
CIS-'J.'R.-80-6

A Hybrid Solution

for Concurrent Op rutions n B- re cs

C rla Schlatter Ellis

March 1980

Department of Computer and Information Science

University of Oregon

Eugene, Oregon 97403

Abstract

B-trees are us eful for supporting large ordered '1naexe s in data base

systems. Several solutions have recently been proposed to deal with the

problem of allowin g concurr en t operations in data structures related to

B-t rees. In this paper, the strengths and w aknesses of two of th se

solutions are described . A combined approach i s pres nted that can be

tuned to satisfy spec ific performance requ i rem nts. Informal argumen ts

for the correctness of this new solution are given .

1. Introduction

B-trees are useful data structures for support ing l arge ordered indexes

in data base systems . Providing concurrent access to these structures is

necessary in order to give multip le users acceptable response times to their

requests . However , al lowing concurrent op_ra tions complicates the problem of

ensuring the integrity of the data and i ntroduces the poss ibility of deadlock .

A numbe r of so lutions have been propos ed to deal with th is p roblem of con

currency in variants of B-trees [Bayer & Schkolnick 77, Miller & Snyde r 78 ,

El lis 78 , Lehman & Yao 79 , Kwong Wood 79]. These solutions share certain char-

ac teris t i cs: First, they e ch u se a locking mechanism to res trict para l l e l ac

ces s to crit ical portions of the tree. In ord r t o ach i e v e a high degree of

concurrency, rece nt approaches attempt to l imit the number of nodes tha t mus t

be locked at the same time by o ne process a nd the amo unt of time each node re

mains locked. Another simi l arity arrong solutions i s that modif ications of the

original B-tree structure are introduced to provide alternate paths by whi ch a

process can reach information being moved by another process .

In this paper , we focus on two of the s e prev ious solutions , namely [Le man

a nd Yao 79) a nd [El lis 78] . We exami ne the s t re ngths and weaknes s es of e ach

approach and present a solut ion which combines echniqu es from both. The objec

tive o the prop osed sys tem i s to allow some degree of tunin g t o satisfy speci

fic p erformanc e r equirements. Informal arguments ar given for the correctness

of this new solution .

2 . Two Pr e vious Approaches

The data structures used in the two s olutions considered here are based on

the B* - t ree . A B*-tree of degree k i s defined to be a finite set of nodes (often

referred to as pages) which is either a sinqle leaf nod or consists of a root

with from 2 to k sons. Each non-lea f node except the root has from rk/21 to k

sons . All of the a c t ual data i s s tor d in the leaf nodes a nd every path from

root to l eaf is the same length. A non-leaf nod contains pointers to its sons

and label fi elds that serve to direct searching p rocesses down the appropriate

pointer . Figure).. gives an example of a B*-tree . Algorithms to insert or delete

information must restruc ture the tre whenever t he operation wo uld produce a node

with more thank or fewer than rk/27 sons. Thus , att mpting to insert a n ew entry

into an already f ull node c aus es that no de to srl it in two with the n ew entry

I 15 26

l
3 7 10 18 21 29 32 35 38

j l
~ ~§ 1 2 4 5 6 11 12 13 14 16 1 w 22 23 24 25 § 30 3

! ! ! J, !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 22 2 3 24 25 26 2 7 28 2 9 3 0 31 3 2 3 3 3 4 35 3 6 3 7 3 8 39 40 41

* Figure 1 B -Tree of degree k=S

3

ins e rted into the appropriate half and an entry for its n e wly created brother

inserted into the father node . A node is referred to as ·safe for insertion if

it has fewer thank sons and safe for deletion if it has more than \ k/27 sons.

