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ABSTRACT 

A network is specified by a topology definition and a protocol definition. A 

network's topology, represented as a graph, defines its interconnection structure, while the 

protocol defines its operational behavior. A template is a connected graph. A topology G 

is immune t_o a set of templates T if G remains connected under removal of any imbedding 

of a single element of T. A network is template immune to a set of templates T if its 

topology is immune to T and its protocol guarantees that all operative sites can 

communicate in the presence of possible failures. A network is isolated template immune 

to a set of templates T if it is immune to multiple imbeddings of elements of T, where each 

imbedded template does not involve vertices that are neighbors of another imbedded 

template. We discuss networks that are isolated template immune to simple path templates 

of length k. 

* Research supported in part by ONR contract #N00014-86. 



1. Intrcxiuction 

The robustness, or fault-tolerance, of a communication network is 

characterized by the set of communication tasks that can be completed in the presence of 

certain sets of failures in the network. In this report, we focus on site-to-site 

communication tasks in store-and-forward network architectures. Each site-to-site 

communication task is characterized by a message, an originator, being a site that creates 

the message, and a recipient, being the site to which the originator wishes to convey the 

message. In a store-and-forward network, messages are communicated by calls placed 

between adjacent sites. To be communicated between non-adjacent sites, a message must 

be forwarded by calls placed along a path connecting the two sites. 

We model a communication network by a combination of topology and protocol 

specifications. A network's topology is represented by an undirected graph G =(V, E), 

whose vertices V correspond to sites of the network and whose edges E, represented as 

pairs of vertices (u, v), correspond to lines of the network. We refer to the graph 

representing a network's topology as the network graph. Two vertices are neighbors in a 

graph G if they are connected by an edge of G. A path (of length k) between two vertices 

v 1 and vk consists of a sequence of vertices [ v 1, ... , vk], such that, for 0<i <k, the pair (Vi, 

Vi+ 1) is an edge of the graph. We denote the general path on k vertices as Pk 

When evaluating the fault-tolerance of a network, we are concerned with 

connectedness properties of its network graph. Two vertices are connected in a graph G if 

there exists a path between them in G. A graph is connected if and only if every pair of 

vertices in G is connected. Removal of certain elements of a graph will disconnect the 

graph. A (vertex) separator of a graph G is a set of vertices, which, when removed from . 

G, results in a subgraph of G that is not connected. A minimal separator S of G is a 

separator such that no proper subset of Sis a separator of G. 

A set of site failures in a network is modeled by removal of the corresponding 

vertices (and incident edges) from the network graph. In the case of a single site failure, 

the corresponding vertex and all edges incident to that vertex are removed from the graph. 

We refer to the graph remaining after removal of failed elements as the operative graph; the 

sites remaining are termed operative sites. Obviously, two operative sites can no longer 

successfully communicate if their associated vertices do not remain connected in a 

network's operative graph. However, two operative sites may not be able to communicate 

even when their corresponding vertices remain connected if the network's communication 

protocol is not sufficient to bypass extant failures. 

A network's communication protocol is represented in terms of routing tables and 

calling procedures that are associated with each site of the network. In our networks of 

interest, communication is realized by a call, placed by one site, the sender, to another, 



neighboring site, the receiver. A routing table for a site indicates a sequence of one or more 

possible calls to its neighbors that the site may place for each other site as recipient. A 

calling procedure uses the routing table to detennine which site(s), if any, to call with a 

message it has received or originated. 

The site-to-site robustness, or fault-tolerance, of a communication network can be 

characterized by the set, or number, of pairs of operative sites that can still communicate in 

the presence of a given set of failures. We will say that a network is immune to a given set 

of failures if and only if all pairs of operative sites can still communicate in the remaining 

operative graph under the network's communication protocol. 

