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DISSERTATION ABSTRACT 

 

Melissa Emily Moss 

 

Doctor of Philosophy 

 

Department of Psychology 

 

March 2023 

 

Title: The Role of Hierarchical Structures in Cognition 

 

 

Individuals routinely execute complex tasks that involve multiple, dependent levels of 

information, such as driving a car or cooking dinner. It is amazing that our cognitive system is 

able to represent such complex, hierarchical tasks without becoming overwhelmed by the sheer 

amount of information needed to successfully complete the task. Hierarchical tasks require the 

integration of multiple levels of information. How the cognitive system organizes and uses this 

hierarchical information is a key question in cognitive psychology. Through disparate literatures 

in psychology, including serial-order control, task switching, and learning, this phenomenon has 

been studied from multiple angles. Many findings from these different areas point to the 

existence of hierarchical cognitive structures for representing complex tasks, though many 

questions remain. In this dissertation, I first address the question of how relationships between 

hierarchical components are defined and used by the cognitive system. Then I assess how the 

cognitive system allocates resources when executing hierarchical tasks. Finally, the question of 

related cognitive processes and of the application of hierarchical control to different types of 

complex tasks is addressed, using an individual differences approach. 

This dissertation includes previously published and unpublished co-authored material. 
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CHAPTER I 
 

INTRODUCTION 

 

 

Many skills and tasks require the cognitive system to handle multiple dependent levels of 

information. For instance, when dancing with a partner, it is necessary to know what step is 

being cued by the other person’s preparation movement, based on information concerning the 

type of dance at the “top” level, and below that, which step within that dance type is being 

signaled, and further, what set of motor actions is required to produce that dance step. Thus, 

something as simple as a waltz is actually quite complex and hierarchical in nature. In another 

dance situation, performing a choreographed dance requires continued knowledge of where you 

are in the sequence of steps, to execute the moves in the correct order. Basic sets of motor 

actions are grouped, or “chunked,” into individual dance steps, which are then chunked into 

eight-count series of steps. Based on what eight-count you are in, and which step in the eight-

count you just executed, you can determine the next dance step. To be able to execute such a 

complex task, in the form of either partner-cued dance or serially ordered choreography, an 

individual must rely on their internal representation of the set of dance movement rules.  

The information necessary for executing these, and other, complex tasks is organized 

hierarchically. By this definition, hierarchical tasks are those in which decisions must rely on 

multiple levels of information, such that decisions on one level depend on decisions made on a 

higher level, which in turn might depend on still higher-level decisions. Situations such as these, 

in which an individual must maintain and utilize multiple interdependent levels of information 

may also require hierarchical cognitive representations. It is important to differentiate here 

between hierarchical tasks on the one hand, and cognitive structures on the other. I focus on the 
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question of how the cognitive system represents complex, or hierarchical, tasks. The task 

components or rules themselves are hierarchical, but that does not necessarily mean there are 

parallel structures in the cognitive representations of the tasks. If these types of tasks are 

similarly structured in the cognitive system, then those structures in cognition may be referred to 

as hierarchical cognitive structures or hierarchical representations. The general term for 

representing and using hierarchical concepts will be referred to here as hierarchical control. The 

chapters of this dissertation investigate different questions concerning the nature of these 

representations. 

Relationships between Hierarchical Components 

Foundational work in the field of hierarchical control has tried to identify how the 

structure of complex sequential information is represented by the cognitive system. In arguably 

the most important foundational paper in serial-order control, Lashley (1951) rejected the most 

prevalent theory at the time of associative chaining, in which each element in a sequence cues 

the next by direct association, as too simple a mechanism. Instead, the cognitive system 

organizes complex sequences of elements into subgroups, called chunks. Therefore, positional 

information concerning the location of element within chunk and chunk within sequence must be 

utilized in the execution of complex serial-order tasks. 

Following Lashley’s proposition that serial position information is necessary in 

hierarchical control, Restle (1970) found that people recognize and use abstract patterns when 

learning and executing serial-order tasks. Complex sequences are decomposed into subsequences 

represented in cognition as systems of rules to be applied serially. These rules, or codes, utilize 

information concerning sets of patterns with the same structural relations in a sequence, and it is 
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these relationships between units that allows the cognitive system to handle complex sequences 

(see Figure 1.1).  

Restle’s application of structural trees from computer science to serial-order processes 

provided the basis for the tree traversal interpreter model (Collard & Povel, 1982). The tree 

traversal interpreter presents a possible mechanism for how hierarchical representations of 

sequential information, in the form of memory codes or 

formulas, are translated into the structural trees used in the 

execution of sequences. When executing a sequence, the 

tree traversal interpreter decodes the hierarchical 

representation, yielding a set of transformations that 

correspond to the differences between subsequent 

elements. In other words, each element in a sequence can 

be computed from the previous element by applying the 

appropriate operations to traverse the structural tree. This 

interpretation process occurs on-line, and each 

transformation is executed in a serial fashion, along the 

structural tree. Because each step in the structural tree (within or across level) requires an 

additional operation, longer paths between adjacent elements (e.g., between the last element in 

chunk 1 and the first element in chunk 2) should require more time to traverse. The tree traversal 

interpreter model provided a possible explanation for how subunits connect, and how an 

individual can get from one component to the next, by utilizing relationships between them to 

traverse the hierarchical structure. 

Figure 1.1. Example of the tree 
diagram for a long, regular binary 
pattern. M = mirror, T = 
transposition, R = repeat. Applying 
each operation of the formula to 1, 
from the furthest nested out, results 
in the sequence shown across the 
bottom of the structural tree. From 
Restle (1970). 
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Miller, Galanter, and Pribram (1960) proposed that the subcomponents within this 

possibly hierarchical cognitive structure operated as Test-Operate-Test-Exit (TOTE) units (see 

Figure 1.2). In this model, a recursive feedback loop, or set of loops, were proposed to be the 

basic units of behavior by which complex information, such as that required for hierarchical task 

execution, can be processed. Different elements can be 

placed into each TOTE unit in a sequence, and the units are 

completely modular, meaning they can be organized in any 

order. In contrast to the model put forth by Restle, in which 

relationships between chunks are utilized, the TOTE model 

proposes that all units are independent of and “blind to” 

each other. This work provided the basis for 

conceptualizing a decontextualized control model for 

learning and task execution. 

Based on this TOTE model, the efficiency of 

hierarchical cognitive control representations would seem to come from the modularity of 

different representational units, or chunks, within a hierarchical structure, which allows flexible 

rearranging and eliminates potential interference across units. In this idealized architecture, 

different units are accessed through symbols that carry no information about what is in a 

particular unit. Yet, such an architecture also comes with the drawback that the relationships 

between representational units cannot be utilized when encoding or using such structures. More 

importantly, there is empirical evidence that people are able to use exactly such relationships to 

arrive at parsimonious representations of complex structures. For instance, as previously 

mentioned, Restle (1970) showed that people can identify and use similarities across sequences, 

Figure 1.2. The TOTE unit. If the 
“test” criterion is not met 
(“incongruity”), an “operation” step 
would be performed on the 
stimulus, and then it would be re-
tested, at which point it would 
either meet the test criterion 
(“congruity”) and exit the loop, or it 
would re-enter the loop. From 
Miller, Galanter, & Pribram (1960). 
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such that performance with transposed sequences was better than with random sequences. This 

finding indicates that the cognitive system may be able to exploit similarities across 

“independent” groupings. Whether and how the cognitive system identifies and uses these 

relationships between modules in hierarchical representations is unknown. How are relationships 

between modules discovered by the cognitive system? Do they only occur in domains that 

contain inherently ordinal structures, such as numerical patterns? Is this type of pattern detection 

an emergent quality with the acquisition of skilled or routine action, or is it utilized from the 

outset? 

Dehaene and colleagues (2015) argue that chunks are represented by their abstract 

grammatical schemas, or “algebraic patterns defined by identity relationships,” (p. 9) and then 

organized within nested (hierarchical) tree structures. For instance, the steps left-left-right follow 

an A-A-B pattern, which would more closely resemble another A-A-B chunk of steps (e.g., 

forward-forward-backward) than a different chunk pattern, such as forward-backward-forward 

(A-B-A). Research with spatial sequence learning has demonstrated that these algebraic patterns 

can be identified and used by the cognitive system in order to represent complex sequences most 

efficiently (Amalric et al., 2017). In this context, complexity is defined by how much of the to-

be-represented hierarchical structure can be compressed based on patterns or regularities across 

chunks. Though these findings have not yet been generalized to non-spatial sequences or non-

serial hierarchical tasks, they provide convincing evidence of one way in which the cognitive 

system might utilize positional information within chunks to identify relationships between the 

chunks of hierarchical information. Further, they give an early indication that the cognitive 

system may be built to look for relationships between chunks from the outset, although the 

ability to exploit those similarities must be strengthened through learning of the sequences.  
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How can these findings be reconciled with the theoretical assumptions of hierarchical 

structures as modular and content-independent? Going back to the early work concerning 

structural trees (Collard & Povel, 1982; Povel & Collard, 1982; Restle, 1970), it was theorized 

that an interpretation process happens in which sequential representations, encoded as memory 

codes of some sort, are translated into a set of transformations that compute each element from 

the one before, in order to establish the structural trees that must be traversed in the execution of 

complex sequences. This work highlights a mechanism by which relationships between 

sequential components can be utilized in order to navigate the hierarchical structure. Following 

this logic, chunk similarity (regularity) information may initially be encoded as part of the serial-

order representation and then utilized when decoding the representation into executable 

sequential elements. This idea provides an alternative to the standard TOTE model of 

hierarchical representations. 

Processing Constraints in Hierarchical Control 

Though most of the work in hierarchical control focuses on defining or characterizing the 

types of representations that are involved, it is also important to understand why hierarchical 

control is difficult. In other words, what cognitive resources are necessary, and how do 

processing constraints arise when traversing the representational structures for hierarchical tasks?  

The adaptive gating model identifies a biologically plausible mechanism for processing 

hierarchical information in the brain, by defining hierarchical control through recurrent 

connections between cortical and subcortical brain regions (Frank, Loughry, & O'Reilly, 2001; 

O’Reilly & Frank, 2006). In this model, there are working memory stripes, or slots, in the 

prefrontal cortex (PFC) that can encode different elements or sets of elements. This 

representation can be maintained through recurrent connections within PFC, or flexibly updated 
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based on inputs from other areas. The basal ganglia enforce a gating mechanism whereby 

additional information can only flow to PFC when the gate is “open” (i.e., when the striatum 

disinhibits signals between frontal and motor regions). Each step of this integration/maintenance 

process requires cognitive resources. However, it is not clear exactly when the different steps 

occur, and therefore when different amounts of resources are used, within the execution of a 

hierarchical task. 

Processing constraints could arise from either the integration of information across 

multiple levels at updating points or the maintenance of complex structures requiring the 

recruitment of more representational resources, or a combination of both. In order to address this 

question, it is important to determine what exactly causes performance to suffer with more (i.e., 

higher) hierarchical levels, referred to here as the number of levels, or “n-of-levels” effect.  

If cognitive representations assume a hierarchical structure according to the standard 

TOTE model, then a complex task to be executed should be divided into its subcomponents, such 

that different hierarchical levels occupy distinct representational subspaces (Miller et al., 1960). 

