
RAGA: Musical Gantt Charts
for Scheduling in Distributed

Real Time Systems

Virginia M. Lo and Gurdeep Singh Pall

CIS-TR-89-20
January, 1991

Department of Computer and Information Science
University of Oregon

RAGA: Musical Gantt Charts for Scheduling
in Distributed Real Time Systems

Virginia 1-1. Lo and Gurdeep Singh Pall

Dept. of Computer Science
University of Oregon

Eugene, OR 97403-1202
lo@cs.uoregon.edu

October 20 , 1989

Abstract

vVe propose a simple extension to Gantt charts, called RAGA scores , for use in distributed
real time scheduling. RAGA scOl'es use a small set of symbols borrowed from musical notation
to enrich the expressive power of the Gantt chart. These symbols enable the timing constraints
of real time tasks to be displayed along with the schedule itself. Because of the criticality of
timing constraints in real time systems , it is important to be able to visualize these constraints
and the schedule simultaneously.

The RAGA score is encapsulated as an abstract data type (ADT) that can be used as a tool
in the design and visualization of static and dynamic scheduling algorithms, in the display of
real time schedules for performance evaluation through simulation, and for historical records of
actual schedules for performance evaluation through 'execution traces. '

1 Introduction

The problem of scheduling tasks in real time distributed systems differs significantly from both
the classical problem of scheduling in general purpose uniprocessor systems and from the problem
of scheduling in distributed and parallel computing systems. Real time scheduling involves new
dimensions with respect to goals, degree of difficulty, algorithm design issues , performance analysis ,
and the notion of correctness. Most notably,distributed real time scheduling algorithms
must meet the correctness criteria of timing constraints such as deadlines, periodicity,
and precedence on individual processors as well as across processors. In addition , these
algorithms must address the problems of coherence and consistency, sharing and resource utilization ,
communication and synchronization across mult iple CPUs [7].

The Gantt chart has been an important aid over the past 20 years for visualizing the space (pro
cessors) and time dimensions for schedules, most notably in the domain of deterministic scheduling
on shared memory multiprocessors . It has been used for scheduling in distributed systems and
message-passing multicomputers by modeling communication overhead as elapsed execution time.
In the area of real time distributed systems, the use of the Gantt chart continues to be widespread ,
particularly for static offiine scheduling. Indeed , the fundamental format and inherent simplicity
of the Gantt chart have insured its successful use across these problem domains.

The limitation of the Gantt chart for real time distributed systems lies in its inability to clearly
express the relationships among the scheduled tasks. We can see this with the help of an example.
In Fig 1, the schedule of a group of tasks is presented in a Gantt Chart. Because timing constraints
are not explicitly represented, many uncertainties about the schedule exist , making it difficult
to evaluate the performance of the underlying scheduling algorithm. Has task C been scheduled
across the processors coincidently, or was that a requirement? Is there is a reason for task D to be
scheduled in this manner? Is A a periodic task or is its repeated occurrence due to independent
external events?

1

2

3

- .,

II ~

C

C

C

Figure 1: Gantt Chart

2

\Ve wish to propose a simple extension to Gantt charts, called RAGA * scores, for use in
distributed real time scheduling. RAGA scores use a small set of symbols borrowed from musical
notation to enrich the expressive power of the Gantt chart. These symbols enable the timing
constraints of real time tasks to be displayed along with the schedule itself. Because of the criticality
of timing constraints in real time systems, it is important to be able to visualize these constraints
and the schedule simultaneously.

The RAGA score is encapsulated as an abstract data type (ADT) which includes operations for
calibrating, modifying, and displaying the score. The RAGA score and ADT can serve as a useful
tool for

• the design and visualization of static and dynamic scheduling algorithms,

• the display of real time schedules for performance evaluation through simulation, and

• historical records of actual schedules for performance evaluation through 'execution traces.'

