and I populations. On the

other hand, perturbations that increased δmean(I) led to a decrease in both E and I

average firing rates. This paradoxical effect (Tsodyks et al., 1997) revealed that the

network operates in the inhibition stabilized regime (Fig. 3.2c). When increasing the

inhibitory current beyond δmean(I)=50%, the network reached a reversal point where

the E population activity became silent and the I population rebounded, starting to

increase their firing rates again (Fig. 3.2c).

Perturbations increasing the variance δvar(E) and δvar(I) led to surprising effects

(Fig. 3.6). Increasing δvar(E) induced higher firing rates in both E and I populations,

despite leaving the mean afferents unchanged; moreover, it led to mixed responses

at the single cell level, with a prevalence of excited responses in both E and I

populations. We will see below that this set of responses is consistent with locomotion-

induced effects in the visual cortical hierarchy. Increasing δvar(I) left firing rates of

I populations unchanged but led to a decrease of E population firing rates. This

perturbation also induced mixed responses at the single cell level, with a prevalence of

inhibited responses in both populations. Finally, perturbations δAMPA and δGABA
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Figure 3.5. Linking gain modulation to changes in processing speed. a) Left: Schematic of
the effect of an accelerating perturbation on stimulus encoding during evoked activity (same
notations as in 3.3c). A shrinking barrier from non-selective to selective attractors drives a
faster activation of stimulus-selective cluster after stimulus presentation. Right: Changes in
stimulus processing speed (y-axis: latency of stimulus decoding from 3.4d-f) are predicted
by changes in activation latency of stimulus selective clusters (x-axis: mean±S.D. across
10 simulated sessions; linear regression, R2 = 0.93); b, d) by changes in cluster timescale
(same values as 3.3b; R2 = 0.93); c, e) and by changes in single-cell intrinsic gain (same
values as 3.3b; R2 = 0.71).

led to responses similar to those found when driving the mean E- or I-afferents,

respectively.

Our theory thus suggests that it is possible to identify a specific perturbation by

combining all its effects, including gain modulation, changes in stimulus-processing

speed and single-cell physiological responses (Table 3) .
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3.4.6 Changes in single-cell responses cannot explain the effects of

perturbations on evoked activity

Although we found that gain modulation captures the effects of perturbations on

network activity, we investigate whether alternative explanations were also possible,

in terms of traditional measures of stimulus responsiveness and selectivity.

We found that perturbations strongly affected the peak of single-cell responses

to stimuli compared to baseline (∆PSTH, Fig. 3.6c), as well as single-cell selectivity

to stimuli with significant changes in their d’ (Fig. 3.6d). We then tested whether

perturbation-induced changes in stimulus responses or selectivity could explain the

observed changes in stimulus-processing speed. We first hypothesized that, if the

response increase induced by the perturbation were larger for stimulus-selective

compared to nonselective neurons (i.e., if ∆PSTH(sel)>∆PSTH(nonsel)), then a

perturbation increasing stimulus-responses could lead to faster stimulus-processing

speed. Likewise, we hypothesized that faster stimulus-processing speed may be

induced by perturbations improving single-cell selectivity (d’) to stimuli. Surprisingly,

we found a complex relation between changes in single-cell responsiveness and

selectivity to stimuli, induced by the perturbations, and modulation of stimulus-

processing speed (Fig. 3.6c-d). For perturbations targeting I populations (δmean(I),

δvar(I), and δGABA) changes in responsiveness and selectivity were consistent with

changes in processing speed (R2 = 0.92, 0.70 for responsiveness and selectivity,

respectively). However, for perturbations targeting E populations (δmean(E),

δvar(E), and δAMPA) changes in responsiveness and selectivity were not consistent

with changes in processing speed (R2 = 0.05, 0.02 for responsiveness and selectivity,

respectively). Strikingly, in the case of the perturbation δvar(E), processing

speed increased with larger perturbations even though responses and selectivity
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increasingly degraded. In the case of the perturbation δmean(E) and δAMPA,

network performance likewise increased but single-cell metrics where non-monotonic

in the value of the perturbation (Fig. 3.6c-d). Because changes in single-cell

stimulus properties were only consistent with changes in processing speed for

some perturbations (δmean(I), δvar(I), and δGABA), but inconsistent for other

perturbations, we thus conclude that they could not represent an alternative

mechanism underlying the observed effects of perturbations.

3.4.7 Locomotion decreases single-cell gain and accelerates visual

processing speed

Our theory predicts a link between gain modulations measured during ongoing

periods and changes in stimulus-processing speed during evoked periods. We sought to

experimentally test this prediction in freely running mice using electrophysiological

recordings from the visual hierarchy including the primary visual cortex (V1) and

4 higher cortical visual areas LM, AL, PM, AM (open-source neuropixels dataset

available from the Allen Institute, Siegle et al., 2019). We interpreted periods where

the animal was resting as akin to the “unperturbed” condition in our model, and

periods where the animal was running as the “perturbed” condition (Fig. 3.7a in the

data). We thus set out to test our theory in the following three steps: i) in each area,

we estimated the effect of locomotion on single-cell responses and on intrinsic gain

during ongoing periods, ii) based on these changes, we built a biologically plausible

model of cortical circuits processing visual stimuli and predicted whether locomotion

would accelerate or slow down visually-evoked responses; iii) we tested the prediction

in each area with a decoding analysis of visually-evoked population activity.

During periods of ongoing activity (in the absence of visual stimuli), we found

that locomotion induced an overall increase in firing rate across all visual cortical
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Figure 3.6. Single-cell responses to perturbations. a) Representative single cell response
to the perturbation δvar(E)=10% in the absence of stimuli (top: dashed line, time course
of perturbation, occurring at t = 0; bottom: dashed line, perturbation onset; red curve,
response PSTH, mean±S.D. across 20 trials; horizontal red bar: significant response, t-test,
p < 0.05 with multiple bin correction. b) Top: Average firing rate change across E (full)
and I (dashed) populations in response to each state-changing perturbations (mean±S.D.
across 10 simulated networks). Histograms: Average fractions of E (top row) and I (bottom
row) neurons whose firing rate significantly increase (positive bars) or decrease (negative
bars) in responses to the perturbations (single-cell significant response was based on a t-
test of the baseline vs. perturbation evoked activity, p < 0.05). c-d) Single-cell changes in
firing rate response to stimuli (∆ =peak response-baseline in each perturbed or unperturbed
condition) as well as changes in stimulus selectivity [d’(perturbed trials)-d’(unperturbed
trials)] due to the perturbations are overall uncorrelated to changes in stimulus-decoding
latency (mean±s.e.m. across 5 networks).

areas (Fig. 3.7b left), in agreement with previous studies (Niell and Stryker, 2010;

Stringer et al., 2019a; Dipoppa et al., 2018). Although, we found that locomotion led

to complex responses inducing mixed excited and inhibited responses across neurons
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(Fig. 3.7b right), as previously reported Dipoppa et al. (2018). We then estimated

the single-cell transfer functions from spiking activity during ongoing periods both

when the animal was at rest and in motion (Fig. 3.7c). We found that locomotion

strongly modulated the single-cell gain in the absence of stimuli in all visual cortical

areas (Fig. 3.7d). Specifically, we found that locomotion on average decreased the

single-cell gain.

Our theory predicts that, in all visual cortical areas, the locomotion-induced

increase in firing rates, the mixed excited and inhibited neural responses and the

decrease in intrinsic gain are consistent with a state-changing perturbation mediated

by an increase in the variance of the input currents to E neurons (δvar(E), Table 3).

