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Neonatal Breathing and Desensitizes
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Respiratory Frequency Depression
Austin D. Hocker†, Nina R. Morrison†, Matthew L. Selby and Adrianne G. Huxtable*

Department of Human Physiology, University of Oregon, Eugene, OR, United States

Pregnant women and developing infants are understudied populations in the opioid
crisis, despite the rise in opioid use during pregnancy. Maternal opioid use results
in diverse negative outcomes for the fetus/newborn, including death; however, the
effects of perinatal (maternal and neonatal) opioids on developing respiratory circuitry
are not well understood. Given the profound depressive effects of opioids on central
respiratory networks controlling breathing, we tested the hypothesis that perinatal
opioid exposure impairs respiratory neural circuitry, creating breathing instability. Our
data demonstrate maternal opioids increase apneas and destabilize neonatal breathing.
Maternal opioids also blunted opioid-induced respiratory frequency depression acutely
in neonates; a unique finding since adult respiratory circuity does not desensitize to
opioids. This desensitization normalized rapidly between postnatal days 1 and 2 (P1
and P2), the same age quantal slowing emerged in respiratory rhythm. These data
suggest significant reorganization of respiratory rhythm generating circuits at P1–2, the
same time as the preBötzinger Complex (key site of respiratory rhythm generation)
becomes the dominant respiratory rhythm generator. Thus, these studies provide
critical insight relevant to the normal developmental trajectory of respiratory circuits
and suggest changes to mutual coupling between respiratory oscillators, while also
highlighting how maternal opioids alter these developing circuits. In conclusion, the
results presented demonstrate neurorespiratory disruption by maternal opioids and
blunted opioid-induced respiratory frequency depression with neonatal opioids, which
will be important for understanding and treating the increasing population of neonates
exposed to gestational opioids.

Keywords: opioids, maternal insults, neonatal, breathing, chemosensitivity, opioid-induced respiratory frequency
depression, quantal slowing
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KEY POINTS SUMMARY

• Pregnant women and developing infants are understudied
populations in the opioid crisis, despite the rise in opioid
use during pregnancy.
• Opioids have profound depressive effects on the control

of breathing, yet the effects of perinatal (maternal and
neonatal) opioids on the development of respiratory
control networks are unknown.
• We tested the hypothesis that late gestation perinatal

opioids impair respiratory neural circuitry, creating
breathing instability
• Our data demonstrate maternal opioids increase apneas

and destabilize neonatal breathing.
• Maternal opioids blunt opioid-induced respiratory

frequency depression acutely in neonates; a unique
finding since adult respiratory circuitry generally does not
sensitize to opioids.
• Blunted opioid-induced respiratory frequency depression

occurs at a key time point for reorganization of central
respiratory circuits.
• This study highlights the effects of maternal opioids

on developing respiratory circuits and provides critical
insight relevant to the normal developmental trajectory of
respiratory circuits.

INTRODUCTION

The misuse of opioids is a national and public health crisis with
greater than 118 Americans dying from opioid overdose daily
in 2016, 27% more deaths than the previous year (Haight et al.,
2018). This crisis carries a significant economic burden, estimated
to be $78.5 billion/year (Florence et al., 2016). Significant
efforts are underway to curb the misuse of opioids in adults,
yet one understudied population in these efforts is pregnant
women. In fact, opioid use during pregnancy is on the rise
(Epstein et al., 2013; Krans et al., 2015; Stover and Davis,
2015) and a significant need exists to improve treatments for
neonates after maternal opioids (Kraft et al., 2016). Maternal
opioids lead to neonatal abstinence syndrome (NAS), described
as dysfunction in the central and autonomic nervous system,
and gastrointestinal system in infants (McQueen and Murphy-
Oikonen, 2016). Further, NAS induces diverse negative outcomes
in infants, including; irritability, sleep disturbances, tachypnea,
respiratory disturbances, and death (McQueen and Murphy-
Oikonen, 2016). However, the respiratory disturbances are not
well characterized, but increased apneas have been described
(Ward et al., 1986; McQueen and Murphy-Oikonen, 2016).
Despite this increasing population of NAS infants, little is known
about the effects of maternal opioids on developing neonatal
respiratory control circuitry.

At birth, neonates must have a functional respiratory system
capable of robust, rhythmic breathing. Therefore, rhythmic
neural activity, initiating at the preBötzinger complex (preBötC,
the kernel for respiratory rhythmogenesis) (reviewed in Del
Negro et al., 2018) is required for development of neural circuitry,

respiratory muscles, and the lungs (Pagliardini et al., 2003; Greer,
2012). In rats, development of rhythmogenic respiratory neural
networks begins around embryonic day 17 (E17) and continues
until birth (Pagliardini et al., 2003). The preBötC is exceptionally
sensitive to opioids and is responsible for many of the respiratory
depressant effects of opioids (Greer et al., 1995; Ren et al.,
2006; Montandon et al., 2011, 2016; Stucke et al., 2015). Since
maternal opioids cross the placenta and delay neurodevelopment
(Kopecky et al., 1999; Hauser and Knapp, 2018), they have
the potential to suppress rhythmic respiratory activity from
the preBötC after preBötC neurogenesis is complete. Thus,
respiratory control networks need to compensate to maintain
adequate respiratory function at birth (Gourévitch et al., 2017).
Interestingly, the parafacial respiratory group (pFRG) also has
rhythmogenic properties during embryonic and early neonatal
life (Onimaru and Homma, 2003; Thoby-Brisson et al., 2009) and
may be able to mitigate respiratory instability during early life
(Feldman and Del Negro, 2006). However, controlled studies on
neonatal breathing after maternal opioids are limited. One study
demonstrated medullary respiratory network reorganization
after maternal opioid exposure in neonatal rats (Gourévitch
et al., 2017). Another study in guinea pigs shows enhanced
hypercapnic ventilatory responses (HCVR) after prenatal opioids
(Nettleton et al., 2008), suggesting changes in chemosensitivity
after maternal opioids. To our knowledge, this is the first study
investigating neonatal breathing after perinatal opioids in rats.
For this study, we tested the effects of maternal methadone (MM)
to model aspects of maternal opioid use since methadone is a
standard treatment for maternal opioid dependence (Bhavsar
et al., 2018). Since we were primarily interested in the effects
of opioids on maturation of respiratory networks (rather than
effects on neurogenesis, neuronal migration, differentiation, and
oligodendrogenesis), we investigated the effects of opioids at the
onset of respiratory rhythmogenesis. Additionally, NAS infants
are treated acutely with opioids, such as methadone, to alleviate
NAS symptoms (Kraft et al., 2016; Pryor et al., 2017; Davis
et al., 2018). But since opioids dangerously depress breathing in
neonates and may cause lasting neural deficits (Attarian et al.,
2014), we hypothesized that repetitive, daily acute methadone
would further destabilize breathing after MM.

Understanding the acute effects of perinatal opioid use is
critical to developing more effective treatments for neonates
exposed to perinatal opioids. We hypothesize that perinatal
methadone exposure during development of the respiratory
control system will destabilize neonatal breathing, blunt
hypoxic ventilatory responses (HVR), and enhance HCVR.
Understanding how perinatal opioid use alters the respiratory
response to acute opioids will contribute to our understanding
of how to alleviate the symptoms of NAS without severe
respiratory dysfunction.

