
•

Fast Parallel Algorithms for
the Subgraph Homeomorphism
& the Subgraph Isomorphism

Problems for Classes
of Planar Graphs

Andrzej Lingas
Andrzej Proskurowski

CIS-TR-88-04
April 6, 1988

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

UNIVERSITY OF OREGON

•

•

Fast Parallel Algorithms
for the Subgraph Homeomorphism

and the Subgraph Isomorphism Problems
for Classes of Planar Graphs

Andrzej Lingas
Department of Computer and Information Science
Linkoping University, 581 83 Linkoping, Sweden

Andrzej Proskurowski
Department of Computer and Information Science
University of Oregon, Eugene, Oregon 97 403, USA

Abstract
We consider the problems of subgraph homeomorphism with fixed pattern graph,

recognition, and subgraph isomorphism for some classes of planar graphs. Following
the results of Robertson and Seymour on forbidden minor characterization, we show
that the problems of fixed subgraph homeomorphism and recognition for any family
of planar graphs closed under minor taking are in NC (i.e., they can be solved by an
algorithm running in poly-log time using polynomial number of processors). We also
show that the related subgraph isomorphism problem for biconnected outerplanar
·graphs is in NC. This is the first example of a restriction of subgraph isomorphism
to a non-trivial graph family admitting an NC algorithm.

1 Introduction

The subgraph homeomorphism problem is to determine whether a graph is homeo­
morphic to a subgraph of another graph. A graph H is homeomorphic to a graph G
if the graph resulting from contracting all maximal paths in G with inner vertices of
degree two to single edges is isomorphic to H. Thus, the subgraph homeomorphism
problem can be viewed as a generalization of the subgraph isomorphism problem.
The latter problem is to determine whether a graph is isomorphic to a subgraph
of another graph. For instance, if H is an n-vertex circuit and G is an n-vertex
planar graph of valence 3, n E N, then determining whether H is homeomorphic

1

to a subgraph of G is equivalent to determining whether H is isomorphic to a sub­
graph of G which is in turn equivalent to the NP-complete problem of determining
whether a planar graph of valence 3 has a Hamiltonian circuit [GJ]. Thus, the sub­
graph homeomorphism and isomorphism problems are NP-complete even if G and
H range only over connected planar graphs of valence 3. Subgraph isomorphism also
remains NP-complete when the first input graph is a forest and the other input
graph is a tree [GJ]. Analogous .NP-completeness results hold for the directed ver­
sions of the two problems [GJ]. However, in this paper we consider only undirected .
graphs.

If we fix the first graph H as a pattern graph then this fixed subgraph isomor­
phism problem is trivially solvable in polynomial time while the fixed subgraph
homeomorphism problem remains open (i~ the undirected case) [As, FHW]. On the
other hand, there are two known restrictions of the general subgraph isomorphism
problem to non-trivial graph families that are solvable in polynomial sequential
time. Trees constitute one of these families [Ma, Rey] , the other is the class of bi­
connected outerplanar graphs [Li86]. (A graph is outerplanar if it can be embedded
in the plane such that all ·its vertices lie on the outer face [H, Mi].)

Another view of the subgraph homeomorphism problem is as a generalization
of the disjoint connected paths problem, DCP, defined as follows: Given a graph
G and a set of vertex pairs (si, ti), 1 ~ i ~ k, decide whether there exists a set of
pairwise vertex-disjoint paths Pi in G connecting Si with ti . Also this problem is
NP-complete even if restricted to planar graphs [FHW]. However, if the number k
of vertex pairs is bounded the problem seems to become more tractable. For k = 2,
there are polynomial algorithms for DCP (see [GJ,RS85]). Recently, Robertson and
Seymour have showed that for an arbitrary fixed k, the DCP problem restricted
to planar graphs is solvable in polynomial time [RS85]. Since the fixed subgraph
homeomorphism problem is trivially polynomial-time reducible to the DCP problem
with appropriately chosen fixed k, the result of Robertson and Seymour yields also
a polynomial time solution to the problem of fixed subgraph homeomorphism for
planar graphs.

A well known application of the subgraph homeomorphism problem is the recog­
nition problem for classes of graphs that can be characterized by the absence of some
forbidden substructures. For instance, the recognition problem for planar graphs
can be reduced to two fixed subgraph homeomorphism problems with K 5 and K 3,3

as the pattern graphs (see, for instance [H]). A similar characterization of planar
graphs is provided by the operation of minor taking which can be viewed as a
generalization of the path contraction operation used in the definition of subgraph
homeomorphism. A graph H is a minor of another graph G if G can be reduced

2

..

to H by deletion and contraction of edges. A graph is planar if and only if it
does not have a minor isomorphic to K 5 or K 3 ,3 • Several other non-trivial classes
of graphs can be also characterized by a finite list of forbidden minors, for instance
outerplanar graphs, series-parallel graphs, partial 3-trees, bounded genus graphs
[CH,APC,RS86]. For fixed H, the problem of testing whether G has a minor isomor­
phic to H can be be reduced to a finite number of fixed subgraph homeomorphism
problems [RS85]. Thus, the problems of subgraph homeomorphism, DCP, minor
containment, and recognition for several classes of graphs are intimately related.
Often a solution to one of them yields solutions to the others.

. As yet, there are no known efficient parallel algorithms even for the fixed versions
0f these problems (with the exception of the DCP problem with k = 1 [QD]). The
situation is similar in the case of restricted subgraph isomorphism problems. It is
only known that subgraph isomorphism for trees is solvable by a Las Vegas NC
algorithm (LK].

