
Jed B. Marti

Department of Comp. and Inf. Science
The University of Oregon
Eugene, Oregon 97403

ABSTRACT

October 1980
May 1981

This anual describes the Little Big LISP system for the
Z80 microcomputer. The manual describes data structures,
defined functions, operating proced~res, a compiler, an RLISP
parser, and support packages.

Page 2

INTRODUCTION

Little Big LISP is
implemented for the Z80
of sixteen thousand bytes
thirty two thous~nd or
following: ·

a subset of· Standard ~ISP ClJ
microprocessor. It runs in a minimum
of storage - and most effectively with

more. The system consists of the

1. An interpreter

2. A program to load precompiled object files ("fast load"
files)

3. A compiler for generating either fast load files or
directly executable code

4. A parser for a subset of RLISP C2J

5. A function trace feature

6. A small LISP structure editor

1.1 ITEMS

CHAPTER 1

DATA TYPES

An item is a 16 bit quantity. The last 12 or 13 bits
constitute the data portion of the value and the first 3 or 4
bits, its tag, indicating type and current accessability from
the base system.

0 Used by garbage collector to indicate
item is in use.

1-2 Data type:
00 - Dotted-pairs.
01 - Identifiers.
10 - Integers.
11 - Strings and function pointers.

3 Subtype bit for strings and function
pointers.

1.2 DOTTED-PAIRS

Up to 8192 dotted-pairs (32k bytes) may be referenced by the
little big LISP system depending on the amount of available
storage. A minimum of 300 pairs are - required for the base
system to operate. To address a full 8k pairs requires that
the data portion of a dotted-pair pointer be an index into the
"vector" of dotted-pairs. Dotted-pairs are two contiguous
items, fou~ bytes arranged in ascending storage order:

DATA TYPES

+--------+--------+--------+--------+
I CAR I CDR I
I byte 1 I byte 2 I byte 3 I byte · 4 I

Page - 1-2

To compute the real address of a dotted-~air from its item
pointer, the value portion of the item is shifted left two bits
and the resulting value is added to the base address of the
pair space.

Dotted-pairs are entered and printed in the same form as
Standard LISP. The list representation · of dotted-pairs is
permitted as well as the use of • to represent the QUOTE
function.

List notation eliminates extra parentheses and dots. The
list (a. Cb. Cc. NIL))) in list notation is (ab c). List
notation and dot notation may be mixed as in (ab. c) or
(a (b. c) d) which are Ca. (b • c)) and
Ca. (Cb. c) · . (d. NIL))). In BNF lists are recognized by
the grammar:

<left-part>::= (1 <left-part> <any>
<list>::= <left-part>) I

<left-part> • <any>)

Note: () is an alternate representation of NIL.

1.3 IDENTIFIERS

Identifiers are
except that all
from the object
system requires
reference up to

the same - as those · defined
identifiers are interned and
list (the symbol table in
a minimum of 160 identifiers
eight thousand of them.

in Standard LISP
may not be removed
this case) • ., The
to operate and may

Identifiers have 1 to 255 character print names. The
first character must be alphabetic or any other character
preceeded by the I escape character. Following characters may
be alphanumeric or other characters prefixed by the escape
character. There is no !*RAISE flag, lower case- characters are
not converted to upper case.

Each identifier is two items in the symbol table, the
first being a pointer to the string by which the identifier is
known to the outside world called the Qt1Qt QQme. The second •
is a pointer to values associated with the identifier called
the ~~Q~~~1~ li~1• The symbol table is a vector of these
pairs.

DATA TYPES Page 1-3

The property list is implemented as a list structure with
the following attributes:

1. An atom is a flag (see the FLAG, FLAGP, and REMFLAG
functions)

2. A dotted-pair is an indicator-value pair (see the GET,
PUT, and REMPROP functions). There are three special
pairs for global values and functions, these being (GLOBAL
• xxx), (EXPR. xxx), and (FEXPR. XXX)

Thus the function REVERSE, a compiled EXPR has as its
symbol table - entry (note that $6003 is a hexadecimal quantity
described later):

+------7--------♦--------~

"REVERSE" (print name} ((EXPR. $6003))

1.4 INTEGERS

Integers are stored as 13 bit two's complement values. They
conform to the Standard LISP conventions for (ixed numbers in
the range -4096 to +4095.

1.5 STRINGS

Strings are arbitrary character sequences from O to 255
characters in length. Strings serve as print names for
identifiers or as constants. A string pointer is a 12 bit
offset into the string space which is a single large character
vector. The minimal system requires a few more than 1200 bytes
of string space. Each string is a byte containing the number
of characters in the string followed by that number of
characters. Thus the string "REV~RSE":

+-+-+-+-+-+-+-+-+
171RIEIVIEIRJS1EI

DATA TYPES Page 1-4

Strings are entered surrounded by "'s. Unlike Standard LISP,
"'s are not allowed within the string.

1.6 FUNCTION POINTERS

Since compiled functions may occur almost anywhere in storage
and thus their addresses look like an arbitrary item, real
addresses of functions are hidden in the teal add~e~~ table. A
compiled or primitive function is normally addressed indirectly
through this table.

REVERSE function
pointer

+-----+

+-----+

+-----+
I
I

' +-----+ I
$6003 ----->l$7DACI-------+

+-----+

• •
• •
• •

$7DA°C

•
•
•

REVERSE
code

Function pointers may not be read in but are displayed as 4
hexadecimal digits preceded by a dollar sign. The number in
the table may not be accessed except internally.

/

1.7 STACKS

There are two internal stacks. One contains ~ta,~ !tam~~,
activation records for parameter bindings and for local
variables in compiled functions. The other contains a pushdown
stack for return addresses and intermediate values. The stack
frames are in ascending storage order and the pushdown stack
descends. When they cross or are - about to cross the system
stops.

To assure that only valid items are on the stack for the
garbage collector forces the - following requirements:

DATA TYPES Page 1-5

1. All values less than 8192 ($1FFF) are pointers to
dotted-pairs.

2. All greater than 8192 are atomic. Thus, the first 8k
of storage must not have routines which ~ill have return
addresses on the stack when the garbage collector might be
called.

We have made this possible by putting dotted-~air space and
stacks in the low 8k of the system. Since functions are stored
above - the - 8k boundary, their return addresses look like
constants and are not examined by the garbage collector.

CHAPTER 2

FUNCTIONS

The functions that follow are presented in the format of the
Standard LISP Report ClJ. Except for the low level and
compiler support functions the function descriptions have been
copied from the report.

2.1 LOW LEVEL FUNCTIONS

The following functions are accessible by the user but are not ·
part of Standard LISP.

1SfA!xlin12~~~1
Type: EVAL, SPREAD.
Using the last 8 bits of the integer X, pri~t these bits
as an ASCII character.

ll~Aillin1~g~~
Type: EVAL, SPREAD.
Read the next character from the input file and return its
character value as an integer from Oto 255.

R1S1llig
Type: EVAL, SPREAD.
This function returns the character currently being
pointed to by the input scanner~ It does not ho~ever scan
ahead another character as does READCH. This function is
used by the RLISP parser to form diphthongs.

~£I£1SiXlidllan~
Type: EVAL, SPREAD.
Return the property list for the identifier x. X is not ·
type checked for being an identifier.

FUNCTIONS

filiflS!x1idLfROf1an~l
Type: EVAL,SPREAD.

Page 2-2

Replace the property list of the identifier X with PROP.
Xis not type checked for being an identifier.

CA!CliiX1an~l1an~
Type: EVAL, SPREAD.
Evaluate the argument X (Xis preevaluated because CATCH
is an EXPR) and return this value. If a THROW occurs
during this second evaluation, return the value of the ·
argument of THROW.

IHRQi(Xlan~l
Type: EVAL, SPREAD.
Cause a jump back to the most current CATCH restoring
stack pointers and the like to the environment of the
CATCH. The value returned by CATCH is the value - of the
actual parameter x. A THROW which is not in the scope of
a CATCH is caught by the Standard LISP reader.

H~QH~(X1an~ll~211~~=Qs1t
Type: EVAL, SPREAD.
Returns (X. NIL).

XCCli~iA1aD~LBlan~l1d2tt~d=2ait
Typte: EVAL, SPREAD.
Returns the dotted-pair (B. A).

RECLAlt:111.lHIL
Type: EVAL, SPREAD.
Forces a garbage collection.

IIQKil1s12m
Type: EVAL, SPREAD.
The NTOK function reads the next token from the input
stream and generally returns it. The token (if any) is
stored in the global variable TOKI* and its type (an
integer) in the variable TYPEI*.

Ii:fE.l! ItlKl.! t:t~aning

0 nnn # Integer
1 id Identifier
2 * (
3 * •
4 *)

5 string String
6 id Single -character

FUNCTIONS Page 2-3

converted to identifier
7 * Quote character(')

(* means "has no defined value")

QB~~Bf!A1a~La1a~1~22lean
Type: EVAL, SPREAD.
A 16 bit comparison of the values of A and B are made.
This includes the tag fields. ORDERP returns T if A is
less than Bin the range O to 65535. The function is
useful for determining the order of items within a space.

2.2 COMPILER SUPPORT FUNCTIONS

The following functions are used by the compiler to create
absolute code or by the fast load program to load files.

ae!lI!Xiin:t~sei:l
Type: EVAL, SPREAD.
The last 8 bits of the integer X are stored at the
location in the global function pointer BPTR and the value
in BPTR is incremented by 1.

teLUS!Xlin1egei:llWQtd
Type: EVAL, SPREAD.
Add the 12 bit sign extended value in X to the current
value in the global function ~ointer BPTR ~nd return this
16 bit value which must not be placed anywhere but in
binary program space. CPLUS is used to create absolute
jump addresses within a function.

LtEI!Xlin1~~~tllin:t~g~t
Type: EVAL, SPREAD.
Return the leftmost 8 bits of X as a ~ositive - integer Oto
255.

MKtU~~ill!~n~1i2D:Q2in1et
Type: EVAL, SPREAD.
Create a new function pointer and store the real address
in the function pointer BPTR in the real address table for
the new function pointer. This function is used to enter
a compiled function in the real address table.

FUNCTIONS

HK~~OaiXld~tt~d=Qai~llli~1
Type: EVAL, SPREAD.

Page - 2-4

Xis the dotted-pair (GLOBAL • xxx). Create a list of
the address of xxx as two integers Oto 255 which are the
two bytes in reversed order of xxx.

HKREEiXlanYllli~1
Type: EVAL, SPREAD.
This function is the same as MKGLDB except that X can be
any object. If Xis a dotted-~air (or list), it is added
to the global uninterned variable MLIST so that it will
not be removed by the garbage collector. MKREF is used by
the compiler to generate the addresses of quoted items.

RIGH!!X~aD~llint~g~~
Type: EVAL, SPREAD.
Return the rightmost 8 bits of ~hat ever value Xis as an
unsigned positive integer in the range Oto 255.

iellllXlan~l
Type: EVAL, SPREAD.
Same - as BPUT except that the two bytes of X are placed in
reverse storage order.

2.3 ELEMENTARY PREDICATES

Functions return T when the condition defined is met and NIL
when it is not.

AIQM!U1an~llba2l~an
Type: EVAL, SPREAD.
Returns T if U is not a dotted-pair.

tOUEfi~lan~llh22l~an
Type: EVAL, SPREAD.
Returns T if U is a function pointer.

~QNfil:AHI~illlQU~lll22.~l~QU
Type: EVAL, SPREAD.
Returns T if U is a constant (a number, string, or
function pointer).

FUNCTIONS

~QLY1anxLj1an~llQ22l~an
Type: EVAL, SPREAD.

-Page 2-5

Returns T if U points to the same
Standard LISP, fixed integers
they have the same value.

object as v. Unlike
(not BIGNUM·s) a~e EQ if

tQH!ll1an~Lilan~l1h22l~an
Type: EVAL, SPREAD.
Returns T if U and V are EQ. In Little Big LISP, EQ and
EQN are the same.

