
Distributed Shared Memory:
A Survey of Issues and Algorithms

Virginia Lo and Bill Nitzberg

CIS-TR-90-26
January, 1991

· Department of Computer and Information Science
· University of Oregon

Eugene, OR 97 403

Distributed Shared Memory:
A Survey of Issues and Algorithms*

Bill Nitzbergt Virginia Lo*

Dept. of Computer Science
University of Oregon
Eugene, 0 R 97 403

Tel (503) 346-4408
FAX (503) 346-3660

Email: lastname@cs.uoregon.edu

January 7, 1991

Abstract

A distributed shared memory (DSM) is an implementation of the shared memory
abstraction on a multicomputer architecture which has no physically shared memory.
Shared memory is important (as a programming model) not only because of the vast
number of existing applications which use it , but also because it is a more appropriate
paradigm for certain algorithms. The DSM concept was demonstrated to be viable by
Li, in IVY. Recently, there has been a surge of new projects which implement DSM in
a variety of software and hardware environments.

This paper gives an integrated overview of distributed shared memory. We discuss
theoretical lower bounds on the performance of DSM systems, design choices such as
structure and granularity, access, coherence semantics, scalability, and heterogeneity,
and open problems in DSM. In addition, we describe algorithms used to implement and
improve efficiency: reducing thrashing, eliminating false sharing, matching the coher
ence protocol to the type of sharing, and relaxing the semantics of the memory coherence
provided. A spectrum of current DSM systems are used as illustrative examples.

Keywords: Distributed shared memory, cache coherence, synchronization, memory
consistency, distributed systems.

*partially supported by NSF Grant CCR-8808532
t partially supported by a Tektronix Research Fellowship

Contents

1 Introduction

2 Theoretical Lower Bounds

3 Memory Coherence

4 DSM Design Choices
4.1 Structure & Granularity
4.2 Access
4.3 Coherence Semantics .
4.4 Scalability ..
4.5 Heterogeneity

5 Implementation of DSM
5.1 Data Location and Access
5.2 Coherence Protocol ..
5.3 Replacement Strategy
5.4 Thrashing · .
5.5 Related Algorithms ..

6 Open Problems in DSM

7 Summary

1 Introduction

1

1

4

5

6
6
8
8
8
9

9

9
12
15
16
16

17

18

As we slowly come up against the physical limits of processor and memory speed, it is be
coming more attractive to use multiprocessors to increase computing power. In particular,
two kinds of parallel processors have become popular: the tightly-coupled shared-memory
multiprocessor and the distributed memory multiprocessor. The tightly-coupled multipro
cessor system consists of multiple CPU's and a single global physical memory. This type of
system is more straightforward to program because it is a natural extension of a single CPU
system. However, a tightly-coupled multiprocessor suffers from one of the same drawbacks
that brought us towards parallel computing in the first place. This type of multiprocessor
has a bottleneck: main memory is accessed via a common bus-a serialization point-that
limits the size to a few tens of processors.

Distributed memory multiprocessors, however, do not suffer from this drawback. These
systems consist of a collection of independent computers connected by a high speed intercon
nection network. These systems range from single user back-end machines, to workstations
connected by an Ethernet, to a wide area network of heterogeneous computers. If the net
work topology is chosen carefully, then the system can contain many orders of magnitude
more processors than a tightly coupled system. As all communication between concurrently
executing processes must be performed over the network in such a system, the programming
model (until recently) was limited to a message passing paradigm. However, recent systems

2

have implemented a shared memory abstraction on top of distributed memory systems
giving these systems the illusion of physically shared memory and allowing the programmer
to program using the shared memory paradigm.

Distributed Shared Memory (DSM) is a virtual address space shared among processes
on loosely coupled processors (see figure 1). It has advantages over tightly-coupled shared
memory multiprocessors as well as over message passing systems:

• It is often more natural to design a parallel algorithm using the shared memory
paradigm rather than explicit message passing. For example, passing structures con
taining pointers is either impossible or expensive (in programming and communication
cost) on message passing systems. Consider passing a circular list.

• Many programs have been written for shared memory multiprocessors. A DSM system
allows these programs to be executed on distributed memory multiprocessors, improv
ing their portability. It also allows the program to take advantage of the increased
parallelism available on such a machine.

• The architectures of distributed memory multiprocessors are more easily scaled up
wards. Shared memory multiprocessors are limited to tens of processors as they share
a single pathway to the memory, whereas a distributed memory multiprocessor can
have lO00's of processors.

• Distributed memory machines are cheaper to build than tightly coupled shared mem
ory multiprocessors-they can consist of stock hardware coupled with stock network
ing. Shared memory multiprocessors must have complex interfaces to a shared, high
speed bus.

• Programs which require large amounts of memory .can be run on DSM systems because
a distributed system with thousands of nodes will ,have an enormous physical memory
available. A DSM system will make this physical memory appear as a single shared
memory, but avoid the disk latency associated with traditional virtual memory paging
systems.

• Exchanging data in page sized units is more efficient than sending many smaller
messages, one at a time. In this way, DSM systems amortize the cost of communication
over message passing systems.

DSM has been an active area of research since the early 1980's, although the founda
tions for this work in cache coherence and memory management have been around much
longer. The goals and issues of DSM are similar to those of the caches of multiprocessors or
networked file systems, the memories of a non-uniform memory access multiprocessor, and
the management system of a distributed/replicated database. Because of this similarity,
many algorithms and lessons learned in these domains can be transferred to DSM systems
and vice versa. However, all of these systems have unique features (such as communication
latency) which makes it necessary to consider each separately.

Research has shown that the advantages of DSM can be realized with reasonably low
runtime overhead and reasonably small modifications to operating system algorithms. The

B
Node O

Node n

Figure 1: Distributed Shared Memory

3

4

existence proof for DSM was given by Li in IVY [LH86][Li86][Li88]. He showed not only
that DSM is viable, but also that super-linear speedups can be realized in certain instances,
most likely due to the increased overall physical memory and cache sizes. There are three
distinct approaches to implementing DSM: software implementations in which sharing and
coherence are achieved through the paged memory management mechanisms, hardware
implementations which extend traditional caching techniques to scalable architectures, and
object based systems in which the unit of sharing is the variable sized application dependent
object. These systems have been designed on common networks of woi:kstations or mini
computers, special purpose message passing machines (such as the Intel iPSC/2), custom
hardware, and even heterogeneous systems.