According to our theory, the decrease in gain leads to an acceleration of stimulus-

processing speed in all visual cortical areas.

We aimed at refining the model predictions on the locomotion effects on V1

and the visual cortical hierarchy by introducing a biologically plausible stimulation

protocol in our spiking network. Following experimental evidence on anatomical

connectivity in the visual pathway (Zhuang et al., 2013; Miska et al., 2018; Kloc

and Maffei, 2014; Khan et al., 2018), we then modeled incoming visual stimuli as a

transient increase in the input currents to both E and I neurons (Fig. 3.7e). We then

modeled the effect of locomotion as an external perturbation inducing an increase

in the variance of the inputs to E neurons δvar(E), capturing the observed empirical

effects of locomotion on ongoing periods in terms of gain decrease and mixed single-cell

responses. In this model of visual processing, we found that locomotion accelerated

visual processing speed during evoked period by 21 ± 9ms on average (mean±S.D.

across 10 sessions, Fig. 3.7f). We thus set out to test this prediction in the empirical

data.
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Previous studies have observed an improvement in peak decoding performance

during locomotion (Dadarlat and Stryker, 2017), but changes in decoding latency

have not been investigated. To probe the speed and accuracy of visual responses in

perturbed and unperturbed conditions, we performed a cross-validated classification

analysis to assess the amount of information regarding the orientation of drifting

Figure 3.7 (next page). Locomotion effects on visual processing are mediated by
gain modulation. a) Representative raster plots from five cortical visual areas
(color-coded) with population spiking activity during passive presentation of drifting
gratings (dashed red line represents stimulus onset) during periods of running (right,
running speed in top panels) rest (left).b) Left: Firing rate modulation induced
by running per area (colors) and in the model (gray, CV(E)=5%), averaged across
all periods of ongoing activity. Right: Fraction of neurons by area (colors) and in
the model (gray, CV(E)=5%) with significantly excited (positive bars) and inhibited
(negative bars) responses to bouts of running (rank-sum test, ∗ = p < 0.005). c):
A representative single-cell distribution of firing rates for rest (blue) and running
(red) conditions. The overlaid distributions of firing rates are obtained by passing
a standard normal distribution through the sigmoidal transfer function fit shown
in the inset for rest (full gray line) and running (dashed gray line). The gain for
each behavioral condition (orange lines) was estimated as the slope of the sigmoidal
transfer function fit at the inflection point (see Methods). d): Single-cell gain
modulation (∆gain=gain(running)-gain(rest)) by area (colors) and in the model (gray,
CV(E)=5%) across all neurons during ongoing periods (bars show 95% confidence
interval; rank-sum test ∗ = p < 0.005). e) Schematic of the network architecture,
similar to Fig. 3.2a, but with the sensory stimuli targeting subsets of both E
and I clusters, during both unperturbed and perturbed (δvar(E)) conditions. f)
Average time course of the stimulus-decoding accuracy in the unperturbed (black)
and perturbed (brown) conditions for the new stimulus input (notations as in Fig.
3.4c). g) Time course of the mean stimulus-decoding accuracy across orientations
during running and rest using neurons from V1 as predictors shows the anticipation of
stimulus coding in the running condition (single sessions and session average, thin and
thick lines, respectively; see Methods). h) Decoding latency (first bin above chance
decoding regions in e) slows down along the anatomical hierarchy (x-axis: anatomical
hierarchy score from (Siegle et al., 2019)). Dotted (dashed) line with diamond ("x")
symbols show the latency during rest (running). i) Difference in processing speed
between running and resting (average latency of decoding accuracy between 40% and
80%, yellow area in panel e) reveals running-induced coding acceleration in all areas
(colors) and in the model (gray, CV(E)=5%). t-test, ∗ = p < 0.01.
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Figure 3.7.

grating stimuli present in population spiking activity along the visual cortical

hierarchy. Crucially, because decoding accuracy depends on sample size, we equalized

number of trials between resting and running conditions. We found that trials in

which the animal was running revealed both an increase in peak decoding accuracy

and an anticipation of stimulus coding (shorter latency) as compared to trials where

the animal was stationary (Fig. 3.7g), consistently across the whole visual hierarchy

(Fig. 3.7i). Furthermore, the time to reach significant decoding for each cortical

area followed the anatomical hierarchy score in both unperturbed and perturbed

conditions, consistent with the idea that information about the visual stimulus travels

up a visual hierarchy in a feed-forward fashion (Fig. 3.7h, Siegle et al., 2019).

Given that locomotion induced an increase in firing rates in all cortical areas

(Fig. 3.7b), we then examined the extent to which the observed effects of locomotion

(increased peak accuracy and anticipation) were merely due to the increase in firing
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rates. We thus matched the distribution of firing rates between running and resting

(see methods and Fig. 3.8). We found that after rate matching the change in peak

decoding accuracy decreased significantly (Fig. 3.8d). Crucially, the anticipation of

stimulus processing speed induced by locomotion was still present in the rate-matched

condition (Fig. 3.8c), confirming that it was independent of changes in firing rates.

The same effect was preserved in the rate-matched model simulations as well (not

shown). We thus concluded that the anticipation of visual processing speed induced

by locomotion is consistent with a mechanism whereby locomotion decreases single-

cell gain via an increase in the afferent variance δvar(E) as predicted by our theory

(Table 3).

3.5 Discussion

Cortical circuits flexibly adapt their information processing capabilities to

changes in environmental demands and internal state. Empirical evidence suggests

that these state-dependent modulations may occur already in the sensory cortex where

they may be induced by top-down pathways or neuromodulation. Here, we presented

a mechanistic theory explaining how stimulus-processing speed can be regulated in

a state-dependent manner via gain modulation, induced by transient changes in the

afferent currents or in the strength of synaptic transmission.

Our theory entails a recurrent spiking network where excitatory and inhibitory

neurons are arranged in clusters, generating metastable activity in the form of

transient activation of subsets of clusters. We showed that gain modulation controls

the timescale of metastable activity and thus the network’s information-processing

speed and reaction times upon stimulus presentation. Specifically, our theory

predicted that perturbations that decrease (increase) the intrinsic single-cell gain

during ongoing periods accelerate (slow down) the latency of stimulus responses.
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Figure 3.8. Anticipation of stimulus decoding persists even after matching the distribution of
firing rates across behavioral conditions, but reduces the change in peak decoding. a) Firing
rate distributions for both rest and running before (left) and after (right) randomly removing
spikes from the running condition. Black lines show log-normal fits of distributions. b) ∆
PSTH between behavioral conditions before and after distribution matching shows effects of
match across each neuron’s firing rate. c) Summary of changes in processing speed due to
locomotion by area after distribution matching. (t-test, p< 0.01) d The difference in peak
decoding between behavioral conditions is reduced after matching the distributions (rank-
sum test, gray ∗ = p < 0.005). The change in ∆-Decoding peak between non-matched and
matched datasets was significant (rank-sum test, black ∗ = p < 0.005).

We tested this prediction by examining the effect of locomotion on visual

processing in freely running mice. We found that locomotion reduced the intrinsic

single-cell gain during ongoing periods, thus accelerating stimulus-coding speed across

the visual cortical hierarchy. Our theory suggests that the observed effects of

locomotion are consistent with a perturbation that increases the spatial variance

of the afferent currents to the local excitatory population. These results establish a
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new theory of state-dependent adaptation of cortical responses via gain modulation,

unifying the effect of different pathways under a shared computational mechanism.