2. Templated Failure Immunity 

By template, we simply mean a connected graph. An imbedding of a template tin a 

graph G is a one-to-one association of the vertices oft with a subset of vertices in G, such 

that if there exists an edge between two vertices oft there is an edge between the associated 

vertices in G. There may be other edges in the subgraph of G induced by t; however, all 

edges oft must be in G. We say that the imbedding of a template in a graph G covers the 

associated elements of G. A temp lated failure is a failure of elements of a network that 

corresponds to an imbedding of a template in the network's graph. A templated failure is 

said to be based upon a set of templates T if the subgraph associated with the failure 

corresponds to one of the templates in T. 

A graph G is template immune to a set T of templates if and only if it remains 

connected after introduction of any possible templated failure based upon Tin G. The class 

of network graphs template immune to a set T of templates is referred to as Immune(T) . 

For example, if T consists solely of the graph U, where U denotes the trivial graph with 

one vertex and no edges, then Immune( { U}) corresponds to the class of 2-connected 

graphs. Minimum examples of such graphs are cycle graphs, where, by minimum, we 
mean having the fewest edges for a given number of vertices. The cycle graph C n is the 

unique connected graph on n vertices such that every vertex has degree 2. 

We can state the following lemma regarding graphs that are template immune to a 

set of templates T. 

Lemma 2.1 A graph G is template immune to a set of templates T (i.e., G is in 

Immune(T)) if and only if no templated failure based upon T can cover a (minimal) 

separator of G. 

A network N is template immune to a set T of templates if and only if its network 

graph is in Immune(T) and its communication protocol is such that every operative site can 



still communicate after introduction of a templated failure. Thus, that a network's graph is 

template immune is a necessary but not sufficient condition for the network to be template 

immune to a given set of templates. 

An imbedding of elements from a set T of templates in a graph G is an isolated 

imbedding if it is an imbedding of templates (with possible duplication) from T such that no 

two of the imbedded templates have associated vertices that are neighbors in G. Around 

each failure there is a buffer of operative sites; as such, the failures are topologically 

isolated from each other. A graph G is isolated template immune to a set T of templates if 

and only if it remains connected after removal of any possible isolated imbedding of T in 

G . The class of graphs that are isolated template immune to a set of templates Twill be 

denoted by Isolmmune(T) . We can state the following lemma regarding such classes of 

graphs. 

Lemma 2.2 A graph G is isolated template immune to a set of templates T (i.e., G 

is in Isolmmune(T)) iff no isolated imbedding of templated failures based upon Tin G can 

cover any (minimal) separator of G. 

We have previously studied several classes of isolated template immune graphs 

[ 1,2]. Isolmmune( { U}) is the class of graphs immune to removal of independent sets of 

vertices. In [l], we prove that 2-trees are in Isolmmune({U}). In [2], we broaden the 

characterization of such immune networks and define a class of networks in 

Isolmmune( { P2}). 

The path graph P 2 can be generalized in several ways. One is to extend it in terms 

of the length of the path, looking at networks immune to Pk, for increasing k. Given the . 

combinatorial explosion in number of connected graphs with increasing number of vertices, 

we will limit our attention to failure templates from the family of path graphs. Rather than 

consider immunity to single path failures, we will focus on the case of immunity to isolated 

instances of path template failures. 

3. General Design Principles 

If a graph is to be immune to isolated imbeddings of a particular set of templates, 

Lemma 2.2 gives a general, minimal condition that must be satisfied. Namely, no such 

imbedding can completely cover vertices of any separator in the graph. This condition is 

not particularly useful in designing the corresponding immune networks, as it simply 

restates the definition of immunity in terms of graph separators. What we want are several 

design principles upon which we can base our search for classes of graphs that are isolated 

immune to given sets of templates. 



The notion of separator is obviously relevant, as removal of any separator 

disconnects the graph. If we could rephrase our condition in terms of sufficient conditions 

on the relationship between elements of T and separators of a graph, we would have 

principles to guide our search for feasible designs. 

