A BORD改 AND A CBNTRAL PANIL FOR A FLOOR IN THZ FOXZR OF THE ART BULLDING

By MARIZ K, RING

A Thesis

Presented to the Faculty of the Graduate School of the

University of Oregon
in partial fulfillment of the requirements
for the degree of
Master of Fine Arts

$$
\text { July, } 1933
$$

TABLS OF COMTMIS

Plate I 1
Illustration 2
Plate II 3
IL1uatration 4
Plate III 5
Tllustration 6
Plate IV 7
Illustration 8
Plate V 9
I11ustretion 10
Plate VI 11
I11ustration 12
Plate VII 13
Illustration. 14
Plate VIII. 15
Illustration 16
Glaze Research 18
Technical Procedure 30
Clay Research. 27
Assembling the Pattern. 32

PLATE I

PGNCIL SK ZTCH SHOMING GGNaRAL
SCHMAE OF DESIGN

PLATTE II

PGNCIL SKZTCH WITH DIFFGRENT
TREATMEAT OF CENHTRAL DESIGN

PLatig III

WATBR COLOR SKETCH

FOR VALUZ

PLATS IV

ACCURAZ S SWALL SOALE DERAIL
IN LII薷
II VALUE

PLATE V

FIVAL TREATMBMT
 OF

CIRCULAR PANEL

PLATE VI

WATGR COLOR DATAIL

SHOWING
TWO SOLJTIONS FOR CBNIRAT, PAN退
FOUR BORDER TREATMENIS

PLAT: VII

FULT SIZZD DETATL BHONING
SIZES, SIAPZS AKD COLOR VALUES
OF TILTS

PLATZ VIII

FULI SCALE DETAIL
OF
BORDAR TRZATMBNT

GLAZ2
Rassarch

GLAZS RESZARCH

"All glazes belong to a class of chemical compounds known as sflicates.

CLBAR or what are sometimes called 'Majolica' glazes are compound silicates of lead, zinc, lime, potassium, sodium aluminum and boron.

MATT glazes are characterized by cartain of these elements being present in excess.

STANNTFAROUS or tin glazes are rendered opaque by the use of oxide or tin.

RAW glazes are those made from a commercially prepared 1
substance."
A glaze is usually expressed as a chemical formula. In this there are three divisions, each of which expresses a distinct function.

On the LäTP hand are the bases, the foundation of the glaze. These indicate the type, such as a lead glaze, a lime glaze, an alkaline glaze, etc. All glazes being silicates, this is the usual way of distinguishing them.

In the CBNT ${ }^{2}$ are the aluminum and the boron oxides. These regulate the behavior of the glaze in the fire. They make it viscous or sluggish as it melts and prevent too rapid a flow. The aluminum is infusible, the boron fusible, but
boron cannot be used in a raw glaze.
At the RIGHT stands the silica, the dominating factor with which all of the other ingredients combine, and which controls the behavior of the whole as regards the fitting of the glaze to the body. The very simplest form of glaze is a bi-silicate of lead, or in its chomical formula, $\mathrm{Pb} 0-\mathrm{SiO} 2^{1}$ or one equivalent of laad oxide to one of ailica.

In planning on the kind of glaze that would be the most suitable for this particular problem, the color, temperature and surface quality were the tests in deciding. Bach type of glaze has a certain range in color, they vary greatily in the firing temperature required and the surface may be a very high gloss or a dull finish. After a thorough test of all of the available glazes both majolica and matt, a matt glaze was decided upon as the most desirable for a floor tile to carry out the idea for the design to be used.

Matt glazes are not underfired glazes but are produced in two ways:

1. An excess of aluminum. This causes a chemical reaction in the compound quite simple to produce.
2. An excess of silica.

This produces a devitrified surface. A silica matt is very difficult to produce. In a studio kiln it is practically impossible, as these small kilns cool too rapidly.
$1_{\text {All }}$ chemical formulas from Binns, Practical Pottery, and

Bisilicate or bright glazes for low firing have an oxygen ratio of 1:2. Aluminum matt glazes have an oxygen ratio of $3: 4$ secured in the following manner: RO may consist of any of the bases used in a bright glaze. (RO a symbol used for the sake of brevity and indicates that no matter how many bases are introduced the total must always be unity). The proportion is adjusted in accordance with the desired point of fusion. The aluminum content is somewhat higher in a matt than in a bright glaze and should not fall much below a .3 equivalent. A .35 is even better. The RO content should not be too fusible. Lead oxide is desirable up to a. 5 equivalent and it is an advantage to use feldspar so the KRO may be introduced. Calcium oxide is good but zine oxide must be used sparingly as it is likely to suffor if overfired.

