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Abstract 
We consider the problems of subgraph homeomorphism with fixed pattern graph, 

recognition, and subgraph isomorphism for some classes of planar graphs. Following 
the results of Robertson and Seymour on forbidden minor characterization, we show 
that the problems of fixed subgraph homeomorphism and recognition for any family 
of planar graphs closed under minor taking are in NC (i.e., they can be solved by an 
algorithm running in poly-log time using polynomial number of processors). We also 
show that the related subgraph isomorphism problem for biconnected outerplanar 
·graphs is in NC. This is the first example of a restriction of subgraph isomorphism 
to a non-trivial graph family admitting an NC algorithm. 

1 Introduction 

The subgraph homeomorphism problem is to determine whether a graph is homeo­
morphic to a subgraph of another graph. A graph H is homeomorphic to a graph G 
if the graph resulting from contracting all maximal paths in G with inner vertices of 
degree two to single edges is isomorphic to H. Thus, the subgraph homeomorphism 
problem can be viewed as a generalization of the subgraph isomorphism problem. 
The latter problem is to determine whether a graph is isomorphic to a subgraph 
of another graph. For instance, if H is an n-vertex circuit and G is an n-vertex 
planar graph of valence 3, n E N, then determining whether H is homeomorphic 
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to a subgraph of G is equivalent to determining whether H is isomorphic to a sub­
graph of G which is in turn equivalent to the NP-complete problem of determining 
whether a planar graph of valence 3 has a Hamiltonian circuit [GJ]. Thus, the sub­
graph homeomorphism and isomorphism problems are NP-complete even if G and 
H range only over connected planar graphs of valence 3. Subgraph isomorphism also 
remains NP-complete when the first input graph is a forest and the other input 
graph is a tree [GJ]. Analogous .NP-completeness results hold for the directed ver­
sions of the two problems [ GJ]. However, in this paper we consider only undirected . 
graphs. 

If we fix the first graph H as a pattern graph then this fixed subgraph isomor­
phism problem is trivially solvable in polynomial time while the fixed subgraph 
homeomorphism problem remains open (i~ the undirected case) [As, FHW]. On the 
other hand, there are two known restrictions of the general subgraph isomorphism 
problem to non-trivial graph families that are solvable in polynomial sequential 
time. Trees constitute one of these families [Ma, Rey] , the other is the class of bi­
connected outerplanar graphs [Li86]. (A graph is outerplanar if it can be embedded 
in the plane such that all ·its vertices lie on the outer face [H, Mi].) 

Another view of the subgraph homeomorphism problem is as a generalization 
of the disjoint connected paths problem, DCP, defined as follows: Given a graph 
G and a set of vertex pairs ( si, ti), 1 ~ i ~ k, decide whether there exists a set of 
pairwise vertex-disjoint paths Pi in G connecting Si with ti . Also this problem is 
NP-complete even if restricted to planar graphs [FHW]. However, if the number k 
of vertex pairs is bounded the problem seems to become more tractable. For k = 2, 
there are polynomial algorithms for DCP (see [GJ,RS85]). Recently, Robertson and 
Seymour have showed that for an arbitrary fixed k, the DCP problem restricted 
to planar graphs is solvable in polynomial time [RS85]. Since the fixed subgraph 
homeomorphism problem is trivially polynomial-time reducible to the DCP problem 
with appropriately chosen fixed k, the result of Robertson and Seymour yields also 
a polynomial time solution to the problem of fixed subgraph homeomorphism for 
planar graphs. 

A well known application of the subgraph homeomorphism problem is the recog­
nition problem for classes of graphs that can be characterized by the absence of some 
forbidden substructures. For instance, the recognition problem for planar graphs 
can be reduced to two fixed subgraph homeomorphism problems with K 5 and K 3,3 

as the pattern graphs (see, for instance [H]). A similar characterization of planar 
graphs is provided by the operation of minor taking which can be viewed as a 
generalization of the path contraction operation used in the definition of subgraph 
homeomorphism. A graph H is a minor of another graph G if G can be reduced 
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to H by deletion and contraction of edges. A graph is planar if and only if it 
does not have a minor isomorphic to K 5 or K 3 ,3 • Several other non-trivial classes 
of graphs can be also characterized by a finite list of forbidden minors, for instance 
outerplanar graphs, series-parallel graphs, partial 3-trees, bounded genus graphs 
[CH,APC,RS86]. For fixed H, the problem of testing whether G has a minor isomor­
phic to H can be be reduced to a finite number of fixed subgraph homeomorphism 
problems [RS85]. Thus, the problems of subgraph homeomorphism, DCP, minor 
containment, and recognition for several classes of graphs are intimately related. 
Often a solution to one of them yields solutions to the others. 

. As yet, there are no known efficient parallel algorithms even for the fixed versions 
0f these problems ( with the exception of the DCP problem with k = 1 [QD]). The 
situation is similar in the case of restricted subgraph isomorphism problems. It is 
only known that subgraph isomorphism for trees is solvable by a Las Vegas NC 
algorithm (LK]. 