MATERIALS AND METHODS

All experiments conformed to the policies of the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Animal Care
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and Use Committee at the University of Oregon. Timed pregnant
Sprague Dawley rats (Envigo Colony 217) were ordered to arrive
at gestational day 17 (or embryonic day 17, E17, for the fetuses)
and were housed under standard conditions with a 12:12 h
light/dark cycle with food and water ad libitum.

Maternal Opioid Exposure
Since respiratory rhythm generation and fetal breathing
movements begin on day E17 in fetal rats (Pagliardini et al.,
2003; Greer, 2012), MM exposure began on E17 to mitigate other
developmental effects of opioids and focus the effects of opioids
on developing respiratory circuitry. Each morning from E17
onward, dams were injected with methadone (5 mg/kg in sterile
saline, Sigma-Aldrich, subcutaneous) and monitored for at least
1 h. After parturition, daily MM injections continued until
postnatal day 5 (P5) (Figure 1). Control dams were injected daily
with vehicle (sterile saline and subcutaneous) or were un-treated
to control for the potential stress of daily injections. Litters were
culled to 12 or fewer pups per dam to ensure each dam fostered
the same number of pups. Breathing in neonates (P0–5) born
to MM, maternal saline (MS), and maternal no-treatment (MN)
were studied using a custom-built plethysmograph.

In the first study, neonatal baseline ventilation, hypoxic,
and HCVR were assessed from P0 to P5 (Figure 1). Since no
differences were found between sexes (p> 0.05), male and female
rats were combined for MM (MM: P0 = 8 female, 8 male, P1 = 8
female, 4 male, P2 = 9 female, 4 male, P3 = 7 female, 4 male, P4 = 7
female, 2 male, P5 = 7 female, 2 male), maternal saline (MS: P0 = 8

FIGURE 1 | Schematic of experimental paradigm. Pregnant dams were
treated from E17-P5 with daily maternal methadone injections (5 mg/kg, s.c.).
Control dams were injected with vehicle (saline) or untreated. In study 1,
baseline breathing, hypercapnic, and hypoxic ventilatory responses in
neonates (P0–5) from each maternal treatment group were assessed by
whole-body plethysmography. In study 2, neonates from each maternal
treatment group were given daily acute, neonatal methadone (1 mg/kg, i.p.)
from P0 to P5. Baseline breathing, ventilatory responses to neonatal
methadone, and hypoxic and hypercapnic ventilatory responses were
assessed at P0–5 by whole-body plethysmography.

female, 5 male, P1 = 8 female, 7 male, P2 = 8 female, 7 male, P3 = 5
female, 6 male, P4 = 5 female, 5 male, P5 = 5 female, 6 male),
and maternal no treatment (MN: P0 = 10 female, 12 male, P1 = 7
female, 11 male, P2 = 4 female, 6 male, P3 = 7 female, 9 male,
P4 = 6 female, 8 male, P5 = 7 female, 7 male).

In a separate group of neonates in the second study, the
combined effects of maternal treatment with daily acute, neonatal
methadone (NM, 1 mg/kg, i.p.) in neonates from P0 to P5 were
assessed (Figure 1). Injections began at P0 and were repeated
daily until P5. Thus, each neonate received a total of 6 NM
injections by P5. For each neonate, baseline breathing was
measured for 10 min before an acute methadone injection. The
ventilatory response to NM was monitored for 1 h, followed by
hypercapnic and HVR. Since no differences were found between
sexes, male and female rats exposed to NM were combined from
each maternal treatment (MM: P0 = 7 female, 7 male, P1 = 6
female, 8 male, P2 = 8 female, 5 male, P3 = 8 female, 7 male, P4 = 8
female, 7 male, P5 = 7 female, 7 male; MS: P0 = 4 female, 5 male,
P1 = 3 female, 6 male, P2 = 2 female, 7 male, P3 = 2 female, 7 male,
P4 = 3 female, 5 male, P5 = 5 female, 4 male; MN: P0 = 2 female, 2
male, P1 = 2 female, 4 male, P2 = 2 female, 4 male, P3 = 2 female,
4 male, P4 = 2 female, 4 male, P5 = 2 female, 2 male).

Neonatal Whole-Body Plethysmography
Ventilation was measured in freely behaving neonates from P0
to P5 using custom built whole-body plethysmography designed
and constructed by Dr. J. J. Greer and colleagues (Ren et al., 2012,
2013, 2019). Neonatal rats were individually placed in an acrylic
chamber (75 ml volume). Three mass flow controllers (Alicat
Scientific) controlled the concentration of oxygen, nitrogen,
and carbon dioxide at a total flow rate of 100 ml/min. Body
surface temperature was maintained throughout experiments at
thermoneutral (Eden and Hanson, 1987; Mortola and Dotta,
1992) by adjusting chamber temperature between 32–34◦C
with a heating pad (Kent Scientific). A differential pressure
transducer (ADInstruments R©), attached to the chamber via a
dedicated port, recorded pressure changes due to ventilation
relative to pressure in an identical reference chamber. Data
were recorded using LabChart software (PowerLab System,
ADInstruments R©/LabChart, v.8) using a low-pass filter (30 Hz).

Hypoxic and Hypercapnic Ventilatory
Responses
Hypercapnic ventilatory responses and HVR were measured
daily (P0–5). After a baseline recording period (10–40 min, 21%
O2, balance N2), inflow gas switched to 5% CO2 (10 min) to assess
HCVR. The HCVR response was assessed during the last 2 min of
the hypercapnic stimulus and made relative to baseline VE taken
during the preceding 5 min before hypercapnic exposure. After
hypercapnia, chambers were returned to normocapnia (21% O2,
balance N2, 20 min) for neonates to recover (20 min). To evaluate
HVR, inflow gas was switched to 10% oxygen (10 min). Peak,
phase I, HVRs were calculated as the maximum rolling average
of 50 breaths during the hypoxic stimulus and made relative to
baseline VE in the 5 min immediately preceding hypoxia. Phase
II, hypoxic ventilatory declines were assessed as the average VE

Frontiers in Physiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 604593

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-604593 February 19, 2021 Time: 19:4 # 4

Hocker et al. Maternal Methadone Impairs Neonatal Breathing

in the last 2 min of the hypoxic exposure and made relative to
baseline VE in the 5 min immediately preceding hypoxia.

Methadone-Induced Respiratory
Frequency Depression and Quantal
Slowing
Respiratory responses to acute neonatal methadone were
measured daily in neonates (P0–5) after MM, MS, and MN.
Neonates were placed in the recording chamber for baseline
recordings (10 min). Neonates were removed from the chamber,
injected with methadone (1 mg/kg, i.p.) and immediately
returned the chamber for continuous recording (1 h). HCVRs
and HVRs were measured 1 h after acute methadone injections,
as described above.

Quantal slowing is the reduction of breathing frequency by
integer multiples of the basal breathing period in response to
acute opioids (Mellen et al., 2003). To assess quantal slowing
patterns after acute methadone, Poincaré plots of normalized
breathing periods were used to identify the presence of breaths
clustered at integers of breathing period. Poincaré plots graph
the period between two breaths (Tn) versus the subsequent
period (Tn+1). These were generated in R using a custom
script and overlay from periods obtained from LabChart (v8,
AD Instruments R©).