This division into independent components across levels would protect lower-level decisions 

from the cognitive demands on higher levels of the hierarchy. In this way, starting at the top of 

the hierarchy, each level can “program” the next lower level in a ballistic manner (Povel & 

Collard, 1982), and performance costs at each level of the hierarchy would only occur when 

settings on that level needed to be updated, or reprogrammed. If this were the main processing 

constraint, n-of-levels effects would be confined to points of updating, during which information 

needs to be integrated across levels. Further, this n-of-levels effect would disappear in situations 

that maintain the same settings and therefore do not require updating. 
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Alternatively, maintenance within a global representational working memory space might 

be necessary for traversing multilevel control structures (Dehaene, Kerszberg, & Changeaux, 

1998; Waltz et al., 2000). In this case, additional information (in the form of additional levels) 

would simply take up more representational resources: The more levels a complex task includes, 

the more neural resources are required to represent both the full hierarchical structure and the 

current state, or location, within that structure. If this type of maintenance is required in 

hierarchical control, performance costs should occur as a function of total amount of information 

being represented, and this effect should be present across all levels, regardless of level-specific 

decisions (Monsell, 2003). In this case, there would be global costs in the form of static n-of-

levels effects based on the size of the hierarchical structure, regardless of the requirements of 

specific decision points. Interestingly, this behavioral indicator of maintenance can only be used 

for non-serial, or cue-based, paradigms in which it is possible to have a true no-updating 

condition (i.e., no movement from current position in the hierarchical structure). The 

interpretation becomes ambiguous in a serial-order paradigm, due to the fact that in sequential 

execution, position within the hierarchical structure must be updated with every action. Because 

of this, it is possible (and theoretically more plausible) that a maintenance-like effect on 

performance in serial order would actually be due to the updating process occurring at every 

decision point instead of only during the traditional decision tree branching points. There is not 

yet a solution for this ambiguity, because we have no way of creating a fully maintenance-based 

situation in sequencing. This marks an important difference between serial-order and cue-based 

hierarchical structures, in terms of research methods and interpretation. However, it does not 

provide direct evidence of whether or not serial-order and cue-based hierarchical tasks rely on 

the same resources or conform to the same underlying structures. 
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Defining Hierarchical Structures Across Individuals 

To what degree is hierarchical control a unique phenomenon, above and beyond other 

cognitive control processes? This question actually has three parts. First, is there a “universal” 

structure of hierarchical control, identifiable across individuals, and if so, how are complex tasks 

broken down? Second, does performance vary more between individuals when they are dealing 

with higher levels of abstraction, versus lower levels? And third, if this is the case, can the 

unique higher-level variance be explained entirely by known constructs, such as working 

memory capacity, long-term memory, and fluid intelligence, as well as differences in motivation 

or learned strategies? In other words, can variability between hierarchical levels be completely 

explained by existing cognitive constructs, or is hierarchical control a unique process? This 

question is best addressed in terms of individual differences, to empirically determine 

hierarchical level and derive the unique sources of variance across individuals for each level, as 

well as for serial-order versus cue-based hierarchical control tasks. 

Unsurprisingly, hierarchical control ability correlates to other cognitive control processes. 

Early work from Marshalek, Lohman, and Snow (1983), Just and Carpenter (1985), and 

Carpenter, Just, and Shell (1990) expanded the understanding of structures associated with 

control of higher cognitive processes and systems, such as intelligence and spatial ability, and 

provided support for the idea that cognitive control structures themselves can be hierarchical. 

Carpenter et al. (1990) used both experimental approaches and simulations of performance on 

the Raven Progressive Matrices Test (“Ravens”) and Tower of Hanoi task to identify the 

hierarchical processes utilized in tasks that require fluid intelligence. From this work, they 

proposed a process by which individuals are able to represent multiple abstract relations and 

access them dynamically as necessary, to accomplish task goals. The Ravens and Tower of 
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Hanoi tasks both require hierarchical rules to be maintained. However, the rules are applied 

serially in the Tower of Hanoi task, whereas there is no seriality requirement for solving the 

Ravens task. Therefore, in addition to identifying a relationship between fluid intelligence and 

hierarchical control, this work also provides evidence of shared resources across the two types of 

hierarchical control processes, with very high correlations between performance on the two tasks 

(r=.77, p<.01). In other words, more hierarchically complex tasks, regardless of format, are more 

central to the inter-individual differences in fluid intelligence. Just and Carpenter (1985) 

identified similar hierarchical processes concerning spatial ability, whereby differences in type of 

cognitive coordinate systems led to individual differences in mental rotation and the ability to 

solve spatial tasks. This early work identified relationships between hierarchical control and 

other cognitive processes and established hierarchical control itself as an important function of 

cognitive control. Though these studies provide important evidence of the relationship between 

hierarchical control and other higher-level cognitive processes, it is important to note that fluid 

intelligence, for instance, is itself a complex activity. Therefore, the relationship of hierarchical 

control with fluid intelligence does not clarify its relationship with more basic cognitive 

resources, such as those involved in working memory and long-term memory. 

Working memory capacity has been identified as another cognitive process that is 

strongly related to hierarchical control. Bo and Seidler (2009) tested whether visuospatial 

working memory capacity affected the learning and organization of explicitly acquired motor 

sequences, using a paradigm in which 12-element finger tapping sequences were instructed, with 

no fixed grouping patterns. The chunks formed by each subject were defined by identifying 

chunk boundaries in their data (i.e., elements with significantly longer RTs). Participants who 

used longer chunks and those who began using consistent chunking patterns early in learning 
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performed better in the serial-order task. They also found a strong positive correlation between 

working memory capacity and both rate of early learning and chunk length. However, it should 

be noted that the correlation between working memory capacity and overall sequence RTs was 

not significant (although it was trending in the right direction), which introduces some ambiguity 

into the relationship between working memory and serial-order control. Additionally, this study 

found evidence of item-dependence in early but not later representations, indicating that 

chunking patterns become more abstractly represented with practice. Building upon this work, 

Kikumoto and Mayr (2018) found that individuals with lower working memory capacity showed 

worse performance at chunk transitions, compared to those with higher working memory. This 

indicates that working memory plays a role in identifying or retrieving the next chunk in a 

hierarchical structure. EEG decoding results further clarified the role of working memory 

capacity, showing that only high-capacity individuals were able to maintain a robust 

representation of sequential context in the form of current chunk identity, while executing 

within-chunk elements. Thus, working memory capacity selectively constrains an individual’s 

ability to represent both the current action and the higher-level contextual information necessary 

for traversing hierarchical structures. 

In other research, multitasking, a situation that clearly requires hierarchical control, has 

been found to strongly correlate with working memory capacity and fluid intelligence (Redick et 

al., 2016), as well as long-term memory (Burgess et al., 2000). The relationships between these 

constructs are important to understand and account for when measuring hierarchical control, in 

order to determine how much of the effect is actually due to the act of managing and traversing 

hierarchical representations, above and beyond other important and strongly implicated cognitive 

control processes. 
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Though there is a well-documented relationship between working memory, long-term 

memory, and hierarchical control, there are remaining ambiguities. For instance, the construct of 

working memory comprises multiple processes, including the temporary storage process 

(maintenance) and storage limits (capacity), as well as retrieval and manipulation (processing) of 

representations (Unsworth et al., 2014; Unsworth & Engle, 2007). Different tasks require some 

of these processes more than others, indicating that the processes of working memory really do 

fill different roles. Further, the functions of working memory that deal with encoding and 

retrieval are clearly intertwined with long-term memory processes. To this end, it may be useful 

to split working memory into a storage component and a long-term memory encoding/retrieval 

component, in order to determine whether both facets of working memory are related to 

hierarchical control. It may also be the case that these different components of working memory 

are important for separate aspects of hierarchical control. For instance, working memory storage 

may be more important for determining the size of subunits or chunks in hierarchical 

representations, while retrieval processes may be necessary for determining which chunk to 

execute next at each decision point. It is also important to note that the cognitive processes 

implicated in hierarchical control (fluid intelligence, working memory, and long-term memory) 

have been shown to strongly correlate with each other (Unsworth et al., 2014). The complexities 

of these relationships must also be considered when modeling their unique contributions to 

hierarchical control processes. In principle, a comprehensive structural equation model should be 

able to account for these processes in order to assess whether hierarchical control is its own 

unique process. Further, this type of model would allow us to analyze the relationship between 

these related constructs with each hierarchical level separately, to determine if and to what extent 

they are differentially necessary resources across level of task complexity. 
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Overview of the Dissertation 

The goal of this dissertation is to characterize the relationships between hierarchical components, 

and across hierarchical structures. In three empirical studies, I demonstrate how the cognitive 

system organizes hierarchical units in relation to one another (Chapter 2), the unique processing 

demands of executing cue-based and serial-order hierarchical tasks (Chapter 3), and whether 

individual differences in performance of different hierarchical tasks can be explained by unique 

cognitive processes (Chapter 4). 

The extant body of work providing evidence of inter-chunk relationships in serial-order 

control includes only studies using material with some kind of inherent order, such as sequences 

of numbers or finger taps. However, it is unclear if the same conclusions could be drawn 

concerning relationships between chunks in which there are no easy mathematical transitions 

(e.g., when dealing with hierarchical rules or goals). We will address this gap in Chapter 2, using 

an explicit sequencing paradigm to determine whether the cognitive system is able to exploit 

similarities across chunks. In line with previous work (Amalric et al., 2017; Restle, 1970), chunk 

similarities are determined by the abstract patterns, or grammars, of the chunked elements. 

Importantly, the chunked elements are not mathematically related to one another, but are instead 

groups of rules to be applied to the stimulus on each trial. Thus, this set of experiments uses 

completely non-numerical sets of elements, in order to determine how abstract the cognitive 

representations of sequential information can be. Here, we will provide evidence across four 

experiments that serial-order performance benefits from chunks with matching abstract patterns, 

indicating that the cognitive system can indeed determine grammatical similarities from non-

numeric patterns. Further, we will demonstrate that the cognitive system is able to identify such 

abstract relationships between chunks from the outset. 



 

25 

 

Chapter 3 will address the question of where processing constraints arise when 

performing serial-order and cue-contingent hierarchical tasks, using a model-based approach. To 

address the question of processing demands across hierarchical level and task structure, we use 

an experimental design that included three tasks, each split into four hierarchical levels, in both 

serial-order and cue-based formats. This symmetry between the serial-order and cue-based tasks 

allows us to compare analogous models of hierarchical control processing across the two 

formats. We will present two experiments: an in-lab version (n=23), for which various 

exploratory analyses were used to fine-tune our models, and an online version (n=53), in which 

we replicate our findings using the predefined models on a new sample. Here, we will determine 

the pattern of processing constraints for hierarchical control, as updating and adjacent-level 

integration costs in cue-based tasks, and global maintenance costs in serial-order tasks. This will 

provide evidence that serial-order and cue-contingent hierarchical structures have potentially 

different processing constraints, and therefore, though related, could possibly be considered 

distinct from one another. 

Chapter 4 will explore the structure of hierarchical control across individuals and the 

relationship between hierarchical levels and other cognitive constructs. Previous neuroimaging 

work has provided evidence of distinct anatomical regions and functional pathways for 

processing different hierarchical levels (Badre & Nee, 2018; Frank & Badre, 2012; Koechlin, 

Ody, & Kouneiher, 2003; Ranti, Chatham, & Badre, 2015). However, given that these studies all 

used within-subjects methods, it is unclear how the different hierarchical levels affect inter-

individual performance differences in hierarchical tasks. In order to address this, we will first 

determine the structure of hierarchical control by comparing structural equation models. We will 

then use the best models to ask whether performance varies more between individuals when they 
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are dealing with higher levels of abstraction, versus lower levels. Further, we will determine 

whether serial-order and cue-based tasks utilize the same hierarchical structures. Finally, we will 

determine whether the different levels have unique relationships with other constructs, such as 

working memory capacity, long-term memory, and fluid intelligence. 