In this paper, we consider the problems of DCP with fixed k, fixed subgraph 
homeomorphism, and recognition for any class of planar graphs closed under minor 
taking, and the subgraph isomorphism problem for biconnected outerplanar graphs. 
We show that all these problems can be solved in poly-log time using a polynomial 
number of processors, i.e., they are in the class NC [Co,Ru,P] 

Our parallel algorithms for the problems of DCP with fixed k, fixed subgraph 
homeomorphism, and recognition for any class of planar graphs closed under minor 
taking rely on the idea of a sequential method of Robertson and Seymour for the 
so restricted DCP problem (RS85]. In turn, the sequential method is implied by 
their interesting, bounded separator theorem for the above classes of planar graphs 
(RS85]. 

The subgraph isomorphism problem for biconnected outerplanar graphs can be 
sequentially solved by a recursive reduction to a monotone path finding problem in 
cubic time (Li86]. (Note that the reduction of PARTITION to this restriction of 
subgraph isomorphism given in (Sy82] is pseudo-polynomial and does not establish 
its NP-completeness [Sy85] .) Unfortunately, the recursive depth of the sequential 
algorithm in (Li86] is proportional to the size of the input graphs in the worst case. 
To obtain a recursive, efficient parallel algorithm, we need decrease the size of the 
input graphs by a constant factor in each recursive call. A straight forward way of 
doing it by using a two-vertex '½ - f separator [LT] in the first graph and guessing 
its image in the second graph can lead to hyper-polynomial number of considered 
components of the second graph. 

We present a parallel algorithm for subgraph isomorphism restricted to bicon­
nected outerplanar graphs, using a two-level, outerplanar graph cuttiqg technique, 
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and show that it can be implemented by uniform circuits of poly-log depth and 
polynomial size. In this way, we establish the membership of this restriction of 
the subgraph isomorphism problem in the class NC. No other restriction of the 
subgraph isomorphism problem to a non-trivial graph family is presently known to 
be in NC . 

We leave a more precise estimation of the parallel complexity of the presented 
algorithms to the final version. However, even not very sophisticated circuit imple­
mentations of our algorithms yield the membership of the considered problems in 
NC 3

• It is worth pointing out that analogous NC algorithms can be designed for 
the construction version of the considered decision problems. 

·The paper is organized as follows: In Section 2 we derive the NC algorithms for 
the problems of DCP with fixed k, fixed subgraph homeomorphism, and recognition 
for any class of planar graphs closed under minor taking. In Section 3 we reduce 
the subgraph isomorphism problem for biconnected outerplanar graphs to a more 
restricted problem of polygon imbedding. In Section 4 we present a parallel algo­
rithm for the latter problem which implies the membership of the former problem 
in NC . In Section 5 we discuss further potential applications of our techniques. In 
particular, they probably could be used to establish the membership of the sub­
graph isomorphism problem for three-connected planar graphs of bounded width in 
NC . 

In this paper, we use standard set and graph theoretic notation and definitions 
(for instance, see [AHU ,H]). For the definitions of parallel random access machine, 
uniform circuit families, the classes NC", NC, and the corresponding notions of 
reducibility, the reader is referred to [C,P,Rei,Ru]. 

2 The recognition and subgraph homeomorphism 
problems for classes of planar graphs 

To start with we need the following definition. 

Definition 2.1 A class of graphs :F is said to be minor-closed ( closed under 
minor taking operation) if for every graph G E :F all its minors are also in :F. For a 
minor-closed class :F, a graph H ft.Fis a minimal forbidden minor if every minor 
of His in F. 

Robertson and Seymour [RS86] consider characterization of minor-closed classes 
of planar graphs through finite sets of minimal forbidden minors. 
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Fact 2.l(RS86]: For any minor-closed class of graphs there is a finite set of 
minimal forbidden minors. ■ 

In (RS85], the problem of testing if a given graph G has a minor isomorphic to 
a fixed graph His reduced to the problem of subgraph homeomorphism for G with 
respect to a set of fixed graphs. H is a minor of G if and only if G has a subgraph 
homeomorphic to any graph from a finite list of graphs derived from H. 

Fact 2.2(RS85, Thm.4.1]: Let H be a graph. There is a finite list of graphs 
H 1 , . .. , Hn such that for any gr~ph G the following are equivalent: 

(i) G has a minor isomorphic to H. 
(ii) G contains a subgraph homeomorphic to one of H1 , ••• , Hn. ■ 

By the above fact, it suffices to solve the subgraph homeomorphism problem 
by an NC algorithm to show that the minor containment problem is in NC. In 
their general form, the two problems can be probably solved by parallelization of a 
sequential algorithm outlined in a recent work of Robertson and Seymour [RS86]. 
In this paper, however, we consider only the case of planar graphs. 

We follow Robertson and Seymour [RS85] in using their bounded separator 
theorem to 'divide and conquer' the complexity of the problem. A separation (Vi,½) 
of G is a pair of subsets of V( G) such that Vi U ½ = V( G) and no edge of G joins 
a vertex of Vi - ½ with a vertex of ½ - Vi. 

Fact 2.3[RS85, Thm.4.2]: For any planar graph H there is a number N with 
the following property. For every graph G with no minor isomorphic to H, and 
every subset X of V(G), there is a separation (Vi,½) of G such that #((Vi - ½) n 
X), #((½ - Vi) n X) ~ ~#(X) and #(Vin V2) ~ N. ■ 

Below, . we specify more formally the problem of disjoint connecting paths to 
which the subgraph homeomorphism problem easily reduces. 

