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DISSERTATION ABSTRACT 

 

Adriana Uscanga Castillo 

 

Doctor of Philosophy 

 

Department of Geography 

 

September 2022 

 

Title: From Plot to Region: Assessing the role of land use in tropical montane forests structure 

and dynamics 

 

 

Forest disturbance and land use are strong drivers of forest structure, composition, and dynamics 

and yet, their role in shaping tropical montane landscapes is poorly understood. The overarching 

goal of my dissertation is to broaden our understanding on the role of land use in shaping forest 

structure and forest dynamics in tropical montane landscapes, with a particular focus on 

aboveground biomass (AGB). Using the Northern Mountains of Oaxaca (NMO), Mexico, as a 

study system, I investigate changes in vegetation across space and time, particularly in an 

ecosystem known as tropical montane cloud forest (TMCF).  

The NMO has experience forest disturbance by land use for centuries. Deeply influenced 

by regional and global socioeconomic forces, land use has changed over time, modifying 

montane landscapes accordingly. Tropical mountains are currently experiencing large rates of 

forest loss related to the expansion of agricultural commodity production. Land-use and land-

cover change, transformations of land tenure regimes, landscape management strategies, the 

development of policies related to agricultural production and forest protection, and the 

environmental conditions that define vegetation growth, are all factors that intertwine to define 

current and future forest dynamics. Thus, in this project I analyze various aspects of land use in 

shaping forest structure and dynamics, including the local and regional effects of land-use 

intensity on tropical montane forests, ways to include these effects at regional scales through 

forest structure models, and current land use dynamics taking place in the NMO.  

In the first chapter I explain the global relevance of tropical mountains and I introduce 

the foundational concepts of my dissertation, including forest structure and succession, a brief 

overview of land use in the study region, and the significance of my research. In the second 

chapter I analyze the relative roles of land use and environmental factors on AGB spatial 
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patterns, as well as the relationship between forest structure and tree diversity. I conclude that 

land use has a larger role in shaping AGB spatial patterns, and that the relationship between tree 

diversity and AGB is positive but weak. In chapter three I use remote sensing data to study 

recent small-scale disturbance related to land use in TMCF. Seeking for novel methods to 

incorporate land use effects on forest structure in AGB estimates, I found several remote sensing 

variables that have the potential to be used as input variables in AGB predictive models. These 

variables are derived from Landsat time series that track vegetation cover change over time. I 

conclude with providing some recommendations on the use of these variables. In chapter four I 

assess trends of forest loss and forest conservation in the NMO over the last two decades. Here, I 

provide a map of the spatial distribution of forest loss and the ecosystems that have been affected 

the most. I show that forest loss in the NMO has increased in the last six years. I discuss possible 

driving causes of forest loss, including its relation to the establishment of cattle ranches and 

agricultural production, and assess the effects of the forest conservation projects taking place in 

the region. Finally, in the last chapter I summarize the main results of my dissertation. 
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CHAPTER 1 

INTRODUCTION 

 

Tropical Mountains 

Mountains are probably one of the most popular geological landforms among humans. 

Considered as places of contrasts, mountains have inspired poets and artists, aroused the 

curiosity of explorers and researchers, provided the setting for the domestication and 

diversification of several crops, constituted sacred spaces, and hosted armed conflicts over 

contested territories. In the social imaginary, mountains are mighty, dangerous, untamed places, 

and at the same time they are regarded as fragile, vulnerable, and endangered by global 

environmental change.  

Mountains are rich places both environmentally and culturally. Home to at least one tenth 

of the global population, mountains exhibit the highest levels of biodiversity on Earth (Rahbek et 

al. 2019; FAO 2002). Hence, they are considered biodiversity hotspots (Hoorn, Perrigo, and 

Antonelli 2018; Spehn, Rudmann-Maurer, and Körner 2011). They also capture vast amounts of 

freshwater that benefit local inhabitants and people living downstream, a feature that made them 

earn the title of “world’s water towers” (Immerzeel et al. 2020). Additionally, they have recently 

been acknowledged for their potential to stock large amounts of carbon (Spracklen and Righelato 

2014). Many of these features are enhanced in mountains located in the tropics. Tropical 

mountains harbor some of the most biodiverse and carbon-rich ecosystems, and are more 

humanly populated than mountains in temperate regions (Körner et al. 2017). 

Tropical mountains have bewildered researchers for more than two centuries. Alexander 

Von Humboldt’s description of Mount Chimborazo in Ecuador, published in 1807, 

revolutionized our thinking of the distribution of ecosystems and their relationship to climate and 

topography (Moret et al. 2019). Not only do elevation gradients in tropical mountains mirror the 

climatic conditions of a latitudinal gradient from the equator to the poles, but they also exhibit a 

wide array of unique climates −in close proximity to one another− resulting from the 

combination of elevation, aspect, relief, distance to the ocean, and changes in air pressure and 

oxygen availability (Trew and Maclean 2021; Graham and Fine 2008). Thus, tropical mountains 

capture a larger portion of the temperature-precipitation climate space in shorter distances than 

lowlands, resulting in a great vegetation turnover displayed as layers of ecozones, with their 
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respective intrinsic variation, laid one after the other along an elevation gradient (Rahbek et al. 

2019). 

  Plant communities and the life they support change along elevation gradients up tropical 

mountains (Hoorn, Perrigo, and Antonelli 2018). At lower elevations, warm temperatures give 

place to tropical evergreen or deciduous forests, depending on the precipitation regime. If 

mountains are exposed to ocean winds, air moving up the elevation gradient expands and cools, 

reaching a water condensation point that results in the formation of clouds at ground level (fog). 

The frequent presence of fog determines another ecozone where cloud forests are found. These 

unique ecosystems are the main focus of the present dissertation. The next ecozone is usually 

drier and colder, and mainly comprises coniferous forests. Finally, if the mountain is tall enough, 

the upper layers exhibit alpine vegetation–short shrubs and grasses– followed by snow caps 

(Rahbek et al. 2019). Because all these ecosystems are found at relatively short distances (in 

contrast to the latitudinal gradient), and in a predictable sequence, and because there are several 

mountain ranges in the tropics, tropical mountains are considered natural laboratories (Cavelier 

1996; Tito, Vasconcelos, and Feeley 2020). That is, tropical mountains are conceived as sites 

where hypotheses regarding the relationship between plant communities and their environment 

can be tested. As of late, this has been particularly important in the face of the rising threat of 

climate change. 

 

Forest Structure and Trajectories of Change 

Some years after elevation gradients began to be described, the attention of researchers was 

drawn to the changes that vegetation experiences over time. Since the early 20th century, the 

sequence of plant communities assembled after a disturbance represented the chief focus of 

botanists like Henry Cowles and Frederic Clements (Egerton 2015). The description of plant 

community assemblages over time relies on the concept of succession. Succession refers to the 

sequential change over time of community composition and structure following disturbance (C. 

C. Chang and Turner 2019). Composition is defined as the types of vegetation and species that 

comprise a community, and structure refers to the horizontal and vertical arrangement of plants 

in space. Thus, common variables to describe forest structure include tree canopy height, tree 

density (the number of trees per area), and stand basal area. 
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For Clements, the final stage of succession represented a climax state, a permanent 

community–with a specific composition and structure–that defines an ecosystem (Clements 

1936). Much research has been developed ever since, and yet, the idea of a stable state is still 

central to theoretical and applied ecological research. Although the predictability of forest 

succession has been contested (e.g., Norden et al. 2015), there are general trends that are 

expected to take place during this process. For example, in tropical forests, it is expected that the 

stand basal area and the number of large trees will increase over time, as well as the vertical 

layers of vegetation and the presence of lianas and epiphytes (Guariguata and Ostertag 2001). 

There is large variation in successional trajectories, however, and the increasing recognition of 

the dynamism of landscapes has fostered meaningful research on forest ecosystem change over 

time, especially in the light of current forest disturbance related to land-use -and climate change. 

Disturbance is a central element of forest succession, not only because it marks its 

beginning, but also because it defines the spatial and temporal patterns of the process (Prach and 

Walker 2019). The intensity, frequency, and extent of a disturbance influence successional 

trajectories, since they modify the local environment. The availability of nutrients in the soil, the 

source of seeds for establishment, and the time available for recovery are all factors defining 

succession. For instance, thinning, wildfires, and recurrent landslides will have different effects 

on forest structure and composition (Pulsford, Lindenmayer, and Driscoll 2016). Moreover, 

disturbance has long-term effects, and plant communities are usually shaped by legacies of past 

disturbance (R. Chazdon 2003). 

In tropical forests, the most common disturbance is related to land use (Yadvinder Malhi 

et al. 2014). The effect of agriculture in shaping forest structure and composition and driving 

deforestation has been at the center of several studies and academic debates. Currently, the main 

driver of tropical forest clearing is the production of agricultural commodities, such as palm oil, 

soy, and pasture for cattle (Curtis et al. 2018). The second driver is shifting cultivation, an 

agricultural technique practiced by small-scale farmers whereby land is cleared for cultivation, 

often through slashing vegetation and burning the site (slash and burn), followed by fallowing 

after a few agricultural cycles (Curtis et al. 2018; Pérez-García and del Castillo 2016). In turn, 

fallow lands begin a process of secondary succession in which vegetation regenerates (Velasco-

Murguía et al. 2021). These patches of vegetation are known as secondary forests.  
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Permanent and shifting agriculture have different effects on forest landscapes, as do high-

input (industrialized) and low-input agriculture. Notably, while in shifting cultivation vegetation 

is allowed to regrow, the establishment of cash crop plantations implies the permanent loss of 

forest (Bongers et al. 2015). Thus, different agricultural practices result in distinct successional 

trajectories of forest, and create different landscape dynamics (Tscharntke et al. 2005). The 

coexistence of small-scale agriculture, shifting cultivation, cash crop production, large 

plantations, and cattle ranches, along with several strategies of forest management in tropical 

regions, have encouraged researchers to think of tropical forests as dynamic communities 

embedded in complex landscapes, instead of as permanent, albeit fragile, communities in a 

climax state (I Perfecto, Vandermeer, and Wright 2009; Gardner et al. 2009; Yadvinder Malhi et 

al. 2014).  

 

Land Use in the Highlands of Mesoamerica 

This dissertation focuses on an intricate montane landscape located in southern Mexico where 

forests and agriculture have coexisted for centuries. As one of the cradles of agriculture, 

Mesoamerica has a long history of land use (Piperno 2011). Little is known about the effects of 

land use on vegetation before the Spanish conquest, even concerning regions or civilizations that 

have been more widely studied such as central Mexico or the Mayan culture (Urquijo Torres 

2012). Highlands have been more widely associated with hunting and gathering than with the 

establishment of agriculture, especially because most of the large pre-Columbian settlements 

known to date are located in valleys (González-Abraham et al. 2015). This has led ecologists to 

think that montane forests were not commonly converted to agricultural lands before the colonial 

period, and that it was only in the colonial period, when indigenous populations were displaced 

to higher lands, that forest conversion expanded (Sánchez-Ramos and Dirzo 2014). However, 

this view is at odds with anthropological, archeological, and historical studies showing that 

important civilizations also thrived in the mountains, and not only at lowlands (Delgado 1966). 

Pottery, tombs, and small settlements found in montane lands show that these forested 

landscapes have been inhabited and used for more than five centuries, including for agricultural 

purposes (Chagoya Morgan 1986). 

Better records on land use exist for the colonial and subsequent periods. From this 

moment on, the effects of land use on montane forests broadly mirror those provoked by the 
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incursion and development of capitalist agriculture in Latin America (I Perfecto, Vandermeer, 

and Wright 2009). Without intending to oversimplify the historical development of capitalist 

agriculture and the consequences it has brought to rural Latin America, this process can be 

summarized into five key historical moments of agrarian change: (1) the establishment of export-

oriented cash crop plantations and large estates that produced crops for domestic markets during 

the colonial period (~1500-1830s); (2) the development of capitalist cash crop plantations from 

those formerly based on slave labor and the wider integration of estates’ agricultural production 

into the world market, as landlords and the nascent merchant class gained political control and 

economic power in the newly independent nations (~1830s-1920s); (3) a transition from export 

to import of agricultural products, geared towards national industrialization that resulted in the 

abandonment of small-scale agriculture and the modernization of large-scale farms, causing rural 

economic stagnation (~1900s-1950s); (4) land reforms and the promotion of external inputs, 

mechanization, monocultures, and hybrid seeds through the Green Revolution, accelerating 

agricultural commercialization, and the end of the landed oligarchy (~1920s-1980s); and (5) 

further privatization of lands and a return to export-oriented agricultural production fueled by 

neoliberal globalization (~1980s-present) (Baer 1972; Bryceson 2000; Clapp 2012; Goodman 

and Watts 1997; Kay 2000; McMichael 2013). 

In highland Mesoamerica, coffee became the leading crop amid the development of 

capitalist agriculture, and represented the main source of income, first for the landed oligarchy, 

and later for smallholders that in time began to grow and sell coffee in their own lands (E. F. 

Fischer and Victor 2014). With the establishment of coffee plantations in the 19th century, large 

areas of forest were cleared (Ivette Perfecto, Jiménez-Soto, and Vandermeer 2019). Coffee 

remains an important export product in the region, and is currently produced for a variety of 

markets, ranging from dominant international corporations to alternative supply chains such as 

Fair Trade, organic, and specialty markets (Clapp 2012; Topik, Talbot, and Samper 2010). By 

the mid-1970s, other export crops like vegetables and fruits were incorporated into the region’s 

agricultural production (Imbach et al. 2017). These nontraditional crops are usually grown in 

smallholders’ lands and commercialized through contract farming by cooperatives and exporters 

(Hamilton and Fischer 2005). Maize and beans are widely grown in the region, usually in the 

form of milpas, a traditional agricultural system wherein several crops–including maize, beans, 

and squash–are grown together in a way that maximizes nutrient and water use (Pérez-García 
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and del Castillo 2017). Milpas play a fundamental role in the peasant economy, though they are 

intended mainly for self-consumption, research has shown that maize production by small-scale 

farmers can also contribute to the local supply (Bellon et al. 2021; Arnés Prieto 2015; Isakson 

2009). Currently, the most common land uses in tropical montane landscapes are small-scale 

farming of annual crops mainly in the shape of milpas—that can be found along the whole 

elevation transect; pasturelands and sugar cane production on the lower parts of the mountains; 

coffee production in medium-to-high elevation slopes; and logging at higher elevations where 

coniferous and oak forests are distributed (Martínez et al. 2009; Velasco Murguía et al. 2014; 

Cayuela, Benayas, and Echeverría 2006).  

Forests in tropical mountains in general, and in the highlands of Mesoamerica in 

particular, are deeply influenced by the different uses that are given to land and how those uses 

change over time. Factors that define land-use and land-cover change include the price 

fluctuations of crops in the global market, changes in land tenure regimes, agricultural insurance 

programs, available technologies and infrastructure, forest conservation plans, and the 

development of policies related to both agriculture and forest protection. In particular, in the 

highlands of Mesoamerica there has been a transition from shifting agriculture to permanent 

agriculture and the establishment of cattle ranches, together with a decrease in coffee production, 

that have been shaping forest dynamics in the region in the last decades (Pérez-García and del 

Castillo 2017; SIAP 2020). Notably, most forests in southern Mexico are in either communal or 

ejido land−two forms of common property created after the Mexican Revolution as part of a land 

reform that granted land to small-scale farmers and territorial rights to indigenous communities. 

In the beginning of the 1990s, new legislation aimed at promoting land privatization allowed 

individuals to sell parcels of ejido land, thus opening the possibility of converting such lands into 

private property (Navarrete Romero 2015). Together, changes in land tenure regimes, and the 

intensification of agriculture and expansion of grazing lands for cattle, have deeply shaped 

tropical forested landscapes in the last decades.  

This overview of land use in the highlands of Mesoamerica serves to contextualize the 

processes of land-use and land-cover change that are currently taking place in the Northern 

Mountains of Oaxaca, the mountain range at the center of this work. It is important to underscore 

that although my project comprises only the effects of recent disturbance on forest structure, land 

use and land cover change have been present in the area for a long time. Driven by local, 
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regional, and global forces, the specific form of current land uses may change, but the central 

role of land use in shaping these montane landscapes remains. Moreover, different land uses and 

management strategies influence landscape dynamics in distinct ways. Hence, it is fundamental 

to assess the role of land use and trajectories of landscape change in these mountains to 

understand the current state of forests and their potential future trends. 

    

Overview of the Dissertation 

The overarching goal of my dissertation is to broaden our understanding of the role of land use in 

shaping forest structure–including the amount of carbon forests can store– and forest dynamics 

in montane landscapes located in the Northern Mountains of Oaxaca (NMO), Mexico. Thus, I 

investigate changes in vegetation across space and time, particularly in an ecosystem known as 

tropical montane cloud forest (TMCF), and its surrounding ecosystems.  

TMCF are defined as ecosystems that are frequently enveloped in clouds or mist (Fahey, 

Sherman, and Tanner 2016). Their distribution is determined by the upper and lower limits of 

ground-level clouds, and depends on the factors influencing cloud formation −such as 

temperature and humidity− which are in turn influenced by elevation and proximity to the ocean 

(Scatena et al. 2011). These forests tend to be close to the ocean and on topographically exposed 

landscapes, and they also exhibit great variation in elevation, soil type, and species composition 

(Fahey, Sherman, and Tanner 2016). TMCFs comprise only 1.4% of all tropical forests 

worldwide, but these ecosystems have been drawing more attention lately given their large role 

in water regulation and provision, the great amount of biodiversity they harbor, their recently 

acknowledged high capacity to store carbon, and their large rates of deforestation (M Mulligan et 

al. 2011). TMCF are also extremely beautiful and considered among the most threatened 

ecosystems under the current state of land-use and land-cover change and climate change 

(Bruijnzeel et al. 2011). 

In Mexico, TMCF cover nearly 1% of the national territory and are distributed along 

tropical mountain ranges, usually between 1,500 and 2,500 m asl (although they can be found at 

lower and higher elevations depending on the exact elevation at which clouds are formed) 

(Toledo-Aceves et al. 2011). Despite their restricted distribution, they are an essential part of 

Mexican tropical montane forests given their exceptionally high number of endemic species 

(making them the ecosystem with the highest biodiversity per area in that country), and their role 
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in capturing water and regulating its flow downstream (González-Espinosa et al. 2012). The state 

of knowledge of carbon dynamics in TMCF remains scarce, which is one of the reasons I 

devoted two of my chapters to studying forest structure and aboveground biomass (where most 

of the carbon in tropical forests can be found).     

Throughout the three following chapters, I answer questions related to forest structure 

and forest dynamics at local and regional scales. In chapter two, I draw data from the Mexican 

National Forest Inventory (FI) to estimate the magnitude and distribution of aboveground 

biomass (AGB) in TMCF located in the NMO. In doing so, I investigate the relative roles of 

environmental factors and land use in shaping AGB patterns across scales, as well as its 

relationship to tree diversity. Moreover, I analyze whether AGB is more strongly related to either 

the height of forest canopy, the basal area of a forest stand, or the density of trees, since these are 

forest structure variables that are used to estimate and map AGB at landscape, regional, and 

global scales. I found that AGB exhibits a wide variation in the region (8-400 Mg ha-1) which 

stems from the diversity in landscape composition driven by the coexistence of fallows, young, 

and mature forests that result from land use spatial patterns. My results show that AGB spatial 

patterns can be best predicted by the interactive effects of land use and environmental factors, 

with land use having a larger role within the region, even overshadowing the effect of the 

climate. 

In chapter three, I further explore the role of land use in shaping forest structure. I focus 

on potential methods that can be applied to incorporate the effects of land use on forest structure 

in AGB modeling and mapping. In this chapter I ask: (1) How can the recent disturbance history 

of a forest, assessed through remote sensing techniques, be used to estimate the effect of land use 

on forest structure? In turn, (2) how can these effects be incorporated into AGB models? Remote 

sensing provides a wide array of data that enables the analysis of vegetation change across large 

spatial areas almost in real time. To answer these questions, I used data from the Landsat 

program, a series of satellites that have acquired images of the Earth’s surface since the 1970s. 

Landsat images have a spatial resolution of 30 meters and a temporal coverage of two weeks, 

which means that it is possible to build time series of several images per year with enough 

resolution to detect small-scale disturbance in tropical montane forests. Using Landsat time 

series, I tracked changes in vegetation cover of the FI plots located in the TMCF of the NMO 

(also analyzed in the previous chapter). With this method, I confirmed that montane landscapes 
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in NMO are very dynamic, with, for instance, 27% of the plots analyzed showing abrupt changes 

in vegetation (or forest clearings). I also found that the variation of vegetation indices (equations 

of light wavelengths that indicate vegetation greenness) over time can be used as a proxy for land 

use, which, if successfully incorporated into predictive models, could decrease the uncertainty 

associated with forest disturbance in AGB estimates. 

In chapter four, I go beyond processes taking place in TMCF and assess trends of forest 

loss and forest conservation in the entire region over the last two decades. The main result of this 

chapter is a map with which I show the spatial distribution of forest loss, the ecosystems that 

have been most affected, and some of the lands spared to forest conservation. I found that forest 

loss in the NMO remained almost constant for many years but increased in the last six years, 

especially in the subregion known as Sierra Mixe. The most affected ecosystems are tropical 

evergreen forests and TMCF. The reasons behind the sudden increase in forest loss in 2015 are 

unclear, but agricultural surveys show a significant expansion of pasturelands in the last decade, 

suggesting that forest or shaded coffee farms conversion to cattle ranches may be driving forest 

loss in the region. In addition, land-use change due to illicit activities may also be playing an 

important role. On the other hand, community-based conservation projects are having a positive 

impact locally, especially in the subregion Ixtlán. Despite these very important efforts, forest loss 

surpasses forest gain in the region.  

This dissertation constitutes my first attempt to link two foci of study that have 

commonly been analyzed in parallel, seldom showing explicit connections in the scientific 

literature: forest ecosystem dynamics and agrarian change. With its long-lasting focus on human-

environment interactions, I believe Geography has much to offer in this regard. While most of 

the Earth’s land is currently or has historically been used and modified by humans, assessing the 

role of land use in shaping forest landscapes is fundamental not only to enhance our current 

knowledge on forest ecosystem dynamics, but also to better suggest, support, and accompany 

processes of much needed forest regeneration and conservation. After all, as Hecht and 

Cockburn (1989) state in The fate of the forest, “if a region is denied its true history how can its 

future be honestly discussed?” 
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CHAPTER 2 

LOCAL AND REGIONAL EFFECTS OF LAND USE ON SPECIES DIVERSITY AND 

ABOVEGROUND BIOMASS IN TROPICAL MONTANE CLOUD FORESTS 

  

INTRODUCTION 

Tropical forests play a fundamental role in the carbon cycle because they contain ~25% of the 

carbon in the terrestrial biosphere (Bonan, 2008). This carbon is stored in the living biomass of 

trees and other understory vegetation mainly allocated above the soil in stems, branches, and 

leaves, in what is known as aboveground biomass (AGB) (Holly K. Gibbs et al. 2007). Because 

AGB represents the main carbon pool in tropical forests, it also determines the amount of carbon 

loss to the atmosphere when these forests are disturbed (Houghton, Hall, and Goetz 2009; Pan et 

al. 2007). Moreover, AGB is expected to be related to forests structure and composition, and 

research has found it has a positive relationship with tree diversity suggesting an interesting 

synergy between carbon storage and biodiversity, two of the ecosystem features most threatened 

by current global environmental change (Sheil et al. 2016; L. Poorter et al. 2015). Thus, AGB is 

considered an essential variable in ecosystem science and an important input to Earth system 

models (Bojinski et al. 2014; Santoro et al. 2021). 

The precise quantification of AGB in tropical forests remains a challenge, particularly in 

tropical montane forests (located above 1,000 m asl) where carbon has been historically 

understudied and underestimated (Spracklen and Righelato 2014; Cuni-Sanchez et al. 2021). 

Estimating AGB in tropical mountains is difficult because field data is sparse and remote sensing 

approaches are challenged by rugged terrain and frequent cloud cover (G. P. Asner et al. 2014; 

Ticehurst, Held, and Phinn 2004). Additionally, estimates have large uncertainties due to the 

significant spatial variation of AGB arising from two sources: (1) environmental factors, some of 

them linked to the elevation gradient imposed by mountain relief, and (2) forest disturbance 

patterns (Houghton, Hall, and Goetz 2009; D. B. Clark, Hurtado, and Saatchi 2015). 

Ecosystems in tropical mountains are influenced by the environmental gradient imposed 

by elevation. As elevation increases, temperature decreases and vegetation is exposed to frequent 

cloud cover and fog (Gotsch, Asbjornsen, and Goldsmith 2020). This elevation gradient shapes 

forest structure and composition and gives rise to a distinctive ecosystem known as tropical 

montane cloud forest (TMCF), whose main environmental feature is its persistent immersion in 
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ground-level clouds. Fog, low temperatures, waterlogged soils, and nutrient limitation are all 

features found in TMCF that generally limit primary productivity (Fahey, Sherman, and Tanner 

2016; Mark Mulligan and Burke 2005).  Thus, research has found that AGB in TMCF is usually 

lower than in their lowland-forest counterparts and, more generally, that AGB in tropical 

mountains declines with elevation (Spracklen and Righelato 2014; G. P. Asner et al. 2014; C. A. 

J. Girardin et al. 2010). However, AGB patterns along elevation transects can be complex 

depending on how environmental factors other than temperature change with elevation (e.g., see 

climate-induced reversal of tree growth and water use in south- vs north-facing landscapes 

(Quadri, Silva, and Zavaleta 2021)), as well as their relative roles in shaping forest structural 

attributes (D. B. Clark, Hurtado, and Saatchi 2015). In fact, examples of TMCF that exhibit 

surprisingly high AGB, as well as patterns that do not conform to the general trend of AGB 

decreasing with elevation have been described (e.g., Cuni-Sanchez et al., 2017; de la Cruz-Amo 

et al., 2020), which suggests that more research is needed to understand how AGB changes along 

different environmental gradients. 