Current research has shown that DSM algorithms must be sensitive to the memory
access patterns of applications. Stumm and Zhou [SZ90] pairwise compare four algorithms
for supporting DSM, and show that the efficiency of these algorithms is directly affected
by the memory faulting rate of the application. Bennett, Carter, and Zwaenepoel show
in Munin [BCZ90a](BCZ90b] that there are at least nine different types of memory access
patterns exhibited by typical parallel applications, and give algorithms tailored to support
each separately. Finally, the importance of locality of reference is demonstrated in the
context of DSM by Fleisch and Popek with Mirage [FP89][Fle89]. The focus of current
research emphasizes fine tuning the efficiency of DSM systems.

This paper gives an integrated overview of distributed shared memory covering memory
coherence, design choices, implementation methods, and open rese_arch areas. We discuss
these issues using illustrative examples from a spectrum of DSM systems. Figure 2 and the
Appendix summarize these systems.

2 Theoretical Lower Bounds

To be efficient, an implementation of DSM should allow shared memory programs to execute
with only a small constant multiple (very close to 1) of the number of operations necessary
to perform memory accesses. In general, this is impossible. Upfal and Wigerson have shown
[UW84] that it takes at least !1(T1o~fo;n) steps on a distributed memory multiprocessor to
perform T shared memory operations of a PRAM, given that there are n processors. They
derive this lower bound by simulating a PRAM on a complete network of processors, so
even with the most general interconnection network, the amortized time to access shared
memory is more than a constant.

However, they show that on a bounded degree network distributed memory multipro
cessor, a more realistic interconnection network than fully connected, a shared memory
access can be performed in O((lognloglogn)2) steps. Karlin [KU86](Kar87] obtains a bet
ter bound by looking at probabilistic complexity. She shows how to simulate shared memory
in only 0(T log n) steps for T operations. Both of these algorithms simulate shared memory
by using hashing functions to distribute the shared variables to reduce contention. Karlin's
algorithm uses random routing to avoid communication bottlenecks.

Of course, these are theoretical bounds. Actual performance of real systems is much
better. In fact, most of the systems perform at least as well as their shared memory
counterparts on many applications.

5

3 Memory Coherence

In order for programmers to write correct programs on any shared memory machine, they
must understand how parallel memory updates are propagated throughout the system.
The most intuitive semantics for memory coherence is strict consistency1 which means that
a read operation returns the most recently written value. This is most often the naive
users' model of shared memory. However, "most recently" is an ambiguous concept in
a distributed system. For this reason, and in order to improve performance, some DSM
systems only provide a reduced form of memory coherence. Relaxed semantics require
less synchronization and less data movement-this makes them more efficient. However,
existing programs which depend on a stronger form of consistency may not perform correctly
if executed in a system which only supports a weaker form. There are several forms of
memory coherence:

Strict Consistency [CF78] A read returns the most recently written value. This form
of consistency is what most programmers intuitively expect. However, it implies a
total ordering on all memory operations in the system so the most recent write can
be determined. This forced total ordering leads to inefficiency.

Sequential Consistency [Lam79] A system is sequentially consistent if the result of any
execution is the same as if the operations of all the nodes were executed in some
sequential order, and the operations of each individual node appear in this sequence
in the order specified by its program. A sequentially consistent multiprocessor is
indistinguishable from a multi-threaded uniprocessor.

Concurrent Consistency [Sch89] A system is concurrently consistent if it provides se
quential consistency except for programs which explicitly test for sequential consis
tency or take access timings into account. Note that it is wasteful for a program which
expects sequential consistency to explicitly test for it's existence.

Processor Consistency [Goo89] Writes issued by a processor are never seen out of or
der. This allows updates to propagate through the system in a pipelined fashion,
although two simultaneous reads of the same location from different processors may
yield different results.

Weak Consistency [DSB88] Synchronization accesses are sequentially consistent, and be
fore a synchronization access can be performed all previous regular accesses must be
completed and before a regular access can be performed all previous synchronization
accesses must be done. This basically leaves consistency up to the programmer. The
memory will only be consistent immediately after a synchronization operation.

Release Consistency [GLL +90] Basically weak consistency, but synchronization accesses
must only be processor consistent with respect to each other. Synchronization oper
ations are broken down into acquire and release. All pending acquires must be done

1Strict consistency is defined in [CF78] as memory coherence and appears in [Sch89] as strict coherence.
The terms "coherence" and "consistency" are used somewhat interchangeably in the literature. We use
"coherence" as the general term for the semantics of memory operations, and "consistency" to refer to a
specific kind of memory coherence.

6

before you can do a regular access, and all regular accesses must be done before doing
a release. This is just a further relaxation of weak consistency without very much loss
of coherence.

Since time is not mentioned in any of the consistency semantics above, nothing can be
said regarding the propagation of updates throughout the system. This makes it impossible
(in general) to use shared memory to perform any kind of mutually recursive synchronization
operations without the possibility of deadlock. In practice, however, coherence protocols
propagate updates in a timely manner.

4 DSM Design Choices

A DSM system must address certain design issues: structure, granularity, access, coherence
semantics, scalability, and heterogeneity. By looking at these design issues for several
real implementations of DSM, we can better understand the intricacies of such a system.
Figure 2 summarizes these design choices for a collection of DSM systems, as well as the
implementation issues discussed in section 5.

4.1 Structure & Granularity

The structure and granularity of a DSM system are closely related. Structure refers to the
layout of the shared data in memory. Most DSM systems do not structure memory (it is a
linear array of words), but some structure the data as ·objects, language types, or even an
associative memory. Granularity refers to the size of the unit of sharing: byte, word, page,
complex data structure.

IVY [LH86)[Li86)[Li88], one of the first transparent DSM systems, implemented shared
memory as virtual memory. This memory was unstructured, and was shared in lk byte
pages. It is convenient in systems implemented using the virtual memory hardware of the
underlying architecture (such as IVY) to choose a multiple of the hardware page size as the
unit of sharing. Hardware implementations of DSM typically support smaller_ grain sizes.
For example, DASH [LLG+90][GLL +90) and MemNet [DF86][Del88][TSF90) also support
unstructured sharing, but the unit of sharing is 16 and 32 bytes respectively-typical cache
line sizes. PL US [BR90] is somewhat of a hybrid of the two: the unit of replication is a
page, while the unit of coherence is one 32 bit word. As shared memory programs exhibit
locality of reference, a process will most likely access a large region of its shared address
space in a small amount of time. This makes larger "page" sizes better, because there is
less overhead associated with paging activity. However, sharing may also cause contention,
and the larger the page size, the more chance there is that more than one process will
require access to that page. In this case, a smaller page size is better, as it reduces the
possibility of false sharing. This occurs when two unrelated variables (each used by different
processes) are placed in the same page-the page appears shared, even though the original
variables were not. Another factor affecting the choice of page size is the necessity of keeping
directory information about the pages in the system. The smaller the page size, the larger
the directory must be to keep track of the pages.