In this paper, we consider the problems of DCP with fixed k, fixed subgraph
homeomorphism, and recognition for any class of planar graphs closed under minor
taking, and the subgraph isomorphism problem for biconnected outerplanar graphs.
We show that all these problems can be solved in poly-log time using a polynomial
number of processors, i.e., they are in the class NC [Co,Ru,P]

Our parallel algorithms for the problems of DCP with fixed k, fixed subgraph
homeomorphism, and recognition for any class of planar graphs closed under minor
taking rely on the idea of a sequential method of Robertson and Seymour for the
so restricted DCP problem (RS85]. In turn, the sequential method is implied by
their interesting, bounded separator theorem for the above classes of planar graphs
(RS85].

The subgraph isomorphism problem for biconnected outerplanar graphs can be
sequentially solved by a recursive reduction to a monotone path finding problem in
cubic time (Li86]. (Note that the reduction of PARTITION to this restriction of
subgraph isomorphism given in (Sy82] is pseudo-polynomial and does not establish
its NP-completeness [Sy85] .) Unfortunately, the recursive depth of the sequential
algorithm in (Li86] is proportional to the size of the input graphs in the worst case.
To obtain a recursive, efficient parallel algorithm, we need decrease the size of the
input graphs by a constant factor in each recursive call. A straight forward way of
doing it by using a two-vertex '½ - f separator [LT] in the first graph and guessing
its image in the second graph can lead to hyper-polynomial number of considered
components of the second graph.

We present a parallel algorithm for subgraph isomorphism restricted to bicon­
nected outerplanar graphs, using a two-level, outerplanar graph cuttiqg technique,

3

and show that it can be implemented by uniform circuits of poly-log depth and
polynomial size. In this way, we establish the membership of this restriction of
the subgraph isomorphism problem in the class NC. No other restriction of the
subgraph isomorphism problem to a non-trivial graph family is presently known to
be in NC .

We leave a more precise estimation of the parallel complexity of the presented
algorithms to the final version. However, even not very sophisticated circuit imple­
mentations of our algorithms yield the membership of the considered problems in
NC 3

• It is worth pointing out that analogous NC algorithms can be designed for
the construction version of the considered decision problems.

·The paper is organized as follows: In Section 2 we derive the NC algorithms for
the problems of DCP with fixed k, fixed subgraph homeomorphism, and recognition
for any class of planar graphs closed under minor taking. In Section 3 we reduce
the subgraph isomorphism problem for biconnected outerplanar graphs to a more
restricted problem of polygon imbedding. In Section 4 we present a parallel algo­
rithm for the latter problem which implies the membership of the former problem
in NC . In Section 5 we discuss further potential applications of our techniques. In
particular, they probably could be used to establish the membership of the sub­
graph isomorphism problem for three-connected planar graphs of bounded width in
NC .

In this paper, we use standard set and graph theoretic notation and definitions
(for instance, see [AHU ,H]). For the definitions of parallel random access machine,
uniform circuit families, the classes NC", NC, and the corresponding notions of
reducibility, the reader is referred to [C,P,Rei,Ru].

2 The recognition and subgraph homeomorphism
problems for classes of planar graphs

To start with we need the following definition.

Definition 2.1 A class of graphs :F is said to be minor-closed (closed under
minor taking operation) if for every graph G E :F all its minors are also in :F. For a
minor-closed class :F, a graph H ft.Fis a minimal forbidden minor if every minor
of His in F.

Robertson and Seymour [RS86] consider characterization of minor-closed classes
of planar graphs through finite sets of minimal forbidden minors.

4

Fact 2.l(RS86]: For any minor-closed class of graphs there is a finite set of
minimal forbidden minors. ■

In (RS85], the problem of testing if a given graph G has a minor isomorphic to
a fixed graph His reduced to the problem of subgraph homeomorphism for G with
respect to a set of fixed graphs. H is a minor of G if and only if G has a subgraph
homeomorphic to any graph from a finite list of graphs derived from H.

Fact 2.2(RS85, Thm.4.1]: Let H be a graph. There is a finite list of graphs
H 1 , . .. , Hn such that for any gr~ph G the following are equivalent:

(i) G has a minor isomorphic to H.
(ii) G contains a subgraph homeomorphic to one of H1 , ••• , Hn. ■

By the above fact, it suffices to solve the subgraph homeomorphism problem
by an NC algorithm to show that the minor containment problem is in NC. In
their general form, the two problems can be probably solved by parallelization of a
sequential algorithm outlined in a recent work of Robertson and Seymour [RS86].
In this paper, however, we consider only the case of planar graphs.

We follow Robertson and Seymour [RS85] in using their bounded separator
theorem to 'divide and conquer' the complexity of the problem. A separation (Vi,½)
of G is a pair of subsets of V(G) such that Vi U ½ = V(G) and no edge of G joins
a vertex of Vi - ½ with a vertex of ½ - Vi.

Fact 2.3[RS85, Thm.4.2]: For any planar graph H there is a number N with
the following property. For every graph G with no minor isomorphic to H, and
every subset X of V(G), there is a separation (Vi,½) of G such that #((Vi - ½) n
X), #((½ - Vi) n X) ~ ~#(X) and #(Vin V2) ~ N. ■

Below, . we specify more formally the problem of disjoint connecting paths to
which the subgraph homeomorphism problem easily reduces.

Definition 2.2 Given a · graph G and two terminal vertices s, t E V(G), a
path of length k connecting s and t is a sequence of vertices v0 , v1 , ... , Vk such that
Vo= s, vk = t, and (vi-I, vi) E E(G) for every i, 1 ~ i ~ k. Two paths are disjoint
if they have no common non-terminal vertices. An instance of disjoint connecting
paths problem is an undirected graph G and a terminal set P = {(s1 , t1), ... , (sn, tn)}
which is a subset V(G) x V(G). We will denote the set of terminal vertices in P
by V(P). A set M of k disjoint paths in G is a DCP for P if there is a bijection
b: P-+ M such that for (s, t) E P, b((s, t)) connects s with t.