Definition 2.2 Given a · graph G and two terminal vertices s, t E V( G), a 
path of length k connecting s and t is a sequence of vertices v0 , v1 , ... , Vk such that 
Vo= s, vk = t, and (vi-I, vi) E E(G) for every i, 1 ~ i ~ k. Two paths are disjoint 
if they have no common non-terminal vertices. An instance of disjoint connecting 
paths problem is an undirected graph G and a terminal set P = {(s1 , t1 ), ... , (sn, tn)} 
which is a subset V(G) x V(G). We will denote the set of terminal vertices in P 
by V(P). A set M of k disjoint paths in G is a DCP for P if there is a bijection 
b: P-+ M such that for (s, t) E P, b((s, t)) connects s with t. 
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In the following, we describe a procedure which for a given planar _graph H and 
the corresponding integer N specified in Fact 2.3, takes as the input a graph G 
and a terminal set Pin G with #V(P) :s; k. The procedure either reports that G 
has a minor isomorphic to H or reports whether DCP for P in G exists. In the 
body of the procedure, called DCP-or-Minor, the instruction halt is interpreted as 
terminating the execution of the parallel procedure on all recursion levels. DCP-or­
Minor uses an auxiliary procedure Divide. Given a separation(½, Vi) of a graph G 
and a terminal set Pin G, Divide returns a family of pairs of terminal sets, Pi and 
P2 , representing all possible reductions of the original DCP problem for Pin G to 
DCP subproblems for Pi in _ G(½) and P2 in G(Vi). 

procedure Divide(½, Vi, P); 
begin 
Construct the graph L = (V(L), E(L)) where V(L) = L1 UL2 UL3 and L 1 , L2 , L 3 

are defined as follows: L1 = (½-V2)nV(P), L2 = (Vi-½)nV(P), and L3 = Vin½. 
E( L) consists of all edges between L1 and L3 , all edges between L 2 and L3 , and all 
edges between vertices of L3 ; , 

for every set M of disjoint connecting paths for P in L 
do in parallel 
begin set Q to the set of edges of the paths in M; 

return P1 = (Vi x Vi) n Q, and P2 =(Vix Vi) n Q 
end-do 
end(Divide ); 

D GP-or-Minor is now defined as follows. 

procedure DCP-or-Minor{ G, P, H, N); 
G = (V(G),E(G)) is the input graph; 
P is the input terminal set with at most k terminal pairs; 
H = (V(H), E(H)) is the fixed planar minor; 
N is the constant implied for H by Fact 2.3. 
{Returns one of the following three answers: 
(i) 'minor': G has a minor isomorphic to H. This follows from Fact 2.3 

when no separation satisfying the theorem exists. 
(ii) 'DCP exists': there exist disjoint connecting paths for P in G. 
(iii) 'no DCP': there is no disjoint connecting paths for P in G } 

begin {DCP-or-Minor} 
if #V < 3N 
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then return the answer through solving the DCP 
problem for P in G(V) by brute force 

else begin { # V ~ 3N} 
for every subset S of N vertices of V ( G) do in parallel 

begin (S) 
find the connected components C1 , ... , C1 of G(V - S); 
if there is a separation (½, ½) such that 

½ n ½ = S, ½ u ½ = V(G), #(½ - ½), #(½ - ½):::; i#V(G), 
and½,½ are sums of Ci US 

then insert (½, ½) into separations 
end-do(S); 
if separations=0 

then return 'minor' and halt 
else select (V1 , ½) from separations; 

for every pair (Pi, P2 ) of terminal sets in Divide(Y1 , ½, P) 
do in parallel 
begin(Pi, P2) 

for i = 1, 2 do in parallel 
begin( i) 
if #V(Pi) ~ max(5N, 2k) {k is the fixed bound on #P} 
then 
begin if DCP-or-Minor( G(½), Pi, H, N) returns 'DCP exists' 

then DCP[½, Pi] := true 
end( then-clause) 
else begin { #V(Pi) > max(5N, 2k)} 
for every subset T of N vertices of½ do in parallel 

begin (T) 
find the connected components Di, ... , D1 of G(V; - T); 
if there is a separation ( W1 , W2 ) such that 

W1 n W2 = T, W1 U W2 = ½, 
#((W1 - T) n V(Pi)), #((W2 - T) n V(Pi)) ~ ~#V(Pi), 
and W1 , W2 are sums of Di UT 

then insert (W1 , W2 ) into separations[i] 
end-do(T); 

if separations[i]=0 
then return 'minor' and halt 
else select (W1 , W2 ) from separations[i]; 

for every pair of terminal sets Q1 , Q2 in Divide{W1 , W 2 , Pi) 
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do in parallel 
begin (Q1,Q2) 

for j = 1, 2 do in parallel 
begin (j) 
set answer[j]=DCP-or-Minor(G(Wi), Qi, H, N) 
end-do(j); 

if answer[l] and answer[2] report existence of DCP 
then DCP[½, Pi]:= true 

end-do( Q1, Q2); 
if DCP[½, Pi].# true then DCP[½, Pi]:= false 
end {else-clause(# V( Pi) > max( 5N, 2k))} 

end-do(i); 
if DCP[Vi, P1 ] I\ DCP[V2 , P2 ] then DCP[V, P] := true 
end-do(P1, P2); 
if DCP[V, P] then return('DCP exists') else return('no DCP') 

end(DCP-or-Minor) 

In the following we develop two lemmas asserting the correctness of the above 
procedure and the possibility of its efficient parallel implementation. 