One method of structuring the shared memory is by data type. In this case, it is
either structured as objects in distributed object oriented systems (e.g. Emerald [JLHB88]

I

Clouds

DASH

IVY

Linda

Memnet

Mermaid

Mirage

Munin

PLUS

Shiva

C:
.Q

~
... Cl)
c: E
~~ ... a.
::, E

(.) -

SN
Sun-3

DSMC/Ra Kamel

HN
modified SGI 40/240
workstations; mesh

SN
Apollo workstations;

I

Apollo ring; Apollo Domain

SW/HW
variety of environments

HN
token ring

SN
Sun workstations +

.,, ~
Cl) -c ... as a-o::,
::, C:
~ e
C/) (!)

object
segments

16 bytes

1 K pages

tuples

32 bytes

SK pages
(single data

I

DEC Firefly multiprocessor type)
Mermaid/native OS

SN 512 byte
Vax 11/750; ether-net; pages
Locus Distributed OS

SN objects
Sun workstations;

ether-net;
V kernel + Presto parallel

programming env.

HW/SW page for
Motorola 88000; sharing; word
CalTech mesh; for coherence

PLUS kernel

SN 4K pages
iPSC/2; hypercube;

Shiva/native OS

Cl)
Cl)
Cl)
0
0
<(

trans.

trans.

trans.

access
tunes.

trans.

trans.

trans.

I

language
level

trans.

trans.

trans.

§ .g
~ C:
CD as

.c. E
8~

strict

release

strict

strict/no
mutable data

strict

strict

strict

strict

processor

strict

I

~
~8
Cl) 0 .c-
o e (.) a.

write-invalidate

write-invalidate

write-invalidate

broadcast
(no replication)

write-invalidate

write-invalidate

write-invalidate

type-specific
(delayed write

update for read-
mostly)

non-demand
write-update

write-invalidate

Figure 2: DSM Design Issues

I C/) .§ a.

relaxed
coherence

pointer chain
collapse, selective

broadcast

See IVY

time window
coherence protocol

delayed update
queue

specialized
synchronization

primitives to
complement DSM

See IVY

Cl)
::,
0

~
Cl)

g,~
... 8. s a.
Q) ::,

f I: C/)

no

no

no

?

no

yes

no

no

no

no

7

8

and Clouds [RK89][RK88] [RAK88][RK89]), or it is structured as variables in the source
language (e.g. Shared Data Object Model [BKT89] and Munin [BCZ90a)[BCZ90b]). In
these systems, the grain size is variable as the sizes of objects and data types vary greatly,
and as such, may be better matched to the application~ In addition, these systems do not
suffer from false sharing.

Finally, the shared memory can be structured like a database. One system that has
such a model, Linda [BCGL87][WL88], orders its shared memory as an associative memory
called a tuple space. This allows the location of data to be separated from its value, but it
also requires that the programmer use special access functions to interact with the shared
memory space.

4.2 Access

The shared memory can be accessed either transparently or by calling special shared memory
access functions. Early DSM systems used access functions, and Linda may be considered
to have shared memory access functions, as there is no way to access the shared memory
except via the Linda primitives. Shared memory is considered transparent if access to it is
represented by normal language level variable access.

Accessing shared memory through explicit primitives defeats some of the purposes of
having shared memory in the fi!st place. Fine grained. sharing is no longer trivial. As in
a message passing system, all communication must be explicitly marked and packaged into
pieces. In addition, having transparent DSM makes it easier to port applications written
for shared memory multiprocessors to distributed memory machines. Newer systems and
hardware implementations support transparent access to DSM; allowing shared memory to
be accessed and modified through normal machine instructions.

4.3 Coherence Semantics

DSM systems try to balance memory coherence with performance. In order to ensure that
existing parallel applications will run on a DSM system, the system must provide strict
consistency. Most systems provide strict consistency. However, in an effort to improve
efficiency, some of the newer systems (especially hardware implementations) have chosen to
provide a looser form of coherence. PL US, for example, provides processor consistency, and
DASH only provides release consistency. In the RISC philosophy, both of these systems
have mechanisms for forcing coherence, but their use must be explicitly specified by higher
level software (compiler or perhaps even the programmer). This relaxation of the coherence
semantics allows shared accesses to be performed more efficiently.

4.4 Scalability

One of the benefits of DSM is that it theoretically scales better than a tightly coupled
shared memory multiprocessor. The limits of scalability are greatly reduced by two factors:
central bottlenecks (such as the bus of a tightly-coupled shared memory multiprocessor),
and global common knowledge operations and storage (such as broadcast messages or full
directories, size proportional to the number of nodes). Li [Li86] went through several
iterations of refining a cache coherence protocol before arriving at his dynamic distributed

9

manager algorithm which avoids centralized bottlenecks. IVY, however, and most other
DSM systems are currently implemented on top of Ethernet (itself a centralized bottleneck)
which can only support about 100 nodes at a time. This is most likely an artifact of
these systems being research tools rather than any real design flaw. Shiva [LS89] is an
implementation of DSM on the Intel iPSC/2 hypercube, and should scale nicely. Nodes in
the DASH system are connected on two meshes which would imply that the machine should
be expandable, however, the DASH prototype currently uses a full bit vector (one bit per
node) to keep track of page replication.

4.5 Heterogeneity

At first glance, sharing memory between two machines with different architectures seems
almost impossible. The machines may not even use the same representation for basic
data types (integers, floating point numbers, etc.). It is a bit easier if the DSM system is
structured as variables or objects in the source language. In this case, a DSM compiler
can add conversion routines to all accesses to shared memory. In Agora [BF87][FBC87],
memory is structured as objects which are shared among heterogeneous machines. Another
novel approach is being explored in Mermaid [LSWZ89). Mermaid shares memory in pages
where a page can only contain one type of data. Whenever a page is moved between two
architecturally different systems, a conversion routine is called to convert the data in the
page to the appropriate format. Although heterogeneous DSM might allow more machines
to participate in a computation, the overhead of conversion seems like it would outway the
benefits.