The other large source of variation in AGB patterns in tropical mountains is forest 

disturbance. AGB decreases with forest disturbance, but increases shortly after a disturbance 

event following secondary succession, if the conditions allow new vegetation to establish, and 

surviving trees to keep growing (L Poorter et al. 2016). In TMCF, conversion to croplands and 

grazing lands for cattle represent the main source of disturbance (Bruijnzeel, Kappelle, Mulligan, 

& Scatena, 2011; Calderon-Aguilera et al., 2012). When croplands and cattle ranches are 

permanently established, AGB is also permanently removed, causing large carbon losses to the 

atmosphere (Mendoza-Ponce et al. 2018). However, in places where shifting agriculture is 

practiced and cash crops are grown in agroforestry systems, as in the case of many tropical 

mountains, vegetation is allowed to regrow after disturbance, resulting in AGB increases and, 

consequently, carbon gains (R. L. Chazdon et al. 2016; Velasco-Murguía et al. 2021). The 

coexistence of different agricultural systems and landholding sizes in tropical mountains (from 

small-scale farming to big cash crop plantations) results in patchy landscapes with forest at 

different successional stages surrounded by agricultural and grazing lands (del Castillo 2013; 

Ivette Perfecto and Vandermeer 2008; Gardner et al. 2009). These heterogeneous landscapes 

have been described as forest-agriculture mosaics and exhibit substantial AGB variation across 

space (Adhikari et al. 2017). 
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Despite the fundamental role that land use plays in shaping carbon distribution in tropical 

mountains, land use effect on AGB patterns remains poorly understood (K. H. Erb et al. 2018). 

Considering more than 60% of forested ecosystems around the globe currently experience some 

sort of land use (Grantham et al. 2020), this represents a fundamental knowledge gap. 

Furthermore, this lack of understanding is probably a large source of uncertainty in AGB 

estimates because AGB is usually measured at local scales in forests considered to be 

undisturbed and these measurements are then extrapolated to regional scales without explicitly 

accounting for the effect of land use variations across scales (De Jong 2013).  

With the aim of contributing to a better understanding of the relative roles of environmental 

factors and land use on shaping AGB patterns across scales, here, we focus on a TMCF region 

located in southern Mexico that is subjected to both an environmental gradient and a land-use 

intensity gradient. Three research questions guide our study: (1) How much AGB do TMCFs 

hold and how is it spatially distributed at the local, landscape, and regional scales? (2) How is 

AGB related to tree diversity in the study region? and (3) How does land-use intensity shape 

AGB patterns along an elevation gradient? We hypothesize first, that AGB in this TMCF will be 

larger than reported in regional and global estimates as has been the case for other cloud forests 

studied recently (e.g., Cuni-Sanchez et al., 2021), and further, that its spatial distribution will be 

driven by forest structural attributes, particularly by tree height, as in other TMCF described in 

the Neotropics (G. P. Asner et al. 2014; C. Girardin et al. 2014). Secondly, we expect to find a 

positive correlation between tree diversity and AGB as has been found in lowland tropical forests 

(Arasa-Gisbert et al. 2018; L. Poorter et al. 2015) and in Mexican TMCF along land-use intensity 

gradients (Vizcaíno-Bravo, Williams-Linera, and Asbjornsen 2020). Finally, we predict that 

environmental factors and land use will have a compounding effect on AGB along the elevation 

gradient where lower land-use intensity and cooler temperatures will decrease AGB with 

increasing elevation. 

 

METHODS 

Study Area 

We delimited a study area following a tropical montane cloud forest (TMCF) regionalization 

conducted by Toledo-Aceves et al. in 2011 based on geomorphology, forest cover, watershed 

margins, rivers, and cultural differences (such as presence of indigenous groups). We focused on 
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the Northern Mountains of Oaxaca (NMO), a region that harbors some of the most biodiverse 

forests in Mexico and includes the largest and most continuous TMCF, and where forest 

conservation is considered a critical priority (Toledo-Aceves et al. 2011). In the NMO, TMCF 

are found on hillslopes and humid ravines with frequent fog and drizzle. Soils in these forests 

usually develop from the weathering of metamorphic rocks and volcanic outcrops, they tend to 

be deep, and rich in clay and organic matter (Torres Colín 2004). This region has a long history 

of land use with shifting agriculture, some permanent agricultural and grazing lands, and several 

types of coffee farms (including sun and shaded coffee) interspersed with forests, creating a 

forest-agriculture mosaic. To define the distribution of TMCF within NMO we used the official 

map of vegetation and land-use series V published by the National Institute of Statistic and 

Geography (INEGI) in 2013 (INEGI 2013) (Figure 2.1). 

 

 
 

Figure 2.1. Forest Inventory sites (n= 40, black points) within Tropical Montane Cloud 

Forest (TMCF) distribution (in green) in the Northern Mountains of Oaxaca (NMO), 

located in the south of Mexico. A zoomed-in site shows the hierarchical nested sampling 

design carried out by the Forest Inventory (FI) where four plots of 400 m2 were 

established in one-hectare sites.      

 

 

Data Collection and Processing 

We gathered and integrated information on forest structure and composition, climate, 

topography, and land use, from different sources into a single dataset. The main data source for 
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this work is the publicly available Mexican National Forest Inventory (FI) database, which 

contains information on forest structure and composition, as well as forest disturbance. From this 

database we estimated forest structural attributes, AGB, and land-use variables. To complement 

these data, we obtained information on mean annual temperature and precipitation from 

WorldClim (Fick and Hijmans 2017). Lastly, we retrieved topographical information from 

NASA’s Shuttle Radar Topography Mission digital elevation data (SRTM, (Farr et al. 2007)). A 

detailed description of the foregoing variables can be found below (see also Table S2.1 for a 

summary of the variables used in this study).  

Forest inventory sites. We assessed forest structure and composition using FI database. 

FI data collection was carried out between 2009 and 2014 following a systematic hierarchical 

nested sampling design with 1-ha circular sites as the main sampling unit. All sites were 

established 25 km apart from each other in a grid-like fashion (CONAFOR 2015). Within each 

site, four circular plots of 400 m2 were established. One in the center of the site, and the other 

three in a north, southeast, and southwest direction, respectively, at 45.14 m from the central plot 

(Figure 2.1). All trees, lianas, shrubs, palm trees and ferns within the plots with a diameter at 

breast height (DBH) larger than 7.5 cm were taxonomically identified and sampled for height, 

DBH, and basal area (BA). Information about the geographic location, vegetation type, and land 

ownership of each site was also documented. Additionally, signs of forest disturbance were 

assessed in each site and recorded (CONAFOR 2015). For selecting FI sites relevant to our 

study, we performed a spatial intersection in QGIS 3.16 between FI sites and a NMO shapefile, 

the latter acquired from the National Commission of Biodiversity (CONABIO) GeoPortal 

(CONABIO 2012). This selection was further refined to obtain FI sites located exclusively in 

TMCF (see Data Selection and Quality Control section below). 

It is important to note that FI sampling was not directed only towards undisturbed or ‘old-

growth’ forests. On the contrary, this systematic sampling enabled the collection of data on a 

diversity of landscapes, many of them mosaics of different land cover classes including 

agricultural and grazing lands, coffee farms, and forests at different successional stages. 

Therefore, the Mexican FI provides a unique opportunity to test the effect of landscape 

composition and land use on forest structure and composition.  This sampling design also made 

possible an analysis across spatial scales. Here, we processed data at two sampling levels. On the 

one hand, we used the 400 m2 plots as our smallest sampling unit to describe forest structural 
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attributes and tree diversity (hereafter, plot level data). With this information we assigned to each 

plot to an approximate successional stage and estimated AGB. On the other hand, we used 1-ha 

sites to understand AGB spatial variation in relation to environmental factors and land-use 

intensity at the landscape and regional scales (hereafter, site level data). 

Forest structural attributes and aboveground biomass estimation. Based on FI raw data, 

we derived three structural attributes at plot level that were then averaged by site: (1) stem 

density, i.e., the number of trees per hectare; (2) basal area, defined as the sum of the cross-

sectional surface area of trees per hectare; and (3) Lorey’s height, which is a measure of forest 

stand height weighted by its basal area.  

We used allometric equations to calculate the AGB of every alive tree measured in 160 

plots in 40 FI sites within our study region (Figure 2.1). A total of 4,106 trees belonging to 148 

species were recorded. To correct for possible typos and identify synonyms in taxonomic names 

we collated our list of species with the Taxonomic Name Resolution Service using the 

correctTaxo function in R package BIOMASS (Réjou‐Méchain et al. 2017). Then, we searched 

for all possible allometric equations published in the scientific literature that would match our 

species list. We found 47 allometric equations described at species or genus levels (Table S2.2 

and references therein) with which we estimated the AGB of 2,700 trees. For estimating AGB of 

the remaining trees whose allometric equation has not been described, we used a generic 

allometric equation developed by (Jérôme Chave et al., 2015) for tropical trees based on tree 

wood density (ρ), height (H) and DBH (D):  

 

AGBest = 0.0673(ρD2H)0.976. (1) 

 

All allometric equations we used estimate AGB using a combination of trees’ DBH and 

height, except for Chave et al.’s generic equation (eq.1) that also requires a wood density value. 

DBH and height were measured in the field and are available in the FI database. We searched for 

the wood density value of each species or its closest relative in global wood density databases 

using the function BIOMASS::getWoodDensity, which provides a wood-density value per tree 

and its associated standard deviation (calculated with repeated measurements of wood density at 

species, genus or family levels). 
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We calculated AGB as the sum of the biomass of each individual tree at plot level, and 

AGB per site as the average of the plot AGB values at each site. There is always some 

uncertainty inherent to upscaling biomass estimates from trees to forest stands that arises from 

the propagation of errors in field data collection, allometric equations, wood density estimates, 

and forest variation. To account for this uncertainty, we estimated the AGB standard deviation at 

plot level following error propagation through a Monte Carlo statistical simulation informed by 

field data using the BIOMASS::AGBmonteCarlo function. To do so, we used wood-density 

standard deviations, and assumed 95% of field data samples have a low DBH error and the 

remaining 5% a high DBH error (close to 5 cm), and that all field data samples have a height 

error of 10%, as suggested in (Jerome Chave et al. 2004). To estimate AGB error at the site level, 

we assumed standard-error independence between plots and used the following equation (eq. 2):  

.  

 

(2) 

Tree diversity. We used field measurements of species richness (S), i.e., the total number 

of species, and species abundance to calculate Shannon diversity index (H) in each plot using the 

R package vegan (Magurran 2013; Oksanen et al. 2020). To obtain total S per site, we calculated 

the total number of unique species sampled in the four plots within a site, and calculated H again 

using this combined species total. In this way, we obtained S and H at plot level, as well as total 

H and total S at site level. 

Environmental variables. We focus on climate, topography, and their interactions as key 

environmental variables moderating the effect of land-use intensity on species diversity and 

ecosystem AGB. We extracted annual precipitation and mean annual temperature values at site 

level from WorldClim (bio12 and bio1, respectively) at ~1-km spatial resolution, using the R 

package raster (Hijmans 2021). We extracted slope (in degrees) and aspect values for each plot 

from NASA’s STRM (~30-m resolution), using Google Earth Engine (Farr et al. 2007). We 

averaged plot values to obtain slope, and aspect at site level. 

Land use variables. To quantify the effect of land use on AGB and tree diversity we 

defined three variables: (1) forest disturbance related to agricultural activities, assessed at the 

time of field data collection and available in the FI database; (2) forest disturbance related to 

cattle grazing activities, also provided by the FI; and (3) a land-use intensity gradient we built 

assessing the landscape composition of each site (i.e., the proportion of different types of land 

cover within a site) after a forest succession categorization at plot level. We obtained the first 
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two land-use variables from the FI disturbance database, which contains information about the 

cause and severity of vegetation disturbance at site level (CONAFOR 2009). The causes of 

disturbance are classified in 11 classes: fires, hurricanes, floods, roads, logging, land-use change, 

grazing, pests and diseases, power lines, mining, and urbanization. The severity of disturbance is 

classified in a four-category nominal scale: very low, low, medium, and high severity. Both the 

cause and severity of disturbance where qualitatively assessed during field data collection 

(CONAFOR 2009). Agriculture and grazing activities are reported within the categories of land-

use change, grazing, logging, and fires with labels such as ‘clearing for growing coffee’, ‘shifting 

agriculture’, or ‘conversion from forest to cattle ranch’. We reviewed all recorded disturbance 

causes in the database, identified, and extracted data related to agricultural and cattle grazing 

activities. Then, we assigned each site a disturbance severity value from 0, when no disturbance 

was reported, to 4, indicating high severity disturbance. Whenever a site presented more than one 

reported disturbance related to agriculture or grazing, we averaged the disturbance severity 

value. 

To define the land-use intensity gradient we, first, identified the approximate forest 

successional stage of each plot to, then, calculate the proportion of forests at different 

successional stages present at each site. In general, shortly after croplands are abandoned or left 

fallow, TMCFs naturally regenerate showing an increase in tree density, height, and basal area. 

Over time, during secondary succession, tree height and basal area continue to increase but stem 

density decreases, representing a transition from young to mature forest (del Castillo, 2015). 

Other studies conducted in forest-agriculture mosaics in Mexican TMCF have shown that tree 

height, DBH, and tree density change through time after disturbance, which is useful for 

estimating an approximate stage of forest succession (Velasco-Murguía et al., 2021). To assign a 

successional stage to each plot, we classified all FI plots with a k-means cluster analysis using 

their structural attributes, including tree height, DBH, and stem density. K-means cluster analysis 

is a non-hierarchical procedure in which the user must define the initial number of centers. We 

ran the analysis with two, three, four and five initial centers and 25 randomly sampled sets each 

using the R package stats (Figure S2.1) (R Core Team 2021). Then, using the R package 

NbClust, we selected the best number of clusters by comparing 30 indices commonly used to 

obtain the optimal classification resulting from a cluster analysis (Charrad, Ghazzali, Boiteau, & 

Niknafs, 2014). A classification in three clusters was supported by most indices. Thus, we 
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assigned each plot to one of three groups: cluster one was defined as young fallows because it 

groups together plots with very low tree density, low basal area, and low tree height; the second 

groups together forest plots with high tree density, and medium basal area and tree height, thus, 

we defined it as young forest; we defined cluster three as mature forest because it groups 

together plots with very high basal area and tree height, but medium tree density (Figure 2a). We 

would like to acknowledge that forest succession is a continuum and a complex process 

(Chazdon, 2003; Norden et al., 2015). Here, however, we classified forest succession in discrete 

categories as a methodological approach conducted for the sake of the analysis. This approach 

has proven to be useful for understanding biomass accumulation over time after forest 

disturbance (Chazdon et al., 2016; Poorter et al., 2016).  

Once plots were classified into three successional stages, we assessed the composition of 

young fallows, young and mature forests in each site. Interestingly, most of the sites have plots 

that fall across different successional stages, showing the patchiness in these forest-agriculture 

mosaic landscapes. To describe this patchiness, we assigned a value from 1 to 3 to each 

successional stage where young fallows = 1, young forest = 2, and mature forest = 3. Then, we 

defined a site forest proportion value (eq. 3) adding up the values of all successional stages 

within a site and normalizing the value to get a number from 0 to 1.  

 
 

(3) 

SS is the sum of the successional stage categories of the plots in a site, minSS is the minimum 

possible SS value present in a site and maxSS is the maximum possible SS value present in a 

site. Considering there are four plots in each site, minSS is always 4 (when all plots within a site 

are young fallows), and maxSS is always 12 (when all plots within a site are mature forests). 

This way, a forest proportion value from 0 to 1 is assigned to all sites, where 0 represents sites 

dominated by young fallows, 1 represents sites dominated by mature forests, and everything in 

between are sites with a combination of forests at different successional stages. Assuming sites 

dominated by young fallows experience greater intensity of land use and sites where most plots 

are classified as mature forest have experienced less land use, we estimated a land-use intensity 

gradient using the inverse of our forest proportion variable (eq.4). Similar approaches have been 

used to describe land-use intensity in tropical landscapes (Ivette Perfecto, Jiménez-Soto, and 

Vandermeer 2019; Tscharntke et al. 2005), where forest cover is inversely related to agricultural 
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intensification and, consequently, can be used as a proxy for quantifying land use at landscape 

scales.  

 (4) 

 

It is important to note that other causes of forest disturbance unrelated to direct land-use can 

result in land-use intensity gradient values closer to 1, such as pest outbreaks. However, 

agriculture and cattle ranching expansion have been identified as main causes of forest 

disturbance in TMCF (Calderon-Aguilera et al. 2012; Toledo-Aceves et al. 2011), and there is a 

positive correlation between our land-use intensity variable and the presence of forest 

disturbance related to agricultural and grazing activities reported in the FI disturbance database 

(Figure S2.2). Therefore, we are confident that forest proportion in this case is related to land 

use, and other sources of disturbance were excluded from the analysis. 

 Data Selection and Quality Control 

To make sure that all FI sites selected correspond to our study system, we filtered FI sites further 

using the following key features of TMCF stated in the scientific literature as criteria: (1) sites 

should be within an elevation range of 1,000 and 2,800 m asl; (2) sites should receive at least 

1,000 mm of annual precipitation; (3) sites should be described as cloud forest in the vegetation 

type column of the FI database; and (4) all sites must have epiphytes (Fahey, Sherman, and 

Tanner 2016; Jardel Peláez et al. 2014; Scatena et al. 2011; Torres Colín 2004). 

We also performed some data quality control, homogenizing missing data values, 

correcting places names and removing diacritics, and filtering out rows with missing 

information. Additionally, we removed plots with many unidentified species or where most trees 

were dead. Because some plots are in places impossible to collect field data (such as very steep 

ravines), not all sites have four sampled plots. To avoid a biased sampling design, we selected 

only sites where four plots were sampled. After applying these filters, we ended up with a dataset 

of 160 plots within 40 sites located between 16.89 and 18.61 degrees N and -95.66 and -97.02 

degrees W, within the distribution of TMCF (Figure 2.1). 

Statistical Analyses 

We deployed well-established statistical methods to answer each of our three main questions 

using two main sampling levels: plot level (n= 160), representing fairly homogeneous forest 

stands in an area of 400 m2; and site level (n = 40), conformed by 4 plots, representing the 
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heterogeneous nature of these landscapes in an area of 1 ha. All statistical analyses were 

performed in R version 4.1.1 (2021) and are described in the following sections that address the 

research questions (Q1-Q3) raised in the introduction. 

Q1. How much AGB do TMCFs hold and how is it spatially distributed? To gain a 

general sense of the amount of AGB in TMCF and its variation, we calculated basic summary 

statistics of all variables at site level and estimated the correlation between variables. Because 

the plots within FI sites are at different successional stages, we were able to assess how AGB and 

forest-structural attributes change over secondary succession. To test whether stem density, tree 

height, basal area, wood density and AGB are significantly different in forests at different 

successional stages, we carried out five one-way analyses of variance (ANOVA). 

We analyzed which structural attribute better explained AGB distribution in these forests 

as well as AGB distribution across trees of different size. Research shows that in some TMCF 

tree height is more strongly related to AGB than other structural attributes (e.g., (G. P. Asner et 

al. 2014)), in others, basal area and the density of very large trees play a larger role in explaining 

AGB distribution (Cuni-Sanchez et al. 2017). We analyzed the relationship between AGB and 

stem density, tree height, basal area, and wood density at plot level (n= 160) using linear 

regressions. 

To explore the contribution of tree size to AGB and stem density we employed a similar 

approach as Cuni-Sanchez et al. (2021) and classified trees into six size classes based on their 

DBH: <10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm, and >50 cm. Then, we calculated the 

proportion of stem density and AGB represented by each tree size class in every forest plot. We 

used one-way ANOVAs to assess whether tree size classes contribute to stem density and AGB 

in different proportions. To test if the contribution of tree size classes to stem density and AGB 

varies between forests at different successional stages we conducted two two-way ANOVAs 

using size class, forest successional stage, and the interaction between size class and successional 

stage as explanatory variables. Additionally, we conducted one-way ANOVAs to test whether 

the contribution of each tree size class to stem density and AGB is statistically different between 

forest plots at different successional stages, as well as to test whether the contribution to stem 

density and AGB varies between each tree size class within young fallows, young and mature 

forests. All statistically significant ANOVAs were followed by post-hoc Tukey tests, to 

determine the statistically significant different groups. 
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Q2. How is AGB related to tree diversity in the study region? To understand the 

relationship between AGB and tree diversity and richness in TMCF, we performed a series of 

linear regression analyses. We log-transformed AGB, given it has a long-tailed distribution in 

our dataset, in our dataset and assessed its relationship with species richness (S) and diversity 

using the Shannon diversity index (H) in TMCF plots (n= 160) and sites (n = 40) fitting linear 

regressions. Analyzing these relationships at both sampling units offered the possibility to test, 

first, whether the relationship between AGB and diversity is scale-dependent (as some studies 

have shown e.g., (L. Poorter et al. 2015)), and whether this relationship changes in forest stands 

at different successional stages. Thus, we visualized the results at plot level (smaller scale), 

considering the successional stage of each plot, and site level (larger scale). 

Q3. How does land-use intensity shapes AGB patterns along an elevation gradient? We 

explored the relationships among tree biomass, diversity, environmental variables, and land use 

in TMCF sites using multiple linear regression models. First, to reduce the number of 

environmental variables, we computed a principal component analysis (PCA) of elevation, 

precipitation, temperature, and slope. Aspect is not a continuous variable and lacks variation in 

our dataset because most sites face either south or west, so aspect was excluded from the 

analysis. The first principal component (PC1) explained 68% of the variation and is correlated 

with temperature, precipitation, and elevation. Thus, PC1 represents an environmental gradient 

from warmer-and-moister sites at lower elevations to cooler-and-drier sites at higher elevations 

(Figure S2.3). Slope represents the second component, therefore, is unrelated to PC1. Thus, we 

selected PC1 and slope as our environmental predictors. We fitted a model with log-transformed 

AGB as the response variable and tree diversity, environmental gradient, slope, and the three 

land-use variables as predictors. Then, following a model-selection approach similar to 

(Tredennick et al. 2021), we performed variable selection by comparing the full model against a 

series of reduced models in which each predictor is dropped in a stepwise fashion (Lumley 

2020). We selected the best model comparing their adjusted R2, Mallows' Cp (CP), and Bayesian 

Information Criterion (BIC). To test for spatial autocorrelation, we calculated the Moran’s I 

statistic for the residuals of the final model using a neighborhood distance of 10, 25, and 50 km, 

and visualized the spatial distribution of residuals with a map. 
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RESULTS 

AGB in TMCF within the NMO is large and driven by basal area and the density of big 

trees  

Forest structure and AGB show wide variation at both plot and site levels. In fact, some 

of the plots are completely devoid of trees (and AGB), while others surpass 500 Mg ha-1. At site 

level, average AGB is 137.49 ± 121.29 Mg ha-1, and it ranges from as low as 8.26 to as high as 

414.52 Mg ha-1 (Table 2.1). Variation in structural attributes within and among sites is also large. 

For instance, average stem density in all 40 sites is 641.56 ha-1 but some sites have as few as 

81.25 trees ha-1 while others almost reach 2,000 trees ha-1.  Similarly, the variation in tree height 

is large, going from about 5 to 25 m (Table 2.1). 

 

Table 2.1. Summary statistics of structural attributes, aboveground biomass (AGB), tree diversity 

and richness, environmental and land-use variables in Tropical Montane Cloud Forest sites (n= 

40).  

Variable Min (± S.E.) Max (± S.E.) Mean (± S.D.) 

Forest structural attributes and AGB 

Stem density (tree ha-1) 81.25 (±15.72)   1806.25 

(±444.10) 

641.56 (±355.23) 

Basal area (m ha-1) 2.26 (±0.64) 51.08 (±6.57) 20.42 (±13.48) 

Lorey’s height (m) 5.92 (±0.68)  24.91 (±1.00) 12.46 (± 4.63) 

Average wood density (g cm-

3) 

0.32 (±0.02) 0.76 (±0.01) 0.56 (± 0.14) 

Aboveground biomass (Mg 

ha-1) 

8.26 (±1.02)  414.52 (± 19.29) 137.49 (± 121.29) 

Tree diversity and richness 

Species richness  18 4 8  

Shannon  0.51 2.41 1.49  

Environmental variables 

Mean annual temperature 

(◦C) 

10.58 22.35 16.98  

Annual precipitation (mm) 1026 3204 1883 

Slope (degrees) 13.19 47.57 25.55 

Elevation (m asl) 1042 2790 1863 

Land-use variables 

Disturbance by agriculture 0 4 0.52 

Disturbance by cattle grazing 0 4 0.25 

Land-use intensity 0 1 0.68 

 

The large variation in AGB and structural attributes found in TMCF sites stems from the 

diversity in landscape composition found in these forest-agriculture mosaics and it is driven by 
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the successional stage of each plot. In young fallows, tree density is low, and trees are short and 

thin (Table 2.2 and Figure 2.2). As forest succession develops, all these structural attributes 

increase in magnitude. Thus, young forests show larger trees and higher stem density than young 

fallows (Table 2.2 and Figure 2.2). In mature forests, the density of trees decreases as trees 

become even taller and bigger (Table 2.2 and Figure 2.2). As a result, AGB in forests at different 

successional stages is significantly different (ANOVA, p< 0.001, Figure 2.2f Table S2.3). In 

young fallows, AGB averages only 33.38 Mg ha-1, in young forests this value notably increases 

to 151.69 Mg ha-1, while in mature forests it reaches 354.86 Mg ha-1 (Table 2.2). On average, 

mature forests contain more than twice the biomass found in young forests, and about ten times 

more than young fallows. However, both young and mature forests contain similar proportions of 

the total measured AGB, due to the differences in the number of plots classified in each 

successional stage, accounting for about 47 and 43% of the total number of plots, respectively. In 

contrast, young fallows account for the remaining 10% of the total AGB measured in these 160 

plots. The ANOVAs we performed to analyze structural differences among forests at different 

successional stages show that all attributes are statistically different in all three categories (young 

fallows, young forest, and mature forest) (Table S2.3). Wood density is the only structural 

attribute that is not statistically different between young and mature forests, although it is 

significantly lower in young fallows (Figure 2.2 and Table S2.3). 

 

Table 2.2. Structural attributes and tree aboveground biomass (AGB) in forest plots (n= 160) at 

three different successional stages: young fallows (F), young forest (Y), and mature forest (M). 

Differences in structural attributes and AGB between different successional stages are 

statistically significant (ANOVA, p < 0.05, Table S2.3, Figure 2). 

 F (n= 69) Y (n= 62) M (n= 29) 

Mean  S.D. Mean  S.D. Mean  S.D. 