Lemma 2.1: The procedure DCP-or-Minor is correct. 
Proof: If the procedure returns 'minor', the correctness of the answer follows 

immediately from Fact 2.3, since no postulated separation was found, as either 
separation or- separation[i] was found empty. If the procedure returns 'DCP exists' 
or 'no DCP' in G for P then the correctness of the answer is implied by the following 
two claims: 

(i) DCP[Vj_, P1 ] and DCP[½, P2 ] are correctly evaluated for all pairs (P1 , P2 ) of 
terminal sets produced by Divide(Vj_, V2 , P). 

(ii) For the graph G with V( G) > 3N and a separation (Vi,½) fulfilling the 
conditions of Fact 2.3, there exist DCP in G for P if and only if there is a pair 
(P1 , P2 ) of terminal sets produced by Divide(Vj_, V2 , P) such that both DCP in G(Vi) 
for P1 and DCP in G(V2 ) for P2 exist. 

In turn, the correctness of evaluating DCP[½, Pi] results from the inductive 
hypothesis asserting the correctness of DCP-or-Minor for smaller graphs and from 
the following: If #V(Pi) > max(5N, 2k), and the required separation (W1 , W 2 ) of 
G(½) exists then DCP in G(½) for Pi exist if and only if there is a pair ( Q 1 , Q2) 
of terminal sets produced by Divide(W1 , W 2 , Pi) such that for j = 1, 2 , DCP-or­
Minor( G(Wj), Qi, H, N) returns 'DCP exists' . 
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· To complete the proof it remains to show that DCP-or-Minor always terminates. 
The latter follows from the fact that in any recursive call of DCP-or-Minor the size 
of the new input graph is smaller than than that of the original graph. ■ 

Lemma 2.2. Let H be a fixed planar graph, N a fixed integer satisfying 
the thesis of Fact 2.3 for H, and let k be a fixed integer. For any graph G and 
any terminal set P in G with at most k terminal pairs, the procedure DCP-or­
Minor(G, P, H, N) can be realized by an NC algorithm. 

Proof: By [SV, Theorem 1] it suffices to show that the procedure will execute 
in poly-log time when carefully implemented on a parallel random access machine 
with concurrent read and concurrent write, using polynomial number of processors. 
The poly-log time performance and the polynomial upper bound on the number of 
processors rely on the following claims: 

(i) We can check whether the required separation of V or ½ exists and if so, 
construct such a separation in poly-log time using a polynomial number of proces­
sors. 

(ii) Let k0 = max(5N, 2k ). The family of terminal set pairs returned by Divide 
has never more than 2(ko+2N)(ko+2N-l) members in any call of Divide during the 
execution of DCP-or-Minor( G, P, H, N). 

(iii) The procedure Divide can be implemented to run in poly-log time on poly­
nomial number of processors. 

(iv) The recursion depth of DCP-or-Minor( G, P, H, N) is logarithmic. 

The claims (i), (iii), and (iv) imply poly-log running time. The claims (ii) and 
(iv) imply that the recursion tree of DCP-or-Minor( G, P, H, N) has a polynomial 
number of nodes which combined with claims (i) and (iii) ensures a polynomial 
number of processors. 

Let us prove the above four claims. According to the body of DCP-or-Minor, 
to implement (i) in the case of the V-separation, we proceed as follows. For all 
subsets S of V( G) with at most N vertices, we test whether S induces the required 
separation by finding the connected components of G(V - S). Note that for a fixed 
N the number of such subsets Sis polynomial and the connected components can 
be found in poly-log time, using polynomial number of processors [QD]. Knowing 
the connected components, we can easily find their cardinalities in poly-log time 
using linear number of processors. Now, we can easily check whether it is possible 
to sum the connected components, say C 1 , ... , C1, and S into appropriate sets Vi 
and ½, and if so construct such a pair (Vi, ½). This can be done by sorting the 
cardinalities in decreasing order, computing all their prefix sums in parallel, and 
applying binary search. By [Ak], these steps can be efficiently performed in parallel. 
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In the case of ½-separation, we proceed analogously. The only difference is that 
instead of the cardinalities of the connected components of G(½) - T, we consider 
the cardinalities of their intersections with V(Pi)-

To prove (ii), we first observe that the cardinality of V(P) (in recursive calls, 
P = Pi or P = Qi ) never exceeds k0 and the cardinality of V(Pi) is bounded by 
k0 +N. Clearly, the former implies the latter as V(Pi UP2)-V(P) consists of at most 
N vertices. The two statements can be proved by induction on the depth of recursive 
call of DCP-or-Minor in decreasing depth order. Whenever there are more than k0 

vertices in V(Pi), either the procedure halts or a separation (W1, W2) is constructed 
such that W1 nW2 = T, W1 UW2 = ½, #((W1 -T)nV(Pi)), #((W2-T)nV(Pi)) ~ 
~#V(Pi)- Hence, there are no more than ~(ko + N) + N vertices in V(QJ which 
implies # V( Qi) ~ k0 by k0 2:: 5N. This completes the proof of the two statements. 
It follows now that the family of terminal set pairs returned by Divide during the 
execution of DCP-or-Minor( G, P, H, N) never exceeds (2(ko+2N)(ko+ 2N-l)/2))2. 