We wish to stress the fact that the RAGA score is not intended to replace Gantt charts. RAGA
is intended to be an elaboration of Gantt charts to be used when timing constraints need to be
represented and visualized. \i\'hen constraint information is not needed, the RAGA display can be
filtered so that it looks identical to a Gantt chart.

In Section 2 of this paper, we introduce the components of the RAGA score. In Section 3, we
compare the RAGA score and the Gantt chart using an example of an athlete monitoring system.
Section 4 introduces the RAGA ADT and discusses its utility in the design of both static and
dynamic scheduling algorithms. In Section 5, we illustrate the use of the ADT for two well-known
real time scheduling algorithms, rate monotonic [6) and bidding and focused addressing [8). Section
6 contains conclusions and future plans for RAGA.

2 Components of RAGA score

The RAGA score is an extension to the Gantt chart for use in scheduling real time distributed and
parallel applications. The RAGA score utilizes a small set of symbols from musical notation to
express the timing constraints among tasks in a real time application. Like the Gantt chart, the
RAGA score represents time along the X axis and space/processors along the Y axis. Tasks are

•RAGA means 'tune or melody' in Hindi and could be an acronym for Real time Applications Gantt Chart
Annotation.

3

represented as 'musical notes' and the relationships among tasks by musical symbols. Below we
describe the fundamental components of the RAGA score - tasks, events, and timing constraints.
\Ve show the RAGA notation for each of these components and express the semantics of the timing
constraints using Real Time Logic (RTL) , a formal semantics for describing timing constraints
under the event-action model [3].

2.1 Tasks/ Actions

A task (or action in the event-action model) is the unit of work to be scheduled in the real time
system. Each individual task is represented as a musical note in the RAGA score. A note is
attributed with the name and the duration of the task. In the Gantt chart, each task "blocks out"
time corresponding to its duration. In the RAGA score, duration can be blocked out in a similar
manner (described later) or it can be represented as an attribute.

1 00

j
Task A

2.2 Events

Events are occurrences in time which are of significance to the real time system and typically trigger
the execution of one or more tasks. Events are of two types external and internal [3) .

External events are generated (caused) by the environment of the real time system. For
example, an increase in the temperature of a space shuttle sensor may cause certain monitoring
and adjustment tasks to be performed. Or , the space shuttle may need to be refueled from the
auxiliary cylinders every hour. In the latter case, hourly clock interrupts are the external events.
External events are represented in the RAGA score by a vertical bar through the score. Each event
is labeled with a descriptive name for the occurrence it represents.

Internal events are temporal markers within the schedule and may or may not trigger the ex
ecution of tasks. In the RAGA score two types of internal events are represented. They correspond
to the Start and Finish events of the tasks. These are of importance in scheduling tasks which
have relationships between them such as precedence. Internal events denoting the start event of a
task are represented with an upward arrow on the left of the musical note (task). Similarly, finish
(internal) events are denoted by a downward arrow to the right of the musical note (task) Internal

4

events are not labeled. Only those internal events which are of significance to the timing analysis
(hence, scheduling) are displayed in the musical score. For example if the completion of a task is
of no significance to other tasks , its finish event will not be displayed.

ff
E1 E2

External Events Start Stop Events

2.3 Timing Constraints

The essence of real time applications are the timing constraints on the tasks to be scheduled. RAGA
supports a rich set of timing constraints in order to support a wide range of real time applications
and to provide flexibility for the future. In some cases, we have extended common existing timing
constraints to a more general form. In this section, we give the RAGA notation for each timing
constraint and define its semantics using Real Time Logic. The RTL primitives are included in the
Appendix for reference purposes.

2.3.1 Duration

The estimated execution time of a task is its durational constraint. In RAGA duration is represented
as an attribute of the associated task. This constraint can be expressed in RTL as -

\fi@(j A, i) + D = @(l A, i)

(1)

where A is the task in question and D time units is its duration.