E~UA~!Y1an~LY1an~l1h22lean
Type: EVAL, SP READ-.
Returns T if U and V are the same. Dotted-~airs are
compared recursively to the bottom levels of their trees.
All atoms must be EQ (EQN is the same as EQ).

ElXUU1an~llb22l~an
Type: EVAL, SPREAD.
Returns T if U is an integer (a fixed number).

lllf!ll~an~llb22l~an
Type: EVAL, SPREAD.
Returns T if U is an identif~er.

HlHllSE!Y1an~llb22l~an
Type: EVAL, SPREAD.
Returns T if U is a number and less than 0. If U is not a
number or is a positive number, NIL is retu_rned.

WlLLiU1an~llh22l~an
Type: EVAL, SPREAD.
Returns T if U is NIL.

liUHBEHeilllao~l1h22l~an
Type: EVAL, SPREAD.
Returns T if U is a number. In Little Big LISP, NUMBER?
is the same as FIXP.

QH~ei~1an~11~22l~an
Type: EVAL, SPREAD.
Returns T if U is a number and EQ to 1.
otherwise.

Returns NIL

FUNCTIONS Page -2-6

eAIRe!Y1an~llh22l~aD
Returns T if U is a dotted-pair, else -returns NIL.

~!RIHGfilllall~llh22l~all
Returns T if U is a string pointer otherwise returns NIL.

Z~RQe!Y1an~l1h22l~aD
Type: EVAL, SPREAD.
Returns T if U is a number and has the value o, returns
NIL otherwise.

.
The following Standard LISP elementary predicates are · not

defined:

FLOATP VECTORP

2.4 FUNCTIONS ON DOTTED-PAIRS

The following are elementary functions on dotted-pairs. All
functions in this section which require dotted-pairs as
parameters detect a type mismatch error if the actual parameter
is not a dotted-pair.

tARiU1g~11~d:Rai~llan~
Type: EVAL, SPREAD.
CAR(CONS ab)==> a. The left part of U is returned. The
type mismatch error occurs if the actual parameter is not
a dotted-pair.

tURill1g2tt~g=~ai~l1an~
CDR(CONS ab)==> b. The right part of U is returned.
The type mismatch error occurs if U is not a dotted-pair.

Unlike Standard LISP, the composites of CAR and CDR are
supported only to three levels.

FUNCTIONS

CAAAR
CAADR
CADAR
CADDR
CDAAR
CDADR
CDDAR
CDDDR

CAAR
CADR
CDAR
COOR

CAR
CDR

COH~!ll~an~Li~atlllld2t1~d=~ai~
Type: EVAL, SPREAD.

Page 2-7

Returns a dotted-pair which is not EQ to anything except
itself and has U has its left (CAR} part and Vas its
right (CDR) part.

Ll~I!.tUlan~l1lli~1
Type: NOEVAL, NOSPREAD.
A list of the evaluation of each element of U is returned.

BfkA~Aill1~211~g=QgiILYlan~llgQ11ea=~ait
Type: EVAL, SPREAD.
The CAR portion of the dotted-pair U is replaced by V. If
the dotted-pair U is (a. b} then (B. b) is returned.
The type mismatch error occurs if U is not a dotted-pair.

REkA~n!ll1g2tt~g=QaiILYlan~lldQtt~d=~ait
Type: EVAL, SPREAD.
The CDR portion of the dotted-pair U is replaced by V. If
dotted-pair U is (a. b) then Ca. V) is returned. The
type mismatch error occurs if U is not a d~tted-pair.

2.5 IDENTIFIERS

All identifiers in Little Big LISP are interned as are all
GENSYM's.

~~H~YHillig
Creates an identifier which is the characters Gxxxx where
xxxx is a hexadecimal number which is incremented each
time GENSYM is called. The symbol generated is not
guaranteed to be unique.

The following Standard LISP functions are not implemented in -
Little Big LISP.

FUNCTIONS Page 2-8

COMPRESS EXPLODE INTERN REMOB

2.6 PROPERTY LIST FUNCTIONS

With each id in the system is a "property list", a list of
items which are assoc1ated with the identifier for fast access.
These entities are called "flags" if their use gives the id a
single · valued property and "properties" if the id is to have · a
multivalued attribute: an indicator with a property. In
Little Big LISP, indicator-value pairs are dotted-pairs, and
flags are atoms.

Flags and indicators may clash, consequently case should
be take to avoid occurrences of indicators which have the same
name · as a flag. Likewise, the · implementation of functions and
globals requires that the indicators or flags EXPR, GLOBAL, and
FEXPR not be used.

E~AG.iYli~=li~1LY11glllil~
Type: EVAL, SPREAD.
U is a list of ids which are - flagged with v. The effect
of FLAG is that FLAGP will have the value T for those ids
of U which were flagged.

E.1&&.G.l!i!!li~ V: id) : boolean
Type: gVAL, SPREAD.
Returns T if Uhas been previously flagged with V, else
NIL.

~~I!U1an~LIHU1an~l1an~
Type: EVAL, SPREAD.
Returns the property associated with the indicator IND
from the property list of u. If U does not have the
indicator IND, NIL is returned.

fll.I!U1igLlliU1igLffill£1anlllanl
Type: EVAL, SPREAD.
The indicator IND with the pro~erty PROP is placed on the
property list of the identifier u.

Standard LISP functions which are not implemented:

REMFLAG REMPROP

FUNCTIONS Page 2-9

2.7 FUNCTION DEFINITION

Functions in Little Big LISP are - global entities which are
stored on the property list of the (EXPR. xxx) or (FEXPR.
XXX) pair.

n~iEHAHt1igLfAEAH~11d=l1~1Ltli1an~111d
Type: NOEVAL, NOSPREAD.
The function FN with the -formal parameter list PARAMS is
added to the set of defined functions with the name FNAME.
Any previous definitions of the function are lost. The
function created is a LAMBDA e~pression unless the l*COMP
variable is Tin which case the EXPR is compiled. The
name of the defined function is returned.

DEiEHAH~1igL£ARAMli~=li~tLEli1anxl1ia
Type: NOEVAL, NOSPREAD.
The function FN with formal parameter PARAM is added to
the set of defined functions with the name FNAME. Any
previous definitions of the function are lost. The
function created is a lambda expression unless the l*COMP
variable is Tin which case the FEXPR is compiled. The
name of the defined function is returned.

~~IU![BA~E1ao~lliHlLLg2tt~g=~aitl
Type: EVAL, SPREAD.
If FNAME is not the name of a defined function NIL is
returned. If FNAME is a d~fined function then the
dotted-pair:

(TYPE: ftype • DEF: <function-pointer ,l_ambda})

is returned.

euiniEHAH~1igLI1e~111~2~Laan11!Yn~11~n111a
Type: EVAL, SPREAD. Creates a function with name FNAME
and definition BODY of type TYPE. If PUTD succeeds the
name of the defined function is returned. The effect of
PUTD is that GETD will return a dotted-pair with the
functions type type - and definition. Unlike Standard LISP,
Little Big LISP does not have GLDBALP returning T for
functions.

If the function FNAME has already been defined, a
warning message will appear:

(FNAME redefined)

The function defined by PUTD will be compiled before
definition if the l*COMP variable is non-NIL.

FUNCTIONS Page 2-10

Little Big LISP does not support the MACRO function type. The
following Standard LISP functions are not defined in Little Big
LISP:

DM REMO

2.8 VARIABLES AND BINDINGS

A xa~iabl~ is a place holder for an item which is said to be
h2~nd to the variable. The ~~2n~ of a variable is the range
over which the variable has a defined value. Little Big LISP
supports three binding mechanisms.

LQ~al Bindin~
This type of binding occurs only in compiled functions.
Local variables occur as formal parameters in lambda
expressions and as PROG form variables. The binding occurs
when a lambda expression is eval~ated or when a PRO~ form is
executed. The scope of a local variable is the body of the
function in which it is defined.

GLOBAL binging
Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable.
The scope of a global variable is universal. Variables
declared GLOBAL must not appear as parameters in lambda
expressions or as PRDG form variables. A variable must be
declared GLOBAL prior to its use as a global ~ariable.

A~l~I a1n~ing ✓
Little Big LISP does not support compiled FLUID variables as
does Standard LISP. However all interpreted functions bind
local variables on an association list permitting fluid
style access for interpreted functions only.

~LQBALilllLI~Ilig:l1~111HlL
Type: EVAL, SPREAD.
The identifiers of IDLIST are declared global type
variables. If an identifier has not been declared
previously it is initialized to NIL. Identifiers already
declared GLOBAL are ignored.

~LOBALfiU1an~llh22l~an
Type: EVAL, SPREAD.
If Uhas been declared GLOBAL Tis returned, else NIL is

FUNCTIONS

returned.

~I.!.EXf.i..ig.LlALllE.i.an:tllan~
Type: EVAL, SPREAD.

Page - 2-11

EXP must be an identifier or an error occurs. The effect
of SET is replacement of the item boand to the identifier
by VALUE. If the identifier is not a local variable or
has not been declared GLOBAL an error occurs. The -other
Standard LISP error checking is not ~erfor~ed.

s.£IQ.!.iARIABL.E.i..idLiAL.ll£l.an~1l.an:t
Type: NOEVAL, NOSPREAD.
SETQ has the same effect as SET except that the first
argument is a variable and is not evaluated. The same
errors occur.

The followin~ Standard LISP functions are not implemented:

FLUID FLUIDP UNFLUID

2.9 PROGRAM FEATURE FUNCTIONS

These functions provide for explicit control sequencing, and
the definition of blocks altering the scope of local variables.

~O!LAllELl.igl
Type: NOEVAL, NOSPREAO.
GO alters the normal flow of control ~ithin a PROG
function. The next statement of a PR□ G function to be
evaluated is immediately preceded by LABEL. A GO may only
appear in the following situations:

1) At the -top level of a PROG referencing a label which
also appears at the top level of . the same PROG

2a) As the consequent of a COND item of a COND appearing
on the - top level of a PROG

2b) As the consequent of a COND item which appears as the
consequent of a COND item to any level

3a) As the last statement of a PROGN which appears at the
top level of a PRbG or in a PR □ GN appearing in the •
consequent of a COND to any level subject to the
restrictions of 2a,b

3b) As the last statement of a PROGN within a PROGN or as
the consequent of a COND in a PRDGN to any level

FUNCTIONS Page 2-12

subject to the restrictions of 2a,b and 3a

If LABEL does not appear at the top level of the PROG in
which the GO appears, an error occurs:

***** LABEL is not a known label

eRCGiYARS11a=l1~1L ceaOGRAMl~iiaL aa?~lll1au~
Type: NOEVAL, NOSPREAD.
VARS is a list of ids which are considered fluid when the
PROG is interpreted and local when compiled (see the
"Variables and Bindings" section). The PR □Gs variables
ar~ allocated space when the PROG form is invoked and are
deallocated w,hen the PROG is ex:ited. PROG variables are
initialized to NIL. The PROGRAM is a set of ex:pressions
to be evaluated in order of their appearance in the PROG
function. ·Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The
value returned by the PROG function is determined by a
RETURN function or NIL if the PROG "falls through".

eIHl~?i!tlllaD!!.lllilllJJ:
Type: NOEVAL, NOSPREAD.
U is a set of ex:pressions _which are ex:ecuted sequentia\ly.
The value returned is the value of the last expression.

R~IU.8.N.!.!llan~l
Type: EVAL, SPREAD.
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PR □ G. The restrictions
on the placement of RETURN are ex:actly tho~e of GO.

Standard LISP functions not implemented: PROG2.

2.10 ERROR H~NDLING

EBEQR!.N!l~a~E11n1~g~~LM~~~AG~lQn~l
Type: EVAL, SPREAD.
NUMBER and MESSAGE are - passed back to a surrounding
ERRORSET (the Little Big LISP reader has an ERRORSET).
MESSAGE is placed in the global variable EMSGI* and the
error number becomes the value of the s~rrounding
ERRORSET. Local variable bindings are unbound to return
to the environment of the ERRORSET. Global variables are

FUNCTIONS

not affected by the process.