To show (iii), it is sufficient to observe that after sorting the vertices in Vi and 
½ respectively, we can test a vertex in G for membership in ½ and ½ in poly-log 
time. This enables us to construct the graph L efficiently in parallel. Since L has 
never more than k0 + 2N vertices by the analysis in (ii), the remaining part of the 
body of the procedure can be executed in constant time. 

To show (iv), it is sufficient to observe that in each recursive call in the body 
DCP-or-Minor the number of vertices of the new input graph is a constant fraction 
of that of the original graph. ■ 

A class of planar graphs is non-trivial if it is non-empty and different from the 
class of all planar graphs. By using DCP-or-Minor and Lemmas. 2.1 and 2.2, we can 
show that the DCP problem with a bounded number of terminal pairs for non-trivial 
classes of planar graphs is in NC. 

Theorem 2.1: Let :F be a non-trivial minor-closed class of planar graphs and 
let k be a positive integer. The problem of testing for any graph Gin :F~ and any 
terminal set Pin G of at most k pairs whether DCP for Pin G exists is in NC. 

Proof: Since :Fis non-trivial and planarity is preserved under minor taking, :F 
has at least one planar forbidden minor H by Fact 2.1. Now, it is sufficient to call 
DCP-or-Minor( G, P, H, N) where N is the integer constant specified by Fact 2.3. 
S~nce G is assumed to be in :F, it cannot have a minor isomorphic to H. Thus, we 
obtain as the answer either 'DCP exists' or 'no DCP'. Now, Lemmas 2.1 and 2.2 
imply the thesis. ■ 

Combining .Theorem 2.1 with the obvious reduction of the fixed subgraph iso­
morphism problem to a polynomial number of DCP problems with fixed k, we 
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obtain the following theorem. 

Theorem 2.2: Given a minor-closed class F of planar graphs, and a planar 
graph H, the subgraph homeomorphism problem for Hand any graph Gin Fis in 
NC. 

Proof: To begin with, we need the following definition. A terminal set P in 
G corresponds to H if (V(P), P) is a graph isomorphic to H. It is clear that H is 
homeomorphic to a subgraph of G if and only if there is a ( terminal) subset P of 
V( G) x V( G) corresponding to H such that DCP for P in G exists. Note that since 
the graph H is fixed, the number of all such terminal sets P to test for DCP in 
G is polynomial in the size of G. Thus, by Theorem 2.1, we can perform all these 
tests and return the conjuction of their results in poly-log time using a polynomial 
number of processors. ■ 

In turn, by combining Fact 2.1 and Theorem 2.2 with the reduction of the minor 
containment problem to that of subgraph homeomorphism (given in Fact 2.2), we 
obtain the following theorem. 

Theorem 2.3: Given a minor-closed class :F of planar graphs, the recognition 
problem for :Fis in NC. 

Proof: Our efficient parallel algorithm for the recognition problem consists of 
two major steps. First, we test the input graph for planarity using Miller-Reif's al­
gorithm [MR]. Their algorithm runs on a concurrent read, concurrent write PRAM 
with n°(1) processors in time O(log n) ([MR, Theorem 26]). Hence, it can be imple­
mented by NC circuits (SV, Theorem l]. In the second step, we assume the input 
graph G to be planar and test whether it is in F by checking if it has a minor 
isomorphic to at least one of minimal forbidden minors defining :F (see Fact 2.1). 
Since planarity is preserved under minor taking operation it is enough to perform 
these tests only for such planar minors for :F to know whether G is in :F. Our 
method of performing the test relies on Fact 2.2 and Theorem 2.2. For each planar 
minimal forbidden minor K for :F, we use (by Fact 2.2) the finite list of planar 
graphs H 1(K), ... , H1(K) such that G has a minor isomorphic to Kif and only if at 
least one of the graphs on the list is homeomorphic to a subgraph of K. Thus, we 
test each such a planar graph Hi( K) and G for subgraph homeomorphism using the 
parallel algorithm described in the proof of Theorem 2.2. By finiteness of the list of 
minimal forbidden minors K of :F and finiteness of the lists H1(K), ... , H1(K), and 
Theorem 2.2, we obtain the thesis. ■ 
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3 A reduction of subgraph isomorphism for bi­
connected outerplanar graphs to polygon imbed­
ding 

In this and the next sections, we consider the subgraph isomorphism problem for 
outerplanar graphs. An outerplanar graph is a graph which can be embedded in the 
plane in such a way that all its vertices lie on the exterior face (Mi]. We shall call 
such an embedding of a graph in the plane, an outerplanar embedding. By (MR], 
we can easily deduce the following lemma: 

Lemma 3.1: Given a biconnected outerplanar graph, we can find the cycle 
bounding the exterior face of its outerplanar embedding using NC circuits. 