PbO	. 50		
CaO	. 30 - Formula Al2 03	. 34 SiO2	1.48
K20	. 20		

RECIPE FOR A MATT GLAZB FIRING TO A GONE 7.
$\mathrm{CaO} \quad .75$
K20 . 25
To obtain a colored glaze add to the above any of the following:

Iron oxide
Copper oxide
Chrome oxide
In glazing a matt piece more than half of the success
lies in the application of the glase. It rast be very thick or the true texture will not be developed. Natt glazes do not correct their own faults in the firing as the majolica glazes do. 太ivery imperfection will show as this type of glase does not flow raadily.

In glasing the tiles for this problem, a coat of glaze at least $1 / 16^{\mathrm{m}}$ in thickness was applied to each piece. All of the glazes were strained very carefully at least twice through a forty mesh sisve. The surface of the tile was sponged to be sure that it was clean and then dipped into the glaze. This method worked very well for all of the colors except the high fire red (RH 2016). After much experimenting with this particular red it was found that this glase had to be applied in successive coats in order to avoid blisters and crater-like formations on the surface of the glaze. In the case of this color a very thin coat was brushed on, fired to a cone 1 (1150 C), dipped a second time to the thickness of $1 / 16^{\prime \prime}$ and then refired again to cone 1 (1150, C). In some cases a few of these tiles had to be glazed and fired a third time before the desired surface was obtained.

The color palette for this design included nineteen glazes. These glazes feel into three distinct groups for firing. The two reds were the extremes in temperature and the blues and greens ranged half way between. The Drakenfeld red was the lowest cone of all, fusing at an . 08 (970 C). This red was extremely sensitive to the slightest variation in temperature. When placed on a shelf twelve inches square the color will vary from yellow through orange to red. At a cone . 011 (920 c) this glase is a clear yellow, orange at a temperature of 950 C . or cons .010 , and a definite red at cone $.09(970 \mathrm{c})$. Increase of hoat intensifies the red until at cone 1 or 2 it becomes a clear glaze.

The blues and greens were the easiest to fire as they have a possible variation in temperature from cone .03 (1090 c) to a cone .01 (1180 c) without harming the surface quality of the tile.

The REI 2016 red was a rather high fire glaze, the temperature ranging from cone 1 (1150 c) to cone $2(1170 \mathrm{C}$). Insufficient heat in any of the firings resulted in the glaze forming globules due to lack of proper fusion. A11 of the glazes were subjected to three separate tests in firing:

1. Underfired.
2. Overfired.
3. Corract temperature.

23.

This was a great help in deteraining the possible firing range of each glaze and also made it possible to cheok on what actually happened to the glaze under these coaditions.

The Drakenfeld red did not prove to be a true matt under even the best of firing conditions, so we took the slight gloss from the surfiace with successive coats of dilute Hywhofleuroric acid.

GSTIMARE FOR GLAZB ORDBR. MARCH 15, 1933.

Area to be glazed - 80.27 square feet.
Glaze required - 9 oz. per square foot.
720 oz, or 45 pounds of glaze required for 80 square feet.

Totals in the three main colors. Requirsd amount. 20% Margin.

Greens and bluss, central	100 oz.	120 oz.
Greens and blues, border	275 oz.	328 oz.
Tans and jellows, central	36 oz.	43 oz.
Reds and broms, central	155 oz.	160 oz.
Reds and browns, border	200 oz.	240 oz.

Required amount for 80.27 square feet of floor - 45 pounds, 7 ounces. Amount requirsd with a 20% margin added $-\ldots$ - 54 pounds, 8 ounces.