~ERQR~~ltll1an~LH~~£122~leaoLI81~22leaal1a0~
Type: EVAL, SPREAD.

Page 2-13

If an error occurs during the evaluation of u, the value
of NUMBER from the ERROR call is returned as the value of
ERRORSET. In addition, if the value of MSGP is non-NIL,
the MESSAGE from the ERROR call is displayed on - the
currently selected output devic~. The ~essage appears
prefixed with 5 asterisks. The MESSAGE from the ERROR
call will be available in the global variable EMSGI*, the
number in ENUMI*.

If no error occurs during the evaluation of u, the
value of (LIST (EVAL U)) is returned.

2.11 BOOLEAN FUNCTIONS AND CONDITIONALS

Altll!tll1~n~lll~x·11:a:bsi2laan
Type: NOEVAL, NOSPREAD.
AND evaluates each U until a value of NIL is found or the
end of the list- is encountered. If a non-NIL value is the
last value it is returned, or NIL is returned.

tDH~!tlllk2ll~::!21:mlllan~
Type: NOEVAL, NOSPREAD.
The antecedents of all u•s are evaluated in order of their
appearance until a non-NIL value is encountered. The ·
consequent of the _selected U is evaluated and becomes the
value of the CDND. The consequent may also contain the
special functions GO and RETURN subject to the restraints
given for these functions in the "Program Feature
Functions" section. In these cases COND does not have a
defined value, but rather an effect. If no antecedent is
non-NIL the value of COND is NIL.

HCI!lllanxllbg~l~an
Type: EVAL, SPREAD.
If U is NIL, return T else return NIL (same as NULL
function).

QR((U1an~lll~~t~a=~22l~aa
Type: NOEVAL, NOSPREAO.
U is any number of expressions which are evaluated in

FUNCTIONS Page - 2-14

order of their appearance. When one is found to be
non-NIL it is returned as the value of OR. If all are
NIL, NIL is returned.

2.12 ARITHMETIC FUNCTIONS

Aa~tll1numn~~l1numbe~
Type: EVAL, SPREAD.
Returns the absolute value of its argument.

A~~liY1num~~tl1num~~t
Type: EVAL, SPREAD.
Returns the value of U plus 1.

QlEE~&ilitt!~ln~mQ~~Lila~mh~tllnYmQtt
Type: EVAL, SPREAD.
The value U - Vis returned.

I2lilllE.!.lllnuml2e1:Lllnumnei:lla2.t.ted=~ai~
Type: EVAL, SPREAD.
The dotted-pair (quotient. remainder) is returned. The -
quotient part is computed the same as by QUOTIENT and the
remainder the same as by REMAINDER.

~R~AI£Bf!U1num~~~LXlnum~e~l1~~~l~an
Type: EVAL, SPREAD.
Returns T if U is strictly · greater than V, oth~rwise
returns NIL.

L~~~fill1numbet:Lllnumb~1:l1h22laan
Type: EV AL, SP READ. ·
Returns T if U is strictly less than V, otherwise returns
NIL.

MAX2iUln~mbe~LY1numbetllnumb~t
Type: EVAL, SPREAD.
Returns the larger of U and V. If U and V are the same
value U is returned.

HIH21U1numb~t:Lilnumb~tl1numb~t
Type: EVAL, SPREAD. Returns the smaller of its

FUNCTIONS Page 2-15

arguments. If U and V are the same value, U is returned.

fLUSitU1aumbe~ll1numbei
Type: NOEVAL, NOSPREAD.
Forms the sum of all its arguments.

fkllS2!U1aumh~~Lllnumb~~l1numba~
Type: EVAL, SPREAD.
Returns the sum of U and v.

m!Qil~Hifll1aumQ~~LilnYm~~~l1n~m~~~
Type: EVAL, SPREAD.
The quotient of U divided by Vis returned. Division of
two positive or two negative integers is conventional.

RE~AlHOER!lllnumh~~Lilnumb~~l~numb~~
Type: EVAL, SPREAD.
If both U and V are integers the result is the
remainder of U divided by v. If either number is
the remainder is negative. If both are positive
are negative the remainder is positive./

~ua1ru1num~~~11numh~~
Type: EVAL, SPREAD.
Returns the value of U less 1.

IIH~~itlllnumh~~lllnumh~t
Type: NOEVAL, NOSPREAD.
Returns the product of all its arguments.

IIM£S21lllnumh~~Lllnumb~tllnumba~
Type: EVAL, SPREAD.
Returns the product of U and v.

integer
negative
or both

The following Standard LISP functions are not implemented:

FIX FLOAT MAX MIN

The function EXPT is implemented as part of the RLISP package.
It only operates on positive integer powers.

FUNCTIONS Page 2-16

2.13 MAP COMPOSITE FUNCTIONS

HAfiXll1~1~Elil!Yntli2nl1anl
Type: EVAL, SPREAD.
Applies FN to successive CDR segments of x.
returned.

HAE~iXll1~1,EH11Ullk1i2nll~D~
Type: EVAL, SPREAD.

NIL is

FN is applied to successive CAR segments of list x. NIL
is returned.

HAf~AH!Xllis1,[!lUllk11~nllall~
Type: EVAL, SPREAD.
A concatenated list of FN applied to successive CAR
elements of Xis returned.

HAf~E!XllistLEH1!unk1iQnl1an~·
Type: EVAL, SPREAD.
Returned is a constructed list of FN applied to each CAR
of list x.

HAetOH!XlliatLElil!un,tiQllllalll
Type: EVAL, SPREAD.
Returned is a concatenated list of FN
successive CDR segments of x.

HAe~I~I!X1li~tLEN1funkti2nl1aa~
Type: EVAL, SPREAD.

applied to

Returns a constructed list of rN applied to successive CDR
segments of x.

2.14 COMPOSITE FUNCTIONS

Aff~liD!Ulli~lLYlli~111l1~1
Type: EVAL, SPREAD.
Returns a constructed list in which the last element of U
is followed by the first element of v. The list U is
copied, Vis not.

FUNCTIONS

A~~Q~!UlaD~Lilali~tl1ig211~d=2gitLlil~l
Type: EVAL, SPREAD.

Page 2-17

If U occurs as the -CAR portion of an element of the alist
V, the dotted-pair in which U occurred is returned, else
NIL is returned. ASSOC might not detect a poorly formed
alist so an invalid construction may be detected by CAR or
CDR.

nEt~I~Ii~1d11~1Lili~11d11i1~t.
Type: EVAL, SPREAD.
A "dlist" is a list in which each element is a two element
list: (ID:id PROP:any). Each ID in Uhas the - indicator
IND with property PROP placed on its property list by the
PUT function. The value of DEF~IST is a list of the first
elements of each two element list. Like -PUT, DEFLIST may
not be used to define functions.

UE~~!~i[lan~~illi~tllli~t
Type: .. EVAL, SPREAD.
Returns V with the first top level occurrence of U removed
from it.

k~HG.IHiXlan~llinl~g~t
Type: EVAL, SPREAD.
The top level length of the list Xis returned.

HtHBER!.Alan~Llilli~t.l.i.~xt.ta=b.si~liian
Type: EVAL, SPREAD. .
Returns NIL if A is not a member of list B, returns the
remainder of B whose first ele~ent is A.

M~H~!A1an~LBlli~tl1ext~a=bQQlean
Type: EVAL, SPREAD.
Same as MEMBER but an EQ check is used for comparison.

litQliti~llia1Llllia1llli~t.
Type: EVAL, SPREAD.
Concatenates V to U without copying u. The last CDR of u
is modified to point to V.

, eAIR!.U1liatLYlliatl1ali~t
Type: EVAL, SPREAD.
U and V are lists which must have an identical number of
elements. If not, an error occurs (the 000 used in the
ERROR call is arbitrary and need not be adhered to).
Returned is a list where each element is a dotted-pair,
the CAR of the pair being from u, and the CDR the
corresponding element from v.

FUNCTIONS

REiERSE!Ulli~1llli~1
Type: EVAL, SPREAD.

Page 2-18

Returns a copy of the top level of U in reverse order.

~Yakl~ix1Ql1~1Lllan~l12~l
Type: EVAL, SPREAD_-
The value -returned is the result of substituting the · CDR
of each element of the alist X for every occurrence of the
CAR part of that element in Y.

~uas.IiU1an~LllQll~Lilan~l1an~
Type: EVAL, SPREAD.
The value returned is the result of substituting U for all
occurrences of Vin w.

The following Standard ·LISP functions are not implemented:

DIGIT LITER SASSOC

2.15 THE INTERPRETER

AEfLi!EHliid£!Un,1i2nl~AR~Slan~=li~tllan~
Type: EVAL, SPREAD.
APPLY returns the value of FN with actual ~arameters ARGS.
The actual parameters in ARGS are already in the form
required for binding to the formal parameters of FN.

~A1'U!lan~llan~
Type: EVAL, SPREAD.
The value of the expression U is com~uted.

~i~IS!Ulan~=li~tllan~=li~t
Type: EVAL, SPREAD.
EVLIS returns a list of the evaluation of each element of
u.

QUOIEi~lan~llan~
Type: NOEVAL, NOSPREAD.
Stops evaluation and returns U unevaluated.

The following Standard LISP functions are not implemented:

FUNCTIONS Page 2-19

EXPAND FUNCTION

2.16 INPUT AND OUTPUT

The user normally communicates with Little Big LISP through the
terminal. Little Big LISP allows input from one disk file at a
time and output to another.

~LQS£iElL~HAH~L~lnumh~~llani
Type: EVAL, SPREAD.
Closes the file with the internal name FILEHANDLE writing
any necessary end of file marks and such. The value of
FILEHANDLE is that returned by the corresponding OPEN.
The value returned is the value of FILEHANDLE. If an
error occurs during a file close or the wrong file handle
is given, Little Big LISP stops with an operating system
error.

DfEH([lLElst~ingLHUW1igl1numnec
Type: EVAL, SPREAD.
Open the file with the system dependent name FILE for ·
output if HOW is EQ to OUTPUT, or input if HOW is EQ to
INPUT. If the file is opened successfully, a value which
is internally associated with the file is returned. This
value must be saved for use by RDS and WRS.

eRIHI!Ulan~llan~
Type: EVAL, SPREAD.
Displays U in READ readable format and terminates the
print line. The value of U is returned.

fElliliYlan~llan~
Type: EVAL, SPREAD.
U is displayed in a READ readable form. In identifiers,
special characters are prefixed with the escape character
1, and strings are enclosed in"•••"• Lists are displayed
in list-notation.

EEIB2!Qlan~llaDf
Type: EVAL, SPREAD.
U is displayed upon the currently selected print device ·
but output is not READ readable. The value of U is
returned. Items are displayed so that the escape
character does not prefix special characters and strings -
are not enclosed in "•••"• Lists are dis9layed in

FUNCTIONS

lis~-notation.

En~!El~tHAliQ~~inumb~~llu~mb~~
Type: EVAL, SPREAD.

Page 2-20

Input from the -currently selected input file is suspended
and further input comes from the file named. FILEHANDLE
is a number returned by the OPEN function for this file.
If FILEHANDLE is NIL the tP,rminal input device - is
selected. When end of file is reached on a non-standard
input device, the standard input device is reselected.
RDS returns the internal name of the previously selected
input file.

R~A~illan~
Returns the next expression from the file currently
selected for input. Valid input forms are: dot-notation,
list-notation, numbers, strings, and identifiers with
escape characters.

REAQtliilli~
Returns the next interned character from the file
currently selected for input. Two special cases occur.
If all the characters in an input record have been read,
the value of 1$EOLI$ is returned. Comments delimited by%
and end of line are not transparent to REAijCH.

IEEeRlilllilL
The current print line is terminated.