50

j
Duration

5

2.3.2 Precedence

Precedence is a partial temporal ordering on a set of tasks [9] using the transitive binary relation
ships BEFORE and AFTER. In RAGA, the BEFORE relation is represented as a left arrow
between events or tasks. The AFTER relation is represented as a right arrow between events or
tasks. Constraint "A starts BEFORE B" is represented in RTL as -

Vi@(i .4, i) < @(j B, i)

(2)

Constraint "A starts AFTER B finishes" is represented in RTL as -

V·i@(j A, i) > @(l B, i)
(3)

A starts BEFORE B A starts AFTER B finishes

2.3.3 Deadlines

A deadline specifies a time (external or internal) by which the task or set of tasks must complete.
Deadlines can be specified completely with points in time and the precedence operator BEFORE.
In RAGA, deadlines are represented by a heavy horizontal bar from the finish event of the task
to the deadline event. We chose this notation over the precedence arrow (which would have been
sufficient) because of the importance of deadlines in real time applications.

Absolute Deadlines: The deadline is specified with respect to an absolute point in time. For
example, a typical absolute deadline would be - A must finish BEFORE 11PM, where 11PM is an
external event. In RTL we would express this as -

Vi@(l A, i) < = @(f!llP M, i)

(4)

6

Relative Deadlines: Relative deadlines are specified with respect to events which are not
fixed in time. For example the completion of a task A may have a deadline of 10 milliseconds after
B completes, an internal event. In RTL we would express this as -

Vi@(l B, i) + 10 <= @(l A, i)
(5)

35 5 JJt:U.10
11 PM

A must finish before 11 PM A must finish within 1 O ms of B

2.3.4 Start Times

Tasks may be constrained to start DEFORE, AFTER, or AT certain points in time. As with
deadlines these points in time may be absolute or relative to other events. The start time of a
task constrains the scheduler from scheduling the task before a certain point in time across all
processors in the system. Start times are represented in the same manner as precedence relations
are in RAGA: with a left arrow (BEFORE), right arrow (AFTER) , or extended equal sign (AT)
from the start event of the task to the specified event. Absolute Start Times: The start time is

specified with respect to an absolute point in time. For example, A must start BEFORE 10 PM.
In RTL, we would express this as -

Vi@(j A, i) < @(nlOP M, i)

(6)

Relative Start Times: The start time is specified with respect to events which do not have a

definite time of occurrence. For example, B must start 10 milliseconds AFTER completion of A.

Vi@(l A, i) + 10 < @(l B, -i)

(7)

1 OPM
A must start BEFORE 1 OPM B starts AFTER 1 o ms of A finishes

7

2.3.5 Periodicity

Periodic tasks are typical of real time applications. A periodic task must be repeatedly scheduled
at a regular interval - its period. RAGA supports two types of periodicity: rigid and floating.

Rigid periodicity is the constraint in which the next instance of the periodic task must be
scheduled exactly ~ time units after the previous instance. In RTL if a task A with a rigid
periodicity of~ time units is to be executed while the state predicate PRED holds true:

VxVyVn3 ·iP RED[x, y) /\ y - x > n * ~---+ x + n * ~
= @(j A, i) /\ @(.I. .t1, i) :::; x + n * ~ + ~

(8)

Floating periodicity means that the next instance of the repeatedly scheduled task must occur
sometime within the next ~ window of time. Floating periodicity would be expressed in RTL as -

VxVyVn3iP RED[x, y) /\ y - x > n * ~---+ x + n * ~
:::; @(i A, i) /\ @(l A, i):::; x + n * ~ + ~

(9)

20

J .J J f:r=)
Floating Periodic Task A Rigid Periodic Task A

2.3.6 Synchrony

In distributed or multiprocessor real time systems, there may be a requirement that two or more
tasks be executed "synchronously" across processors. The synchrony requirement is classified in
RAGA as:

Tight Synchrony: vVhen the requirements are that the tasks in N need to be executed
precisely in parallel then the constraint is referred to as tight synchrony. In RAGA tight synchrony
is represented using the notation for chords in music: a vertical bar through the synchronous notes
(tasks). If tasks A, B and C have to be executed in tight synchrony, we would express this in RTL

