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Abstract 

In this paper , we present an architected approach to failure handling for in
dependent AND parallel logic programs. That is , the architecture presented here 
represents its failure handling algorithm as a sequence of simple abstract machine in
structions, rather than as a built-in function. Information about data dependencies 
is used by a compiler to generate special purpose fail routines on a clause-by-clause 
basis. We also present two simple optimizations that further specialize the handling 
of failures for each clause. 
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1 Introduction 

One of the major features of logic programming languages is their ability to express 
nondeterministic computations. Standard sequential logic languages ( e.g. Prolog) im
plement nondeterminism through chronological backtracking: when a subgoal fails, the 
system backtracks to the most recent subgoal with untried alternatives. 

Chronological backtracking is not effective in AND-parallel systems, where the pre
decessors of a failed goal are solved in parallel, and backtracking to the most recently 
solved goal may not correct the conditions that led to the failure. There are several 
closely related methods for exploiting nondeterminism in independent AND parallel sys
tems. Known as semi-intelligent backtracking schemes, they rely on a combination of 
static and dynamic information about producer/consumer relationships within a clause 
to determine how to retry a previously solved goal after a failure[l,2,3,7,12]. The algo
rithms are all very complex. When a literal consumes bindings created by more than one 
predecessor, and the predecessors operate in parallel, the backtracking scheme must co
ordinate retry and reset operations so the consumer literal sees all possible combinations 
of bindings from the predecessors. 

As a result of this complexity, abstract architectures for AND parallelism have im
plemented semi-intelligent backtracking as a built-in operation, analogous to the way 
backtracking is done in sequential machines for Prolog[ll]. These machines use ex
tensive compile time analysis to create carefully optimized sequences of instructions for 
forward execution (unification and procedure calls or process creation), but treat all fail
ures uniformly, by handling them with a common, built-in fail procedure implemented 
"inside" the architecture. We call this non-architected failure handling. 

There are two problems with this approach. First, failure handling may not be as 
efficient as it can be. The general purpose failure mechanism is not subject to the same 
kind of compile time analyses and optimizations that are applied to other aspects of the 
architecture. Second, the general purpose failure routine is a barrier to efficient VLSI 
implementation of the architecture. The more complex the backtracking algorithm, the 
more difficult it will be to implement it efficiently on the processor chip, and the entire 
machine will be less efficient ( the classic RISC argument). 

In this paper, we present a method for architected failure handling, which does semi
intelligent backtracking for independent AND parallel logic programs. In our model, no 
general purpose failure handling algorithm is required. Instead, failures are handled by 
visible parts of the architecture, in the form of special purpose failure routines compiled 
for each clause. We compile a sequence of simple abstract machine instructions for each 
literal in a clause, to be invoked when the literal fails. The sequence of failure handling 
instructions is specialized for each goal, in the same way the combination of put and get 
instructions is unique for each clause during forward execution. The backward execution 
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code can be further optimized by some simple yet powerful optimizations, leading to 
very efficient implementation of semi-intelligent backtracking. 

The rest of this paper is organized as follows: Section 2 gives a brief overview of the 
backward execution algorithm used by the new architecture. Section 3 describes the 
architectural features that implement the algorithm, along with compilation strategies 
and optimizations. Section 4 discusses the tradeoffs implicit in the architected failure 
handling model and future work. 

2 The Backward Execution Algorithm 

An AND process invokes its backward execution algorithm when it receives a fail mes
sage from a descendant, or a redo message from its parent. At this point, the AND 
process must select a body goal to retry, and resume forward execution. The selected 
goal is called the backtrack literal. If no appropriate backtrack literal can be found, the 
AND process fails. The purpose of a backward execution algorithm, then, is to select 
an appropriate backtrack literal, cancel or reset its successors, and set up for resumed 
forward execution. 

The backtrack literal selection algorithm used by the architecture described in this 
paper was originally presented in [3]. This algorithm is based on a static data depen
dency graph, in which there is a node for each literal in a clause body, and an arc 
between literals i and j if i must be executed before j because the solution of i binds a 
variable occurring in j. We assume the graph can be derived from precise modes [2,10] 
or other compilation techniques. 