In [Ellis 78] , we describe two solutions for concurrent search and insertion

in 2-3 trees . A 2-3 tree is the smallest special case of B*-trees and is usually

used for relatively small amounts of data (i.e . th e entire tree c an reside in

main memory) . The second of the two solutions (the 2-3 Pipeline so lution} is the

one of interest here . This so lution uses th ~ thre e types of locks proposed by

[Bayer & Schkolnick 77]: a read lock or p -lock, an exclusiv lock or ~-lock , and

a writer exclusion lock or a-lock. Figure 2 shows the compatibility relation for

different processe s that these l ocks satisfy. An edge between any two nodes in

this g raph means that two different processes ma y simultaneously hold these locks

o n th e same node of the tree. An additional typ o f lock, a special case of

a-lock, is used to sequence leaf insertions and prevent deadlock . It is compatible

with the other form of a-lock.

The 2-3 Tree structure is modified by providing each non-leaf node with an

overflow area that makes inserted information accessible to search ing processes

while the restructuring opera ions necess itated by the insertion are still in pro

gress . A single additional pair of pointer and label fields is s u fficient above

the maximum non-l eaf level (referred to as the father of leaf level) . At the

fath er of leaf level , nodes head linked lists of leaves rathe r than having a

fixed number of sons . This change prevent deadlock between a restructuring pro

cess and a process attempting to insert a new l eaf by allowi ng the inserter to

first put the new leaf in place and then to releas all locks it holds . The

final modification in the data structure deals with the possibility that the

path followed by a writer process dur i ng its search phase may not be the correct

path for restructuring because of intervening restructuring operations. Thus

each non-leaf node includes a pointer to its current father node .

The basic strategy of this sol ution is to a llow ins erting processes to search

down the tree for the a pprop~iate place of insertion using p-locks as in readers,

insert a new leaf, and then restructure bottom up usin g a-locks to enforce fo llow

ing the leader . Thus multiple writers may be searching and restructuring along

the same path . In addition, a technique suggested in [Lamport 77) permits a node

to be shared by multiple readers a nd a writ e r concurrently adding a new pointe r-

label pair. The ba ic idea is that when a rcudcr proc ss and writer process

4

READ LOCK WRITER EXCLUSI ON

EXCLUSIVE LOCI<

Figure 2 Compatibil i ty graph for l o c ks .

5

access the same node, they move in opposite directions . ~-locks are n eeded

only wh e n entries are deleted from a node (e . g . when splitt ing c aus es en tries

to be transferred to a n ewly created brother).

Th e 2-3 Pipel ine solution achieves a high degree of concurr e ncy . The major

drawba ck for database applications is the underlying ass ump t ion that the entire

data struc ture i s resident in main memory . Maintenance of the fathe r pointers

and scanning of the linke d list of l eaves would involve a co nsi de rable numb e r of

secondary storage accesses if this approach were applied to larger paged trees .

The second solution whi ch serves as a basis for thi s wo rk i s presented in

[Lehman and Yao 79) . The data structure is a modified B*-tree called a B+-tree .

Each non-leaf node is augmented by an additional label field which holds a n upper

bound on th e va lues that may be stored in the subtree rooted at that nod e and by

an a dditional point r to the brother on its right . Thus all no d es at the same

level form a linked l i s t. An example of a B+-tree is giv e n in figure 3 . Whe n

a r estructuring process splits a node , the newl y created brot her is inserted

di r ectly to the r ight of the original node so that the entries which have been

moved are reachable through the brother pointer . With this convent ion , the nodes

belong i ng to a write r's restructuring path are accessib l either immediately or

via brother link s from nodes on its s arch path . Therefore a stack r eco rding

t he ri ghtmost node scanned at each level during the search phas e supplies the

leftmost candidate for restructuring at each l evel . Father pointers are not

necessary with this approach .

Only one type of lock is needed in this solution . The lock serves t he same

purpose as th e a -lock in the 2-3 Pipeline solut ion (i . e . xcluding other updating

writers but not r eaders or searching writers). Readers do not us e locks of a ny

kind . The simple locking scheme is possib l e because each process aper tes on its

own p rivate copy of the disk page . Several copies of a disk page may r es ide in

main memory simul taneously with a t most one process holding a lock on t he page

and mod ifying its copy . Writing the modified copy back onto the d isk page appear3 to

other processes as an instan taneous change in the data structure.