5 Implementation of DSM

A DSM system must automatically transform shared memory access into interprocess com
munication. Implementing this requires algorithms to handle locating and accessing shared
data, maintaining coherence, and replacing data. The DSM system may also have ad
ditional schemes to improve performance. These algorithms represent direct support for
DSM. In addition, operating system algorithms to support process synchronization as well
as memory management must be specifically tailored for DSM. We focus on the algorithms
used in IVY, DASH, Munin, PLUS, Mirage, and MemNet since these R:V~t"ms illustrate the
concepts we wish to cover. Figure 2 summarizes these implementation a.lternatives. Other
systems are mentioned in the Appendix. Both Li in [Li86) and Stumm and Zhou in [SZ90]
give a good evolutionary overview of algorithms to support static, migratory, and replicated
data.

5.1 Data Location and Access

In order to share data in a DSM system, a program must be able to find and retrieve the
data it needs. If the data does not move around in the system-it only resides in a single
static location, then locating it is easy. All processes can simply "know" where to obtain
any piece of data. For example, some Linda implementations use hashing on the tuples to
distribute the data statically. This has the advantages of being simple and fast, but may

10

cause a bottleneck if the data is not distributed properly (e.g. all the shared data ends up
on a single node).

An alternative is to allow the data to freely migrate throughout the system. This allows
the data to be dynamically redistributed so that the data can be moved to where it is being
used. However, locating the data then becomes more difficult. In this case, the simplest
method of data location is to have a centralized server. The server can keep track of the
locations of all shared data. The centralized method suffers from two drawbacks: the server
serializes location queries which reduces parallelism, and the server may become heavily
loaded which will slow the entire system down.

Another method (used by MemN et) is to broadcast requests for data. Unfortunately,
broadcasting is expensive as all nodes must process a broadcast request, not just the nodes
containing the data. The network latency of a broadcast may also be significant, requiring
accesses to take extended periods of time to complete.

To avoid broadcasts and distribute the load more evenly, several systems use an owner
based distributed scheme.2 In this scheme, each piece of data has an associated owner-a
node which has the primary copy of the data. The owner changes as the data migrates
throughout the system. When another node wishes to get a copy of the data, a request
is sent to the owner. If the owner still has the data, it is returned. The owner, however,
may have given the data to some other node (the new owner). In this case, the old owner
forwards the request to the new owner. The drawback with this scheme is that a request may
be forwarded many times before reaching the current owner. This can be time consuming,
and in some cases, more wasteful than broadcasting. In Li's scheme [Li86], all of the nodes
involved in forwarding a request (including the requester) are given the identity of the
current owner. This "collapsing of pointer chains" helps reduce the forwarding overhead
and delay.

When data is replicated, the DSM system must provide a means for keeping track of the
replicated copies. Figure 3 illustrates the data location schemes used in DASH, IVY, and
PLUS. DASH uses a distributed directory-based scheme, implemented in hardware. Briefly,
the directory for a given cluster (node) keeps track of the physical blocks in that cluster.
Each block is represented by a directory entry which specifies whether the block is unshared
remote (local copy only), shared remote, or shared dirty. If the block is shared remote, the
directory entry also indicates the location of replicated copies of the block; if the block is
shared dirty, the directory entry indicates the location of the single dirty copy. Note that
only the home cluster possesses the directory block entry. Non-local data is accessed for
reading by sending a message to the home cluster. Ivy's dynamic distributed scheme also
supports replicated data. A ptable on each node contains an entry for each page which
indicates the probable location for the referenced page. As described above, data is located
by following the chain of probable owners. Finally, the copy-list scheme implemented by
PLUS uses a distributed linked list to keep track of replicated data. Memory references are
mapped to the physically closest copy by the page map table. A discussion of how writes
are handled for replicated data appears in the next section.

2This scheme is independent of data replication, but is seen mostly in systems which support both data
migration and replication.

lcPul MEM

Node A Node B Node C
(a) Block x is replicated on Nodes A and B,

referenced by Node C

Directory Block entry

shared copies
x remote on B

A is home cluster
for X

A is home cluster
for x

· Cluster A Cluster B Cluster C

X

(home cluster)
(b) DASH distributed directory-based scheme

ptable entry

probable
owner- 8

Node A

copy-list

X

ptable entry

probable
owner-8

Node B

X

(c) IVY - dynamic distributed scheme

copy-list

ptable entry

probable
owner-A

NodeC

Master nextcopy
x -A on B

Master nextcop
x •A NIL

page map table page map table page map table

x I Node A, page p I x I Node B, page q I ~ I Node B, page q I
Node A Node B NodeC

(d) PLUS copy-list scheme

Figure 3: DSM Data Location Schemes

11

12

5.2 Coherence Protocol

All DSM systems provide some form of memory coherence. If the shared data is not repli
cated, then enforcing memory coherence is trivial. Requests are automatically serialized
(in the order they occur) by the underlying network. A node which is handling shared
data can merely perform each request as it is received, and this will ensure strict memory
consistency-the strongest form of coherence. Unfortunately, this serializing of data access
causes a bottleneck, and defeats one of the major advantages of DSM: parallelism.

To increase parallelism, virtually all DSM systems allow data to be replicated. So, for
example, multiple reads may be performed in parallel. However, replicat ion complicates
the coherence protocol. There are basically two types of protocols that handle replication:
write-invalidate and write-update. In a write-invalidate protocol, there can be many copies
of a read-only piece of data, but only one copy of a writable piece of data. It is called
write-invalidate because all copies of a piece of data except one are invalidated before a
write can proceed. In a write-update scheme, however, a write causes all copies of a piece
of data to be updated.

The majority of DSM systems have write-invalidate coherence protocols. All the proto
cols for these systems are similar. Each piece of data is tagged with a status which indicates
whether the data is valid, whether it is read-only, whether it is shared, and whether it is
writable. On a read, if the data is valid, it is returned immediately. If the data is not valid,
a read request is sent (the location of a valid copy is determined via one of t he mechanisms
described above), and a copy of the data is returned. If the data was writable on another
node, this request will cause it to become read-only. The copy remains valid until an in
validate request is received. On a write, if the data is valid and writable, the request is
satisfied immediately. Otherwise, an invalidate request is sent out along with a request for
a copy of the data (in case only part of it is to be written). When the invalidate completes ,
the data is valid locally and writable, and the original write request may complete.

