CIS-TR-80-21

BROADCASTING IN TREES +
WITH MULTIPLE ORIGINATORS

by
Arthur M. Farley*

Andrzej Proskurowski*

Research supported in part by the National Science Foundation under
Grant ENG-79-02960.
Department of Computer and Information Science, University of Oregon,

Eugene, OR 97403

BROADCASTING IN TREES WITH MULTIPLE ORIGINATORé
N by
Arthur M. Fa;ley and Andrzej Proskurowski
Dept. of Computer and Information Science
University of Oregon

Eugene, Oregon 97403

Abstract

Broadcasting is the‘igformation dissemination process in aXC6mmunication network
whereby all sites of the network become informed of a given'message by calls made over
lines of the network. We present an algorithm which, given a tree network and a time
determines a smallest set of subtrees covering sites of the network such that broadcast
can be completed within the given time in each subtree. Information developed by the
algorithm is sufficient to determine a satisfactory originator and calling scheme within

each subtree.

1., . Introduetion

Broadcasting is the information dissemination process in a communication network

whereby all sites of the network become informed of a given message by calls placed over
lines of the network. We model a communication network by a graph G=(V,E) consisting of
a‘sethotiV g ivertices (sites) and a set E of edges (lines), each edge incidentstoda
pair of vertices. We model processes of information dissemination by the following con-
straints:

(1) information is disseminated in the form of messages;

(2) amessage is transferred by a call between adjacent sites;

(3) no site can participate in more than one call at any time.

The length of a message determines an associated time unit, being the time to complete

a call transferring the message. As such, we will talk about the number of time units
required to broadcast a message®
Broadcasting can be defined more formally as a sequence of sets SOQ;SIC}..,§;5t=V,

each set representing the sites informed of the broadcast message after time unit i,

Qs s e, « Foxr each v in S,l - Si 1 (i> 0), there exists an adjaceﬁt site in S, 1 not

- l—
assigned to another site of Si = S'—l' which calls u during unit time unit i. The
elements of SO are called the originators of the broadcast. The case where ISOI = 1 has

received considerable research attention in recent years. The minimum value of t for a

given network G over all broadcasts in G is called the broadcast time of Gi a site

from which such a broadcast is possible is an element of the broadcast center of G.

Slater, Cockayne, and Hedetniemi [10] have described an algorithm for determining both
parameters in an arbitrary tree network. A tree network is a connected, acyclic network.

Farley, Hedetniemi, Mitchell, and Proskurowski [3] investigated networks having the
fewest lines which allow broadcasting to be completed in the minimum possible time (i.e.,
log, |v| time units) from any site. Farley [1] discussed construction algorithms for
several such minimum-time broadcast networks requiring approximately the minimum number
of lines. The general problem of determining the broadcast time for a given network G
has been shown to be algorithmically hard (i.e., NP-complete) by Garey and Johnson [5].
This motivates approximate results as well as study of restricted classes of networks.
Proskurowski [9] has characterized minimum broadcast trees, being rooted trees which allow
broadcasting to be completed in log2 IV] time units from the root. 1In (2] , Farley con-
sidered broadcasting of multiple messages in completely connected networks.

In this paper, we consider a generalization of broadcasting in which several sites

> 1) within a network. This could arise within

may originate the message (i.e.,]SOI 2

practical situations in several ways. A subset of sites may be connected by a broad-
cast medium (i.e., radio), with message broadcast to be completed by calls over lines.
The situation may also arise from a hierarchical view of broadcasting within a network.
A message can be seen to be broadcast through a tree of sites, each such site also being

a member of a network at its "level" of the hierarchy. After broadcast in the tree is

completed, informed sites originate broadcasting within these level-based networks,
each such network having potentially more than one originator. .The»lines of the tree
may be of higher speed and capacity. Networks at each level may likewise have differ-
ing communication characteristics.

We present an algorithm which, given a tree network T and a broadcast time t, de-
termines a smallest set of subtrees covering the sites of T such that the broadcast
time for each subtree is less than or equal to t. Information developed by the algor-
ithm is sufficient to also determine a satisfactory originator and calling scheme for each
subtree. A solution to our problem for t <2 has been given as a special case of de-
composing trees into paths by Hedetniemi and Hedetniemi [6]. Our algorithm solves the
problem for arbitrary t >0. The algorithm is efficient, requiring time and space pro-

portional to]VI, with a constant of proportionality depending linearly on t.