The s tro ng point o f th i s solution l ie in the choic of the B+-tree as the

data st r ucture . The brother links provide a natura l method of re covery from th e

restructuring actio ns of other processes . The sim_ole locking scheme demands rela

tively l ittle o verhead for regue ting and r e l ca i 1g locks. The major weakness is

the requirement for private copies.

ROOT: 24 60 84

16 24

4 8 1216

• • • •

F i gure 3 + B -Tree

7

Compared to a solution in which sharing of main memory panes is allowed

this restriction should lead to a hiqher number of secondarv sto rage transfers

and a poorer main s torage utilization. Consider a B+-tree of level 4 accessed

concurrently by n reading prqcesses. With this a pproach, we can e xpe c t n/4

c opies of the root age to exist simultaneously in main memory. In addition to

the space consumed by versions of the same oage , each copy i.nvol ves a trans fer

from d isk . The a dvantages in t erms of disk traffic o f a policy in which th e

root node and nodes at level 1 remain in main memory and a re shared have been

discussed in [Knuth 731 for sequential access an] in [Baer & l\ns tead 78) for

concurrent op erations . In th e next section , we propose a system that can imple

nent this policy in a highly concurrent environme nt.

3 . A Hybrid Solution

The basic idea i s to combine the two previous approaches so that either

solution may be emphasized depending on the setting of a pa rameter. This para

meter specifies the level of the t r ee t wh ich a transition is made between

shared pages and private copies. The concent i s illustrated in Figure 4. Pro

cesses operate on the sha red nodes usinq lo ck inq scheme related to the one in

[Ellis 78) . The compatibility graph of figure 2 is pertinent to this desisn .

The technique of reading and writing in opposite dir ctions is applied t o fac i l

itate shar ing . Below the designated level, p rocesses use the technique of [Lehman

& Yao 79). The two previous solutions are similar with r espect to the bottom- up

locking proto col for inserters and the a -lock is used throughout the tree. By

contrast, ~-locks and p-locks are needed only for shared pages . This arrangement

is particularly convenient since most of the splitting operations (which require

t-locks on shared pages) occur in the bottom levels which typically will not be

shared . The B+-tree is adopted as the data structure .

The major prob lem to be solved is to develoo the procedure fo r making the

transit ion between the two approaches . Without concurrent restructuring opera

tions , a process can simply keep a counter o f l evels through which it has passed

in order to detect when it reaches th e transition point. The difficulty arises

with the _T:X)ssibility that the root node may split and a new root be created .

The level of each no de then increases by on e and the set of nodes previously at

the transition level change from sharable to private access. Thus a process may

h ave obsolete information indicatinq that a node resides in shared memory and

must be able to recover. An im_ o rtant question is how t o consistently handle

a-locks for both shared and private pages so that a cha nge in the level of a page

TRANSIT I ON LEVEL

Figur e 4

8

PRIVATE

Tree Configuration for Hybrid

Solution

FATHER OF LEAF LEVEL

Leaves are the

Actua l Records

9

has no effect o n its lock status . A method is also needed for determining when

it is possible to r ep lac~ a formally sha r able page that some act ive process es

gained access to before the root split . In the fol lowing section, we describe a

monitor system for memory management and concurrency control tha t deals with

these issues.

3 . 1 The System Mo del

The officia l version of th - enti e B+-tree is s t ored on some secondary mem

o rv device . Copies of selected paqes (not necessarily of the up to date version)

reside in e i ther shared or private areas of main star qe . In order to operate

uoon a node of the tree , a p rocess must e ither fi nd it occucyinq a block of

shared me mo ry o r read it from seconda r y stora<ie in o a pr ivate block . Thus we

nee d a set of memorv management functions to loca e sharable pages , sup e rvise t h e

replacement of pages, and initiate trans f ers between disk a nd ma i n me~o ry .

This model ut ilizes an associative table of sharable pages to determine

which memory block contains a specified nod e . In addition to fields for t he

page and block addr esses , each entry in the tabl e contains a field recording the

present l e v e l of the node a nd a use bit that help decide when a page may be r e

moved.