HE~iEI~tHAH~L~lDYmQ~~llUYm~~~
Type: EVAL, SPREAD.
Output to the currently active output file is suspended
and further output is directed to the file ~amed.
FILEHANDLE is an internal name which is returned by OPEN.
The file named must have been opened for output. If
FILEHANDLE is NIL the standard output device is selected.
WRS returns the internal name of the previously selected
output file.

The following Standard ~ISP functions are not implemented:

EJECT LIN£LENGTH LPOSN PAGELENGTH PDSN PRINC

FUNCTIONS Page 2-21

2.17 SYSTEM GLOBAL VARIABLES

These variables provide global control of the LISP system, or
implement values which are constant throughout execution.

l!tCMf - Initial value= NIL.
The value of l*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If
l*COMP is NIL the function is defined as a LAMBDA expression.
If l*COMP is non-NIL, the function is first compiled.

l!~CHO - Initial value= NIL.
If *ECHO is T, input character will be written to the selected
output file as they are read.

EH~a! - Initial value= NIL.
Will contain the MESSAGE generated by the last ERROR call (see
the "Error Handling" section).

~HUH!! - Initial value= NIL.
Contains the error number from the last ERROR call.

lS~Q~lS - Value= an uninterned identifier.
The value of 1$EOLI$ is returned by READCH when it reaches the
end of a logical input record.

l!fLiliK - Initial value= NIL.
If I *FLINK is non-NIL, fast call instructions ar_e generated in
place of slow indirect calls in compiled code. Once a fast
call has been generated it may not be - changed back to a slow
call. A slow call takes about 250 microseconds and a fast
abouts.

l!~, - Initial value= NIL.
l*GC controls the printing of garbage collector messages. If
NIL no indication of garbage collection may occur. If non-NIL,
the number of free cells remaining after each collection will
be displayed on the selected output file.

BlL - Value= NIL.
NIL is a special global variable.

I - Value= T.
Tis a special global variable.

FUNCTIONS Page 2-22

l!QUifUI - Value= T.
If *OUTPUT is T then the result of each LISP reader evaluation ·
is printed otherwise no value is printed.

The following Standard LISP
implemented:

1$EOFI$ l*RAISE

2.18 STANDARD LISP DIFFERENCES

global variables are - not

Functions supported by Little Big ~ISP but are - not in the
Standard LISP report are listed in the first two sections, low
level functions and com~iler support functions. The following
Standard LISP functions are - not currently supported for a
variety of reasons:

COMPRESS
CxxxxR
DIGIT
DM
EJECT
EXPAND
EXPLODE
EXPT
FIX
FLOATP

2.19 SYSTEM ERRORS

FLOAT
FLUIDP
FLUID
FUNCTION
INTERN
LINELENGTH
LITER
LPOSN
MAX
MIN

PAGELENGTH
POSN
PRINC
PR□ G2
REMD
REMFLAG
REMOB
REMPROP
SASSOC
UNFLUIO
VECTORP

The system tries to maintain an operating environment. Some
severe errors cause complete termination and program restart
with global data intact but with stacks gone and so on. These

_ errors appear with 7 astersisks preceeding them and are
followed by the LITTLE BIG LISP prologue heading.

******* STACK OVFLW
This occurs when the stack frame gets to close to the push
down stack. This usually means that recursion has
preceeded to deeply or infinitely.

FUNCTIONS Page · 2-23

******* SYMBOL TABLE FULL
This error occurs when too many symbols have been added to
the symbol table. This is usually the result of to many
GENSYM's being done or too large a program being read in.

******* STRING SPACE FULL
This error occurs when the string table overflows into the
symbol table. This could be too many GENSYM's or too many
large string messages.

******* FREE CELLS EXHAUSTED
This error occurs when
have - been used. To
pairs there are do:

(SETQ l*GC T)
(RECLAIM)

all available free dotted-pairs
determine how many available free ·

CHAPTER 3

FAST LOAD

Rather than compiling the entire system or reading and
compiling code every time, program modules are compiled into
relocatable files which we will call !aat l~aa files. Most
modern LISP systems provide this facility in one form or
another. The fast loading program is normally built into the
system. It reads binary code and · top levels-expressions to
interpret. To load a precompiled package enter:

(FLOAD "filename")

where "filename" is the nam~ of the package on the default
input unit (usually a floppy disk). If all goes well the
system will respond with NIL. If you try to load the wrong
type of file, the error message:

***** FAST LOAD ERROR

will appear.

To create a fast load file you must enter the following
sequence:

(FLOAD "COMPILER")
(FSLOUT "filename")

• • •
• • •
• • •

FSLEND

%Load the compiler
%Create a file
%LISP source code here •

%End of source code.

The file "filename" will appear in the directory. All
S-expressions read between the FSLOUT and the FSLEND are
directed to "filename" with the exception of DE, DF, and PUTD"s
which are evaluated and cause compiled code to be directed to
the file. To cause an expression · to be evaluated during the
FSLOUT the function should be flagged as EVAL. Thus (FLAG
"(RDS GLOBAL) "EVAL) will cause - RDS and GLOBAL to be executed
during the building process rather than deferred for evaluation
during the load process.

CHAPTER 4

THE COMPILER

The compilation process is divided into two passes: the first
translates LISP into pseudo-assembly code called LAP (for ~isp
Assembly erogram), the second translates this LAP into absolute
machine code and places this in storage for execution or dumps
it to a FAP file for later reloading.

4.1 OVERVIEW

The LISP interpreter contains code for reading functions into
the LISP system and executing them interpretively much like
other microprocessor based systems. Unfortunately interpreted
functions require large amounts ~f storage and execute very
slowly.

A more efficient scheme reads funciions in the
interpretive form, and then compiles them to machine code to be
executed directly by the microprocessor. The interpreted
version of the function disappears, its storage becomes
available for use at a later time.

For example, the function FACT which computes the
factorial of a number recursively is defined in Little Big LISP
as follows:

(DE FACT (N)
(COND ((LESSP N 2) 1)

(T (TIMES2 (FACT (DIFFERENCE N 1)) N})))

In Little -Big LISP, dotted-pairs, of which this function is
composed, take 4 bytes each. 23 dotted-pairs are used to
define FACT for a total of 92 bytes. Little Big LISP's
compiler generates the following code for FACT:

0000
0000 D7
0001 02

(ENTRY FACT)
(RST ALLOC)
(DEFB 2)

THE COMPILER

0002 FFF2
0004 F7CO
0006 110240
0009 EF
OOOA 6521
OOOC E7
0000 CA1600
0010 210140
0013 C32600
0016
0016 F7CO
0018 110140
001B EF
OOlC 6621
OOlE EF
OOlF 6721
0021 F780
0023 EF
0024 6821
0026
0026 OF
0027 FE
0028 C9

(FACT USED
FACT

(STOX HL 0)
(LDX HL 0)
(LOI DE 2)
(RST LINK)
(DEFW LESSP)
(RST CMPNIL)
(JPEQ G0002)
(LDI HL 1)
(JP G000l)
(LABEL G0002)
(LOX HL 0)
(LOI DE 1)
(RST LINK)
(DEFW DIFFERENCE)
(RST LINK)
(DEFW FACT)
(LOX DE 0)
(RST LINK)
(DEFW TIMES2)
(LABEL G0001)
(RST DALLOC)
(DEFB -2)
(RRET)

41 BYTES AT 0)

Page 4-2

A total of 41 bytes, less than half the size of the interpreted
version. The execution of the compiled version uses
considerably less free space - than the - interpreted version and
runs about 5 to 10 times faster.

4.2 COMPILATION MECHANISMS

Much support software is needed for compiled programs which
simply move information between registers and call subro~tines
to perform most operations. In this .section we describe how
various LISP constructs are implemented in LAP and enumerate
the various support functions required.

4.2.1 Parameter Passing

Zero to 3 parameters may be -passed to a function. The first
argument of a function (if it has any) will always be in the HL
register pair, the second in DE, and the third in BC.
Functions with more than three arguments cannot be compiled.

THE COMPILER Page 4-3

4.2.2 Stacks

Function parameters and PROG type variables are kept in a ~ta~~
nam~, a contiguous block of locations pointed to by the IX
index register. When a function is invoked it creates a new
frame on the top of the stack by calling the ALLOC support
subroutine. ALLOC adds a number to IX to create a new empty
stack frame. It also checks for stack overflow and signals an
error if this has happened or is about to happen. When a
function terminates it calls the DALLOC routine which subtracts
the number of locations used from IX freeing the space for use
by the next function.

Storing and retrieving values from the stack frame is
accomplished by the two support routines LOX and STDX. Since
these -operations occur frequently in compiled code it is
necessary that they use as little storage as possible.
Therefore the LOX and STOX routines should be called using the
zao RST instruction with the -following byte containing what
register pair is to be stored (or loaded), and the displacement
from the top of the stack frame. The format of the control
byte is given in the source code listings of LDX and STOX. The
LAP instructions generated by the compiler are also called LOX
and STOX and contain the register pair name and what
displacement is to be used.

Let us examine a LAMBDA function with an imbedded PROG and
look at the code generated by the compiler.

(LAMBDA (AB) (PROG (CD) •••) •••)

The generated LAP code pushes and pops the stack frame · and
stores registers into the frame.

THE COMPILER

(LAMBDA (AB) •••

(RST ALLOC)
(DEFB +4)
(STOX HL 0)
(STOX DE -1)

•
•
•
•
•
•

•• (PROG (CD) •••

(RST ALLOC)
(DEFB +4)
(LOI HL NIL)
(STOX HL 0)
(STOX HL -1)

•
•
•

+-------------+
IL I<-- !lew IX
+-- A --+
IH
+-------------+ IE
+-- B --+
ID
+-------------+
• .<-- old IX

+-------------+ IL I<-- new IX
+-- C --+
I H

+-------------+
IL
+-- D --+
IH
+-------------+
•
•

A
8

.<-- old IX
•

Page 4-4

Nested PR□Gs cause more frames to be allocated up to a maximum
of 64 accessable variables. The limiting factor is the 6 bits
of displacement in the LOX and STOX macros.

The zao internal stack (pointed to by the SP register) is
used for saving return addresses and intermediate values during
function evaluation. A call to a function FUN3 with 3
arguments stores the results of evaluation of the first two
arguments on the Z80 stack while the third is being computed.
The values are popped into the appropriate registers just
before the function is invoked.

(FUN3 (FUNA •••) (FUNB •••) (FUNC •••))

would generate the following code sequence:

• • • evaluate FUNA • ••
(PUSH HL) ;save result of FUNA on stack.

••• evaluate FUNB • • •
(PUSH HL) ;save result of FUNB on stack.

• • • evaluate FUNC • • •
(LDHL BC) ;Move BC to HL.

THE COMPILER

(POP DE)
(POP HL)
(RST LINK)
(DEFW FUN3)

4.2.3 Calling Functions

Page 4-5

;Result of FUNS is second argument.
;Result of FUNA is first argument.
,call FUN3.

The compiler will not always know the address of a function
being called because it might not be defined yet. Even if the
function is defined the compiler does not know whether it will
be · compiled or interpreted at run time. A special internal
subroutine called LINK is used to transfer control at run time.
Since both compiled and interpreted functions can exist at the ·
same time, LINK will perform either of two functions. If an
interpreted function is being called from compil~d code the
LISP interpreter will be invoked for that function. If the
function being called is com~iled or is a system function - the
call to LINK will be replaced by a direct call to that
function. The call to the LINK function must be an RST type
link so that the 3 byte zao CALL instruction _will exactly
replace the compiled call. If the system global variable
!*FLINK is NIL, the substitution will not take place and the
slow link form will be -used. This is a useful debugging tool
as it allows you to compile functions and change their
definitions (for tracing) without reloading the system.