Proof sketch: Extend the input graph by a single vertex w adjacent to all original 
vertices. Note that the resulting graph is still planar. Find a planar embedding of 
the new graph. It is easy to see that the vertices adjacent to w in the clockwise · 
order around w form the sought cycle. A planar embedding of the new graph can be 
constructed by a concurrent read, concurrent write PRAM with n°(t) processors in 
time O(logn) (Theorem 26 in [MR]). Hence, it can be constructed by NC circuits 
by Theorem 1 in (SV], and consequently, the whole procedure can be performed by 
NC circuits. ■ 

Using the following definitions of planar figures in terms of standard geometric 
notation ( see (PS]), we will be able to specify outerplanar embeddings of biconnected 
outerplanar graphs more precisely. 

Definition 3.1 A partial triangulation of a simple polygon is a set of non­
intersecting diagonals of the polygon. A partially triangulated polygon (PTP for 
short) Q is a union of a simple polygon and a partial triangulation of the simple 
polygon. The vertices of the simple polygon are vertices of Q, whereas the edges of 
the simple polygon and the diagonals from the partial triangulation of the simple 
polygon are edges of Q. The former edges of Q are called boundary edges of Q, the 
latter edges of Q are called diagonal edges of Q. 

Mitchell observes in [Mi] that a biconnected outerpl~ar graph is in fact a par­
tially triangulated polygon. By Lemma 3.1, we have: 

Lemma 3.2: Given a biconnected outerplanar graph, we can find its outerpla­
nar embedding in the form of a partially triangulated (convex) polygon using NC 
circuits. 
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• It follows that a biconnected outerplanar graph has a unique outerplanar em­
bedding (in the topological sense) up to the mirror image ( see also [Sy82]). 

Definition 3.2. A partially triangulated polygon with a distinguished boundary 
edge is called a rooted, partially triangulated polygon (RPTP for short). The 
distinguished edge is called the root of the RPTP. Given a RPTP P, the graph 
induced by P is denoted by G(P). Now, given two RPTP, P and Q, we say that P 
can be root-imbedded into Q if and only if there is an isomorphism between G(P) 
and a subgraph of G( Q) that maps the root of P on the root of Q, and preserves 
the clockwise ordering of the vertices on the perimeter of P. Such an isomorphism 
is called a root-imbedding of Pinto Q. 

In the following lemma, we show that the problem of subgraph isomorphism for 
biconnected outerplanar graphs is efficiently reducible (in parallel) to the problem 
of testing two RPTP's for root-imbedding. 

Lemma 3.3: The problem of subgraph isomorphism for biconnected outerpla­
nar graphs is NC reducible to the problem of testing whether an RPTP can be 
root-imbedded in another RPTP. 

Proof sketch: Let G and H be biconnected outerplanar graphs. By Lemma 3.2, 
we can find outerplanar embeddings P and Q of G and H, respectively, in the form 
of partially triangulated convex polygons, using NC circuits. Let Q' be the mirror 
image of Q. Let us root P at its arbitrary boundary edge e. It is clear that G is 
isomorphic to a subgraph of H if and only if there is a subfigure R of Q ( or Q'), 
and an edge d of Q ( Q') such that R is a partially triangulated polygon consisting 
of all edges of Q ( Q') on a given side of d and of the edged on its boundary, and P 
can be root-imbedded in the RPTP R rooted at d. Note that there is only a linear 
number of candidates for such subfigures R. Hence, the reduction can be done by 
NC circuits. ■ 

To specify and analyze our parallel algorithm for root-imbedding for RPTP in 
the next section, we need also the following definitions and lemmas. 

Definition 3.3. Let P be a RPTP with n vertices. The diagonal separator of 
P is a diagonal or a diagonal edge of P that partitions P into two RPTP, each of 
no more than ~n + 2 vertices. 

For a PTP P, the tree T(P) dual to P consists of vertices in one-to-one corre­
spondence to the inner faces of P and of edges connecting vertices corresponding 
to adjacent faces in P. 
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Lemma 3.4: Given a RPTP P, we can find a diagonal separator of P using 
NC circuits. 

Proof sketch: First, we triangulate P to obtain a completely triangulated poly­
gon P' . It can be done by a concurrent read, exclusive write PRAM using a poly­
nomial number of processors in poly-log time (ACGOY], and hence it can be imple­
mented by NC circuits (SV]. Given P', we can construct the tree T(P') dual to P' 
in constant time, in parallel. Now, to find a diagonal separator of P, it is sufficient 
to find a ½ - ~ vertex separator of T( P') with vertex weights appropriately defined 
(such a separator always exists [LT], see [Li85] for the details). This can be done 
by communicating the total weight of T( P') to each vertex v of T( P'), and finding 
the total weight of descendants of v for each vertex v of T(P'). The latter can be 
done by using Euler's path techniques by NC circuits ( combine [TV] with [SV]). ■ 

Definition 3.4. Let P be a PTP. Given two edges e and d of P, let 1 be 
the path in T(P) between the two closest vertices in T(P) corresponding to the 
faces adjacent toe and d respectively. Then, the dual patb between e and dis the 
sequence of diagonal edges of P that separate the faces in the sequence of faces in 
P corresponding to 1 . · 

Lemma 3.5: Given two edges e and d of a PTP, we can find the dual path 
between e and d and its middle element, using NC-circuits. 