5

In the following, we describe a procedure which for a given planar _graph H and
the corresponding integer N specified in Fact 2.3, takes as the input a graph G
and a terminal set Pin G with #V(P) :s; k. The procedure either reports that G
has a minor isomorphic to H or reports whether DCP for P in G exists. In the
body of the procedure, called DCP-or-Minor, the instruction halt is interpreted as
terminating the execution of the parallel procedure on all recursion levels. DCP-or­
Minor uses an auxiliary procedure Divide. Given a separation(½, Vi) of a graph G
and a terminal set Pin G, Divide returns a family of pairs of terminal sets, Pi and
P2 , representing all possible reductions of the original DCP problem for Pin G to
DCP subproblems for Pi in _ G(½) and P2 in G(Vi).

procedure Divide(½, Vi, P);
begin
Construct the graph L = (V(L), E(L)) where V(L) = L1 UL2 UL3 and L 1 , L2 , L 3

are defined as follows: L1 = (½-V2)nV(P), L2 = (Vi-½)nV(P), and L3 = Vin½.
E(L) consists of all edges between L1 and L3 , all edges between L 2 and L3 , and all
edges between vertices of L3 ; ,

for every set M of disjoint connecting paths for P in L
do in parallel
begin set Q to the set of edges of the paths in M;

return P1 = (Vi x Vi) n Q, and P2 =(Vix Vi) n Q
end-do
end(Divide);

D GP-or-Minor is now defined as follows.

procedure DCP-or-Minor{ G, P, H, N);
G = (V(G),E(G)) is the input graph;
P is the input terminal set with at most k terminal pairs;
H = (V(H), E(H)) is the fixed planar minor;
N is the constant implied for H by Fact 2.3.
{Returns one of the following three answers:
(i) 'minor': G has a minor isomorphic to H. This follows from Fact 2.3

when no separation satisfying the theorem exists.
(ii) 'DCP exists': there exist disjoint connecting paths for P in G.
(iii) 'no DCP': there is no disjoint connecting paths for P in G }

begin {DCP-or-Minor}
if #V < 3N

6

then return the answer through solving the DCP
problem for P in G(V) by brute force

else begin { # V ~ 3N}
for every subset S of N vertices of V (G) do in parallel

begin (S)
find the connected components C1 , ... , C1 of G(V - S);
if there is a separation (½, ½) such that

½ n ½ = S, ½ u ½ = V(G), #(½ - ½), #(½ - ½):::; i#V(G),
and½,½ are sums of Ci US

then insert (½, ½) into separations
end-do(S);
if separations=0

then return 'minor' and halt
else select (V1 , ½) from separations;

for every pair (Pi, P2) of terminal sets in Divide(Y1 , ½, P)
do in parallel
begin(Pi, P2)

for i = 1, 2 do in parallel
begin(i)
if #V(Pi) ~ max(5N, 2k) {k is the fixed bound on #P}
then
begin if DCP-or-Minor(G(½), Pi, H, N) returns 'DCP exists'

then DCP[½, Pi] := true
end(then-clause)
else begin { #V(Pi) > max(5N, 2k)}
for every subset T of N vertices of½ do in parallel

begin (T)
find the connected components Di, ... , D1 of G(V; - T);
if there is a separation (W1 , W2) such that

W1 n W2 = T, W1 U W2 = ½,
#((W1 - T) n V(Pi)), #((W2 - T) n V(Pi)) ~ ~#V(Pi),
and W1 , W2 are sums of Di UT

then insert (W1 , W2) into separations[i]
end-do(T);

if separations[i]=0
then return 'minor' and halt
else select (W1 , W2) from separations[i];

for every pair of terminal sets Q1 , Q2 in Divide{W1 , W 2 , Pi)

7

do in parallel
begin (Q1,Q2)

for j = 1, 2 do in parallel
begin (j)
set answer[j]=DCP-or-Minor(G(Wi), Qi, H, N)
end-do(j);

if answer[l] and answer[2] report existence of DCP
then DCP[½, Pi]:= true

end-do(Q1, Q2);
if DCP[½, Pi].# true then DCP[½, Pi]:= false
end {else-clause(# V(Pi) > max(5N, 2k))}

end-do(i);
if DCP[Vi, P1] I\ DCP[V2 , P2] then DCP[V, P] := true
end-do(P1, P2);
if DCP[V, P] then return('DCP exists') else return('no DCP')

end(DCP-or-Minor)

In the following we develop two lemmas asserting the correctness of the above
procedure and the possibility of its efficient parallel implementation.

Lemma 2.1: The procedure DCP-or-Minor is correct.
Proof: If the procedure returns 'minor', the correctness of the answer follows

immediately from Fact 2.3, since no postulated separation was found, as either
separation or- separation[i] was found empty. If the procedure returns 'DCP exists'
or 'no DCP' in G for P then the correctness of the answer is implied by the following
two claims:

(i) DCP[Vj_, P1] and DCP[½, P2] are correctly evaluated for all pairs (P1 , P2) of
terminal sets produced by Divide(Vj_, V2 , P).

(ii) For the graph G with V(G) > 3N and a separation (Vi,½) fulfilling the
conditions of Fact 2.3, there exist DCP in G for P if and only if there is a pair
(P1 , P2) of terminal sets produced by Divide(Vj_, V2 , P) such that both DCP in G(Vi)
for P1 and DCP in G(V2) for P2 exist.