The following functio n s are prov ided by the sys t em :

FIND (node , index) searches the associative table for the specified node . If

successful , t he use bit is set and the index of the table e n try is r e turned .

ADDR[index] l o cates the main memory block desired .

DEPART (index , no de) writes the contents of the block starting a.t ADDR[index]

onto th e dis k page indi ated by node and rese t s th use bit .

CREATE (node , block#, level) creates a n entrv in he t able for a new no d and

makes the specified block sharabl . If the 1 vel arameter indica t es tha t this

i s a new root, the header is reassigned to poin t to the new root a nd the level

o f every other entry is inc r emen t ed thereby generat ing a set of candidates for

page replacement .

block #+ GET (node)

t he memory block .

reads the conte nts of the disk pag oointed to by node into

10

PUT (block#, node) writes the contents of the giv e n memory b lock o nto the disk

page indicated by node . •

The concurrency control functions o f the system al l ow p roces s es to r equest

and release locks. Since p-locks and (-locks are used only for share d pages,

the associative table appears to be th e aonropriate p l ace to store t he status of

a node ,ith regard to thes e locks. Th e fi e ld g iv inq the number of p-locks held

also i nfluences the p ag e r eplacement decision. ;, inal ly, e ach sharable page is

asso c iated with a waiting queue for orocesscs at t empting lock r equests which are

i n compatible with tle current locks a t us . The situa ion with r.ga rd to a -lo cks

is more interesting . It is d e sirable that t he data structures whi ch rep resent

a-locking status be in main memory and not d ' st inquis h between s harable and pri

vate nodes . Since th e nwnber of pages in the B+-tree s hould be very large com

p ared to the nwnber of -locks he ld b y concurre ntly active writers , a list record

ing onl y the a-locked nodes is a suitable imp l emen tation . A waiting queue is

associated with each entry in the list for processes blocked on attempting to

a-lock tat node .

The followin g indivisible locking o pera t ions are defined:

ALPHA-LOCK (node) searches th e 1 ist o f lo ·kcd nodes . If the node is found , the

requesting orocess is b lock d ; othe rwise · n entry is inserted for the node .

RELEASE-ALPHA (node) finds th e entrv in th li s t forte node . If no processes

are wait inq in the associated queue , the entry i s dele t ed ; o therwise the first

process is awakene d.

RHO-LOCK (node , inde x) serves the dual purpose of finding he paqe and locking

it . The associative table is searched and th e i ndex of the tabl e e ntry is re

turned. In addition the lo c k status is checked a nd updated (p-lock count is in-

cremented) after possible wait.

RELEASE- RHO {index) decrements the p- lock count. If th e co unt goes to z e ro and

a p rocess is waiting to ~-lock, it is awake ned .

Xl-LOCK (index) and

RELEASE-RHO (inde x) similarly ma nipul t e t he lock status and wait queues of an

en ry in the assoc i at ive table in compliance wi t h he compatibi lity sra __ h of

figure 2 .

11

3.2 The Algorithms fa Reade rs a nd In se rters

The procedures execated by s e arching and inserting p rocesses are given in

Appendix 1 for trees containing at l e a s t one non-le af node. In order to simplify

the presentation of the algorithms in t h is sectio n, we furth e r assume the tree

contains both sharable an d pr i vate l e vels (i. e . for the specified transition

level, l, and the f a t he r of leaf leve l, h, O<l<h).

Readers b egin at the root a nd p-lock each sharabl e node on the ir path b e

fore scanning it for th e de s i r ed va lue . Upon leaving a s h a r able node , th e pro

cess releases its p-lock. Scanning a no de is accomplished by reading the pointer

and label fields s e que ntia lly from l ef t to riqh t and comparinq the desired value,

v, with each label field, l a b el [i], un ti l v ~label[i] or al l of the labels in this

node have been re a d {i=# sons) a n d f o und t o be l ess than v. I n the first case,

the next node to b e s earched is the s on p o i nted to by s on[i] . In the second

case, this node must h a ve r e c ently spli t and th e broth e r link should be followed.