Together, this set of empirical findings will help to characterize the how the cognitive 

system subdivides hierarchical task representations into independent subspaces, and in what 

ways information is or is not integrated across the distinct subspaces. 
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CHAPTER II 

THE EFFECT OF ABSTRACT INTER-CHUNK RELATIONSHIPS ON SERIAL-ORDER 

CONTROL 

From Moss, M.E., Zhang, M., & Mayr, U. (2022). The effect of abstract inter-chunk 

relationships on serial-order control. [Submitted for publication]. Department of Psychology, 

University of Oregon. Preprint available at SSRN: https://ssrn.com/abstract=4303221 or 

http://dx.doi.org/10.2139/ssrn.4303221 

 

1. Introduction 

Since the beginning of the cognitive revolution, hierarchical control has been viewed as a 

core element of human cognition that enables complex action patterns. Recently, this interest has 

been revived, mainly through neuroscience evidence suggesting a neuroanatomical reality to 

hierarchical levels (Badre, 2008; Koechlin et al., 2003). Theories of hierarchical control that 

have developed alongside the neural evidence usually suggest that higher levels of control 

represent the context or rules that shape the current, lower-level processes. On each level, 

selection of the currently relevant representation is shaped by the context provided by the 

representations in the next-higher level. The elements on a given level are typically treated as 

individual entities that are selected one at a time, often assuming a winner-take-all selection 

mechanism and therefore to the exclusion of competing entities on the same level (Duncan, 

2010; Miller et al., 1960; Rosenbaum, Kenny, & Derr, 1983). This strategy provides a divide-

and-conquer approach to complex task spaces: By carving a larger task into separate, 

manageable subspaces, interference can be eliminated and the lower-level subspaces can be 

flexibly recombined to solve new problems (Badre & Nee, 2018). 



 

28 

 

Notions of hierarchical control have been particularly important in the context of serial-

order control of action sequences, such as playing the piano, typing, or processing language. 

People tend to proceed through complex sequences in “chunks” of 3-4 basic elements (e.g., notes 

in a piece of music), rather than in an element-by-element manner (Lashley, 1951). Chunks, in 

turn, can be organized into larger subsequence plans, and so forth (Dehaene et al., 2015; Krampe, 

Mayr, & Kliegl, 2005; Lashley, 1951). The borders of chunk representations within a larger 

sequence can be identified by higher RTs and lower accuracy rates at the chunk transition 

positions (Lien & Ruthruff, 2004; Schneider & Logan, 2006; Wu et al., 2017). 

From the perspective of currently dominant models of hierarchical control, these types of 

behavioral patterns can be explained by assuming that on each level only one chunk or plan is 

active at a time, specifying the sequence of within-chunk elements on the level below. This 

comes with the implicit assumption that a chunk-level code “knows nothing” about its contents 

(the specific elements it contains), or of the serial-order or content in competing chunks (Fitch & 

Martins, 2014). Such knowledge transfer between chunks or levels would create exactly the kind 

of interference across regions of the task space that the hierarchical “divide and conquer” 

strategy is supposed to eliminate.  

Interestingly however, much of the early literature on serial-order control indicates that 

abstract relationships between the content of chunks on the same level impact behavior. Such 

evidence comes from studies requiring participants to learn key-press sequences, which either 

followed abstract patterns or not, from feedback. Most notably, Restle (1970) showed that people 

use similarities across consecutive parts of a sequence, such that performance with transposed 

elements was better than with random sequences (Collard & Povel, 1982; Koch & Hoffmann, 

2000; Povel & Collard, 1982). More recently, Dehaene and colleagues (2015) argued that chunks 
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are encoded in terms of their abstract grammatical schemas, or “algebraic patterns defined by 

identity relationships,” (p. 9) and then organized within nested (hierarchical) tree structures. 

Further, Amalric et al. (2017) have provided evidence that people spontaneously apply geometric 

primitives to spatial sequences in order to recursively organize entire sequences. 

The fact that the cognitive system appreciates abstract, inter-chunk relationships provides 

a theoretical challenge for models that assume only one chunk on each level is active at a time, 

and only placeholders that do not themselves contain chunk-relevant information are present on 

the level above (Fitch & Martins, 2014). However, the relationship between sequential 

performance and chunk similarity has only been demonstrated using learning paradigms in which 

participants were asked to “discover” a given sequence through hypothesis testing and feedback. 

Further, this previous work always used stimuli with an inherent order, such as sequences of 

numbers or spatial locations. With these limitations, it is not clear whether the appreciation of 

abstract inter-chunk patterns is a general feature of serial-order representations, or if it is simply 

limited to learning situations and ordered sets of stimuli for which inter-stimulus relationships 

can be derived from simple arithmetic operations.  

Therefore, we aim to address here the following questions: 

1) Are abstract patterns relevant, even in the absence of ordered sets of elements? If it is the 

case that chunks may be represented relative to one another based on shared content-

independent patterns (Dehaene et al., 2015), executing a given chunk is not determined 

only by the chunk itself, but also by its abstract relationship to “neighboring” chunks, 

even when there is no intrinsic ordering relationship between elements. In this case, 

retrieval and execution of complex sequential information should benefit when 

neighboring chunks share abstract grammars. For instance, if our cognitive system uses 
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this coding of chunk patterns, the two-chunk sequence ABB-CDD, in which each letter 

stands for a basic element (such as a musical note or a stimulus-response rule, as in the 

current study), should be easier to execute than the sequence ABB-DCD, because the 

former uses a common chunk grammar across the sequence, whereas the latter does not.  

2) By the “standard model”, two competing chunks should not be active at the same time, 

which leads to the question of how exactly abstract, inter-chunk relationships are 

discovered and used. One possibility is that inter-chunk relationships are relevant when 

transitioning from one chunk to the next, possibly in a short time window during which 

both chunks are active. In this case, benefits from abstract relationships should be 

particularly strong during chunk transitions. Alternatively, sequences with abstract inter-

chunk relationships may be overall represented in a more efficient manner that decreases 

inter-chunk interference, in which case there would be benefits across all chunk positions. 

3) Does appreciation of abstract patterns emerge over time, or can they be exploited by the 

cognitive system from the outset? Given that previous work in this area has used learning 

paradigms in which relationships between chunks were established gradually through 

hypothesis testing, the question of gradual learning versus instantaneous use of abstract 

chunk relationships has yet to be addressed experimentally. Using explicitly instructed 

rule sequences, we aim to determine to what degree the cognitive system has an a priori 

expectation of relationships between chunks. If abstract relationships must be gradually 

discovered, we should see differential improvement across repetitions of sequences with 

more versus less similar chunk grammars. However, if our cognitive system generally 

expects to encode chunks relative to each other patterns, we should see benefits in 

performance of sequences containing similarly patterned chunks from the outset. 
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2. Experiment 1: Shared-Element Chunks 

In order to address our hypothesis, we began with constructing sequences that followed 

relatively closely the types of sequences used in the work by Restle (1970) in that in our 

“matching” sequences, abstract relationships were used to translate one part of the sequence (i.e., 

chunk) into the next. However, given that we used no ordered set of stimuli, no arithmetic 

transformations could be applied here.  

2.1. Methods 

2.1.1. Participants 

Data were collected from 56 undergraduate students at the University of Oregon. Existing 

research provides no strong guidance for effect-size estimates. Therefore, we chose a sample size 

that provided sufficient power (.8) for detecting small to moderate effect sizes (f=.15). 

Participation was voluntary, and students were offered extra credit for their participation.  

2.1.2. Spatial Rules Task 

We applied an explicit sequencing paradigm to a simple spatial rules task in order to test 

our question about the role of matching chunk patterns in sequential performance (Mayr, 2002, 

2009). On every trial of the spatial rules task, a white dot would appear in one corner of a frame, 

and participants were instructed to apply a spatial rule to the dot (e.g., horizontal) to determine 

which corner the dot would move to. Responses were made using the 4, 5, 1, and 2 on the 

keyboard number pad, with each key representing the corresponding corner of the frame (top 

left, top right, bottom left, bottom right, respectively). In this task, all task features (stimulus, 

rule, etc.) are orthogonal to one another. 
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2.1.3. Sequencing Paradigm and Procedure 

Sequences were constructed from the two different spatial rules as elements. These rule 

sequences allow more precise temporal control over participants’ sequential performance (as 

opposed to using response sequences). Further, response sequences would utilize inherently 

ordered information, whereas different spatial rules have no obvious order and therefore allow us 

to establish truly abstract chunk grammars. Each rule sequence contained two 3-element chunks. 

For each new sequence, participants were presented with the sequence of rules listed vertically in 

an instruction screen (see Figure 2.1). Participants then cycled through each sequence, applying 

one rule per trial, several times. After an incorrect response, the sequence of rules would be 

displayed above the frame, with the incorrect response colored red. Participants were then 

required to correct their mistake before moving on to the next trial.  

Chunk patterns, or grammars, were defined by the order of their elements (rules), with 

matching chunks defined as those with the same abstract chunk grammar, regardless of what 

specific elements were in each position in the chunk. For this first, more conservative definition 

of grammars, the two chunks in a sequence contained the same pair of rule elements (horizontal 

and vertical), and matching grammars were identified by direct pattern inversion (e.g., ABB-

Figure 2.1. Sequence of events in the task-span procedure in Experiment 1, with explicitly 
instructed spatial rules. Each sequence of six rules was presented at the beginning of a block. After 
pressing any key, participants would begin cycling through the sequence, applying one rule per trial 
of the spatial rules task. Gray dashed arrows indicate correct responses and were not presented in 
the actual trials. In this example, the sequence of rules contains matching chunk grammars. 
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BAA). One-third of the sequences were “matching” and the other two-thirds were “non-

matching.” Participants completed 18 blocks of 48 trials (18 six-element sequences, each 

repeated 8 times) in a one-hour session. 

2.2. Results 

All data and analysis scripts relevant for this project are provided at 

https://osf.io/xuy6a/?view_only=6ecf656a428748d5a9c940e1f0473579. 

The first cycle of each new sequence was removed as practice (i.e., the first six trials of 

each block), as well as trials with RTs below 100 ms or above the 99.5th percentile. Further, the 

data for subjects who did not complete the study or had accuracy rates below 70% were not used 

in analysis. Two subjects did not complete the study, and one subject did not meet the minimum 

accuracy 

inclusion 

criterion, and so 

the data from 53 

subjects were 

used in 

analyses. Means 

and standard 

deviations can 

be found in 

Table 2.1.  

Table 2.1. RTs and accuracy rates for matching and non-matching chunk grammars in each 

experiment. 