Given a data dependency graph G that describes the producer/ consumer relationship 
among literals in the body of a clause, the backward execution algorithm is described 
in terms of the following sets: 

• succ[i] - The projection of the second element of the transitive closure of the 
successor relation for literal i in G. 

• pred[ i] - Defined analogously to succ[ i]. 

• candidates[i] -The set of literals that are possible semi-intelligent backtrack points 
after literal i fails. This set is computed as follows: 

candidates[ i] 

cp[i] 

pred[i] LJ cp[i], where 

LJ { l I l E pred[x] A l < i} 
xEsucc[i] 
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Intuitively, we can understand the structure of the candidate sets by considering 
how a literal may fail. Literal failures can be classified into two types. First, a literal 
may reject the bindings supplied by its predecessors; we call this consumer failure. 
Consumer failure is cured by backtracking to a predecessor, which will presumably 
bind the consumed variable to a different value, hence the first term of the candidates 
expression. 

The second type of failure, called generator failure, occurs when one or more of the 
successors of a literal L reject all of the bindings it generates. When this happens, L will 
fail after it receives a redo message after it has generated its last binding. In this case, 
the rejecting successor( s) may be solvable by the next value from a different predecessor 
and a value previously returned by L. The AND process tries to cure generator failure 
by backtracking to one of the other predecessors of the rejecting successor. These 
predecessors are described by Equation (2) in the candidates expression (literals with 
index greater than the failed literal are removed from the candidate set to insure that 
the backtrack literal is "to the left" of the failed literal). 

Finally, to distinguish between failure types, the AND process maintains a set of 
failed successors for each literal in its body. We use marks[i] to denote the set of failed 
successors of literal i. 

The backward execution algorithm operates as follows. When an AND process 
receives a fail message from literal i, it records this information by adding the index i 
to the marks set of each of i's predecessors. The appropriate backtrack literal is then 
selected by finding the candidate literal latest in the linear ordering which has i or a 
successor of i in its marks set. That is, the backtrack literal j has the property that 

j = max{c I c E candidates[i] I\ (marks[c] n ({i} LJ succ[i]) # 0)} 

If no such literal exists, the AND process fails. Otherwise, the backward step is effected 
by canceling or resetting the literals with index larger than j, untrailing the appropriate 
variables, and sending a redo message to the process corresponding to literal j. 

The use offailure history is illustrated by the example in Figure 1. In this example, 
suppose that s rejects the bindings provided it by q ( consumer failure). In this case, the 
failure of s will cause q to be marked with the index of s, and q will be subsequently 
selected as the backtrack literal. Next suppose s accepts the bindings from q, but t 
rejects all values of D generated by s (generator failure). In this case, the failure of t 
will cause r and s to be marked. When s subsequently fails, r will be selected as the 
backtrack literal. This selection reflects the fact that, while t had previously failed with 
all values of values of D generated by s, it may be solvable with the next value of C from 
r and some previous value of D from s. 
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in.sax littu:Al !.ADs11s1AtH 
1 q {} 

2 r {l} 

3 s {1,2} 

4 t {1,2,3} 

5 redo {l} 

The psuedo-literal "redow is used to 
coodinate backtracking activities when 
a redo message is received 

Figure 1: Graph for p(A,B) :- q(A,B) ,r(A,C) ,s(A,B,D) ,t(C,D) 

3 The Backward Execution Architecture 

The backward execution architecture is introduced in this section. The instructions and 
other machine structures presented here are extensions to the OPAL Machine (OM) [4], 
but the technique may well apply to RAP-WAM and other AND-parallel architectures . 

We associate a failure continuation with each literal in a clause body. The continua
tion is a sequence of machine instructions that will be executed when the AND process 
receives a fail message from the OR process created to solve the literal. 

3.1 Instructions 

The only addition to the state vector of an AND process is a marks set for each body lit
eral. The following two instructions are sufficient to implement the algorithm described 
in the previous section:1 

set...mark i,j 

Add the index i to the marks set of literal j. 

check...mark LS et, c, Label 

1 There are also instructions to reset variables to the equivalent of unbound, and other control in
structions that are not important to this discussion. 
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Branch to Label if literal c has been marked by any of the literals in LS et. 