· Figure 4 illustrates the DASH directory based coherence protocol. The sequence of
events and messages shown in Figure 4(a) occur when the block to be written is in shared
remote state (multiple read-only copies) just before the write. Figure 4(b) shows the events
and messages that would occur when the block is to be written is in shared-dirty state (single
dirty copy) just before the write. DASH's coherence protocol supports release consistency.
Further details of the DASH coherence protocol and the methods used to fine-tune the
protocol for high performance are given in [LLG+9o).

Li shows that the write-invalidate protocol performs well for a variety of applications.
In fact, he shows super-linear speedups for a linear equation solver and a three dimensional
partial differential equation solver. However, he dismissed using a write-update protocol at
the onset with the reasoning that it would be inefficient due to network lat ency. It turns
out that write-update can be implemented efficiently, and PL US is one system which uses
a write-update protocol.

Figure 5 traces the PLUS write-update protocol which begins all updates with the block's
master node, then proceeds down the copy-list chain. The write operation is completed when
the last node in the chain sends an acknowledgment message to the originator of the write
request. The PLUS protocol provides the weaker form of consistency known as processor
consistency.

count to requestor
DC sends invalidate
request to 8

@ new directory
block entry

dirty copy
remote on C

Cluster A
(home cluster)

13

DJ write request (read-exclusive)

-----Pl@ copy is
invalidated

request

Cluster B

G) CPU issues
write

(read-exclusive) to m home cluster

•~in-va~,,~·da_t_e__..J@ write completes

acknowledgment .

Cluster C
(requesting cluster)

(a) Data is shared remote

DJ write request (read-exclusive)

@ DC forwards
request to

owner cluster

© new directory
block entry

dirty copy
remote on 8

@ DCsends
acknowledge

ment to new owner

Cluster A
(home cluster)

mack

II) forwarded request

/':'\ CPUissues
\..!..I write
(read-exclusive) to
home cluster

@ write completes

I 3b I ownership
Cluster 8 update

(requesting cluster)

@ DC sends data
to requestor

and ownership
update message
to home node

Cluster C
(owner cluster)

(a) Data is dirty remote (after events depicted in (a))

Figure 4: Simplified DASH write-invalidate protocol

copy-list

x Master nextcop
=A on B

@ MCM updates x

© MCMsends
update messag

to next copy

Node A

[j] write request

copy-list

x Master nextcop
=A onC

@ MCMsends
update messag

to master node

@ MCM updates x
and sends

update message to
next copy

Node B

page map table

x I Node BI page p I
G) M~Msends

write request to
remote node B

Node D
Figure 5: PLUS write-update protocol

14

copy-list

x Master nextcop
=A NIL

@ MCM updates x

(z) MCM indicates
update are

complete

Node C

15

M unin suggests the notion of type specific memory coherence, coherence protocols tai
lored for different types of data. For example, data that is read much more frequently
than it is written (read-mostly data) is kept coherent using a write-update protocol. Since
an invalidation message is about the same size as an update message, an update costs no
more than an invalidate. However, the overhead of making multiple read-only copies of the
data item is avoided. As another example, the Munin producer-consumer memory type
is supported by an eager paging strategy. Data, once written by the producer process, is
transferred to the consumer process, where it remains available until the consumer process
is ready to use it. Notice that this saves message events, since the consumer does not need
to send request messages to the producer when data is available in the "buffer". Munin,
however, does not deduce the memory access patterns of applications, but relies on the
programmer to explicitly specify the type of each piece of shared data.

A coherence protocol which combines both write-update and write-invalidate is given
by Karlin et. al. [KMRS88] in the domain of shared-bus multiprocessors with local caches.
Their protocol acts as a write-update protocol until a threshold is reached at which time it
switches to write-invalidate. Basically, it performs updates until the time spent on updating
is equal to the time it would take to perform an invalidate and transfer the entire piece of
data to the updating node. When this threshold is reached, the algorithm performs the
invalidate and transfer. They prove that this algorithrii takes at most twice as much time
as an optimal strategy. Unfortunately, they only consider shared-bus systems, and it is
unclear how much of this theory will transfer over to a generalized network of processors.

5.3 Replacement Strategy

In systems which allow data to migrate around the system, two problems arise when the
available space for "caching" shared data fills up: what data should be replaced to free
space and where it should go. In terms of choosing the data item to be replaced, a DSM
system is very similar to the caching system of a shared memory multiprocessor. Unlike
most caching systems which use a simple least recently used (LRU) or random replacement
strategy, however, most DSM systems differentiate the status of data items and prioritize
them. For example, priority is given to shared items over exclusively owned items because
the latter will have to be transferred over the network. Simply deleting a read-only shared
copy of a data item is possible because no data will be lost. Shiva prioritizes pages based
on a linear combination of type (read-only, owned read-only, writable) and LRU statistics.

Once a piece of data is to be replaced, there is still the problem of making sure it is
not lost. In the caching system of a multiprocessor, t ,~e item would simply be placed in
main memory. An equivalent scheme is used in some DSM systems, such as MemNet, which
transfer the data item to a "home node" which has a statically allocated space (perhaps on
disk) to store a copy of an item when it is not needed elsewhere in the system. This method
is simple to implement, but it wastes a lot of memory. One improvement to this approach
is to have the node which wishes to delete the item simply page it out onto disk. Although
this does not waste any (memory) space, it is time consuming. An alternative approach
would be to keep track of free memory in the system and to simply page the item out to
a node with space available to it. Algorithms to keep track of free space and perform the
page out have not been investigated.

16

5.4 Thrashing

DSM systems are particularly prone to thrashing. For example, if two nodes compete for
write access to a single data item, it may be transferred back and forth at such a high rate
that no "real" work can get done (a ping-pong effect). Two systems attack this directly:
M unin and Mirage.