Data Analysis
For all experiments, inspiratory frequency and VT were analyzed
using peak analysis in LabChart (v8, AD Instruments R©).
Two respiratory variables, tidal volume (VT) and frequency
(breaths/minute) are estimated from the amplitude and the
frequency of the pressure recordings. Minute ventilation (VE)
is calculated as the product of frequency and VT. VT and
VE were normalized to body weight (g). The custom-built
plethysmograph is primarily effective for studying respiratory
frequency and is not designed for absolute quantification of VT.
Therefore, VT and VE are reported as changes relative to baseline
when assessing HVR, HCVR, and changes in breathing after
neonatal methadone.

Apneas were identified as respiratory pauses lasting longer
than 2.5 breaths compared to the baseline frequency. Post-sigh
apneas were defined as an augmented breath with at least twice
the mean VT, followed by an apnea (Marcouiller et al., 2014). To
assess respiratory rhythm variability, short-term (SD1) and long-
term (SD2) variability were calculated from breath-to-breath
intervals during baseline in R using a custom script.

Statistical comparisons and visualization for all data were
performed using Graphpad Prism (version 8.4.0), in addition to R
and R studio (version 1.1.463). Differences between means were
identified using mixed-model two-way ANOVA with Bonferroni
correction for multiple comparisons (α = 0.05). Values are
reported as means± SD.

RESULTS

Sex had no effect on any respiratory variables (p > 0.05); thus,
male and female rats were combined for all analyses. Neonatal

body weights at each age from P0 to P5 were largely similar,
regardless of maternal treatment (Table 1). As expected, neonatal
body weights significantly increased from P0 to P5 (p < 0.0001),
with the exceptions of no significant changes from P0 to P1 or P4
to P5 after MM, and P2 to P3 after MN.

Maternal Methadone Destabilizes
Neonatal Respiratory Rhythm at P0.
At P0, apneas were significantly more frequent after MM
(p < 0.01 compared to MS and MN, Figures 2A,B), indicating
less stable breathing after MM. Apnea duration was greater in
P0 neonates after MM and MS compared to MN (p = 0.012 and
p = 0.021, respectively, Figure 2B), and slightly, but significantly
less in P5 neonates compared to MN (p = 0.045). Additionally,
post-sigh apneas were more frequent in P0 neonates after MM
compared to MS (p = 0.04) and MN (p = 0.001) and in P1
neonates after MM compared to MN (p = 0.047). At P0, MM
treated neonates had more sighs (4.1 ± 1.7 min−1) compared to
MN (1.1 ± 0.5 min−1, p < 0.0001) and MS (1.6 ± 1.0 min−1,
p = 0.0001). Additionally, neonates after MM had more sighs at
P1 (4.3 ± 2.5, p = 0.02) and P3 (3.9 ± 2.4, p = 0.04) compared
to neonates after MN (P1: 1.7 ± 1.2; P3: 1.6 ± 1.1). At P5,
neonates after MS (5.4± 3.4) had more sighs than neonates after
MN (1.3 ± 0.8, p = 0.07). The fraction of sighs followed by an
apnea was not significantly different between groups at any age
(p > 0.05).

Regardless of maternal treatment, overall baseline breathing
was similar between groups, except at P0 (Table 2). Additionally,
frequency at P1 after MM was increased compared to MS
neonates (p = 0.016) (Table 2). At P5, breathing frequency after
MM was increased compared to MN neonates (p = 0.01), but
not MS (Table 2). MM increased VT at P0 compared to MS
(p < 0.001) and MN (p = 0.001), but VT normalized by P1
(Table 2). VT in MS neonates at P4 was decreased compared to
both neonates after MM (p = 0.017) and after MN (p = 0.02). VE
also increased at P0 after MM compared to MS (p < 0.0001) and
MN (p = 0.0013, Table 2).

Corresponding to the relative instability at P0 after MM,
frequency CV was increased at P0 after MM compared to MN
(p< 0.0001, Table 2). Additionally, SD1 and SD2 were elevated in
MM and MS at P0 compared to MN (p < 0.001, Table 2), further
supporting destabilization of breathing after MM and suggesting
MS may also increase variability in early neonatal breathing
pattern. Alterations in breathing after MS may reflect the effects
of maternal stress (due to repeated injections) on neonatal
breathing. Breathing variability after MM normalized with age
and even showed reduced SD1 at P5 (p = 0.033) compared to MN.

TABLE 1 | Maternal methadone does not alter neonatal weight.

P0 P1 P2 P3 P4 P5

MM 5.3 ± 0.6 6.2 ± 0.5 7.0 ± 0.6 * 8.7 ± 0.6@ 10.1 ± 0.6 11.2 ± 1.0

MS 5.2 ± 0.4 5.8 ± 0.4 6.5 ± 0.6 # 7.7 ± 0.7 9.4 ± 0.5 10.8 ± 1.0

MN 5.5 ± 0.5 6.0 ± 0.7 8.0 ± 0.5 8.1 ± 0.9 9.1 ± 1.4 10.5 ± 1.4

Mean ± SD; mixed-model ANOVA, Bonferroni post hoc, *MM p < 0.001 from MN,
#MS p < 0.0001 from MN, @MM p < 0.01 from MS.
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FIGURE 2 | Maternal methadone increases apneas at P0. Representative baseline plethysmography traces (A) show frequent apneas (↓) and post-sigh apneas (∗↓)
after maternal methadone (MM, dark bars). Group data demonstrate MM increases the frequency of apneas at P0 compared to neonates after maternal saline (MS,
gray bars) and maternal no-treatment (MN, light gray bars) (B, top). MM and MS increased the duration of apneas compared to MN (B, middle). MM also increased
the frequency of post-sigh apneas compared to MS and MN neonates at P0 and P1 (B, bottom). By P1, the frequency and duration of apneas were not different
between treatment groups. Mixed-model ANOVA, Bonferroni post hoc, ∗MM p < 0.05 from MN, †MM p < 0.05 from MS, #MN p < 0.05 from MS.
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TABLE 2 | Maternal methadone disrupts baseline breathing at P0.