Stem density (tree ha-1) 275.00  166.55 986.69 444.38 775.86 313.14 

Basal area (m ha-1) 6.87 4.43 24.75 9.33 43.42 13.28 

Lorey’s height (m) 9.37 3.55 11.76 2.36 21.31 3.12 

Average wood density (g 

cm-3) 

0.49 0.13 0.57 0.08 0.57 0.08 

AGB (Mg ha-1) 33.38 32.63 151.69 92.04 354.86 151.60 

 



 

39 

 

 
Figure 2.2. a) Results of k-means analysis based on forest structural attributes measured 

in the field and visualized with a PCA showing three clusters representing young fallows 

(F, in orange), young forest (Y, in purple), and mature forest (M, in green) in TMCF 

plots (n= 160). Comparison of b) stem density, c) Lorey’s height, d) basal area, e) wood 

density, and f) aboveground biomass (AGB) between young fallows (F), young forest 

(Y), and mature forest (M). Boxes cover the interquartile range (IQR), the horizontal line 

within boxes shows the median, and values 1.5 times larger or smaller than the IQR are 

shown in dark gray points. Asterisks indicate statistically significant differences resulted 

from Tukey HSD tests as follows: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p<0.05, 

and ns represents a non-significant difference. Results of ANOVAs and Tukey HSD tests 

can be found in Table S2.3.   
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The structural attribute that best explains AGB distribution is basal area (linear 

regression, p < 0.001, adjusted R2= 0.86, Figure S2.4b). Despite tree height and stem density 

have a positive relationship with AGB (linear regressions, p < 0.001, adjusted R2= 0.47, and p < 

0.001, adjusted R2= 0.18, respectively), larger values show ample variation and data spreads out 

at the higher end of the curves, resulting in poor linear fits (Figure S2.4). Log-transforming AGB 

improves data visualization in these cases, highlighting that the relationships of stem density and 

tree height with AGB in TMCF is not linear (Figure 2.3). In fact, plots with the highest stem 

densities are not the ones showing greater AGB. On the contrary, AGB is greater in plots with 

stem densities closer to 1,000 trees ha-1 (Figure 2.3a). In contrast, the highest trees are found in 

plots with the greatest AGB, but variation in these plots is large and some show high AGB 

magnitudes (greater than 400 Mg ha-1) with trees shorter than 20 m (Figure 2.3c). Wood density 

does not show a clear relationship with AGB, suggesting there are trees with high and low 

density across all plots (Figure 2.3d). There are not plots with high AGB whose trees show only 

low wood density, but this trend is probably controlled, at least partially, by the number of trees 

in each plot.    

 

 

Figure 2.3. Relationship between log-transformed aboveground biomass (log AGB) and (a) 

stem density, (b) basal area, (c) Lorey’s height, and (d) wood density in TMCF plots (n = 

160) overlaid by their local regression curves (black dashed lines). Forest successional 

stage in plots is displayed in colors as follows: young fallows (F) in orange, young (Y) in 

purple, and mature (M) forests in green. 
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In these landscapes there is a large proportion of small trees (DBH < 20 cm), and trees 

with a DBH greater than 30 cm are uncommon (Figure S2.5a and Table S2.4). In most plots, 

trees between 10 and 20 cm of DBH represent almost 50% of the total number of trees. In 

contrast, trees with a DBH larger than 50 cm were found only in 51 out of 160 plots. When 

present, these large trees rarely account for more than 10% of the total number of trees. Despite 

their lower abundance, large trees contribute the most to total AGB, particularly the largest ones 

(DBH > 50 cm, Figure S2.5b and Table S2.4). Interestingly, this pattern changes in forest plots at 

different successional stages. The two-way ANOVAs on tree size contribution to stem density 

and AGB show that both size class and successional stage are statistically significant, as well as 

the interaction between them (Table S2.5 and Figure S2.6). Although the proportion of stems 

across tree size classes remains somewhat constant between young fallows, young forests, and 

mature forests (Figure 2.4a), their contribution to AGB is variable (Figure 2.4b, Table S2.6 and 

Table S2.7). In mature forests, larger trees (DBH > 50 cm) stand out as the main contributors to 

total AGB despite their low abundance. However, in young and very young forests the 

contribution to total AGB is very similar across all size classes. In all cases, small trees (DBH < 

10 cm) contribute significantly less to total AGB despite representing a considerable proportion 

of stem density in all three successional stages, especially in mature forests, where the proportion 

of AGB represented by the smallest trees barely reaches 1% (Figure 2.4b). 

The patterns of tree-size contribution to the total number of stems and AGB in forests at 

different successional stages can be explained by the progression of structural attributes over 

time (Figure 2.2). Young fallows have small AGB and small numbers of trees. Thus, the few but 

large trees that do exist in these plots represent a large proportion of the total amount of AGB 

(although this is not statistically different from the contribution to AGB by other size classes). In 

young forests the number of large trees is also small, but stem density in general is higher than in 

young fallows. Because there are many small-to-medium trees in young forests, they represent 

the greatest portion of AGB, and very large trees do not stand out as significant contributors to 

total AGB. In contrast, in mature forests the number of trees is lower but larger trees are more 

common, and thus larger trees stand out as the main contributors to AGB there (Figure 2.4). 
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Figure 2.4. Contribution of tree size categories to a) stem density and b) aboveground 

biomass (AGB) in young fallows (F, shown in orange), young forest (Y, shown in purple), 

and mature forest (M, shown in green) plots in TMCF (n= 160). Trees were categorized in 

six size classes based on their DBH. Boxes cover the interquartile range (IQR), the 

horizontal line within boxes shows the median, and values 1.5 times larger or smaller than 

the IQR are shown in dark gray points. Asterisks indicate statistically significant 

differences between forests at different successional stages within each tree size class tested 

with one-way ANOVAs and Tukey tests (results shown in Table S2.6). Statistical 

significance: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p<0.05. Non-significant 

differences are not shown. Letters indicate statistically significant differences between tree 

size classes within young fallows (F, shown in orange), young forest (Y, shown in purple), 

and mature forest (M, shown in green) resulted from one-way ANOVAs and Tukey tests 

(results shown in Table S2.7). Boxes sharing a letter are not statistically different.  

 

The relationship between AGB and tree diversity is weak and scale-dependent   

We found a total of 148 tree species in the region, with Quercus, Saurauia, and Pinus the most 

abundant genera. We analyzed the relationship between AGB and tree diversity and richness at 

site and plot levels. Although we were expecting a linear positive relationship between these 

variables, they show a positive but weak correlation with correlation coefficients near 0.2 and 

near 0.3 when AGB is log-transformed (Figure S2.2). We tested how AGB changes in relation to 

tree diversity and richness using Shannon diversity index (H) and species richness (S). Our 
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results show that at site level neither H nor S have a clear relationship with AGB (linear 

regressions, p= 0.96, R2= -0.02, and p= 0.24, R2= 0.01, respectively), even when log-

transforming AGB (Figure 2.5a and 2.5b), and none of the linear regressions are statistically 

significant. When we analyzed the relationship between AGB and tree diversity at plot level, we 

found a weak but significant positive relationship, especially when using S (Figure 2.5c and 

2.5d). In both cases, AGB slightly increases with tree diversity showing statistically significant 

linear regressions when AGB is log-transformed, although the R2 in both cases is low (R2= 0.08 

for H and R2= 0.11 for S). Despite we were expecting a clearer trend between AGB and tree 

diversity over different successional stages, all three successional stages show wide variation in 

H and S. Thus, sites with a larger composition of mature forests show greater AGB but not 

necessarily greater tree diversity, suggesting these two variables follow slightly different trends 

in forest-agriculture mosaics. 

 
Figure 2.5. Relationship between log-transformed aboveground biomass (log AGB) and 

Shannon diversity index in TMCF (a) sites (n= 40) and (c) plots (n= 160); and between 

log AGB and species richness (S) in TMCF (b) sites (n=40) and (d) plots (n= 160), 

overlaid by their linear regression curves (significant regression: solid line, non-

significant regression: dashed line). Forest successional stage in plots is displayed in 

colors as follows: young fallows (F) in orange, young (Y) in purple, and mature (M) 

forests in green.  
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Environmental and land-use gradients: AGB increases with elevation and decreases with 

land-use intensity 

Tree AGB in TMCF sites is controlled mainly by land use, and secondly by environmental 

factors. Here, we assessed both land use and environmental factors with multiple linear 

regression models. Through a stepwise model selection process, we found the best model as the 

one having the lowest BIC, large explanatory power (high R2), and where all predictors are 

statistically significant (Table 2.3). The best model includes three variables: land-use intensity 

gradient, forest disturbance related to agriculture, and slope (p < 0.05, adjusted R2= 0.811, Table 

2.4, Figure S2.7). From the three variables, land-use intensity controls AGB the most, showing a 

strong relationship with AGB (linear regression, p < 0.001, adjusted R2= 0.72, Figure 2.6a). 

Adding forest disturbance driven by agriculture to the model improves its explanatory power and 

it seems to be the second most relevant predictor of AGB (Table 2.3). Similarly, adding slope 

improves the linear regression model and it is the third most relevant variable in all models. 

However, from the three predictors included in the first model, slope is the least influential in 

determining AGB patterns in TMCF (Table 2.4). The residuals of this model do not show spatial 

autocorrelation (Figure S2.7d). We computed Moran’s I statistic for neighborhoods of 10, 25, 

and 50 km of distance and all of them resulted non-significant (p= 0.517, p= 0.604, p= 0.187, 

respectively, Table S2.8).  

The second-best model includes six predictors (Table 2.3). It adds environmental 

gradient, disturbance by grazing, and Shannon diversity index (H) to the three most relevant 

predictors included in the first model (i.e., land-use intensity, disturbance by agriculture, and 

slope). Although this model shows high R2 and the lowest CP, one of the predictors, H, is only 

marginally significant and it has a higher BIC value than the best model. Despite adding H to the 

model improves its explanatory power, both H and S are the least relevant predictors of AGB. 

This resonates with the weak relationship found between tree diversity and AGB explained in the 

previous section, and it is supported by the dissimilar behavior shown by land-use intensity in 

relation to AGB and H (Figure 2.6), where land-use intensity and AGB are strongly correlated (p 

< 0.001, adjusted R2= 0.72) but land-use intensity and H are not (p= 0.70, adjusted R2= -0.02). 
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Table 2.3. Results of stepwise model selection process comparing seven multiple linear 

regression models of aboveground biomass as a function of land-use, environmental, and species 

diversity and richness variables. Shown are the number of predictors considered in each model 

ordered from most to least relevant (top to bottom), as well as their statistical significance (***p 

< 0.001, **p < 0.01, *p<0.05, ◦p<0.10), adjusted R2, Mallows' Cp (CP), and Bayesian 

Information Criterion (BIC). Shown in bold are the highest adjusted R2, and lowest CP and BIC.  

Predictors 
Number of predictors considered in the model 

1 2 3 4 5 6 7 

Land-use 

intensity  
*** *** *** *** *** *** *** 

Disturbance 

by agriculture 
 ** ** *** *** *** *** 

Slope    ** * ** ** ** 

Environmental 

gradient 
   0.16 0.13 * 0.10 

Disturbance 

by grazing 
    0.16 * * 

Shannon 

diversity 

index 

     ◦ ◦ 

Species 

richness 
      0.30 

Adjusted R2 0.729 0.769 0.811 0.816 0.821 0.833 0.834 

CP 26.089 17.600 8.928 8.746 8.606 7.089 8.000 

BIC -45.958 -49.672 -55.251 -53.753 -52.336 -52.689 -50.339 

 

 

Table 2.4. Results of the multiple linear regression selected as the best model to explain 

aboveground biomass patterns in TMCF. This model includes three predictors: slope, land-use 

intensity gradient, and disturbance by agricultural activities.  

Variable Coefficient  S.E. t  p 

Slope  0.027 0.009 3.064 0.004 ** 

Land-use intensity  -2.425 0.266 -9.088 < 0.001 

*** 

Disturbance by 

agriculture 

-0.279 0.080 -3.478 0.001 ** 

b= 5.406; F= 57.07; df (3, 36); p < 0.001; adjusted R2= 0.811 

***p < 0.001, **p < 0.01, *p<0.05, ◦p<0.10 
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Figure 2.6. Relationship of land-use intensity with a) aboveground biomass (mean ± SE) 

and b) tree diversity estimated with Shannon diversity index (H) in TMCF sites (n= 40) 

overlaid by their linear regression curves (significant regression: solid line, non-significant 

regression: dashed line). Landscapes dominated by mature forests are at the lower end of 

the land-use intensity gradient and those dominated by fallows and young forests have high 

land-use intensity values. See text for details on how the land-use intensity gradient was 

calculated.  

 

Interestingly, environmental gradient (which comprises temperature, precipitation, and 

elevation) is not included as a relevant predictor in the best model. Although the second-best 

model does include environmental gradient, this variable does not seem to fundamentally control 

AGB in TMCF landscapes within the region and it is significant only when disturbance by 

grazing and tree diversity are also included (Table 2.3). The environmental gradient variable has 

a statistically significant relationship with AGB (p < 0.05, adjusted R2= 0.185, Figure 2.7a) 

where warmer and more humid sites at lower elevations (closer to 1,000 m asl) exhibit smaller 

AGB than sites at higher elevations that have a relatively cooler and drier climate. Additionally, 

this environmental gradient is related to the land-use intensity gradient. Sites at lower elevations 

show larger land use and forest disturbance than sites at higher elevations (p < 0.05, adjusted R2= 

0.372, Figure 2.7b). The fact that land use exerts a strong effect on AGB, in addition to be 

related to the environmental gradient, results in the latter being only marginally relevant when 

both predictors are considered. 
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Figure 2.7. Linear regression curves between a) aboveground biomass (AGB) (p < 0.05, 

adjusted R2= 0.185), and b) land-use intensity (p < 0.05, adjusted R2= 0.372) as a factor of 

environmental gradient in TMCF sites (n= 40) overlaid by their linear regression with 0.95 

confidence interval (gray line). Negative values in the environmental gradient show warmer 

and more humid sites at lower elevations and positive values represent cooler and drier 

sites at higher elevations. See text for details on how the environmental gradient variable 

was calculated. 

 

DISCUSSION 

Tropical forests represent 64% of the total AGB stored in forests around the globe (Santoro et al. 

2021). Although most of it is in lowland tropical forests, large amounts of AGB have also been 

estimated in tropical mountains (Spracklen and Righelato 2014). In Mexico, TMCF covers 1.8 

million hectares, representing 1.8% of the total forest area in the country (CONAFOR 2018). 

Although studying AGB is undoubtedly relevant, it has not been thoroughly examined in this 

ecosystem. Using the Mexican FI data collected from 2009 to 2014, we estimated AGB in a 

TMCF region in southern Mexico to understand the magnitude and distribution of AGB in these 

forests, as well as its relationship to tree diversity, environmental factors, and land use. We 

focused on the NMO, which harbor the largest and most continuous area of TMCF in the 

country, and where forest conservation is considered a critical priority (Toledo-Aceves et al. 

2011). 

The magnitude of AGB across TMCF around the globe ranges from 77 to 785 Mg ha-1 

(Spracklen and Righelato 2014). This wide range stems mainly from the natural variation found 

in this ecosystem, but part of it can also be attributed to methodological approaches for 
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estimating AGB. Natural variation in AGB is given by forest composition and environmental 

variables such as elevation, precipitation, and soil nutrients, the age of forest stands as well as the 

effect of forest management and the amount of forest disturbance present in each site (C. A. J. 

Girardin et al. 2010; Marshall et al. 2012; D. B. Clark, Hurtado, and Saatchi 2015; Xia et al. 

2019; Ali et al. 2019; Y Malhi, Baldocchi, and Jarvis 1999). Additionally, methodological 

decisions can also increase the variation found in AGB estimates. For instance, different 

fieldwork sampling designs, including the size and location of plots, and allometric equations 

selected to estimate AGB may yield slightly different results (D. B. Clark, Hurtado, and Saatchi 

2015; Jerome Chave et al. 2004; van Breugel et al. 2011; Burt et al. 2020; Feldpausch et al. 

2012). Here, we approached these challenges by (1) analyzing AGB patterns across 

environmental gradients, (2) calculating the successional stage of all plots analyzed, (3) using a 

structured nested sampling design to avoid biases during the establishment of plots, cover a wide 

spectrum of locations, and diminish scale-dependent errors, and (4) using allometric equations 

explicitly designed for the trees and ecosystem under study and, when specific equations were 

unavailable, complementing with a well-tested generic equation as well as considering error 

propagation in our final estimates.  

AGB magnitude and distribution in TMCF of the NMO 

The sites we studied consist of heterogeneous landscapes where forest patches are interspersed 

with agricultural and grazing lands, as commonly found in tropical forests (Yadvinder Malhi et 

al. 2014; Gardner et al. 2009; I Perfecto, Vandermeer, and Wright 2009). Thus, sites show a 

variety of landscape compositions from those dominated by mature forest to those mostly 

covered by young fallows, shifting agriculture, coffee farms, and grazing lands. Consequently, 

AGB values in the 40 sites studied are highly variable. Average AGB is 137.49 ± 121.29 Mg ha-1 

falling within the range found by Spracklen and Righelato (2014) for TMCF around the globe, 

although slightly lower than the average value they report for this ecosystem in the neotropics 

(247 Mg ha-1). In comparison to AGB estimates reported in pan-tropical maps, our results are in 

line with Santoro et al’s (2021) and Avitabile et al’s (2012) values for the region, but lower than 

those in Saatchi et al’s (2011). When compared to AGB estimates in TMCF in Mexico, our 

results agree with those found by Álvarez-Arteaga et al. (2013) and Vizcaíno-Bravo et al. (2020). 

However, our AGB estimate is higher than the average value reported in the FI results for TMCF 

at the national level, where TMCF averages 75.41 Mg ha-1 (CONAFOR 2018). This discrepancy 
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can be surprising at first because our estimates were calculated from a subset of the FI data set. 

However, it is probable that TMCF in the NMO contains larger amounts of AGB than other 

TMCF in the country. For instance, the difference between AGB measured in TMCF within the 

NMO by Álvarez-Arteaga et al. (2013) (an average of about 278 Mg ha-1) and that obtained by 

(Leija-Loredo et al. 2018) in Hidalgo, Mexico, (29 Mg ha-1 on average) is significant. It is 

important to note that forests at different successional stages are not distinguished in the FI 

national averages reported by vegetation type, nor are land use intensity or other types of 

disturbance considered. Thus, the inclusion of disturbed forest sites could lower FI’s national 

AGB average for TMCF, placing it at the lower end of the pantropical range. 

Here, we found that average AGB changes in forest plots at different successional stages. 

In mature forest (n= 29), AGB averages 354.86 Mg ha-1 which is closer to Saatchi et al’s (2011) 

estimate for the region and higher than AGB estimates found by Spracklen and Righelato (2014) 

in neotropical montane forests. In contrast, young forests (n= 62) show an average AGB of 

151.69 Mg ha-1. Other studies that have analyzed the difference in AGB between mature forests 

and forest in secondary succession usually find greater AGB in the former (Aragón et al. 2021), 

although this difference is not always statistically significant (e.g., Vizcaíno-Bravo et al. (2020)) 

and depends heavily on forest stand age (Requena Suarez et al. 2019). These results show that 

forests in secondary succession can sequester carbon in large quantities, highlighting their 

ecological significance (L Poorter et al. 2016). On the one hand, AGB in secondary forests, if 

allowed, will only increase until these forests grow to maturity or are disturbed again (R. 

Chazdon 2003; Cook-Patton et al. 2020; Silver, Ostertag, and Lugo 2000). On the other hand, 

forests in secondary succession are more common and widespread than mature forests and thus 

they represent a large part of the total biomass (Yadvinder Malhi et al. 2014). For instance, we 

found that both mature and young forests represent similar amounts of the total AGB measured 

in these sites because 82% of plots are in secondary succession. This probably holds true for 

other TMCF in the country given 54% of this ecosystem is classified as secondary forest 

(CONAFOR 2018). Thus, our results underscore the potential of secondary forests to store 

carbon in the future and their current relevance as a main component of total biomass. 

 The magnitude of AGB and its variation is defined mostly by forest structural attributes. 

The structural attributes studied here, including basal area, stem density, and tree height, are 

within the range found in other Mexican TMCF structure analyses (e.g. (Mejía, Meave, and Ruiz 
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2004; Meave et al. 1992; Arellanes Cancino 2000; Ruiz-Jiménez, Meave, and Contreras-Jiménez 

1999; Williams-Linera 1991). The forest structural attribute that better explains AGB patterns in 

the study region is basal area. Although both tree height and stem density increase with higher 

AGB, they show high variability in sites with higher AGB values. In contrast, basal area has a 

tight relationship with AGB. This is at odds with the findings of studies conducted in other 

neotropical montane forests, where tree height has shown a closer relationship to AGB to the one 

found here (G. P. Asner et al. 2014; C. A. J. Girardin et al. 2010), but coincides with studies in 

Kenyan TMCF  and Borneo’s and northern South America’s tropical forests where basal area 

and the density of largest trees seem to control AGB patterns (Cuni-Sanchez et al. 2017; Slik et 

al. 2010; Álvarez-Dávila et al. 2017). Tree density has a strong relation to AGB in montane 

tropical forests in eastern Democratic Republic of Congo (Imani et al. 2017), but this is not the 

case for TMCF in the studied area where sites with the highest density of trees are not the ones 

showing higher AGB. As in African tropical montane forests and Brazilian subtropical forests, 

the density of largest trees in our study region is a main contributor to total AGB (Cuni-Sanchez 

et al. 2021; Bordin et al. 2021). Despite large trees are uncommon and represent a small 

proportion of all trees present in a site, they account for most of the AGB measured. This is 

particularly important in mature forests, although young forests and young fallows show a 

similar pattern. Nevertheless, in forests in secondary succession trees of different size are equally 

relevant for accounting to the total biomass of a site. 

Relationship between AGB and tree diversity  

Although a positive relationship between AGB and tree diversity has been found in tropical 

forests (Arasa-Gisbert et al. 2018; L. Poorter et al. 2015; Vizcaíno-Bravo, Williams-Linera, and 

Asbjornsen 2020; Kothandaraman et al. 2020; Cavanaugh et al. 2014), we did not find it in our 

data. The relationship between AGB and tree diversity has been explored in tropical forests, 

partly because biodiversity and carbon storage are two fundamental ecosystem features that are 

under significant pressure due to current global environmental change (Rockström et al. 2009; 

Dinerstein et al. 2020). Here, statistically significant relationships between tree diversity and 

AGB were found only after log-transforming AGB and at plot level, suggesting that this 

relationship may be scale-dependent, weakening at larger spatial scales as other studies have 

pointed out (L. Poorter et al. 2015; Sullivan et al. 2017). Moreover, our results show a clearer 

relationship between AGB and tree diversity when species richness is used instead of Shannon 
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diversity index. Lack of a meaningful relationship between tree diversity and biomass has been 

found in other studies (Bordin et al. 2021; Cuni-Sanchez et al. 2017; Sullivan et al. 2017), where 

tree diversity does not increase in plots with higher AGB. It is probable that a synergistic 

relationship between carbon storage and biodiversity could be better explored with other indices 

such as rarefied species or focusing on functional instead of taxonomic diversity (Lourens 

Poorter et al. 2017; Shen et al. 2016). No doubt forest structure, composition, and function are 

interrelated, but more research is needed to understand how these relationships operate in TMCF 

as well as how they are influenced by environmental factors and land use. 

Patterns of AGB along land-use and environmental gradients  

From all factors analyzed in this study, land use and forest disturbance represented the most 

influential ones on AGB patterns across the region, even overshadowing the effect of climate and 

topography. This does not mean climate and topography have no effect on AGB as ample 

evidence suggest they do (Marshall et al. 2012; Spracklen and Righelato 2014; Cleveland et al. 

2011; Hofhansl et al. 2015; Lewis et al. 2013; Taylor et al. 2017; Moser et al. 2008), rather, our 

results show that AGB patterns are driven by the compounding effect of environmental and land 

use factors where the relative role of land use is larger than that of the environment.  

In our study area, both precipitation and temperature decrease with elevation creating an 

environmental gradient that has a significant relationship with AGB. AGB increases with 

elevation, contradicting the general expectation of AGB declining with elevation driven by 

cooler temperatures (Gregory P. Asner et al. 2009; Raich et al. 2006). Our findings are in line 

with other studies showing more complex AGB patterns along elevation transects, for instance, 

where AGB exhibits a unimodal distribution along elevation (i.e., higher AGB at mid-elevation), 

a bimodal distribution (i.e., higher AGB at the lowest and highest elevations with a dip in 

between), or no relation at all (de la Cruz-Amo et al. 2020; Imani et al. 2017; Álvarez-Arteaga et 

al. 2013; Marshall et al. 2012). Furthermore, our results agree with Alvarez-Arteaga et al.’s 

(2013) study where the highest AGB in TMCF within the NMO was found at 2,500 m asl. It is 

possible that the relationship between AGB and elevation changes according to the length of the 

elevation transect. For instance, here, we are only covering forests located between 1,000-2,800 

m asl, and although this is a long transect, we cannot rule out the possibility that the relationship 

between AGB and elevation could change if we expand the altitudinal range to include sites in 

neighboring ecosystems at lower and higher elevations. If anything, these changes would only 
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underscore the complex relationship between forest structure, AGB, and elevation gradients (D. 

B. Clark, Hurtado, and Saatchi 2015). 

Our results support the claim that upper montane sites can hold large amounts of AGB in 

spite of experiencing lower temperatures than their lowland counterparts (Cuni-Sanchez et al. 

2021; Spracklen and Righelato 2014) while also suggesting that environmental factors other than 

temperature may be controlling AGB patterns in the study area (Clark et al., 2015). In fact, 

precipitation seems to be exerting a larger effect on AGB than temperature and could explain the 

lower values of AGB in lower and wetter sites. In contrast to temperature, that usually relates 

linearly to productivity, rainfall shows a humped relationship with productivity probably due to 

soil saturation limiting plant growth in places with very high precipitation (Taylor et al. 2017; 

Álvarez-Dávila et al. 2017). Indeed, soils in TMCF, including those studied in the NMO,  are 

relatively acidic, waterlogged, and anaerobic (Roman, Scatena, and Bruijnzeel 2011; Álvarez 

Arteaga et al. 2008), all features that can lead to nutrient limitation and, consequently, to low 

aboveground primary productivity (Benner, Vitousek, and Ostertag 2011; Fahey, Sherman, and 

Tanner 2016).  