Figure 5 shows the fi e lds of a non-l ea f node . For e a ch node on th p ath below

the transition leve l, the node mus t b e co p i ed f rom disk b e f o re it is scanne d.

Eventually the searching p rocess reaches the fa ther of l eaf node that should point

to the record assoc iate d with v .

Inserting a n ew l eaf into the tree f irst requi res a search f o r th e p roper

place to insert. An i nserter process pe r form.::, essentially the s a me steps as a

reader during this phase except t hat it a l s o re cords o n a s t a ck the rightmost node

scanne d at each leve l. When i t reach e s the fath er of l e a f lev e l, the process

a-locks the node, r eads it a g ain from the disk i n cas e a restructuring operation

occurred before th e lock r equest wa s g ranted , an d if neces s a r y follows brother

pointers (a-locking a s it mo ves rig ht) t o t h e arpro_J?ri ate fa ther of l eaf .node . If

the resulting node i s safe , th e new entry is insert e d, the d is k p a ge updated ,

and the a-lo ck rel e a s e d ; othe rwis e , a spl it t i nq ope ration i s pe rforme d , the stack

popped, a nd the n ewly c reated non-lea f node i ns er t e d into the f a ther of the node

that split. After t h e next node i n t he res tructuring p ath i s co r r e ctly identified

and a-locked, the a -lock on t h e split no de i s re l eased . The restruc turinq opera

tions proceed bottom up until a safe node i s e n counte red. Th e de tail s depend on

wheth e r the node b ein g modified i s p riva te or sharabl e . The inser ting p r ocess

mainta ins a level c oun t er to help it de t ermine wh i c h actions a r e appropri a te .

Whil e the value of the leve l co unter is g reat r tha n the tra nsi tion level, the

proces s is guaranteed t o b e opera ting upo n privat e nod e s. Af t e r t hat, an atte mpt

father
of leaf

//sons son
[OJ

label
[OJ

high
key

son label label son label son

(lJ [l]

Figure 5

[II son [II son [II son ll s
O

n .
-2] -1] -1]

+
Individual nod e of the B -Tree .

J.3

is made to FIND each d es i red node in shared storage .

To split a node, th€ followin g steps a r e tak n :

1) Construct a new non-leaf paqe, B, wit h e n tr i es copied from the right half of

the original unsafe node , A. If A is sharable, it mu t b e ~-locked while the

brother pointer and #sons field are updated . Ins rt the new entry into t he appro

priate node of the pair . If A is sharable , a n entry fo r B must b e made i th e

associa tive page table by calling CREATE .

2) Put B onto disk .

3) Write A onto disk b c lli ng DEPART if A is sha rabl e or PUT if it is p rivate.

4) Pop the stack and a -loc k that node . u~ ing ·IND for sh a rable nodes and GET

for p rivate nodes, move right until the ac tua l fat er of A is i dent i fi e d and

a -locked for the i nsertion of A' s new brother .

The steps ne~essary to i n sert an entry in to a node depe nd on whether the

entry is for a l eaf o r a non-l e a f node . Howe ver the es sential property is that

pointers and labe l s are mo ved right to make room for then w entry by startin~

with the brothe r po i 1 ter and proceeding right t o lef t , movinq label[i] before

son[i], until th e proper place to insert i s reached.

3 . 3 Correc tness Arg uments

In this section we sketch a correctness proof of these algorithms . There

are four parts to the discussion : prov i ng freedom from deadlock , appealing to

the proof in [Lehm n & Yao 79) for the correctness of operations on the private

portion of th e t ree , proving correctne s s for th - ~h r ed nods , and fin lly sh w

ing that the transition is made properly .

a-locks are p l aced b y the ins erte ~ according to the well-order ing on node s

o f a B+-tree. An i nserter holds only one ~-lock at a time a nd other inserters

are alrea dy excl uded from that node by the p r ocesses ' s single a -lock . The pro

c e ss r eleases the ~-loc k before ma k ing any further requests. Thus th e deadlock

situation in wh ich two processes each request an incompatibl e lock on a ode

already locked by th e other does not aris e he re .