8

as -

\fi@(l A, i) = @(j B, i) /\ @(j A, i) = @(i C, i)

Loose Synchrony: ·when the requirements for synchrony are not rigid then the constraint is
referred to as loose synchrony. Here the tasks are executed in as much synchrony as possible within
a time window. The RAGA representation of loose synchrony is a collection of line segments
connecting the affected tasks. For example A and B must be executed within 100 milliseconds in
loose synchrony after event E. This is expressed as -

\fi@(nE, i) <= @(j A, i) /\ @(! A, i) <= @(nE, i) + 100

\f·i@(nE,i) <= @(i B,i) A@(l B,i) <= @(nE,i) + 100

A

Tight Synchrony of A, B and C Loose Synchrony of A, B and C

2.3.7 Mutual Exclusion

(11)

This constraint restricts the scheduling of a set of tasks such that no two tasks can overlap in
time. In real time applications this constraint may be seen as a resource constraint [2] [12]. This
constraint is represented in RAGA with a dotted line connecting the tasks that need to be mutually
excluded. If A and B are to be executed in mutual exclusion, we would express it in RTL as -

Vi@(! A, i) <= @(j B, i) v @(l B, i) <= @(j A, i)

(12)

Mutual Exclusion of A, B and C

9

2.3.8 Idle Time

In the RAGA score, we cannot always see the duration of a task as in a Gantt chart . This is true
when the duration is represented as an attribute and the task does not "block" the time it occupies
on the processor. Therefore, in order to represent idle time on the processor , we use an explicit
symbol: an empty note. * The empty note is also attributed with its duration.

20

d
Idle Time

3 Example - Athlete Body Monitoring System

In order to illustrate the power of the RAGA score we look at an athlete body monitoring system.
\Ve first give the specifications of this system then we display the schedule generated by some
arbitrary algorithm represented as a Gantt chart, and lastly we present the schedule represented
as a RAGA score.

3.1 Specifications for the athlete body monitoring systen1

A distributed real time system monitors different body parameters in a group of 3 athletes such
that each athlete is monitored by one node.

• Task 1: Every 80 ms. (floating) the body temperature of athletes 1 and 3 must be measured
for 20 ms.

• Task 2: Every 200 ms. (rigid) the heart beat of athlete 2 should be measured for 40 ms.

• Task 3: Every 500 ms. (rigid) the blood pressure must be measured for athlete 1 for 50 ms.

• Task 4: Every 300 ms. (floating) the fluid level in the lungs of athlete 2 should be measured
for 10 ms.

• Task 5: Every 250 ms. (rigid) the ECG is sampled for athlete 3 for 30 ms.

• An alternative RAGA representation for idle time could be a musical rest symbol.

10

• Task 6: 150 ms. after start of the system each athlete 's blood pressure should be measured
in tight synchrony for 30 ms .

• Tasks 7, 8, 9: 100 ms . after start of the system, the adrenaline level is measured on athlete
1 for 20 ms, on athlete 2 for 30 ms, and on athlete 3 for 25 ms.

• Task 10: After completion of task 6, each node must transfer data to a shared disk , requiring
20 ms. (mutual exclusion)

The schedule generated for the above specification is given in Figure 2(a). The same schedule
expressed using the RAGA notation is given in Figure 2(b). Figure 2(c) shows a RAGA score
that has been displayed through a Gantt chart filter and with only one task selected for constraint
information.