In agreement with other studies assessing the role of topography on AGB patterns, here, 

we found that slope is a relevant factor in shaping biomass spatial distribution in TMCF (Arasa-

Gisbert et al., 2018; Marshall et al., 2012). Slope steepness influences soil properties in several 

ways. Steep slopes exhibit soil erosion, influencing nutrients distribution and leaching, and 

negatively affecting tree growth and biomass accumulation (Marshall et al. 2012; Tsui, Chen, 

and Hsieh 2004). However, shallow slopes can result in poorly drained terrain causing nutrient 

limitations, especially in places with very high precipitation as noted above (Gregory P. Asner et 

al. 2009). Although our results support the latter process is occurring in our study region given 

the small but significant positive relationship between slope and AGB in combination with the 

very high precipitation levels in lower elevation sites, more research is needed to fully 

understand how precipitation and topography interact in these montane forests. These results 

suggest that factors such as soil nutrients, seasonality, microclimate, and topography may be 

more influential in controlling AGB patterns in the region than mean annual temperature and 

deserve more attention (Cuni-Sanchez et al. 2021; Marshall et al. 2012; Álvarez-Arteaga et al. 

2013; Fisher et al. 2013; Álvarez-Dávila et al. 2017). 
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Besides the influence that the environment exerts on AGB patterns, forest disturbance 

and land use also change along elevation gradients and can reinforce, mask, or shift the effect of 

environmental factors (Marshall et al. 2012; de la Cruz-Amo et al. 2020). In our study, land use 

seems to reinforce the effect of the environmental gradient because sites experiencing stronger 

land-use intensity are located at lower elevations. Additionally, slope steepness plays a role in 

land use patterns as the probability of forest conversion to agricultural and grazing lands is lower 

in very steep slopes (Mendoza-Ponce et al. 2018), which could further reinforce the small but 

positive effect slope has on AGB in the region, showing yet another interaction between land use 

and environmental factors. Remarkably, regardless of the interactions that could exist between 

land use and environmental variables, land use by itself exerts the largest influence on AGB 

spatial distribution at both local and regional scales. At the plot level, forest stands are 

differentiated by the successional stage in which they are found, showing significant differences 

in their structural attributes and AGB content; at the site level, AGB is determined by the 

composition of the landscape where AGB values from as low as 36 to as high as 485 Mg ha-1 can 

be found within a single one-ha landscape due to the coexistence of  young fallows, young and 

mature forests; at the regional level, the amount of land use across the landscape gives place to a 

pattern characterized by sites at lower elevations exhibiting lower AGB because land use is more 

widespread, and higher elevation sites with a tendency to present a larger composition of mature 

and secondary forests exhibiting greater AGB. 

The effect of forest disturbance and land use on carbon stocks in general, and AGB in 

particular, has been acknowledged and studied for a long time at local (e.g., Aragón et al., 2021; 

Vizcaíno-Bravo et al., 2020), regional (e.g., Cuni-Sanchez et al., 2021; Marshall et al., 2012), 

and global scales (e.g., K. H. Erb et al., 2018). In all cases, research has found that land use 

reduces AGB because it implies the removal of forests for the establishment of other land covers 

with a smaller capacity to accumulate biomass, such as grasses and crops. Here, we took a 

landscape approach based on forest properties to assess land use and assumed that a larger 

composition of young fallows and young forests in the landscape is directly linked to higher 

land-use intensity (Tscharntke et al. 2005). Certainly, we found a linear decline of AGB along 

our land-use intensity gradient. Nevertheless, it is important to note that there are several 

approaches to study the effects of land use on ecosystem structure and function, and other 

features of land use not explored here, such as land-use history, inputs used, and landscape 
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configuration, can greatly influence AGB distribution across space in nonlinear and unexpected 

ways (K.-H. Erb et al. 2013; del Castillo 2015; R. Chazdon 2003; Kauffman, Hughes, and Heider 

2009; Melito, Metzger, and de Oliveira 2018). For instance, in TMCF in Peru, biomass recovery 

rates are slower than expected after agroforestry lands are abandoned, suggesting a negative 

legacy effect on secondary succession (Aragón et al. 2021). In TMCF in the NMO, in contrast, 

small-scale disturbance caused by shifting agriculture reduces soil acidity and promotes the 

establishment of pioneer and generalist species, increasing biodiversity and facilitating a fastest 

recovery across the landscape, suggesting this type of land use plays a relevant role in this 

ecosystem dynamics (Velasco-Murguía et al. 2021). Understanding how different types of land 

use influence forest structure and composition across scales is paramount for improving AGB 

estimates.  

The relationship between AGB and land use that we present here establishes a baseline 

for AGB estimates in the region that provides a general idea of the amount of biomass that these 

landscapes currently and can potentially accumulate. A thorough understanding of the effect of 

land use on AGB could, on the one hand, reduce the uncertainty found in the quantification of 

carbon stocks and emissions associated to land use and land cover change in the tropics. On the 

other, this knowledge could broaden the understanding of these landscapes potential to store 

carbon, which is fundamental for suggesting landscape management strategies aimed at 

sequestering carbon. Finally, studies like this one can help shed light on the problem of 

conserving ecosystem services while producing food in carbon and biodiversity rich places 

where agriculture represents a fundamental cultural heritage and the main source of income for 

their inhabitants, as in the case of tropical mountains.  

 

CONCLUSIONS AND BRIDGE 

TMCF in the NMO hold large amounts of AGB, mainly in mature forests but also in forests in 

secondary succession. AGB magnitude in mature forests is larger than expected but it fits within 

the reported values for this ecosystem if forests at different successional stages (including young 

fallows) are considered. AGB is determined by forest structural attributes, particularly by total 

basal area and the presence of large trees (DBH > 50cm). The relationship between AGB and 

tree diversity was week, unclear, and scale-dependent. More research is needed to explore 

whether a stronger relationship between these two ecosystem features can be found using other 
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diversity indices or functional instead of taxonomic diversity, as well as how this relationship 

changes across spatial scales. 

AGB in TMCF within NMO increases with elevation. Although we were expecting to find 

shorter trees, lower stem density, and lower AGB as elevation increased as has been described in 

tropical montane forests in South America, we found the opposite trend. Furthermore, our results 

show that AGB patterns are influenced by the compounding effects of land use and 

environmental factors, where land use has a larger role. Although environmental factors such as 

temperature, precipitation, and slope seem to influence forest biomass in the region, their effect 

is weak. Analyzing other environmental factors (e.g., soil nutrients and seasonality) and studying 

a larger elevation gradient that includes other types of ecosystems could shed more light on the 

role of the environment in shaping AGB patterns in the region. The influence of land use on 

AGB is significant, larger than expected, and is not constrained to local scales. On the contrary, 

land use shapes AGB patterns at landscape and regional scales. Our results highlight the 

fundamental need of studying the effect of land use across scales to better understand patterns of 

AGB in the tropics and suggest landscape management strategies that attain the dual goal of 

producing food in a sustainable way while sequestering carbon and protecting biodiversity. 

In the next chapter I further explore the effects of land use on forest structure as well as novel 

methods to incorporate such effects in AGB models. To do so, I use remote sensing imagery to 

analyze recent small-scale forest disturbance in vegetation cover change and variability. 
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CHAPTER 3 

 INCORPORATING RECENT LAND USE IN REGIONAL MODELS OF 

ABOVEGROUND BIOMASS OF TROPICAL MONTANE FORESTS 

 

INTRODUCTION 

Despite the large amount of evidence showing that land in most tropical forests is or has been 

used by humans, little attention has been given to the role that land use plays in shaping the 

spatial distribution of aboveground biomass (AGB), defined as the dry mass of living trees above 

the ground (K. H. Erb et al. 2018; Grantham et al. 2020). This shortcoming has permeated the 

very important efforts of mapping AGB at regional and global scales (e.g., (Saatchi et al. 2011; 

Avitabile et al. 2016; Cartus et al. 2014; Santoro et al. 2021)). AGB maps rely on remote sensing 

(RS) data to develop predictive models that are both fed by and validated with field observations 

(Laura Duncanson et al. 2021). In this process, a combination of passive and active RS is used to 

classify vegetation types and capture information on forest structure (Avitabile et al. 2016). 

Although undoubtedly powerful and useful, these approaches fail to explicitly consider land use 

in the modeling process. Ironically, one of the main applications of AGB maps is to measure 

future carbon flux to the atmosphere from land-use and land-cover change (LULCC) (e.g., 

(Baccini et al. 2017).  

Common inputs to AGB models include: Light Detection and Ranging (Lidar) 

measurements (usually translated into canopy forest height models), normalized difference 

vegetation index (NDVI), annual averages derived from optical RS satellites (such as MODIS 

and Landsat), and topography products like the Shuttle Radar Topography Mission (SRTM) 

digital elevation data, among others (Laura Duncanson et al. 2021; Goetz et al. 2009). It could be 

argued that several of the RS products used as inputs implicitly consider land use. For instance, a 

forest canopy height model derived from Lidar is influenced by land use because forest structure 

(including tree height) is regulated by the progressive stages of secondary succession after 

disturbance (Guariguata and Ostertag 2001). Likewise, a vegetation classification derived from 

Landsat will include a cropland (or similar) class that can be excluded from the analysis (e.g., 

(Cartus et al. 2014). However, these approaches are problematic because different land uses can 

have similar RS signals and thus discarding certain land-cover classes results in a truncated 

analysis of the distribution of AGB, especially in areas where the limits between cropland and 
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forest are diffuse, as in agroforestry systems and forest-agriculture mosaics (Mercier et al. 2019; 

Mateo‐Vega, Arroyo‐Mora, and Potvin 2019). For example, a shaded coffee farm in a tropical 

mountain will have a very similar canopy height than its surrounding forest, but different AGB 

(Ensslin et al. 2015). If, however, it is categorized as cropland and excluded from the analysis, 

the role of trees and shrubs kept in agricultural lands, which could store a vast amount of carbon, 

ends up being underestimated (Zomer et al. 2016). Given the large role that land use plays in 

shaping carbon storage and distribution, we contend that it should be explicitly included in AGB 

models as an input variable, and not only as an a posteriori effect.  

The neglect of the role of land use in shaping the distribution of AGB stems, in part, from 

methodological constraints. Assessing land use at a regional level with RS is challenging and 

requires other sources of information that are not always readily available, or are difficult to 

collect at large spatial extents (e.g. surveys or records on land management) (Bürgi, Östlund, and 

Mladenoff 2017). Additionally, LULCC is a complex process exhibiting dynamics occurring at a 

pace and spatial scale that static land-cover classes do not fully encompass (Kuemmerle et al. 

2013; C. F. Brown et al. 2022). This problem is further enhanced by the common (and often 

inevitable) mismatch between dates of acquisition and processing of the input data (for instance, 

using field and RS data acquired in different years) (L. Duncanson et al. 2019). Moreover, the 

relative relevance of the factors influencing AGB distribution changes across scales. For 

instance, at the global scale, climate is the main control for plant productivity, but at a landscape 

scale, disturbance history can be a driver as strong as any other environmental factor in shaping 

AGB spatial patterns (Dahlin, Asner, and Field 2012). Thus, if AGB spatial distribution is 

mapped with a low-to-medium spatial resolution instrument (e.g., MODIS), the exclusive 

inclusion of environmental factors in the model could suffice. However, as AGB maps 

increasingly use medium-to-high spatial resolution data (e.g., Landsat), land use becomes more 

relevant and cannot be ignored. 

Beyond the methodological challenges, disregarding the role of land use also stems from 

an epistemological issue. Analyses of forest structure, composition, and dynamics are, in many 

cases, still approached from a ‘stability/fragility’ paradigm where tropical forests are regarded as 

pristine and untouched, instead of as dynamic landscapes in constant flux (R. Chazdon 2003; 

Blanco et al. 2021). Hence, most of the field observations used to scale up AGB estimates come 

from field plots established in undisturbed forests, likely biasing the process of modeling and 
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validation across the roughly 53% of forests worldwide that are not considered primary (Gregory 

P. Asner et al. 2010; R. L. Chazdon et al. 2016; Rozendaal et al. 2022) Studying forests from this 

‘stability/fragility’ framework increases the uncertainty associated to AGB estimates while 

feeding the idea that only “untouched” forests can store substantial amounts of carbon (Bongers 

et al. 2015). Therefore, this approach can have important consequences for the development and 

implementation of policies and landscape management decisions.  

 Fortunately, both methodological and epistemological limitations can be overcome. In 

fact, significant progress has been made in RS to improve the quantification of AGB, either 

through implementing new technologies, such as NASA’s Global Ecosystem Dynamics 

Investigation (GEDI) (Laura Duncanson et al. 2022), better monitoring LULCC (C. F. Brown et 

al. 2022), or by simply making data more readily available to researchers and the general public 

(Gorelick et al. 2017). Likewise, important theoretical developments have been made regarding 

the understanding of forests as dynamic landscapes produced by disturbance, recovery, and 

resilience, which has been accompanied by a better understanding of the current and historical 

role of humans in these processes (L Poorter et al. 2016; Kennedy et al. 2014; Bürgi, Östlund, 

and Mladenoff 2017; Ellis and Ramankutty 2008). The present project is an addition to those 

efforts. With a focus on tropical mountains, this study explores novel ways to include land use in 

the analysis and quantification of AGB and its distribution. 

Tropical mountains are home to 500 million people, who have used, modified, and in 

many cases protected montane forest for hundreds to thousands of years (Jackson and Scherr 

1995). The main drivers of AGB in tropical mountains are not well understood yet. Studies on 

forest structure along elevation gradients have arrived at different conclusions about the relative 

roles climatic, topographic, and historical variables play in shaping the distribution of AGB (D. 

B. Clark, Hurtado, and Saatchi 2015). The fact that the uncertainty of AGB spatial models 

increases over steep terrain limits our understanding of biomass accumulation on tropical 

mountains even further (cf. Saatchi et al. 2011). Monitoring forests and quantifying AGB in 

montane landscapes is challenging since they are often overcast, which limits the availability of 

cloud-free imagery (Zhu et al. 2021), and active RS data loses accuracy over rugged terrain 

(Kutchartt, Pedron, and Pirotti 2022; Pang et al. 2022; Wu et al. 2021). However, tropical 

montane forests have received more attention recently, partly as a response to an increasing 

acknowledgement of their carbon sequestration potential, in combination with an increased rate 
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of forest loss mainly related to upslope expansion and agricultural intensification (Feng et al. 

2021; Spracklen and Righelato 2014; Salinas et al. 2021). Spurred by the large amount of high-

resolution data that have become available, meaningful developments have been done in the 

study of tropical montane forests, including improved estimates of AGB and better forest 

monitoring methods (Spracklen and Righelato 2014; DeVries, Verbesselt, et al. 2015). These 

studies show that RS analyses of tropical montane forests are feasible despite frequent clouds 

and rough terrain.  

This study seeks to enhance our understanding of the role of small-scale disturbance, 

driven by land use, in shaping the magnitude and distribution of AGB in tropical mountains. To 

do so, we focus on the Northern Mountains of Oaxaca (NMO) in Mexico. We use Landsat 

imagery to extract time series of pixels that overlap with the Mexican National Forest Inventory 

(FI) plots established and surveyed between 2009 and 2014. We then address the following 

questions: (1) How can the recent disturbance history of a forest, assessed through Landsat time 

series, be used to estimate the effect of land use on forest structure? And, in turn, (2) how can 

these effects be incorporated into AGB models? We focus on Landsat for several reasons. First, 

Landsat has enough temporal and spatial resolution to detect vegetation cover change and trends 

linked to the small-scale disturbance caused by land use, even in mountainous regions with 

frequent cloud cover (DeVries, Verbesselt, et al. 2015). Second, being the program of satellites 

with the longest record of Earth’s surface, Landsat provides the widest temporal window 

available to infer the effect of land use with RS data (Wulder et al. 2019). Third, clear 

relationships between optical RS observations and forest structural variables are difficult to 

establish. Yet, time series have seldom been used for this purpose, an application that has 

potential and it is worth exploring (Kennedy et al. 2014; Huang et al. 2010). Finally, active RS 

data over our study region and during the period in which the field data collection was carried 

out is not as widely available as is passive RS. 

In the following sections we describe the two approaches we took for analyzing 

vegetation cover change through time as proxies of land use: the first one is based on detecting 

abrupt changes within time series, and the second one is based on the variation of vegetation 

indices over time. We conclude by providing some recommendations regarding the incorporation 

of land use in the study of forest structure with RS. 
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METHODS 

Study area and data collection  

This study was carried out in the Tropical Montane Cloud Forest (TMCF) located in the NMO 

(Figure 2.1). Highly dependent on the presence of clouds, this ecosystem is characterized by 

having a scattered distribution along the mountain range, which has been further exacerbated by 

a long history of land use. These montane landscapes exhibit patches of forest at different 

successional stages, shifting agriculture, some permanent agricultural and grazing lands, several 

types of coffee farms (including sun and shaded coffee), and other types of cash crops, all 

interspersed, creating a dynamic and complex forest-agriculture mosaic. 

To delimit our study area, we used the official map of vegetation and land-use series V 

published by the National Institute of Statistic and Geography (INEGI) in 2013 (INEGI 2013) as 

well as the map of cloud forest regions created by Toledo-Aceves et al. (2011) available from the 

Mexican National Commission of Biodiversity (CONABIO) GeoPortal (CONABIO 2012) 

(Figure 2.1). Within this area, we selected 284 plots where forest structure was measured by the 

Mexican National Forest Inventory (FI) during a fieldwork campaign conducted from 2009 to 

2014. Along with information on forest structure, we extracted the geographic location and 

elevation of each plot from the FI database, and we retrieved their slope (in degrees) from 

NASA’s SRTM digital elevation data via Google Earth Engine (GEE) (Farr et al. 2007). In 

addition, we tracked forest cover trends and change over time for the 284 FI plots by using 

Landsat time series, where each plot (area= 400 m2) is contained and represented by a single 

pixel (area= 900 m2). To select the 284 pixels corresponding to each FI plot, we used the exact 

location of FI plots available in the FI database and selected the pixel that would overlap with the 

plot centroid. This way, we ensured most of the FI plot area is contained within, and represented 

by, a single Landsat pixel, even though their area, shape, and outline do not match exactly. 

Forest structure and aboveground biomass estimation 

FI data collection was carried out following a systematic hierarchical nested sampling design 

with four circular plots of 400 m2, established in 1 ha circular sites: one in the center of the site, 

and the other three in a north, southeast, and southwest direction, respectively, at 45.14 m from 

the central plot (Figure 2.1). All sites were established 25 km apart from each other in a grid-like 

fashion (CONAFOR 2015). Within each plot, the height, basal area, and diameter at breast 

height (DBH) of every plant with DBH > 7.5 cm was measured and taxonomically identified. 
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We derived three structural variables from this information: (1) tree density, i.e., the number of 

trees per hectare; (2) basal area, defined as the sum of the cross-sectional surface area of trees per 

hectare; and (3) Lorey’s height, which is a measure of forest stand height weighted by its basal 

area. Then, we estimated the AGB of 7,196 trees measured in the 284 FI plots using 47 

allometric equations described at the species or genus levels. For species whose allometric 

equation has not been described, we used a generic allometric equation developed by Chave et 

al. (2015) for tropical trees (Table S2.2 and references therein). Following the methodology for 

estimating AGB carried out in chapter 2, we calculated AGB ± S.D. per plot by adding up the 

biomass of each individual tree and propagating errors through a Monte Carlo statistical 

simulation informed by field data and implemented in the R package BIOMASS (Réjou‐Méchain 

et al. 2017). Because tree density, tree height (Lorey’s height), basal area, and AGB have a 

heavily skewed distribution, the former three variables were sqrt-transformed and AGB was log-

transformed for all statistical analyses (Figure S3.1). 

Landsat time series extraction and cleaning 

Using GEE, we extracted 284 Landsat time series, corresponding to 284 FI plots, from 

atmospherically corrected surface reflectance images acquired by Landsat-5 TM and Landsat-7 

ETM+ sensors from 1993 to 2020 (Gorelick et al. 2017; Masek et al. 2006). Although Landsat 

imagery collection dates back to the 1970s, data of our study region before 1993 is very sparse 

and impossible to use in time series analyses (Solórzano, Gallardo-Cruz, and Peralta-Carreta 

2020; Wulder et al. 2019). Removing clouds and foggy pixels from the time series was 

particularly important to avoid false forest disturbance detection (i.e., cloudy periods that can be 

mistakenly interpreted as forest disturbance in the time series). To detect and remove clouds 

from the time series, we first applied a cloud mask using the CFMask algorithm in GEE (Foga et 

al. 2017), through which we obtained 91% overall accuracy of ground and cloud pixels. 

Secondly, we calculated a cloud index (CI) using the blue, green, red, NIR and SWIR bands 

(Table 3.1) and searched for a threshold value that removed the cloudy pixels that were not 

eliminated by the cloud mask, while keeping as many ground pixels as possible (Zhai et al. 

2018). We found an optimal CI value of 2.8, with which we reached an overall accuracy of 

94.4% (Table S3.2). Overall accuracy, commission, and omission errors of cloudy vs ground 

pixels were conducted by selecting and classifying 500 random pixels. Although removing 
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cloudy pixels decreased the number of observations per time series from an average of 606 to 

166, all years were well represented in every plot (Table 3.2). 

 

Table 3.1. Remote sensing indices used in this study. B = blue band, G = green band, R = red 

band, NIR = near infrared band, SWIR = short-wave infrared band. 

Index Equation Reference 

Cloud Index (CI) (NIR+2*SWIR)/(B+G+R)2 Zhai et al. 

2018 

Normalized Difference 

Vegetation Index (NDVI)  

(NIR-R)/(NIR+R) Robinson et 

al. 2017 

Enhanced Vegetation Index (EVI)  2.5*(NIR-R)/(NIR+6*R-7.5*B+1) Jarchow et al. 

2018 

Normalized Difference Water 

Index (NDWI) 

(NIR-SWIR)/(NIR+SWIR) Gao 1996 

 

To increase the comparability between remote sensing and FI data, we trimmed the end 

of time series to match the year of field data collection. Field data collection was carried out over 

a time span of 5 years; thus, some time series are shorter than others. For instance, forest plots 

where fieldwork data was collected in the year 2009 span a period of only 16 years, but those 

measured in 2014 cover a 21-year-period. In addition, the time series are irregular (i.e., the 

number of pixels varies over time and does not follow a regular pattern) and the number of 

observations varies within and across time series and years. Moreover, within individual time 

series, there are more observations during the dry season (October to April) and during the years 

where Landsat-5 TM and Landsat-7 ETM+ overlap (Table 3.2). The number of observations 

ranges from 58 to 330 across time series, and depends on the geographic location of the FI plot 

and the year of data collection (Table 3.3). Plots that fall in areas where two Landsat scenes 

overlap exhibit more observations, but those with more frequent cloud cover have less. In 

addition, Landsat-7 gaps due to the scan line corrector failure after 2003 increased the 

irregularity of time series. Despite these challenges, the minimum average number of 

observations per year over all the time series analyzed is 5. 
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Table 3.2. Number of observations, mean and S.D. of observations per year in total and in each 

season (dry or rainy) in 284 FI plots from 1993 to 2014 after cloud removal, and after being 

trimmed at the end for matching the date of field data collection. Each observation is equivalent 

to one Landsat pixel. 

 Total Dry season Rainy season 

Year No. obs. Mean obs. 

± S.D. 

No. obs. Mean obs. 

± S.D. 

No. obs. Mean obs. 

± S.D. 

1993 3034 10.5±3.96 1765 6.13±2.46 1269 4.39±2.01 

1994 3216 11.1±4.36 1804 6.26±2.29 1412 4.92±2.49 

1995 2801 9.69±2.90 1507 5.29±1.80 1294 4.56±1.44 

1996 2626 9.09±3.85 1637 5.66±2.55 989 3.60±1.73 

1997 1972 6.82±3.36 1294 4.48±1.78 678 2.70±1.89 

1998 3183 11.0±3.82 2109 7.30±2.19 1074 3.77±2.23 

1999 3331 11.5±4.89 1889 6.54±2.55 1442 4.99±2.86 

2000 4637 16.0±5.54 2681 9.28±2.48 1956 6.77±3.60 

2001 3475 12.0±3.96 1914 6.62±2.67 1561 5.40±1.98 

2002 1944 6.85±2.68 1096 3.86±1.04 848 3.27±1.88 

2003 1725 6.07±2.06 1210 4.26±1.63 515 1.87±0.88 

2004 1443 5.12±2.59 961 3.41±1.39 482 2.13±1.48 

2005 1722 6.08±2.06 891 3.15±1.49 831 2.99±1.27 

2006 1490 5.27±2.31 870 3.07±1.30 620 2.45±1.46 

2007 2136 7.52±2.34 1550 5.48±1.77 581 2.31±1.12 

2008 1825 6.36±2.20 1214 4.27±1.54 611 2.18±1.09 

2009 2315 8.15±2.78 1322 4.65±1.99 993 3.53±1.30 

2010 1891 8.01±2.25 1382 5.86±1.76 509 2.33±0.937 

2011 1797 9.82±3.30 1433 7.83±2.58 364 2.12±0.942 

2012 885 5.78±2.49 578 3.78±1.47 307 2.27±1.42 

2013 452 6.19±2.28 240 3.29±1.64 212 3.03±1.39 

2014 183 5.90±2.52 119 3.84±2.30 64 2.21±1.29 

 

To study forest cover trends and change, we calculated three commonly used vegetation 

indices (VI): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), and Normalized Difference Water Index (NDWI) (Table 3.1). These VI have been widely 

used, alone or in tandem, for analyzing forest cover trends and disturbance (e.g., (DeVries, 

Verbesselt, et al. 2015; DeVries, Decuyper, et al. 2015; Berveglieri et al. 2021; Wang, Lu, and 

Haithcoat 2007)). Both NDVI and EVI are sensitive to changes in vegetation greenness, while 

NDWI is sensitive to changes in liquid water content of tree canopies (Gao 1996). 

Recent history of forest disturbance in FI plots  

We approached the study of forest disturbance over time in two ways: first, we detected forest 

clearings using the algorithm Breaks For Additive Seasonal Trend (BFAST) implemented in the 
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R package BFAST (Verbesselt et al. 2010). Secondly, we calculated several variables associated 

with the variation of vegetation indices over time, such as mean, standard deviation, and 

coefficient of variation (Figure 3.2). 