When check...mark is compiled as part of the failure continuation of literal i, LS et 
will be a suitable representation of {i} LJ succ[i], c will be an element of candidates[i], 
and Label will be the address of the routine that carries out the required functions 
when literal c is determined to be the backtrack literal ( e.g. untrailing and canceling 
descendants). The implementation of check...mark is straightforward: if the marks set 
and LSet are represented as bitsets (unsigned integers), this instruction performs a 
bitwise AND of the two words, and branches if the result is nonzero. 

3.2 Compilation 

Given a data dependency graph, compilation of the backward execution algorithm into 
set...mark and check...mark instructions is trivial. We implement the algorithm by com
piling, for each literal, a failure continuation which consists of a sequence of set...mark 
instructions followed by a sequence of check...mark instructions. One set...mark instruc
tion instruction is compiled for each predecessor of the failed literal. The second part 
of the backtracking algorithm, the search for the backtrack literal, is implemented by 
a sequence of check...mark instructions, one for each element of the failed literal 's can
didate set. These instructions are generated so that the failed literal's candidates are 
inspected in descending order. Finally, since the clause fails if none of the failed literal's 
candidates are appropriately marked, a fail instruction is compiled following the last 
check...mark instruction. 

The compilation technique is illustrated using the standard map coloring example [3] 
shown in Figure 2. The data dependency graph shown in the figure is used by a compiler 
to generate the backtracking code shown in Figure 3. In this figure, the label on the fail
ure continuation for literal i has the form next2_LFC. Labels of the form next2_LisBl 
represent the addresses of the routines which effect the backward step when literal i is 
selected as the backtrack literal . The code labeled redo is the redo continuation of the 
clause, i.e. the code that is executed when the AND process is sent a redo message from 
its parent. 

3.3 Optimization 

In this section we describe two simple but powerful optimizations. The first optimiza
tion, called the "seLmark/check-1I1ark" optimization, replaces a check...mark instruction 
with an unconditional branch when it is known that the check...mark instruction will take 
its branch, i.e. it is known that the appropriate mark will always be set by the time the 
check...mark instruction is executed. The optimization can be characterized abstractly 
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ne:z:t2-1..FC: fail 
ne:z:t2-2..FC: set_.ark 2,1 

check_.ark [2,5,6,7,9],1,ne:z:t2_1..IsBl 
fail 

ne:z:t2-3..FC: set_.ark 3,1 
check_.ark [3,5,8,9],2,nert2-2..IsBl 
check_.ark [3,5,8,9],1,nert2_1..IsBl 
fail 

ne:z:t2-4..FC: set_.ark 4,1 
check_.ark [4,7,8,9],3,ne:z:t2-3..IsBl 
check-Aark [4,7,8,9],2,ne:z:t2-2..IsBl 
check_.ark [4,7,8,9],1,ne:z:t2_1..IsBl 
fail 

ne:z:t2..5..FC: set_.ark 5,1 
set_.ark 5,2 
set_.ark 5,3 
check..aark [5],3,ne:z:t2_3..IsBl 
check..aark [5],2,ne:z:t2-2..IsBl 
check_.ark [5], 1,ne:z:t2-1..IsBl 
fail 

ne:z:t2-6..FC : set_.ark 6,1 
set_.ark 6,2 
check_.ark [6] ,2 ,ne:z:t2-2..IsBl 
check ... ark [6] ,1,nert2-1..IsBl 
fail 

ne:z:t2_7 ..FC: set ... ark 7,1 
set ... ark 7,2 
set ... ark 7,4 
check ... ark [7] ,4,ne:z:t2-4..IsBl 
check ... ark [7] ,2,ne:z:t2-2..IsBl 
check ... ark [7],1,ne:z:t2-1..IsBl 
fail 

ne:z:t2-8..FC : set ... ark 8,1 
set ... ark 8,3 
set ... ark 8,4 
check ... ark [8] ,4,ne:z:t2-4..IsBl 
check ... ark [8] ,3,next2-3..IsBl 
check_.ark [8], 1,next2-1..IsBl 
fail 