The power of the RAGA score becomes evident here. Because the periodicity of task 1 is
floating, it is cannot be known from the Gantt chart that the task is periodic rather than repeatedly
scheduled for external reasons. In addition , the blocks of unused times before the second occurrence
of task 1 are not explained in the Gantt chart. In the RAGA score it is clear that task 1 is a task
with floating periodicity. The dependence of the start times of tasks 7, 8 and 9 on the 100 ms.
event can only be seen in the RAGA score. Further, the simultaneous scheduling of task 6 is not
accidental (which could be hypothesized from the Gantt chart) but a requirement for synchrony
(which is made unequivocal in the RAGA score). The scheduling of task 10 appears to be arbitrary
in the Gantt chart; from the RAGA score it is clearly due to the mutual exclusion constraint. From
another perspective, if task 10 was scheduled at the same time across processors we would not be
able to detect this violation by looking at the Gantt chart itself. Finally, because the RAGA score
is an extension of Gantt charts , Figures 2(a) and 2(c) are simply selective, filtered views of the
full RAGA score of 2(b).

4 RAGA ADT

4.1 Purpose

The RAGA Abstract Data Type was designed to encapsulate and define the RAGA score for use
in real time systems development. As mentioned earlier, the RAGA score and RAGA ADT are
designed for use in the design and implementation of static and dynamic scheduling algorithms , for
simulation purposes, and as a structure for recording the runtime history of real time applications.

11

1 1 3 -•. 6 1

2 2 I ___ .. - 6 1 0

3 1 5 ·■ 9 .. ··- - . . ·----
_ _.. .. __:--..- ~- .:....;. .::.-:. .. ·.::.;;:~ .

.. ·· --- •-'· -- . . -~-----
6 1

(a) Gantt Chart

100 150

(b) RAGA Score

1 1 3
r.--..... __ _

2 2

3 1 5

150

(c) Selective Filtering of RAGA Score

Figure 2: Gantt Chart and RAGA Score for the Athlete Body Monitoring Schedule

12

4.2 Methods

In this section, we give a proposed set of primitive operations (methods) for the RAGA ADT.
Included are methods for cali bra ti on of the ADT, location of time slots, insertion and deletion of
tasks, and display of the RAGA score. The Task-Descriptor data structure contains information
about the task to be scheduled: task id, duration, period etc. The Event-Descriptor contains infor
mation about the type of event (internal or external), it name, and relations BEFORE, AFTER,
and AT and pointers to the associated tasks. Some of the methods allow for a time window to be
specified. RAGA windows include:

IDLE-WIN DOW - the time window from the beginning of earliest idle time on the specified
processor(s) to oo

FUTURE-WINDOW which refers to the time window from the end of the latest task scheduled
on the specified processor(s) to oo

SCH EDU LED-WIN DOW which refers to the window from the beginning of the earliest scheduled
task on any processor to the end of the latest scheduled task on any processor

and user-specified windows - time ranges [T1 , T2).

The error codes returned specify the timing constraint(s) that could not be satisfied.

4.3 Calibrate

The RAGA ADT is initialized by calibrating it with respect to time and processors. The user
must specify the number of processors and the time unit. Calibration of the schedule in time units
conforms to the principle of segmentation of time [10). Once the ADT is calibrated, requests for
modification of schedules must be feasible within the calibration. Later extensions to the calibration
method may include hierarchical notions of time.

Method Calibrate (Number-of-Processors, Time-Units)

Return Value O : if calibrate succeeds, Err-Code : if calibrate fails.

13

4.4 Find-Slot

These methods allows algorithms to find slots in the schedule for inserting tasks. The inputs are the
Task-Descriptor and the Event-Descriptor , the target PROCESSOR, and an optional time WINDOW

in which to search for the slot. Each Find-Slot method returns the earliest time in which a free slot
exists in the window on the specified processor and which satisfies the timing constraints.

Method Find-Slot-Single (Task-Description, Event-Descriptor, Processor, Window)

Method Find-Slot-Synch-T(Task-Descriptor, Event-Descriptor, Processor, Window)

Method Find-Slot-Synch-L(Task-Descriptor, Event-Descriptor, Processor, Window)

Method Find-Slot-Periodic-R (Task-Descriptor, Event-Descriptor, Processor, Window)

Method Find-Slot-Periodic-F (Task-Descriptor, Event-Descriptor, Processor, Window)

Method Find-Slot-Mut-Ex (Task-Descriptor, Event-Descriptor, Processor, Window)

Return Value Time and Processor, if slot found, Err-Code otherwise.