In turn, the correctness of evaluating DCP[½, Pi] results from the inductive
hypothesis asserting the correctness of DCP-or-Minor for smaller graphs and from
the following: If #V(Pi) > max(5N, 2k), and the required separation (W1 , W 2) of
G(½) exists then DCP in G(½) for Pi exist if and only if there is a pair (Q 1 , Q2)
of terminal sets produced by Divide(W1 , W 2 , Pi) such that for j = 1, 2 , DCP-or­
Minor(G(Wj), Qi, H, N) returns 'DCP exists' .

8

· To complete the proof it remains to show that DCP-or-Minor always terminates.
The latter follows from the fact that in any recursive call of DCP-or-Minor the size
of the new input graph is smaller than than that of the original graph. ■

Lemma 2.2. Let H be a fixed planar graph, N a fixed integer satisfying
the thesis of Fact 2.3 for H, and let k be a fixed integer. For any graph G and
any terminal set P in G with at most k terminal pairs, the procedure DCP-or­
Minor(G, P, H, N) can be realized by an NC algorithm.

Proof: By [SV, Theorem 1] it suffices to show that the procedure will execute
in poly-log time when carefully implemented on a parallel random access machine
with concurrent read and concurrent write, using polynomial number of processors.
The poly-log time performance and the polynomial upper bound on the number of
processors rely on the following claims:

(i) We can check whether the required separation of V or ½ exists and if so,
construct such a separation in poly-log time using a polynomial number of proces­
sors.

(ii) Let k0 = max(5N, 2k). The family of terminal set pairs returned by Divide
has never more than 2(ko+2N)(ko+2N-l) members in any call of Divide during the
execution of DCP-or-Minor(G, P, H, N).

(iii) The procedure Divide can be implemented to run in poly-log time on poly­
nomial number of processors.

(iv) The recursion depth of DCP-or-Minor(G, P, H, N) is logarithmic.

The claims (i), (iii), and (iv) imply poly-log running time. The claims (ii) and
(iv) imply that the recursion tree of DCP-or-Minor(G, P, H, N) has a polynomial
number of nodes which combined with claims (i) and (iii) ensures a polynomial
number of processors.

Let us prove the above four claims. According to the body of DCP-or-Minor,
to implement (i) in the case of the V-separation, we proceed as follows. For all
subsets S of V(G) with at most N vertices, we test whether S induces the required
separation by finding the connected components of G(V - S). Note that for a fixed
N the number of such subsets Sis polynomial and the connected components can
be found in poly-log time, using polynomial number of processors [QD]. Knowing
the connected components, we can easily find their cardinalities in poly-log time
using linear number of processors. Now, we can easily check whether it is possible
to sum the connected components, say C 1 , ... , C1, and S into appropriate sets Vi
and ½, and if so construct such a pair (Vi, ½). This can be done by sorting the
cardinalities in decreasing order, computing all their prefix sums in parallel, and
applying binary search. By [Ak], these steps can be efficiently performed in parallel.

9

In the case of ½-separation, we proceed analogously. The only difference is that
instead of the cardinalities of the connected components of G(½) - T, we consider
the cardinalities of their intersections with V(Pi)-

To prove (ii), we first observe that the cardinality of V(P) (in recursive calls,
P = Pi or P = Qi) never exceeds k0 and the cardinality of V(Pi) is bounded by
k0 +N. Clearly, the former implies the latter as V(Pi UP2)-V(P) consists of at most
N vertices. The two statements can be proved by induction on the depth of recursive
call of DCP-or-Minor in decreasing depth order. Whenever there are more than k0

vertices in V(Pi), either the procedure halts or a separation (W1, W2) is constructed
such that W1 nW2 = T, W1 UW2 = ½, #((W1 -T)nV(Pi)), #((W2-T)nV(Pi)) ~
~#V(Pi)- Hence, there are no more than ~(ko + N) + N vertices in V(QJ which
implies # V(Qi) ~ k0 by k0 2:: 5N. This completes the proof of the two statements.
It follows now that the family of terminal set pairs returned by Divide during the
execution of DCP-or-Minor(G, P, H, N) never exceeds (2(ko+2N)(ko+ 2N-l)/2))2.

To show (iii), it is sufficient to observe that after sorting the vertices in Vi and
½ respectively, we can test a vertex in G for membership in ½ and ½ in poly-log
time. This enables us to construct the graph L efficiently in parallel. Since L has
never more than k0 + 2N vertices by the analysis in (ii), the remaining part of the
body of the procedure can be executed in constant time.

To show (iv), it is sufficient to observe that in each recursive call in the body
DCP-or-Minor the number of vertices of the new input graph is a constant fraction
of that of the original graph. ■

A class of planar graphs is non-trivial if it is non-empty and different from the
class of all planar graphs. By using DCP-or-Minor and Lemmas. 2.1 and 2.2, we can
show that the DCP problem with a bounded number of terminal pairs for non-trivial
classes of planar graphs is in NC.

Theorem 2.1: Let :F be a non-trivial minor-closed class of planar graphs and
let k be a positive integer. The problem of testing for any graph Gin :F~ and any
terminal set Pin G of at most k pairs whether DCP for Pin G exists is in NC.

Proof: Since :Fis non-trivial and planarity is preserved under minor taking, :F
has at least one planar forbidden minor H by Fact 2.1. Now, it is sufficient to call
DCP-or-Minor(G, P, H, N) where N is the integer constant specified by Fact 2.3.
S~nce G is assumed to be in :F, it cannot have a minor isomorphic to H. Thus, we
obtain as the answer either 'DCP exists' or 'no DCP'. Now, Lemmas 2.1 and 2.2
imply the thesis. ■

Combining .Theorem 2.1 with the obvious reduction of the fixed subgraph iso­
morphism problem to a polynomial number of DCP problems with fixed k, we

10

obtain the following theorem.