P0 P1 P2 P3 P4 P5

Frequency (breaths/min) MM 120.3 ± 27.3† 155.6 ± 14.9† 168.8 ± 30.1 165.4 ± 18.7 173.2 ± 29 202.2 ± 24.8*

MS 96.5 ± 17.1 138.0 ± 14.6 163.6 ± 19.4 155.6 ± 17 173.8 ± 21.9 183.5 ± 16.2

MN 104.7 ± 18.7 141.6 ± 14.2 150.9 ± 11.4 157.6 ± 14.9 178.6 ± 12.6 166.1 ± 25.7

VT (ml/100 g) MM 0.81 ± 0.15*† 0.82 ± 0.19 0.68 ± 0.16 0.68 ± 0.17 0.79 ± 0.16† 0.84 ± 0.21

MS 0.51 ± 0.10 0.78 ± 0.15 0.72 ± 0.16 0.67 ± 0.05 0.58 ± 0.09 0.65 ± 0.13

MN 0.58 ± 0.15 0.73 ± 0.10 0.60 ± 0.08 0.66 ± 0.15 0.77 ± 0.22# 0.74 ± 0.23

VE (ml/min/100 g) MM 98.1 ± 30.4*† 127.8 ± 29.2 117.5 ± 45.0 113.4 ± 35.5 136.8 ± 38.8 173.8 ± 67.4

MS 49.8 ± 15.3 108.2 ± 21.2 119.1 ± 32.3 103.9 ± 16.6 101.4 ± 25.0 119.8 ± 31.3

MN 61.2 ± 24.2 103.7 ± 16.3 92.1 ± 15.1# 104.7 ± 28.9 138.7 ± 42.8# 126 ± 54.3

Frequency CV MM 0.92 ± 0.23* 0.64 ± 0.23*† 0.29 ± 0.11 0.35 ± 0.19 0.43 ± 0.42 0.29 ± 0.07

MS 0.73 ± 0.20 0.42 ± 0.07 0.40 ± 0.17 0.35 ± 0.14 0.31 ± 0.1 0.29 ± 0.10

MN 0.55 ± 0.13# 0.42 ± 0.16 0.37 ± 0.11 0.29 ± 0.1 0.27 ± 0.13 0.24 ± 0.07

SD1 MM 0.48 ± 0.15∗ 0.21 ± 0.05 0.13 ± 0.03 0.14 ± 0.05 0.18 ± 0.14 0.10 ± 0.01*

MS 0.50 ± 0.15 0.18 ± 0.03 0.16 ± 0.08 0.15 ± 0.03 0.13 ± 0.03 0.12 ± 0.02

MN 0.34 ± 0.12# 0.18 ± 0.04 0.15 ± 0.02 0.13 ± 0.02 0.12 ± 0.02 0.13 ± 0.02

SD2 MM 0.57 ± 0.19* 0.22 ± 0.08 0.11 ± 0.06 0.14 ± 0.10 0.19 ± 0.23 0.11 ± 0.03

MS 0.54 ± 0.21 0.16 ± 0.04 0.14 ± 0.09 0.13 ± 0.06 0.12 ± 0.05 0.11 ± 0.05

MN 0.34 ± 0.14# 0.16 ± 0.06 0.14 ± 0.05 0.11 ± 0.04 0.11 ± 0.05 0.11 ± 0.04

Mixed-model ANOVA, Bonferroni post hoc, *MM p < 0.05 from MN, †MM p < 0.05 from MS, #MN p < 0.05 from MS.

Maternal Methadone Mitigates the
Hypoxic Ventilatory Decline at P0, but
Does Not Alter Peak HVR or HCVR
To assess if MM altered chemosensitivity, the relative ventilatory
responses to 10% O2 or 5% CO2 were assessed. Phase I,
peak ventilatory responses were not different between maternal
treatment groups (p = 0.095), but increased with age (p = 0.0001)
(Figure 3). However, the ANOVA main effect revealed significant
effects of both maternal treatment (p = 0.013) and neonatal
age (p = 0.0005) in the phase II hypoxic ventilatory decline.
Pairwise differences showed the phase II hypoxic ventilatory
decline was blunted at P0 (p = 0.015) and P1 (p = 0.024) in
MM compared to MN, but not compared to MS (P0 p = 0.07,
P1 p = 0.057) (Figures 3A,B). No pairwise differences in phase
I or phase II HVRs were evident after P1, with the exception
of reduced phase II in MN neonates at P4 compared to MS
neonates (p = 0.023). The ventilatory response to 5% CO2 was
significantly influenced by both maternal treatment (p = 0.017)
and neonatal age (p = 0.004), but there were few pairwise
differences. At P1, neonates after MM had a reduced hypercapnic
response compared to neonates after MN (p = 0.007), but not
MS (p = 0.052) (Figure 4B). No other pairwise differences were
evident at other age groups (Figures 4A,B).

Daily Neonatal Methadone Blunts Weight
Gain
In a separate group of rats from each maternal treatment
group, neonates received daily injections of methadone (1 mg/kg,
i.p.) starting at P0. Maternal treatment (p < 0.0001) and age
(p < 0.0001) significantly impacted weight. Neonates after MM
and neonatal methadone were consistently smaller than neonates
after MN and neonatal methadone at all ages (p < 0.05, Table 3).

After receiving two (P1), four (P3), or five (P4) treatments
with daily neonatal methadone, weight was blunted in P1 MM
(p = 0.01), P3 MM (p = 0.0005) and P4 MM (p = 0.0048) neonates
compared to MS (Table 3). Differences between MS and MN
neonates were only evident at P0 (p = 0.0002) and P1 (p = 0.004).

Daily Neonatal Methadone Does Not
Alter Neonatal Breathing After Maternal
Methadone Exposure
Daily neonatal methadone had little effect on baseline breathing
in neonates regardless of maternal treatment (Table 4). Further,
analysis of the main effects from daily neonatal methadone
demonstrate no significant differences in the frequency of apneas
(p = 0.33), average apnea duration (p = 0.13), or frequency of
post-sigh apneas (p = 0.40) between maternal treatment groups
at baseline, which, contrary to our hypothesis, demonstrates
daily neonatal methadone did not further destabilize neonatal
breathing. Baseline frequency (p = 0.43), VT (p = 0.11), VE
(p = 0.12), or SD1 (p = 0.48) were not different between
maternal treatment groups after daily neonatal methadone,
demonstrating baseline ventilation is not impacted by daily
neonatal methadone. There was a main effect of maternal
treatment on SD2 (p = 0.0024), whereby SD2 in MM neonates
was significantly less at P1 compared to MS (p = 0.001) and at P2
compared to MN (p = 0.04).

Maternal Methadone Desensitizes P0–1
Neonates From Acute Neonatal
Methadone-Induced Frequency
Depression
Next, we tested the hypothesis that MM desensitizes neonates
to acute neonatal methadone-induced respiratory frequency
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FIGURE 3 | Maternal methadone blunts phase II, hypoxic ventilatory depression at P0 and P1. Average VE at P1 for neonates after maternal methadone (MM, dark
circles, and bars), maternal saline (MS, gray boxes, and bars), and maternal no-treatment (MN, light gray triangles, and bars) (A). Phase I, peak hypoxic ventilatory
responses (B, top) were unaffected by maternal treatment group. However, the phase II hypoxic ventilatory decline (B, bottom) was blunted at P0 and P1 after MM
compared to MN, suggesting impaired central hypoxic responses. Mixed-model ANOVA, Bonferroni post hoc, ∗MM p < 0.05 from MN, #MN p < 0.05 from MS.