4.5 Insert-Task

These methods are used for inserting the tasks in the schedule once the slots for them have been
found. As in Find-Slot, we have these methods for each type of task.

Method Insert-Slot-Single (Task-Descriptor, Time, Processor)

Method lnsert-Slot-Synch-T(Task-Descriptor, Time, Processor)

Method Insert-Slot-Synch- L(Task-Descriptor, Time, Processor)

Method lnsert-Slot-Periodic-R (Task-Descriptor, Time, Processor)

Method lnsert-Slot-Periodic-F (Task-Descriptor, Time, Processor)

14

Method lnsert-Slot-M ut-Ex (Task-Descriptor, Time, Processor)

Return Value 0, if slot found , Err-Code otherwise.

4.6 Modify-Schedule

RAGA ADT allows the schedule to be modified by displacing tasks within the schedule. This is
allowed as long as the constraints are not violated . The displacements are possible for tasks with
Floating periodicity, mutual exclusion , or Loose synchrony constraints . The task(s) are displaced
by ~ time uni ts.

Method Modify-Schedule (Task-Descriptor, ~)

Return l'alue 0, if operation successful, Err-Code otherwise .

4.7 Delete-Task

This method allows deletion of tasks form the schedule. Task(s) may be deleted in the same way
they were inserted.

Method Delete-Slot-Single (Task-Descriptor, Time, Processor)

Method Delete-Slot-Synch-T(Task-Descriptor, Time, Processor)

Method Delete-Slot-Synch-L(Task-Descriptor, Time, Processor)

Method Delete-Slot-Periodic-R (Task-Descriptor, Time, Processor)

Method Delete-Slot-Periodic-F (Task-Descriptor, Time, Processor)

Method Delete-Slot-Mut-Ex (Task-Descriptor, Time, Processor)

Return Value 0, if operation successful , Err-Code otherwise .

15

4.8 Display Schedule

These methods allow the user to display the RAGA score. The display methods provide filters
that support a variety of views of the schedule. One important view is the Gantt Chart View which
displays a RAGA score exactly as it would appear in a Gantt chart (using the block representation of
tasks and omitting all timing constraint information). We provide methods to display the schedule
by tasks, by time and by processor. OPTIONS allows the user to select the specific set of constraints
that he/ she wishes to view.

Method Display-Schedule-By-Task (Task Descriptor, OPTIONS)

Method Display-Schedule-By-Time (Window, OPTIONS)

Method Display-Schedule-By-Processor (Processor, OPTIONS)

5 The Use of RAGA for Scheduling 1n Real Time Systems

The RAGA ADT has been designed so that any scheduling algorithm can be used for building the
schedule. In other words we have avoided building any policies into the ADT itself. The RAGA
ADT can be used within offiine schedulability analyzers to store the pre-computed static schedule.
At runtime each processor in the distributed real time system receives a copy of the system-wide
schedule for use by the dispatcher and/or for use by the distributed scheduler for scheduling sporadic
tasks at runtime.

We illustrate the use of the RAGA ADT by giving pseudo-code for two well-known real time
scheduling algorithms. The first is an off-line scheduling algorithm and the second is a dynamic
run-time scheduling algorithm for sporadic tasks. Again, we stress that the ADT does not dictate
policy. Its purpose is to serve as an efficient data structure with a well-defined interface for storing,
querying, and displaying the schedules.

In addition to its use in scheduling algorithms, the RAGA ADT can support other activities
involved in real-time system development. RAGA can be used as a visualization tool for simulation
and system monitoring such as that provided in the ARTS ARM (Advanced Real time Monitor)
[11].