3.5.1 Metastable activity in cortical circuits

The crucial dynamical feature of our model is its metastable activity, whereby

single-trial ensemble spike trains unfold through sequences of metastable states. State

are long-lasting, with abrupt transitions between consecutive states. Metastable

activity has been ubiquitously observed in a variety of cortical and subcortical areas,

across species and tasks (Abeles et al., 1995; Jones et al., 2007; Engel et al., 2016;

Ponce-Alvarez et al., 2012; Maboudi et al., 2018; Rich and Wallis, 2016; Sadacca

et al., 2016; Taghia et al., 2018; Deco et al., 2019). Metastable activity can be used

to predict behavior and was implicated as a neural substrate of cognitive function,

such as attention (Engel et al., 2016), expectation (Mazzucato et al., 2019), and

decision making (Rich and Wallis, 2016; Taghia et al., 2018; Recanatesi et al., 2020).

Metastable activity was observed also during ongoing periods, in the absence of

sensory stimulation, suggesting that it may be an intrinsic dynamical regime of

cortical circuits (Mazzucato et al., 2015; Engel et al., 2016). Here, we showed how

cortical circuits can flexibly adjust their performance and information-processing

speed via modulations of their metastable dynamics.

Metastable activity may naturally arise in circuits where multiple stable states,

or attractors, are destabilized by external perturbations (Miller and Katz, 2010) or

intrinsically generated variability (Deco and Hugues, 2012; Litwin-Kumar and Doiron,

2012; Mazzucato et al., 2015; Schaub et al., 2015; Mazzucato et al., 2019; Rostami

et al., 2020; Recanatesi et al., 2020). Biologically plausible models of metastable

dynamics have been proposed in terms of recurrent spiking networks where neurons

are arranged in clusters, reflecting the empirically observed assemblies of functionally
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correlated neurons (Kiani et al., 2015; Song et al., 2005; Perin et al., 2011; Lee et al.,

2016). Clustered network models of metastable dynamics provide a parsimonious

explanation of several physiological observations such as stimulus-induced reductions

of trial-to-trial variability (Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2014;

Mazzucato et al., 2015; Rostami et al., 2020; Churchland et al., 2010), of firing rate

multistability (Mazzucato et al., 2015), and of neural dimensionality (Mazzucato

et al., 2016). Compared to previous models of metastable dynamics, our results extend

the biological plausibility of clustered networks in several aspects. The introduction

of pairs of E and I clusters induces a tight balance where the E and I contributions to

the postsynaptic currents of each neuron closely track each other with opposite signs

(not shown), as observed experimentally in cortical circuits (Okun and Lampl, 2008).

Moreover, we showed that these networks operate in the inhibition stabilized regime

(Fig. 3.2c), which is believed to be the operational regime of cortical circuits (Ozeki

et al., 2009; Sanzeni et al., 2019; Moore et al., 2018). We showed that a heterogeneous

distribution of cluster sizes naturally give rise to lognormal distribution of firing rates

(Fig. 3.2b inset), as observed in cortical circuits (Shafi et al., 2007; Hromádka et al.,

2008; O’Connor et al., 2010; Roxin et al., 2011). We then generalize the results

in Mazzucato et al. (2019) to establish gain modulation as the general mechanism

controlling that state-dependent changes in processing speed in recurrent circuits

with metastable dynamics. This class of models thus provide a biologically plausible,

mechanistic link between connectivity, dynamics, and information-processing.

3.5.2 Linking metastable activity to flexible cognitive function via gain

modulation

Recent studies have shown that cortical circuits may implement a variety

of flexible cognitive computations by modulating the timescale of their intrinsic
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metastable dynamics (Mattia et al., 2013; Mazzucato et al., 2019; Engel et al., 2016;

Rich and Wallis, 2016; Deco et al., 2019). Our results establish a comprehensive

framework to investigate the extent of this hypothesis. We propose that gain

modulation is the neural mechanism underlying flexible state-dependent cortical

computation. Specifically, we showed that gain modulation controls the timescale of

metastable dynamics, which, in turn, determines the network’s information-processing

speed.

Our theoretical framework to link gain modulation to changes in potential

barrier heights is based on the effective mean field theory following (Mascaro

and Amit, 1999; Mattia et al., 2013; Mazzucato et al., 2019), which we used to

reduce a multidimensional system to obtain an effective potential describing a single

population. Although this approach is exact in the case of networks with symmetric

connectivity, it represents only an approximation to the full network dynamics in the

case of networks with asymmetric couplings such as the ones considered in this study

Rodríguez-Sánchez et al. (2020). It would be interesting to extend our results to an

exact framework by estimating the network Lyapunov function (Yan et al., 2013).

3.5.3 Alternative models of gain modulation

Previous studies have suggested gain modulation as a mechanism to sharpen

single-cell tuning curves without affecting selectivity (Cardin et al., 2008; Haider and

McCormick, 2009), potentially mediating alertness (Cano et al., 2006) or attention

(McAdams and Maunsell, 1999; Treue and Trujillo, 1999; Rabinowitz et al., 2015). In

those studies, gain modulation was defined as change in the single-neuron response

function to stimuli of increasing contrast. Here, we have taken a different approach

and defined gain as the slope of the intrinsic neuronal current-to-rate function during

ongoing periods (i.e., in the absence of stimuli, see also Chance et al., 2002; Haider
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and McCormick, 2009; Mazzucato et al., 2019), as opposed to the contrast response

function. We have classified mechanisms of gain modulation which act by changing

the mean or spatial variance across neurons of the cell-type specific afferent currents to

the local cortical circuit, where we modeled afferent currents as constant biases; or by

changing the recurrent couplings. The rationale for our choice was to investigate the

effects on internally generated variability in a network whose dynamics were entirely

deterministic. Alternatively, one could model external currents as time-dependent

inputs with fast noise, such as Poisson processes or colored noise. In that case, changes

in background noise due to barrages of synaptic inputs are capable of inducing gain

modulation as well (Chance et al., 2002; Haider and McCormick, 2009). Previous

work compared these different kinds of perturbations (Poisson noise or afferent spatial

variance) in the case of the perturbation δvar(E) (Mazzucato et al., 2019), showing

they may lead to similar outcomes.

3.5.4 Physiological mechanisms of gain modulation

Several different physiological pathways can modulate the gain of the intrinsic

neuronal transfer function, including neuromodulation, top-down and cortico-cortical

interactions. Gain modulation can also be induced artificially by means of optogenetic

or pharmacological manipulations. The perturbations investigated in our model may

be related to different pathways and implicated in various types of cognitive function.

3.5.4.1 Neuromodulation

Neuromodulatory pathways strongly affect sensory processing in cortical circuits

by changing cell-type specific afferent currents to the circuit, in some cases controlling

their dynamical regime (McGinley et al., 2015b). Our theory may be applicable to

explain the effects of cholinergic and serotonergic activation on sensory cortex.
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Cholinergic pathways, modulating ionic currents in pyramidal cells (McCormick,

1992), can control cortical states and mediate the effects of arousal and locomotion.

Artificial stimulation of cholinergic pathways was shown to improve sensory coding in

visual (Goard and Dan, 2009; Pinto et al., 2013) and barrel cortex (Eggermann et al.,

2014). Cholinergic stimulation alone in the absence of sensory stimuli was shown

to induce mixed responses with different neural populations increasing or decreasing

their spiking activity (Goard and Dan, 2009). Our theory shows that these combined

experimental observations (coding improvement and mixed firing rate changes) are

consistent with a mechanism whereby cholinergic activation induces an increase in

δvar(E) afferents to sensory cortex, inducing an acceleration of sensory processing

(Fig. 3.7).