Munin allows the programmer to associate types with shared data: write-once, write
many, producer-consumer, private, migratory, result, read-mostly, synchronization and gen
eral read/write. Shared data of different types get different coherence protocols. In the case
above with two competing writers, the user could specify the type as write-many and the
system would use a delayed write policy. (Note that Munin does not guarantee strict con
sistency of memory in this case). The ability to tailor the coherence algorithm to the shared
data usage patterns can greatly reduce thrashing. However, Munin requires the program
mer to specify the type of shared data, and once specified, the type cannot change. As
programmers are notoriously bad at estimating the behavior of their programs, this may
not be any better (in general) than choosing any particular protocol. In addition, since
the type remains static once specified, Munin cannot dynamically adjust to the changing
behavior of an application.

Another method designed to reduce thrashing is explored in Mirage. Mirage specifically
looks at the case when many nodes are competing for access to the same piece of data. To
stop the ping-pong effect, Mirage adds a dynamically tunable parameter to their coherence
protocol. This parameter determines the minimum amount of time (A) a data item will be
available at a node. For example, if a node performed a write on a piece of shared data,
the data would be writable on that node for A time. This solves the problem of having a
data item stolen away after only a single request on the node can be satisfied. A is tuned
dynamically based on access patterns so that a process can complete a write-run (or read
run) before losing access to the data. A is akin to a time-slice in a multitasking operating
system, except in Mirage, it is dynamically adjusted to meet an application's specific needs.

5.5 Related Algorithms

To support a DSM system, synchronization operations and memory management must be
specially tuned. Semaphores, for example, are typically implemented on shared memory
systems by using spin-locks. In a DSM system, a spin-lock can easily cause thrashing be
cause multiple nodes may be heavily accessing shared data. For performance reasons , some
systems provide synchronization primitives along with DSM. Munin supports the synchro
nization memory type with distributed locks. PLUS supplies a variety of synchronization
instructions, and)supports delayed execution where the synchronization can be initiated,
then later tested for successful completion. The relationship between coherence and syn
chronization are discussed in [DSB88].

Memory management can also benefit from being rewritten for DSM. A typical memory
allocation scheme (as in the C library malloc()) allocates memory out of a common pool
which is searched each time a request is made. A linear search of all shared memory can be
expensive. A better approach is to partition available memory into private buffers on each
node and only allocate from the global buffer space when the private buffer is empty.

17

6 Open Problems in DSM

During the early and mid 80's, research in DSM focused on the design of the basic algorithms
needed to achieve coherent sharing across the physically disjoint memories. The challenge
today is performance. The leading research projects in DSM are investigating ways to
realize the full advantages of DSM through means such as hardware innovations, fine tuning
of algorithms, and dynamic protocols. Below is a brief description of some of the exciting
problems in this area. We suggest some interesting directions in these areas.

• RISC and DSM The load/store architecture of RISC processors can be exploited
to easily allow single words ~f DSM to be read/written instead of entire pages. This
facilitates easy implementation of write-update, write-through, and read-through pro
tocols. In addition, the overhead is greatly reduced compared to typical DSM systems
which require an entire page to be sent over the network.

Some RISC's already perform delayed loads and stores. It might be possible to modify
the compiler to schedule a load far enough in advance to allow the DSM system time
to retrieve the needed value. This seems most plausible in a hardware implementation
of DSM such as PL US or DASH.

• Page Replacement Strategies There has been little research directed towards
page replacement algorithms in DSM systems. Most systems (especially simulations)
either consider the DSM infinite, provide a home-node to allow for a place for memory
to overflow, or do random page replacement. Good distributed algorithms for keeping
track of free space could double the available memory as compared with a home
node based system. In addition, there has been no work to determine if the memory
behaviors of DSM applications are similar to demand paged uniprocessor applications
or if they require entirely new policies for page replacement.

• Very Large Systems Most work in the area of DSM has focused on showing
that loosely coupled implementations can perform as well as (sometimes better) than
tightly coupled shared memory systems. The limited size of tightly coupled shared
memory machines and the fact that virtually all DSM systems to date have been pro
totypes has led to little research on systems with more than 100 nodes. Systems with
thousands, or tens of thousands of nodes have not been addressed. The advantage of
such a system is its extremely large "physical" memory. However, clever (probably
hierarchical) algorithms would need to be developed to provide even the most rudi
mentary form of memory coherence. Even then, such a system may only provide good
performance for certain applications.

• Dynamic Protocols The large latency times associated with remote access in
DSM warrant a more complicated protocol if it can improve efficiency. Work has
been done on matching the coherence protocol to the type of data sharing in Munin,
but this system requires the programmer specify the data type to the system. A
more automated and dynamic approach would have the coherence algorithm change
as memory access patterns change. This both eliminates the need for programmer
hints and allows the system to adjust to changing memory needs over time. Examples

18

of this are dynamically choosing the coherence protocol, dynamically choosing the
location algorithm, and dynamically adjusting the grain (page) size.

• Fault Tolerance In systems where failures would be disastrous (critical applica
tions) or in systems where failures would be unavoidable (very large systems), some
form of fault tolerance is necessary. In theory, replicating all data (at least on two
nodes) will allow the system to survive at least a single node crash. However, total
replication may be inefficient. Further, fault tolerant DSM must be integrated with
the rest of the operating system to provide a fully fault tolerant environment. Some
work in this area has been done by Wu and Fuchs [WF89] (they suggest a check
pointing scheme with a twin-page disk storage system), but more work in the area is
warranted.

• Compiler Support Many of the DSM systems discussed in this paper require the
user to supply some information about the behavior of the application so that the DSM
system can be effective. Munin requires the user to specify the type of data which is
to be kept coherent. Mirage requires the user to choose an initial time window (~).
DASH is working on compiler generation of "fence" operations which must be inserted
at appropriate places in the executable code to enforce coherence. At the University
of Oregon, we are l~oking at the design of a "smart" compiler which could efficiently
partition shared data in memory (reducing false sharing), generate usage hints to the
operating system (reducing thrashing), merge arbitrary sequences of concurrent writes
(eliminating unnecessary code), and, in some cases, even automatically convert shared
memory operations into explicit message passing primitives (reducing overhead).

7 Summary

Research has shown DSM systems to be viable and to yield clear performance gains over
traditional multiprocessor architectures. The systems described in this paper have demon
strated that distributed shared memory can be implemented in a variety of hardware and
software environments ranging from commercial workstations with native operating systems
software, to innovative customized hardware, and even to heterogeneous systems. Many of
the design choices and algorithms needed to implement DSM are well-understood and in
tegrated with existing related areas of computer science. In addition, the research has
demonstrated that the performance of DSM is greatly affected by memory access patterns
and replication of shared data. Hardware implementations have yielded enormous reduc
tions in communication latency as well as the advantages of a smaller unit of sharing. It
must be noted, however, that the performance results to date are preliminary in nature:
most systems are experimental or prototypes consisting of only a few nodes. In addition,
the dearth of test programs has meant that most studies are based on a small group of
applications or a synthetic workload. Nevertheless, DSM has been proven as an important
architecture to support parallel processing and promises to be a fruitful and exciting area
of research for the coming decade.