redo: set ... ark 9,1 
set ... ark 9,2 
set ... ark 9,3 
set ... ark 9,4 
check ... ark [9],4,nert2_4..IsBl 
check_.ark [9],3,next2-3..IsBl 
check ... ark [9],2,next2-2..IsBl 
check ... ark [9] ,1,next2-1..IsBl 
fail 
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by considering the structure of the code generated for a given failure continuation. Con-
sider the failure of a literal i, where pred[i] = {j1, ... ,jn}, with i1 < i2 < ... < in, and 
candidates[i] = {c1,c2, .. ,,cm}, with c1 < c2 < ... <Cm, The failure continuation for 
this literal will have the following form: 

set...mark i,jl 

i,Jn set...mark 
check...mark [ ... ],Cm, CmlsBL 

check...mark 
fail 

An analysis of a failure continuation almost always reveals pairs of set...mark and 
check...mark instructions (possibly with other instructions in between) of the form: 

set...mark i, k check...mark [ ... , i, ... ), k, L 

This pair of instructions marks literal k with i and then later checks to see if k is marked 
by i. Recall from Equation (1) that the definition of the candidates set of i includes 
the predecessors of i. Since we generate a set...mark instruction for each predecessor, 
and a check...mark for each candidate, and predecessors are by definition part of the 
candidate set, we should expect to see many such pairs. In fact, every literal that 
has a predecessor in the data dependency graph will have a pair of instructions of this 
form. Internal nodes in the graph ( corresponding to generators) may have additional 
check...mark instructions, corresponding to the candidates that are not predecessors. 

For each pair of instructions with the form shown above, we know that execution 
of the check...mark instruction will cause the branch to be taken, since the preceding 
set...mark instruction added i to the mark set of the predecessor, and no intervening 
instruction removes a mark. Thus can we replace the check...mark instruction with an 
unconditional branch to the target. Furthermore, since the code following the branch 
is now unreachable, it can be removed. 

The second optimization, called "Redundant Marks Elimination", is based on the 
observation that some marks will never be inspected, since the check...mark instructions 
that examine them have been converted to unconditional branches or pruned as dead 
code. Thus instructions that set marks that are never inspected can also be removed 
from the failure continuations. This is the case for any instruction of the form set...mark 
i, j for which no corresponding instruction of the form check...mark [ ... , i, ... ], j, L exists 
in any of the failure continuations for the clause. In this case, the set...mark instruction 
is redundant, and can be removed. 
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next2-1..FC: fail 
next2-2..FC: jWlp next2-1-1aBl 
next2-3..FC: check ... ark [3,5,8,9],2,next2-2..IaBl 

jump ne~t2-1-1sBl 
next2-4..FC: check ... ark [4,7,8,9],3,next2_3..IsBl 

check ... ark [4,7,8,9],2,next2-2..IsBl 
jump next2-1-1sBl 

next2-5..FC: set ... ark 5,2 
jump next2-3-1sBl 

next2-6..FC: jwnp next2-2-1sBl 
next2_7 ..FC: aet ... ark 7,2 

jWllp next2-4..IsBl 
next2-8..FC: set ... ark 8,3 

jwap next2-4-1sBl 
redo: set ... ark 9,2 

aet ... ark 9,3 
jump next2-4..IsBl 

Figure 4: Optimized Backward Execution Code for the Map Coloring Problem 

The result of applying the seLmark/ check_mark and redundant marks elimination 
optimizations to the code in Figure 3 is shown in Figure 4. The reduction in complexity 
of the code is dramatic. Approximately 65% of the total number of backward execution 
instructions have been removed. 8 of the check...mark instructions were converted to 
unconditional branches, and 13 of the remaining check..mark instructions were deleted 
as unreachable code, leaving only 3 of the original 21 check...mark instructions. 13 of 
the 18 set...mark instructions were removed by the redundant marks optimization. 