Activation of serotonergic pathways by stimulation of dorsal raphe serotonergic

neurons or local iontophoresis was shown to transiently degrade stimulus coding in

sensory cortex, decreasing responses to mechanosensory stimuli (Dugué et al., 2014)

and increasing the latency of the first spike evoked by auditory stimuli (Hurley et al.,

2002). Serotonergic stimulation was shown to decrease firing rates in the olfactory

cortex (Lottem et al., 2016), inferior colliculus (Hurley et al., 2002), and primary

visual cortex (Michaiel et al., 2019; Seillier et al., 2017). Our theory shows that

these experimental observations (coding degradation and decreased firing rates) are

consistent with two alternative mechanisms: either an increase in the afferent currents

to I populations (i.e., δmean(I)> 0) implementing the paradoxical inhibition effect

(Tsodyks et al., 1997); or a decrease in the afferents to E populations (i.e., δmean(E)<

0). Future experiments could test between these two alternatives.
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3.5.4.2 Top-down projections

A prominent feature of sensory cortex is the integration of feedforward and

cortico-cortical feedback pathways at each stage of sensory processing (Felleman

and Van, 1991). In particular, top-down projections from higher cortical areas to

sensory cortex are known to modulate the speed and accuracy of sensory processing

(Mazzucato et al., 2019). Our theory may explain the effects of activating several

cortico-cortical pathways.

Activation of feedback axons from motor cortex (M1) to somatosensory cortex

(S1) was shown to increase activity in S1 during whisking (Petreanu et al., 2012)

and led to faster and more accurate responses to whisker stimulation (Zagha et al.,

2013). Suppression of the same pathway induced slower S1 responses to whisking in

awake mice. Our theory shows that the effect of these cortico-cortical perturbations

is consistent with an increase in the mean afferent currents to E populations in S1

(i.e., the δmean(E) perturbation), leading to higher firing rates and faster processing

speed.

Expectation and arousal are known to strongly modulate neural activity in

sensory cortices (Salkoff et al., 2020). Expected stimuli are processed faster and more

accurately than unexpected stimuli both in auditory (Jaramillo and Zador, 2010)

and gustatory cortex (Samuelsen et al., 2012). Experimental evidence shows that

the anticipation of sensory processing induced by expectation is mediated by top-

down projections from the amygdala to the gustatory cortex (Samuelsen et al., 2012),

whose activation elicits mixed excited and inhibited responses in both pyramidal and

inhibitory cells in the gustatory cortex (Samuelsen et al., 2012; Vincis and Fontanini,

2016). Our model shows that, while an acceleration of stimulus processing speed may

in principle be mediated by different state-changing perturbations, only the δvar(E)
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perturbation is consistent with the empirically observed mixed responses. Indeed,

our theory suggests that these top-down projections may operate by inducing an

increase in the spatial variance of the afferent currents to the E population (δvar(E)

perturbation, extending previous results in Mazzucato et al. (2019) to networks

including inhibitory clusters).

In attentional tasks, distractors slow down reaction times (Grueninger and

Pribram, 1969; Treisman and Gelade, 1980), a behavioral effect that may be mediated

by changes in the speed and accuracy of sensory processing in cortical circuits

(Desimone and Duncan, 1995). The presence of distracting stimuli within a neurons

receptive field suppresses its responses to the preferred stimulus (Knierim and

Van Essen, 1992). The underlying mechanism may recruit lateral inhibition onto

the local cortical circuit (Reynolds and Heeger, 2009; Gilbert and Li, 2013). Our

theory shows that this mechanism is consistent with a modulation of the afferents to

local I populations, mediated by either an increase in δmean(I) or δvar(I). It would be

interesting to discriminate between these two perturbations with future experiments.

3.5.4.3 Optogenetic and pharmacological manipulations

Our theory may shed light on the effects of manipulation experiments.

Optogenetic activation (inactivation) of specific E or I cells (Arenkiel et al., 2007;

Li et al., 2019) has been modeled as an increase (decrease) of the afferent currents

to those cells (Ebsch and Rosenbaum, 2018; Mahrach et al., 2020; Sanzeni et al.,

2019). However, protein expression may not be complete across all cells of the

targeted population, and even in the case of complete expression across the targeted

population, different cells may be more or less sensitive to laser stimulation. Thus

the effect of optogenetic stimulation on the targeted population may then be more

accurately modeled by a concurrent change in both mean and variance of the targeted
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cell-type specific afferents (e.g., δmean(E) and δvar(E) for E populations; δmean(I)

and δvar(I) for I populations). Recent studies showed that, while a homogeneous

stimulation of all I cell types simultaneously can be captured by a model of E-I

recurrently coupled neurons (as in our model), partial activation of specific inhibitory

cell-types may induced more complex responses (Mahrach et al., 2020; Sanzeni et al.,

2019; Li et al., 2019; Otchy et al., 2015; Phillips and Hasenstaub, 2016). We plan to

revisit this issue in the future.

Our theory may also be applicable to the effects of pharmacological

manipulations of different synaptic receptors. In particular, the effects of combined

local injection of AMPA/kainate and NMDA receptor antagonists (agonists) may be

recapitulated by a decrease (increase) in δAMPA, which correspondingly perturb the

value of JIE, JEE couplings. Similarly, the effects of local injection of GABA receptor

antagonists (agonists) may be recapitulated by a decrease (increase) in δGABA, which

correspondingly perturb the value of JEI , JII couplings.

3.5.5 Locomotion and gain modulation

Locomotion has been shown to modulate visually evoked activity (Niell and

Stryker, 2010) and is sufficient in driving activity in mouse V1 (Leinweber et al., 2017;

Saleem et al., 2013). Our results were consistent with previous studies in showing

that locomotion affects the activity of neurons in the visual cortical hierarchy during

both ongoing and stimulus-evoked activity. We found that locomotion in the absence

of sensory stimuli induces an average increase in firing rates. At the single-cell level

we reported a complex mix of excited and inhibited responses in both E and I cells,

also consistent with previous results (Fu et al., 2014; Dipoppa et al., 2018). Crucially,

we uncovered that locomotion decreased the single-cell gain during ongoing activity

across the board in the visual cortical hierarchy (Fig. 3.7d). Our theory predicted that
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the observed decrease in gain would lead to an acceleration of visual processing during

locomotion in cortex. This prediction was confirmed in the data (Fig. 3.7i). The

acceleration of processing speed observed in cortex did not depend on the locomotion-

induced changes in firing rates and was still present even after matching the firing

rate distributions between running and rest conditions (Fig. 3.8). Our model of

the perturbation effects induced by locomotion (increased firing rates with mixed

excited and inhibited responses, and faster visual processing) suggests that the effect

of locomotion may be mediated by a increase in the spatial variance of the afferent

current to the E populations (δvar(E) perturbation) (Ayaz et al., 2013; Niell and

Stryker, 2010; Fu et al., 2014). Concretely, gain modulation may be implemented via

the combined effect of activating neuromodulatory pathways such as cholinergic (Fu

et al., 2014) and noradrenergic (Polack et al., 2013) inputs.

3.6 Bridge to Chapter IV

In this chapter, we investigated the effects of perturbations on the processing

capacity of neural populations - both artificial and biological. We found that periods

when the animal is running led to a decrease in single-cell intrinsic gain, which

we connect to the visual processing speed of drifting gratings. In chapter IV, we

instead look at how mice process natural scene stimuli, in a similar experimental set-

up. While the hypothesis here pertained to how the behavioral state of the animal

effects sensory processing speeds, in chapter IV we investigate the hypothesis that

natural images stimuli presented in a repeated, predictable sequence are encoded

more strongly than stimuli presented out of sequence, unexpectedly. The theoretical

modelling and predictions made in this chapter - particularly those pertaining to

contextual modulations changing the network dynamics through gain modulation -

directly apply to understanding the study in chapter IV.