As noted above, when templated failures are isolated, there is a buffer zone of 

operative sites between any two failures. Therefore, as we imbed one failure, we guarantee 

that certain other vertices can not be included in other failures, when the failures are 

isolated. We will say that a given templated failure immunizes those vertices which must 

remain operative if failures are to be isolated in the network's graph. The immunization of 

nearby vertices suggests the following design principle Pl, which is a sufficient condition 

for a network graph to have isolated immunity to a set of templates: 

Pl: Design a network so that for every separator, any templated failure covers only 

a proper subset of vertices of the separator and immunizes at least one other vertex of the 

separator. 

We will refer to such separators as self-immunizing separators. If every separator 

of a graph G is self-immunizing for a given set of templates T, then Gisin Isolmmune(T). 

One way to create self-immunizing separators is to consider network topologies in which 

every separator is (or, more generally, contains) a connected graph with more vertices than 

any template in T. Such graphs will be in Isolmmune(T). 

Lemma 3.1 If every separator in a graph G contains a connected subgraph having 

more vertices than any element of a set of templates T, then G is in Isolmmune(T). 

Proof: [By contradiction.] Assume there exists some isolated imbedding of 

elements of T that disconnects G. This implies that some separator Sis completely covered 

by the imbedding. However, S contains a connected subgraph S' having more vertices 

than any template in T. Any templated failure that includes any part of S' cannot cover all 

of S' and must immunize at least one vertex of S'. In other words, every separator in G is 

self-immunizing. Thus, the imbedding of templates containing S can not be isolated, 

contradicting our assumption. [] 

If the graph U is in the set of templates T, then a templated failure only immunizes 

directly adjacent vertices. _ Any vertex not adjacent to a failure can fail by an imbedding of 

U. However, in those cases where the minimum diameter of the templates in T is greater 

than zero, non-adjacent vertices may be immunized by a given templated failure as well. 



How can we construct (define) an infinite class of graphs that have a certain, 

desired structure in every separator? We need another design principle to guide our search. 

We employ a general technique, expressed as design principle P2, that is sufficient to 

generate such classes of graphs. 

P2: Design a network by defining an immune base graph and a construction rule 

that adds a new immune subgraph by connections that create a self-immunizing separator. · 

The general technique we employ is one of iterative construction, growing desired 

graphs from a base graph by successively adding one or more vertices in a particular 

immune configuration, connecting them to a certain allowable subsets of vertices in the 

current graph. The base graph must be immune and each addition must maintain immunity 

by creating a self-immunizing separator between the two immune subgraphs. For example, 

a k-tree can be defined iteratively as either a k-complete graph (i.e., a graph on k vertices, 

such that every vertex is adjacent to every other vertex), or a k-tree K to which a new 

vertex v has been added by connecting v to a k-complete subgraph of K. The class of 2-

trees are in Isolmmune({U}), by Lemma 3.1 and our design principles. 

A related, recursive technique is to take two immune graphs and "glue" them 

together by identifying a certain subset of vertices from one graph with a subset in the 

other. The identified vertices become a separator that must satisfy conditions on immune 

structure. From this perspective, a 2-tree can be defined as being either a triangle or two 2-
trees glued together by identifying a P 2 from each graph. 

In our research, we are searching for efficient designs of networks immune to 

isolated imbeddings of certain sets of templates. As a measure of efficiency, we will use , 

the number of edges (size) needed to realize immunity for a given number of vertices 

( order). There are a number of ways to evaluate the relative efficiency of a network design. 

One is to choose a reasonable, "benchmark" class (i.e., a relatively sparse, infinite family 

of immune graphs). We can evaluate the relative efficiency of an immune network design 

in terms of the improvement in size-to-order ratio between the new immune class and the 

benchmark graphs. 

We will use the family of graphs known ask-trees as a benchmark for our designs. 