Compiled as:
(RST LINK)
(DEFW function-name)

Changed by LINK to:
(CALL function-address)

The two byte DEFW attached to the LINK contains the symbol
table pointer of the function being called. At execution time
the LINK routine looks for either a com~iled or interpreted
function attached to he name and either invokes EVAL, generates
the CALL, or if the *FLINK flag is on, just transfers to the
function. If no such function is defined, the -undefined
function error will occur.

4.2.4 The LIST Function

The LIST function is compiled in a s~ecial way to take
advantage -of the Z80 internal stack. The arguments of the LIS T
function are compiled and the results of each are pushed onto ·
the stack. When all have been computed the support function
CLIST is called.

THE COMPILER

(LIST (Fl •••) ••• (Fn •••))

compiles to:

• • •

•••

evaluate Fl
(PUSH HL)

•
•
•

evaluate -Fn
(PUSH HL)
(LOA n)
(CALL CLIST)

•••
;save result of Fl for CLIST.

;Evaluate other arguments •

• ••
;Save result of Fn for CLIST.
;Number of values on stack for
;call to CLIST routine.

4.2.5 COND Compilation

Page 4-6

The -LISP COND function is compiled into a series of tests and
conditional jumps. The CMPNIL support routine compares the
result of a predicate to NIL and sets the zao NZ and z ' flag
bits which control the conditional branch instructions
generated. If the last predicate of the CDND is T, the
predicate and jump will. not be compiled (this is tpe usual
case).

(COND (aO cO) ••• (an en))

generates the following code:

••• evalate aO • ••
(RST CMPNIL)
(JPEQ GOOOl)

••• Evaluate cO • • •
(JP G0002)
(LABEL GOOOl)

•
•
•

(LABEL GOOOx)

*··· evaluate an
* (RST CMPNIL)
* (JPEQ G0002)

• • • evaluate en •••
(LABEL G0002)

;Is aO NIL?
;Yes, jump to next antecedent.

;First consequent evaluated, quit.
;Come here if aO is not true •

;Evaluate other antecedents •

;Try last predicate.

;Is last one NIL?
;Go return NIL then.

;Always come here when done.

Lines preceeded by an asterisk are not generated if the last
predicate is T.

THE COMPILER Page 4-7

4.2.6 PROG, GO, And RETURN

The -PROG
compiled
compiler
done by
are also

function and the control constructs GO and RETURN are
by plugging labels and walues into a tem?late. The

does not check for GD's to undefined labels, this is
LAP. RETURN's not in PROGs and illegally nested GO's

not checked.

(PROG (X)

LBL
•

•••
• • • • (RETURN val)
•
•
(GO LBL)
• . . .)

compiles to:

•••

(RST ALLOC)
(DEFB +2)
(LOI HL NIL)
(STOX HL 0)

•
•

(LABEL LBL)
•
•

evaluate val
(JP GOOOl)

•
•

(JP LBL)'
•
•

(LABEL GOOOl)
(RST DALLOC)
(DEFB -2)

• ••

;Space to save variable X allocated.

;PROG variable set to NIL.

;A PROG label generates a LABEL •

;Jump to end· of this PRDG •

;(GD LBL) generates a j~mp •

;All RETURN's come here.
;Free - the stack frame -allocated
;for x.

4.2.7 AND And OR Compiled

AND and OR are compiled identically except that the evaluation
of the arguments of AND terminates if one is NIL, and the
evaluation of OR terminates if one is non-NIL. The compilation
of AND generates JPEQ instructions after a comparison to NIL,
and the compilation of DR generates JPNEQ instructions.

(AND aO •• an)

THE COMP ILER

compiles to:

•••

• • •

evaluate aO
(RST CMPNIL)
(JPEQ G0001)

•
•
•

• ••

evaluate an •••
(LABEL GOOOl)

;Is result of aO NIL?
;stop evaluation if yes •

;Evaluate other arguments •

;Always end up here.

Page 4-8

The OR function instance compiles eKactly the same way, but
JPNEQ is generated instead of JPEQ.

4.2.8 Constants, Variables, And Quoted Values

These items are loaded directly into the correct register for
the - function to which they are to be passed. Local and Global
variables may have values assigned to them with the appropriate
store instructions.

Quoted items are saved on a list of compiled quoted values
so that the garbage collector will not remove them. The value
representing the quoted item is loaded into the appropriate
register.

4.3 THE LAP INSTRUCTION SET

The LISP Assembly Program accepts the following instruction set
generated by the compiler (or user) and generates absolute
machine code or the correct information to place- in a FAP - file.
The following symbols are used:

pp - denotes a register pair HL, DE, or BC.
nn - an immediate 16 bit value.
n - denote~ an immediate 8 bit value.
lbl - denotes a label found somewhere.
dsp - denotes an 8 bit stack displacement.
addr - denotes a 16 bit global address.

(ENTRY name)
Serves as the entry point of function "name".
not generate any 280 instructions.

ENTRY does

THE COMPILER Page 4-9

(LABEL lbl)
Defines a label referenced elsewhere in the current
function. Labels are -not known outside of a function.

(LDHL pp)
Causes two Z80 register to register instructions to be
generated to transfer the contents of HL to BC or DE.

(LOI pp nn)
Generates a "load immediate" instruction to
register pair pp ~1th the 16 bit value nn.
number, Tor NIL, or a quoted item.

(LOX pp dsp)

load the
nn may be a

Generates a call to the LOX routine to load the register
pair pp with a 16 bit value at dsp*2 bytes from the top of
the current stack frame. The control byte contains both the
register identifier and the displacement.

(LOA n)
Causes a single "Load A Immediate" instruction to be
generated which loads the 8 bit value n into the zao A
register. This instruction is used in the compilation of
the LIST function.

(STOX pp dsp)
Generates a call to the STDX reoutine to store register pair
pp at the displacement dsp*2 bytes from the top of the
currently active stack frame. The control byte generated to
follow the short call to the ST □ X routine contains both the
register identification to store and the 6 bit displacement.

(STO pp addr}
Generates a "store direct" instruction to store the value in
register pair pp in the value cell of a global variable at
addr.

(JP lbl)

(JPEQ lbl)

(JPNEQ lbl)
A long zao jump instruction is generated to get to the
location of the label named. The JP instruction is an
unconditional jump. The JPEQ instruction generates a jump
conditional on the Z condition code and the JPNEQ based on
the NZ condition code set.

(PUSH pp)
Generates the single byte instruction to push register pair
pp onto the zao stack.

(POP pp)
Generates the single byte instruction to pop the zao stack
into the register pair pp.

THE COMPILER Page 4-10

(CALL name)
Generates a long 3 byte call instruction to the absolute
address of name. This absolute address is stored under the
CALL property as two integers re~resenting the bytes of the
address in reverse order. Currently ALLDC, DALLOC, and the
CLIST , support routine addresses are so stored and called.

(RST name)
Generates the single byte Z80 call instruction to one of 8
possible routines. A minimum of 3 RST calls must be
available for the compiled code to operate correctly, one
for LINK, one for LDX, and one for STOX. The other RST's
used in this system may be changed into zao CALL
instructions, but the compiled code will be significantly
longer. Current calls are to:

(RET)

CMPNIL - compare HL to NIL, set Z, NZ.
STOX - store register pair in stack frame.
LOX - retrieve register pair from stack frame.
CAR - take the CAR of HL.
CDR - take the CDR of HL.
LINK - slow link to defined function.

Generates the zao "return from subroutine" instruction.

(DEFW name),
Generates an identifier name for the LINK call.
expects a symbol table pointer.

(DEFB n)

LINK

Generates a single byte numeric value which is used as the
control byte for the STOX and LDX stack frame primitives and
for the ALLOC and DALLOC calls.

4.4 USING THE COMPILER

The compiler is normally kept as a FAP file on the same
disk as the interpreter. It must be manually loaded by typing:

(FLOAD "COMP")

The name of the compiler varies from system to system. After
30 seconds the machine will respond with the value NIL and the
prompt character. There are two options at this point. You
may either manually compile functions by typing:

(COMP fn type body)

Where "fn" is the name of the function, "type" is either EXPR,
or FEXPR, and "body" is the LAMBDA expression of the function

THE COMPILER Page 4-11

to be compiled. To compile - the factorial function presented
earlier using this method, you would enter:

(COMP 'FACT 'EXPR
'(LAMBDA (N)

(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (DIFFERENCE N"l)))))))

Functions may be compiled as normally entered by setting the ·
l*COMP switch to T. When a function is entered using either
PUTD, DE, or OF and this flag is on it will be compiled before
being defined. Thus:

(SETQ l*COHP T)
(DE FACT (N)

(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (DirrERENCE N 1))))))

will result in the function · being compiled before being
defined.

4.4.1 Compiler Flags

The following flags and global variables are used by the ·
compiler and are of interest to the user.

l!COME
When non-NIL, causes DE, OF, and PUTD to automatica~ly call
the compiler to define a function.

l!EkliK
When non-NIL, the RST LINK - DEFW name LAP instructions ae
replaced by fast CALL instructions when executed. This
happens only when the function call is executed.

ilEO!lI
When non-NIL, causes the assembler to generate the code for
a FAP file. FAPOUT should be set only by the FSLDUT
function discussed under generating FAP files.

LAee
When non-NIL, causes the LAP generated by the com~iler, and
the hexadecimal machine code generated by the assembler to
be listed on the selected output device. This flag should
not be set while generating FAP files.

THE COMPILER Page 4-12

4.4.2 Using LAP

The Lisp Assembly Program may be called directly with a list of
assembly functions by calling:

NME is the name of the function - to be -compiled, TYPE is either
EXPR or FEXPR. LAPS is the list of LAP instructions to be
assembled. This may be useful for optimizing functions that
are · critical to the execution of a program. Likewise, it is
easy to modify the assembler to add new instructions to provide
the ability to build special I/0 functions, special data
transfer functions and the like without modifying the source of
the interpre~er.

4.4.2.1 Augmenting LAP - To augment the LAP assembler perform
the following steps:

1. On the property list of the name of the instruction with
the - indicator BCNT place - the number of bytes used by - the
instruction.

2. Create a function with the name of the instruction. This
function should haie - arguments which correspcind to the
operands of the instruction being defined. The function
should return a list of integers which represent the bytes
of the instruction being generated.

As an example consider adding an OUT instiuction. This
instruction takes the value of its first argument to be a
device address to send the last 8 bits of its second argument
Can integer) to. The zao code sequence gener~ted is (in TDL
mnemonics):

MDV C,L
OUTP E

Inclusion of this instruction would permit the LISP user to
implement by hand output to an arbitrary device. The LISP to
implement this instruction would then be:

(PUT 'OUT ·acNT 3)
(DE OUT()

(LIST3 77 58 105))

THE COMPILER Page 4-13

4.4.2.2 Interfacing To The Compiler Support Routines. - A
number of ~outines support the operation of the assembler.
These -support assembly operands of different types.

1. ~KR~E - Returns a list of two integers corresponding to the
high and low order bytes of the -item passed to it.

2. MKGLDB - Returns a list of two integers corresponding to
the address of a global variable. To use this function · do:

(MKGLOB (GGET name 'GLOBAL))

3. fAEAaS - Given a list of integers of an instruction, if the
fast load output switch is on, causes the bytes to be
dumped to the output file. If not they are returned as is.
This function must be · used if fast load files are to be ·
generated. The OUT function above would then be coded:

(DE OUT() (FAPABS (LIST3 77 58 105)))

4. EAeW!O - Used to output quoted items to fast load files (do
not use FAPABS for this).

The

1.

2.

3.

CHAPTER 5

THE LISP EDITOR

LISP editor is a set of functions

Enter and test functions while
system.

Save·· and restore sets of functions

which enable the user to:

remaining in the LISP

and commands from disk.

Modify functions and test them before saving.

The editor must first be loaded into storage - using the fast
loading program. It may coexist with any of the other packages
with the following exceptions:

1. Compiled functions may not be edited. A function which is
edited and then compiled cannot be written back to disk.

2. Functions entered in RLISP syntax must be edited in their
underlying LISP s-expression format.

The commands of the editor are for the most part top level
function calls. They are - listed alphabetically here.