2. Partitioning Trees by Broadcast Time

Trees, being acyclic connected graphs, have several properties which make themsuit-
able for the design of efficient solution algorithms. Most important is that each vertex
(and edge) separates the graph into two connected components. Therefore, there is an
absence of influence between subtrees of a given vertex other than that transmitted
through the vertex itself. This allows efficient algorithms to process a (current) leaf
vertex, update information at its single adjacent vertex, make globally correct decisions
based upon this local information, and prune the leaf vertex, removing it from the tree
and further consideration. We follow this paradigm in our solution algorithm for parti-
tioning trees according to broadcast time.

The input tree is represented recursively by a father array [8], which assumes an

arbitrary root vertex. The array contains, for each non-root vertex, a pointer to its
unique father (of lesser index) on the path to the root. During execution of the al-
gorithm, certain edges of the input tree are cut, disconnecting the tree and forming

a subtree of the partition. At any time, the connected component of the input tree

containing the root is called the current tree. We also refer to the unprocessed tree,

which initially corresponds to the input tree. During each cycle of the algorithm a
leaf vertex of the unprocessed tree is processed. After being procegsed, the leaf is
pruned (i.e., removed) from the unprocessed tree, though it will remain part of the
current tree until a cut disconnacts it from the root. With each vertex v of the input
tree, we associate the following :nformation:

(1) callees(v) - a list of previously processed, adjacent neighbors, ordered
according to the time v would call them in a minimum time broadcast;

(ii) maxtime(v) - the latest time unit during which v can be called and still com-
plete broadcasting within the required time in the subtree defined by v and
subtrees of the current tree rooted by vertices on calleeqv);

(1ii) mintime(v) - the earliest time unit that v can be called from a (necessary)
broadcast originator within a previously processed subtree of v in the current
tree;

(iv) caller(v) - the adjacent, processed vertex capable of calling v with the mes-
sage during time unit mihtime(v) from the predetermined originator.

For each vertex v, this information is initialized as follows: callees(v) and
caller(v) are set to nil (i.e., empty), maxtime(v) is set to t (as each could potentially
be called during the last time unit), and mintime(v) is set to O (as each could potenti-
ally be an originator). A vertex v which has a non-nil caller(v) value (has a processed
subtree containing a necessary originator) is classified as heavy. Otherwise v is clas-
sified as light; all vertices are initially light.

The processing of a leaf vertex depends on whether it is heavy or light. If a leaf
vertex u is light, the attempt is made to insert u into callees(v) of its father v. 1If
successful, maxtime(v) is updated and processing of u is complete. If u cannot be in-
serted, a necessary cut is introduced between u and v. If u is heavy (i.e., mintime (u)
> 0), then a check is made to see if a broadcast through u can reach all light subtrees
of u (by comparing mintime(u) and maxtime(u)). If not, the subtree rooted by caller (u)
is cut from the current tree and u becomes light and processed as described above. If

the light subtrees of u can be accomodated, then consideration of the father v begins.

If v is light, it becomes heavy with caller(v) being u. If v is heavy, a cut is intro-
duced, disconnecting the subtree rooted by e¢ither u or caller(vf from the current tree.
Each site.u has a set of potential timeslots (1 to t) during which it can call ele-
ments of callei(u). A function emptyslots scans calleg(u) determining the set of time
slots available below a given maximum time. “1he maximum or minimum value returned by
emptyslots is important in determining whether :ight subtrees can be accommodated by
heavy or father sites. This outlines the approc *h taken by algorithm BROADCAST, which

is formally defined as follows.

Algorithm BROADCAST

Input Tree T given by the array father, broadcast time t.

Output Partition of T into subtrees of broadcast time at most t fepresented by cut
edges of P,

Method begin

{0. Initialize} for each vertex u do

{0.1} begin maxtime (u) :=t;
{0.2} mintime (u) :=0;
{0.3} callees(u) :=nil;
{0.4} caller(u) :=nil end;

{1.Prune} for each vertex u do

if mintime(u) > 0 {a heavy leaf}

3.1} then if maxtime(u) < mintime(u) {u cannot be covered}

01 S 1) then begin mintime (u) :=0; cut (caller(u)); {u is light now}
UpdateFather (u)
end

e e else upminfather (u)