 Reaction Times (ms) Accuracy Rates (p) 

Experiment Match Nonmatch Match Nonmatch 

1: Shared-Elements (N=53) 1073.23 (617.68) 1135.56 (683.00) 0.96 (0.19) 0.94 (0.22) 

Chunk Position 1 1138.07 (659.86) 1300.90 (769.93) 0.95 (0.18) 0.94 (0.23) 

Chunk Position 2 1054.46 (581.52) 1071.79 (618.95) 0.96 (0.19) 0.95 (0.21) 

Chunk Position 3 1029.82 (552.13) 1037.75 (584.32) 0.96 (0.17) 0.95 (0.21) 

2: Different-Elements (N=38) 1220.42 (810.78) 1227.03 (819.61) 0.96 (0.18) 0.96 (0.20) 

Chunk Position 1 1606.69 (928.54) 1633.08 (944.09) 0.96 (0.18) 0.96 (0.20) 

Chunk Position 2 1037.68 (670.72) 1036.66 (648.80) 0.97 (0.17) 0.95 (0.21) 

Chunk Position 3 1024.33 (628.18) 1017.12 (652.97) 0.97 (0.16) 0.96 (0.18) 

3: Different-Elements (N=41) 1226.33 (872.57) 1244.05 (903.99) 0.96 (0.19) 0.95 (0.21) 

Chunk Position 1 1685.11 (1040.13) 1740.82 (1088.59) 0.95 (0.19) 0.94 (0.21) 

Chunk Position 2 1022.44 (671.20) 1024.66 (684.70) 0.96 (0.18) 0.94 (0.22) 

Chunk Position 3 986.54 (615.09) 978.73 (627.20) 0.96 (0.17) 0.95 (0.19) 

4: Long Sequences (N=40) 1202.38 (865.93) 1217.64 (915.18) 0.96 (0.19) 0.94 (0.22) 

Chunk Position 1 1680.71 (1074.84) 1786.66 (1148.28) 0.97 (0.13) 0.96 (0.15) 

Chunk Position 2 1049.35 (703.62) 1090.35 (742.45) 0.95 (0.19) 0.92 (0.25) 

Chunk Position 3 1073.47 (685.49) 1064.90 (750.49) 0.95 (0.18) 0.94 (0.21) 

Chunk Position 4 1208.31 (838.21) 1231.4 (873.17) 0.96 (0.18) 0.94 (0.20) 

Chunk Position 5 1148.82 (734.35) 1133.86 (762.91) 0.96 (0.18) 0.94 (0.21) 

Chunk Position 6 1053.02 (712.42) 998.62 (679.73) 0.95 (0.19) 0.94 (0.21) 
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Figure 2.2 shows RTs and error rates as a function of sequence position and relationship 

between chunks (matching vs. non-matching grammars). Consistent with the notion that 

sequential performance is governed by hierarchically organized representations, the RT pattern 

shows strong and very typical sequence and chunk transition effects (see also, Mayr, 2009; 

Schneider & Logan, 2006). It is also apparent in the figure that RTs were faster and error rates 

smaller for sequences with matching versus non-matching chunks, and for RTs, that effect 

appears strongest at chunk transition points (first and fourth position in the sequence). We used 

linear mixed-effects models with subjects included as a random effect to control for between-

subject variability to analyze these data (Bates et al., 2015; R Core Team, 2018). Correct trial 

RTs (log-transformed) and accuracy rates were the dependent variables, predicted by within-

chunk element position, abstract grammar match, and their interaction as fixed effects. To 

capture potential transition effects on different levels of the hierarchical sequential 

representation, the following contrasts were applied across sequence positions: The chunk 

transition contrast (CT) compared positions 1 and 4 against positions 2, 3, 5, and 6. The within-

Figure 2.2. RTs (top panels) and error rates (bottom panels) for each experiment, at all 
positions in matching versus non-matching sequences. Error bars represent 95% within-subject 
confidence intervals. 
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chunk contrast (WC) tested positions 2 and 5 against positions 3 and 6). Finally, the sequence 

transition contrast (ST) compared the chunk transition of the first chunk (position 1) against the 

chunk transition of the second chunk (position 4) to test the effect of highest-level transition 

within these sequences. We are most interested here in the CT and the ST contrasts, which test 

for the effects of chunk-level and sequence-level transitions.  

The results of these analyses are presented in Table 2.2. As is apparent, they confirm that 

matching chunk 

grammars indeed 

lead to 

performance 

benefits. For RTs 

matching effects 

were limited to 

transition points. 

For errors, there were specific effects for the highest-level sequence transition as well as an 

overall, position-unspecific matching effect.  

As a second step, we examined whether the grammar matching effect develops gradually 

through experience with a given sequence, or instead is present from the outset. For this purpose, 

we added within-block sequence repetitions as an additional predictor in the form of linear and 

quadratic polynomial contrasts that were allowed to interact with the chunk match variable. No 

statistically significant effects were obtained. In particular, the interactions between the 

repetition contrasts and the chunk match factor were reliable for neither RTs (linear t=-.57, 

p=.57) nor errors (linear z=.66, p=.51). As can be seen in Figure 2.3, the matching effects were 

Table 2.2. Fixed effects from linear mixed models for Experiment 1. 

 RT Error 

 B SE t p B SE z p 

Match -0.061 0.005 -11.06 <0.001 -0.291 0.054 -5.42 <0.001 

CT 0.092 0.003 29.07 <0.001 0.062 0.029 2.17 0.030 

WC 0.011 0.004 2.99 0.003 0.006 0.034 0.19 0.850 

ST 0.134 0.005 25.70 <0.001 0.249 0.046 5.41 <0.001 

Match * CT -0.065 0.005 -11.83 <0.001 0.000 0.054 0.01 0.994 

Match * WC -0.002 0.006 -0.29 0.771 0.101 0.064 1.58 0.114 

Match * ST -0.059 0.009 -6.58 <0.001 -0.221 0.086 -2.56 0.010 

Note. Match = matching grammars within sequence. CT = chunk transition contrast: first and 
fourth elements vs. all others (second, third, fifth, and sixth). WC= within-chunk contrast: 
second and fifth elements vs. third and sixth. ST = sequence transition contrast: first vs. 
fourth element. 

 



 

36 

 

present from the beginning. This pattern of results is most compatible with the assumption that 

the cognitive system encodes sequences in a relational manner from the outset.  

3. Experiment 2: Different-Element Chunks 

Experiment 1 showed strong effects of abstract inter-chunk relationships. However, a 

limitation of this experiment is that the same elements occurred across all chunks. The use of 

shared elements may have facilitated detection of abstract relationships and it might have also 

Figure 2.3. Difference scores in RTs (left panels) and error rates (right panels) for matching 

versus non-matching sequences across repetitions in all experiments (calculated as nonmatching 
RT – matching RT). The gray dashed line marks zero (no difference between matching and non-
matching). The regression line is shown in black, with an asterisk to the right indicating 
significance (p<.05). Error bars represent 95% within-subject confidence intervals. 
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produced particularly strong matching effects as relationships could be used to directly translate 

one part of the sequence into the next. To address the question of whether and to what degree 

abstract patterns could be utilized across chunks with non-shared elements, we conducted a 

second experiment in which the two chunks in each sequence contained different elements. In 

this experiment, each sequence contained one chunk of horizontal/vertical rules (like in 

Experiment 1) and one chunk of clockwise/counterclockwise rules. Thus, in this experiment, 

abstraction across the identity of sets of elements was required to in order to capitalize on the 

matching chunk patterns.  

3.1. Methods 

 Participants (n=40) completed 36 blocks of 48 trials (36 six-element sequences, each 

repeated 8 times) in a 1.5-hour session. Two subjects did not complete the study and were 

therefore excluded, and the data from 38 subjects were used in analyses. Exclusion criteria and 

analysis plan were the same as in Experiment 1. 

3.2. Results 

Figure 2.2 (panel 2) shows the results of this experiment. While there was no effect of 

shared chunk 

pattern on RTs, 

there was a small 

but highly robust 

effect on error rates 

(Table 2.3). Though 

there was a slight, 

non-significant 

Table 2.3. Fixed effects from linear mixed models for Experiment 2. 

 RT Error 

 B SE t p B SE z p 

Match -0.004 0.005 -0.92 0.359 -0.219 0.049 -4.48 <0.001 

CT 0.226 0.003 82.26 <0.001 -0.001 0.027 -0.02 0.981 

WC 0.007 0.003 2.27 0.023 0.159 0.031 5.18 <0.001 

ST 0.045 0.004 10.00 <0.001 -0.127 0.044 -2.92 0.004 

Match * CT -0.008 0.005 -1.72 0.085 0.103 0.049 2.10 0.036 

Match * WC -0.007 0.005 -1.28 0.202 -0.100 0.059 -1.71 0.088 

Match * ST 0.002 0.008 0.31 0.754 0.041 0.078 0.53 0.599 

Note. Match = matching grammars within sequence. CT = chunk transition contrast: first and 
fourth elements vs. all others (second, third, fifth, and sixth). WC= within-chunk contrast: 
second and fifth elements vs. third and sixth. ST = sequence transition contrast: first vs. 
fourth element. 
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tendency for matching benefits at chunk transitions for RTs, there was a counteracting effect 

specific to chunk transitions for errors –– a pattern that may indicate a speed-accuracy tradeoff. 

No matching effects on the sequence transition level were observed (i.e., the ST contrast). 

Overall, the matching effects were much more subtle than in Experiment 1, consistent with the 

interpretation that in the first experiment, shared elements may have facilitated the detection and 

effective utilization of abstract relationships.  

As in Experiment 1, we again examined how the matching effects developed across 

sequence repetitions. Interestingly, the pattern of repetition effects was, if anything, counter to a 

gradual learning hypothesis. For RTs, there was a statistically robust linear decrease of matching 

benefits across repetitions (t=3.51, p<.001); for errors there was no reliable linear trend (z=-.27, 

p=.79). We will discuss the unexpected pattern of diminishing matching effects in concert of the 

results in the remaining experiments in the General Discussion (Section 6). However, we can 

conclude that again, results are clearly not consistent with a gradual learning perspective. 

4. Experiment 3: Different-Element Chunks with Auditory Instructions 

Experiment 2 provided evidence for small, but robust matching benefits. However, a 

potential concern with the procedure of the first two experiments is that the visual presentation of 

each rule sequence prior to the block may have facilitated the detection of abstract patterns 

among the simultaneously visible, individual elements in the instruction screen. Therefore, in 

Experiment 3, we checked whether we could replicate the matching effect when sequence 

positions were presented in a serial, auditory manner. 

4.1. Methods 

Participants completed 36 blocks of 36 trials (36 six-element sequences, each repeated 8 

times) in a 1.5-hour session. For this version, data were collected from 45 subjects. Four subjects 
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did not meet the trial-wise inclusion criteria and were therefore excluded (41 subjects were kept 

for analysis). Exclusion criteria and analysis plan were the same as in Experiments 1-2. 

The same sequence construction was used here as in Experiment 2. However, the 

instruction and error screens were different. Instead of displaying a sequence of rules on the 

screen at the beginning of each block, participants were shown a screen indicating that they 

should listen to the sequence of rules in their headphones. The six rules were presented one at a 

time for 1 second each, using a female text-to-speech voice. Participants could replay the 

sequence as many times as they wanted before pressing a key to begin the block.  

Like in the previous experiments, after an incorrect response, the current rule would be 

displayed in red above the frame, in its position within the sequence. However, the rest of the 

rules in the sequence were represented by white dashes to indicate position without allowing 

multiple rules in the sequence to be presented visually at the same time. Participants were then 

required to correct their mistake before moving on to the next trial. Because the auditory 

presentation format took extra time, we reduced the number of sequence cycles per block from 8 

to 6 repetitions in order to fit the entire procedure within the experimental session. 

4.2. Results 

As shown in Figure 2.2 (panel 3), as in Experiment 2, results of this experiment showed 

small and robust effects for error scores. In addition, we found robust RT matching benefits 

overall, as and additional befit for chunk transitions, which was somewhat offset by non-

significant, counteracting error effect (Table 2.4). Again, no matching effects on the level of 

sequence transitions were observed.  

Experiment 3 also replicated the unexpected interaction between cycle repetitions and 

matching benefits found in Experiment 2 (Figure 2.3). Here, for both RTs (t=4.43, p<.001) and 
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error rates (z=2.88, 

p=.004), the effect 

of matching chunk 

patterns was 

strongest for earlier 

rounds of sequence 

execution and then 

dissipated linearly.  

5. Experiment 4: Second-Order Matches 

In this final experiment, we wanted to test the limits of the small, but robust abstract 

matching effect we had obtained in the previous two experiments with non-overlapping chunks. 