14

If th e designated transitio n level is st at 0 , our s olut ion r educes to

tha t of [Lehman & Yao 79) where private co es ar mad• at all levels. 1~e ar

guments for the i n t egr ity of the tree structure on disk and f or the no n-interfer

ence a rrong p rocesses given t here hold for the priva t e portion of our tree .

Modifications of t he disk vers i on of sharable nodes are performed in es sen-

tially th e same way as f o r pr i vate nodes .

contents o f th e shared page are valid at

Thus , if we can oe assured that t he

he tim of he DEPART operati on , the

a r gumen t s for structural integrity still hold .

an a -lock on a nod e before FIN Ding it dur · ng th

is done p rior to relea sing the a - lock , only on

Since inserters must be grante d

r es tructuring phase and DEPART

_nrocess may be modifying the node.

The inte ra tion of p r ocesses within the sh red nodes is more interesting .

We must show that a reader or searching writer e v entually reach es the proper father

of l~af node in s pi te of mod i fications concurrently being made to the f ields of

the node being scanned . Thi s demands t ha th e po i nte r followed as a result of

scanning lead e ither to the c o rrect node or to one of its l ef t bro t hers . The

techn ique of r e a ding a nd writ ing in oppos ite directions [Lamport 77) is use d for

inserting an e ntry_ into a node . Lamport proved t h at when the fields of a data

ite m are writt e n from right to l eft , a read performed left to right obtains values

such that for each field , the value irnmedi tely to the right is f r om the same or

lat e r vers ion of the data item . The i + 1st ve rsion of a label field is less

than or e q ual t o the ith version and th e i + 1st version of a point er field l ea ds

ei ther t o the node pointed to in the ith vers ion or its (poss ibly new) left bro th er .

Suppose hat the correct next ode to be scanned is pointed to by the i th version

of son[j] a n d t hat the reader process me ets th e writer between reading son[j] a nd

lab e l [j] (i.e . i t sees the i th version of t he po.int e r and the i + ls t version of

th ssociated l abe l) . The n ti e following cases s hould be consicer d :

a . 'l'he i + 1st version of label [j] equal s the ith version of label [j-1] . 'rhe

reader has already encow1 ter d th i v a lue a nd pass ed it because the desired

k ey is greater . Therefore, the jth e ntry is rejected and the reader fol lows

the .i + 1st vers i on o f son [j+l) based on the value of l abel [j+l) .

b . The i + 1st version o f label[j] i s less than the ith vers ion but grea ter

t han l abel[j - 1] . If th e node being s canned is a father of leaf node , the

writer is attempting to insert a new leaf to the left of son[j] . Wi th regard

to a search for th e new l eaf value , this poi n te r- label combination is incon

sistent, bu t acceptab l e . Th . new label[j] ca uses our r ader to r ejec t the

15

the jth entry in item a. If the node bein? scanned is not a father of leaf

node , the old son(j].has recently split and the writer is inserting the newly

created brother as son[j+l] .

A decision based on the ith version of label[j] is equivalent to scanning a pri

vate copy read from disk prior to the write of the i + 1st vers ion. Brother links

provide recovery if ne e ded as shown by Lehma and Yao . Finally , t-locks are re

quired when a writer is r emoving entries from a node so that no inconsistent infor

mation is visible to readers.

The correctness of th e trans ition from on e a ppro ch to the other depe nds on

an i mportan t characterist ic of B-tre variants; namely that once a node is created

at a particular level in the tree, its l e vel c an n ver decrease . Thus a node that

originally resides in shared storage can become a p r ivate node, but not vice versa .

A process counting levels during either the t op-down search or the bottom-up re

structuring might make the mistake of assuming that a certain node is s harable.

If the node is no longer sharable, memo r y management will fail to find the page

and we proceed with a pr ivate copy. On the downward path , detecting the first

private node signifies that th e transition l e ve l has been passed .