Proof sketch: As in the proof of Lemma 3.4, we first build the tree T dual to the 
completely triangulated polygon P'. Next, the dual path can be easily constructed 
from the corresponding vertex path in T. The latter path can be found by using 
a standard O(log n) method on a concurrent read, exclusive write parallel RAM 
with 0( n 2

) processors. In the j-th iteration of the method, we find, for each vertex 
v in the tree, the path from v to its ancestor at distance 2i by concatenating 
the path from v to its ancestor at distance 2i-1 with the copied path between 
the two ancestors of v. By (SV], the method can be implemented by (uniform) 
circuits of unbounded fan-in, O(log n) depth and polynomial size. Hence, it can 
be implemented by NC 2 circuits. Given the dual path, we can find its median by 
finding for each its element the number of preceding and following elements which 
can be easily implemented by NC circuits.■ 
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4 A parallel algorithm for imbedding of partially 
triangulated polygons 

Our parallel algorithm for the problem of root-imbedding for PTP consists of two 
recursive procedures Ril and RI2. The first procedure tests whether the input 
RPTP P can be root-imbedded in the input RPTP Q. First, it finds a diagonal 
separator of Q and then it guesses its image in Q by trying all possible pairs of 
vertices of Q in parallel. To check whether the bottom part of P cut off by the 
diagonal separator (i.e., the part not containing the root) can be root-imbedded 
in the corresponding part of Q cut off by the guessed image of the separator, the 
procedure calls recursively itself. To check whether the upper part of Q ( the part 
containing the root) can be imbedded in the upper part of Q such that the root 
of P is mapped on the root of Q and the diagonal separator on its guessed image, 
the procedure Ril calls RI2. The latter procedure solves the above problem as 
follows. First, it finds the dual path from the diagonal separator to the root of P. 
If the dual path is empty then it cuts off the left and right part of the upper part 
of P along the diagonals connecting the left and right endpoints of the diagonal 
separator and the root of P respectively (if for instance, the left endpoints overlap, 
the left part is empty). Analogously, it cuts off the corresponding left and right part 
from the upper part of Q. Next, IR2 tests whether the left and the right upper part 
of P can be respectively root-imbedded in those of the upper part of Q by calling 
the procedure Ril, twice in parallel. If both tests are positive, it returns YES. If 
the dual path contains more edges, the procedure RI2 finds the median and then 
guesses an image of the median in the upper part of Q by trying all possible pairs of 
vertices of the upper part of Q, in parallel. To check whether the upper and bottom 
part of the upper part of P divided by the median can be respectively imbedded in 
the corresponding parts of the upper part of Q divided by the guessed image of the 
median, it calls recursively itself twice in parallel. 

The use of the diagonal separator and the path median ensures an O(log2 n) 
recursive depth of the algorithm composed of the two procedures. Since by Lemmas 
3.4 and 3.5, the problems of finding the diagonal separator, the dual path, and its 
median can be solved by NC circuits, we can conclude that the procedure can be 
implemented by uniform circuits of poly-log depth. The crux is to observe that 
the circuits need only a polynomial number of processors. This follows from the 
fact that each figure occurring as a parameter in the recursive calls of RI1 can be 
obtained from P or Q by cutting along a single diagonal/edge in P or Q, or a straight 
line segment between two vertices in Q. In the latter case, all edges intersecting 
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this segment are deleted from Q. The above fact holds inductively for the bottom 
parts. For the upper parts, it is sufficient to observe that neither the root of P 
or Q nor the 'horizontal' cutting edges ( i.e., diagonal separators and the medians) 
occur in the final RPTP's that are produced by RI2 and become parameters of 
Ril (see Fig. 4.1). It follows that the number of figures that are parameters in 
the recursive calls of Ril is polynomial. Hence, the number of different figures 
occurring as parameters in the recursive calls of RI2 is also polynomial, since they 
are obtained from the figures being parameters of Ril by cutting along at most 
two single diagonals/edges. We conclude that the number of distinct, potential 
recursive calls of Ril and RI2 is polynomial. Therefore, we can implement all 
these potential recursive calls using a bottom-up method of poly-log depth taking 
a polynomial number of processors. 

Thus, we have the following theorem. 

Theorem 4.1: The problem of root-imbedding for RPTP is in NC. 

Combining Lemma 3.3 with Theorem 4.1, we obtain the main result of this 
section. 

Theorem 4.2: The problem of subgraph isomorphism for biconnected outer­
planar graphs is in NC. 

We conclude this section with a more formal description of the procedures Ril 
and RI2. To simplify the notation, we assume that the input RPTP's are convex 
and no vertical line passes through any pair of their vertices. In the body of the 
procedure, X (p) denotes the X coordinate of p. 

We need also the following definition. 
Let R be a PTP. Given a sequence a = v1, v2, ... , vk of vertices of R, and a 

fragment /3 of R, we denote by R( a, /3) the largest PTP such that: 
(i) if there is no more than one vertex in a then it is empty; 
(ii) it consists of some edges of Rand the edges (v1,v2), ... ,(vk-i,vk); 

(iii) the edges ( v1, v2), ... , ( Vk-l, vk) form a continuous fragment of its perimeter; 
(iv) it is disjoint from /3. 

See Fig. 4.2 for an example. 