BFAST decomposes time series into trend, seasonal, and reminder components, and 

detects abrupt changes (breakpoints) in the time series trend by fitting the data iteratively to a 

piecewise linear model. This algorithm also characterizes the magnitude and direction of change, 

whereby larger breakpoints represent abrupt changes in the vegetation, such as forest clearings 

(Verbesselt et al., 2010). Here, we applied BFAST to NDVI time series to detect forest 

disturbance by means of an ordinary least squares-moving sums of residuals model (OLS-

MOSUM), with a level of 0.05 and a dummy seasonal trend. To run BFAST, we used untrimmed 

time series, which included observations from the year 1993 to 2020. Although TMCF has 

seasonal variation, most of the cloudy pixels removed belonged to the rainy season and thus a 

seasonal pattern was not discernible in all years (Table 3.2).  

Once BFAST was applied to every time series, we recorded the date and magnitude of 

each breakpoint. We validated breakpoints using Planet high resolution images available from 

2016 to the present (Planet Team, 2017). In the 284 time series analyzed, only 13 breakpoints 

were detected from 2016 to 2021. To produce a larger list of breaks to test, we extracted another 

100 NDVI time series, corresponding to 100 pixels (or training points) from a TMCF landscape 

adjacent to one of the FI plots (Figure S3.2). We then applied BFAST by following the foregoing 

process. For every breakpoint detected between 2016-2021 in both the training points and the FI 

plots, we visually examined if a forest clearing truly took place via Planet Explorer high 

resolution images (Planet Team, 2017). After testing 35 breakpoints, we found that forest 

clearings occurred when a breakpoint had a magnitude greater than |0.15|, where positive 

breakpoints were usually preceded by a slow decline of NDVI undetected by BFAST, followed 

by a fast NDVI increase (Table S3.3). To avoid overestimating forest clearings, we discarded 

breakpoints with a magnitude smaller than |0.15| and those detected after field data collection. 

The final breakpoint dataset comprised 189 breakpoints detected in 76 FI plots. Finally, we 

summarized this information by calculating the total number of breakpoints per plot and the time 

elapsed between FI data collection and the last breakpoint (hereafter ‘time since last 

disturbance’) (Figure 3.1). 
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Our second approach consisted in calculating NDVI, EVI, and NDWI mean, standard 

deviation (S.D.), coefficient of variation (C.V.), minimum (min) and maximum (max) values per 

year and over the entire time series, to grasp the general trend of each time series and its 

variation within and across years. To obtain measurements of the inter-annual variation of 

vegetation indices, we averaged annual S.D., C.V., min, and max values. We assumed that 

smaller values of mean annual S.D. and mean annual C.V. would correspond to more stable plots 

with less forest cover change, and that higher min and max values would correspond to larger 

forest cover maintained over time. Finally, we calculated the same metrics for the year of field 

data collection.  

This way, we constructed a data set of variables derived from RS data (hereafter RS  

variables) comprising the total number of breakpoints, time since last disturbance, and several 

summary statistics of the time series, including mean annual S.D., mean annual C.V., mean 

annual min and max values of NDVI, EVI, and NDWI, as well as mean, S.D., C.V., min, and 

max values of these indices in the entire time series and in the year of field data collection 

(Figure 3.1). RS variables were calculated using pixel values from 1993 until the year of field 

data collection.  

 

 

 

 

 

Figure 3.1 (next page). (A) Example of NDVI time series of a FI plot showing the variables used 

in this study, where the three vertical black dashed lines represent the breaks detected by 

BFAST, the solid gray line indicates the date of field data collection, the purple horizontal line 

represents time since last disturbance (TSLD), horizontal green dotted lines are NDVI mean 

value and its S.D. (shown also in panel B), and the big triangle represents the minimum NDVI 

value found in the time series. (B) NDVI time series period showing each year’s minimum 

NDVI value in small triangles (abbreviated as NDVIa min in text), and annual NDVI mean value 

with its S.D. in gray horizontal lines and boxes (abbreviated in text as NDVIa mean, and NDVIa 

S.D., respectively). (C) NDVI time series period exemplifies the breakpoint validation process, 

where Landsat (orange diamonds) and PlanetScope (purple crosses) images were visually 

inspected to detect abrupt changes in vegetation cover. Satellite images indicate their acquisition 

date. (D) Landsat-7 true color images (first row), Landsat-7 NDVI images (second row), and 

PlanetScope images (third row) used to validate breakpoints detected by BFAST for the period 

shown in panel C. The squares and arrows point to the tracked pixel.  
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Selection of remote sensing variables 

We calculated the correlation coefficient between forest structure variables (tree density and 

height, basal area, and AGB) and RS variables, and, following a common approach for model 

exploration, we removed all variables with ρ < |0.3| (Tredennick et al. 2021). Our final RS 

dataset consisted of 10 variables, including total number of breaks, time since last disturbance 

(TSLD), average of the annual NDVI S.D. (NDVIa S.D.), NDVI S.D., NDVI minimum value 

found in the time series (NDVI min), NDVI coefficient of variation, NDWI S.D., NDWI 

minimum value found in the time series (NDWI min), the average of the minimum yearly values 

found in the NDWI time series (NDWIa min), and average of the annual NDWI S.D. (NDWIa 

S.D.) (Figure S3.2). 

Statistical analyses  

Statistical analyses were conducted at two levels: plots (n= 284) and sites (n= 39) (Figure 2.1). 

To explore the effect of forest disturbance measured through breakpoints (total number of 

breakpoints and TSLD) on forest structure, we used data at plot level. We classified plots in two 

groups according to the presence or absence of breakpoints, and assessed through t-tests whether 

plots that have had forest clearings in the recent past show differences in forest structure. 

Additionally, we further analyzed how forest structure variables change over time after the last 

disturbance, exclusively using the 76 FI plots with breakpoints. We tested the statistical 

significance of these changes with linear regressions. 

To explore whether optical RS variables can improve the predictability of forest structure 

and AGB, we used multiple linear regression models. This analysis was conducted at site level to 

avoid spatial autocorrelation and overestimation of forest structure variables measured in small 

plots (Araza et al. 2022). Thus, we summarized information at site level averaging all variables 

of every plot within each site. We only used sites where information for all four plots was 

complete and available (n= 39). To avoid multicollinearity, we removed both RS variables with 

very high correlation coefficients between them (ρ > |0.9|) and which showed a very similar 

relationship with forest structure variables. We fitted four different models with forest structure 

and AGB as response variables; and elevation, slope, mean TSLD, most recent value of TSLD 

found in site, average number of breaks, NDVIa S.D., NDVI S.D., NDVI min, NDWIa min as 

predictors. Structure variables were transformed to comply with normality. Then, we performed 

variable selection by comparing a full model, which included all RS variables, against a series of 
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reduced models in which each predictor is dropped in a stepwise fashion (Lumley, 2020). We 

selected the best model comparing their adjusted R2, Mallows’ Cp (CP), and Bayesian 

Information Criterion (BIC). All statistical analyses were performed in R version 4.1.1 (2021). 

 

RESULTS 

Forest structure and aboveground biomass in tropical montane cloud forest 

FI plots exhibit wide variation in tree density and height, basal area, and AGB (Table 3.3). AGB 

shows a value of 109.67 Mg ha-1, on average, but some plots reach 700 Mg ha-1, while others are 

completely devoid of trees, and thus, of living tree biomass. At site level, AGB ranges from 8 to 

414 Mg ha-1, showing an average of 120 Mg ha-1 (Table 3.4). Tree density in TMCF sites 

averages 660 ha-1 but can reach 1,806 trees ha-1. While there are FI plots within sites with no 

trees, all 1-ha sites have a tree density of at least 80 trees ha-1. Trees in TMCF are 12 m tall on 

average. However, Lorey’s height max value is 25 m. Basal area ranges from values as low as 

1.5 to those as high as 51 m ha-1 at site level. From previous studies, we know that forest 

structural variation in this ecosystem is related to land use, climate, and topography, with the 

former having the largest role (see chapter 2). Thus, for understanding the relationship between 

forest structure and disturbance, we used Landsat time series data to detect recent changes in 

forest cover. 

We assessed the recent history of forest disturbance in FI plots using two approaches: (1) 

detecting forest clearings with BFAST using NDVI time series, and (2) assessing the annual and 

total variation of NDVI and NDWI values over time.  

Landsat time series and selected remote sensing variables 

Time series length varied from 16 to 21 years, depending on the year of field data 

collection. Although time series are irregular, on average, they are composed of 166 observations 

over time, and all of them have at least five observations per year and 58 observations in total 

(Table 3.3). We found a total of 189 forest clearings (breakpoints detected with BFAST) in 76 

out of 284 plots (i.e., ~27% of all sampled plots). The total number of observations per plot and 

the effective detection of breakpoints show that the issue of cloud contamination in optical RS 

imagery can be successfully overcome using a cloud mask in combination with a cloud index. 
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Table 3.3. Summary statistics of forest structure variables, time series characteristics, and remote 

sensing variables in TMCF plots (n= 284), showing their minimum (min), mean, and maximum 

(max) values. Breakpoints represent forest clearings. Abbreviations are: AGB, aboveground 

biomass; No. obs., number of observations in time series; No. obs. per year, number of 

observations per year in time series; TSLD, time since last disturbance; NDVIa S.D., mean 

annual NDVI S.D.; NDVI min, NDVI minimum value found in the time series; NDWIa min, 

mean annual minimum NDWI. See figure 3.2 for further details on remote sensing variables 

calculation. 

 All plots  

(n= 284) 

Plots with 

breakpoints  

(n= 76) 

Plots with no 

breakpoints  

(n= 208) 

Variable Min Mean 

(±S.D.) 

Max Min Mean 

(±S.D.) 

Max Min Mean 

(±S.D.) 

Max 

Tree density 

(tree ha-1) 

0 592.95 

(541.47) 

2600 0 530 

(205) 

2175 0 616 

(431) 

2600 

Lorey’s 

height (m) 

0 11.58 

(5.05) 

27.52 0 8.89 

(3.66) 

24.1 0 12.6 

(5.15) 

27.5 

Basal area 

(m ha-1) 

0 17.58 

(15.07) 

73.013 0 10.6 

(10.4) 

46.8 0 20.1 

(15.7) 

73.0 

AGB (Mg 

ha-1) 

0 109.67 

(133.60) 

758.79 0 50.7 

(63.3) 

259 0 131 

(146) 

759 

No. obs.  58 166 

(48.8) 

330 109 195 

(57.9) 

330 80 158 

(38.8) 

274 

No. obs. per 

year 

5.12 8.41 

(2.79) 

16 1 10.2 

(5.42) 

32 1 8.13 

(3.75) 

32 

No. of 

breakpoints 

0 0.52 

(1.31) 

9 1 2.09 

(1.89) 

9 0 0 0 

TSLD 

(years) 

0 15.92 

(5.27) 

21 0 8.99 

(5.61) 

20 - -  - 

NDVIa S.D. 0.03 0.05 

(0.01) 

0.09 0.03 0.06 

(0.01) 

0.09 0.03 0.05 

(0.01) 

0.09 

NDVI S.D. 0.04 0.06 

(0.01) 

0.12 0.05 0.08 

(0.01) 

0.12 0.04 0.06 

(0.01) 

0.10 

NDVI min 0.24 0.51 

(0.10) 

0.65 0.24 0.39 

(0.08) 

0.60 0.30 0.55 

(0.06) 

0.65 

NDWIa min -0.07 0.21 

(0.08) 

0.38 -0.07 0.15 

(0.09) 

0.33 0.02 0.24 

(0.06) 

0.38 
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Table 3.4. Summary statistics of forest structure and remote sensing variables in TMCF sites (n = 

39). Values are averages of those found in the four plots contained in each site. Abbreviations 

are: TSLD, time since last disturbance; NDVIa S.D., mean annual NDVI S.D.; NDVI min, 

NDVI minimum value found in the time series; NDWIa min, mean annual minimum NDWI. 

Variable Min  Mean (±S.D.) Max  

Tree density (tree ha-1) 81.25 659.94 (389.96) 1806.25 

Lorey’s height (m) 5.92 11.69 (4.36) 24.91 

Basal area (m ha-1)  1.56 18.53 (12.77) 51.08 

AGB (Mg ha-1) 8.26 120.58 (144.98) 414.52 

No. of breakpoints  0 2.46 (4.96) 27 

Most recent TSLD (years) 0 14.21 (6.66) 21 

Mean TSLD (years) 3.75 15.93 (4.80) 21 

NDVIa S.D. 0.03 0.05 (0.01) 0.08 

NDVI S.D. 0.04 0.06 (0.01) 0.10 

NDVI min 0.26 0.50 (0.10) 0.62 

NDWIa min -0.04 0.20 (0.08) 0.33 

 

Breakpoints were validated using PlanetScope high-resolution images (daily coverage 

and pixel size of ~3 m) where we found a threshold magnitude value of |0.15|. This means that 

NDVI changes > |0.15| were recorded as abrupt changes in forest cover, and NDVI changes < 

|0.15| as natural variation. Once breakpoints were detected, we summarized information by plot. 

We calculated the total number of breakpoints in each time series, the average number of 

breakpoints over all plots sampled, and the time elapsed between the last breakpoint detected and 

the time of field data collection (TSLD). The average number of breakpoints is 0.5 because, 

despite none were detected in 208 plots, it was common to find more than one in several time 

series. In fact, the average number of breakpoints in the 76 plots where forest clearings were 

detected is 2 (Table 3.3). Besides number of breakpoints and TSLD, we calculated mean, min, 

max, S.D., and C.V. per year and throughout the entire time series of three VI: NDVI, EVI, and 

NDWI. 

In itself, the variable selection process is an interesting result, as it gives insight on which 

variables are potentially more informative for understanding land use effects on forest structure. 

For selecting them, we calculated the correlation among all RS and forest structure variables and 

removed all RS variables that were poorly related to forest structure (|ρ<0.3|). In the variable 

selection process, we reduced the dataset from 44 RS variables to only 10 (see Selection of 

remote sensing variables section above). Interestingly, maximum and mean values of the three 

evaluated VI did not yield meaningful results. Rather, the variation of VI over time showed a 



 

71 

 

clearer relationship with forest structure. The selected variables represent the variation in NDVI 

and NDWI and their minimum values found over time. Although we initially calculated EVI as 

well, this index did not show a strong correlation with forest structure variables and was dropped 

in the variable selection process. Therefore, subsequent analyses were conducted only with 

NDVI and NDWI. The RS variables calculated only for the year of data collection (annual 

NDVI, EVI, and NDWI mean values and variation from 2009 to 2014) were also dropped due to 

their weak correlation with forest structure.  

RS variables show high correlation between them (Figure S3.3). For instance, NDVImin, 

NDWImin and NDWIa min values are negatively correlated with the number of breakpoints 

detected in a time series, which means that the minimum values of NDVI and NDWI were found 

in time series with breakpoints. In addition, the S.D. of both NDVI and NDWI is negatively 

correlated with VI’s minimum values, suggesting that time series that show lower VI values are 

also the ones showing more variation. NDVI and NDWI values range, respectively, from 0.24 to 

0.98 and -0.32 to 0.72 over all time series, with mean values of 0.746 and 0.29. 

The effect of recent land use on forest structure 

To test the effect of forest disturbance on forest structure, first, we classified plots in two groups: 

those with breakpoints detected and those without, and compared their tree density, tree height, 

basal area, and AGB using t-tests (Figure 3.2). Forest structure variables were statistically 

different between the two groups (p < 0.05) (Figure 3.2 and Table S3.4). All plots with 

breakpoints show lower tree density, tree height, basal area, and AGB, than plots with no 

breakpoint. It is important to note that the group with no breakpoints shows more variation in 

forest structure, with some plots exhibiting low basal area, AGB, and tree height (Figure 3.2). 
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Figure 3.2. Comparison of forest structure variables between FI plots with breakpoints 

(break) and without breakpoints (no break) detected by BFAST, including (A) sqrt-

transformed basal area (m ha-1), (B) log-transformed aboveground biomass (log AGB, 

Mg ha-1), (C) sqrt-transformed Lorey’s height (m), and (D) sqrt-transformed tree density 

(tree ha-1). Boxes cover the interquartile range (IQR), the horizontal line within boxes 

shows the median, and values 1.5 times larger or smaller than the IQR are shown in dark 

gray points. Asterisks indicate statistically significant differences between plots with and 

without breaks tested with t-tests (p < 0.05) (results shown in Table S3.4). Statistical 

significance: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p<0.05, ns = non-significant. 

 

 

 

Figure 3.3. Forest structure variables over time after the last breakpoint detected by 

BFAST (time since last disturbance, TSLD) in FI plots with breakpoints shown in light 

gray points (n= 76). Black lines show linear regressions between TSLD and log-

transformed AGB (p= 0.01, adjusted R2= 0.06), sqrt-transformed basal area (p= 0.02, 

adjusted-R2= 0.05), sqrt-transformed Lorey’s height (p= 0.1, adjusted-R2= 0.01), and 

sqrt-transformed tree density (p= 0.01, adjusted-R2= 0.06). Forest structure variable units 

as in Figure 3.3.  
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We also assessed the effect of TSLD on forest structure. TSLD is capped at 21 years 

because our starting point is the year 1993 and the last year of field data collection is 2014. 

Because of this, we could not test forest structural change after disturbance on periods longer 

than 21 years. To avoid underestimating TSLD in time series with no breakpoints, we analyzed 

the relationship between forest structure and TSLD only in the 76 plots that have been disturbed 

in the last 16-21 years. Almost all structural variables increase with TSLD and show statistically 

significant linear regressions (p < 0.05), except for Lorey’s height (Figure 3.3). However, they 

show large variation and their R2 values are (Figure 3.3 and Table S3.5). For instance, the 

maximum value of AGB found in FI plots with breakpoints is 259 Mg ha-1, which is higher than 

the AGB we would expect to find in a disturbed forest (Table 3.3). On the other hand, several 

plots with 15 or more years since the last disturbance show lower values of basal area (< 5 m ha-

1), AGB (<10 Mg ha-1), tree height (<5 m) and tree density (< 500 ha-1) than expected (Figure 

3.4). These results are in line with the large variation of forest structure variables found in the 

no-breakpoints group (Figure 3.2).    

To assess which RS variables are relevant for making predictive models of forest 

structure and AGB, we performed multiple linear regression models with data grouped at site 

level. Model predictors were elevation, slope, and the seven RS variables that remained after 

reducing our RS dataset (we removed RS variables that show very high correlation between 

them): mean and min TSLD, mean number of breaks per site, NDVIa S.D., NDVI S.D., NDVI 

min, and NDWIa min. For each response variable (AGB, basal area, Lorey’s height, and tree 

density), a full model including all variables was computed and compared with models using 

subsets of variables (Lumley, 2020). We selected the best models as those presenting the lowest 

BIC and CP, and highest R2 (Table S3.6). The best models always include elevation and at least 

one RS variable; most of them have two or three predictors (except for basal area that has five 

predictors), and all of them have an adjusted R2 > 0.3 (Table 3.5). 

The most relevant variables for predicting forest structure and AGB are elevation, slope, 

NDVI S.D., NDVIa S.D., and NDWIa min, where S.D. has always a negative relation with forest 

structure variables and NDWI annual minimum values a positive one (Figure 3.4). Importantly, 

the number of breaks in a site, and a site average TSLD, were removed from the models during 

the stepwise selection process and are not fundamental for predicting forest structural variables 

and AGB through linear regression models (Table S3.6). The forest structure variable that was 
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better predicted is basal area, with an adjusted R2 of 0.57, followed by Lorey’s height (Table 

3.5). Although AGB shows a statistically significant relationship with the predictors, the R2 of 

this model is 0.43 and it only includes one RS variable (NDVI S.D.). 

 

Table 3.5. Multiple linear regression models of forest structure variables and aboveground 

biomass (AGB) as a function of elevation, slope, and remote sensing variables in TMCF sites 

(n= 39). 

BASAL AREA (sqrt-transformed) 

b= -1.312; F= 11.32; df (5, 33); p < 0.001; adjusted R2= 0.575 

Predictors Coefficient S.E. t p 

Elevation 0.001 0.0003 4.930 <0.001 

Slope 0.031 0.019 1.555 0.129 

NDVI S.D. -62.33 24.56 -2.537 0.016 

NDVIa S.D. 64.97 36.09 1.800 0.081 

NDWIa min 8.472 3.657 2.317 0.026 

LOREY’S HEIGHT (sqrt-transformed) 

b= 4.095; F= 16.71; df (2,36); p < 0.001; adjusted R2= 0.452 

Predictors Coefficient S.E. t p 

Elevation 0.0004 0.0001 3.159 0.003 

NDVI S.D. -21.27 4.600 -4.624 <0.001 

TREE DENSITY (sqrt-transformed) 

b= 3.85; F= 10.63; df (2,36); p < 0.001; adjusted R2= 0.336 

Predictors Coefficient S.E. t p 

Elevation 0.005 0.001 3.176 0.003 

NDWIa min 47.049 12.19 3.859 <0.001 

AGB (log-transformed) 

b= 4.51; F= 10.56; df (3,35); p < 0.001; adjusted R2= 0.430 

Predictors Coefficient S.E. t p 

Elevation 0.0008 0.0002 3.572 0.001 

Slope 0.031 0.016 1.973 0.056 

NDVI S.D. -36.67 8.510 -4.309 <0.001 
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Figure 3.4. Relationship between forest structure variables and the five predictors 

included in the best multiple linear regression models (models shown in Table 3.5), 

including elevation (m asl), NDVI S.D. of time series, average of annual NDVI S.D. 

(NDVIa S.D.), average of annual NDWI minimum value (NDWIa min), and slope 

(degrees). Linear regressions are shown in black. Forest structure variable units as in 

Figure 3.3. 

 

 

DISCUSSION 

Aboveground biomass in cloud forests of the Northern Mountains of Oaxaca 

Many studies have relied on forest inventory data to study forest structure and estimate AGB, 

since they provide ample spatial coverage with a systematic sampling design (Mohren et al. 

2012). Here, we used FI data to assess basal area, tree density, Lorey’s height, and AGB in 

TMCF located in the NMO. TMCF landscapes in the studied region show a great variation in 

forest cover and structure, from sites with only eight trees and AGB of 8 Mg ha-1, to sites with 

thousands of trees and AGB of 414 Mg ha-1. The average value of AGB found (120 Mg ha-1) is 

in line with other estimates calculated in TMCF around the globe (77-785 Mh ha-1) and in 

Mexico (75 Mg ha-1) (Spracklen and Righelato 2014; CONAFOR 2018). Compared to the 

average AGB reported for Mexican TMCF, our estimate is higher, but compared to the values 

shown in pan-tropical maps for this region, the average AGB we found is lower (e.g. Saatchi et 

al. 2011). These discrepancies arise both from methodological approaches and the natural 

variation of biomass accumulation in tropical mountains.     
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Several factors determine the accumulation of AGB in a site, including environmental 

ones, such as climate, topography, and the availability of nutrients in the soil; as well as factors 

related to forest disturbance, such as the frequency, severity, and time of recovery after 

disturbance (D. B. Clark, Hurtado, and Saatchi 2015; K. H. Erb et al. 2018). In TMCF found in 

the NMO, disturbance by land use, elevation, and precipitation seem to have a large role in 

driving AGB magnitude and distribution (see chapter 2). Modeling all the factors driving AGB 

patterns is challenging. To estimate AGB at local scales, forest structure is surveyed, and the 

biomass of each tree is calculated using allometric equations (Rojas-García et al. 2015). At larger 

spatial extents, however, surveying forests directly in the field is unrealistic (Jérôme Chave et al. 

2019). RS has been widely used to overcome this challenge (Laura Duncanson et al. 2021). 

However, RS-based maps of AGB have done a better work including environmental factors 

(climate, topography, soil) than those related to disturbance, despite forest monitoring during and 

after disturbance with RS is an important field of study in continuous development (DeVries, 

Decuyper, et al. 2015; White et al. 2017). Here we used RS imagery (Landsat and PlanetScope) 

to assess recent disturbance that took place before field data collection in the FI plots established 

in the TMCF of the NMO.   

Estimating recent forest disturbance using Landsat time series 

Although steep terrain does not represent a problem for optical RS, cloud contamination does. To 

counteract this problem, it is important to use imagery with high temporal coverage and filter out 

cloudy pixels. Landsat time series have been widely used to monitor forests even in tropical 

mountains with frequent cloud cover (DeVries, Verbesselt, et al. 2015). Landsat satellites have a 

returning cycle of two weeks, and they are out of phase by one week, resulting in an 8-day repeat 

coverage during periods where the two satellites are in orbit (for instance, from 2000-2012, when 

both Landsat 5 and Landsat 7 were active) (Wulder et al. 2019). Using Landsat imagery, we 

obtained time series with enough observations per year to assess vegetation change over time, 

even after removing cloudy pixels and during the years of biweekly (as opposed to weekly) 

repeat coverage (Table 3.2). The number of observations in the studied time series were 

determined by cloud frequency and the overlapping period of Landsat satellites and scenes. 

Cloudy pixels were more frequent during the rainy season and, thus, the time series are more 

populated from May to October; there are more observations between 2000-2012 than before 
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2000 and after 2012, and some plots fall within the overlapping space of two Landsat scenes, 

increasing their coverage over time.  

 Removing contaminated pixels was a fundamental step in this study. In addition to 

applying a cloud mask as most other studies do, we also calculated a cloud index (Table 3.1) and, 

following Zhai et al (2018), removed all pixels with a CI value lower than 2.8. This was 

particularly useful because, besides being frequently overcast, TMCF are regularly immerse in 

ground-level clouds (fog), particularly in the dry season (Gotsch, Asbjornsen, and Goldsmith 

2020). Ground-level clouds can have a different spectral signature than clouds that form in the 

upper sky. Thus, foggy pixels were not always masked out by the CFMask. Using a cloud mask 

and a CI threshold value we reached a ground pixel accuracy of 94%. Making sure that time 

series observations were cloud-free was essential to avoid overestimating vegetation cover 

change due to commission errors (DeVries, Verbesselt, et al. 2015). 

 We assessed forest disturbance by detecting abrupt changes in FI plots vegetation cover 

and by estimating the variation of VI over time. It is important to note that disturbances unrelated 

to land use can also increase the variability in vegetation cover over time and trigger a change in 

forest cover. For instance, fires, pest outbreaks, and landslides can all be tracked from space 

using satellite imagery because they influence forest cover and, with it, the spectral reflectance of 

land’s surface (Frolking et al. 2009). However, land use is the most common cause of forest loss 

in the NMO and thus, we did not distinguish different types of disturbance (Toledo-Aceves et al. 