4. Summary and Conclusions

In this paper we have combined two previous solution s in an attempt to over

come some of their shortcomings. Our solution depends upon a parameter that spe

cifies the level at which a transit ion is made from a locki ng appr oach on shared

pages to operat i ng upon p ri vate copies . The p e rformance measures that should be

affected by the selection of this paramete r value are the number of secondary

disk transfers, the main memory requirements w·th a fi xed number of concurrent

processes, and the amount of l ocking overhead . Characterist ics of the processing

env ironment that must be taken into account are the degree of the tree , k, a nd

the numb e rs of concurrent readers and inserters . Simul ation experimen ts investi

gating th e tradeoffs will be reported in a subs quent paper . Probablistic analyses

will also be pre s e nted .

The subject of deletion has been omitted because in many a~plications it is

performed r el tive l y infrequently and the strategy of a llowing de l e t ion from un

safe father of l eaf nodes without restructurin (i . e . allowing nodes with l ess

than rk12l sons) is acceptab l e .

concurrent res tructuring.

It is possible t o extend this solution to allow

16

5 . Bibliography

Baer , J-L . and S. Anstead , "Concurrent Accesses of B*-trees in a Paging
Environment", Proc . of International Conf. on Parallel Process ing, 1978 .

Bayer , R. and M. Schkolnick, "Concurrency of O_pe rations on B-trees" , ACTA
INFORMATICA 9 , 1977 , pp . 1-22.

Ellis , Carla , "Concurrent Search and Insertion in 2-3 Trees " , TR-78- 05 - 01,
University of Washington, 1978, to apoe ar in ACTA INFORMATICA .

Knuth , D. E. , The Art of Computer Programning., Vol . 3., Sorting and Sear>ching
and Searching., Addison-Wesley , 1973, pp . 471-479.

Kwong, Y. S . and D. Wood, "Concurrency in B-trees , S-trees , and T-trees" ,
TR-79- CS-17, McMaste r University, 1979 .

Lamport , L., "Concurrent Reading a nd Writing" , CACM, Vol . 20, No . 11, Nov. 1977,
pp . 806- 811.

Lehman , P. and S . B. Yao , "Efficient Locking for Concurrent Ope rat ions on B- t rees ",
preliminary repor t 1979.

Miller , R. and L. Snyde r, "Multipl e Access to B-trees 11
, Pro c . Conf. Informa tion

Science and Systems , Mar 1978.

A-1

READER

RHO-LOCK (header ,i)

c urrent+ ADDR[i]

RHO-LOCK (current,j)

while j f A /*current is sharable*/ do begin

RELEASE-RHO(i)

i + j

previous + c ur rent

current+ SCANNODE (value, ADDR[i], brotherlink)

if previous is fa the r of l ea f and not brotherlink

then begin /*current is leaf*/

end

Compare value with labels in ADDR[i)

to determine success

RELEASE RHO(i)

return

RHO-LOCK (current ,j)

end

A + GET (current)

RELEASE- RHO(i)

whil e true do begin

end

previous+ current

curre nt + SCANNODE (va l ue, A, brotherl ink)

i f previous i s father o f leaf and not brotherlink

then begin

e nd

Compare value with labels in A to

de termine s uccess

return

A+ GET (c urrent)

INSERTER

initialize stack

RHO-LOCK (header,i)

PUSH (header)

current+ ADDR[i]

RHO-LOCK (curren t, j)

A-2

/*as in reader process

except

stack r ightmost node in each level

and at father of leaf level a lock*/

while j f A & current is not father of l eaf do b gin

RELEASE-RHO(i)

end

i + j

previous+ current

current+ SCANNODE (value, ADDR[i] , brotherlink)

if not brothe rlink then

p ush (previous)

RHO-LOCK (current,j)

if c urrent is father of leaf then begin

release RHO(j)

end

ALPHA-LOCK (current)

RELEASE-RHO(i)

FIND (curre nt,i)

if i =A then begin

end

A+ GET (current)

MOVERIGHT

Compare

else begin

SHARABLE-MOVERIGHT

Compare

end

else begin /* NONSHARED */

A+ GET (current)

RELEASE-RHO(i)

A-3

while current is not father of leaf do

previous+ current
-~-

end

end

current + SCANNODE (value ,A,brotherlink)