16

procedure Static-Scheduler()
begin
whileunscheduled tasks remain

repeat
Select-Task-with-highest-periodicity
slot= Find-Slot-Periodic-R (Task-Descriptor , ANY-PROCESSOR, IDLE-WINDOW)
if found

Insert-Task-Periodic-R (Task-Descriptor, slot-+time, slot-+processor);
else

Cannot Sched·ule; Print error message
Display-Schedule-By-Time(SCHEDULED-WINDOW, ALL-OPTIONS)
end

Figure 3: Static Scheduling Algorithm using the RAGA ADT

5.1 Static Offline Scheduling

a. bo v~
The pseudo code~ is distributed version of the Rate-1vlonotonic static scheduling algorithm [6]
which orders tasks in non-increasing order by period. For uniprocessor systems, the Rate-Monotonic
Algorithm has been shown to be optimal in the sense that no other fixed priority algorithm can
schedule a set of tasks that can be scheduled by the Rate-1vionotonic Algorithm. The distributed
version shown in Figure 3 . selects the processor with the earliest free slot by specifying the window
IDLE-WINDOW in the call to Find-Slot. Recall that IDLE-WINDOW is defined as the window from
the beginning of the earliest idle time on the specified processor(s) to oo.

5.2 Dynamic Scheduling

The Focused Addressing Scheduling Algorithm [8] is a dynamic scheduling algorithm in which
sporadic tasks are dynamically scheduled across the system based on prior (partial) knowledge
of system work loads. The Focused Addressing Algorithm assumes that sporadic tasks are non
periodic tasks with deadlines. The scheduler tries to schedule the task locally, if possible. If it
cannot, it uses the partial information available to it to send the task to a "focused" processor that
is likely to be able to schedule the task. In addition, it sends out a request-for-bids to subset of
the other processors in the system. The bidders return their bids to the focused processor. The
focused processor receives the task and also tries to schedule it locally. If it cannot, it selects the
best of the bids. Portions of the Focused Addressing Algorithm using the RAGA ADT are given in
Figure 4 . below. In the pseudo-code, we have simplified the criteria for selection of the focused

17

processor to choose the processor with the earliest available slot. The Find-Slot method can be
used to schedule a task locally, to select the focused processor, and to select bidders because it
contains the static schedule of remote processors and can be updated to reflect their current load.*

6 Conclusions and Future Work

In this paper, we have introduced the RAGA score as a tool for use in the design , implementation,
and testing of real time scheduling algorithms. The RAGA ADT provides a well-defined data
structure for representation of both the timing constraints associated with real time tasks and the
schedules produced for these tasks. The musical notation in RAGA allows the constraints and the
schedules to be displayed in a natural and easily comprehensible format.

Continuing work on RAGA includes the following areas of investigation:

• Implementation:Because we intend the RAGA ADT to be usable as a run-time data struc
ture in dynamic scheduling algorithms for real time kernels , it is necessary to develop highly
efficient data structures and algorithms for the RAGA ADT, especially for the Find-Slot
method.

• Testing: \Ve plan to test the user appeal of the RAGA musical notation on both naive
users and expert real time users. We also plan to refine the RAGA ADT by implementing a
wide range of scheduling algorithms, evaluating its strengths and shortcomings, and making
necessary modifications.

• Notions of time and space: We plan to examine results from the AI and distributed
systems community about notions of time and space: time hierarchies , interval-based vs.
point-based time representations [1], virtual time - to see what may be applicable to RAGA.
We are interested in formalizing the binding of a RAGA ADT to real time and real processors
at run time.

• Communication and resource constraints: These are two very important aspects of real
time scheduling [4) [5) which RAGA does not currently address.

*Keeping information consistent and up-to-date across processors in a distributed system is an area of research in
itself.