Theorem 2.2: Given a minor-closed class F of planar graphs, and a planar
graph H, the subgraph homeomorphism problem for Hand any graph Gin Fis in
NC.

Proof: To begin with, we need the following definition. A terminal set P in
G corresponds to H if (V(P), P) is a graph isomorphic to H. It is clear that H is
homeomorphic to a subgraph of G if and only if there is a (terminal) subset P of
V(G) x V(G) corresponding to H such that DCP for P in G exists. Note that since
the graph H is fixed, the number of all such terminal sets P to test for DCP in
G is polynomial in the size of G. Thus, by Theorem 2.1, we can perform all these
tests and return the conjuction of their results in poly-log time using a polynomial
number of processors. ■

In turn, by combining Fact 2.1 and Theorem 2.2 with the reduction of the minor
containment problem to that of subgraph homeomorphism (given in Fact 2.2), we
obtain the following theorem.

Theorem 2.3: Given a minor-closed class :F of planar graphs, the recognition
problem for :Fis in NC.

Proof: Our efficient parallel algorithm for the recognition problem consists of
two major steps. First, we test the input graph for planarity using Miller-Reif's al­
gorithm [MR]. Their algorithm runs on a concurrent read, concurrent write PRAM
with n°(1) processors in time O(log n) ([MR, Theorem 26]). Hence, it can be imple­
mented by NC circuits (SV, Theorem l]. In the second step, we assume the input
graph G to be planar and test whether it is in F by checking if it has a minor
isomorphic to at least one of minimal forbidden minors defining :F (see Fact 2.1).
Since planarity is preserved under minor taking operation it is enough to perform
these tests only for such planar minors for :F to know whether G is in :F. Our
method of performing the test relies on Fact 2.2 and Theorem 2.2. For each planar
minimal forbidden minor K for :F, we use (by Fact 2.2) the finite list of planar
graphs H 1(K), ... , H1(K) such that G has a minor isomorphic to Kif and only if at
least one of the graphs on the list is homeomorphic to a subgraph of K. Thus, we
test each such a planar graph Hi(K) and G for subgraph homeomorphism using the
parallel algorithm described in the proof of Theorem 2.2. By finiteness of the list of
minimal forbidden minors K of :F and finiteness of the lists H1(K), ... , H1(K), and
Theorem 2.2, we obtain the thesis. ■

11

3 A reduction of subgraph isomorphism for bi­
connected outerplanar graphs to polygon imbed­
ding

In this and the next sections, we consider the subgraph isomorphism problem for
outerplanar graphs. An outerplanar graph is a graph which can be embedded in the
plane in such a way that all its vertices lie on the exterior face (Mi]. We shall call
such an embedding of a graph in the plane, an outerplanar embedding. By (MR],
we can easily deduce the following lemma:

Lemma 3.1: Given a biconnected outerplanar graph, we can find the cycle
bounding the exterior face of its outerplanar embedding using NC circuits.

Proof sketch: Extend the input graph by a single vertex w adjacent to all original
vertices. Note that the resulting graph is still planar. Find a planar embedding of
the new graph. It is easy to see that the vertices adjacent to w in the clockwise ·
order around w form the sought cycle. A planar embedding of the new graph can be
constructed by a concurrent read, concurrent write PRAM with n°(t) processors in
time O(logn) (Theorem 26 in [MR]). Hence, it can be constructed by NC circuits
by Theorem 1 in (SV], and consequently, the whole procedure can be performed by
NC circuits. ■

Using the following definitions of planar figures in terms of standard geometric
notation (see (PS]), we will be able to specify outerplanar embeddings of biconnected
outerplanar graphs more precisely.

Definition 3.1 A partial triangulation of a simple polygon is a set of non­
intersecting diagonals of the polygon. A partially triangulated polygon (PTP for
short) Q is a union of a simple polygon and a partial triangulation of the simple
polygon. The vertices of the simple polygon are vertices of Q, whereas the edges of
the simple polygon and the diagonals from the partial triangulation of the simple
polygon are edges of Q. The former edges of Q are called boundary edges of Q, the
latter edges of Q are called diagonal edges of Q.

Mitchell observes in [Mi] that a biconnected outerpl~ar graph is in fact a par­
tially triangulated polygon. By Lemma 3.1, we have:

Lemma 3.2: Given a biconnected outerplanar graph, we can find its outerpla­
nar embedding in the form of a partially triangulated (convex) polygon using NC
circuits.

12

• It follows that a biconnected outerplanar graph has a unique outerplanar em­
bedding (in the topological sense) up to the mirror image (see also [Sy82]).

Definition 3.2. A partially triangulated polygon with a distinguished boundary
edge is called a rooted, partially triangulated polygon (RPTP for short). The
distinguished edge is called the root of the RPTP. Given a RPTP P, the graph
induced by P is denoted by G(P). Now, given two RPTP, P and Q, we say that P
can be root-imbedded into Q if and only if there is an isomorphism between G(P)
and a subgraph of G(Q) that maps the root of P on the root of Q, and preserves
the clockwise ordering of the vertices on the perimeter of P. Such an isomorphism
is called a root-imbedding of Pinto Q.

In the following lemma, we show that the problem of subgraph isomorphism for
biconnected outerplanar graphs is efficiently reducible (in parallel) to the problem
of testing two RPTP's for root-imbedding.

Lemma 3.3: The problem of subgraph isomorphism for biconnected outerpla­
nar graphs is NC reducible to the problem of testing whether an RPTP can be
root-imbedded in another RPTP.