Every minimal separator in a k-tree is a k-complete graph. For a given set of templates T 

where the maximum number of vertices is k-1 in any template, a k-tree is immune to any 

isolated imbedding of elements of T, by Lemma 3.1. A k-tree has an size-to-order ratio of 

k. This provides us with a target ratio to improve upon in our search for efficient designs. 



4. Isolmmune({U, P2, ... Pk}) Networks 

In [ 1], we explored the definition of graphs immune to isolated instances of simple 
vertex or P2 failures. Here, we consider networks where both of these failures may occur. 

Then we generalize to paths involving more vertices, defining topologies for networks 

immune to isolated occurences of these failures. 

Let thewhee/ graph W non n vertices be the graph having n-1 vertices connected in 

a cycle Cn-1, called the rim, and a single vertex, called the hub, connected to all vertices 

on the rim. By definition, W n has 2n-2 edges. 

Theorem 4.1. The class of wheel graphs is exactly the class of minimum graphs in 

Isolmmune({U, P2}). 

Proof: It is easy to see that Wn is in Isolmmunel({U, P2 }). No single failure can 

disconnect the graph. If the hub is involved in a failure, only one (isolated) failure can 

occur. If the hub is not involved, the failure immunizes the hub; all operative vertices 

remain connected to each other indirect! y through the hub. 

To prove that Wn is exactly the class of minimum size graphs in Isolmmune({U, 

P2} ), we first establish that the minimum size for a graph in this immune class is 2n-2, for 

graphs of order n. We see that W 4, the complete graph on 4 vertices, is the minimum size 

immune graph having order 4. Assume that G is a minimum order, immune graph (on n 

vertices) having fewer than 2n-2 edges. G must have a vertex u of degree 3, since G can 

have no vertex of degree 2, and, if all vertices were of degree at least 4, it would imply at 

least 2n edges. The neighborhood of u in G contains a path; without loss of generality, 

assume the path is <x.,y ;z>. We claim that the graph G' formed by removing vertex u from 
G and adding (if necessary) the edge <x, 7> is also in Isolmmune({U, P2 }). This is so 

because any isolated imbedding of templates in G' that would disconnect G' would also 
disconnect G. Thus, G' is in Isolmmune({U, P2 }). G' has n-1 vertices and not more 

than 2n-2-2 = 2(n-1)-2 edges, as 3 edges were deleted from G and at most one added. 

Therefore, G was not of minimum order for an immune graph having fewer than 2n-2 

edges. By contradiction, no such graph exists. 

Now we show that wheels exactly constitute the class of minimum size graphs in 

Isolmmune({U, P2}). Our argument is similar to that above for size. By inspection, W4 

(isomorphic to the complete graph on 4 vertices) is the only graph on four vertices that is in 

the class. Let k be the least k (where k > 4), such that Wk is not the only graph having 2k-

2 edges in Isolmmune({U, P2}). Let G be one of these other graphs having k vertices. G 

must contain at least one vertex u of degree 3, as argued above. By Lemma 1, the 



neighborhood of u contains a P3, <x, y, z>. Let us remove vertex u and add an edge 

between the two non-adjacent vertices x and z of the P3. This reduces the number of 

vertices by 1 and number of edges by 2. The resultant graph G' is in Isolmmune( {U, 

P2} ), as any disconnecting, isolated imbedding of v or P2 in G' would also disconnect G. 

G' must be Wk-1, ask is the least k such that a minimum size member of Isolmmune({U, 

P2}) is not be a wheel. 