A+ GET (current)

if not brotherlink then

push (previous)

/*current is father of leaf*/

ALPHA-LOCK (current)

A+ GET (current)

MOVERIGHT

Compare

/*restructuring phase*/

level+ father of leaf level

newnode + ptr to disk page alloc to record assoc with value

while level> transition+ 1 & current is not safe do

begin

SPLITPRIVATENODE

A+ GET (current)
I

moveright

release ALPHA (previous)

end

while current is not safe /*level believed to be

transition+ l*/

do begin

SPL ITPRIVATENODE

FIND (current,i)

while i ~Ado /*within sharable portion*/

begin

t + SCANNODE (value, ADDR[i), brotherlink)

if brotherlink th n begin

ALPHA-LOCK(t)

RELEASE-ALPHA (current)

current+ t

FIND (current, i)

end

A-4

e l se begin /*actual father*/

release-A~PHA (previous)

if current is safe then begin

end

INSERT (ADDR[i), newnode , value)

DEPART (i,current)

RELEASE ALPHA (current)

return

if current is root t hen begin

SPLITSHAREDNODE

root+ alloc new disk page

A+ construct page with

(previous, value, newnode , B . label[#sons-1] , A)

PUT (A , root)

CREATE (root,A , n ewroot)

RELEASE ALPHA (pre vious)

RELEASE ALPHA (curre nt)

r e turn

end

SPLITSHAREDNODE

end /*actual father*/

end/* i -/ A*/

A+ GET (current)

moveright

release ALPHA (previ ous)

end /*while current not safe*/

/ *current i s safe*/

INSERT (A, newnode , value)

PUT (A, cur r ent)

release ALPHA (current)

A-6

pro cedure SHARABLE MOVERIGHT

t + SCANNODE (value~ ADDR[i), brotherlink)

while brotherlink do begin

end

ALPHA-LOCK (t)

RELEASE-ALPHA (current)

current+ t

· FIND (curre nt,i)

if i =~then begin

A+ GET (current)

moveright

return

end

t + SCANNODE (value, ADDR[i], brotherlink)

procedure SPLITSHAREDNODE

begin

brother+ alloc new disk apge

B + copy righthand half of ADDR[i)

Xl-LOCK (i)

ADDR (i] . #sons + rk/21 or rk/27 -1

depending on where n ewnode is to be

inserted

ADDR(i].son(#sons] + brother

RELEASE-Xl (i)

if value> ADDR[i] .label(#sons-1] then

INSERT {B,newnod e ,value)

else INSERT (ADDR[i] ,newnode ,val u e)

CREATE (brothe r,B,i)

PUT (B, brother)

DEPART (i, current)

newnode + brother

previous+ current

value+ ADDR[i] .label(#sons - 1)

current+ pop (stack)

ALPHA-LOCK (current)

FIND (current , i)

end SPLITSHAREDNODE

A- 7

function SCANNODE (value: keytype,B : frame#, var brotherlink: boolean): ptr type

declare local variab)es: i,link,key

begin

i + 0

brotherlink + false

repeat

link+ B . son [i]

if i = B . #sons then b e gin

key+ B.labe l[i]

i + i + 1

until value < key

bro t herlink + t rue

return (1 ink)

end

return (link)

end

procedure INSERT (B: frame # , ptr : ptrtype , value : k ey typ e)

declare local variable i

function PLACETOINSERT: boolean

begin

if i = 0 then return (true) else

if value> label [i-1] then return (true)

else return {false)

i + B.#sons

B.son[i+l] + B.son(i]

B.label(i] + B.label[i-1)

B.#sons + B.#sons + 1

i + i - 1

/*move b r othe rlink*/

/*move hig hkey*/

while not PLACETOINSERT do begin

B. son[i+l) + B.son(i]

B.labe l[i] + B.label[i-1)

i + i-1

e nd

T

A-8

if father of lea f then begin

B.son[i+l). + B. son[i]

B. label[i) + value

B.son(i] + ptr

end

else begin

B . son [i+ 1] + ptr

B. labe l[i] + value

end

end