133



CHAPTER IV

DIFFERENTIAL ENCODING OF TEMPORAL CONTEXT AND

EXPECTATION UNDER REPRESENTATIONAL DRIFT ACROSS THE

VISUAL HIERARCHY

4.1 Author contributions

Unpublished material with Hannah Choi, Nicholas Cain, Rylan Larsen, Jerome

Lecoq, Marina Garrett, Luca Mazzucato. HC and MG conceived the study. NC,

RL, JL helped conceptualize experiment. DW and LM designed and performed the

decoding analysis. DW, LM, HC, and MG wrote the manuscript.

4.2 Introduction

Neural populations in the visual cortical hierarchy encode specific features of

visual stimuli, such as orientation, spatial frequency, and direction of movement

(Hubel and Wiesel, 1959, 1962; Siegle et al., 2019). Recent studies have also shown

more diverse encoding capacities of the visual cortex. For example, activity in visual

cortex exhibits strong modulation by changes in behavioral state (Niell and Stryker,

2010; Stringer et al., 2018; Musall et al., 2019; Salkoff et al., 2020), arousal (McGinley

et al., 2015b), and attention (Ito and Gilbert, 1999). Trial and reward history have

also been shown to influence visual responses (McMahon and Olson, 2007; Meyer

et al., 2014; Nikolić et al., 2009; Shuler and Bear, 2006), indicating that sensory coding

is influenced not only by current state but also prior experience and expectation

about the future. Neurons in primary visual cortex (V1) learn short spatiotemporal

sequences of stimuli upon repeated presentation (Gavornik and Bear, 2014), and

enhance their activity for unexpected oddball images, as well as at the start of a

novel sequence (Homann et al., 2022; Kim et al., 2019b). How temporal context
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and expectation influence representations along the visual hierarchy, and beyond V1,

remains unclear.

Retrosplenial cortex (RSP) is an association area that is reciprocally

interconnected with V1 and is thought to be involved in memory, spatial navigation,

and representing learned visual environments (Vann et al., 2009; Alexander and Nitz,

2015). Inputs from RSP to V1 show ramping activity that increases over the course

of task learning (Makino and Komiyama, 2015), and may provide information about

the timing of expected events to the visual cortex. The posteromedial higher visual

area (PM) sits between V1 and RSP and is highly interconnected with both areas,

raising the possibility that PM relays information about natural scene statistics to

RSP and information about learned expectations back to V1.

Here we examine how visual responses in hierarchically connected areas V1, PM,

and RSP, are modulated by temporal context and expectation. We recorded neural

activity as mice viewed repeated natural image sequences, image sequence violations,

and image pairs outside the repeated sequence order. We found that image decoding

and selectivity were enhanced when images were presented in pairs compared to

randomized order. Further, we found that information about temporal context during

image sequences improved encoding of image identity, and that this effect was stronger

in V1 and PM compared to RSP. While V1 and PM could robustly distinguish

expected from unexpected images, population activity in RSP did not differentiate

between the expected image in a sequence and a random oddball image that took its

place. This suggests that RSP contains a prediction of upcoming information based

on past history, while V1 and PM signal deviations from expected sequences. All of

these stimulus encodings occur under the influence of representational drift on the

timescale of minutes, consistent with previous reports (Deitch et al., 2021; Aitken
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et al., 2021). Despite this drift, the population responses in V1 and PM, but not in

RSP, generalized across drift epochs by preserving the representational geometry of

the responses.

Together, these results provide evidence that temporal context and expectation

are differentially represented along the visual hierarchy and beyond V1, with V1 and

PM encoding image transitions and image sequence violations, and RSP encoding the

expectation of what is yet to come. The predictive coding framework proposes that

connections between hierarchically organized areas operate to construct a model of

the environment by comparing sensory inputs with prior experience and expectations

to continually update the representation of the environment. The pattern of sensory

coding we observed across V1, PM, RSP, is consistent with this theory.

4.3 Results

We set out to investigate how neural responses to natural images depend on

temporal context and expectation, and whether the effects of temporal context differ

across the visual cortical hierarchy. We designed a stimulus protocol in which four

natural images were presented in different temporal contexts (250ms stimulus with

no interleaving gray screen): either in random order (‘randomized control’), or in a

four image sequence (ABCD, denoted ‘sequence’ hereafter), or in randomized pairs

of images, recapitulating the transitions between images (‘transition control,’ with

AB, BC, CD, DA, CX, XA pairs randomly interleaved). In this sequence stimulus

context, ten rare, “oddball” images randomly replaced the fourth image of the set

to form an unexpected sequence (ABCX; Fig. 4.1b). Contrary to previous studies

investigating the effects of stimulus history on responses in visual cortex (Kim et al.,

2019a), natural images were used in place of gabor patches. Each session featured
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Figure 4.1. Presenting images in a variety of stimulus contexts determines single cell activity
along the visual hierarchy a) Experimental pipeline from developing transgenic mice, to
recording population responses in the visual cortex, to finally an open dataset available to
the public.b) Mice passively view natural images in different stimulus contexts while neural
activity is recorded from V1, PM, or RSP. Images are either presented in random order
(blue and green) or in common, expected sequences with the occasional oddball interleaved
(red), or in transition control (yellow) which only preserves pairwise transitions. c) Single
cell PSTHs to expected images in each stimulus context. Rows i and ii: V1 neurons. Rows
iii and iv: PM neurons. Rows v and vi: RSP neurons. d) Single cell PSTHs to unexpected
images. e) One-way anova results. Left: A small fraction of cells in V1, PM, and RSP
are selective to expected images, but only in the sequence and transition control contexts
(Randomized control context not shown). Right: Selectivity to unexpected images emerges
in the sequence and transition control contexts for cells in V1 and PM. f) Using responses
to expected images (ABCD) and unexpected images (X), we can assess whether a cell is
selective to the stimulus context in which the image was presented. Error bars indicate
standard deviation across depths.

four blocks, where randomized control occurred both as the first and the last block

in each session.
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Experiments using this stimulus protocol were conducted through the Openscope

program at the Allen Institute using a standardized pipeline for in vivo 2-photon

calcium imaging (Fig. 4.1a). Populations of excitatory neurons were measured across

multiple depths (range: 125 - 450 µm), with a total of 2299 neurons in V1, 2071

neurons in PM, and 1628 neurons in RSP. Of these neurons, we observed a variety

of single cell responses (Fig. 4.1c and d). Interestingly, we see hints of context

dependence to the responses to expected images in many cells. In V1 and PM, we

find cells that respond strongly to the presentation of an unexpected image X (Fig.

4.1d rows ii-iv), whereas in RSP we find cells that respond similarly to X as they would

the common, expected image D (Fig. 4.1d row vi). Looking at the aggregate, a small

fraction were selective to expected images and unexpected images as determined by

one-way anova, but only in the sequence and transition control contexts (Fig. 4.1e).

Neurons in RSP were the least selective to expected images among the areas and

showed no selectivity to unexpected images in any context. However, we did find a

larger fraction of neurons across all 3 areas that were selective to the context in which

the image was presented in (Fig. 4.1f). To understand how expectation and stimulus

context is represented at a population level, we took a decoding approach, described

in the sections below.