Specifically, we examined whether or not participants are able to benefit from second-order 

relationships. For this purpose, we created 12-element sequences constructed from two six-

element subsequences containing two three-element chunks each. We will refer to these 

subsequences as “chunk plans”. The three-element chunks within each chunk plan used the same 

element pairs, as in Experiment 1. However, there were no shared elements across the two chunk 

plans. The critical match here was between the structures of the two chunk plans. Matching 

sequences had plans with similar chunk structures (e.g., A-B-A—B-B-A–––C-D-C––D-D-C); 

non-matching sequences had plans with dissimilar chunk structures (e.g., A-B-A—B-B-A–––D-

D-C––C-C-D. Importantly, chunk plans were constructed from pairs of three-element chunks 

with no direct chunk pattern matches. Therefore, pattern matches on the cross-plan level were 

not confounded with any potential matches on the within-plan level (which were the focus of the 

preceding experiments).  

Table 2.4. Fixed effects from linear mixed models for Experiment 3. 

 RT Error 

 B SE t p B SE z p 

Match -0.011 0.005 -2.02 0.043 -0.257 0.051 -5.01 <0.001 

CT 0.255 0.003 80.46 <0.001 0.026 0.028 0.95 0.343 

WC 0.014 0.004 3.79 <0.001 0.114 0.032 3.54 <0.001 

ST 0.023 0.005 4.39 <0.001 -0.162 0.045 -3.60 <0.001 

Match * CT -0.015 0.005 -2.66 0.008 0.089 0.051 1.73 0.084 

Match * WC -0.005 0.006 -0.81 0.418 -0.051 0.062 -0.83 0.409 

Match * ST -0.003 0.009 -0.36 0.722 0.047 0.082 0.58 0.564 

Note. Match = matching grammars within sequence. CT = chunk transition contrast: first and 
fourth elements vs. all others (second, third, fifth, and sixth). WC= within-chunk contrast: 
second and fifth elements vs. third and sixth. ST = sequence transition contrast: first vs. 
fourth element. 
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5.1. Methods 

 Participants (n=44) completed 12 blocks of 120 trials (12 long sequences, each repeated 

10 times) in a 1-hour session. Four subjects did not complete the study and were therefore 

excluded, and the data from 40 subjects were used in analyses. Exclusion criteria were the same 

as in Experiments 1-3, and analysis plan was similar, with a few necessary differences, described 

below. 

5.2. Results 

To reflect the more complex, hierarchical structure of the sequences used in this 

experiment, in addition to the CT contrast (positions 1, 4, 7, and 10, vs. rest), we used a plan 

transition contrast (PT) comparing positions 1 and 7 vs. 4 and 10, and a sequence-level transition 

contrast (ST) testing position 1 against position 7. 

Again, Figure 2.2 (panel 4) and Table 2.5 show the results. In both RTs and errors, we 

found clear evidence 

for matching 

benefits. For RTs, 

these effects were 

slightly larger at 

plan and chunk 

transition points. On 

the level of 

sequence transitions, there seemed to be opposing tendencies between RTs and errors, again 

potentially reflecting a speed-accuracy tradeoff. Overall, these results indicate that even high-

Table 2.5. Fixed effects from linear mixed models for Experiment 4. 

 RT Error 

 B SE t p B SE z p 

Match -0.030 0.007 -4.34 <0.001 -0.420 0.068 -6.16 <0.001 

CT 0.088 0.002 46.18 <0.001 -0.091 0.016 -5.59 <0.001 

PT 0.135 0.004 33.62 <0.001 -0.115 0.034 -3.37 0.001 

ST 0.026 0.008 3.10 0.002 -0.055 0.078 -0.71 0.481 

Match * CT -0.012 0.003 -4.29 <0.001 -0.016 0.025 -0.63 0.528 

Match * PT -0.012 0.006 -2.18 0.029 -0.052 0.054 -0.96 0.336 

Match * ST -0.017 0.012 -1.43 0.153 0.262 0.124 2.12 0.034 

Note. Match = matching grammars within sequence. CT = chunk transition contrast: first, 
fourth, seventh, and tenth elements vs. all others. PT = chunk plan transition contrast: first 
and seventh elements vs. fourth and tenth. ST = sequence transition contrast: first vs. 
seventh element. 
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level abstract relationships (i.e., relationships between relationships) are appreciated during 

sequence production.  

Additionally, we again replicated the unexpected pattern of dissipating matching benefits 

as a linear function of sequence repetitions, but only for error scores (t=2.09, p=.036), and not for 

RTs (t=.61, p=.541).  

6. General Discussion 

Across four experiments, we tested whether abstract chunk relationships are registered 

and used by the cognitive system. Past research has provided evidence for the utilization of 

abstract patterns but was mostly limited to situations in which sequential elements had inherent 

ordering properties that might support the detection of patterns and where detection of patterns 

could be accomplished through gradual, feedback-based hypothesis testing and learning. We 

were therefore interested in determining the degree to which utilization of abstract sequential 

patterns is a general property of sequential representations. An affirmative answer to this 

question would have important theoretical implications for current models of hierarchical 

control. Such models typically assume that the hierarchical organization of sequential 

representations supports a divide-and-conquer strategy, in which different chunks of a sequence 

assume isolated representational subspaces in order to avoid between-chunk interference. 

Therefore, it is not clear how such models could at the same time account for the across-chunk 

integration that would be necessary to utilize abstract relationships. 

6.1. Utilization of Abstract Relationships 

 Answering our primary research question, we found across four different experiments 

robust evidence that abstract relationships between different parts of a sequence do indeed lead 

to performance benefits. Importantly, in our paradigm the basic elements were response rules 
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(e.g., horizontal vs. vertical), which implied that abstract grammars could only be based on 

patterns of repetition across elements (e.g., AAB vs. ABA vs. ABB) instead of sets of simple 

algebraic operations. Thus, these results confirm that the utilization of abstract relationships can 

be generalized beyond stimuli with inherent ordering properties, such as numbers or spatial 

locations. The pattern of element repetitions is an important indicator of potential ordering 

principles and therefore it makes sense that our cognitive system would be particularly attuned to 

detecting and utilizing such patterns (Dehaene et al., 2015). It is also noteworthy that participants 

were able to utilize even second-order abstract relationships, that is when the relationships 

between two chunks in the first half of the sequence matched the relationship between the two 

chunks in the second half of the sequence (despite different elements across the two sequences). 

6.2. The Role of Sequence Positions 

 For our second research question, we wanted to clarify if abstract relationships affect all 

sequential elements, or instead are particularly expressed during chunk transitions (e.g., at the 

beginning of a chunk or chunk plan). One could argue that the latter result might indicate that 

abstract relationships are utilized only during the brief chunk transition period, when both chunks 

are activated. For all four experiments, we found robust error benefits that extended across all 

sequence elements. However, Figure 2.2 also clearly indicates that the results of Experiment 1 

stand out from those of the remaining experiments. That experiment used shared elements across 

chunks and showed a very strong RT benefit for matching chunks at transition points. While 

interactions between the match factor and transitions contrasts were also found in the remaining 

experiments, these were much more subtle and in part offset by speed-accuracy effects.  

What may explain the particularly large transition benefits in Experiment 1? We suggest 

that for matching chunks with shared elements, the abstract relationship can be used to directly 
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translate the preceding chunk in the following chunk through an “alternation” operation, where 

every element in chunk 1 is turned into the alternative possible element in chunk 2. This 

eliminates any need for retrieving individual elements and placing them into their “slots,” as is 

necessary when elements are not shared. In that sense, the result of Experiment 1 is very similar 

to the body of results from earlier work with abstract relationships in sequences with ordered 

elements (Restle, 1970; Restle & Burnside, 1972). Here too, the abstract relationships could be 

used to directly transform one part of a sequence into the next through the various possible 

transformation rules, leading to strongest benefits at transition points. However, beyond this 

direct translation effect during transitions, our results consistently show a second, more subtle 

matching benefit that affects all sequential elements equally. Importantly, this would imply that 

information seeps across chunks, not only at transition points, allowing a more efficient 

representation of the entire sequence.  

6.3. The Role of Within-Sequence Experience 

The third question we wanted to address is particularly important. There is previous 

evidence that people (and even infants) are able to capitalize on abstract sequential patterns 

(Aslin & Newport, 2012; Marcus et al., 1999). These results stem from learning paradigms that 

allowed the gradual discovery of “hidden” relationships. However, it is also possible that our 

cognitive system is geared towards encoding sequential material from the outset in terms of 

relationships between elements and sequence parts. If that is the case, we should see abstract 

pattern benefits emerging from the beginning, rather than gradually as a function of repeated 

exposure with the same sequence. Our results were very clear in this regard. We found that 

abstract benefits were present from the beginning in all of our experiments. Further, in each of 

Experiments 2-4, we found for at least one of the two dependent variables the opposite of what 
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would be predicted by gradual learning, namely a decrease of the matching benefit (see Figure 

2.3). Indeed, for Experiment 2 and 3 we found a reduction of an initial RT benefit––a result that 

also makes the finding of overall matching effects only in errors and not in RTs a bit less 

surprising.  

While unexpected, the “reverse” learning effect is consistent with an “expectation of 

relationships” hypothesis. To see why, it is important to appreciate that even our non-matching 

sequences could allow inter-chunk relationships to be established. For example, a sequence such 

as ABB-DDC can be described as a mirroring of the initial abstract order. Thus, while our 

matched sequences allowed participants to pick up the relationships from the outset, the 

cognitive system might need more experience (i.e., a few cycles) with each new sequence to 

detect and utilize the more complex or subtle relationships present in our “non-matching” 

conditions. 

This perspective also shines light on two other aspects of our results. In Experiments 2-4, 

our matching effects were subtle, and one might wonder how seriously one should take such 

small effects as a marker of an important principle of sequential representations. However, if the 

cognitive system is geared towards constructing relationships even when they are not obvious, it 

should be difficult or impossible to create an all-or-none contrast between sequences that contain 

abstract relationships and those that do not. The actual contrast we can establish will be much 

more graded and therefore subtle effects should not be a surprise.  

The second and related observation is that, arguably, the matching effects from our 

experiments with non-shared elements were strongest in Experiment 4, which used the most 

difficult abstract relationships. It may appear odd that second-order abstract relationships 

produced larger effects than first-order relationships. However, again, the critical question 



 

46 

 

concerns how difficult it is to establish relationships between matching plans compared to the 

non-matching control condition. It should be particularly hard to construct second-order, abstract 

relationships when they are not readily apparent, creating a particularly stark matching contrast 

in Experiment 4. We acknowledge that this aspect remains somewhat speculative, as there is no 

principled, a-priori way for determining which relationships are simple or hard for our cognitive 

system to detect and utilize. However, we believe it is plausible to assume that creating a first-

order relationship between two “non-matching” chunks such as ABB and CCD is easier than 

constructing a second-order relationship between two “non-matching” chunk plans such as ABB-

BBA and CCD-CDC. 

6.4. Theoretical Implications 

In this final section, we turn to the issue how our results fit with current models of 

hierarchical, serial-order control. One long-standing question in this context is to what degree 

serial order is established through some form of associative chaining between specific elements 

versus through abstract, element-independent position codes. There is evidence that through 

statistical learning of successive element relationships, abstract patterns can be extracted. 

However, such learning occurs gradually, across a number of repetitions (Botvinick & Plaut, 

2004; Davachi & DuBrow, 2015). Therefore, the finding that abstract patterns for new sequences 

can be extracted and used from the outset clearly favors the abstract-position account (see also, 

Kikumoto & Mayr, 2018; Mayr, 2009). 