2011). Unfortunately, Landsat coverage over our study area before 1993 is scarce and impossible 

to use in time series analysis (Solórzano, Gallardo-Cruz, and Peralta-Carreta 2020). Thus, the 

length of time series ranged from 16-21 years depending on the time of field data collection (that 

took place from 2009 to 2014). Nevertheless, periods of 16-21 years are enough for gaining 

insight into the land use dynamics of the studied forests.  

 Abrupt forest cover changes were assessed with BFAST. Out of 284 plots, 76 were 

cleared at least once over the two decades before field data collection. Within 1-ha sites, the 

average number of breakpoints over time is 2.46, and 23 sites (out of 39) show no disturbance 

during the evaluated period. Several plots exhibit recurrent breakpoints (Table 3.3), suggesting 

that vegetation is repeatedly cleared. In fact, the average TSLD is 9, which means that disturbed 

plots are, on average, cleared every 9 years. Different types of land use create distinct 

disturbance regimes. For instance, shifting cultivation creates cycles of forest clearing and 
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regrowth (Frolking et al. 2009). Thus, forest plots that are part of a shifting cultivation cycle may 

exhibit several breakpoints in their time series, depending on the length of the fallow periods 

(Jiang, Li, and Feng 2022). However, other types of land use could also result in repetitive 

breakpoints depending on the management and the sequence of land-cover change. For example, 

this could occur in a cleared forest stand that is converted to an agroforestry system, whose 

management implies the periodic reduction of vegetation cover, or in a forest turned into a coffee 

farm and then into grazing land. These dynamics are not uncommon in tropical mountains, 

including the NMO (del Castillo 2013). Moreover, research has shown that disturbed forests 

(degraded or secondary) are more often cleared and converted to agricultural or grazing lands 

than old-growth forests (Reid et al. 2019; Ochoa-Gaona and Gonzôlez-Espinosa 2000; Heinrich 

et al. 2021). This explains why only one quarter of forest plots show breakpoints, but most of 

them show two or more clearings.  

 FI plots with breakpoints show lower basal area, tree height, tree density, and AGB than 

forests with no breakpoints (Figure 3.2). As expected, the difference in tree density between 

plots with and without breakpoints was not as large as that in the other forest structure variables, 

because forests in secondary succession have greater tree density than old-growth forests (Ruiz-

Jiménez, Meave, and Contreras-Jiménez 1999; Meave et al. 1992). Interestingly, plots with 

breakpoints have an average AGB of 50.7 Mg ha-1 and most of them do not surpass 100 Mg ha-1. 

This means that the presence of breakpoints can be used to flag forest pixels to avoid 

overestimating AGB. Notably, plots with no breakpoints show large forest structure variation. 

For instance, some undisturbed plots have an AGB < 10 Mg ha-1 while others attain values larger 

than 500 Mg ha-1. This wide variation has three possible explanations: (1) breakpoints were 

underestimated in time series that correspond to FI plots with very low AGB; (2) forest plots 

with very low AGB were converted before 1993 and never recovered from the disturbance; and 

(3) forest degradation decreased AGB in certain FI plots, but this type of slow change is not 

detected as a breakpoint.  

Underestimating breakpoints could occur if the NDVI magnitude threshold we selected is 

higher than needed so that forest clearings with an NDVI magnitude lower than |0.15| occurred. 

The selection of a magnitude threshold depends on the type of forest studied. For instance, 

DeVries et al. (2015) used a magnitude threshold of 0.06 for monitoring Afromontane forests of 

southern Ethiopia in a Biosphere Reserve where stable time series were expected. In contrast, 
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Gao et al. (2021) used a threshold of |0.2| in Mexican tropical dry and temperate forests, where it 

was expected that seasonal variation resulted in large NDVI change. In our case, the landscapes 

studied are heterogenous and encompass lands with different levels of vegetation cover 

(agroforestry systems, agricultural lands with scattered trees, secondary and old-growth forests) 

and thus, we were expecting large NDVI variation that, in case of change, would show an 

equally large magnitude. Therefore, we limited breakpoint detection to NDVI changes that 

occurred clearly as an event of complete vegetation cover loss, which we found at a magnitude 

of |0.15|. On the other hand, slow forest disturbance, such as forest degradation, can result in low 

values of AGB and will not trigger an abrupt change in NDVI (DeVries, Verbesselt, et al. 2015). 

Hence, forest disturbance could be underestimated if forest degradation is more common than 

forest conversion. Additionally, research showing high levels of deforestation in the 1980s and 

90’s suggests that LULCC in these landscapes was common before the beginning of the studied 

time series (Gómez-Mendoza et al. 2006). FI plots with low AGB but no breakpoints could have 

been disturbed before 1993 and maintained stable afterwards, showing a steady NDVI time 

series.  

 FI plots with breakpoints also show great variation in forest structure in relation to the 

TSLD (Figure 3.3). Although all forest structure variables increase over time, the relationship 

between TSLD and forest structure was not as clear as we were expecting. AGB was the variable 

showing a more significant change over time. However, there are several plots with breakpoints 

in the last five years showing similar AGB values than plots with more than 15 years since the 

last disturbance. This suggests that vegetation is not always allowed to regenerate after an abrupt 

change, and also that in some events of abrupt change large trees are left alive, maintaining some 

AGB even if the land is almost completely cleared. Indeed, research conducted in the NMO has 

shown that establishing permanent agricultural lands and cattle ranches has become more 

common in the last decades (Velázquez et al. 2003). Moreover, maintaining trees in agricultural 

and grazing lands is a common practice among small-scale farmers (Fuentealba and González-

Esquivel 2016; Zomer et al. 2017). Together, the fact that 27% of plots show breakpoints over 

16-21 years, that several FI plots were cleared repeatedly, the large variation in plots with no 

breakpoints, and the large variation of forest structure over time after a disturbance, show the 

dynamism of changes in land use and vegetation in the region.  
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 Gradual change is not considered in an approach based on detecting breakpoints but 

could also be informative. To consider gradual change, we computed basic summary statistics of 

NDVI and NDWI time series. Interestingly, the variation in VI over the time series, assessed 

through their S.D. and their minimum values, was more informative for assessing forest 

structural change over time than average and maximum values. Average NDVI values are often 

employed in AGB models. However, they are mainly used for distinguishing vegetation cover 

and do not show strong relationships with forest structure variables (Saatchi et al. 2011). Here 

we found that historical trends of vegetation cover and its variation over time can be assessed 

with VI time series and that they are relevant for predicting forest structure.  

The RS variables that show stronger relationships with forest structure are: NDVIa S.D., 

NDVI S.D., and NDWIa min. Notably, RS variables are corelated. As plots show more 

variability in their vegetation cover over time (i.e., disturbance), their S.D. increases making it 

more likely to find lower VI values (i.e., lower VI min). AGB, basal area, and tree height 

decrease with forest disturbance, which explains why VI minimum values and S.D. show a 

relationship with forest structure (Figure 3.4). From all RS variables analyzed, NDVI S.D. was 

the best predictor of forest structure and AGB, except for tree density. NDWI was more 

informative in predicting tree density than other VI. NDWI is related to the content of liquid 

water in the forest canopy (Maki, Ishiahra, and Tamura 2004). Thus, forests with lower tree 

density also show the lowest NDWI values. Tree density, however, is not the best predictor of 

AGB. Forests in secondary succession tend to have a higher number of trees −albeit smaller and 

thinner−than older forests (Guariguata and Ostertag 2001). Thus, old-growth forests hold greater 

amounts of biomass, especially in large trees, than forests in secondary succession. Because of 

this, basal area and tree height are better predictors of AGB in TMCF (Cuni-Sanchez et al. 

2017). Tree height is usually assessed with active RS in AGB models. However, estimating basal 

area has proven to be more difficult (S. Brown, Narine, and Gilbert 2022). Surprisingly, we 

found that NDVI S.D., NDVIa S.D., and NDWIa min greatly improve the predictability of basal 

area. In fact, computing multiple linear regression models using RS variables, slope, and 

elevation as predictors, we found an adjusted-R2 of 0.6 for basal area. These results hint to the 

wide array of possibilities that could be developed for implementing recent forest disturbance in 

AGB models.   
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Implementing land use in aboveground biomass models 

Despite forest disturbance related to land use influences the magnitude and distribution of AGB 

in tropical forests, it is rarely included in regional AGB estimates (K. H. Erb et al. 2018). Our 

results suggest that the variation of VI and their minimum values over time can be greatly 

informative in predicting forest structure and AGB. Although more sophisticated models are 

usually applied for mapping AGB, here, using linear regression models, we explored the 

relationship between RS variables of forest disturbance and forest structure variables, including 

basal area, Lorey’s height, tree density, and AGB, adding only two environmental variables as 

predictors (slope and elevation). With these simple models, we obtained statistically significant 

relationships between RS variables of recent disturbance and forest structure. Surprisingly, the 

number of breaks and TSLD were not relevant predictors, although they proved to be important 

variables for understanding the variation in AGB and forest structure resulting from the dynamic 

processes of forest cover change in the region.  

 Implementing land use in regional models of AGB has been challenging, in part, due to 

the lack of informative data. Using time series of VI is a common approach in forest monitoring 

that has not been applied for modeling the distribution of AGB. Given the large amount of RS 

data and the computer power now available, it is feasible to assess the recent disturbance history 

of pixels through summarizing VI time series information. Whether a forest pixel has been 

abruptly or gradually disturbed, the record persists in the satellite imagery archives. Harnessing 

this opportunity could increase our understanding of AGB spatial patterns while reducing the 

uncertainty in AGB maps. Variables such as number of breakpoints, NDVI S.D., and annual 

NDWI minimum values are not difficult to calculate and are good candidates to be tested as 

inputs. 

Caveats and recommendations 

Our approach to study recent forest disturbance in TMCF has some important limitations. First, 

our approach is time-constrained. Although we used the satellite imagery with the longest record 

of Earth’s surface, Landsat provides data for the last ~50 years at best (and about 30 years for our 

study area) (Solórzano, Gallardo-Cruz, and Peralta-Carreta 2020; Wulder et al. 2019). However, 

forest disturbance has long-term effects that are not captured by RS imagery (Aragón et al. 2021; 

R. Chazdon 2003). Second, analyzing VI time series allows us to detect changes in vegetation 

cover that we linked to land use because it is the most common disturbance found in the NMO. 
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Yet, other types of disturbance taking place in the area (e.g., fires Cruz-López et al. 2019) have 

similar RS signals, although possible different effects on forest structure and recovery. A 

limitation of this approach is its incapability to identify different types of disturbance. Even if the 

detected disturbance is related to land use, with this approach is not possible to identify whether 

the change in vegetation is permanent or temporal, nor the exact type of LULCC that took place. 

Despite these limitations, summarizing VI time series information is a promising approach to 

include recent forest disturbance into AGB modeling. To do so it is important to: (1) remove all 

cloudy and foggy pixels from the time series to avoid commission errors when detecting 

vegetation disturbance; (2) use the longest record available to extract VI time series and trim 

them to the closest point to field data collection; (3) detect breakpoints and flag all pixels that 

have been disturbed in the recent past (even if those pixels display high NDVI values, it is almost 

certain that they cannot have more than 100 Mg ha-1); (4) calculate basic summary statistics of 

NDVI and NDWI, particularly NDVI S.D. and NDWI minimum values, and used them as inputs 

in AGB models along with other sources of information. Combining these time series summary 

statistics with active RS variables could be especially useful, as the former have a stronger 

relationship with basal area and the latter with forest canopy height, complementing the 

information needed to estimate AGB. Finally, we recommend conducting time series analyses of 

land use related disturbance at a meaningful spatial scale. Imagery of medium-to-high spatial and 

temporal resolution would yield better results than coarse-grained data.    

 

CONCLUSIONS AND BRIDGE 

Forest disturbance and its effects represent a large component of uncertainty in AGB 

estimates. Here, with the aim of improving our understanding of land use influence on biomass 

accumulation, we analyzed the effect of recent small-scale disturbance on forest structure with 

optical RS satellite imagery and FI data in the TMCF of the NMO. Our objective was twofold. 

First, we wanted to estimate the effect of small-scale forest disturbance on TMCF structure using 

Landsat time series; and second, we explored possible ways in which these effects could be 

incorporated into AGB models. We found that Landsat time series have the potential to add 

power to AGB models and decrease uncertainty related to forest disturbance. In particular, we 

found that NDVI S.D. and NDWI minimum values of Landsat time series are related to forest 

structural variables, especially to basal area and tree density, which can potentially complement 
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active RS data that is better related to tree canopy height. We also showed that forest change 

detection with BFAST can be applied to flag pixels that have experienced recent disturbance, 

adding information that could be easily missed if only a snapshot of a VI is used. Finally, our 

results reveal the dynamism that the studied landscapes experience; a dynamism that, if 

successfully accounted for, can improve AGB models, especially at landscape and regional 

scales. 

The following chapter uses another remote sensing approach to assess the trends of forest 

loss across the entire region. Given the relevance that land use has on forest dynamics and 

distribution (shown in this and the previous chapter), I analyze the relationship between forest 

loss trends and agricultural production in the NMO. In addition, I investigate the forest 

conservation efforts developed in the region and critically assess how forest conservation can be 

conducted in tropical montane landscapes.  
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CHAPTER 4 

FOREST LOSS AND CONSERVATION IN THE NORTHERN MOUNTAINS OF 

OAXACA, MEXICO, IN THE LAST TWO DECADES 

 

INTRODUCTION 

Tropical forests are currently under great stress due to climate change and widespread 

deforestation (Morello et al. 2018; Yadvinder Malhi et al. 2014). A combination of land-use and 

land-cover change (LULCC), hurricanes, drought, and fires is diminishing the extent of tropical 

forest worldwide (França et al. 2020). Although several regulations to decrease the rate of 

deforestation in tropical countries are in place (Furumo and Lambin 2021), tropical forest loss 

still surpasses forest gain (FAO 2016; Hansen et al. 2013). According to Global Forest Watch 

(GFW), 11.1 million ha of tropical forest were lost in 2021 (Weisse and Goldman 2022), a 

higher figure than the seven million ha yr-1 reported by the Food and Agriculture Organization 

(FAO) for the first decade of the 21st century (FAO 2016). These trends indicate that tropical 

forest loss is still on the rise.  

Forest loss in the tropics is mainly driven by the expansion of agriculture and the 

establishment of cattle ranches (H K Gibbs et al. 2010). Commodity-driven deforestation 

amounted for 27% of total forest loss between 2001 and 2015, whereby forests are cleared to 

establish grazing lands, soy, or palm oil plantations (Curtis et al. 2018). Shifting agriculture1 is 

the second most common cause of forest loss in the tropics, representing 24% of forest cover 

change. In contrast to permanent agriculture and cattle ranches, in shifting agriculture land is left 

to fallow, allowing forest to regenerate (Velasco-Murguía et al. 2021). Thus, the difference 

between forest loss and deforestation is more difficult to establish with remote sensing in places 

with shifting agriculture than in those with forest conversion to permanent agriculture (Jiang, Li, 

and Feng 2022). Shifting cultivation alone rarely causes deforestation, unless it occurs along 

with other causes of forest loss such as wood extraction and expansion of infrastructure (Geist 

and Lambin 2001). Deforestation in places where shifting agriculture is the main proximate 

cause of forest loss is usually related to shorter fallow periods and other forms of agricultural 

 
1 An agricultural technique based on field rotation in which land is cleared for cultivation and, after a few 

agricultural cycles, left to regenerate. Many small-scale farmers practice shifting agriculture (also known as swidden 

agriculture) in tropical mountains.  
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intensification impacting forests at landscape scales (Tscharntke et al. 2005; Byerlee, Stevenson, 

and Villoria 2014; Phelps et al. 2013). 

 Tropical forest loss has drawn public attention, partly due to the fundamental role these 

forests play in global and regional climate stability, biodiversity, and the provision of ecosystem 

services (Bonan 2008; Gardner et al. 2009). This applies to mountain regions, where both forest 

loss and the evidence showing the large amount of carbon they can accumulate have increased 

(Spracklen and Righelato 2014; Feng et al. 2021). Although forest loss in tropical mountains is 

beginning to be of larger concern, global estimates of forest cover change (like those reported by 

GFW) do not distinguish lowlands from uplands. Tropical mountains are equally subjected to 

both LULCC and climate change. However, their effects and consequences on forest distribution 

and dynamics may be different from those in lower lands because of their biophysical properties 

(including relief, soil nutrients, and climate). Despite the important efforts made by the scientific 

community to study montane landscapes in tropical regions, processes of forest dynamics 

(including LULCC) and the effects of a changing climate in tropical mountains are not yet well 

understood. 

 Thus, with the aim of expanding the characterization of forest loss in tropical mountains, 

here I analyzed forest loss trends in the Northern Mountains of Oaxaca (NMO), Mexico. The 

NMO harbors some of the most biodiverse forests in that country, including the largest and most 

continuous tropical montane cloud forest (TMCF), as well as large extensions of coniferous 

forests and tropical evergreen forests (Toledo-Aceves et al. 2011). The NMO is also home to 

about half a million people, out of which roughly 47% are indigenous (mainly Zapotec, Mixe, 

and Chinantec), and many are involved in farming (CEIEG 2022a, 2022b). The NMO has also 

been the stage of several local, but globally renowned, forest conservation projects (D. B. Bray et 

al. 2003). In the second part of this chapter, I analyze forest conservation efforts, many of which 

have been led by these indigenous groups, in tropical forests and their possible use in montane 

landscapes.  

 

METHODS 

The NMO, located in southern Mexico, exhibits a wide diversity of ecosystems going from 

tropical evergreen or deciduous forest at lower elevations, passing through cloud and oak forest 

at mid elevations, and coniferous forest at higher elevations. Croplands and grasslands can be 
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found in large extensions at lower elevations closer to Miguel Alemán Dam, and in small patches 

throughout the mountain range (INEGI 2013). Four subregions have been identified in the NMO, 

based on geomorphology, forest cover, watershed margins, rivers, and the presence of 

indigenous groups: Huautla-Zongolica, Ixtlán, Sierra Mixe, and Guevea de Humboldt (Toledo-

Aceves et al. 2011). 

To study forest loss trends in the region, I used the Global Forest Change product (GFC) 

developed by Hansen et al. in 2013, and available in Google Earth Engine (GEE) (Gorelick et al. 

2017). GFC contains global maps of tree cover change from 2000 to 2019, at a spatial resolution 

of 30 m. I extracted GFC layers of my study area from GEE and overlapped them on a land-

cover map created by the Mexican National Institute of Statistic and Geography (INEGI) in 2013 

(INEGI 2013). I delimited the NMO region using a TMCF regionalization map acquired from 

the National Commission of Biodiversity (CONABIO) GeoPortal (CONABIO 2012). Then, I 

calculated the area of forest loss in the region and each subregion every year from 2000 to 2019, 

as well as the total amount of forest loss per land-cover type, in ArcGIS Pro (ESRI Inc 2020). 

Later, to assess the role of conservation projects in the region, I added a layer of protected 

natural areas created by the National Commission on Protected Natural Areas (CONANP), 

available through CONABIO’s GeoPortal (CONANP 2019). It is important to note that these 

areas have been voluntarily registered as protected lands by local communities.  

Because most cases of forest loss in the tropics are related to agricultural expansion and 

intensification, I also extracted data from the Mexican Agricultural Information Service (SIAP) 

available online (SIAP 2020), and calculated the area devoted to agriculture and agricultural 

production (in tons) in the NMO from 2003-18. 

Importantly, neither forest gain nor regrowth are considered in this analysis because even 

though shifting cultivation is commonly practiced by smallholders in the region, monitoring 

forest regrowth during fallow periods is more difficult than detecting forest cover loss and is not 

included in the GFC product. There is a layer in GFC that displays forest gain, but the area of 

forest gain in the region was negligible and thus, was excluded from the analysis.  

 

RESULTS AND DISCUSSION 

19 years of forest loss in the Northern Mountains of Oaxaca 
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From 2000 to 2015, around 5,000-6,000 ha of tree cover were lost every year, representing 

between 0.2 to 0.3% of the total forest cover per year (Figure 4.1). From 2015 to 2016, however, 

tree cover loss tripled, and by 2019 it reached its highest point at 20,856 ha, representing 1.13% 

of the total forest cover in the region. This means that the rate of forest loss in this area averaged 

5,513.69 ha per year between 2000 and 2015 and increased to 17,291.23 ha per year after 2015 

(i.e., a 213.6% increase). In total, the NMO lost 151,869 ha of forest cover in 19 years. The area 

of lost forest is similar to that found in other tropical mountains. For example, mountains in 

Southeast Asia lost around 11% of tropical forest between 2001-2019 (Feng et al. 2021), while 

the NMO lost around 8%. These trends are lower than the deforestation rates found by Gómez-

Mendoza et al. (2006) between 1980 and 2000 in NMO, suggesting that forest loss in the region 

decreased during the first fifteen years of the 21st century. A decline in the rate of deforestation 

in the region has been reported before in other studies for that same period (Navarro Cerrillo et 

al. 2018). Although forest cover increase has been described in the region at local scales (cf. 

Velasco Murguía et al. 2014) at the regional scale, forest gain is overshadowed by forest loss and 

not well represented in the GFC product. 

 By overlaying the tree cover loss layers from GFC on a land-cover map, I assessed which 

vegetation type has experienced more forest cover change in the last two decades (Figure 4.1). 

The ecosystem most affected was tropical evergreen forest, which lost 10.6% of its area (53,723 

ha). The second most affected ecosystem was TMCF, losing 7% of its area (32,214 ha). This 

coincides with the LULCC trends found in the state of Oaxaca around 2003, when evergreen 

forests were most affected, followed by TMCF and coniferous forests (Velázquez et al. 2003). 

However, these results show lower percentages of forest loss in comparison to those reported for 

the region between 1980-2000, where evergreen forests lost 40% of their area and TMCF lost 

11% (Gómez-Mendoza et al. 2006). Moreover, there was a 5.2% decrease in tree cover of 

cropland-forest mosaics. These results are in line with the land-use intensity patterns I found in 

chapter 2, where areas at lower elevations (where tropical evergreen forest is found) experience 

more land-use related disturbance.  

The spatial patterns of forest loss in the studied region are heterogeneous. While all 

subregions exhibit a stable state between 2001-2014 followed by a sudden increase in tree cover 

loss, Sierra Mixe stands out as the subregion with the highest forest loss area, especially after 

2015 (Figure 4.1). In this subregion, tree cover loss occurred mainly in TMCF, which lost 19,013 
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ha of forest between 2000 and 2019, representing around 30% of the total tree cover loss in 

Sierra Mixe in these two decades. Tree cover loss in Sierra Mixe amounted to 62,202 ha in total, 

almost twice as much as in any other subregion in the NMO, representing 40% of the total forest 

cover that was lost in the region. Proportionally, however, Guevea de Humboldt lost more trees 

over these two decades, representing almost 13% of its tree cover, most of it in the tropical 

evergreen forest.  

The causes behind tree loss in the NMO are not well understood. According to Gómez-

Mendoza et al. (2006) and Velázquez et al. (2003), forests are cleared in the region mainly to 

allow for the establishment of croplands and grazing lands for cattle. However, these analyses 

were conducted before the sudden increase in tree cover loss in 2015, and are focused on 

previous decades. Whether the rate of agricultural and grazing lands expansion tripled by 2016 

or another source of forest loss arose is still unknown. According to Geist and Lambin (2001), a 

diffuse spatial pattern of forest loss, as the one taking place in the NMO, results from shifting 

agriculture activities. However, given vast amounts of land in NMO are owned by smallholders, 

a patchy, diffuse pattern would be expected even if the land-use change underlying forest loss is 

related to establishing cattle ranches or permanent agriculture.  

Using data from SIAP, I calculated the area devoted to agriculture and agricultural 

production (in tons) in the NMO from 2003 to 2018. I found a total of 72 crops grown in the 

region, of which pasture, maize, coffee, sugar cane, and lime are the most common.  

Agricultural land in the region has gradually increased in area from 315,904 ha in 2003 to 

423,402 ha in 2018 (a 34% rise), showing the highest value of 445,935 ha in 2014 (Figure 4.2). 

Although both agricultural area and production have increased over time, especially after 2010, 

none of them show a sudden increase after 2016. Remarkably, out of the five most common 

crops, the only one that increased in area is pasture, which covered an area of 18,447 ha in 2003 

and of 172,011 ha by 2018 (Figure 4.2). Sugar cane production remained relatively constant over 

time, while the area devoted to maize and coffee production decreased. Pastureland expansion 

occurred in two moments: first, during a sudden increase from 2003 to 2006 followed by a stable 

period, and through a second rapid augment in 2011 and 2012, followed by another stable period 

that lasted until 2018. This means that the region experienced a ten-fold increase in grasslands, 

suggesting that the expansion of grazing lands for cattle is indeed a very important land-cover 

change in the region, which has become even more conspicuous as of late (Gómez-Mendoza et 
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al. 2006). Interestingly, the second largest increase in pastureland roughly mirrors the decline in 

coffee production area, which could suggest the existence of a process of land cover change from 

coffee farms to cattle ranches. Not surprisingly, the decline in area for coffee production 

coincides with the beginning of the coffee rust outbreak−a fungal disease caused by Hemileia 

vastatrix that infects coffee plant leaves causing severe decreases in productivity (Valencia et al. 

2018; Torres Castillo et al. 2020).  

 

 
Figure 4.2. Total agricultural land (left), and agricultural land devoted to the four main crops, 

coffee (in red) sugar cane (in green), maize (in blue), and pastures (in purple) (right) through 

time (2003-2018) in the Northern Mountains of Oaxaca. 

 

It is important to note that tree cover loss can occur in land-cover types other than forests. Here, 

following Hansen et al. (2013), I used a threshold of 50% of tree cover for defining a forest 

pixel. Given several crops are grown in combination with other trees in agroforestry systems, 

such as shaded coffee and cacao, it is completely plausible that these areas exhibit 50% of tree 

cover or more. Consequently, a land-cover change from shaded coffee to sun coffee or pasture 

could be classified as forest loss in GFC if tree cover (remotely sensed) declines significantly. 

Because coffee production is an important activity in the NMO, and coffee productivity has 

declined in the region (Figure 4.2), the possibility that the conversion of shaded coffee farms to 

sun coffee or other land uses has triggered tree cover loss in the region cannot be ruled out. 

Indeed, some local news outlets reported that farmers were opting for converting their coffee 

farms into grazing lands for cattle because coffee ceased to be profitable after the coffee rust hit 

the region (Vargas 2016). 