FIGURE 4 | Maternal methadone does not alter hypercapnic ventilatory responses (HCVRs). Average VE for P0 maternal methadone (MM, dark circles, and bars),
maternal saline (MS, gray squares, and bars), and maternal no-treatment (MN, light gray triangles, and bars) neonates highlight normal hypercapnic responses after
MM (A). HCVRs in MM neonates were reduced compared to MN neonates at P1, but no other differences in HCVRs after MM, MN, and MS neonates were evident
at other ages (B). Mixed-model ANOVA, Bonferroni post hoc, ∗ MM p < 0.05 from MN.

depression. After daily neonatal methadone (1 mg/kg, i.p.),
breathing frequency and VE were reduced at 20–60 min in
all maternal treatment groups at all time points after acute
methadone (p < 0.05), with the exceptions of MM and MN P0
neonates at 20 min. For neonates after MS or MN, acute neonatal
methadone-induced respiratory frequency depression was not
different across ages. However, methadone-induced respiratory
frequency depression after MM was blunted at P0 compared to
P3–5 at 20 min and P4 at 40 min (p < 0.05). Methadone-induced
respiratory frequency depression after MM was also blunted in P1
compared to P3–5 neonates at 20 min (p< 0.001), P2–5 at 40 min
(p < 0.001), and P3–4 at 60 min (p < 0.05) (Figure 5). Between
groups, methadone-induced respiratory frequency depression
was blunted at P0 in MM compared to MS and MN, and at
P1 compared to MS (Figures 5A,B). MM neonates also had a
blunted depression in frequency in response to acute neonatal

methadone at P2 compared to MN at 40 min (p = 0.021). By
P3, methadone-induced respiratory frequency depression was
similar for all groups (Figure 5B). A small, but insignificant,
compensatory increase in VT occurred in MS and MN neonates
relative to MM neonates. However, tidal volume was increased
at P1 in MS neonates relative to MM at 20 min (Figures 5A,B).
Despite differences in methadone-induced frequency depression,
methadone-induced depressions in VE were overall similar for
all maternal treatments likely due to compensatory increases in
VT (Figure 5B).

Quantal Slowing Emerges at P2,
Regardless of Maternal Treatment
Quantal slowing is the slowing of respiratory frequency by integer
multiples of the normal breathing period and reflects mutual
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TABLE 3 | Daily neonatal methadone reduces weight gain in neonates after
maternal methadone.

P0 P1 P2 P3 P4 P5

MM 5.2 ± 0.7* 5.6 ± 0.6*† 6.7 ± 0.7* 7.3 ± 0.9*† 8.6 ± 1.0*† 10.0 ± 1.2*

MS 5.6 ± 0.4 6.3 ± 0.4 7.2 ± 0.6 8.6 ± 0.6 10.3 ± 0.9 11.4 ± 1.5

MN 6.6 ± 0.2# 7.2 ± 0.4# 7.6 ± 0.6 8.6 ± 0.9 9.9 ± 0.7 11.8 ± 0.8

Mean ± SD; mixed-model ANOVA, Bonferroni post hoc, *MM p < 0.05 from MN,
†MM p < 0.05 from MS, #MN p < 0.05 from MS.

coupling between respiratory oscillators (Mellen et al., 2003;
Janczewski and Feldman, 2006). Quantal slowing after acute
methadone was observed in Poincaré plots during 15 min of peak
respiratory frequency depression (25–40 min post-methadone
injection, Figures 6A,C). Poincaré plots (Figures 6B,D)
demonstrated either distributed slowing of respiratory period in
younger neonates (P0 methadone response, Figures 6A,B) or
quantal slowing in older neonates, evident as distinct groupings
of breaths at integer multiples of the normalized period (P5
methadone response, Figures 6C,D). Regardless of maternal
treatment, quantal slowing was significantly reduced at P0 and
P1, but emerged at P2 (Figure 6E). The percentage of animals
exhibiting quantal slowing from MM, MS, and MN groups
highlights the age-dependency of the emergence of quantal
slowing (Figure 6E). In MM neonates, quantal slowing was

significantly reduced at P0 and P1 compared to P3–5 (p < 0.05).
While in MN neonates, quantal slowing was significantly reduced
at P1 compared to P5 (p < 0.001).

DISCUSSION

As the use of opioids during pregnancy increases (Epstein et al.,
2013; Krans et al., 2015; Stover and Davis, 2015), improving our
understanding of how the neurorespiratory system develops in
the presence of opioids is a critical step in understanding how
to best treat infants with NAS. Here, we show late gestation
MM destabilizes early neonatal respiratory rhythm by increasing
apneas and acutely desensitizes neonates to neonatal methadone-
induced frequency depression. The respiratory rhythm instability
after MM was most severe in the first day of life and normalized
within the first 2 days. Contrary to our hypothesis, repeated daily
acute neonatal methadone after MM did not significantly alter
baseline breathing. However, MM desensitized neonates to acute
neonatal methadone-induced respiratory frequency depression
at P0–1. Interestingly, the desensitization normalized rapidly
between P1 and P2, the same age quantal slowing emerged. These
data suggest reorganization of respiratory rhythm generating
circuits at P1–2, regardless of maternal treatment. Overall, MM
destabilizes the neurorespiratory control system immediately
after birth; however, the neurorespiratory control system is

TABLE 4 | Daily neonatal methadone does not change baseline breathing.

P1 P2 P3 P4 P5

Apneas/min MM 3.7 ± 2.5 0.8 ± 0.6 1.6 ± 2.8 1.0 ± 0.9 0.6 ± 0.8

MS 3.2 ± 2.3 5.8 ± 10.2 1.2 ± 0.8 0.6 ± 0.6 1.4 ± 1.8

MN 5.1 ± 4.3 2.0 ± 3.0 0.9 ± 0.7 1.0 ± 1.3 0.6 ± 0.3

Apnea Duration (sec) MM 2.0 ± 0.4 1.3 ± 0.2 1.3 ± 0.4 1.1 ± 0.2 1.0 ± 0.4

MS 2.3 ± 1.0 1.8 ± 0.6 1.4 ± 0.3 1.2 ± 0.3 1.2 ± 0.6

MN 1.7 ± 0.5 1.5 ± 0.3 1.4 ± 0.5 1.3 ± 0.3 1.5 ± 0.6

Post-sigh Apneas/min MM 0.5 ± 0.6 0.1 ± 0.1 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.2

MS 0.3 ± 0.3 0.9 ± 2.0 0.2 ± 0.1 0.0 ± 0.1 0.3 ± 0.5

MN 0.6 ± 0.7 0.3 ± 0.6 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1

Frequency (Breaths/min) MM 149.5 ± 23.4 176.9 ± 19.2† 172.2 ± 20.8 192.0 ± 18.8 204.0 ± 40.0

MS 141.4 ± 22.9 147.8 ± 24.1 166.5 ± 26.4 187.4 ± 27.5 210.8 ± 30.3

MN 156.7 ± 19.0 159.7 ± 13.0 168.3 ± 37.1 171.1 ± 38.8 203.6 ± 5.7

VT (ml/100 g) MM 0.82 ± 0.13† 0.81 ± 0.17 0.71 ± 0.15 0.86 ± 0.20 0.79 ± 0.19

MS 0.68 ± 0.10 0.76 ± 0.19 0.71 ± 0.09 0.69 ± 0.11 0.80 ± 0.14

MN 0.84 ± 0.07# 0.68 ± 0.10 0.75 ± 0.15 0.66 ± 0.21 0.60 ± 0.10#

VE (ml/min/100 g) MM 122.5 ± 28.7 144.5 ± 42.7 123.2 ± 31.9 164.7 ± 41.5 158 ± 37.5