Light blue	Am\#3	Matt Medium	1260D
Dark blue	Amf 4	Green blue	1250D
Blue-grean	Anf ${ }^{\text {\% }} 7$	Willow green	2017
Yellow	A*/17 17	Mulberry green	2025
Cream white	Drak. Co.	Red	2016
Bright red	Drak, Co.	Brown hickory	2003
Deep blue	Drak. Co.	Blue green	1260D
Fawn yollow	Drak, Co.		
Tan yellow	$\begin{aligned} & \text { Drak. Co. } \\ & 2013 \end{aligned}$		
Leopard	2011		
Silver green	2002		
Delft blue	1251D		

FIRING TBMPBRATURE USED FOR TKZ FOLLOWING GLAZES:

Am\#3	Light blue	Cone 03 to 01	1090 c - 1130 c.
Am\#4	Dark blue	\% ${ }^{\text {n }}$	
Am\#7 7	Blue green	* " ${ }^{\text {a }}$	
Ampll 7	Yellow		
Drak.	Cream white		
Drak.	Bright red	. 09 (970 C)	Very sensitive to any variation in heat. Yellow at .010. Brillian gloss at.07.
Drak.	Deep blue	. $04-.03$	
Drak.	Fawn yellow	.03-. 01	
REI 2018	Tan Yellow	.02-1	
RH 2011	Leopard	.03-. 01	
RH1 2002	Silver Green	. $03-.01$	
RHI 1251D	Delft blue	.03-. 01	
RHI 1261D	Matt Medium	*	
RH 1250 D	Green blue	n n	
RHI 2017	Willow green	.03-.02 (glos	cone 1)
RH 2023	Mulberry green	. $03-.01$	
RH2003	Brown Hickory	. $02-1$	
RHI 1260D	Blue green	. 083.01	
BH 2016	Red	Cone 1-2	Takes not less than a high cone 1 and must be put on in several costs.

CLAY RASSARCH.

PACIFIC SYONETARE. PORTLAND, OREGON.
Red Clay. Fires to a cone .05. Price per 1b. $\$ 0.08$ moist. Color, a soft orange.

Shrinkage, green ware $\mathcal{I}_{2} \times 3^{\prime \prime}$ before sanding.
Biscuit $13 / 8$ " $\times 23 / 4$.
Approximate shrinkege 8.3%.
Not practical for tiles in this case as the tempersture
required for firing the glaze sxceads that used for firing
the clay.
Fairly hard and durable.
White Cley. Fires to a cone 2. Price per 1 lb . $\$ 0.05$ moist. Color, buff white.

Shrinkage, approximately 8.3%.
Durable, easily handled in clay stage.

AMACO. 4727 W 26th Street, INDIAWAPOLIS, IMDIANA.
Clay flows. Fires to a cone 1. Price per 1b. \$0.05/C. dry. Color, light buff.

Shrinkage, approximately $8,3 \%$.
Zasily handled in the green stage, durable.
Bupf. Fires to a cone 1. Price/C \$0.05 dry, per 1 b .
Shrinkage, 8.3\%.
White. Pires to a cone 3 . Price /C $\$ 0.08 \mathrm{dry}$, per 1 lb . Color, chalky and very smooth.

Shrinkage, very consistent. 8.3%.

This clay is very difficult to handle in the stage before firing. Haxd to spread out smoothly, very prone to split while drying, and too fragile to sand with any degree of safety. Once it has been fired, it is quite durable. Red. Fires to a cone 1. Price/C $\$ 0.06$, per $1 \mathrm{~b} .$, dry. Color, very attractive red orange. Shrinkage, green ware stage, $1 \frac{1}{2} 11 \times 3^{\prime \prime}$. Biscuit stage, $15 / 16^{n} \times 25 / 8^{n}$ or $12 \frac{1}{2} \%$. Durability, good texture and very hard.

Black. Pires to a cone 1. Price per 100月 ${ }^{\text {Wo.06 per 1b. dry. }}$ Color, dead black. Shrinkage, 20.8\%

Vary difficult to work with. The percent of loss in the green stage is about 50\%.

Very hard once it has been fired, but rather rough in texturs.

DRAK 3 NF $2 L D .45-47$ Park Place, W3W YORK CITY.
Powdered Oray. Fires to a cone 1. Price / $080.048 / 4$ per Ib. dry. Coloz, durl, off-mhite.

Shrinkage, consistent. 8.3\%.
Basy to work with, fino in taxture, dries rapidly. Powdered. \#hite. Fires to a cone 1. Price $/ 101 \mathrm{bs} . \$ 0.10$, dry. Color, chalky mhite, very soft, powders off oven after it has been fired. Splits in the second firing when glaze is not suited. Can be broken with extrene ease. Not in the least durable. Difficult to spread when wet. Almost impossible to sand.