There are two cases to consider for the position of added edge <x,z>, since the 

triangle (x, y, z) resulting from the reduction always involves the hub (of Wk-1, since k > 

4) and two adjacent vertices of degree 3. However, the added edge <x,z> could not be 

incident to the hub, as the original graph G would not be immune. Thus, the removed 

vertex u was on the rim of wheel graph Wk. Therefore, G was a wheel contradicting our 

definition of G. [] 

All that remains to complete the definition of networks immune to isolated instances 
of P2 and single vertex failures is to define a communication protocol for sites of such a 

network. We call the following protocol W ,t. 
If a site receives a call meant for it as recipient, the calling process is completed 

successfully. Otherwise, there are two classes of sites to consider, the hub site and the rim 

sites. When originating or forwarding a call, the hub site simply calls the ultimate 

recipient, as the hub is neighbor to all other sites. Regardless of whether the site is up or 

down, the calling process is complete and immune to failures. 

If a rim site originates a message transfer, it first calls the hub. If the hub site is 

down, then the originator calls a neighbor on the rim, preferably the one closer to the 

ultimate recipient on the cycle of rim sites. If that neighbor is down and is not the ultimate , 

recipient, the calling site calls its other neighbor on the rim, which must be operational. If 

forwarding a message, a rim site must have received the message from a neighbor on the 

rim (as the hub is down); it calls its other neighbor on the rim. If that site is down and it is 

not the ultimate recipient, the calling site calls the neighbor on the rim from which the 

message was received, thereby returning the message to traverse the cycle in the opposite 

direction. 
Protocol W nP provides the immune behavior made possible by the wheel graph 

topology. Thus, we have the following theorem. 

Theorem 4.2 Networks having wheel graphs as their topologies and using 
communication protocol W np (as defined above) are immune to isolated P2 and U failures. 

One approach to the design of immune networks is to take graphs known to be 

immune to a special class and generalize those graphs to extend immunity to a larger classe 



of temp lated failures. We generalize our notion of wheel graph to define efficient networks 

immune to isolated imbedding of paths of length 1 (i.e., U) up to length k. Our benchmark 

class for such network graphs is the class of (k+ 1)-trees, with size to order ratio of k+ 1. 

We define the class of multi-centered wheels, as follows. A k-centered wheel on n 

vertices kW n (n> k+ 1) consists of a hub, being a set of k totally unconnected vertices, and 

a rim, being all other n-k vertices connected in a cycle, such that each vertex on the rim is 

also directly connected to every vertex of the hub. Figure 1 presents an illustration of-a 

3W10 graph. 

Theorem 4.3: The kWn graph is in Isolmmune({U, P2, ... , P2k-2}), for n>3k-2 

and k> 2. 

Proof: We have k vertices in the hub and more than 2k-2 vertices on the rim. To 

disconnect a vertex on the rim, we must fail all hub vertices (plus at least two vertices on 

the rim) in one failure. To fail all vertices in the hub requires a path of length 2k-1. To 

disconnect a vertex in the hub requires that all vertices on the rim fail in one failure. To fail 

all vertices on the rim requires a path of length at least 2k-1. If a failure involves any vertex 

of the hub, all remaining vetices on the rim are immunized. If a failure involves a vertex on 

the rim, then all remaining vertices of the hub plus neighbors of the failure on the rim are 

immunized. As such, we see that a single failure from the set of available templates cannot 

disconnect the graph and immunizes sufficient other elements to guarantee immunity for the 

graph. 0 

The number of edges in a kW n graph is n-k on the rim, plus (n-k)k connecting the 

rim to the hub, for a total of (k+ l)(n-k). This indicates a size to order ratio of k+ 1 for 
networks in Isolmmune({U, P2, ... , P2k-2}), for k>2, which is significantly less than the 

size to order ratio of 2k-1 associated with our (2k-1 )-tree, benchmark class. 
Immune communication protocols for the kW n-based networks are straightforward 

generalizations of the W nP protocol defined previously. Each site on the rim now has a list 

of k hub sites to call (instead of only one). A site on the rim, when originating a message, 

calls the ultimate recipient first, if it is a neighbor of the recipient. Otherwise, it starts 

calling hub vertices until it succeeds (as it must by our proof of immunity above). A site on 

the hub forwards a message directly to its recipient. The only difficulty remaining for the 

protocol is a hub site originating a message for another hub site. The originator may have 

to call 2k-1 sites on the rim before finding one that is operative, which site can then call the 

recipient with the message. A call to an ultimate recipient, whether succeeding or failing, 

ends execution of the protocol. It is easy to see that this generalized protocol produces the 

immune communication behavior desired. 