{1.2} else {a light leaf} UpdateFather (u)

end. {of BROADCAST}

procedure UpdateFather(u);
{of a light vertex}
begin if maxtime(u)=0 {root of a broadcast}
then {a vertex informed at time 0}
upminfather (u)
else upmaxfather (u)

end;

procedure upmaxfather (u) ;
{recomputer maxtime requircments}
begin v:=father(u); *
s:=max [emptyslots(callees(v), maxtime(u))];
if s=0 then cut(u) {v cannot accommodate u}
else begin insert (u, callees(v), s);
if s £ maxtime(v)
- then maxtime (v) :=s-1
end {v calls u at s}

end;

procedure upminfather (u);
{updates mintime info}
begin v:=father(u);
s:=min [emptyslots(callees(u) ,t+1)];
if mintime(v)=0 {a light node}
then begin caller(v):=u; mintime(v) :=s+1 end {v becomes heavy}
else if s < mintime(v) {a taller son}
then begin cut(caller(v));
caller (v) :=u;
insert(v,callees(u),s);
mintime(v) :=s+1
end
else cut(u)

end;

procedure cut(vertex);

{adds the edge between vertex and
*_ father(vertex) to the set of cut edges.}
function emptyslots(list,min) ;
{returns a set of timeslots less than min at which another callee

can be informed (inserted into list), or 0 if no such slot exists}

procedure insert(vertex, list, slot);
{inserts vertex on the list at time slot

maintaining the increasing time order of list}

3. Correctness and complexity of the algorithm

In this section we will state and prove lemmas verifying correct computation of
vertex (subtree) parameters during execution of the algorithm BROADCAST. These are used
to establish correctness of the algorithm. In our arguments, we use the notions of light
and heavy vertices, the current tree, and the unprocessed tree, as defined in the preced-

ing section. Additionally, by pruned subtree of a vertex v we understand a subtree

rooted at a pruned neighbor of v.

We first consider computation of the time parameters: maxtime and mintime.

Lemma 1 In the current tree S, the value maxtime(v) of an unprocessed vertex v equals
the latest time (counted from t=0, the origination of the message) in which v must be
informed in order to timely complete broadcast in its pruned light subtrees in S.

Callees(v) is the list of pruned light sons of v ordered by their maxtime values.

Proof During initialization, the value of maxtime(v) for each vertex v of T is set
to t, which is correct for vertices having no pruned light subtree; callees(v) is
initially empty. Let us assume that the values are correct just before a leaf of the
unprocessed tree is pruned. If this leaf is heavy and no cut is made, then the values
are left correct. A heavy leaf vertex u of the unprocessed tree whose caller must be
cut off (step {1.1.1}) becomes a light vertex of the new S. Both for such a vertex
and for an originally light vertex the procedure upmaxfather (called from UpdateFather)
correctly updates the values maxtime(v) and callees(v) of the father v. These values
stay unchanged if the light leaf vertex u has to be cut off. 1In this case, the dis-
connected subtree rooted at u does not influence the maxtime or callees values of the
father. Otherwise, the vertex u is inserted at an appropriate place in the list of
callees of v and, if its calling time is now the earliest, it redefines the maxtime

e, []

Lemma 2 In the current tree S, the value of mintime(v) of a heavy vertex v equals
the earliest time during which v can be informed of a message originated by a pre-
viously determined vertex in a pruned subtree of v. The heavy neighbor of v supplying

this message is caller(v).

Proof All vertices of T are initially light. A vertex v becomes Heavy when one of its
pruned sons u in S has maxtime equal to zero or is heavy. In both cases, the procedure
upminfather is invoked to update mintime (v) and éallcr(v) according to the parameters
of u. Let us assume that the values are correct just before u is pruned. In upmin-
father, the earliest available timeslot of u is determined. If v is light, then
caller(v) is correctly set to u and mintime(v) is accordingly set. If v is heavy, then
this timeslot is compared to the current value of mintime(v) and a cut minimizing the
resultant value of mintime(v) is made. If the current caller(v) is cut, then the
values are appropriately updated according to parameters of u, otherwise they remain

unchanged. (]

Lemma 3 In a current tree S, a heavy vertex cannot have two pruned sons which are heavy,

or have maxtime equal to zero.

Proof The broadcast time for a subtree of pruned vertices of S rooted at vertex u is
greater than t if u is heavy or equal to t if maxtime(u)=0. Thus, the message to be
broadcast to u cannot originate outside of its subtree as implied by a heavy brother in
S. 1In the procedure upminfather such a situation is prevented by cutting off one of

(]

the two heavy vertices.

Lemma 4 In the current tree S, a pruned vertex v can have a heavy son u only if u can

call v at or before maxtime(v).

Proof By Lemma 1, we know it requires t - maxtime(v) time units to complete broadcast-
ing from v to its light, pruned subtrees in S. Therefore, a broadcast cannot be com-

pleted by time t if v is not informed prior to or at maxtime(v). When heavy son u

' 10

cannot inform v prior to or at maxtime(v), the neccessary cut is made in step {1.1.1}.