The second, broader question is how our results that indicate integration of information 

across chunk boundaries can be reconciled with the idea that hierarchical control implements a 

divide and conquer approach towards resolving interference across different regions of a 

complex task space. Recent models of hierarchical control are informed by neuroimaging work 
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indicating distinct neural substrates for different hierarchical levels (Badre, 2008; Badre & Nee, 

2018; Koechlin et al., 2003; Koechlin & Jubault, 2006). Functionally, most models share the 

general idea that elements on each level of the hierarchy are competing with each other through a 

winner-take-all mechanism. This would ensure that only one chunk can be active at a time. The 

sequence of chunks should be represented (on the level above) through content-free pointers or 

symbols that themselves contain no information about the chunk content and therefore should 

not allow the detection of between-chunk relationships (Fitch & Martins, 2014).  

Within this framework, there are two ways to allow for integration to occur. The first is to 

give up on the idea that insulation between different chunks on the same level is complete. In 

fact, there is substantial evidence of interference across competing chunks. Most notably in this 

regard is evidence of transposition errors, where an element occurring at a certain position within 

chunk 1 is more likely to be incorrectly inserted into the same position in chunk 2 than another 

position within the same chunk (Henson et al., 1996; Mayr, 2009). It is possible that such 

interference errors are a necessary sacrifice our cognitive system needs to accept in order to 

allow the passing of information across chunks that makes the detection of between-chunk 

relationships possible. 

The second option for allowing between-chunk integration is to give up on the idea of 

strict between-level insulation. In the current case, this would mean that on the level above 

chunks, individual chunks are not just represented through content-free labels or pointers, but 

instead contain sufficient information about what happens on the level below to allow the 

utilization of relationships. Specifically, on the above-chunk level, the abstract grammar relevant 

for each chunk may be part of the represented information, allowing the detection of 
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relationships, while avoiding element-specific interference (e.g., AAB could be represented as 

“repeat, then alternate”).  

These two options are not mutually exclusive. However, of the two, the second appears to 

be somewhat more plausible as an explanation for the type of immediate utilization of abstract 

patterns that we observed in our data. Arguably, the type of across-chunk information leakage 

apparent in transposition errors seems better suited for allowing a more gradual detection of 

structure and relationships. 

Overall, our results are fully consistent with the view that the cognitive system comes 

with a built-in prior for expecting that sequences can be coded in terms of relationships between 

successive elements and chunks. This conclusion is very similar to those by Restle (1970) and 

others, but extends it to sequences without ordered elements and to a paradigm without 

feedback-driven learning and hypothesis testing. Recent models of hierarchical control have 

emphasized the question how our cognitive system is able to divide complex tasks into separable 

subspaces. The current results suggest that it is important to also account in these models for our 

ability to integrate useful information across such separate subspaces. 
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CHAPTER III 

WHAT’S SO HARD ABOUT HIERARCHICAL CONTROL? PINPOINTING PROCESSING 

CONSTRAINTS WITHIN CUE-BASED AND SERIAL-ORDER CONTROL STRUCTURES 

From Moss, M.E. & Mayr, U. (2022). What’s so hard about hierarchical control? Pinpointing 

processing constraints within cue-based and serial-order control structures. [Submitted for 

publication]. Department of Psychology, University of Oregon. 

 

1. Introduction 

Everyday problem-solving or planning situations usually involve task spaces with a 

hierarchical structure in which each decision depends on an earlier-made decision on a higher 

level, which in turn might depend on still higher-level decisions (Collard & Povel, 1982; Cooper 

& Shallice, 2006; Fitch & Martins, 2014; Kikumoto & Mayr, 2018; Lashley, 1951; Logan & 

Crump, 2011; Miller et al., 1986; Restle, 1970; Rosenbaum et al., 1983). Operating within such 

spaces is difficult. Performance in terms of both speed and accuracy typically declines as a 

function of the number of hierarchical levels that need to be considered, which we refer to here 

as the number-of-levels effect. In fact, the ability to efficiently navigate hierarchically organized 

control structures or decision trees has been suggested as a key feature of human intelligence 

(e.g., Carpenter et al., 1990; Marshalek et al., 1983). Yet, the question of why hierarchical 

control is hard does not yet have a clear answer. To make progress on this question, we need to 

investigate how exactly the cognitive system deals with hierarchical control demands. 

1.1. Costs of Ballistic Updating 

In principle, when hierarchical control is applied to complex actions or decisions, 

different hierarchical levels should occupy distinct representational subspaces, offering 

protection of lower-level decisions from resource demands on higher levels of the hierarchy. In 
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its pure version, this account assumes that each level “programs” the next lower level in a 

recursive, ballistic manner (Miller et al., 1986; Rosenbaum et al., 1983). Once programmed, no 

further performance costs associated with that level will be incurred until settings on that level 

need to be updated again. To provide a concrete example: In one version of our paradigm, 

participants needed to apply one of two possible S-R mappings to a given stimulus based on up 

to three additional hierarchically organized context rules (see Figure 3.1a). Each higher-level rule 

determines how to use information one level down, and all rules are signaled through distinct 

visual cues. The ballistic updating account predicts that performance costs increase with the 

number of hierarchical levels, but only on trials in which relevant cues are actually presented. 

For trials during which no level-relevant cues are shown, the most recently used rule should 

Figure 3.1. Diagrams of the hierarchical rule structure in (a) cue-based format and (b) serial-order 
format. Example set of trials for structural level 4 are shown below each diagram. The arrow within the 
stimulus frame indicates the correct response and was not presented in the actual trial. 
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simply carry over from previous trials and ballistically influence current processing, without 

additional costs.  

Broadly consistent with such a conceptualization, recent neuroimaging evidence indicates 

that organization of frontal cortex supports distinct neural resources for different hierarchical 

levels of control (Badre, 2008; Badre & D'Esposito, 2009; Koechlin et al., 2003). However, this 

neuroanatomical information does not provide strong empirical constraints on how functional 

limitations might arise when operating in hierarchical control structures. In addition, more recent 

neuroimaging results have raised questions about a clean, neuroanatomical segregation along 

hierarchical levels (Badre & Nee, 2018; Crittenden & Duncan, 2014; Farooqui et al., 2012; 

Yokoi & Diedrichsen, 2019). 

1.2. Global Costs of Maintaining a Hierarchical Structure 

It is also possible that multi-level control structures induce performance costs because the 

current state on each level needs to be integrated and maintained within a global representational 

working memory space. In this case, operating with more levels would simply take up more 

representational resources than operating with fewer levels (Waltz et al., 1999). For example, 

Duncan (2010) has argued that prefrontal cortex provides a “multiple-demand network” that 

allows ad-hoc representations of current task requirements. Indeed, single-cell recording work 

has indicated that many prefrontal neurons code for task-relevant features in an ad-hoc manner, 

and in particular for nonlinear combinations of such features (Rigotti et al., 2013). The more 

hierarchical levels exist in a structure, the more neural resources are required to represent the 

current state on each level of the hierarchy, as well as the across-level combinations of states. As 

a result, fewer resources would be available to perform any operation within such a structure 

(Duncan et al., 2008). Importantly, having neural resources occupied should induce global costs 
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that affect any operation within the control structure, no matter on which level it is occurring and 

whether or not that particular decision requires consideration of levels beyond the current 

decision level.  

In the example of our cue-based paradigm (Figure 3.1a), such global costs would 

manifest as number-of-levels effects across all trials, regardless of when relevant cues are 

presented. Specifically, costs should increase with the number of hierarchically organized 

context rules that could be relevant in a given block, even in trials during which no cues are 

presented––and not just in updating trials, as predicted by the ballistic model. 

One example of an empirical pattern consistent with such global integration costs comes 

from research using the task-switching paradigm (Monsell, 2003). Specifically, operating within 

task-switching blocks (i.e., two-level control structures) induces global costs that are apparent 

even if no change in task is required on a given trial. Interestingly, these costs are particularly 

large in groups or individuals thought to have reduced cognitive control resources, such as older 

adults and people with lower fluid intelligence (Kray & Lindenberger, 2000; Mayr, 2001; Mayr 

& Kliegl, 1993; Wasylyshyn, Verhaeghen, & Sliwinski, 2011). In principle, global costs in the 

task-switching situation could arise from fitting the two-level control structure within the same 

representational space that also needs to handle the next upcoming decision.  

1.3. Dynamic Updating/Integration 

The ballistic updating model and the global maintenance model describe two possible 

extremes. In the former, costs emerge in a strictly local manner, only for those aspects that 

actually need to be updated. In the latter, any aspect or dimension that could change in a given 

context (even if it needs no updating on a specific trial) will add to overall processing costs. 

However, there is an intermediary possibility that we refer to here as the dynamic integration 
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model. Here, we assume that a lower-level decision (e.g., associated with a level 2 cue) needs to 

be integrated with previously established higher-level settings (e.g., associated with a level 3 cue 

in the case of a level 2 decision) in a costly manner. However, when several higher-level settings 

are involved (e.g., levels 3 and 4, in the case of a level 2 decision), in principle these could be 

encoded dynamically into a single combined rule. For the lower-level decision, only the 

combined rule needs to be consulted and integrated with the current decision, instead of 

retrieving the entire constellation of individual higher-level cues that make up the combined rule. 

This leads to the prediction that costs arise whenever a specific level needs to be updated (as in 

the pure ballistic model), with a further increase in costs if there is at least one additional level to 

be considered, but no more increase in costs for potential additional levels.  

1.4. Cue-Based versus Serial-Order Control 

 In past research, hierarchical task spaces have been implemented either through signals in 

the environment (e.g., Badre et al., 2009; Koechlin et al., 2003) or in the form of memorized, 

serial-order plans (Kikumoto & Mayr, 2018; Schneider & Logan, 2006). However, these two 

modes of inducing hierarchical control demands have not yet been directly contrasted with each 

other in terms of their processing requirements.  

In recent neuroimaging research, participants’ trajectories through hierarchical control 

structures have been guided mostly through cues (Badre & D’Esposito, 2007; Koechlin et al., 

2003). Specifically, participants were typically instructed to respond to stimuli in a manner that 

could depend on the state of one or more additional cues (depending on the number of levels). 

Thus, the environment triggers the need to update an internal state. As mentioned above, in this 

design, it is important to include a condition in which no state-relevant cues are presented. In 

such a no-cues condition, no updating is necessary, and therefore in principle, the system can 
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continue to operate on the basis of the most recently established setting. This condition is 

particularly useful to distinguish between the ballistic model, the global integration model, and 

the dynamic integration model, which each make different predictions for number-of-levels 

effects when no cues are presented (see Figure 3.2).  

 In motor-control and executive-control research (Collard & Povel, 1982), there is a long 

history of inducing hierarchical control demands through ordered internal plans. For example, in 

the task-span procedure, participants might be instructed to memorize and then perform a short 

subsequence of tasks, which in turn might be combined into a higher-level sequential plan of 

subsequences 

(Kikumoto & 

Mayr, 2018; 

Mayr, 2009; 

Schneider & 

Logan, 2006) 

Here, no 

external signals 

are provided to 

indicate whether 

internal states 

need to be 

changed or not 

(e.g., when 

moving from 

Figure 3.2. Three possible hierarchical control scenarios. The example shows a 
situation with four different levels that have been established through cues on 
previous trials. The current trial contains no cue except for the response-relevant 
stimulus (i.e., cue level 1 within a 4-level structure). In the ballistic account, the 
higher-level settings have set up a “protected” representational space, within 
which the low-level process can be executed no matter how many higher-level 
settings were initially involved. Thus, there should be performance costs at 
updating points, but no number-of-levels effects on no-cue trials (cue level 1). In 
the global integration account, no “protective” space exists, so information about 
all involved settings must be maintained and integrated on every trial, regardless 
of whether that information requires updating. Here, number-of-levels effects 
occur on all trials, including no-cue trials. In the dynamic integration account, 
information from all higher-level rules is collapsed into one setting that directly 
impacts the lowest-level decision. Here, number-of-levels effects on no-cue trials 
extend one level above the current decision level. In the example shown, this 
implies that the currently valid “vertical rule” is activated, but not the specific 
constellations of higher-level cues that has been put into place. In contrast, if this 
were a single-level structure with the vertical rule valid throughout, that rule would 
simply be executed without any additional reconsideration. 
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one subplan to the next). On the one hand, classic models of serial-order control, mainly in the 

motor domain, assume that longer sequences are broken into smaller chunks, each of which can 

be performed ballistically, in an autonomous manner. Therefore, updating costs should arise only 

when transitioning to a new chunk (i.e., when changing the current chunk). On the other hand, 

one might argue that the current position within a sequence is the sole internal signal for 

potential state changes. Thus, just to keep track of the sequence position, information across all 

levels/dimensions may have to be integrated at each new position, leading to the expectation of 

number-of-levels effects on every trial.  