Proof sketch: Let G and H be biconnected outerplanar graphs. By Lemma 3.2,
we can find outerplanar embeddings P and Q of G and H, respectively, in the form
of partially triangulated convex polygons, using NC circuits. Let Q' be the mirror
image of Q. Let us root P at its arbitrary boundary edge e. It is clear that G is
isomorphic to a subgraph of H if and only if there is a subfigure R of Q (or Q'),
and an edge d of Q (Q') such that R is a partially triangulated polygon consisting
of all edges of Q (Q') on a given side of d and of the edged on its boundary, and P
can be root-imbedded in the RPTP R rooted at d. Note that there is only a linear
number of candidates for such subfigures R. Hence, the reduction can be done by
NC circuits. ■

To specify and analyze our parallel algorithm for root-imbedding for RPTP in
the next section, we need also the following definitions and lemmas.

Definition 3.3. Let P be a RPTP with n vertices. The diagonal separator of
P is a diagonal or a diagonal edge of P that partitions P into two RPTP, each of
no more than ~n + 2 vertices.

For a PTP P, the tree T(P) dual to P consists of vertices in one-to-one corre­
spondence to the inner faces of P and of edges connecting vertices corresponding
to adjacent faces in P.

13

Lemma 3.4: Given a RPTP P, we can find a diagonal separator of P using
NC circuits.

Proof sketch: First, we triangulate P to obtain a completely triangulated poly­
gon P' . It can be done by a concurrent read, exclusive write PRAM using a poly­
nomial number of processors in poly-log time (ACGOY], and hence it can be imple­
mented by NC circuits (SV]. Given P', we can construct the tree T(P') dual to P'
in constant time, in parallel. Now, to find a diagonal separator of P, it is sufficient
to find a ½ - ~ vertex separator of T(P') with vertex weights appropriately defined
(such a separator always exists [LT], see [Li85] for the details). This can be done
by communicating the total weight of T(P') to each vertex v of T(P'), and finding
the total weight of descendants of v for each vertex v of T(P'). The latter can be
done by using Euler's path techniques by NC circuits (combine [TV] with [SV]). ■

Definition 3.4. Let P be a PTP. Given two edges e and d of P, let 1 be
the path in T(P) between the two closest vertices in T(P) corresponding to the
faces adjacent toe and d respectively. Then, the dual patb between e and dis the
sequence of diagonal edges of P that separate the faces in the sequence of faces in
P corresponding to 1 . ·

Lemma 3.5: Given two edges e and d of a PTP, we can find the dual path
between e and d and its middle element, using NC-circuits.

Proof sketch: As in the proof of Lemma 3.4, we first build the tree T dual to the
completely triangulated polygon P'. Next, the dual path can be easily constructed
from the corresponding vertex path in T. The latter path can be found by using
a standard O(log n) method on a concurrent read, exclusive write parallel RAM
with 0(n 2

) processors. In the j-th iteration of the method, we find, for each vertex
v in the tree, the path from v to its ancestor at distance 2i by concatenating
the path from v to its ancestor at distance 2i-1 with the copied path between
the two ancestors of v. By (SV], the method can be implemented by (uniform)
circuits of unbounded fan-in, O(log n) depth and polynomial size. Hence, it can
be implemented by NC 2 circuits. Given the dual path, we can find its median by
finding for each its element the number of preceding and following elements which
can be easily implemented by NC circuits.■

14

•

•

4 A parallel algorithm for imbedding of partially
triangulated polygons

Our parallel algorithm for the problem of root-imbedding for PTP consists of two
recursive procedures Ril and RI2. The first procedure tests whether the input
RPTP P can be root-imbedded in the input RPTP Q. First, it finds a diagonal
separator of Q and then it guesses its image in Q by trying all possible pairs of
vertices of Q in parallel. To check whether the bottom part of P cut off by the
diagonal separator (i.e., the part not containing the root) can be root-imbedded
in the corresponding part of Q cut off by the guessed image of the separator, the
procedure calls recursively itself. To check whether the upper part of Q (the part
containing the root) can be imbedded in the upper part of Q such that the root
of P is mapped on the root of Q and the diagonal separator on its guessed image,
the procedure Ril calls RI2. The latter procedure solves the above problem as
follows. First, it finds the dual path from the diagonal separator to the root of P.
If the dual path is empty then it cuts off the left and right part of the upper part
of P along the diagonals connecting the left and right endpoints of the diagonal
separator and the root of P respectively (if for instance, the left endpoints overlap,
the left part is empty). Analogously, it cuts off the corresponding left and right part
from the upper part of Q. Next, IR2 tests whether the left and the right upper part
of P can be respectively root-imbedded in those of the upper part of Q by calling
the procedure Ril, twice in parallel. If both tests are positive, it returns YES. If
the dual path contains more edges, the procedure RI2 finds the median and then
guesses an image of the median in the upper part of Q by trying all possible pairs of
vertices of the upper part of Q, in parallel. To check whether the upper and bottom
part of the upper part of P divided by the median can be respectively imbedded in
the corresponding parts of the upper part of Q divided by the guessed image of the
median, it calls recursively itself twice in parallel.

The use of the diagonal separator and the path median ensures an O(log2 n)
recursive depth of the algorithm composed of the two procedures. Since by Lemmas
3.4 and 3.5, the problems of finding the diagonal separator, the dual path, and its
median can be solved by NC circuits, we can conclude that the procedure can be
implemented by uniform circuits of poly-log depth. The crux is to observe that
the circuits need only a polynomial number of processors. This follows from the
fact that each figure occurring as a parameter in the recursive calls of RI1 can be
obtained from P or Q by cutting along a single diagonal/edge in P or Q, or a straight
line segment between two vertices in Q. In the latter case, all edges intersecting

15

this segment are deleted from Q. The above fact holds inductively for the bottom
parts. For the upper parts, it is sufficient to observe that neither the root of P
or Q nor the 'horizontal' cutting edges (i.e., diagonal separators and the medians)
occur in the final RPTP's that are produced by RI2 and become parameters of
Ril (see Fig. 4.1). It follows that the number of figures that are parameters in
the recursive calls of Ril is polynomial. Hence, the number of different figures
occurring as parameters in the recursive calls of RI2 is also polynomial, since they
are obtained from the figures being parameters of Ril by cutting along at most
two single diagonals/edges. We conclude that the number of distinct, potential
recursive calls of Ril and RI2 is polynomial. Therefore, we can implement all
these potential recursive calls using a bottom-up method of poly-log depth taking
a polynomial number of processors.