Figure 1. The 3 W 1 o graph . 

• 

Figure 2. A 3-sibling tree. 



5. Isolmmune({P2, ... , Pk}) Networks 

In this section we discuss networks that are immune to isolated path failures, 
without the possibility of single vertex failures, those networks in Isolmmune( { P2, ... , 

Pk}). From an earlier discussion of graphs in Isolmmune({P2}), we found that a 

separator can be self-immunizing at a distance, i.e., when no pair of vertices of the 

separator are adjacent. This result suggested the notion of twin pair, being two non

adjacent vertices that have identical neighborhoods of order at least 2. Graphs known as 

twin-trees, in which every separator is a twin pair, have been shown to be in 
Isolmmune({P2}) [2]. No P2 failure can fail both elements of a twin pair and, in addition, 

each P2 failure must immunize one element of at least one twin pair. 

Our notion of twin pair can be generalized to that of an s-sibling set : a set of s 

independent (i.e., mutually non-adjacent) vertices having identical neighborhoods of order 

at leasts. By an interative construction procedure, we can form tree-like graph structures, 

having s-sibling sets as separators. 

Ans-sibling tree on n vertices (for n ~ 2s) is either the complete bipartite graph on 

2s vertices (for n = 2s) or is formed by connecting a new vertex v to an s-sibling-set of an 

s-sibling tree on n-1 vertices (for n > 2s). Each s-sibling tree on n vertices has s(n-s) 

edges. Fig~re 2 presents an example of a 3-sibling tree, including a representation 

highlighting the tree-like structure of such a graph. This recursive definition leads to an 

inductive proof of the following lemma. 

Lemma 5.1 Every minimal separator of an s-sibling tree is an s-sibling set. 

If we are to provide immunity to failures of paths up to length k, all vertices of a 

sibling set separator must not be able to be covered by a single failure. Thus, the number 

of siblings in a separator must be greater than (k+ 1)/2. 

Theorem 5.2 Ans-sibling tree on n vertices is in Isolmmune({P2, ... , Pk}), for 

any s greater than (k+ 1 )/2. 

Proof: By Lemma 5.1, every minimal separator is ans-sibling set of order greater 
than (k+ 1)/2. Thus, no separator can be covered by a single Pk failure. Each failure 

immunizes at least one vertex of any separator involved in the failure. D 

The s-sibling trees are efficient designs in that they only require a size-to-order ratio 

of (k+ 1 )/2, while our benchmark class of k+ 1-trees would require a ratio of k+ I. 



It remains to define immune communication protocols for s-sibling trees to 

complete our immune network design. In an s-sibling tree, either two sites are neighbors, 

and can call each other directly, or each vertex has a uniques-sibling set neighborhood 

between itself and any non-neighboring vertex. This is due to the tree-like structure of the 

sibling-set separators of the graphs. Therefore, the following, simply stated protocol 

provides the immune behavior desired: a site calls the ultimate recipient of a message if it is 

a neighbor of the recipient; otherwise, the site calls members of the unique, s-sibling set 

neighborhood lying between it and the ultimate recipient, until a call is successful. 

6. Conclusion 

In this paper we describe efficient designs for networks that are immune to isolated 

occurrences of path failures. Our designs include not only specifications of topology but 

also specifications of communication protocols that realize the immune performance. While 

efficient, most our designs are not minimum or not known to be minimum. Open 

questions include the determination of minimum designs for the cases considered here, 

other than the wheel graphs which were shown to be minimum elements of 
Isolmmune({U, P2}). 
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