4.3.1 Transitions between images key to encoding natural scenes

First we set out to investigate how natural scenes are encoded across the visual

hierarchy. We constructed classifiers to decode image identity using population

responses within each stimulus context. We first focused on decoding the expected

main sequence images (ABCD; Fig. 4.2a). We found significant decoding of natural

image identity during the sequence and transition control stimulus contexts for all

depths of V1 (Fig. 4.2b) and PM, while in RSP, only supragranular (Fig. 4.2c), but
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not infragranular layers (not shown) significantly encoded the identity of expected

images. The decoding performance in the sequence and transition control contexts

decreased along the visual processing hierarchy (Fig. 4.2d). Surprisingly, we were not

able to decode expected image identity in either of the randomized control blocks.

Thus, we hypothesize that the transitions between consecutive images, rather than

the identity of the image itself, is key to encoding expected images. Indeed, for

each image presented to the animals, the preceding image is conserved in both the

sequence and transition control contexts. While differences in experimental design

and recording methodology are explored in the discussion, we note here that control

analyses on other datasets does not lead us to interpret these findings differently.

Next, we asked whether this context-specific encoding of natural images for

expected stimuli across the visual hierarchy translated to the encoding of unexpected

oddball images. Again, we constructed classifiers to decode oddball identity using

population responses within each stimulus context (Fig. 4.2e). V1 (Fig. 4.2f) and

PM, but not RSP (Fig. 4.2g), displayed significant encoding of oddball image identity

in both the sequence and transition control stimulus contexts. Again, information

about image identity was not present in the randomized control contexts. Contrary

to decoding expected main sequence images from each other, the preceding image

for all oddball presentations is image C in the sequence. Thus, while the relative

improvement from randomized control to transition control can be ascribed to the

transitions between images, the subsequent improvement in decoding performance in

the sequence must be something additional related to disruptions in expectation. We

explore this in section 2.3 and in Figure 4.3.
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Figure 4.2. Decoding of natural images across different stimulus contexts. a) Schematic
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sequence. b) Example confusion matrix showing signficant decoding of main-sequence
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decoding of main-sequence images using RSP population responses. d) Significant decoding
of expected images along the visual hierarchy in the sequence and transition control stimulus
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remain at chance level. Accuracy in V1 is significantly larger in the sequence context than
the transition control (Wilcoxon rank-sum test, p < 0.05). e - h) Same as a - c except for
the 10 unexpected images.

4.3.2 Temporal context of sequence improves encoding of natural scenes

By presenting natural images in a variety of stimulus contexts, we were able to

discern whether the embedding of natural images into 4-image sequence improved

the encoding of stimulus representations. We found that the decoding performance

of expected images within the sequence context was significantly higher than that

of the transition control for V1, suggesting the presence of temporal effects beyond

merely the transition between image pairs. In PM and RSP, we found no significant

difference between contexts. On the contrary, unexpected images were more strongly
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encoded in the sequence context compared to the transition control in both V1 and

PM, highlighting again the differences in the encoding of expected and unexpected

natural images.
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4.3.3 Unexpected events disrupt encoding of natural scenes in RSP

In V1 and PM, single-cell image selectivity was larger for oddball responses X

compared to main sequence images ABCD (Fig. 4.1d), suggesting the presence of a

surprise signal; RSP cells did not exhibit significant selectivity for oddball identity.

Indeed, our single cell results were confirmed by a population classification analysis.

We found significant decoding of oddball images in the sequence and transition control

stimulus contexts, but only in V1 and PM, not RSP, suggesting that RSP may help

reinforce familiar visual environments and not novel ones (Fig. 4.2f). These results

indicate that there are distinct population responses to oddball images in V1 and

PM, but not RSP. We hypothesized that the lack of oddball decoding in RSP during

the sequence context could be due to predictive coding effects, whereas during the

presentation of ABCX, the RSP population evokes a representation of the missing

D image in place of the unexpected X. After performing dimensionality reduction of

visually evoked responses using Principal Component Analysis (PCA), we found that

the V1 population forms a unique representation of the oddball stimulus X, that is

distinct from that of the expected image D (Fig. 4.3b; Similar representations exist

in PM, which is not shown). However, in RSP, the oddball representation is entirely

overlapping with that of image D (Fig 4.3c), suggesting that RSP might encode for

the missing image D when presented the oddball. If this was the case, we expected

that the false positive rate of a decoder trained to classify X from main sequence

images ABCD would be larger for D than for the other ABC images.

To investigate the origin of this difference within the visual processing hierarchy,

we combined the decoding of both main sequence and oddball images within

the sequence stimulus context. In order to enhance classification accuracy, we

concatenated all recorded neurons into a single pseudo-population vector, which we
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used as our classifier predictor. We constructed a classifier using population responses

to trials that directly precede an unexpected oddball image (ABCDABCX; Fig.

4.3a) . The qualitative picture from the PCA analysis was confirmed by our decoding

results. V1 and PM were able to discriminate between expected and unexpected

images (Fig. 4.3d). In RSP, we found a more complicated picture, whereby the

false positive accuracy of misclassifying oddball X as the missing D was larger than

misclassification with ABC (Fig. 4.3e right). Breaking up this multi-class classifier

into four binary classification tasks, we find responses to images A, B, and C can be

linearly separated from responses to the oddball images, but not when we compare

responses to image D with X (Fig. 4.3f). We concluded that RSP confounded the

unexpected oddball image X with the missing image D. Therefore, we hypothesize

that RSP instantiates a predictive coding mechanism by sending information about

expected visual signals to lower levels of the visual hierarchy.

4.3.4 Contextual information represented in population activity

The differential encoding of natural images across stimulus contexts naturally

led us to ask whether there is contextual information on top of the representation

of natural image identity or transition identity. We first tested whether single-cell

responses could discriminate whether the same image was presented in different

contexts (’randomized ctrl pre’,’main sequence’,’transition ctrl’,’randomized ctrl

post’). We found that single cells in all areas exhibited very pronounced selectivity for

the temporal context, above and beyond the selectivity for image identity (Fig. 4.1d

and e). Remarkably, whereas RSP cells did not encode image identity, they strongly

encoded the temporal context each image was presented in.

To further quantify this, linear classifiers were constructed based on population

responses to the same image in each of the four different stimulus contexts (Fig.
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structure within stimulus contexts, but not between contexts.

4.4a). Using population responses to each of the main-sequence and oddball images,

we were able to discriminate the stimulus context in which the image was presented in.

This contextual information was present across layers and depths recorded and was

encoded equally well during both main sequence (expected) vs oddball (unexpected)

images. Interestingly, despite similar results in decoding natural images (Fig. 4.2),

sequence and transition control stimulus contexts were separable from each other (Fig.

4.4c). This suggests that the representation formed in the sequence context depends

more than just the pairwise transitions between image presentations. This is reflected

in the example representational similarity matrix for V1, where there are clear off-
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diagonal correlation structure within the ABCD trials of the sequence context, but

not for the transition control context (Fig. 4.4d).

4.3.5 Representational drift and within-sequence generalization

What is the origin of the strong encoding for temporal context? Because

randomized control pre and post conditions were linearly separable from each other,

we hypothesized that temporal context may be partially due to representational

drift occurring over the course of the recording session (Aitken et al., 2021). While

definitions of representational drift usually pertain to changes in representations over

the course of days and weeks (Aitken et al., 2021; Schoonover et al., 2021; Marks and

Goard, 2021), we investigated whether drift was evident over one 33 minute session

(Deitch et al., 2021). We focused on representations of expected images and tested

information about the passing of time within the sequence context. We observed

significant decoding of the epoch in which an image was presented, which we interpret

as evidence of representational drift (Fig. 4.5c). Time encoding was equally present

in all areas.