This example also illustrates that more space efficient representations of the marks 
set are typically available. The straightforward representation of the marks and can
didates sets for a clause with n body literals requires O(n) bits per set, or O(n2 ) bits 
per clause. After optimization, we may find some marks are never checked, so the 
corresponding sets can be represented in fewer bits. In the map coloring example, the 
optimized code requires only five bits to represent the marks set. A compiler will be 
able chose an efficient representation for both the marks sets and the associated masks 
for the set...mark and check..mark instructions. 

4 Discussion and Summary 

The goal of this research has been to show how efficiency and flexibility can be gained by 
making control of backward execution a "first-class" operation in AND parallel abstract 
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machines. The model has been implemented as part of our heap-based AND/ 0 R parallel 
abstract machine [4]. We have also looked at the possibility of using the algorithm in 
an extension to the RAP-WAM model [6,8]. 

One can view the architected approach described here as a tradeoff between instruc
tion bandwidth requirements and host complexity. Architectures in which failure is 
non-architected have lower instruction bandwidth requirements, but require more com
plex hosts . On the other hand, the architected failure approach has higher instruction 
bandwidth requirements, but requires a less complex host. In particular, no general 
purpose fail routine is required. Instead, by exposing the failure handling algorithms to 
compile time analyses and providing appropriate instruction set functionality, efficient 
clause-specific failure handling routines can be constructed. 

The costs incurred by the architected model derive from the overhead involved in 
manipulating the marks sets. This overhead has two components: the cost of individual 
instruction execution, and cost of the increased instruction bandwidth required by the 
model. Notice, however, that instruction execution can be made very efficient. In par
ticular, efficient bit-encoding of the marks set allows each instruction to be implemented 
as a short sequence of simple operations. For example, check..mark LS et, c, Label can 
be implemented on the Motorola 68020 as follows. First, suppose a marks set is repre
sented as a bit string, where the ith bit is 1 if literal i is in the set ( assuming we are 
using unoptimized representation of sets). If we assume an address register points to 
the state vector of the current process, three instructions will load the marks set of c 
into a register and check to see if elements of LSet are contained in it: 

move.l 
andi 
bne 

cmarks(Ai) ,Dj 
LSet,Dj 
Label 

load marks of literal c to Dj 
any marks in common? 

Thus, since the cost of executing the individual backtracking instructions is antic
ipated to be small, the overall cost of the architected model will be dominated by its 
additional instruction bandwidth requirements. These costs can be mitigated, however , 
by detecting determinate computations [5] (bypassing the marking algorithm in these 
cases) , and optimizations such as those described above. 

An interesting question is whether the increased instruction bandwidth vs. lower 
host complexity will pay off for a sequential Prolog machine. For software implemen
tations of the WAM, it is highly unlikely, as the fail routine simply has to work its 
way through the trail, checking to see if trailed variables are still on the stack or heap, 
resetting them to unbound if they are, and there is little to optimize in handling the 
failure of a procedure call. Architected failure handling might be worth investigating 
for VLSI implementations of machines with more complex trails. For example , SICStus 
Prolog pushes descriptors of goals to be executed on backtracking and previous values 

10 



of structures modified with setarg onto the trail. For a single-chip Prolog processor, it 
may well be worthwhile to recover the space devoted to a complex general purpose fail 
routine, devoting some of it to control for failure continuation instructions. 

The instructions presented here implement backward execution in programs with 
fixed data dependencies, determined at compile time. The resulting data dependency 
graph is represented in data structures ( such as the marks sets) of the AND process 
state vector, and as arguments of instructions that operate on the structures. We have 
also studied backward execution in systems that allow dynamic data dependencies. A 
companion paper describes a different data structure, known as a generator inheritance 
graph, which efficiently represents the set of possible dynamic data dependencies [9]. In 
that paper we show that the instructions presented here can operate as efficiently on a 
generator inheritance graph, for efficient backward execution in programs with dynamic 
data dependencies. 

Areas for further study include detailed analysis of the memory referencing behavior 
of the model, and further development of compiler technology along the lines described 
in [9]. Another interesting question regards the applicability of the architected fail
ure model to other execution models and languages . For example, architected failure 
handling may be advantageous to sequential logic programming execution models, or 
for other non-logic languages such as Icon that support "don't-know" nondeterminism 
through backtracking. 
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