MS 97.0 ± 24.9 114.2 ± 40.2 118.7 ± 27.1 131 ± 32.8 170.2 ± 43.1

MN 131.7 ± 18.7# 108.7 ± 21.5 128.6 ± 47.2 116.4 ± 56.8 122.3 ± 20.4

SD1 MM 0.25 ± 0.08 0.12 ± 0.02 0.13 ± 0.03 0.12 ± 0.02 0.12 ± 0.05

MS 0.23 ± 0.10 0.20 ± 0.11 0.14 ± 0.03 0.11 ± 0.02 0.11 ± 0.04

MN 0.21 ± 0.09 0.15 ± 0.04 0.14 ± 0.04 0.17 ± 0.07 0.11 ± 0.01

SD2 MM 0.33 ± 0.11† 0.51 ± 0.29* 0.7 ± 0.32 0.65 ± 0.35 0.57 ± 0.25

MS 0.83 ± 0.27 0.78 ± 0.44 0.65 ± 0.37 0.44 ± 0.18 0.86 ± 0.69

MN 0.86 ± 0.56 1.21 ± 0.48 1.13 ± 0.94 1.58 ± 1.28 0.72 ± 0.34

To measure the cumulative effects of daily neonatal methadone, baseline breathing was assessed prior to acute neonatal methadone on each day (e.g., P1 neonates
received acute methadone on P0 and P5 neonates received daily acute methadone on P0–4).
Mixed-model ANOVA, Bonferroni post hoc, *MM p < 0.05 from MN, †MM p < 0.05 from MS, #MN p < 0.05 from MS.
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FIGURE 5 | Maternal methadone blunts opioid-induced respiratory frequency depression at P0 and P1. Representative plethysmography traces (A) before (baseline)
and 60 min after acute methadone at P0. Group data for average breathing frequency, VT and VE after maternal methadone (MM dark circles), maternal
no-treatment (MN gray squares), and maternal saline (MS light grey triangles) combined with daily acute neonatal methadone (1 mg/kg, i.p.). Relative breathing
frequency and VE were significantly reduced from 20–60 min after methadone in all groups (B). At P0 and P1, methadone-induced frequency depression and VT

were blunted after MM compared to MN and MS (B). Mixed-model ANOVA, Bonferroni post hoc, *MM p < 0.05 from MN, †MM p < 0.05 from MS.

able to compensate and normalize breathing over postnatal
development. Thus, an initial window of increased vulnerability
to apneas exists immediately after MM, highlighting a window
where treatment or increased monitoring is likely necessary.

A key aspect of the experimental design of this study is
examining maternal opioids at a specific, critical time for
vital respiratory neural activity onset to investigate impairment
of maturation (circuit connectivity and refinement). Maternal
opioids are known to impair CNS development, neuro- and
gliogenesis, myelination and proliferation in other brain regions
(reviewed in Hauser and Knapp, 2018); however, the majority
of studies focused on maternal opioid exposure from the day

of conception through birth. While previous studies provide
insight into the effects of maternal opioids on cellular genesis,
migration, apoptosis, and dysregulation of the neuroendocrine
system (Conradt et al., 2018), opioids are known to have more
severe effects late in gestation, when the neural system controlling
breathing is becoming active. Opioid transmission across the
placenta increases with gestational age (Nanovskaya et al., 2008)
and are retained in the placenta, increasing fetal exposure
time (Kopecky et al., 1999). Further, opioids have a prolonged
half-life in the fetus (Scott et al., 1999), due to decreased
pharmacokinetic clearance and excretion, decreased abundance
of fatty tissues, and decreased receptor expression and sensitivity
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FIGURE 6 | During neurorespiratory development, quantal slowing emerges at P2, regardless of maternal treatment. Representative changes in breathing period at
P0 (A,B) and P5 (C,D) after acute neonatal methadone (1 mg/kg, i.p.; ↑) demonstrate age-dependent methadone-induced frequency depression. Gray highlighted
regions (A,C) after methadone injection shown as Poincaré plots (B,D, respectively) to visualize quantal slowing. Quantal slowing is evident as periods clustered at
quantal integers of the normal respiratory period at P5, but not P0. Group data highlight that, regardless of maternal treatment, quantal slowing emerged at P2 in the
majority of animals (E). One-way ANOVA (graph), mixed-model ANOVA (table) Bonferroni post hoc, *p < 0.05 from P2 to P5, #p < 0.05 from MM P3 to P5,
†p < 0.05 from MN P5.

early in life (Dysart et al., 2007; Barr et al., 2011; Kocherlakota,
2014), suggesting maternal opioids may more severely impact
maturation of neural circuits rather than cell genesis. Thus, this
late gestation opioid exposure model sheds light on the direct
effects of opioids on maturation of respiratory circuitry and
allows us to disentangle the effects of opioids on cell genesis
and migration from the maturation of critical network activity.
Further, this model demonstrates for the first time that even
late gestation opioids impair the respiratory control network.
This model, however, was not designed to assess the amount
of opioids transmitted through the breast milk, nor identify
the specific age (between E17 and P5) where opioids have the
most profound impact on respiratory network maturation. We
hope future studies involving cross fostering of neonates between
maternal treatment groups will begin to provide such insight.

Many different opioids are used clinically (e.g., methadone,
morphine, buprenorphine) (McQueen and Murphy-Oikonen,
2016), but methadone [a long-lasting, complete µ-opioid
receptor agonist (Kraft et al., 2016)] is the most frequently
prescribed opioid to pregnant women (Kocherlakota, 2014;
Davis et al., 2018). Methadone was given daily to pregnant
rats from E17 through the first week after birth (Figure 1),
whereby it will cross the placenta (Conradt et al., 2018) and
continue to pass to the infant via the breast milk (Kocherlakota,
2014; Kraft et al., 2016; McQueen and Murphy-Oikonen, 2016).

While the concentration of opioids in breast milk remains
controversial (Kocherlakota, 2014), breastfeeding is encouraged
for NAS infants (Kocherlakota, 2014). This model of a single
daily injection best represents the initial “high/rush” of opioids,
followed by the withdrawal experienced in addicts (Hauser and
Knapp, 2018), and has been hypothesized to have the greatest
impact on CNS maturation (Hauser and Knapp, 2018). As
neonates are clinically treated with exogenous opioids after birth
to reduce NAS symptoms (Kocherlakota, 2014; Kraft et al.,
2016; McQueen and Murphy-Oikonen, 2016), neonates were also
supplemented with methadone to investigate the additive effects
of maternal and neonatal opioid exposure.