Next, we investigated the evolution of the representational geometry of expected

natural images under drift. Two alternative scenarios may arise: In the first scenario,

the drift may occur in directions orthogonal to the stimulus-encoding ones, leading

to a stable representation of image identity which can generalize across different

epochs. In the second scenario, the drift direction may overlap with the stimulus-

coding axis, thus leading to epoch-specific representations which cannot generalize

across epochs. We compared these two scenarios in PCA space, where we found that

the representational geometry of the main sequence, defined as the relative position of

responses to the ABCD images, is preserved across epochs in V1 and PM, but not in

RSP (Fig. 4.6c,f). This result is evident in the representational similarity plots of V1
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vs RSP, where large correlations on the off-diagonal blocks in V1 imply generalization

across epochs, while the weak correlation in off-diagonal blocks in RSP suggests lack

of generalization across epochs (Fig. 4.6d,g).

To quantify the difference between two scenarios we trained a linear classifier on

trials from one epoch and test its generalization performance on test trials from a

different epoch. We found that linearly separable stimulus representations in V1

and PM, but not for RSP, generalized across epochs (Fig. 4.6h). We call this

within-sequence generalization performance, after Bernardi et al. (2020) work on

abstraction in monkey hippocampus and prefontal cortex. These results show that

visual representations in V1 and PM, but not RSP, maintain a consistent linear

readout available to downstream neurons, despite representational drift occurring on

the timescale of minutes. Previous studies have reported this persistence in decoding

performance in V1 (Aitken et al., 2021).

4.4 Discussion

The representation of naturalistic visual stimuli in cortex depends on the

context in which the image was presented. We found that natural images were
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encoded only when they were presented in a four set sequence or pairwise sequence

(Fig. 4.2). Thus, we conclude that the transition between successive images is an

essential part of the encoding of naturalistic stimuli in 2-photon datasets. While this

may seem unsurprising on the surface, we found no studies in the literature that

report the context dependence of naturalistic stimuli encoding. Past studies at the

Allen Institute itself have only reported responses to naturalistic images that are

presented in random order (de Vries et al., 2020; Siegle et al., 2021), while other

studies have reported responses to naturalistic images that are presented with an

interleaving gray screen (Kowalewski et al., 2021), an altogether different stimulus

paradigm which changes stimulus response dynamics. Previous studies suggested

that only the preceding image matters for distinguishing between sequential image

presentations (Nikolić et al., 2009). However, we found a significant increase in

decoding performance of expected images in the four-image sequence vs. the two-

image transition control contexts in V1, highlighting the potential role of longer

sequences in enhancing encoding of visual stimuli.

We found that the stimulus context in which an image was presented in

(randomized control pre and post vs sequence vs transition control) was encoded more

strongly than image identity in the neural populations of V1, PM, and even RSP (Fig.

4.1d, Fig. 4.4), the latter having similar context-dependent decoding accuracy as the

other areas, despite much lower decoding performance of expected images chance-level

decoding performance to unexpected images. One interpretation of this finding is that

of representational drift (Deitch et al., 2021), which we observed in our data as well.

The difference in visual representations across stimulus contexts may include other

effects beyond representational drift. In particular, different contexts differ in how

many images a sequence comprised (1 image in the randomized control, 2 images in
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the transition control, and 4 in the main sequence). History effects extending beyond

pairwise transitions may thus explain the discriminability of sequence vs transition

control. This was observed in sequences of randomized gabor patches (Kim et al.,

2019a), but not for extended sequences of natural images.

Our results on representational drift are consistent with previous studies in V1

and PM (Deitch et al., 2021; Marks and Goard, 2021; Aitken et al., 2021), and

extend them to RSP. Our measure of representational drift - decoding - allows us

to simultaneously observe whether drift is occurring, but it also allows us to test

for generalization in the population response. This idea is fundamentally linked to

the problem of representational drift: How do neural populations faithfully encode

for sensory representations, memories, etc while being subject to persistent drift?

We found that representations of expected natural images in V1 and PM generalize

despite drift, but while RSP does not.

We also investigated the differences in decoding performances of expected vs

unexpected natural scenes along the visual hierarchy. First, we determined that

representations of individual unexpected oddball images could be linearly separated

from each other in both the sequence and transition control contexts for areas V1

and PM (Fig. 4.2h). Moreover, single cell selectivity for oddball images was stronger

than for the main sequence images ABCD. Furthermore, unexpected stimuli were

more strongly encoded in the sequence context than the transition control context for

both V1 and PM. We interpret this finding within the paradigm of predictive coding,

following recent experimental evidence Gillon et al. (2021). In the sequence context,

violations of the expected image D cause prediction error signals that are not present

in the transition control context, which shuffles the expected sequence of images into
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a random set of pairwise images. No expectation can be formed in the transition

control beyond the pairwise transition.

Combining expected and unexpected stimuli paradigms into one classification

task (Fig. 4.3), we found that V1 and PM had no problem differentiating expected

(main-sequence) vs unexpected (oddball) stimuli. In RSP, population responses to the

unexpected oddball images are confounded with that of the expected image D (Fig.

4.3c). One interpretation of this finding is that RSP encodes for the expectation of

the next image, rather than what was actually shown. Indeed, we found RSP does not

encode for distinct oddball representations at all (Fig. 4.2g). One possible limitation

of this interpretation is that RSP may simply have a low signal to noise ratio when it

comes to encoding naturalistic stimuli. However, we do report above chance decoding

performance of expected images in RSP; thus, we believe expectation may play a role

in this area.

4.5 Methods

4.5.1 Experimental data

All experiments and procedures were performed in accordance with protocols

approved by the Allen Institute Animal Care and Use Committee. The dataset used

in this paper was collected as part of the Allen Institute for Brain Science’s OpenScope

initiative. Data were collected and processed using the Allen Brain Observatory data

collection and processing pipelines (de Vries et al., 2020). Here we include a brief

description on experimental procedure. The full details on the data collection and

process are described in (de Vries et al., 2020).

Transgenic mice expressing GCaMP6f in excitatory cells were used (Slc17a7-

IRES2-Cre x CaMk2-tTA x Ai93(GCaMP6f). Only sessions that pass quality control

criteria described in (de Vries et al., 2020) were included in our analyses, resulting
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in total N = 14 mice, with 16 sessions from V1 (2299 neurons), 23 sessions from

PM (2071 neurons), and 12 sessions from RSP (1628 neurons). Two-photon calcium

imaging was performed a Nikon A1R MP+, with imaging depths ranging 125 - 450µm

to capture neuronal activities across cortical layers.

Mice were injected with a retrograde tracer (AAVRetro.CAG.mRuby3) in either

V1 or RSP, however this data was not used in our study. No differences were

observed in labeled vs unlabeled cells for any of the quantifications in this manuscript.

Information on the identity of retrogradely labeled cells is available at: XXXX [put

.csv of cell IDs and labels on GitHub].

Each mouse experienced 4 imaging sessions, each with the same stimulus

protocol. Two sessions were recorded in one cortical area (ex: V1, PM, or RSP)

at 2 cortical depths, typically around 175µm (approximately layer 2/3) and 375µm

(approximately layer 5), and two sessions were recorded at similar depths in a different

cortical area. Areas were chosen such that the injection site for retrograde labeling was

never imaged. For the full details on on animal surgery, habituation, quality control,

data collection, and post-collection data processing, please see (de Vries et al., 2020).