!tR~AI~ !un,112n=nam~l
Execution of this command causes the creation of an EXPR
type function with the name "function-name". The user
will be prompted for the argument list and the body of the
function. CREATE causes the function to be added to a
list of functions which can be edited and later saved on
disk. The equivalent of:

(DE FACT (N)
(COND ((LESSP N 2) 1)

CT (TIMES2 N (FACT (SUBl N))))))

is the following sequence (machine output is underlined):

THE LISP EDITOR

(CREATE FACT)
ARGUH~BIS1 (N) aon11 (COND ((LESSP N 2) 1)

(T (TIMES2 N (PACT (SUBl N)})})

Page 5-2

1'REAIEE !un~li2n:nam~l
This is the same function · as CREATE except that an FEXPR
is created instead of an EXPR.

iU~Elli~ ~=~x2~~~~1Qnl
This function causes the S-expression to be added to the
list of items which can be saved on disk. In addition,
the 5-expression is evaluated for its effect. Thus the
expression:

(DEFINE (GLOBAL '(X)))

will cause X to be declared as a global variable and the
declaration will be written to the disk file during a disk
SAVE.

lE~II f~n~11Qn:nam~l
This function permits the editing of the function named
provided it is not a compiled function. Commands to the ·
editor are normally single characters or digits · sometimes
followed bys-expressions. The commands are:

1. nli - Examine the b~ad (CAR portion) of the currently
displayed expression. If n is present, scan down n
CAR portions.

2. nI -Examine the tail (CDR portion) of the currently
displayed expression. If n is present scan down n CDR
portions.

3. n: - Backup
previously.
is redefined.

to the structure being examined
If this is at the top level, the function

If n is present, backup n times.

4. l ~=~x~te~~iQD - Insert the s-expression onto the
front of the expression currently being examined.
This operation is equivalent to

(APPEND (LIST s-expression) current-expression)

s. A ~=~x~t~~~iQn - Append the S-expression to the tail
of the expression currently being examined. This is
equivalent to:

(APPEND current-expression (LIST s-expression))

THE LISP EDITOR Page - 5-3

6. E ~=~XQI~~~iQD - Find all occurrences of S-expression
in the current expression for examination and possible
replacement.

7. R ~=~x~t~~i~n Replace the expression currently
being examined with the news-expression.

a. t ~=~x~t~~~i~n - Replace the CAR portion of the
expression currently being examined with the new
s-expression.

9. ll - Remove the head (CAR portion) of the current
expression. This is equivalent to:

(SETQ cutrent-expressio~ (CDR current-expression))

i~lll!llff i~l
This function permits editing of clauses entered using the -
DEFINE function. Here, id is the head of one of these
clauses. EDITDEF will display each definition with id as
a head. The user responds with an N to each definition
until the clause to be edited is reached and then responds
with Y. EDITDEF then invokes EDIT to modify this clause.

!&~IR !ile:namel
Executing this functon causes the file "file-name" to be
read from the disk and added to the list of editable
functions. As each function is read in, its name is
displayed. The file must be terminated with an END. If
RSTR does not display the messge:

"** · c□MPLETED **"

then enter an END from the keyboard. If there are errors
in the list, the loading process will terminated without
completing. The editor will only let you save a~ file
without errors in it.

!~Al~ 1il~:nam~l
Execution of this function will cause all functions and
definitions create~ using DEFINE, CREATE, and CREATEF to
be stored in the file "file-name".

I

CHAPTER 6

RLISP

Some -may consider the rigours of coding in LISP with all its
parentheses a bit onerous. To provide a syntax more amenable
to users of contemporary high level programming languages, a
parser from RLISP to LISP has been implemented~ This syntax
was invented by A. c. Hearn in 1973 to facilitate the
implementation of a symbolic algebra system, REDUCE C2J. The
subset described here is reasonably complete - and is restricted
only by the subset of Standard LISP implemented in Little Big
LISP. Users should note that there are significant differences
between the RLISP supported here and that used to support the ·
REDUCE system. Users interested in REDUCE should consult
reference C2J.

The RLISP parser contains its own top level · gvAL loop
which reads LISP expressions in RLISP syntax, parses them into
LISP and if there are no syntax errors, evaluates them. The
user can drop into LISP at any time.

The remainder of this section presents the ~yntax of RLISP
together with examples of its use. The section concludes with
a list of known differences with the - distributed version of
RLISP.

6.1 PROCEDURES

Functions are defined in R~ISP as
parameters. The following syntax is used:

procedures

1. <function> ::= <ftype> PROCEDURE <id> <parameter list>;
<unlabeled statement>;

2. <ftype> ::= EXPR I SYMBOLIC I FEXPR

with

RLISP Page 6-2

3. <parameter list> ::= () I <id> I (<id list>)

4. <id-list>::= <id>C,J*

A <function> is a PROCEDURE statement preceded by its type.
Note that EXPR and SYMBOLIC both stand for EXPR (EVAL/SPREAD)
type procedures. The identifier which must follow the
PROCEDURE keyword is the name of the function being defined.
The parameter list must be () if the function has no
parameters. If the function has a single formal parameter it
need not be enclosed in parentheses. Two or more parameters
must be enclosed in parentheses and the identifiers must be
separated by commas. Functions with more than three parameters
may be defined but may not be compiled. The statement
following tpe procedure heading may be a compound BEGIN END
block or a simple statement or function call.

The RLISP procedure is parsed into a DE or DF function ·
form. The name and formal parameters from the heading line
become parts of the call and the statement following becomes
the body of the function. The LAMBDA expression is generated
by DE and DF's call to POTO.

6.2 STATEMENTS

There are several different statement types in RLISP
corresponding to the different control constructs. The BEGIN -
END block is translated into a LISP PROG function.

5. <BEGIN-END block>::=
BEGIN SCALAR <id-list>; <statement>C;J* END
BEGIN <statement>C;J* END

The identifiers in the optional SCALAR clause are variables
local to the BEGIN - END block. These become the variables of
the PROG while the statements separated by semicolons become
the body.

6. <statement>::= <id>: <unlabeled statement>
<unlabeled statement>

Labeled statements may occur only within BEGIN - END blocks. A
statement may have a single label which serves only as the
object ·of a GO TO statement. Labels are transferred, as is, to
the generated PROG form.

7. <unlabeled statement> ::=<BEGIN-END block> I
<IF statement> I
<do group> I
<WHILE statement>
<FOR statement> I

RLISP

<RETURN statement> I
<GO TO statement> I
<ON/OFF statement> I
<IN/OUT/SHUT statement>
<value statement>

Page 6-3

An unlabeled statement may be a control construct or a value
statement, a general catch all for stand alone function
invocation, assignment, and the like.

a. <IF statement>::=
IF <expression> THEN

<unlabeled statement 1> ELSE
<unlabeled statement 2> I

IF <expression> THEN <unlabeled statement>

The IF statement is in the classical form as either IF •• •
THEN ••• ELSE ••• or just plain IF••• THEN. Like all other
RLISP statements, an IF statement has a value. If the -
expression has a non-NIL value, then the value is the value of
unlabeled statement 1 otherwise the value of unlabeled
statement number 2. If there is no ELSE clause and the value
of the expression is NIL, the value of the statement is NIL .
Multiple IF ••• THEN ••• ELSE IF ••• THEN ••• E~SE IF... statements
are parsed into a single COND with multiple antecedent
consequent pair~.

9. <do group>::=<< <unlabeled statement>C;J* >>

The do group is translated into the LISP PRDGN form. Statement
labels are not permitted within · the group, but GO T□ ·s and
RETURN's are permitted within the scope of a surrounding BEGIN

END block. The value -of the do group is the value of the ·
last statement.

10. <WHILE statement>::=
WHILE <expression> DO

<unlabeled statement>

The WHILE statement repeatedly evaluates the unlabeled
statement while the expression is non-NIL. The value of a
WHILE statement is NIL unless there is a RETURN within the
unlabeled statement which is not embedded within a BEGIN - END
block. The -statement is translated into a PROG form with an
internal loop. The unlabeled statement is the consequent of a
COND or a single statement within this PR □G, thus any · RETUR N
will be the value of the loop or the value of an internal PR □ G
from the use of a nested BEGIN - END block.

11. <RETURN statement>::= RETURN I
RETURN <unlabeled statement>

RETURN may be used only within a BEGIN END block and i s
translated directly into the regular RETURN function call.
RETURN without a parameter is translated into (RETURN NIL).

RLISP Page 6-4

12. <GO TO statement>::= GO TO <id>

The GO TO statement may be used only within a BEGIN - END block
and only to a label at the -current lexical level within that
block.

13. <FOR statement>::=
FOR EACH <id> IN <expression>

DO <unlabeled statement>
FOR EACH <id> IN <expression>

COLLECT <unlabeled statement>
FDR <id>:=<expression !>:<expression 2>

DO <unlabeled statement>

There - are- three forms of the - FOR statement. The first form
evaluates the unlabeled st~tement with the identifier set to
each successive element of the list resulting from the
expression. This FDR is mapped into something like the MAPC
function but in an internal form more suitable for compilation.
The value of a FOR statement of the first form is always NIL.
The second form of the FOR statement is like - the -first but the
word COLLECT instead of DO signifies that the results of the
statement being evaluated are collected into a list which is
returned as the - value of the - FOR statement. - This form is
translated into an internal form roughly equivalent to a MAPCAR
statement. The only difference between these forms and MAPC
and MAPCAR is that local variables may be used within the
unlabeled statement with impunity whereas they would have to be
GLOBAL or FLUID in other systems. The final form of the FOR
statement is the usual iterative form which sets the identifier
to the value of the first expr~ssion , and increment~ it
evaluating the unlabeled statement each time until the value of
the variable is greater than the value of expression · 2.
Expression 2 is recomputed each time through _the loop. This
form of the FOR statement always has the value NIL and is
translated into a nested PROG. It may not have GOTO's out of
the -range of the loop.

14. <ON/OFF statement>
ON <variable> I
OFF <variable>

These two functions set global variables to T and NIL
respectively. Unlike the RLISP of C2J, the full variable name
must be given. For instance, you enter:

ON l*COMP;

rather than:

ON COMP;

RLISP Page 6-5

as in standard RLISP. Likewise, lists of variables are not
permitted.

15. <IN/OUT/SHUT statement>
IN "f i 1 e-n am e" · I
OUT "file-name" I
SHUT "file-name"

. . -.. -

These 3 statements perform abbreviated versions of RDS,
WRS, and CLOSE. The IN statement opens the file name given for
input and selects that file as the standard input device. An
error will be given if no such file exists. Files may be
chained together if the last statement in the file is an IN but
may not be nested as in regular RLISP since only one disk file
may be open at a time. The - OUT statement opens the file · name
_given for output and assigns the standard output device to be
this file. An error occurs if there already is a file by this
name - on the disk. All subsequent output is directed to this
file. The SHUT statement closes either an input file selected
by IN, or an output file selected by OUT.

6.3 VALUE STATEMENTS

Any statement which can not be parsed as a control
construct is assumed to be a value statement, that is, an infix
expression. The infix operators implemented are listed in
increasing order of precedence:

·.-
OR
AND
<, >, LEQ, GEQ, NEQ, EQ, =
+ -
* I

What follows is the BNF for expressions starting with the
lowest precedence and working to the highest. Expressions are
what you would expect with the exce~tion that function calls
with single arguments need not have the arguments enclosed in
parentheses, and the. operator for CONS, and the • for QUOTE.

16. <value expression>::=
<id> := <unlabeled statement>
<boolean term>

RLISP Page 6-6

A value expression can assign the value of a statement to a
variable or ,is just a boolean term. Note that an unlabeled
statement may be another value expression (the usual case).

17. <boolean term>::= <boolean secondary> I
<boolean secondary> OR <boolean term>

A boolean term is a number of boolean secondaries separated by
OR's. Note that all the terms are -collected into a single OR
by the parser to keep down the size of expressions.