Maternal methadone increased the prevalence of apneas and
post-sigh apneas, and destabilized breathing rhythm in neonates.
Though the origin of apneas cannot be identified in this study,
the prevalence of apneas suggests dysfunction of the respiratory
control network maturation after MM. This dysfunction could
be a result of concentrated neonatal methadone since opioids
are known to be higher in fetal tissues compared to maternal
levels (Peters et al., 1972) and opioids inhibit rhythm generating
regions (Montandon et al., 2011). Neonatal CNS methadone
levels can even exceed maternal levels as methadone accumulates
in fetuses (Peters et al., 1972; Peters, 1975), likely due to blunted
opioid metabolism in neonates. Furthermore, maternal opioids
continue to be transmitted to neonates through breast milk
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(Hendrickson and McKeown, 2012) and some evidence suggests
human neonatal apneas are the result of opioid exposure through
maternal milk (Naumburg and Meny, 1988; Anderson et al.,
2016a; Cleveland, 2016). Therefore, MM may increase apnea
prevalence as a result of high concentrations of methadone
impairing development of neonatal respiratory neural circuitry.
However, while concentrated methadone could induce apneas in
neonates, methadone suppresses sighs (Bell et al., 2011), which
were elevated after MM in P0 neonates. Therefore, elevated
neonatal methadone levels alone are unlikely to explain both
the increase in apneas and increase in sighs; and thus, we
suggest likely reflects impaired development of respiratory neural
circuitry. Since apneas are more common in preterm or very early
neonatal infants (Greer, 2012), MM could alternatively delay
neurogenesis (Wu et al., 2014) and alter myelination (Sanchez
et al., 2008; Walhovd et al., 2010; Vestal-Laborde et al., 2014;
Hauser and Knapp, 2018). Therefore, MM may delay respiratory
rhythm generating network maturation as maternal treatments
began at E17, the day respiratory rhythm begins (Greer, 2012).
A relatively immature respiratory control system could also
explain the increased prevalence of apneas after MM. Lastly,
the effects of opioids on other aspects of the respiratory control
network could also contribute to these deficits in breathing,
including regions influencing pattern and rate (e.g., Kölliker-
Fuse, locus coeruleus, and post-inspiratory complex) (Anderson
et al., 2016b; Kliewer et al., 2019; Saunders and Levitt, 2020;
Varga et al., 2020a,b). Future studies should focus on identifying
the mechanisms of these breathing deficits and involvement of
different aspects of the respiratory control circuitry.

Maternal methadone alone did not significantly reduce
neonatal weight gain. Other reports (McLaughlin and Zagon,
1980; Byrnes and Vassoler, 2018) suggest longer MM treatments
reduce neonatal weights, suggesting our exposure starting on
E17, during a critical period for neurorespiratory development,
is not inducing global developmental deficits. However, in
combination with daily acute neonatal methadone, neonatal
weights after MM were reduced. Similarly, human infants
withdrawing from methadone gain less weight in the first week
of life despite hyperphagia, suggesting altered metabolism after
acute methadone (Martinez et al., 1999). Since we did not assess
metabolism in our studies, it is unclear if MM alters neonatal
rat metabolism. Further, it is unlikely MM induces long-lasting
deficits in weight gain since adult weights are normalized in other
studies with longer MM treatments (McLaughlin and Zagon,
1980). However, it remains unclear if adult weights are impacted
by the combination of MM and daily acute neonatal methadone.

Peak hypoxic responses were unaffected by MM, suggesting
the respiratory control network can still respond appropriately to
hypoxic stimuli. The phase I, peak hypoxic ventilatory response is
typically attributed to activation of the peripheral chemosensors
in the carotid body (Fung et al., 1996), which express opioid
receptors (Ricker et al., 2015) and are inhibited by opioids in
adults (Ricker et al., 2015). However, acute opioids also depress
hypoxic responses through direct actions on the brainstem
(Bailey et al., 2000; Pattinson, 2008), suggesting balancing of
peripheral and central effects. Thus, the results presented here
suggest MM does not alter carotid body function. Regardless of

maternal treatment, the phase I ventilatory response to hypoxia
increased substantially in the first 6 days of life, similar to
previous reports of HVR development (Liu et al., 2006).

Unlike phase I, the phase II hypoxic ventilatory decline was
significantly attenuated after MM. Phase II is known to be most
severe in young neonates (Bissonnette, 2000; Moss, 2000; Liu
et al., 2006) and is mediated by more complex mechanisms, likely
involving changes in metabolism during hypoxia and brainstem
signaling (Bissonnette, 2000). Purinergic signaling is significantly
involved in hypoxic ventilatory depression, especially in young
neonates (Elnazir et al., 1996; Gourine et al., 2005; Rajani et al.,
2018), though it remains controversial (Funk and Gourine,
2018). The role of purinergic signaling in perinatal rats changes
substantially from fetal to neonatal ages in rats (Huxtable et al.,
2009), suggesting MM may alter the normal development of
the purinergic system to blunt the hypoxic ventilatory decline
after MM at P0 and P1. Further, the phase II response after
maternal opioids is similar to the response in more mature
animals; thus it is possible that opioids also modulate the
developmental trajectory of these networks, and a blunted phase
II response may be the signature of accelerated development.
Interestingly, and contrary to our findings, human infants from
mothers suffering from polysubstance abuse had significantly
greater acute hypoxic responses and greater hypoxic ventilatory
decline in the first week of life (Ali et al., 2016). However,
these effects are confounded by the intake of multiple different
types of drugs, which may independently alter development
(Nettleton et al., 2008). Thus, MM blunts the hypoxic ventilatory
decline in neonatal rats, though whether this is physiologically
advantageous or disadvantageous remains to be determined.

Maternal methadone did not alter HCVR, suggesting the
central networks sensing CO2/pH are not altered by MM. Unlike
this response in neonatal rats, MM or morphine enhances the
HCVR in guinea pigs (Nettleton et al., 2008). Contrary to our
and other animal findings, human infants chronically exposed
to prenatal methadone have significantly blunted HCVRs, which
persist for the first two weeks of life (Olsen and Lees, 1980). These
differences in the HCVRs may be explained by species differences,
the duration, or timing of MM exposure. Our paradigm had only
5 days of MM, while the others last for at least half of gestation,
suggesting earlier developmental exposure to methadone may
have differential effects on hypercapnic responses.

Maternal methadone had no significant effect on baseline
breathing responses to daily, repetitive acute neonatal
methadone, but desensitized P0–1 neonates to acute neonatal
methadone-induced respiratory frequency depression. There are
at least three explanations for these changes in opioid sensitivity.
Firstly, MM could downregulate expression of opioid receptors
in neonates, thereby reducing preBötC sensitivity to opioids
from P0 to P1 and blunting methadone-induced respiratory
frequency depression. Maternal buprenorphine downregulates
µ-opioid receptors in P1 rat whole brains (Belcheva et al.,
1998), demonstrating expression of µ-opioid receptors is
influenced by gestational opioids. Additionally, µ-opioid
receptors normally increase in the rat brainstem from P3 to P6
(Kivell et al., 2004) and, as opioid receptor expression increases,
methadone-induced respiratory frequency depression likely also

Frontiers in Physiology | www.frontiersin.org 11 February 2021 | Volume 12 | Article 604593

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-604593 February 19, 2021 Time: 19:4 # 12

Hocker et al. Maternal Methadone Impairs Neonatal Breathing

increases, potentially explaining the increase in methadone-
responses at P3 after MM. Secondly, competing inhibitory and
excitatory actions of opioids in different respiratory regions
could explain the blunted respiratory frequency depression
at P0–1 after MM. While the preBötC rhythm is inhibited by
opioids, the pFRG rhythm may be facilitated by opioids in
P0–2 rats (Tanabe et al., 2005; Onimaru et al., 2006). Therefore,
increased pFRG excitation could counteract depression in the
preBötC to blunt methadone-induced frequency depression.
Third, early exposure to methadone could impair preBötC
activity during development, such that the respiratory network
is more reliant on pFRG rhythm generation in the first
2 days of neonatal life. Thus, a rhythm generating network
dominated by the pFRG would be less sensitive to opioid-
induced respiratory frequency depression. Future experiments
assessing methadone responses of isolated respiratory circuitry
and the developmental expression of opioid receptors will
delineate how MM alters methadone-induced respiratory
frequency depression.