Other causes of forest loss that cannot be discarded, but are difficult to study, are those 

related to unreported activities, such as deforestation for illicit crop production and illegal 

logging. Studies conducted in Central America have shown that narcotrafficking networks 



 

91 

 

engage in LULCC dynamics through seizing territorial control via land acquisitions, agro-

industrial investments, and the development of transit infrastructure, thus becoming an important 

driver of forest loss (Tellman et al. 2020). Although a systematic analysis of unreported activities 

would be needed to assess whether the NMO is experiencing a similar situation, news reporting 

violence escalation and illicit poppy production in Sierra Mixe suggest that these activities may 

also have a role in the decrease of forest cover in the region (Cruz 2022; Manzo and Carrión 

2022; Mundaca 2019). However, more research is needed to ascertain the underlying causes of 

forest loss increase in the last six years. 

Processes of forest loss are usually complex, multifactorial, exhibit fundamental 

socioeconomic and political ties, and their causes (and often their consequences) extend beyond 

local scales (Geist and Lambin 2001; Lambin, Geist, and Lepers 2003; Seymour and Harris 

2019). Tropical deforestation has been studied at global, regional, and local scales for several 

decades. Most studies conclude that agricultural expansion and forest clearing to produce 

commodities are the main proximate causes of forest loss (Curtis et al. 2018). For instance, Zeng, 

Gower, and Wood (2018) found that forest loss in the mountains of Thailand has been increasing 

due to the expansion of agricultural lands for growing maize, which, in turn, is related to the 

global market price of corn. In the Democratic Republic of Congo, in contrast, forest loss is 

related to mining activities and the expansion of what the authors call the rural complex into 

areas of primary forest (Potapov et al. 2012; Molinario, Hansen, and Potapov 2015). As 

previously mentioned, research conducted in Central America has found that narcotrafficking 

and other illicit activities are also relevant contributors to forest loss (Tellman et al. 2020). 

Although population growth often appears as a main cause of forest loss in tropical 

deforestation studies, these claims are not always sustained by census data and often simplify the 

complex forces underlying deforestation (Lambin et al. 2001). Contrary to the prevailing 

narrative, Defries et al. (2010) found that urban population growth outside the forests (as 

opposed to rural population growth) and an increasing trend of agricultural production for export 

are the main drivers of forest loss in tropical regions. Furthermore, certain cultural activities 

actually increase tree cover, challenging the idea that local land use always degrades forests 

(Fairhead and Leach 2014). In some cases, population growth shows a positive relation with 

forest loss (e.g. Jha and Bawa 2006), but it is never the sole nor the underlying (ultimate) cause 

of forest cover change (Lambin et al. 2001). Generally, when population growth is directly 
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related to forest loss, there are underlying political or institutional mechanisms pushing people 

into forested and less populated areas. This has occurred, for instance, when governments seek 

control over contested territories and force people to relocate, or when people are displaced due 

to the establishment of forest management units (like national parks) or the criminalization of 

their traditional practices (Peluso and Vandergeest 2014). Population trends (both growth and 

decline) have different effects on forests, depending on the economic, social, political, and 

cultural characteristics locally shaping land use and management. In the NMO, for instance, 

forest loss has increased in the last decade, but population has remained constant and there are 

more people emigrating from the region than immigrating (CEIEG 2022a, 2022b), suggesting 

that socioeconomic and political drivers other than population growth are shaping forest cover 

change in the region. 

 

Forest conservation in the Northern Mountains of Oaxaca 

The understanding (or lack thereof) of forest dynamics and their socio-ecological causes and 

consequences can define what type of forest conservation projects are recommended, carried out, 

and supported. Despite the recent rise of forest loss in the NMO, this region has also been in the 

spotlight due to several successful stories of forest conservation, especially in the subregion 

Ixtlán, also known as Sierra de Juárez (e.g. D. Bray 2021). In the NMO, protected natural areas 

established and controlled by the government are nonexistent. Rather, local communities have 

developed different management strategies to protect their forest while producing timber and 

crops, or by carrying out ecotourism activities (Pazos-Almada and Bray 2018). Some 

communities have officially certified their territories as areas voluntarily designated for 

conservation (shown in Figure 4.1); others are enrolled in programs of payment for ecosystem 

services; and others have preferred to manage their territories without government interference 

(Pazos-Almada and Bray 2018; Velasco Murguía et al. 2014).  

Interestingly, the subregion with more community-based conservation projects (Ixtlán) 

exhibits less forest loss than most areas in the NMO. Although forest loss in Ixtlán also increased 

in 2015, in the last two decades it lost 7% of its forest cover, most of it outside areas designated 

for conservation. In contrast, Sierra Mixe lost 9.6% and Guevea de Humboldt lost 12.9% during 

the same period. Moreover, some studies report forest gain in Ixtlán associated with the 

establishment of community-based conservation projects (Velasco Murguía et al. 2014). These 
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results suggest that forest conservation projects in Ixtlán have been successful in maintaining 

forests in designated areas for conservation.  

The fact that forest loss has been uneven over the region, with Sierra Mixe experiencing 

three times the amount of forest loss than that experienced in other subregions, requires a deeper 

analysis. On one hand, it has been deemed difficult to establish and keep forest conservation 

projects in this subregion due to land tenure conflicts (Toledo-Aceves et al. 2011). The lack of 

established conservation strategies could be giving way to greater deforestation rates in the 

subregion in comparison to the others. This could also be true for the subregion Guevea de 

Humboldt, which also lacks structured conservation projects and lost a significant percentage of 

evergreen forest during the last decade. On the other hand, restraining productive activities in 

protected areas could result in the outsourcing of agricultural activities or wood extraction 

elsewhere, causing forest loss in other places, exemplifying what Clark and York have called 

“rifts and shifts” (B. Clark and York 2008; Meyfroidt et al. 2013). The displacement of land use 

across regions, and even across nations, has been described in cases showing forest recovery, 

where the local demand for food or wood is provided by imported goods, instead of being 

produced in situ, thus removing some pressure off local forests while transferring it to more 

distant ones (Pfaff and Walker 2010; Meyfroidt, Rudel, and Lambin 2010). Moreover, studies in 

other tropical montane regions have shown an increase in forest loss in lands surrounding 

protected areas following their establishment (Liu et al. 2022). Because most areas with forest 

conservation plans in the NMO have been developed by local communities that, besides sparing 

land for conservation, maintain productive lands with timber and self-subsistence agriculture, it 

is unlikely that they are shifting to an economy based on importing goods. Most likely, the 

community-based forest conservation conducted in Ixtlán provides a myriad of positive 

examples and ideas for other tropical montane regions (D. B. Bray 2020). Nevertheless, a 

thorough examination of the unintended consequences of forest recovery and conservation 

projects in the NMO has not been conducted. This is important not only to evaluate the benefits 

and consequences of the already established conservation plans, but also to assess whether 

similar forest conservation strategies could be successfully carried out in other tropical montane 

landscapes, including areas within the NMO.  

The conversation around how to protect forests while producing food for the global 

demand has revolved around two opposite ideas: sparing land to protect forests while 
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intensifying agriculture in the remaining lands at one pole, or producing food with 

environmentally friendly agricultural practices while protecting forests in the same landscape at 

the opposite pole (Kremen 2015). Criticized by its simplistic approach, the land-sparing/land-

sharing academic debate seems to be outdated (Bennett 2017; J. Fischer et al. 2014). In practice, 

however, limiting human activities in large portions of land in order to protect whatever primary 

forest is left is currently the most common conservation approach in tropical regions (Terraube 

and Fernández-Llamazares 2020; Seymour and Harris 2019). Meanwhile, an agricultural 

intensification model keeps dominating agricultural production and sprawling along with the 

expansion of agriculture itself (Zabel et al. 2019). It seems, then, that a land-sparing approach is 

the one ruling the conservation agenda globally. In this context, conservation projects like those 

taking place in Ixtlán provide practical and nuanced examples of the land-sparing vs. land-

sharing scheme (J. Fischer et al. 2017). On one hand, the projects in Ixtlán are sparing land for 

protecting forests while producing agricultural or timber commodities, as well as self-subsistence 

agriculture. On the other hand, these projects retain some of the land-sharing principles, such as 

low-intensity agricultural practices and a community-based organization, where conservation 

plans are agreed on in assemblies, instead of being enforced and regulated by the government. 

Importantly, this marks a fundamental difference with fortress conservation (the extreme model 

of land-sparing), which prioritizes conservation at the expense of local livelihoods, displacing 

people from their homes and restricting their access to basic resources through law enforcement 

(West, Igoe, and Brockington 2006; Domínguez and Luoma 2020; Brockington and Igoe 2006). 

Conservation agendas are moving beyond a strict land-sparing model as the human-rights 

and ethical problems brought by fortress conservation projects are highlighted, and the negative 

impact of certain modes of agriculture on tropical forests is demystified (Ravikumar et al. 2017; 

Domínguez and Luoma 2020). In this context, the role of agroecological systems as a possible 

solution to produce food while conserving forests is gaining attention (Perfecto and Vandermeer 

2008; Perfecto and Vandermeer 2010). So is the fact that shifting cultivation does not always 

drive deforestation. For instance, FAO’s State of Forests (2016) puts agroecology at the forefront 

of the conversation on forest conservation solutions. More broadly, the establishment of 

agroecological management at large scales has resulted in forest cover increase over the last 

decades in countries like Cuba, where agroecology is practiced at a national level (Betancourt 

2020). Similarly, recent analyses on global forest loss trends like GFW explicitly nuance the role 
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of shifting agriculture as a proximate cause of deforestation (Curtis et al. 2018). This is essential, 

since accepting and understanding the current and historical role of agriculture in shaping 

forested landscapes is a first critical step in reframing the food-conservation challenge into a 

more inclusive conversation centered both in non-human and human wellbeing. 

People living in the NMO have depended on forest resources and agricultural production 

for hundreds to thousands of years (de Teresa 2011). Despite the relationship that local 

communities have with their territories has been deeply shaken by colonization and the 

incorporation of agricultural production to capitalism, agriculture remains an important part of 

their livelihood (de Teresa 1999; Aquino Vásquez, Ramírez Juárez, and Clark Tapia 2021). In 

this way, peasant agriculture and indigenous traditions are entwined with migration (seasonal or 

permanent, national or international), off-farm work diversification, the incorporation of 

industrial agricultural techniques, and the integration of local products to the global market, 

shaping rural life in the mountains (S. Hecht 2010; Aquino Vásquez, Ramírez Juárez, and Clark 

Tapia 2021; Kay 2008). Regarding forest conservation, understanding this complex reality is 

fundamental for the future of tropical montane forests.  

For several reasons, the NMO provides an excellent opportunity to carry out conservation 

plans where low-input, wildlife-friendly agriculture and sustainable forest management coexist. 

First, industrial agriculture is naturally limited in montane landscapes due to the steep terrain, 

hindering the use of machinery and the conversion of forest in very large extensions of land. 

Perhaps more importantly, the intensification of agriculture in tropical hillsides has multiple 

negative and undesirable effects on soils and water resources (Turkelboom, Poesen, and Trébuil 

2008). Far from meaning that agriculture is completely unsuitable for tropical mountains, this 

means that non-industrial agriculture may represent a better strategy for the sustainable 

management of tropical montane landscapes. Second, rural life in the NMO is characterized by 

its deep roots in peasant agriculture2, which can be a meaningful source of traditional knowledge 

on farming, as well as a fundamental element for food security in the region (Bocco 1991; 

Altieri, Anderson, and Merrick 1987; Rivero-Romero et al. 2016; Bellon et al. 2021). Third, in 

the state of Oaxaca, 82% of forests are owned by ejidos or communities−two forms of common 

 
2 In contrast to capitalist agriculture, peasant agriculture is based on subsistence production and simple commodity 

production, and it depends on family labor and access to land (Bryceson 2000; Akram-Lodhi and Kay 2010; De 

Janvry 1981). A peasant household constitutes simultaneously a unit of production, consumption and reproduction 

(De Janvry 1981). 
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property created after the Mexican Revolution as part of a land reform that granted land to small-

scale farmers and territorial rights to indigenous communities (Madrid et al. 2009; Morett-

Sánchez and Cosío-Ruiz 2017). Most forested land in the NMO is in communal land, where the 

collective decisions taken on the use of land have proven to be a successful path to sustainable 

forest management and regrowth (D. B. Bray 2020; Porter-Bolland et al. 2012). 

 

CONCLUSIONS 

In this chapter, I sought to describe the general trend of forest loss and conservation in the NMO 

and how they relate to land use. I found that forest loss in the NMO remained almost constant for 

many years but increased in the last six years, especially in the subregion Sierra Mixe. The most 

affected ecosystems were tropical evergreen forests and TMCF. The reasons behind the sudden 

increase of forest loss in 2015 are unclear, but agricultural surveys show a significant expansion 

of pasturelands in the last decade, suggesting that forest or shaded coffee farms conversion to 

cattle ranches may be driving forest loss in the region. In addition, land-use change due to illicit 

activities may also be playing an important role. These changes can have important implications 

for biodiversity and carbon dynamics, and must be monitored.  

Although the area, rate, and time of change in the two data sets used here (SIAP and 

GFC) are not completely compatible, this comparison provides useful insights on the relationship 

between agricultural and forest cover change. The mismatch between both datasets is not 

surprising, since they are estimated in very different ways. SIAP depends on surveys at the 

municipality level and presents “broader-brush” information, while GFC is based on remote 

sensing data with a higher spatial resolution, but does not provide land-use information. To 

assess the fate of pixels experiencing forest loss with precision, it would be necessary to make 

land-cover maps that can be contrasted with SIAP, or other similar databases. The results shown 

here, then, are general trends that provide a starting point for future research. 

Community-based conservation projects are having a positive impact locally, especially 

in the subregion Ixtlán, where most conservation projects are located, and which showed lower 

forest loss than other subregions. Other conservation lands exist in the region but are not 

included in the analysis due to lack of geographic data. These include forests managed 

sustainably by local communities and land under payment for ecosystems services. Despite local 
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communities are making very important efforts to protect forests, forest loss continues to 

increase, counteracting forest gain. 

The effects of forest loss depend on the type of LULCC taking place. The spatial pattern 

of forest loss (small and scattered patches) points to a possible case of shifting agriculture, which 

could not necessarily lead to deforestation if vegetation is allowed to regrow. However, the 

substantial increase of pasturelands in the region suggest that forests are being converted to cattle 

ranches, indicating that at least a proportion of forest cover has been permanently lost. A deeper 

land system analysis with ground data is needed to assess if this is indeed the case, as well as the 

underlying cause driving the change.  

Considering the current state of deforestation in the tropics and in the NMO, there is no 

doubt that conservation plans are urgently needed to protect tropical montane forests. It is 

fundamental, however, for these plans to understand the socioecological complexity of forest 

dynamics, avoid simplistic solutions based on mainstream and unquestioned narratives, and that 

local communities become the main actors of forest conservation. This is particularly important 

in regions like the NMO, where most forests are located in communal land and have a long 

indigenous history and tradition. The NMO thus provides, at the same time, an example of forest 

loss in tropical mountains, as well as the potential for holistic forest conservation that could arise 

from the complex rurality of the Global South. 
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CHAPTER 5 

CONCLUSIONS 

 

This dissertation sought to broaden our understanding of the role of land use in shaping forest 

structure and dynamics in tropical mountains. To do so, I used the Northern Mountains of 

Oaxaca as a study case, a mountain range located in southern Mexico. I investigated changes in 

vegetation across space and time within this region, with a particular focus on an ecosystem 

known as tropical montane cloud forest. Using a combination of remote sensing and field data, I 

answered questions related to the dynamics and structure of cloud forest at local and regional 

scales (hence the title “from plot to region”). While field data provided information at local 

levels, such as the number of tree species and their size, with remote sensing data I was able to 

work at broader temporal and spatial resolutions. The main results of this dissertation can be 

summarized in the following points:  

(1) Tropical montane cloud forests are embedded in dynamic and heterogeneous landscapes that 

greatly influence their structure. Such dynamism is mainly driven by land use. 

(2) Forest structure and aboveground biomass change along an elevation gradient. Forests at the 

lower end of the elevation gradient experience warmer and wetter conditions, as well as greater 

land-use intensity. As elevation increases, temperature, precipitation, and land-use intensity 

decrease. As a result, aboveground biomass increases with elevation, contrary to the expected 

trend. This spatial pattern can be best predicted by the interactive effects of land use and 

environmental factors, with land use having a larger role within the region. 

(3) The relationship between species diversity and aboveground biomass is weak and scale-

dependent. 

(4) It is possible to incorporate the effect of land use on forest structure in models and maps of 

aboveground biomass using remote sensing data. Specifically, forest disturbance events and 

trends can be assessed using algorithms that detect forest cover change and by calculating the 

variability of vegetation over time in Landsat time series.  

(5) The remote sensing variables derived from the time series analyses can be applied as inputs 

in models of aboveground biomass. This approach has the potential to decrease the uncertainty 

related to land use in forest structure models. 
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(6) In the last six years, forest loss has greatly increased in the Northern Mountains of Oaxaca. 

Forest loss is uneven across the region, and affects tropical evergreen forests and cloud forests 

the most. Although the drivers of forest loss are still uncertain, the area devoted to pasture has 

increased in the last decades, suggesting that forest or coffee farm conversion to grazing lands 

could be playing an important role.  

(7) Community-based conservation projects taking place in the region are associated to less 

forest loss. However, their positive effects are local and, overall, the region is experiencing more 

forest loss than gains. 

 These results are relevant for several reasons. On the one hand, they highlight the need to 

consider land use in ecological studies even when the focus is seemingly unrelated to 

anthropogenic activities. For instance, accurately quantifying AGB across space requires a deep 

understanding of the composition and configuration of landscapes, including the different uses 

given to land and management strategies, which greatly influence the factors shaping plant 

growth, and therefore, forest structure and composition. The high dynamisms of these landscapes 

show that static land cover categories are insufficient to understand the role of land use in 

forested landscapes. Moreover, agricultural practices influence forested landscapes in different 

ways. A large permanent cattle ranch will have a different effect on nearby forests than a low-

input shaded coffee farm. These differences have seldom been analyzed at landscape to regional 

scales.  

Based on the results presented here, I suggest conducting further studies on the role of 

land use in montane forests considering not only broad categories based on land cover (such as 

cropland, grazing land and forest), but also management strategies and common agricultural 

practices. This will require analyses across scales: local studies for gaining a deeper 

understanding on land management and practices as well as their ecological effects in detail; and 

landscape and regional studies to understand feedbacks and synergies of local changes at larger 

extents. Both up- and downscaling data implies losing information, thus, continuous dialogue 

between data acquired on the ground and at larger extents is fundamental. In this sense, remote 

sensing techniques are excellent candidates to bridge local to regional studies.  

The large amount of remote sensing data and computer power currently available allow 

to study dynamic landscapes considering their complexity and nuances. So far, however, remote 

sensing techniques have been applied to monitor forest and detect forest loss using series of 
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images acquired over time, or to describe land features (e.g., land cover, biomass, leaf area) at a 

single moment. In both approaches anthropogenic activities are usually masked out (except when 

the objective is to show the direct effect of humans on the environment). Beneath the seemingly 

objectivity of land cover categories and forest masks lies the complex rural dynamics shaping 

forests and their agricultural matrix, which are often lost in the process of generalization at 

regional scales. Thus, remote sensing studies could be enriched by applying different techniques 

together and, more importantly, by asking questions that have not been explored within 

mainstream remote sensing research. This includes engaging with the rural reality of the Global 

South. 

In this dissertation I show that there are possible ways to include the recent history of a 

landscape and the complex dynamics of rural landscapes in the description of land features by 

combining the two main approaches applied in remote sensing analyses (monitoring over time 

and single snapshots) and by explicitly including land use in research questions. These are just 

the first steps in the direction of a remote sensing research situated on the rural context of 

tropical regions. Many questions are worth exploring in the future, for instance, can the effect of 

different agricultural practices on forest ecology be accurately study at regional scales using 

remote sensing techniques? What type of information is lost and gained in the process of 

generalizing local processes at larger spatial extents? How do global forces driving agrarian 

change translate into changes in forest ecology and how can remote sensing be used to better 

understand these processes in tropical regions? In this sense, my suggestion to remote sensing 

studies of tropical regions is to continue exploring methods and lines of inquiry that engage with 

rural realities considering their socioeconomic and political context. 

The results of my work have implications beyond academic endeavors. Despite major 

commitments have been made at national and international summits to reduce deforestation and 

climate change, forest loss continues to increase in tropical regions, and it seems to be 

accelerating in tropical mountains. Understanding the causes and consequences of land use and 

agrarian change on forested landscapes is fundamental for developing adequate policies and 

projects that effectively protect forests. In particular, I would recommend to further explore the 

effectiveness of payment for ecosystem services and community-based forest conservation 

projects in the NMO, as well as the expansion of cattle ranches and the decline in coffee 

production, as I believe these factors are major drivers of forest dynamics in the region. 
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Moreover, similar processes of agrarian change are probably taking place in other tropical 

mountains, underscoring the need to understand these dynamics further in the NMO and 

elsewhere.   

In conclusion, in this dissertation I provide new insights on the spatial patterns of forest 

structure and aboveground biomass in a tropical mountain range, and how these patterns relate to 

land use. The results presented here are relevant for understanding forest dynamics in the 

Northern Mountains of Oaxaca and in other tropical mountains. Besides providing new estimates 

of aboveground biomass for the region as well as the underlying mechanisms to explain its 

distribution, I also offer new methods that have the potential to improve models of forest 

structure and aboveground biomass elsewhere. Finally, this dissertation marks the beginning of a 

research agenda on the relationship between forest ecology and agrarian change that I would like 

to develop further in the future. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 2 

 

Tables 

 

Table S2.1. Variables used in this study at three sampling units: site, plot, and tree.  

Level Variable Units Explanation Source 

Site Site ID - Unique identifier of site FI 

Longitude Decimal 

degrees 

Geographic coordinate 

at site centroid 

FI 

Latitude Decimal 

degrees 

Geographic coordinate 

at site centroid 

FI 

Altitude m  Elevation above sea 

level at site centroid  

FI 

Temperature Degrees 

C 

Annual mean 

temperature 

WorldClim 

Precipitation mm Annual mean 

precipitation 

WordClim 

Slope Degrees Average slope Calculated from 

NASA’s Shuttle Radar 

Topography Mission 

digital elevation data 

(~30 m resolution), 

averaged by plot 

Aspect Degrees Average aspect Calculated from 

NASA’s Shuttle Radar 

Topography Mission 

digital elevation data 

(~30 m resolution), 

averaged by plot 

Plot number Plot Number of plots in site 

(goes from 1 to 4) 

FI (edited after data 

quality control) 

Tree number Tree  Site’s average number 

of trees measured 

Derived from FI raw 

data, averaged by plot 

Tree density stems/ha Average number of 

trees per area in site 

Derived from FI raw 

data, averaged by plot 

Basal area m/ha Site’s average basal area  Derived from FI raw 

data, averaged by plot 

Tree height m Site’s average tree 

height  

Derived from FI raw 

data, averaged by plot 

Lorey’s height m Mean tree height 

weighted by their basal 

area 

Derived from FI raw 

data, averaged by plot 

Aboveground 

biomass (AGB) 

Mg/ha Site’s average AGB Averaged by plot, 

calculated with 

allometric equations 
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using FI raw data 

Shannon (H) bits Diversity index Calculated using FI raw 

data, averaged by plot 

Species 

richness 

Species Site’s average number 

of species 

Calculated using FI raw 

data, averaged by plot 

Landscape 

composition 

- Site’s patchiness, goes 

from 0, when all plots in 

site are mature forests, 

to 1, when all plots in 

site are very young 

forests or agricultural 

lands  

Calculated using plot’s 

successional stage 

 

Disturbance by 

agriculture 

- Forest disturbance 

related to agricultural 

activities, aggregated, 

and averaged by site; it 

goes from 0 when no 

disturbance was 

detected to 4 when 

disturbance was severe 

Derived from FI 

disturbance database 

 

Disturbance by 

grazing 

- Forest disturbance 

related to cattle grazing, 

aggregated, and 

averaged by site; it goes 

from 0 when no 

disturbance was 

detected to 4 when 

disturbance was severe 

Derived from FI 

disturbance database 

Plot Plot ID - Unique identifier of plot FI 

Latitude Decimal 

degrees 

Geographic coordinate  FI 

Longitude Decimal 

degrees 

Geographic coordinate  FI 

Altitude m  Elevation above sea 

level  

FI 

Slope Degrees Hillslope steepness  Calculated from 

NASA’s Shuttle Radar 

Topography Mission 

digital elevation data 

(~30 m resolution) 

Aspect Degrees Direction that the slope 

faces (a.k.a., exposure) 

Calculated from 

NASA’s Shuttle Radar 

Topography Mission 

digital elevation data 

(~30 m resolution) 

Epiphytes - Whether epiphytes are FI 



 

104 

 

present in plot. This 

variable was only used 

to select cloud forest 

sites. 

Tree number tree Total number of trees 

measured in plot 

Calculated using FI raw 

data 

Tree density stems/ha Number of trees per 

area  

Calculated using FI raw 

data 

Tree height m Plot’s average tree 

height 

Calculated using FI raw 

data 

Lorey’s height m Tree’s height weighted 

by their basal area 

Calculated using FI raw 

data 

Basal area m/ha Sum of tree’s basal area 

in relation to plot’s area  

Calculated using FI raw 

data 

Aboveground 

biomass (AGB) 

Mg/ha Sum of tree’s AGB per 

area 

Calculated with 

allometric equations 

using FI raw data 

Shannon (H) bits Diversity index Calculated using FI raw 

data with package 

vegan in R 

Species 

richness 

Species Total number of species 

in plot 

Calculated using FI raw 

data 

Successional 

stage 

- Whether very young, 

young, or mature forest 

Calculated using FI raw 

data with a non-

hierarchical cluster 

analysis (k-means) 

Tree 

Site - Unique identification of 

site 

FI 

Plot_id - Unique identification of 

plot 

FI 

Species - Taxonomic name FI corrected with 

Taxonomic Name 

Resolution Service 

Family - Taxonomic family FI corrected with 

Taxonomic Name 

Resolution Service with 

BIOMASS function 

correctTaxo 

Common name - Common name  FI 

Status - Alive or dead  FI 

Life form - Tree, shrub, palm tree, 

fern, or liana 

FI 

Height m  Individual total height FI 

Diameter at 

breast height 

(DBH) 

cm Diameter of trunk at 1.3 

m from the ground 

FI 
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Basal area m Cross sectional area of 

trunk at 1.3 m from the 

ground 

FI 

Mean wood 

density 

g/cm3 Wood density as 

recorded in scientific 

literature 

Calculated with 

BIOMASS function 

getWoodDensity 

Aboveground 

biomass (AGB) 

Mg Dry mass of the 

aboveground 

component (i.e., 

excluding roots) of 

plants  

Calculated with 

allometric equations  

 

 

Table S2.2. Generic and specific allometric equations used in this study to estimate aboveground 

biomass. 