Appendix A: Summary of DSM systems

Agora (Bisiani & Forin & Correrini, CMU, 1987-?)

19

A heterogeneous DSM system [BF87][FBC87) which allows objects or data structures
to be shared across machines. All writes to an object are funneled through the node
where it was created, then all relevant nodes are notified of the change.

Amber (Chase & Amador & Lazowska & Levy & Littlefield, 1989-?)
An object model based DSM system [CAL +89] where sharing is performed by migrat
ing processes to data instead of data to processes.

CapNet (Tam & Farber, U. Penn, 1990-?) This research [TF90] looks at extending DSM
to a wide area network-across the country.

Clouds (Ramachandran & Khalidi, G·eorgia Institute of Tech, 1987-?)
This is an object-oriented distributed operating system [RK89][RK88] [RAK88][RK89]
where objects can migrate. DSM is used to simplify the implementation of the oper
ating system.

DASH (Lenoski & Landon & Gharachorloo & Gupta & Hennessy, Stanford, 1988-?)
A hardware implementation of DSM [LLG+9o][GLL +90) providing release consistency
for coherence. It supports two explicit fence mechanisms-a full-fence and a write
fence. The coherence protocol is an invalidation based ownership protocol where
the order operations reach the owning node (cluster) is their "global ordering". The
current prototype consists of four SGI POWER 4D /240's connected in two meshes
(one for requests and one for replies). Pages are located by having the owner of a
page keep a full bit vector of copy locations-this is not very scalable.

Emerald (Jul & Levy & Hutchinson & Black, U. Washington, 1986-1988)
An object-oriented distributed operating system [JLHB88] which supports object mo
bility. DSM is not supported per-se, but is indirect since objects can migrate.

IVY (Li, Yale, 1986-1988)
Li implements transparent page-oriented DSM on a network of Apollo workstations
[LH86][Li86][Li88) and shows that DSM is not only feasible, but can yield very good
performance. He also investigates several coherence mechanisms for implementing
strict consistency.

Linda (Ahuja & Carriero & Gelernter, Yale, 1985-?)
This [BCGL87][WL88] is a non-transparent associative form of DSM. All operations
are on tuples. The authors say that Linda provides generative communication, as
tuples are created and destroyed, unlike shared memory which has values that always
exist, but are mutated. Linda is an architecture, not a system. The implementations
of Linda typically have the Linda compiler generate the coherence primitives. For
example, in the Linda Machine [ACGK88) (a mesh of connected processors), the
tuple space is partitioned among the columns of the system. An access to the tuple
space is broadcast along a row and the node with that tuple responds. An update

20

is sent to all nodes in a column and each adds the tuple to its local cache. This is
basically a replicated, write-update coherence scheme.

MemNet (Delp & Farber, U. Pennnsylvania, 1986-1988)
A hardware implementation of DSM [DF86][Del88][TSF90] with a small grain size
(32 bytes). The system is implemented on a 200Mbps token ring which is used to
broadcast invalidates and read requests.

Mermaid (Li & Stumm & Wortman & Zhou, Princeton, 1989)
This [LSWZ89] is a heterogeneous DSM system. The compiler separates shared data
by type and forces shared memory pages to contain only a single type. Conversion
routines are called when a page moves to a system with different data-type representa
tions. Mermaid runs on Sun-3 and DEC Firefly computers, and only handles integer
data-type conversions.

Mirage (Fleisch & Popek, UCLA, 1989)
This [FP89] is an IVY like implementation of DSM used to explore a method of
reducing thrashing by prohibiting a page from being stolen before a minimum amount
of time (~) has elapsed.

Munin (Bennett & Carter & Zwaenepoel, Rice University, 1989-?)
A DSM system [BCZ90a][BCZ90b] designed to investigate the benefits of using mul
tiple cache coherence protocols at the same time. They empirically determine types
of memory sharing: write-once, write-many, producer-consumer, private, migratory,
result, read-mostly, synchronization and general read/write, propose different coher
ence protocols for each type, and show a performance improvement by using multiple
protocols for a single application. In addition, they determined that the unit of shar
ing (grain size) of an application can effect how well the protocol performs-in most
cases, sharing element-wise is better than sharing object-wise.

PLUS (Bisiani & Ravishankar, CMU, 1988-?)
This hardware implementation of DSM [BR90] uses a non-demand, write-update co
herence protocol. Pages (the unit of sharing) are only replicated at remot~ nodes
at the request of software. The unit of coherence and access is, however, the 32-bit
word. Interprocessor coherence is maintained through use of write-fences, which must
be explicitly specified by the program. A write-fence blocks subsequent writes by
a processor until previous writes have completed. This gives processor consistency.
They have a one node prototype as of Nov '89.

Shared Data-Object Model (Bal & Kaashoek & Tannenbaum, Vrije Univ., 1988-?)
A DSM implementation [BKT89) on top of the Amoeba distributed operating system
[MT86]. It is a basis for Orca[BST89]-a language that supports parallelism •and
data-objects. This implementation uses replication at every site for access and reliable
broadcasting for updates. The unit of data sharing is the entire object.

Shiva (Li, Princeton, 1989-?)
An implementation of IVY on the Intel iPSC/2 hypercube [LS89].

21

References

[ACGK88] Sudhir Ahuja, Nicholas J. Carriero, David H. Gelernter, and Venkatesh Kr
ishnaswamy. Matching language and hardware for parallel computation in the
Linda machine. IEEE Transactions on Computers, 37(8):921-929, August 1988.

[BCGL87] Robert Bjornson, Nicholas Carriero, David Gelernter, and Jerrold Le-
ichter. Linda, the portable parallel. Technical Report Research Report
YALE/DCS/RR-520, Yale University, February 1987.

[BCZ90a] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive software
cache management for distributed shared memory architectures. In Proceedings
of the 17th International Symposium on Computer Architecture, pages 125-134,
May 1990.