Theorem 1 Algorithm BROADCAST computes a minimum-size partition of tree T such that a

message can be broadcast from a single originator in ecach subtree within time t.

Proof Let b(T,t) be this minimum size and c(T,S) be the number of.invocations of
procedure cut in the algorithm on T, when the current tree is S. We have to prove
that c(T,$)=b(T,t)-1. This will be shown be establishing the invariant value of
c(T,S)+b(S,t) during the execution. Indeed, the current tree changes only when cut is
invoked in one of three cases: (i) when pruning a hcavy vertex which cannot be accom-
modated (called) from its heavy descendant in S, (ii) when cncountering two heavy sons
in upminfather, or (iii) when a light vertex cannot be informed by its father in the
required time (in upmaxfather). 1In all these cases, a cut has to be made according to
Lemmas 3, 4 and 1, respectively. The cut results in a heavy vertex with smallest pos-
sible value of mintime ((ii)), or in a light vertex with largest possible value of
maxtime ((i) or (iii)). 'This ensures that the new current tree, S', hash Ehesmin imen
value of b(S'',t) over all subtrees S'' of S such that the cutoff subtree S=5''""has o
broadeast time at most t. 'Thus, bi(S',t)=b(S,t)-1 and c(T,S')=1+c(T,.S). Theretore,
c(T,5')tb(S"' ,t)=1+c(T,S)+b(S,t)-1=c(T,S)4b(S,t). Initially, S=T, and this constant
value c(T,T)+b(T,t)=b(T,t). After the final cut has been made, the resulting current
subtree S''' has broadcast time at most t and thus it is the only component in its
eptimal partitioning, b(S''',t)=1. Thus c(T,S'"")+b(S''',t)=b(T,t), and as nolmore
cuts are made, ¢(T,®)=c(T,S''')=b(T,t)-1. (]

The pruning strategy employed in the algorithm BROADCAST guarantees that each ver-
tex is processed exactly once and thus the complexity of the algorithm is defined by the
vertex. These procedures, in turn, involve at most onc call of cmptyslots and/or insert
which requirc number of operations in the order of length of the relevant (callee) list.

This list of light sons of a vertex in u is never longer than t. Hence, the following

theorem determining the complexity of BROADCAST.

(1

£l

Theorem 2 Given a tree T with n vertices and a broadcast time t, the execution time

of algorithm BROADCAST is O(nt).

4, Conclusion

In this paper, we have presented a linear algorithm for decomposing a given tree
into subtrees, each subtree having a broadcast time less than or eéual to a given time.
This algorithm can be seen as one of a family of linear tree partitioning algorithms [4].
Partitioning techniques can be seen as alternatives to methods determining multiple cen-
Eera cf. (7] and [41).

Partitioning based on broadcast time is well-motivated from an applications per-
spective. Other models of the information dissemination process would lead to different
decomposition problems. For example, associating a call time with each line to reflect

average load (i.e., gqueue length), is a reasonable extension of our model.

5. References

[1] A.M. Farley, Minimal broadcast networks, Networks 9 (1979), 313-332.

[2] A.M. Farley, Broadcast time in communication networks, SIAM J. Applied Math. 39,

2, {1980),
[31 A.M. Farley, S.T. Hedetniemi, S.L. Mitchell, and A. Proskurowski, Minimum broad-

cast graphs, Discr. Math 25 (1979), 189-193.

[4] A.M. Farley, S.T. Hedetniemi, and A. Proskurowski, Partitioning trees: matching,
domination and maximum diameter, CS-TR-80-2, University of Oregon.

[5] M.R. Garey and D.B. Johnson, Computers and Interactability, Freeman, San Francisco

(1978) , page 219.

[6] S.M. Hedetniemi and S.T. Hedetniemi, Broadcasting by decomposing trees into paths
of bounded length, CS-TR-79-16, University of Oregon.

[7] ©O. Kariv and S.L. Hakimi, Algorithmic approach to network location problems I:

the p-centers, SIAM J. Appl. Math 37, 3 (1979), 513-530.

[8] D.E. Knuth, The Art of Computer Programming, vol. I, 2nd Ed., Addison-Wesley,

New York (1973), page 354.

12

[9] A. Proskurowski, Minimum broadcast trees, CS-TR-78-18, University of Oregon.
[10] P.J. Slater, E.J. Cockayné, S.T. Hedetniemi, Information dissemination in trees,

CS-TR-78-11, University of Oregon.