The two procedures are specified as follows. 

procedure Ril(P, Q) 
begin 
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if P has three vertices then 
begin 

if Q contains a triangle then return YES else return NO 
end 

else 
begin 

find a diagonal separator ( vi, v2) of P where X( vi) < X( v2); 
Pl ~ P( (vi, v2), { root( P)}) rooted at (vi, v2); 
P2~P((vi,v2),Pl-{(vi,v2)}); · 
for all vertices wi, w2 of Q where ( wi, w2) is not the root of Q 
do in parallel 
begin 

if ( vi, v2) is an edge of P and ( wi, w2) is not an edge of Q 
then return NO and halt; 
Ql ~ Q( ( wi, w2), { root( Q)}) rooted at ( wi, w2); 
Q2 ~ Q(( wi, w2), Ql - {( wi, w2)} ); 
if Rll(Pl, Ql) I\ RI2(P2, Q2, (vi, v2), (wi, w2), root(P), root(Q)) 
then return YES else return NO 

end 
end 

end 

procedureRI2(P, Q, (vi, v2), (wi, w2), (v~, v~), (w~, w;)) 
begin 
D ~ the dual path from (Vi, v2) to ( v~, v~) in P; 
if D = 0 then 

begin 
if ( vi, vf) is an edge of P and ( wi, w~) is not an edge of Q 
or ( v2 , v~) is an edge of P and ( w2 , w;) is not an edge of Q 
then return NO and halt; 
PL ~ P(( vi, vD, { v2, v;}) rooted at ( vi, vD; 
Q L ~ Q( ( Wi, wD, { w2, w;}) rooted at ( Wi, wD; 
PR~ P((v2,v;), {vi,vD) rooted at (v2,v~); 
QR~ Q(( w2, w;), { wi, wD) rooted at ( wi, wD; 
if Ril(PL, QL) I\ Rll(PR, QR) then return YES else return NO 

end 
else 
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begin 
( v3, v4) f- the middle edge in D where X( v3) < X( v4); 
PU f- P((v3,v4), {(v1,v2)}); 
PD f-P((v3,v4 ),{(v~,v~)}); 
for all vertices w3 and w4 of Q 

where (w3 ,w4) is different from (w1 ,w2 ) and (w~,w;) 
do in parallel 
begin 

QU f- Q(( w3, w4), {( w1, w2)} ); 
QD f- Q(( W3, w4}, { ( w~, w;)} ); 
if RI2(PU, QU, ( v3, v4), ( w3, w4 ), ( v~, v~), ( w~, w;))/\ 

RI2(P D, QD, ( v1, v2), ( w1, w2), ( V3, V4), ( W3, w4)) 
then return YES else return NO 

end 
end 

end 

5 Extensions 

The problem of subgraph isomorphism for biconnected outerplanar graphs can be 
seen as an abstraction of two following geometric problems for partially triangulated 
polygons P, Q : 

(i) decide whether P is similar to a subfigure of Q; 
(ii) decide whether P is congruent to a subfigure of Q. 
The two problems can be respectively termed as the problems of sub-similarity 

and sub-congruency for partially triangulated polygons. Both have potential appli­
cations in pattern recognition. 

The problems of sub-similarity and sub-congruency for partially triangulated 
polygons can be solved analogously to the problem of subgraph isomorphism for 
biconnected outerplanar graphs. First, we reduce both problems to their rooted 
versions (where the mapping on a distinguished boundary edge is fixed), using NC­
circuits. Then, we solve the rooted versions by subsequently modifying the parallel 
algorithm for root-imbedding for RPTP. In the case of the sub-similarity problem, 
we appropriately add tests for the congruency of angles formed by the roots and 
cutting edges of P and Q with the adjacent edges. In the case of the sub-congruency 
problem, we add also tests for edge length equality for the roots and cutting edges, 
respectively. The above modifications of the procedures Rll and Rl2 do not affect 
their asymptotic, worst-case circuit complexity. Hence, in analogy to Theorem 
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3.2, we have that the problems of sub-similarity and sub-congruency for partially 
triangulated polygons are in NC. 

It seems also possible to generalize our NC algorithm for subgraph isomor­
phism restricted to biconnected outerplanar graphs to include three-connected pla­
nar graphs of bounded width. We say that a planar graph G has width ~ kif for 
any vertex v in any planar embedding of G there is a path composed of at most k 

edges/diagonals connecting v with the outer face. 
The idea of a generalization of our NC algorithm would rely on the following 

insights: 
(i) Any three-connected planar graph has at most two different embeddings on 

the sphere. These can be constructed by an NC algorithm (MR]. 
(ii) Three-connected planar graphs of width ~ k have a ½ - ~ separator i:p. the 

form of edge/diagonal path of constantly bounded length. Such a separator can be 
found using an NC-algorithm. 

(iii) The above edge/diagonal paths would be used in the analogous manner to 
that of diagonal separators, median separators, etc .. Note that there is a polynomial 
number of such paths. 

(iv) In order to keep the total length of cuts on the perimeter of each considered 
subfigure constantly bounded, it would be necessary to use yet another cutting pro­
cedure, resembling the ½-separation from the procedure DCP-or-Minor (section 2). 
This would ensure a polynomial number of subfi.gures that could ever be considered. 
Hence, we would again obtain only a polynomial number of potential recursive calls. 

As for the methods of Section 2, we suspect that similar methods can be used to 
design efficient parallel algorithm for the discussed problems restricted to families 
of not necessarily planar graphs (for instance, partial k-trees [AP]). 
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Fig. 4.2. The PTP P(d,e) is marked with dashed 1 ines. 