18

procedure Dynamic-Scheduler (Task-Descriptor)
begin

end

slot = Find-Slot-Single (Task-Descriptor , HERE, IDLE-WINDOW)
if guaranteed (Task-Descriptor, slot)

else

Insert-Task-Single (Task-Descriptor,
slot-+time, slot--+processor);

slot = Find-Slot-Single (Task-Descriptor , ANY-PROCESSOR, IDLE-WINDOW)
if slot

focused-processor = slot-lprocessor
Migrate-Task (Task-Descriptor, focused-processor)
broadcast Bidding-Request (Task-Descriptor, focused-processor)

else
broadcast Bidding-Request (Task-Descriptor, HERE)

procedure Receive-Bidding-Request (Task-Descriptor , Processor)
begin

slot = Find-Slot-Single (Task-Descriptor , HERE , IDLE-WINDOW)
if guaranteed (Task-Descriptor , slot)

Send-Bid (processor, Task-Descriptor, bid-value, HERE)
end

procedure Receive-Task (Task-Descriptor)
begin

slot = Find-Slot-Single (Task-Descriptor, HERE, IDLE-WINDOW)
if guaranteed (Task-Descriptor, slot)

else

Insert-Task-Single (Task-Descriptor , slot-+time, slot-+processor)
Notify (Insert-Task-Single (Task-Descriptor ,

slot-+time, slot-+processor), ORIGINAL-PROCESSOR) ;
Ignore All Bids

Processor = best-bidder
if Processor

Migrate-Task (Task-Descriptor, Processor)
else

Cannot Schedule Task
end

Figure 4: Dynamic Scheduling Using RAGA ADT

19

Appendix A
Summary of Real Time Logic*

Constants:
Integer Constants
Set of Action Constants

Action
A (name of a primitive or a composite action)

Subaction
B .A (action A within composite action B)
B .Ai (ith occurrence of action A within B)

Set of Event Constants
Start Event

l A where A is an action constant
Stop Event

! A where A is an action constant
Transition Event

(S := T), (S := F) where S is a State attribute
External Event

f!E where E is the name of an external event
Variables:

range over integer, action or event constants denoted
by names in lower case letters

Functions:
Addition and Subtraction
Multiplication by Constants
Uninterpreted Functions (Range ~ Integers)
Occurrence Function @(E, i)

Predicates:
Equality/Inequality Predicates(= , <,~ ' > , ~)
State Predicates denoting the truth of a state attribute
during an interval

Formulas:
RTL formulas are constructed using the above predicates,
universal and existence quantifiers, and first order logic
connectives.

•verbatim [3]

20

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-843, November 1983.

[2] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal of Computing, 4.

[3] Farnam Jahanian and Aloysius Ka-Lau Mok. Safety analysis of timing properties in real-time
systems. IEEE Transactions on Software Engineering, 12(9):890-904, September 1986.

[4] Insup Lee and Susan B. Davidson. Adding time to synchronous process communication. IEEE
Transactions on Computers, 36(8):941-48, August 1987.

[5] Dennis W. Leinbaugh and Mohamad-Reza Yamini. Guaranteed response times in a distributed
hard real time environment. IEEE Transactions on Software Engineering, 12(12):1139-44,
December 1986.

[6] C. L. Liu and James W. Layland. Scheduling algorithm for multiprogramming in a hard
real-time environment. Journal of Association of Computing Machinery, 20(1):46-61, January
1973.

[7] A. K. Mok. Fundamental design problems of distributed systems for the hard real time envi
ronment. PhD Thesis, M.I.T., 1983.

[8] K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in distributed hard real-time
systems. IEEE Software, 1(3), 1984.

[9] J. A. Stankovic S. Cheng and IC Ramamritham. Dynamic scheduling of groups of tasks
with precedence constraints in distributed hard real-time systems. IEEE Real Time Systems
Symposium.

[10] John A. Stankovic and Krithi Ramamritham. The design of the spring kernel. Proceedings of
the Real Time Systems Symposium.

[11] Hideyuki Tokuda and Clifford W. Mercer. Arts: A distributed real-time kernel. ACM Operating
Systems Review, 23(3):29-53, July 1989.

[12] Krithi Ramamritham vVei Zhao and John A. Stankovic. Preemptive scheduling under time
and resource constraints. IEEE Transactions on Computers, 36(8):949-60, August 1987.

21