Interestingly, only MM treated neonates exhibited differential
methadone responses over time, due to their blunted acute
neonatal methadone sensitivity at P0–1. Previous studies are
conflicting on the development of opioid-induced frequency
depression in rodents. One study demonstrates early µ-opioid
receptor-induced respiratory frequency depression is blunted
at P1 relative to P10 (Greer et al., 1995), while another
suggests respiratory frequency depression is similar between
P2 and P8 (Colman and Miller, 2001). Here, methadone
sensitivity was unchanged over time in neonates from maternal
saline and maternal no treatment groups, suggesting no
developmental shifts in opioid sensitivity. However, we used
repetitive daily methadone injections in the same rats from
P0 to P5 and, in many other physiological systems, opioids
induce tolerance within the first few exposures in rodents
(Ling et al., 1989). Tolerance in the respiratory system has
been observed after daily acute fentanyl (Laferrière et al.,
2005), though this has not been observed in other studies
(Emery et al., 2016; Levitt and Williams, 2018). Here, we
found no evidence for tolerance after repeated daily acute
methadone exposure, but we demonstrate the unique finding
that opioid sensitivity is blunted acutely after MM. Furthermore,
it is widely thought the respiratory control system does not
develop opioid-induced tolerance (Emery et al., 2016; Levitt and
Williams, 2018), which increases vulnerability of patients to lethal
respiratory frequency depression with opioid over-use. Thus, the
demonstration of blunted opioid sensitivity represents a unique
finding regarding sensitivity of developing neurorespiratory
networks to opioids.

The neonatal period (P0–5) is an important developmental
time for respiratory rhythm generating mechanisms during
which the dominance of the two respiratory oscillators
switches (Huckstepp et al., 2016). However, the precise
timing of the switch is not clear. The phenomenon of
quantal slowing represents a physiological means to probe
the functional interactions of these two oscillators, whereby
quantal slowing occurs when the two oscillators are in phase
(Wittmeier et al., 2008) and the preBötC is the dominant

inspiratory rhythm generator. Regardless of maternal treatment,
quantal slowing emerged in the majority of rats at P2. This
change likely reflects a network reorganization at this age
irrespective of maternal treatment and suggests a strengthening
in connectivity between the pFRG and preBötC. Previous
work demonstrates pFRG activity precedes and drives preBötC
activity in P0–1 rats (Onimaru and Homma, 2003) and
then synchronizes with preBötC activity at P2 (Oku et al.,
2007), suggesting quantal slowing may only emerge when
the two oscillators’ activities are tightly coupled. Additionally,
the changes in this coupling of activity may be related
to the considerable maturation of neurotransmitter systems
occurring at this developmental stage. These changes include
large changes in chloride conductance and its inhibition of
respiratory rhythm (Ren and Greer, 2008), increased preBötC
GABA receptor expression at P2 (Liu and Wong-Riley,
2004), and changes in AMPA receptor subunit expression
(Wong-Riley and Liu, 2008). Such changes may strengthen
connections between the preBötC and pFRG, coupling their
activity, and contributing to the emergence of quantal slowing
at P2. The emergence of quantal slowing and shifts in
functional connectivity between oscillators may have important
implications for interpreting rhythm generating mechanisms
at different neonatal ages. Specifically, the majority of studies
on respiratory rhythm generation occur in neonatal rodents
in the first week of life; however, the precise age range
varies between and within studies. Therefore, investigations of
respiratory circuitry before and after P2 may reveal divergent
results and should be interpreted with these developmental
changes in mind.

In our studies, MM treatment began on E17 because it is
the first day of rhythmic respiratory neural activity, respiratory
motor output, and fetal breathing movements in rats (Greer,
2012). While other studies focused on the developmental impact
of maternal opioids begin earlier to match the period when
opioid receptors are first expressed in rodents (Byrnes and
Vassoler, 2018), our experimental paradigm was intentional to
mitigate any other developmental effects of methadone and focus
on this important period of maturation of neurorespiratory
development. Methadone was chosen since it is commonly used
as a clinical treatment in pregnant women and neonates (Kraft
et al., 2016; Pryor et al., 2017; Bhavsar et al., 2018; Davis
et al., 2018). However, methadone is also a non-competitive
NMDA antagonist (Laurel Gorman et al., 1997), which may
contribute to opioid-induced respiratory frequency depression
(Hoffmann et al., 2003). Furthermore, mice lacking NMDA
receptors have more apneas in the first few days of life (Poon
et al., 2000). However, central respiratory rhythm-generating
networks develop normally in the absence of NMDA receptors
(Funk et al., 1997) and the increase in apneas may be due to in
utero alterations to mechanosensory, chemosensory, or pontine
respiratory areas (Funk et al., 1997; Poon et al., 2000). Since we
did not determine the source of apneas in this study, it is unclear
if methadone antagonism of NMDA receptors is contributing to
early-life respiratory instability.

Endogenous opioid systems modulate neonatal breathing
(Jansen and Chernick, 1983) and may be altered by chronic
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methadone exposure. A surge of endorphins shortly after birth
in neonatal brains (Jansen and Chernick, 1983) inhibits the
preBötC, causing the pFRG to acutely dominate respiratory
rhythm and maintain breathing rhythm (Feldman and Del
Negro, 2006; Janczewski and Feldman, 2006). It is unclear if
MM changes the endogenous opioid system to impair respiratory
instability at P0 or blunt early insensitivity to acute methadone.
However, it is unlikely alterations in the endogenous opioid
system explain the results presented here since MM in rats did
not alter the endogenous opioid system in the neonatal rat ventral
respiratory column (Gourévitch et al., 2017).

Understanding how maternal opioids alter neurorespiratory
development is important for enhancing treatments for neonates
exposed to in utero opioids. Our data support the hypothesis that
MM increases apneas and destabilizes neonatal breathing. This
instability may be clinically relevant as apneas are more common
in infants dying of sudden infant death syndrome (SIDS) (Kahn
et al., 1992; Franco et al., 2003) and MM increases the risk of
SIDS (Moon, 2016). Additionally, the hypoxic and HCVR were
unaffected by maternal treatment. In humans, however, MM
depresses hypoxic (Ward et al., 1992) and hypercapnic responses
(Olsen and Lees, 1980), suggesting differences in species or
duration of in utero methadone exposure are important.
MM also blunted the acute response to neonatal methadone,
suggesting neonates with NAS may have less respiratory
frequency depression after acute opioid treatments. Therefore,
NAS infants potentially tolerate higher acute therapeutic
doses to mitigate other symptoms of NAS, though the long-
term impact of perinatal opioids remains to be determined.
This protection from opioid-induced respiratory frequency
depression after acute methadone is lost rapidly in neonatal
rats at P2, likely at the same time as the preBötC becomes
the dominant respiratory rhythm generator. It is not clear if
humans have a similar developmental trajectory of multiple
respiratory rhythm generators as rodents. Importantly, the
results presented here demonstrate neurorespiratory disruption
by MM, which may be important for understanding and
treating the increasing population of neonates exposed to
gestational opioids.
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