18. <boolean secondary>::= <relational expression> I
<relational expression> AND <boolean secondary>

A boolean secondary is like a boolean term only
connective. An expression ••• AND ••• AND ••• AND •••
into a single (AND •••).

19. <relational expression>::= <CONS expression>
<CONS expression>

<relational operator>
<CONS expression>

20. <relational operator>::=
< I > I = I NEQ I LEQ I GEQ I EQ

AND is the
is collected

A relational expression is two expressions separated by a
diadic operator which returns NIL or something else. The<
operator is translated into GREATERP, the> operator · to LESSP,
the= operator to EQUAL, and the other operators are translated
into themselves.

21. <CONS expression> ::= <arithmetic expression> I
<arithmetic expression>. <CONS express~on>

Two expressions separated by a. are the CAR and CDR parts of
a CONS function call. The dot operator is right associative,
so in a string of dot operators, the - rightmost one is done
first. Dots within LISP s-expressions are not affected.

22. <arithmetic expression>::= <arithmetic term>
<arithmetic term>+ <arithmetic expression>
<arithmetic term> - <arithmetic expression>

The+ and - operators are right associative and are translated
into PLUS2 and DIFFERENCE respectively.

23. <arithmetic term> ::= <arithmetic secondary>
<arithmetic secondary>* <arithmetic term>
<arithmetic secondary>/ <arithmetic term>

The* and/ operators are right associative and are translated
into TIMES2 and QUOTIENT calls respectively.

RLISP Page 6-7

24. <arithmetic secondary>::= <QUOTE expression> I
<QUOTE expression>** <arith~etic secondary>

The exponeniiation operator ** is right
translates into an EXPT function invocation.
allowed only to positive integer powers.

25. <QUOTE expression> ::= <primary> I
•<LISP s-expression>

associative and
Exponentiation is

The• operator causes the LISP S-expression reader to be
invoked to read the follo~ing LISPS-expression. Note that •
may not be used to quote an RLISP expression. One must use the
QUOTE function explicitly to do this.

26. <primary> ::= <unsigned integer>
<string>
(<unlabeled statement>) I
<id> I
<id> <expression> I
<id>() 1
<id> (<expression>C,J*)

A primary is an atom (like an unsigned integer, a variable
name, or a string), or an unlabeled statement (usually an ·
expression) enclosed in parentheses, or a function call. A
function with no arguments must have () following it to
distinguish it from a variable. A function with a single •
formal parameter may be followed directly by its parameter
which need not be enclosed · in parentheses. Functions with
multiple parameters must have th~se parameters enclosed in
parentheses and separated by commas.

6.4 SYSTEM FLAGS

For the most part the RLISP reader works exactly like the
Little BIG LISP reader. There are a number of flags which
affect the way in which the -system operates. These · are all
prefixed by a* and may be set on by setting them to Tor off
by setting them to NIL.

l!U~Eli - Initial Value= NIL.
If this variable is non-NIL, the parser form of the RLISP
expression entered will be displayed and not evaluated. By
this means you may examine the parsing of a function or
convert RLISP into LISP. By directing output to a file and
turning on the l*DEFN flag and reading in an RLISP file, a ·
file with nothing but LISP can be created.

RLISP Page 6-8

l!QUifUI - Initial Value= T.
If this variable is NIL, the results of an evaluation of an
expression read by the RLISP reader will not be printed.

j~ -
This variable will always contain the results of the last
evaluation of the RLISP reader.

6.5 ERROR MESSAGES

The ~LISP parser implemented for Little Big LISP is not
always successful in parsing. All parsing errors are caught by
the reader which scans to a semicolon when an error is detected
and restarts at the top level. The errors are listed here
together with their probable - causes.

***** Missing Semicolon
When the parser finishes with a form the last token must
always be a semicolon or dollar sign. If this is not the
case, an error occurs and the parser scans until one is
found.

***** Missing PROCEDURE
The word PROCEDURE did not follow the keywords EXPR, FEXPR,
or SYMBOLIC. This is usually a ~isspelling of the word.

***** Missing procedure name
The token following the word PROCEDURE
identifier.

***** Missing THEN

was not an

In an IF statement, the THEN could not be found. This
usually means that the expression of the IF was impro9erly
constructed.

***** Missing DO
In a WHILE or FOR statement, the DO keyword could not be
found. This usually means the conditional expression or FOR
loop object was not properly parsed.

***** Missing END
The last statement of a BEGIN END block must not be
followed by a semicolon, but rather an END. This usually
means that the last statement has been improperly
constructed. If the last statenent has a semicolon on it,
the END will be an unrecognizable statement.

*****Missing>>
The last statement of a do group(<< ••• >>) must not be
followed by a semicolon, but rather the>> terminator. If
the last statement is improperly constructed, this error

RLISP Page 6-9

will occur. If a semicolon follows the last statement the
unrecognizable statement error will occur.

***** Unrecognizable statement
This happens when the first token of a statement is not a
keyword, nor can the expression parser make an expression
out of it. If the first word of a statement is a keyword
like ELSE, TO, DO, or COLLECT, this error will occur.
Usually it means a semicolon in the middle of a statement
before the error, or a semicolon as the last statement in a
block.

***** Missing (
A formal parameter list that has more than a single variable
or none at all must start with a left parenthesis.

*****Missing)
A formal parameter list that is poorly formed or is missing
the · closing right parenthesis will cause this error as will
improperly balanced parentheses in expressions.

***** Non-id
Formal parameters must always be identifiers.

***** Operator misplaced
This error occurs when two infix operators occur without
intervening o~~rand.

***** Missing IN
In a FOR EACH statement, the noise word IN is missing.
correct format is: FOR EACH <variable> IN <expression>

***** Missing DO/COLLECT

an

The
• • •

In a FDR EACH statement, either of the keywords DO or
COLLECT is missing. The correct format - is: FOR EACH
<variable> IN <expression> DO ••• or FDR EACH <variable> IN
<expression> COLLECT •••

***** Missing id
The identifier in a FOR EACH, or iterative FOR statement
cannot be found after the EACH or the FOR.

*****Missing:
The colon in an iterative FOR statement cannot be located
this error occurs. The syntax of RLISP requires : rather
than TO as one might expect.

***** ERROR TERMINATION
All errors will be suffixed by this message meaning that
parsing will procede only with more user input.

When an error occurs during evaluation, the error message will
be printed followed by the omnipresent ERROR TERMINATION
message. The WS global variable will contain the error message ·
number.

RLISP Page 6-10

6.6 STARTING UP RLISP

The RLISP system must first be -loaded from the system disk
in the fast load format. The FLDAD function is entered in LISP
format with the name of the file.

(FLOAD "RLISP")

(BEGIN}

and the ~ystem will respond immediatly with:

RLISP - <date>

where the <date> is the date the system was last created. To
exit from RLISP back into LISP parsing you enter:

LISP;

to which the system should immediately respond:

ENTERING LISP•••

You may reenter RLISP at any time. All the functions of the
basic Little Big LISP system are available in RLISP and you may
load other packages on top of it, including the compiler, big
number package and so on.

6.7 EXAMPLES

The following
features of RLISP.
translations.

few functions illustrate some of the
They are -given with their equivalent LISP

% Factorial in RLISP (see compiler section for LISP).
EXPR PROCEDURE FACT N;
IF N < 2 THEN 1

ELSEN* FACT(N - 1);

% SUPREV - super reverse of tree to all levels.
EXPR PROCEDURE SUPREV A;
IF ATOM A THEN A

ELSE SUPREV CDR A. SUPREV CAR A;
(DE SUPREV (A)

(CDND ((ATOM A) A)
(T (CONS (SUPREV (CDR A))

(SUPREV (CAR A))))))

RLISP

% A procedure with a WHILE loo~.
EXPR PROCEDURE SEMISCANC),
<< WHILE NOT(TOKI* EQ 'I; AND EQN(TYPEI*, 6))

DO NTOK();
NTOK() >>;

(DE SEMISCAN NIL (PROGN
(PROG NIL
G0008 (COND

((NULL (NOT (AND
(EQ TOKI* (QUOTE I;))
(EQN TYPEI* 6))))

(RETURN NIL)))
(NTOK)
(GO G0008))

(NTOK)))

Page - 6-11

CHAPTER 7

THE TRACE PACKAGE

A rudimentary trace package permits monitoring the entrance to
and exit from functions. The trace package must first be
loaded:

(FLOAD "TRACE")

To trace a particular function or set of functions enter:

(TR fl f2 ••• fn)

where fl ••• fn are the functions to be traced. During the
evaluation of these !unctions, just before each function is
evaluated, its name - and arguments will be - displayed on the
currently selected output device. Just before tne function
exits, its name and value are displayed.

If the -function to be traced is a compiled or system
defined function, the TR function - will ask for the number of
its arguments.

NUMBER OF ARGUMENTS FOR fn*

You should then enter O, 1, 2, or 3. Remember that co~piled
functions can have -no more than 3 arguments.

To remove the trace property of a function · or functions
enter:

(UNTR fl f2 ••• fn)

The trace information will no longer be displayed with each
function. The UNTR will try and verify that the · functions
named have been traced (it is possible to fool it). A message
will appear if the functions ae not traced.

THE TRACE PACKAGE Page 7-2

7.1 IMPLEMENTATION

Tracing a function is accomplished by embedding the definition
of the function in a new function with the name of the old one.
The old definition is hidden away with a GENSYM name. The new
function has the same -number of arguments as the old and the :
code to print all information upon entering and exiting the
function. The UNTR function locates the hidden name of the
function and redefines it under its real name, the trace code
then disappears.

7.2 INTERACTION WITH THE SYSTEM.

Nearly all functions may be traced but there are a number of
interactions with the interpreter and compiler wich must be
explained.

1. Fas~ link function calls which nave been converted from
slow links cannot be traced. If a function is compiled and
then executed with l*FLINK =Tit cannot be reliably traced
afterwards. Any call which is converted to a fast call

' will bypass the trace code while those which have- not been
converted will reach the trace code. This leads to
arbitrary results.

2. Function calls within the - interpreter are not traceable 1

because they are all fast links to start with.

3. Precompiled "fast load" files ar·e traceable · provided that
the l*FLINK flag is set to NIL before the functions in it
are evaluated.

4. Once a compiled function · has the - trace code wrapped around
it, the !*FLINK flag may be set to T to speed up execution.
Since the defined function · is now interpreted CT~ sets the
l*COMP flag to NIL before - embedding the - function . to be
traced) slow links ~ill not be converted to fast ones~

7.3 EXAMPLE

The following is an example function which is compiled, and
then traced during its execution. Finally the trace is removed
and the function is executed again.

(FLOAD "TRACE") (FLOAD "COMP")
NIL

NIL

(DE FACT (N)

THE TRACE PACKAGE

(COND ((LESSP N 2) 1)
(T (TIMES2 N (FACT (SUBl N))))))

(FACT USED 46 BYTES)
FACT

(SETQ l*FLINK NIL)
NIL

(TR FACT)
HOW MANY ARGUMENTS FOR FACT*l
(FACT REDEFINED)
T

(FACT 3)
("ENTERI~G II FACT (3))
("ENTER ING II FACT (2))
("ENTERING II FACT (1))
("LEAVING "FACT 1)
("LEAVING II FACT 2)
("LEAVING " · FACT 6)
6

(UNTR FACT)
(FACT REDEFINED)
T

(FACT 6)
720

Page 7-3

THE TRACE PACKAGE Page 7-4

1. Marti, J. B., A. c. Hearn, M. L. Griss, c. Griss,
"Standard LISP Report", SIGPl.AN Notices, Vol. 14, No. 10,
October 1979, pp. 48-68, reprinted in SIGSAM Bulliten,
Vol. 14, No. 1, 1980.