Thus, we have the following theorem.

Theorem 4.1: The problem of root-imbedding for RPTP is in NC.

Combining Lemma 3.3 with Theorem 4.1, we obtain the main result of this
section.

Theorem 4.2: The problem of subgraph isomorphism for biconnected outer­
planar graphs is in NC.

We conclude this section with a more formal description of the procedures Ril
and RI2. To simplify the notation, we assume that the input RPTP's are convex
and no vertical line passes through any pair of their vertices. In the body of the
procedure, X (p) denotes the X coordinate of p.

We need also the following definition.
Let R be a PTP. Given a sequence a = v1, v2, ... , vk of vertices of R, and a

fragment /3 of R, we denote by R(a, /3) the largest PTP such that:
(i) if there is no more than one vertex in a then it is empty;
(ii) it consists of some edges of Rand the edges (v1,v2), ... ,(vk-i,vk);

(iii) the edges (v1, v2), ... , (Vk-l, vk) form a continuous fragment of its perimeter;
(iv) it is disjoint from /3.

See Fig. 4.2 for an example.

The two procedures are specified as follows.

procedure Ril(P, Q)
begin

16

..

•

•

..

if P has three vertices then
begin

if Q contains a triangle then return YES else return NO
end

else
begin

find a diagonal separator (vi, v2) of P where X(vi) < X(v2);
Pl ~ P((vi, v2), { root(P)}) rooted at (vi, v2);
P2~P((vi,v2),Pl-{(vi,v2)}); ·
for all vertices wi, w2 of Q where (wi, w2) is not the root of Q
do in parallel
begin

if (vi, v2) is an edge of P and (wi, w2) is not an edge of Q
then return NO and halt;
Ql ~ Q((wi, w2), { root(Q)}) rooted at (wi, w2);
Q2 ~ Q((wi, w2), Ql - {(wi, w2)});
if Rll(Pl, Ql) I\ RI2(P2, Q2, (vi, v2), (wi, w2), root(P), root(Q))
then return YES else return NO

end
end

end

procedureRI2(P, Q, (vi, v2), (wi, w2), (v~, v~), (w~, w;))
begin
D ~ the dual path from (Vi, v2) to (v~, v~) in P;
if D = 0 then

begin
if (vi, vf) is an edge of P and (wi, w~) is not an edge of Q
or (v2 , v~) is an edge of P and (w2 , w;) is not an edge of Q
then return NO and halt;
PL ~ P((vi, vD, { v2, v;}) rooted at (vi, vD;
Q L ~ Q((Wi, wD, { w2, w;}) rooted at (Wi, wD;
PR~ P((v2,v;), {vi,vD) rooted at (v2,v~);
QR~ Q((w2, w;), { wi, wD) rooted at (wi, wD;
if Ril(PL, QL) I\ Rll(PR, QR) then return YES else return NO

end
else

17

begin
(v3, v4) f- the middle edge in D where X(v3) < X(v4);
PU f- P((v3,v4), {(v1,v2)});
PD f-P((v3,v4),{(v~,v~)});
for all vertices w3 and w4 of Q

where (w3 ,w4) is different from (w1 ,w2) and (w~,w;)
do in parallel
begin

QU f- Q((w3, w4), {(w1, w2)});
QD f- Q((W3, w4}, { (w~, w;)});
if RI2(PU, QU, (v3, v4), (w3, w4), (v~, v~), (w~, w;))/\

RI2(P D, QD, (v1, v2), (w1, w2), (V3, V4), (W3, w4))
then return YES else return NO

end
end

end

5 Extensions

The problem of subgraph isomorphism for biconnected outerplanar graphs can be
seen as an abstraction of two following geometric problems for partially triangulated
polygons P, Q :

(i) decide whether P is similar to a subfigure of Q;
(ii) decide whether P is congruent to a subfigure of Q.
The two problems can be respectively termed as the problems of sub-similarity

and sub-congruency for partially triangulated polygons. Both have potential appli­
cations in pattern recognition.

The problems of sub-similarity and sub-congruency for partially triangulated
polygons can be solved analogously to the problem of subgraph isomorphism for
biconnected outerplanar graphs. First, we reduce both problems to their rooted
versions (where the mapping on a distinguished boundary edge is fixed), using NC­
circuits. Then, we solve the rooted versions by subsequently modifying the parallel
algorithm for root-imbedding for RPTP. In the case of the sub-similarity problem,
we appropriately add tests for the congruency of angles formed by the roots and
cutting edges of P and Q with the adjacent edges. In the case of the sub-congruency
problem, we add also tests for edge length equality for the roots and cutting edges,
respectively. The above modifications of the procedures Rll and Rl2 do not affect
their asymptotic, worst-case circuit complexity. Hence, in analogy to Theorem

18

•

3.2, we have that the problems of sub-similarity and sub-congruency for partially
triangulated polygons are in NC.