LKMIS INSTITURE. CHICAGO, ILLIMOIS.
Tile Clay. (no Grog) Not a dead white but usuable as a color.
Very soft at cone 1 , not suitable as floor tile.
Tile Clay and Grog. Too soft for a floor tile.
This clay was underfired so the test was not a fair one. Company specified a cone 3 as the correct firing temperature, and we used only a cone 1.

C ARAMIC ATMLIRR.
This clay was fired to a cone 1. No specifications for firing were sent by the company. From the results, the cone should have been at least a cone 3 . However, cone 1 gave a reasonably hard tile of a soft buff color.

WASTARN STONETVARE. MONMOUPH, ILLINOIS.
Fires to a cone 2, and gives a good hard body at this cone. The color is a little off white, very similar to Pacific Stoneware from Portland, Oregon. The price per 1b. $/ C$ moist is $\$ 0.04$. (School price \$0.02).

RESULTS OF THE CLAY TESTS:
After testing all of the above clays, it seemed best to use a local clay from the Pacific Stoneware in Portland, Oregon:

1. Close at hand, more available.
2. Shipping charges were a great deal less.
3. The color was agreeable.
4. Body durable and the cone temperature (1170 C or

2138F). Practical for our plans.

RECORD OF THE CLAYS:
A sample and record of each clay tested kept on file.

T TCHMICAL PROCEDURE
Method of making the tiles.
WThere are two methods of making tiles recommended by Professor Binns in his book, The Potter's Craft.

1. Dust pressed, which gives a somewhat mechanical surface but suitable for any type of flat color treatment.
2. Plastic; the more artistic method, allows more freedom for 1
individual expressione"
The method chosen will be determined by the use of the tiles. For large tile the ordinary potter's clay is too close in grain. For the small tesserae any kind of clay can be used. The tiles for this problem were all small enough that it was not necessary to use grog in order to assure the proper pprosity. Several tests were made with various kinds of clay and different lamounts of grog, but only as an experiment as it was not needed in the problem.

The tiles in the design that were of a uniform size were cut first. After all of the preliminary ateps of experimenting were completed and the percent of shrinkage determined, two boards $5 / 8^{n}$ thick and about 32^{n} in length were used as a gauge to determine the thickness of the tiles. Clay of the proper consistency was spread on a cement floor Binns, op. cit., Chapter XVI.
(helps to absorb the moisture) and a steel odge used to level the surface. A 'T' square and a ruler were the only implements used for these pegularly shapod tiles. For the others a separate templet of tin plate was cut from an accurate drawing of the design. A rather thick bladed paring knife was used as a cutting tool. The tiles were not cut until the clay had reached the soft leather stage as they held their bhape much better when cut at this time.

After the tiles were thoroughly dry the surface was sanded, both top and bottom and the edges carefully chamfferd. The kiln used for firing was a Revelation Kiln, serial no. 27, Bgle Pattern, built by the H. J. Calkins Co. of Detroit. It was possible to fire about 45 feet of biscuit were at one firing and between 12 and 20 feet of flaze in a glaze fire. A margin loss, totaling about 15%, made it necessary to have three biscuit fires (cone 2) in the large kiln, and ona biscuit fire in the small kiln. Glazing the tiles was accomplished in the ten firings in the large kiln, and eight in the small one. The testing of the glazes in the small kiln took twelve firings. An accurate chart was kept of each firing with a check on the following points: date, type of fire, gas used, cones used, the amount of gas consumed each hour, the length of the fire and any special notation concerning the ware either during or after the firing.

ASSEMBLIMG THE PATTERN

All of the non-interchangeable tiles were numbered in the biscuit strge to facilitate assembling. These numbers correspond to the similar numbers on the drewing in the case of the centrel unit. This plan of numbering made it possible for another person not familiar with the design to set the tiles accurately with as little loss of time as posaible.

The floor was prepared by eutting out the old concrete to the depth of about one inch, which allowed for a bed of cement and the thickness of the tiles, the latter to be on a lavel with the surrounding concrete floor.

The tiles were set in a dightly colored cement mortar, proportionately one part Columbia river sand and one part Portland coment. After the tiles wors set and the mortar dry, a coat of wax was applied to the surface of the gleze to insure a perfect finish.

BIBLIOGRAPHY

Binns, Charles F., Potter's Craft, D. Van Nostrand Company, 1910.

Bourry, Ceramic Industry.