2. Hearn, A. c., "REDUCE 2 User's Manual", Utah Symbolic
Computation Group, UCP-19, March 1973.

1$eol1$.
1$ga • •
ISpa
l*comp
!*defn
l*echo
l*flink.

•
•
•

• •

l*gc •
l*output
,

*
**

•

•

+ •

•

I •

•

•
•

•

•

•

<
<<

• •

=

>
>>

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•
•

•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

Abs ••••••
Addl • • • • •
Alist binding.
Alloc •••••
And • • • • • •
Append • • • •
Apply •••••
Assoc •••••
Atom

Begin
Bptr
Bput

•

•
•
•

•

•
•
•

•

•
•
•

•

•
•
•

•

•
•
•

• •
• •
• •
• •
• •
• •
• •
• •
• •

• •

• •
• •

. . .
• •

• •

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

Caaar.
Caadr.
Caar
Cadar •
Caddr.
Cadr
Call
Calling
Car ••
Catch.

• • • • • •
• • • • • •

• • • • • • •
• • • • • •
• • • • • •

• • • • • • •
• • • • • • •

functions.
• • • • • •
• • • • • •

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

INDEX

•
•
•
•
•
•
•
•
•

•

•
•

•

•

•

•
•

•

•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•

2-21
2-1
2-1
2-21,
6-7
2-21
2-21,
2-21
2-22,

6-7

6-6
6-7

6-6

6-6

6-6

6-6
6-3

6-6

6-6
6-3

2-14
2-14 ·
-2-10
4-3
2-13,
2-16
2-18
2-17
2-4

6-2
2-3
2-3

2-6
2-7
2-6
2-7
2-7
2-7
4-10
4-5
2-6,
2-2

4-11, 7-2

4-5, 4-11,

6-8

4-7, 6-6

4-10

7-2

Cdaar • • •
Cdadr •••
Cdar • • •
Cddar • • •
Cdddr •••
Cddr • • •
Cdr ••••
Cl ist • • •
Close • • •
Cmpnil
Codep •••
Collect ••
Compiler

• •

•
Cond • • •
Cons •••
Constantp.
Constants •
Cplus • • •
Create ••
Createf ••

Dalloc • •
De ••••
Defb • • •
Define
Deflist ••

• •

Defw
Delete

• • •
• •

Of
Difference
Divide ••
Do group •
Dotted-pairs

• • • •

Edit • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •
Editdef ••••••
Editor
Else
Emsg!*

•
•
•
•

•
•
•

• • • •
• • • •
• • • •

End ••••••••
Entry •••••••
Enuml* • • • • • •
Eq • • • • • • • •
Eqn • •• • • • • •
Equal •••••••
Error •••••••
Error termination.
Errors ••••••
Errorset •••••
Eval •••••••
Evlis •••••••
Expr •••••••
Expr property •••
Expt ••••• • •

Fapabs
Fapout
Fapquo

•
•
•

•
•
•

• • • •
• • • •
• • • •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• •
• •
• •

•
•
•

•
•
•

•
•
•

• 2-7
• 2-7
• 2-7
• 2-7
• 2-7
• 2-7
• 2-6, 4-10
• 4-5
• 2-19
• 4-6, 4-10
• 2-4
• 6-4
• 4-1
• 2-13, 4-6, 6-3
• 2-7, 6-6
• 2-4
• 4-8
• 2-3
• 5-1
• 5-2

• 4-3
• 2-9, 6-2
• 4-10
• 5-2
• 2-17
• 4-10
• 2-17
• 2-9, 6-2
• 2-14, 6-6
• 2-14
• 6-3
• 1-1, 2-6

• 5-2
• 5-3
• 5-1
• 6-3
• 2-21
• 6-2
• 4-8
• 2-21
• 2-5, 6-6
• 2-5
• 2-5, 6-6
• 2-12
• 6-9
• 2-22
• 2-13
• 2-18
• 2-18
• 6-2
• 2-8
• 6-7

• 4-13
• 4-11
• 4-13

Fast links • • • • • • • • • • 2-21, 7-2
Fast load • • • • • • • • • • • 3-1
Fast load error • • • • • • • • 3-1
Fexpr • • • • • • • • • • • • • 6-2
Fexpr property • • • • • • • • 2-8
Fixp • • • • • • • • • • • • • 2-5
Flag • • • • • • • • • • • • • 2-8
Flagp • • • • • • • • • • • • • 2-8
Flags • • • • • • • • • • • • • 1-3, 2-8
Fload • • • • • • • • • • • • • 3-1
For each statement • • • • • • 6-4
For iterative statement • • • • 6-4
For statement • • • • • • • • • 6-4
Free cells exhausted • • • • • 2-23
Fslend • • • • • • • • • • • • 3-1
Fslout • • • • • • • • • • • • 3-1
Function calls • • • • • • • • 6-7
Function pointers • • • • • • • 1-4

Gensym • • • • • • • • • • • • 2-7
Geq • • • • • • • • • • • • • • 6-6
Get • • • • • • • • • • • • • • 2-8
Getd • • • • • • • • • • • • • 2-9
Getp1$ • • • • • • • • • • • • 2-1
Gget • • • • • • • • • • • • • 4-13
Global • • • • • • • • • • • • 2-10
Global binding • • • • • • • • 2-10
Global property • • .. • • • • • 2-8
Globalp • • • • • • • • • • • • 2-10
Go • • • • • • • • • • • • • • 2-11, 4-7, 6-4
Go to statement • • • • • • • • 6-4
Greaterp • • • • •· • • • • • • 2-14, 6-6

Identifiers • • • • • • • • • • 1-2,- 2-7
Idp • • • • • • • • • • • • • • 2-5
If statement • • • • • • • • • 6-3
In statement • • • • • • • • • 6-5
Indtcators • • • • • • • • . .. 1-3, 2-8
Integers • • • • • • • • • • • 1-3
Items • • • • • • • • • • • • • 1-1

Jp • • • • • • • • • • • • • • 4-9
Jpeq • • • • • • • • • • • • • 4-9
Jpneq • • • • • • • • • • • • • 4-9

Label • • • • • • • • • • • • • 4-9
Labels • • • • • • • • • • • • 6-2
Lap • • • • • • • • • • • • • • 4-1, 4-8
Lapp • • • • • • • • • • • • • 4-11 .
Lapz80 • • • • • • • • • • • • 4-12
Lda • • • • • • • • • • • • • • 4-9
Ldhl • • • • • • • • • • • • • 4-9
Ldi • • • • • • • • • . • • • • 4-9
Ldx • • • • • • • • • • • • • • 4-3, 4-9 to 4-10
Left • • • • • • • • • • • • • 2-3
Length • • • • • • . • • • • • 2-17
Leq • • • • • • • • • . • • • • 6-6
Lessp • • • • • • • • • • • • • 2-14, 6-6

Link
Lisp
List
Local

• • • • • • •
editor • • • •

• • • • • • •
binding. • •

Map •••
Mapc ••
Mapcan •
Mapcar •
Mapcon •
Maplist.
Max2
Member
Memq

•

•

•
•
•

Mih2
Minusp
Mkcode
Mkglob
Mkref ••

•
•
•
•

•

Nconc • •
Neons ••
Neq •••
Nil •••
Not •••
Ntok • •
Null
Numberp.

• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
•
• • • •

• • • •
• • . .
• • . .
• • • •
• • • •
• • • •
• • • •
• • • •

Off statement.
On statement •
Onep •••••
Open •••••
Or ••••••
Orderp • • ••
Out statement.

• •
• •
• •
• •
• •
• •
• •

Pair • • • •

•
Pairp ••••
Parameters
Plus ••••
Plus2 ••••
Pop • ••••

• Predicates
Prinl ••••
Prin2 • • • •
Print ••••
Print name •
Procedure ••
Prog ••••
Progn ••••
Property list
Push ••••
Put • • •••
Putd
Putp1$

•

Quote - •

•
•

•

• •
• •

• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

• •
• •
• •
• •
• •
• •
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
• .-
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•

4-5,
5-1
2-7,
2-10

• 2-16
• 2-16,
• 2-16
• 2-16,
• 2-16
• 2-16
• 2-14
• 2-17
• 2-17
• 2-14
• 2-5
• 2-3
• 2-4,
• 2-4,

• 2-17
• -2-2
• 6-6
• 2-21
• 2-13
• 2-2
• 2-5
• 2-5

•
•
•
•

6-4
6-4
2-5
2-19

4-10

4-5

6-4

6-4

4-13
4-13

•
•

2-13·, 4-7, 6-6
2-3

• 6-5

• 2-17
• 2-6
• 4-2
• 2-15
• 2-15, 6-6
• 4-9
• 2-4
• 2-19
• 2-19
• 2-19
• 1-2
• 6-2
• 2-12, 4-7, 6-2
• 2-12, 6-3
• 1-2, 2-8
• 4-9
• 2-8
• 2-9
• 2-2

• 2-18, 6-7

Quoted values • • • • • • • • • 4-8
Quotient • • • • • • • • • • • 2-15, 6-6

RI$ • • • • • • • • • • • • • • 2-1
Rds • • • • • • • • • • • • • • 2-20
Read • • • • • • • • • • • • • 2-20, 6-7
Readch • • • • • • • • • • • • 2-20
Real address table • • • • • • 1-4
Reclaim • • • • • • • • • • • • 2-2
Reduce • • • • • • • • • • • • 6-1
Remainder • • • • • • • • • • • 2-15
Ret • ~ • • • • • • • • • . .. • 4-10
Return • • • • • • • • • • • • 2-12, 4-7, 6-3
Return statement • • • • • • • 6-3
Reverse • • • • • • • • • • • • 2-18
Right • • • • • • • • • • • • • 2-4
Rlisp • • • • • • • • • • • • • 6-1
Rplaca • • • • • • • • • • • • 2-7
Rplacd • • • • • • • • • • • • 2-7
Rst • • • • • • • • • • • • • • 4-10
Rstr . • • • • • • • • • • • • • 5-3

Save - • • • • • • • • • • • • • 5-3
Scalar • • • • • • • • • • • • 6-2
Scope • • • • • • • • • • • • • 2-10
Set • • • • • • • • • • • • • • 2-11
Setq • • • • • • • • • • • • • 2-11
Shut statement • • • • • • • • 6-5
Slow links • • • • • • • • • • 2-21, 7-2
Stack frame • • • • • • • • • • 1-4, 4-3
Stack ovflw • • • • • • • • • • 2-22
Stacks • • • • • • • • • • • • 1-4, 4-3
Statements • • • • • • • • • • 6-2
Sto • • • • • • • • • • • • • • 4-9
Stox • • • • • • • • • • • • • 4-3, 4-9 to 4-10
String space full • • • • • • • 2-23 -
Stringp • • • • • • • • • • • • 2-6
Strings • • • • • • ~ • • • • • 1-3
Subl • • • • • • • • • • • • • 2-15
Sublis • • • • • • • • • • • • 2-18
Subst • • • • • • • • • • • • • 2-18
Symbol table full • • • • • • • 2-23
Symbolic • • • • • • • • • • • 6-2
System global variables • • • • 2-21

T • • • • • • • • • • • • • • • 2-21
Terpri • • • • • • • • • • • • 2-20
Then • • • • • • • • .• • • • • 6-3
Throw • • • • • • • • • • • • • 2-2
Times • • • • • • • • • • • • • 2-15
Times2 • • • • • • • • • • • • 2-15, 6-6
Tr • • • • • • • • • • • • • • 7-1
Trace package • • • • • • • • • 7-1

Untr • • • • • • • • • • • • • 7-1

• Value statements 6-5 • • • • • • •
Variables • • • • • • . • • • • 2-10, 4-8

While statement • • • • • • • • 6-3
Wput • • • • • • • • • • • • • 2-4
Wrs • • • • • • • • • • • • • • 2-20
Ws • • • • • • • • • • • • • • 6-8

Xcons • • • • • • • • • • • 2-2

Zerop • • • • • • • • • • • • • 2~6

t