The dataset along with the code for analyses included in this paper is available

on GitHub, and the full dataset is publicly available in Neurodata Without Borders

(NWB) format in the DANDI Archive

4.5.2 Stimulus protocol

Visual stimuli consisted of a subset of the natural images publicly

available Allen Brain Observatory dataset (https://observatory.brain-map.org/

visualcoding/;(de Vries et al., 2020)). The images were presented in grayscale,

contrast normalized, matched to have equal mean luminance, and resized to 1,174

× 918 pixels. Four natural images (Brain Observatory image IDs: im013, im026,
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im068, im078) were used to form a familiar sequence of four images (ABCD), and ten

additional images served as unexpected oddball images (im06, im017, im022, im051,

im071, im089, im103, im110, im111, im112).

Stimuli were presented in 4 distinct blocks over the course of a 1 hour imaging

session (64 minutes). Individual stimuli were presented for 250ms with no intervening

gray period (i.e. one image after the other) in all blocks. Blocks were separated by 60

seconds of gray screen in which spontaneous activity could be measured. A schematic

of the stimulus design is shown in Supplemental Figure XXX.

In the Randomized Control blocks, the 14 images (4 sequence images and 10

oddball images) were presented in random order. Each image was shown for 250ms

with no intervening gray screen. Each image was presented 30 times. The randomized

control stimulus block was presented once at the beginning of the session and once

at the end of the session and lasted 0.25s x 30 repeats = 105 seconds each time.

In the Sequence block, the series of expected sequence images ABCD was

repeated 20 times per cycle, with an oddball image randomly taking the place of

image D after 10-19 repeats of the sequence in that cycle. The number of sequence

repeats between oddball image occurrences was random and not predictable. Each

oddball image was presented a total of 10 times throughout the sequence block, for

a total of 100 cycles (10 images x 10 cycles each). Each main sequence image ABCD

was presented 20 times per cycle x 100 cycles = 2000 times. The entire block lasted

33.33 minutes.

In the Transition Control block, the image transitions shown in the Sequence

block were preserved as pairs (AB, BC, CD, DA, CX, XA, with X = 10 oddball

images, giving a total of 24 pairs), but the global sequence was not preserved. Each

image transition pair was treated as a distinct stimulus (lasting 0.5 seconds) and
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presented in random order. Each image pair was shown 30 times, for a total of 24

pairs x 30 repeats = 720 pair presentations. The Transition Control block was 6

minutes in duration (720 pair presentations x 0.5 seconds per pair = 360 seconds).

Two additional stimuli not used in this study were also shown. The occlusion

stimulus, consisted of the 10 oddball images with 6 differing levels of spatial occlusion.

Each occlusion image was presented for 0.5 seconds, with 0.5 seconds of gray screen

between stimuli. Each occlusion image was presented 10 times, for a total of 10

images x 6 occlusion levels x 10 repeats = 600 individual stimulus presentations, for a

total of 600 seconds = 6 minutes. A 30 second natural movie clip (Brain Observatory

stimulus set Natural Movie 1) was repeated 10 times at the end of the session.

4.5.3 Decoding analysis

We decoded stimulus context, image identity, and time within a session from

single-trial population response vectors. To construct these response vectors, we

performed deconvolution (Jewell et al., 2019; de Vries et al., 2020) on the delta

fluorescence traces and summed the deconvolved events within a circumscribed

response window of 50ms to 250ms relative to stimulus onset. Results presented

within this paper remain unchanged if instead we perform the mean over this response

window. Specifically, we trained multi-class linear support vector machine (SVM)

classifiers to decode the above categorical variables from the single-trial population

response vectors. Stratified 5-fold cross-validation was used for decoding expected

images (Fig. 4.2d), context(Fig. 4.4), and "time" (Fig. 4.5), ensuring equal number

of trials for each class. When performing classification with oddball images (Fig. 4.2h

and Fig. 4.3), 10-fold stratified cross-validation was performed, as each oddball was

only presented 10 times during the sequence stimulus context.
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To calculate the statistical significance of decoding accuracies, we performed an

iterative shuffle procedure on each fold of the cross-validation. In each shuffle, the

training labels which the classifer was trained to decode were shuffled randomly across

trials of the training set, and the classifer’s accuracy was evaluated on the unshuffled

test data-set. This shuffle was performed 100 times to create a shuffle distribution

of decoding accuracies for each fold of the cross-validation. From these distributions

we calculated the z-score of decoding accuracy for each class in each cross-validation

fold. These z-scores were then averaged across the folds of cross-validation and used

to calculate the overall p-value of the decoding accuracy obtained on the original

data.

4.5.4 Validation

To examine issues of stimulus design or recording methodology, we performed

the same decoding analysis on three independent datasets where natural images were

presented in random order. First we compared decoding performances evaluated on

data from the publicly available Allen Brain Observatory Visual Coding (“ophys”)

and Neuropixels (“ephys”) datasets (de Vries et al., 2020; Siegle et al., 2019). Both

experiments consisted of 118 natural image stimuli from the same dataset as ours with

identical presentation protocol. We confirmed significant decoding accuracy across all

118 images using electrophysiological population responses reliably across experiments

(Fig. 4.7g). On the other hand, using population responses extracted from 2-photon

imaging data severely reduced the reliability and magnitude of decoding performance

to chance level (Fig. 4.7h). Restricting ourselves to the 14 images presented in our

experiment (4 main-sequence and 10 oddball images) increased decoding performance

to slightly above chance level for 2-photon data. In another study where natural

images were presented for 1s, with an interleaving gray screen of 2s, V1 populations
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recorded using 2-photon imaging showed significant decoding (Kowalewski et al.,

2021).

From this comparative set of analyses, we concluded that the lack of significant

decoding of natural images during the randomized blocks may be due to weaker and

less reliable visually-evoked responses than those collected previous studies, due both

to the nature of our 2p recordings (less reliable compared to electrophysiological ones)

and to particular protocol used (flashed presentation consecutive images, compared

to long image presentations interleaved by black screen. Our results further suggest

that, in our 2p setup with flashed images, the information about visual stimuli

encoded in neural responses is likely related to the identity of transitions between

consecutive images, rather than the identity of single images. Taken together, these

results highlight the particularities of stimulus design and calcium dynamics as it

pertains to natural stimulus encoding.

4.5.5 Single-cell selectivity

To assess single cell selectivity to particular natural images and stimulus context,

we performed simple one-way anovas using the open source python software pingouin

(Vallat, 2018). For each stimulus context, we determined if a cell was selective to one

of the four main-sequence images or to one of the 10 oddball images by using the

population response vectors for those trials in which the images were presented (Fig.

4.1d left, middle). We ensured each group had an equal number of trials. For each

image, we determined if a cell was selective to the context in which it was presented

in by using population response vectors for the trials in which the same image was

presented in different contexts (Fig. 4.1d right). P-values were calculated from the

F-distribution and were considered significant (selective) if below a threshold of 0.05.
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Figure 4.7. Validation of decoding results with field standard electrophysiological and two-
photon functional datasets. a) Example confusion matrix from one session of e-phys data
trained to classify the four main-sequence images within our study. b) Example confusion
matrix from one session of two-photon data trained to classify the four main-sequence images
within our study. c) Summary boxplot over 32 sessions of e-phys and 39 sessions of 2-photon
data. d - f) Same as a-c, but for the 10 oddball images. g - i) Same as a-c, but for all 118
images within the Berkeley Segmentation Dataset
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