1.5. Paradigm and Predictions 

 How do these considerations translate into specific predictions within our paradigm? As 

mentioned in Section 1.1, we manipulated the number of hierarchical levels block-wise, 

separately within a cue-based and a serial-order format (see Figure 3.1a-b). For both formats, 

participants had to use one of two different task rules on each trial (e.g., applying either a vertical 

or horizontal spatial translation to a stimulus). The varying number of additional hierarchical 

levels specified which of the two rules was relevant on a given trial.  

In order to separate the control-relevant effects of cues from their perceptual/attentional 

influences, we also manipulated the number of cues across the entire range for all cue-based 

conditions. Thus, on some trials, cues were presented that were not relevant in that block. More 

importantly, all cue-based blocks also contained trials without any cues, which therefore required 

no cue-based updating.  

 We formalized our predictions from the three models through sets of model variables that 

specified the presence of the hypothetical processing constraints for each trial type, separately for 

the two formats. Tables 3.1 and 3.2 contain the model matrices relevant for the cue-based and 
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serial-order formats, respectively. In the remainder of Section 1, we describe each set of model 

variables in turn, for both cue-based (1.5.1-1.5.4) and serial-order (1.5.5-1.5.7) formats.  

1.5.1. Cue-Based Ballistic 

Here, costs are predicted on trials with cues that correspond to the currently relevant 

level. Note that as we describe the modeling of cue-based costs, it is important to distinguish 

between the hierarchical structure of a given block, which can be level 1, 2, 3, or 4 (structural 

level), and the number of cues presented on a given trial regardless of the hierarchical structure, 

which can also be level 1, 2, 3, or 4 (cue level). To be concrete, for a level 3 structure, the 

presence of a level 2 cue requires updating on level 2. When both level 2 and level 3 cues are 

shown, first level 3 and then level 2 need to be updated, leading to further costs. However, the 

addition of a level 4 cue should produce no additional updating costs because that level is not 

relevant, though it may lead to additional perceptual/attentional costs. Importantly, the notion 

that control settings are ballistic also indicates that the effects of lower-level updating are 

identical, regardless of whether these occur within a level 2 structure, or within a more complex 

structure (e.g., level 3 or 4). In other words, lower-level decisions should not be more demanding 

just because higher-level settings are also relevant within a given block. Finally, note that no 

matter how many structural levels are relevant in a given block, no-cue trials (i.e., cue level 1) 

are coded here as zeros (see Table 3.1), indicating that there should be no number-of-levels 

effect when there are no updating demands.  

1.5.2. Cue-Based Global Integration 

Here, the prediction is that each potentially relevant structural level in a block will add 

costs, regardless of whether updating is required on a given trial. The difference between this 

model and the ballistic model becomes particularly apparent in the no-cue trials (i.e., cue level 
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1), where number-of-levels effects are expected, even in the absence of any updating demands. 

We conceptualized this as a potential additional source of costs in the global integration model, 

over and above the updating costs described in the previous section (1.5.1). This means the 

ballistic updating model is nested within the global integration model, and therefore, we can 

statistically test the degree to which the global integration model produces a better model fit than 

the ballistic updating model.  

1.5.3. Cue-Based Dynamic Integration 

This model assumes that costs over and above pure updating emerge whenever a “next 

higher” structural level above the level of the currently cued decision could be relevant, but any 

additional structural levels beyond that do not incur additional costs. Here again, the zero-cue 

(cue level 1) condition is particularly diagnostic. In contrast to both the ballistic updating and 

global integration models, this model predicts an increase in costs for structural level 2 

(compared to structural level 1), but not for levels 3 and 4. Again, this is an additional source of 

Table 3.1. Variables used in the three models of performance in the cue-based format, at each 

level and cue level. 

  Ballistic Model Global Integration Model Dynamic Integration Model  

Level Cue Level L2 B L3 B L4 B L2 B L3 B L4 B L2 G L3 G L4 G L2 B L3 B L4 B L2 D L3 D L4 D F 

1  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

2  

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 

3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 

4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 

3 

1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 

2 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 

3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 

4 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 

4  

1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 

2 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 

3 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Note. L = Level. B = ballistic variable. G = global integration variable. D = dynamic integration variable. F = filtering variable. The filtering 

variable was included as a predictor in each of the three models. The Ballistic model predictors are also included as the first three columns 

for the Global Integration and Dynamic Integration models. 
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costs over and above the basic updating costs, which means the ballistic updating model is nested 

within the dynamic integration model. Because the dynamic integration model includes both 

updating and integrating variables, the two models can be compared statistically. However, the 

global integration and the dynamic integration models are not nested and have the same number 

of predictors. In the absence of a nested relationship, we used Akaike Information Criterion 

Table 3.2. Variables used in the three models of performance in the serial-order format, at each 

level and sequence position. 

   Ballistic Model Global Integration Model Dynamic Integration Model 

Level 
Position 

Level 
Sequence 
Position 

L2 B L3 B L4 B L2 B L3 B L4 B L2 G L3 G L4 G L2 B L3 B L4 B L2 D L3 D L4 D 

1 1 1-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  

1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

2 2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3 3 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

1 4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

2 5 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3 6 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

1 7 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

2 8 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3 9 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

1 10 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

2 11 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3 12 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3  

1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 

2 2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

3 3 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

4 4 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 

5 5 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

6 6 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

1 7 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 

2 8 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

3 9 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

4 10 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 

5 11 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

6 12 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

4  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

3 3 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

4 4 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 

5 5 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

6 6 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

7 7 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 

8 8 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

9 9 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

10 10 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 

11 11 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

12 12 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 

Note. L = Level. B = ballistic variable. G = global integration variable. D = dynamic integration variable. The Ballistic model predictors are also 
included as the first three columns for the Global Integration and Dynamic Integration models. All sequence positions on Level 1 were coded as 

0; they were collapsed into a single row here to simplify the table. 
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(AIC) values, as well as the constellation of statistically reliable predictors to compare relative 

model fits. The dynamic integration model emerged during exploratory analyses of Experiment 

1, and we then tested it on a new sample in Experiment 2. The analysis plan for Experiment 2 

was pre-registered to reflect this process. 

1.5.4. Cue Filtering 

The design used for the cue-based format allowed us to test for the effects of cues 

presented in each trial, even when they were not relevant for that block (i.e., higher-level cues 

shown in blocks with lower-level structures). Therefore, we included a “Filter” variable, which 

represents the number of irrelevant cues in each trial (see Table 3.1).  

1.5.5. Serial-Order Ballistic  

Overall, for the serial-order format, all models operate in the same way as for the cue-

based format, including the nesting relationships (see Table 3.2.). One obvious difference is that 

the cue-filtering predictor is not relevant here. The ballistic model again predicts costs only when 

updating is necessary (i.e., between chunks and subsequences). For the within-chunk trials 2 and 

3, no costs are predicted in this model, as updating should happen only during chunk transitions. 

1.5.6. Serial-Order Global Integration 

Here we expect that costs are added with every level, even when no updating is required. 

Thus, number-of-levels effects are expected here, even for within-chunk trials 2 and 3. These 

costs are incurred in addition to the updating costs described in Section 1.5.5. 

1.5.7. Serial-Order Dynamic Integration 

Here, we predict that costs increase during updating whenever one additional structural 

level is relevant, with no further increase in costs for additional relevant structural levels beyond 

that. For example, we expect that within-chunk positions 2 and 3 show a higher cost for structure 
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levels 2-4 versus level 1, but there should be no cost difference between structure levels 2, 3, and 

4, at the within-chunk positions. 

2. Experiment 1 

In Experiment 1, we also wanted to ensure that any hierarchical control effects truly 

reflect structural phenomena, rather than processing constraints bound to specific domains or 

primary task types. Therefore, we replicated the same structural manipulations across three 

different task pairs. Aside from the spatial rules task pair, we used a pair of perceptual odd-one 

out tasks (Mayr & Keele, 2000), and a pair of number judgment tasks commonly used in a task-

switching context. Additionally, in Experiment 1, we used only one order of presenting the two 

control formats (cue-based and serial-order). In Experiment 2, we conducted a close replication 

of our main results for one of the three task domains (i.e., the spatial rules task), but with the 

order of cue-based and serial-order conditions counterbalanced across participants. Predictions 

for Experiment 2 were pre-registered based on the results of Experiment 1. 

2.1. Methods 

2.1.1. Participants 

Data were collected from 26 individuals between 18 and 35 years old. Participation was 

voluntary, and subjects received $10 per hour ($25 total), plus additional accuracy-based 

incentives, typically between $6 and $9 (see Section 2.1.3 for more information on the incentives 

structure). No direct evidence was available to estimate effect sizes. However, related effects 

(e.g., single-task versus mixed-task blocks, sequence structure effects, or updating costs in cue-

based hierarchical control situations) usually produce robust effect sizes for which a sample size 

of around 20 participants seemed sufficient.  

 



 

62 

 

2.1.2. Stimuli and Design 

Two hierarchical control formats, cue-based and serial-order, were used, each with four 

possible structural levels, and each with the same set of three “primary tasks.” We will first 

describe the primary tasks and then the implementation of the control structures. 

2.1.2.1. Tasks 

Across both formats, participants worked with a spatial rules task, an odd-one-out task, 

and a number judgment task. For the spatial rules task (adapted from Mayr, 2002), in every trial, 

a white circle (60-pixel diameter) appeared randomly in one quadrant of a frame (60 pixels off-

center), and participants were instructed to indicate which quadrant the circle would end up in if 

they applied one of two possible spatial rules: horizontal or vertical. Responses were made with 

the right-hand index finger, using the 4, 5, 1, and 2 keys on the keyboard number pad. These 

keys correspond to each quadrant of the frame (top left, top right, bottom left, and bottom right, 

respectively).  

For the odd-one-out task, a rectangle (40x75 pixels) appeared in each quadrant of a frame 

(60 pixels off-center), with one rectangle different in color (blue or green, vs. black for all other 

rectangles), and one rectangle different in pattern (vertical stripes, diagonal zig-zags, or checkers, 

vs. solid for all other rectangles). Participants were instructed to use the same response mapping 

as in the spatial rules task to indicate which rectangle was the odd-one-out, based on either the 

color or the pattern rule.  

For the number judgment task, participants were shown a number randomly chosen on 

each trial from 1, 2, 3, 4, 6, 7, 8, 9 (Arial font, size 88). Numbers were presented individually, 

centered inside the frame. Participants were instructed to judge whether the number was lower or 

higher than 5 (L/H), or whether it was odd or even (O/E). Responses were made with the right 



 

63 

 

index finger using the left and right arrow keys, with the left arrow key representing the 

judgment to the left of the slash (L or O), and the right arrow key representing the judgment to 

the right of the slash (H or E).  