[BCZ90b] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: distributed
shared memory based on type-specific memory coherence. In Proceedings of
the 1990 Conference on Principles and Practice of Parallel Programming, pages
168-176, March 1990.

[BF87] R. Bisiani and A. Farin. Architectural support for multilanguage parallel pro
gramming on heterogeneous systems. In Second International Conference on
Architectural Support for Programming Languages and Operating Systems Pro
ceedings, pages 21-30, October 1987.

[BKT89] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tannenbaum. A distributed
implementation of the shared data-object model. In First Workshop on Ex
periences with Building Distributed and Multiprocessor Systems, pages 1-19,
October 1989.

[BR90] Roberto Bisiani and Mosur Ravishankar. PLUS: a distributed shared-memory
system. In Proceedings of the 17th International Symposium on Computer Ar
chitecture, pages 115-124, May 1990.

[BST89] H .. E. Bal, J. G. Steiner, and A. S. Tannenbaum. Programming languages for
distributed computing systems. ACM Computing Surveys, 21(3), September
1989.

[CAL+89] Jeffery S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber system: Parallel programming on a network
of multiprocessors. In Proceeding of the 14th ACM Symposium on Operating
System Principles, pages 14 7-158, December 1989.

[CF78]

[Del88]

L. M. Censier and P. Feautrier. A new solution to coherence problems in multi
cache systems. IEEE Transactions on Computers, 27(.12):1112-1118, December
1978.

G. Delp. The Architecture and Implementation of MemNet: A High Speed
Shared Memory Computer Communication Network. PhD thesis, University
of Delaware, 1988.

22

[DF86] G. Delp and D. Farber. MemNet: an experiment on high-speed memory mapped
network interface. Technical Report Technical Report 85-11-IR Delaware, Uni
versity of Delaware, 1986.

[DSB88] M. Dubois, C. Scheurich, and F. A. Briggs. Synchronization, coherence, and
event ordering in multiprocessors. IEEE Computer, 21(2):9-21 , February 1988.

[FBC87] A. Forin, R. Bisiani, and F. Correrini. Parallel processing with Agora. Tech
nical Report Technical Report CMU-CS-87-183, Carnegie-Mellon University,
Computer Science Dept., December 1987.

[Fle89] Brett Dwayne Fleisch. Distributed Shared Memory in a Loosely Coupled Envi
ronment. PhD thesis, UCLA, 1989.

[FP89] Brett D. Fleisch and Gerald J. Popek. Mirage: a coherent distributed shared
memory design. In Proceeding of the 14th ACM Symposium on Operating System
Principles, pages 211-223, December 1989.

[GLL +90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scal
able shared-memory multiprocessors. In Proceedings of the 17th International
Symposium on Computer Architecture, pages 15-26, May 1990.

[Goo89] James R. Goodman. Cache consistency and sequential consistency. Techni
cal Report Technical Report no. 61, IEEE Computer Society, SCI Committee,
March 1989.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems,
6(1):109-133, February 1988.

[Kar87] Anna Rochelle Karlin. Sharing Memory in Distributed Systems-Methods and
Applications. PhD thesis, Stanford University, January 1987.

[KMRS88] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Com
petitive snoopy caching. Algorithmica, 3(1):79-119, 1988.

[KU86] Anna R. Karlin and Eli Upfal. Parallel hashing - an efficient implementation
of shared memory. In Symposium on the Theory of Computing, pages 160-168,
1986.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocessor programs. IEEE Transactions on Computers, 28(9):690-691,
September 1979.

[LH86] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
In Proceeding of the 5th Annual ACM Symposium on Principles of Distributed
Computing, pages 229-239, August 1986.

23

[Li86] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University, September 1986.

[Li88] Kai Li. IVY: a shared virtual memory system for parallel computing. In Inter
national Conference on Parallel Processing 1988, pages 94-101, August 1988.

[LLG+9o] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. The directory-based cache coherence protocol for the DASH multi
processor. In Proceedings of the 17th International Symposium on Computer
Architecture, pages 148-159, May 1990.

[LS89] Kai Li and Rkhard Schaefer. Shiva: an operating system transforming a hyper
cube into a shared-memory machine. March 1989.

[LSWZ89] Kai Li, Michael Stumm, David Wortman, .and Songnian Zhou. Shared virtual
memory accomodating heterogeneity. Technical Report CS-TR-210-89, Prince
ton University, February 1989.

[MT86] S. J. Mullender and A. S. Tannenbaum. The design of a capability-based dis
tributed operating system. The Computer Journal, 29(4):289-300, March 1986.

[RAK88] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef Amin Khalidi.
Unifying synchronization and data transfer in maintaining coherence of dis
tributed shared memory. Technical Report Technical Report GIT-ICS-88/23,
Georgia Institute of Technology, June 1988.

[RK88] Umakishore Ramachandran and M. Yousef Amin Khalidi. Programming with
distributed shared memory. Technical Report Technical Report GIT-ICS-88/38,
Georgia Institute of Technology, October 1988.

[RK89] Umakishore Ramachandran and M. Yousef A. Khalidi. An implementation of
distributed shared _memory. In First Workshop on Experiences with Building
Distributed and Multiprocessor Systems, pages 21-38, October 1989.

[Sch89] Christopher E. Scheurich. Access Ordering and Coherence in Shared Memory
Multiprocessors. PhD thesis, University of Southern California, May 1989. Tech
Report No. CENG 89-19.

[SZ90] Michael Stumm and Songnian Zhou. Algorithms implementing distributed
shared memory. IEEE Computer, 23(5):54-64, May 1990.

[TF90] Ming-Chit Tam and David J. Farber. CapNet - an alternative approach to
ultra high speed networks. In Proceedings of the International Communication
Conference, 1990.

[TSF90] Ming-Chit Tam, Jonathan M. Smith, and David J. Farber. A survey of dis
tributed shared memory systems. March 1990.

[UW84] Eli Upfal and Avi Wigderson. How to share memory in a distributed system.
In Proceedings of the 25th IEEE Conference on the Foundations of Computer
Science, pages 171-180, 1984.

24

[WF89] . K. L. Wu and W. K. Fuchs. Recoverable distributed shared virtual memory:
Memory coherence and storage structures. In International Symposium on Fault
Tolerant Computing, 1989.

[WL88] Robert A. Whiteside and Jerrold S. Leichter. Using Linda for supercomputing
on a local area network. March 1988.