It seems also possible to generalize our NC algorithm for subgraph isomor­
phism restricted to biconnected outerplanar graphs to include three-connected pla­
nar graphs of bounded width. We say that a planar graph G has width ~ kif for
any vertex v in any planar embedding of G there is a path composed of at most k

edges/diagonals connecting v with the outer face.
The idea of a generalization of our NC algorithm would rely on the following

insights:
(i) Any three-connected planar graph has at most two different embeddings on

the sphere. These can be constructed by an NC algorithm (MR].
(ii) Three-connected planar graphs of width ~ k have a ½ - ~ separator i:p. the

form of edge/diagonal path of constantly bounded length. Such a separator can be
found using an NC-algorithm.

(iii) The above edge/diagonal paths would be used in the analogous manner to
that of diagonal separators, median separators, etc .. Note that there is a polynomial
number of such paths.

(iv) In order to keep the total length of cuts on the perimeter of each considered
subfigure constantly bounded, it would be necessary to use yet another cutting pro­
cedure, resembling the ½-separation from the procedure DCP-or-Minor (section 2).
This would ensure a polynomial number of subfi.gures that could ever be considered.
Hence, we would again obtain only a polynomial number of potential recursive calls.

As for the methods of Section 2, we suspect that similar methods can be used to
design efficient parallel algorithm for the discussed problems restricted to families
of not necessarily planar graphs (for instance, partial k-trees [AP]).

6 References

(ACGOY] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, Parallel
Computational Geometry, in Proc. 25th Annual IEEE Symposium on Founda­
tions of Computer Science 1985, 468-477.

[AHU) A. V. Aho, J.E. Hopcroft and J .D. Ullm?,n, The Design and Analysis of
Computer Algorithms, (Addison-Wesley, Reading, Massachusetts, 1974).

[AP] S. Arnborg and A. Proskurowski, Characterization and recognition of partial

19

3-trees, SIAM Journal of Algebraic and Discrete Methods 7, 2(1986), 305-314.

[APC] S. Arnborg, A. Proskurowski, and D.G. Corneil, Forbidden minors charac­
terization of partial 3-trees, UO-CIS-TR-86-07, University of Oregon (1986);

[Ak] S.G. Akl, Parallel Sorting Algorithms, (Academic Press, New York, 1985).

[As] T. Asano, An approach to the subgraph homeomorphism problem, Theoretical
Computer Science, 38 (1985), 249-267.

[C] S.A. Cook, The Classification of Problems which have Fast Parallel Algorithm, in
Proc. Foundations of Computation Theory, Borgholm, Sweden 1983, Springer­
Verlag LNCS 158.

[CH] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. Henri
Poincare Sec. B 3(1967), 433-438.

[FHW] S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomor­
phism problem, Theoretical Computer Science 10 (1980), 111-121.

[GJ] M.R. Garey, D.S . .Johnson, Computers and Intractability. A Guide to the
Theory of NP-completeness (Freeman, San Francisco, 1979).

[H] F . Harary, Graph Theory (Addison-Wesley, Reading Massachusetts, 1969) .

[Li85] A. Lingas, On partitioning polygons, in Proc. of 1st ACM Symposium on
Computational Geometry, Baltimore 1985.

[Li86] A. Lingas, Subgraph Isomorphism for Biconnected Outerplanar Graphs in
Cubic Time, in Proc. 3rd STAGS, Orsay 1986, Springer-Verlag, LNCS 210.

(LK] A. Lingas, M. Karpinski, Subtree isomorphism and bipartite perfect matching
are mutually NC reducible, manuscript (1986).

[LT] R.J. Lipton and R.E. Tarjan, Applications of a planar separator theorem,
SIAM J. Computing 9, 3(1980), 513-524.

[Ma] D.W. Matula, Subtree isomorphism in O(n½), Annals of Discrete Mathematics
2 (1978), 91-406.

[Mi] S.L. Mitchell, Linear algorithms to recognize outerplanar and maximal outer­
planar graphs, Information Processing Letters 9, 5(1979), 229-232.

20

•

11

,..

[MR] G. Miller and J.H. Reif, Parallel Tree Contraction and its Applications, in
Proc. 26th Annual IEEE Symposium on Foundations of Computer Science
1985, 478-489.

[P] N. Pippenger, On simultaneous resource bounds, in Proc. 20th Annual IEEE
Symposium on Foundations of Computer Science 1979, 307-311.

(PS] F.P. Preparata and M.I. Shamos, Computational Geometry, An Introduction,
Texts and Monographs in Computer Science, Springer-Verlag, New York.

[Rei] K.R. Reischuk, Parallel Machines and their Communication Theoretical Lim­
its, in Proc. 3rd STAGS, Orsay 1986, Springer-Verlag, LNCS 210.

[QD] M.J. Quinn and N. Deo, Parallel Graph Algorithms, Computing Surveys, Vol.
16, No. 3 (1984), 320-34R

[Rey] S.W. Reyner, An Analysis of a good algorithm for the subtree problem, SIAM
J. Computing 6 (1977), 730-732.

[Ru] W.L. Ruzzo, On uniform circuit complexity, J. Computer and System Science
22 (1981), 365-383.

[SV] L. Stockmeyer and U. Vishkin, Simulation of Parallel Random Access Machines
by Circuits, SIAM J. Computing 13 (1984), 409-422.

[Sy82] M.M. Sys}o, The subgraph isomorphism problem for outerpla.nar graphs,
Theoretical Computer Science 17 (1982), 91-97.

[Sy85] M.M.Sys}o, private communication.

[TV] R.E. Tarjan and U. Vishkin, Finding Bi-connected Components and Comput­
ing Tree Functions in Logarithmic Parallel Time, in Proc. 25th Annual IEEE
Symposium on Foundations of Computer Science 1984, 12-20.

21

cutting ·d'f agona 1

Fig. 4. 1 •

I
I

P(d,e)

Fig. 4.2. The PTP P(d,e) is marked with dashed 1 ines.