Species Allometric equation Reference 

Abies sp.  [0.0754]*[DBH^2.513] Avedaño et al., 

2009 

Alchornea 

latifolia 

 [Exp[-3.363]*[DBH^2.2714]*[TH^0.4984] Aquino-Ramírez et 

al., 2015 

Alnus acuminata  [Exp[-2.14]*[DBH^2.23]] Acosta-Mireles et 

al, 2002 

Alnus jorullensis  [0.0195]*[DBH^2.7519] Carrillo et al., 2014 

Brosimum 

alicastrum 

 [0.479403]*[DBH^2.0884] Rodríguez-Laguna 

et al., 2008 

Cecropia 

obtusifolia 

 [[0.000022]*[D^1.9]*[H]] +  [[-0.56 + 0.02[D^2] + 

0.04[H]]/10^3] 

Hughes et al., 1999 

Citrus sp.  [-6.64]+[0.279*BA]+[0.000514*BA^2] Schroth et al., 2002 

Clethra sp.  [Exp[-1.90]*[DBH^2.15]] Acosta et al., 2002 

Clethra hartwegii  [Exp[-1.90]*[DBH^2.15]] Acosta et al., 2002 

Clethra mexicana  [0.4632]*[DBH^1.8168] Acosta et al., 2011 

Clethra pringlei  [0.067833]*[DBH^2.50972] Rodríguez et al., 

2006 

Cordia alliodora  [10^-0.755]*[DBH^2.072] Segura et al., 2006 

Cupressus 

lusitanica 

 [0.5266]*[DBH^1.7712] Vigil, 2010 

Dendropanax 

arboreus 

 [0.037241]*[DBH^2.99585] Rodríguez-Laguna 

et al., 2008 

Eugenia sp.  [0.4600]+[[0.0370]*[DBH^2]*TH] Cairns et al., 2003 

Fraxinus uhdei  [362.129]*[[3.1416]*[[[[DBH^2]/4]]^1.100]] Cano, 1994 

Heliocarpus 

appendiculatus 

 [[Exp[4.9375]] * [[DBH^2]^1.0583]] * [1.14]/ 

1000000 

Hughes et al., 1999 

Inga sp.  [Exp[-1.76]*[DBH^2.26]] Acosta et al., 2002 

Inga vera  [Exp[-1.76]*[DBH^2.26]] Acosta et al., 2002 

Inga punctata  [Exp[-3.363]*[DBH^2.4809]*[TH^0.4984] Aquino-Ramírez et 
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al., 2015 

Juglans 

olanchana 

 [10^-1.417]*[DBH^2.755] Segura et al., 2006 

Juniperus 

flaccida 

 [0.209142]*[DBH^1.698] Rodríguez et al., 

2009 

Liquidambar sp.  [Exp[-2.22]*[DBH^2.45]] Acosta et al., 2002 

Liquidambar 

styraciflua 

 [0.180272]*[DBH^2.27177] Rodríguez et al., 

2006 

Nectandra 

ambigens 

 [[Exp[4.9375]]*[[DBH^2]^1.0583]]*[1.14]/1000000 Hughes et al., 1999 

Pinus sp.  [0.058]*[[[DBH^2]*TH]^0.919] Ayala, 1998 

Pinus ayacahuite  [0.058]*[[[DBH^2]*TH]^0.919] Ayala, 1998 

Pinus devoniana  [0.182]*[DBH^1.936] Méndez et al., 

2011 

Pinus herrerae  [0.1354]*[DBH^2.3033] Návar, 2009 

Pinus leiophylla  [[Exp^-3.549]*[DBH^2.787]]] Návar, 2009 

Pinus oocarpa  [0.058]*[[[DBH^2]*TH]^0.919] Ayala, 1998 

Pinus patula  [0.0514]*[DBH^2.5222] Pacheco, 2011 

Pinus 

pseudostrobus 

 [0.058]*[[[DBH^2]*TH]^0.919] Ayala, 1998 

Prunus persica  [Exp[-2.76]*[DBH^2.37]] Acosta, 2003 

Psidium guajava  [0.246689]*[DBH^2.24992] Rodríguez-Laguna 

et al., 2008 

Quercus sp.  [0.1269]*[DBH^2.5169] González, 2008 

Quercus 

candicans 

 [[Exp[-

4.775313]*[DBH^1.798292]*[TH^1.570775]]+[[Exp[-

3.547008]*[DBH^2.593972]]+[[Exp[-

4.752007]*DBH^2]] 

Cortés-Sánchez et 

al., 2019 

Quercus 

crassifolia 

 [0.283]*[[[DBH^2]*TH]^0.807] Ayala, 1998 

Quercus laurina  [0.283]*[[[DBH^2]*TH]^0.807] Ayala, 1998 

Quercus obtusata  [[exp[-

3.53684]*[DBH^2.043763]*[TH^0.759522]]+[[Exp[-

5.803952]*[DBH^2*TH]^1.224292]]+[[Exp[-

6.181035]*[DBH^2.488617]] 

Cortés-Sánchez et 

al., 2019 

Quercus 

peduncularis 

 [Exp[-2.27]*[DBH^2.39]] Acosta, et al., 2002 

Quercus rugosa  [0.283]*[[[DBH^2]*TH]^0.807] Ayala, 1998 

Trema micrantha  [-2.305 + 2.351 * ln[DBH]] * 1.033 Van Breugel et al., 

2011 

Trichilia 

havanensis 

 [0.130169]*[DBH^2.34924] Rodríguez-Laguna 

et al., 2008 

Trichospermum 

mexicanum 

 [0.449]*[DBH^2]-33.565 Montes de Oca-

Cano et al., 2020 

Zanthoxylum sp.  [0.00166]*[DBH^3.6586] Manzano, 2010 
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Tropical trees 0.0673 * (WD * H * DBH^2)^0.976 Chave et al., 2014 

 

Table S2.3. Results of ANOVA and Tukey HSD test on stem density, Lorey’s height, basal area, 

and aboveground biomass (AGB) between forest plots (n= 160) at different successional stages 

(young fallows (F), young forest (Y), and mature forest (M)). Significant p-values are shown in 

bold. 

Response ANOVA Tukey HSD 

F p  Comparison Estimate 95% CI p  

Stem density 80.86 <2e-

16 

F-Y 711.69 (576.74, 846.64) 9.50e-14 

F-M 500.86 (330.19, 671.52) 2.85e-10 

Y-M -210.83 (-384.32, -37.33) 1.27e-02 

Lorey’s 

height 

157.9

0 

<2e-

16 

F-Y 2.38 (1.12, 3.65) 4.63e-05 

F-M 11.93 (10.33, 13.54) 9.41e-14 

Y-M 9.54 (7.92, 11.17) 9.41e-14 

Basal area 197.5

0 

<2e-

16 

F-Y 17.88 (14.32, 21.43) 9.81e-14 

F-M 36.54 (32.04, 41.04) 9.41e-14 

Y-M 18.66 (14.09, 23.24) 1.22e-13 

Wood 

density 

9.77 <0.00

1 

F-Y 0.07 (0.03, 0.12) 3.74e-4 

F-M 0.08 (0.02, 0.13) 2.87e-3 

Y-M 0.005 (-0.05, 0.06) 0.96 

AGB 135.7

0 

<2e-

16 

F-Y 118.30 (81.62, 154.99) 6.50e-12 

F-M 321.48 (275.08, 367.88) 9.41e-14 

Y-M 203.17 (156.00, 250.34) 1.21e-13 

 

Table S2.4. Results of ANOVA and Tukey HSD test on tree size contribution to stem density 

and aboveground biomass (AGB) between tree size classes in TMCF plots (n= 160). Trees were 

classified in six size classes according to their DBH as follows: class 1: DBH < 10 cm; class 2: 

DBH 10-20 cm; class 3: DBH 20-30 cm; class 4: DBH 30-40 cm; class 5: DBH 40-50 cm; class 

6: DBH > 50 cm. Significant p-values are shown in bold. 

Response ANOVA Tukey HSD 

F p  Comparison Estimate 95% CI p  

Contribution 

to stem 

density 

proportion 

129 <2e-16 1-2 0.144 (0.09, 0.19) 1.75e-10 

1-3 -0.123 (-0.17, -0.07) 1.92e-10  

1-4 -0.193 (-0.24, -0.14) 1.75e-10 

1-5 -0.223 (-0.28, -0.16) 1.75e-10 

1-6 -0.236 (-0.30, -0.17) 1.75e-10 

2-3 -0.267 (-0.31, -0.22) 1.75e-10 

2-4 -0.337 (-0.38, -0.28) 1.75e-10 

2-5 -0.368 (-0.42, -0.30) 1.75e-10 

2-6 -0.380 (-0.44, -0.31) 1.75e-10 

3-4 -0.069 (-0.12, -0.01) 2.69e-03 

3-5 -0.100 (-0.16, -0.03) 7.57e-05 

3-6 -0.112 (-0.17, -0.03) 1.77e-05 

4-5 -0.030 (-0.09, 0.03) 0.75 

4-6 -0.043 (-0.11, 0.02) 0.46 
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5-6 -0.012 (-0.08, 0.06) 0.99 

Contribution 

to AGB 

proportion 

34.13 <2e-16 1-2 0.19 (0.12, 0.25) 1.75e-10 

1-3 0.18 (0.11, 0.24) 1.76e-10 

1-4 0.18 (0.10, 0.25) 2.11e-10 

1-5 0.23 (0.14, 0.31) 1.76e-10 

1-6 0.36 (0.27, 0.45) 1.75e-10 

2-3 -0.01 (-0.07, 0.05) 0.99 

2-4 -0.01 (-0.08, 0.05) 0.99 

2-5 0.03 (-0.04, 0.12) 0.82 

2-6 0.17 (0.08, 0.26) 4.92e-07 

3-4 -0.00 (-0.07, 0.07) 1.00 

3-5 0.04 (-0.03, 0.13) 0.60 

3-6 0.18 (0.09, 0.27) 1.33e-07 

4-5 0.04 (-0.04, 0.13) 0.63 

4-6 0.18 (0.09, 0.28) 4.11e-07 

5-6 0.13 (0.03, 0.24) 2.70e-03 

 

 

 

Table S2.5. Results of two-way ANOVA on tree size contribution to stem density and 

aboveground biomass (AGB) between tree size classes, forest successional stage (young fallows 

(F), young forest (Y), and mature forest (M)), and their interaction in TMCF plots (n= 160). 

Trees were classified in six size classes according to their DBH as follows: class 1: DBH < 10 

cm; class 2: DBH 10-20 cm; class 3: DBH 20-30 cm; class 4: DBH 30-40 cm; class 5: DBH 40-

50 cm; class 6: DBH > 50 cm. Significant p-values are shown in bold. Tukey HSD results in 

Github repository.  

Response Explanatory F p  

Contribution to stem 

density proportion 

Size class  144.038 < 2e-16 

Successional stage  19.048 9.43e-09 

Size class:Successional 

stage 

4.641 2.15e-06 

Contribution to AGB 

proportion 

Size class  41.454 < 2e-16 

Successional stage  53.949 < 2e-16 

Size class:Successional 

stage 

3.804 5.35e-05 

 

Table S2.6. Results of one-way ANOVA on the contribution to stem density and aboveground 

biomass (AGB) in each tree size class between forest plots at different successional stages 

(young fallows (F), young forest (Y), and mature forest (M)). Trees were classified in six size 

classes according to their DBH as follows: class 1: DBH < 10 cm; class 2: DBH 10-20 cm; class 

3: DBH 20-30 cm; class 4: DBH 30-40 cm; class 5: DBH 40-50 cm; class 6: DBH > 50 cm. 

Significant p-values (i.e., p < 0.05) are shown in bold. Tukey HSD results in Github repository. 

ANOVA 

Response F  p  

Contribution to stem density Size class 1 21.28 9.05e-09 
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within size classes between 

forest successional stage 

Size class 2 2.20 0.11 

Size class 3 2.15 0.12 

Size class 4 8.17 5.29e-04 

Size class 5 7.93 9.22e-04 

Size class 6 6.84 2.00e-03 

Contribution to AGB within size 

classes between forest 

successional stage 

Size class 1 11.54 2.33e-05 

Size class 2 12.39 1.03e-05 

Size class 3 12.66 9.89e-06 

Size class 4 16.41 7.37e-07 

Size class 5 26.12 9.67e-09 

Size class 6 3.37 0.04 

 

Table S2.7. Results of one-way ANOVA on the contribution to stem density and aboveground 

biomass (AGB) in forest plots at different successional stages (young fallows (F), young forest 

(Y), and mature forest (M)) between tree size classes. Trees were classified in six size classes 

according to their DBH as follows: class 1: DBH < 10 cm; class 2: DBH 10-20 cm; class 3: DBH 

20-30 cm; class 4: DBH 30-40 cm; class 5: DBH 40-50 cm; class 6: DBH > 50 cm. Significant 

p-values (i.e., p < 0.05) are shown in bold. Tukey HSD results in Github repository. 

ANOVA 

Response F p  

Contribution to stem density within 

forest successional stage between size 

classes  

F 18.96 2.09e-15 

Y 115.06 5.18e-64 

M 54.38 4.47e-32 

Contribution to AGB within forest 

successional stage between size classes 

F 11.89 4.44e-10 

Y 21.31 6.95e-18 

M 46.52 6.47e-29 

 

Table S2.8. Moran’s I statistics for multiple linear regression selected as the best model to 

explain aboveground biomass patterns in TMCF for neighborhoods of 10, 25, and 50 km of 

distance between sites (n = 40). This model includes three predictors: slope gradient, landscape 

composition, and disturbance by agricultural activities. 

Distance between sites (km) Moran’s I p 

10  -0.049 0.51 

25 -0.05 0.60 

50 0.02 0.18 
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Figures 

 
Figure S2.1. K-means cluster analysis on structural attributes (stem density, Lorey’s 

height, and basal area) of TMCF plots showing two (to left), three (top right), four 

(bottom left) and five (bottom right) clusters. By comparing the four possible 

classifications with 30 indices, the three cluster classification was selected as the best one 

based on the majority rule. These three clusters match the expected structure found in 

young fallows, young forest, and mature forest in TMCFs. 

 

 

  
 

Figure S2.2. Correlation matrices showing the correlation between all pair of variables 

used in this study at site level (n= 40) in a graphic (left) and a numeric (right) way. Red 

colors indicate negative relations and blue indicate positive relations.  
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Figure S2.3. Principal component analysis (PCA) of climatic (temperature and 

precipitation) and topographic variables (slope and elevation) showing the two first 

principal components (PC1 and PC2). PC1 and PC2 explain 92% of the variation. PC1 

explains 68% of variation and shows that there is a positive correlation between 

temperature and precipitation and a negative correlation between these two and elevation. 

Thus, PC1 represents an environmental gradient from warmer and wetter sites at lower 

elevations (negative values) to cooler and drier sites at higher elevations (positive 

values). Slope is not correlated to the other three variables, and it is the variable driving 

PC2.  
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Figure S2.4. Relationship between aboveground biomass (AGB) and (a) stem density, 

(b) basal area, (c) Lorey’s height, and (d) wood density in TMCF plots (n = 160) 

overlaid by their linear regression curves (black lines). Forest successional stage in 

plots is displayed in colors as follows: young fallows (F) in orange, young (Y) in 

purple, and mature (M) forests in green. 
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a) 

 
 

b) 

 
 

Figure S2.5. Contribution of tree size categories to a) stem density and b) aboveground 

biomass (AGB) in TMCF sites (n= 40). Trees were classified in six classes according to 

their DBH as follows: class 1: DBH < 10 cm; class 2: DBH 10-20 cm; class 3: DBH 20-

30 cm; class 4: DBH 30-40 cm; class 5: DBH 40-50 cm; class 6: DBH > 50 cm. Letters 

indicate statistically significant differences between tree size classes assessed with a one-

way ANOVA and Tukey HSD test (results shown in Table S2.4). Boxes sharing a letter 

are not statistically different. 
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Figure S2.6. Contribution of tree size categories to a) stem density and b) aboveground 

biomass (AGB) in young fallows (F, shown in orange), young forest (Y, shown in purple), 

and mature forest (M, shown in green) plots in TMCF (n=160). Trees were categorized in 

six size classes based on their DBH. Boxes cover the interquartile range (IQR), the 

horizontal line within boxes shows the median, and values 1.5 times larger or smaller than 

the IQR are shown in dark gray points. Letters indicate statistically significant differences 

between tree size classes and forest succession assessed with a two-way ANOVA and 

Tukey test (ANOVA results shown in Table S2.5). Boxes sharing a letter are not 

statistically different.  
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a) 

 
 

b) 

 

c) 

 
 

d) 

 

Figure S2.7. Partial residual plots of multiple linear regression selected as the best model to 

explain aboveground biomass patterns in TMCF based on R2, Mallows' Cp (CP), and 

Bayesian Information Criterion (BIC) with a stepwise model selection process. Plots show 

the three predictors included in the model: a) slope, b) land-use intensity gradient, and c) 

disturbance by agricultural activities. Panel d displays the model residuals according to their 

geographic location to show there is no spatial autocorrelation between them (Moran’s I 

statistics shown in Table S2.8). 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 3 

 

Table S3.1. Confusion matrix showing producer’s, user’s, and overall accuracy of cloud vs. 

ground classification after applying CFMask and filtering pixels with a cloud index using 500 

random pixels.  

 Actual   

Predicted Cloud Ground Row total User’s accuracy 

Cloud 265 21 286 92.65% 

Ground 7 207 214 96.72% 

Column total 272 228 500 Overall accuracy 

Producer’s accuracy 97.42% 90.78%  94.4% 

 

Table S3.2. Breakpoint validation showing the training point id (tp), date of breakpoint, 

breakpoint magnitude, validation result indicating whether the break is real (T) or not (F), and 

the images used for validation of forest cover change. 

tp date magnitude validation images for validation 

tp_52 2021-02-13 -0.3082 T Planet (Nov 26 2020, March 15 2021) 

tp_44 2020-11-09 -0.3500 T Planet (Oct 26 2020, Feb 14 2021) 

tp_59 2020-11-09 -0.2404 T  Planet (Oct 26 2020, Feb 14 2021) 

tp_73 2020-03-30 -0.2902 T Planet (Feb 17 2020, May 9 2020) 

tp_93 2020-03-30 -0.2895 T Planet (March 2 2020, May 9 2020) 

tp_22 2020-03-14 -0.2579 T  Planet (Feb 24 2020, May 9 2020) 

tp_37 2020-01-26 -0.07320 F Planet (Nov 22 2019, Feb 12 2020) 

tp_50 2020-01-26 0.0060 F Planet (Nov 22 2019, Feb 12 2020) 

tp_20 2020-01-10 -0.3354 T Planet (Jan 6 2020, Feb 12 2020) 

tp_53 2019-06-16 0.2092 T * Planet (Jun 6 2019, Aug 31 2019) 

tp_41 2019-04-29 -0.1455 F Planet (Apr 21 2019, Jul 5 2019) 

tp_22 2019-01-23 -0.4323 T Planet (Jan 11 2019, Feb 20 2019) 

tp_37 2019-01-23 -0.3417 T Planet (Jan 11 2019, Feb 20 2019) 

tp_50 2019-01-23 -0.3417 T Planet (Jan 11 2019, Mar 30 2019) 

tp_49 2018-07-31 0.2776 T Planet (May 11 2018, Aug 11 2018) 

tp_53 2018-05-28 -0.0169 F Planet (May 26 2018, Aug 11 2018) 

tp_59 2018-02-05 -0.1978 T Planet (Nov 21 2017, Mar 29 2018) 

tp_82 2018-02-05 -0.1760 T Planet (Jan 8 2018, Mar 17 2018) 

tp_67 2018-01-20 -0.2875 T Planet (Nov 18 2017, Apr 17 2018) 

tp_73 2018-01-20 -0.2615 T Planet (Nov 21 2017, Mar 17 2018) 
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tp_49 2017-07-12 0.0140 F Planet (Jul 11 2017, Aug 03 3017) 

* NOTE: Not a clearing but vegetation regrowth after disturbance (hence positive magnitude). 

Good example of BFAST not detecting vegetation loss but detecting an abrupt change in 

vegetation regrowth after. 

 

Table S3.3. Results of t-tests of forest structure variables between FI plots with breakpoints 

(break, n =76) and without breakpoints (no break, n= 208) detected by BFAST. 

y t df p 

Basal area -5.91 201 <0.001 

log AGB -5.46 126 < 0.0001 

Lorey’s height -6.66 187 <0.0001 

Tree density -1.33 188 0.187 

 

Table S3.4. Results of linear regressions between forest structure variables and time since last 

disturbance (TSLD) in plots with and without breakpoints detected by BFAST.  

All plots (n =284) 

Variable y-intercept slope F df  p Adj-R2 

Sqrt-

Basal 

area 

1.801 0.122 38.82 (1,282) <0.0001  0.12 

Log-AGB 2.17 0.10 45.32 (1,282) <0.0001 0.13 

Lorey’s 

height 

7.05 0.28 27.32 (1, 282) <0.0001 0.08 

Tree 

density 

350.848 15.20 9.207 (1, 282) 0.002 0.02 

Plots with breakpoints (n= 76) 

Variable y-intercept slope F df  p Adj-R2 

Basal 

area 

7.03 0.39 3.50 (1,74) 0.06 0.03 

log AGB 2.38 0.07 6.56 (1,74) 0.01 0.06 

Lorey’s 

height 

8.14 0.08 1.24 (1,74) 0.26 0.003 

Tree 

density 

347.49 20.30 4.02 (1,74) 0.04  0.03 

Plots with no breakpoints (n = 208) 

Variable y-intercept slope F df  p Adj-R2 

Basal 

area 

-16.35 1.97 8.82 (1,206) 0.003 0.03 

log AGB 1.12 0.16 7.48 (1,206) 0.006 0.03 

Lorey’s 

height 

8.68 0.21 0.89 (1,206) 0.34 0 

Tree 

density 

-302.5 49.77 7.37 (1,206) 0.007 0.02 
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Table S3.5. Comparison of multiple linear regression models of forest structure variables using 

elevation, slope, and remote sensing variables as predictors, showing the number of predictors 

considered in each model, as well as their adjusted R2, Mallows' Cp (CP), and Bayesian 

Information Criterion (BIC). The highest adjusted R2, lowest CP, and lowest BIC are in bold. 

BASAL AREA 

 Number of predictors included in model 

Predictors 1 2 3 4 5 6 7 8 9 

Elevation  * * * * * * * * 

Slope   *  * * * * * 

Mean 

TSLD 

      * * * 

Min 

TSLD 

      * * * 

Mean no. 

breaks 

        * 

NDVIa 

S.D. 

   * * * * * * 

NDVI 

S.D. 

*  * * * * * * * 

NDVI 

min 

 *    *  * * 

NDWIa 

min 

   * * * * * * 

Adj-R2 0.294 0.527 0.540 0.575 0.599 0.588 0.577 0.565 0.550 

CP 23.05 4.819 4.751 3.081 2.380 4.253 6.127 8.004 10.00 

BIC -7.31 -20.35 -18.88 -19.44 -19.21 -15.72 -12.22 -8.72 -5.07 

AGB (log-transformed) 

 Number of predictors included in model 

Predictors 1 2 3 4 5 6 7 8 9 

Elevation  * * * * * * * * 

Slope   * * * * * * * 

Mean 

TSLD 

     * * * * 

Min 

TSLD 

       * * 

Mean no. 

breaks 

        * 

NDVIa 

S.D. 

*    * * * * * 

NDVI 

S.D. 

  * * * * * * * 

NDVI 

min 

 *     * * * 

NDWIa 

min 

   * * * * * * 
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Adj-R2 0.241 0.387 0.430 0.425 0.430 0.419 0.406 0.387 0.366 

CP 9.326 1.811 0.504 1.858 2.669 4.362 6.067 8.020 10.00 

BIC -4.492 -10.25 -10.48 -7.625 -5.494 -2.237 1.033 4.633 8.269 

LOREY’S HEIGHT 

 Number of predictors included in model 

Predictors 1 2 3 4 5 6 7 8 9 

Elevation  * * * * * * * * 

Slope   * * * * * * * 

Mean 

TSLD 

       * * 

Min 

TSLD 

    * * * * * 

Mean no. 

breaks 

    * * * * * 

NDVIa 

S.D. 

*      * * * 

NDVI 

S.D. 

 * * * * * * * * 

NDVI 

min 

   *  * * * * 

NDWIa 

min 

        * 

Adj-R2 0.293 0.448 0.464 0.465 0.476 0.484 0.492 0.481 0.463 

CP 13.70 3.991 3.915 4.872 5.193 5.768 6.306 8.000 10.00 

BIC -7.264 -14.33 -12.92 -10.44 -8.759 -6.862 -5.097 -1.843 1.819 

TREE DENSITY (sqrt-transformed) 

 Number of predictors included in model 

Predictors 1 2 3 4 5 6 7 8 9 

Elevation  * * * * * * * * 

Slope         * 

Mean 

TSLD 

   * * * * * * 

Min 

TSLD 

      * * * 

Mean no. 

breaks 

  * * * * * * * 

NDVIa 

S.D. 

*       * * 

NDVI 

S.D. 

    * * * * * 

NDVI 

min 

     * * * * 

NDWIa 

min 

 * * * * * * * * 

Adj-R2 0.187 0.336 0.352 0.343 0.345 0.334 0.313 0.290 0.265 
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CP 5.963 -0.448 -0.128 1.398 2.428 4.012 6.003 8.001 10.00 

BIC -1.803 -7.104 -5.507 -2.445 -0.047 3.061 6.712 10.372 14.03 

 

Figures 

 

 

 

 

 

 

 

 

 

Figure S3.1. Histograms of forest structure variables before and after transformation. 
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Figure S3.2. Training points used for validating breakpoints in a tropical montane landscape 

adjacent to one of the analyzed FI plots. 

 
Figure S3.3. Correlation matrix showing correlation coefficients between forest structure 

variables and 10 remote sensing variables. Note: age is equivalent to time since last disturbance 

(TSLD). 
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