2.1.2.2. Cue-Based Control Structure 

In the cue-based format, participants were presented with intermittent in-trial visual cues 

to indicate which task rule to use. At the lowest level (structure level 1), a single rule was 

prompted at the beginning of the block, and participants were instructed to apply this rule in 

every trial. For structure level 2, the frame color indicated which rule to use. The specific 

mapping between frame color and rule for each task pair was instructed at the beginning of the 

block. For structure level 3, the conjunction of frame color and above-frame letter cue indicated 

which rule to use. For structure level 4, the orientation of stars around the letter cue indicated 

whether to use the same rule combination as indicated in structure level 3, including the 

conjunction of frame color and letter cue, or to ignore the letter cue and instead, determine which 

rule to use based on an instructed “default” rule structure (see Figure 3.1a). We chose this 

arrangement on structural level 4 after pilot work revealed that a complete reversal of level 3 

rules through level 4 rules was too difficult for participants. 

Cue presentation was determined the same way across all structure levels, irrespective of 

which structural levels were relevant on a given block. When higher-level cues were displayed, 

all lower-level cues were displayed as well. The trial-wise probability of displaying a level 2 cue 

was .333. In trials with level 2 cues, the probability of also displaying a level 3 cue was .5 (.167, 

overall). In trials with level 3 cues, the probability of also displaying a level 4 cue was .5 (.083 

overall). For trials without cues (or with lower cue level than hierarchical structure level), 

participants were told to use the rule indicated by the most recently displayed cue(s). After an 
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incorrect response, a diagram of the current block’s cue meanings would appear in the top right 

corner of the screen (similar to the instruction diagram), and participants would need to make a 

correct response before continuing to the next trial. 

2.1.2.3. Serial-Order Control Structure 

In the serial-order format, no trial-by-trial cues were provided. Instead, the relevant rule 

on a given trial was specified through sequences of varying hierarchical complexity. Sequences 

were explicitly instructed at the beginning of each block and participants “cycled through” 

repeatedly until the end of the block (as in (Mayr, 2009). For structure level 1, participants 

simply repeated the same rule across trials. Note that except for the omission of visual cues, this 

condition is identical to structure level 1 in the cue-based format. For level 2, three-trial 

sequences of rules (“chunks”) were instructed, which were repeated until the end of the block 

(see Figure 3.1b). These chunks used one of the following possible formats: A-B-B, A-A-B, A-

B-A (and the inverse of each). For level 3, two chunks were grouped into a six-element plan, 

while avoiding chunk repetitions (e.g., A-B-B–B-A-B). Level 4 chunk super-plans used the same 

basic, two-chunk plans as on level 3, but added a chunk-level reversal of that plan to create a 12-

element sequence (e.g., A-B-B–B-A-B––B-A-B–A-B-B). The instruction screen for level 4 

contained six rules (like on level 3), but also included a down arrow on the left side and an up 

arrow on the right side, indicating that participants were to execute a fourth-level sequence. After 

an incorrect response, the sequence of rules would be displayed above the frame, with the 

incorrect response colored red. For structure level 4, one of the arrows would also be red after an 

error, to indicate location within the 12-element sequence. Participants needed to make a correct 

response in order to continue on to the next trial. 
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2.1.3. Procedure 

The total duration of the experiment was 2.5-hours. All components of the experiment 

were completed on the computer (24-inch display), with participants completing tasks first in the 

cue-based format, and then in the serial-order format. The session was bookended with a cued 

switching task1, such that participants performed the first half of the switching task, then the two 

contexts, and then the second half of the switching task. A trained experimenter used images and 

examples to instruct participants before each section of the experiment. The script for the 

explanations of each component can be found in Appendix A. Within each of the four 

components, participants completed the spatial rules task, followed by the odd one out task, and 

then the number judgement task. In the cue-based and serial-order formats, participants 

completed all structure levels in a “mountain structure” (level order: 1-2-3-4-3-2-1) for each task.  

Within the two formats, the number of trials varied across hierarchical level, so that 

participants completed more trials for each increase in complexity. For the cue-based context, 

participants completed 1440 total trials across the four levels: 144 trials (48 per task) on evel 1, 

288 trials (96 per task) on Level 2, 432 trials (144 per task) on Level 3, and 576 trials (192 per 

task) on Level 4. For the serial-order context, participants completed 1296 total trials across the 

four levels: 108 trials (36 per task) on Level 1, 216 trials on Level 2 (18 different 3-element 

chunks (6 per task), repeated 4 times each), 324 trials on Level 3 (18 different two-chunk 

sequences (6 per task), repeated 3 times each), and 648 trials on Level 4 (18 different four-chunk 

 
1 We also included a standard cued switching task, for which participants were instructed to perform the 

same three tasks as in the cue-based and serial-order structures, but instead of receiving block-wise rule 

sequences or in-trial symbolic cues, one of the two rules was presented at the center of the screen for the 

whole trial, starting 100ms prior to stimulus onset. Rules were randomly chosen and followed no pattern 

or hierarchical structure. Because these results are not relevant to our main question, we are not using 

these data in the current paper.  
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super-plans (6 per task), repeated 3 times each). The switching task included 108 trials (36 per 

task) at the beginning of the session and another 108 trials at the end. The intertrial interval was 

50ms in the cue-based format, 10ms in the serial-order format, and 300ms for the switching 

tasks. For cued trials in the cue-based format, cues were displayed with the onset of task stimuli 

and remained on the screen for 1000ms. Participants could respond any time after stimulus onset 

(regardless of whether the cues were on the screen). If no response was made after the 1000ms 

cue display period, the cues would disappear, and only the frame and stimulus would remain 

until a response was made. For the switching tasks, rule cues were displayed at the center of the 

screen for 500ms before the onset of task stimuli and remained on the screen until a correct 

response was made. 

Monetary incentives were earned based on block-wise accuracy rates. For the level 1 

hierarchical structures in both formats, participants earned $0.03 for every block they completed 

with at least 95% accuracy. For level 2, they earned $0.03 for every block they completed with at 

least 85% accuracy. For levels 3-4, they earned $0.03 for every block they completed with at 

least 75% accuracy. Based on this, participants could earn up to $9.36, in addition to the $10 

hourly base rate. 

2.1.4. Availability of Data, Codes, and Preregistration 

Data, main analysis codes, as well as the preregistration for Experiment 2 are available at 

the OSF site https://osf.io/gzsk8/.  

2.2. Results and Discussion 

After excluding subjects with accuracy rates below 70%, we used the data from 23 

subjects in our analyses. On the trial level, trials with extreme response times (below 200ms and 
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above the 99.5th percentile for response times across all subjects and conditions) were excluded 

from analysis. 

With the large range of complexity across the four hierarchical levels, neither RTs nor 

error scores may be sufficient to adequately capture performance. Therefore, we created for our 

primary analyses a standardized performance cost variable by first z-scoring error rates and RTs 

across subjects and conditions, and then averaging the two z-scores into a composite 

performance cost measure (see Liesefeld & Janczyk, 2019). For this performance cost variable, 

higher numbers represent worse performance. We also present RTs and errors in Appendix B 

(B1 for RTs and B2 for errors in Experiment 1; B3 for RTs and B4 for errors in Experiment 2), 

which overall show qualitatively similar patterns as the combined scores. 

For the cue-based and serial-order formats separately, we entered our three sets of model-

based variables into linear mixed regression analyses, to predict performance within subject and 

task (see Table 3.3 for condition means). The coding schemes applied to the predictor variables 

have been introduced in Paradigm and Predictions (Section 1.5) and can be found in Tables 3.1 

and 3.2 for cue-based and serial-order formats, respectively. As previously mentioned, because 

the ballistic model can be nested within either the dynamic or global integration models, we 

tested the ballistic model against the other two individually (i.e., ballistic vs. dynamic, and 

ballistic vs. global integration). To compare the dynamic and global integration models, we used 

the Akaike Information Criterion (AIC), with lower numbers indicating better model fit.  
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2.2.1. Cue-Based Models 

Observed and 

model-predicted 

performance across all 

three tasks is shown in 

Figure 3.3 (top panels), 

and results of each of the 

models can be found in 

Table 3.4. Generally, the 

results show worse 

performance as a 

function of hierarchical 

level and number of cues. 

The model tests provide 

more detailed 

information about the precise origin of processing constraints. All predictors were highly reliable 

for the ballistic updating model (Table 3.4). As is clear from the model predictions, this model 

captured the substantial performance costs that arose whenever a cue was presented that “fit” the 

level of control relevant for that block (e.g., the cost increase for a level 2 cue in a level 2 

structure, or for a level 3 cue in a level 3 structure).  

Both the global integration (Χ
2
(3)=31.65, p<.001) and the dynamic integration 

(Χ
2
(3)=76.73, p<.001) models provided significantly better fit than the ballistic model. Clearly, 

the associated Χ
2 

value was much larger for the dynamic integration model, and the AIC values 

Table 3.3. Experiment 1 and 2 mean and SD of accuracy and RT by hierarchical level and task, 

in both formats. 

  Experiment 1 (N=23) Experiment 2 (N=53) 

Cue-Based Format 

Level Task Accuracy              RT (ms) Accuracy              RT (ms) 

1 Spatial Rules 0.99 (0.07) 696.63 (380.80) 0.96 (0.16) 637.72 (347.83) 

Number Judgment 0.98 (0.09) 659.63 (286.90) - - 

Odd One Out 1.00 (0.01) 541.13 (157.04) - - 

2 Spatial Rules 0.97 (0.15) 819.12 (469.99) 0.93 (0.24) 874.93 (592.43) 

Number Judgment 0.95 (0.19) 1110.63 (743.47) - - 

Odd One Out 0.96 (0.19) 832.05 (442.09) - - 

3 Spatial Rules 0.95 (0.20) 1073.37 (911.61) 0.91 (0.27) 1050.42 (848.73) 

Number Judgment 0.95 (0.21) 1386.25 (1262.00) - - 

Odd One Out 0.95 (0.21) 1010.75 (812.85) - - 

4 Spatial Rules 0.94 (0.23) 1157.53 (1057.92) 0.89 (0.30) 1151.60 (1048.70) 

Number Judgment 0.94 (0.22) 1465.79 (1422.82) - - 

Odd One Out 0.94 (0.22) 1099.79 (964.21) - - 

Serial-Order Format 

Level Task Accuracy              RT (ms) Accuracy              RT (ms) 

1 Spatial Rules 0.99 (0.04) 549.61 (159.82) 0.96 (0.15) 697.56 (301.08) 

Number Judgment 0.98 (0.09) 664.43 (337.36) - - 

Odd One Out 0.99 (0.05) 524.22 (159.20) - - 

2 Spatial Rules 0.97 (0.13) 838.97 (392.20) 0.96 (0.18) 1077.70 (584.96) 

Number Judgment 0.96 (0.17) 1218.05 (672.41) - - 

Odd One Out 0.98 (0.12) 726.90 (320.11) - - 

3 Spatial Rules 0.96 (0.18) 1007.79 (582.66) 0.94 (0.22) 1282.26 (801.88) 

Number Judgment 0.94 (0.22) 1398.96 (902.30) - - 

Odd One Out 0.93 (0.24) 956.54 (607.75) - - 

4 Spatial Rules 0.93 (0.24) 1308.36 (896.49) 0.90 (0.27) 1531.12 (1120.83) 

Number Judgment 0.92 (0.25) 1585.86 (1122.19) - - 

Odd One Out 0.93 (0.25) 1145.30 (813.61) - - 
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indicate a better fit 

for the latter than 

the former (369.76 

vs. 414.85). Further, 

all coefficients for 

the dynamic 

integration model 

were robust, 

whereas the 

coefficients for the 

global integration 

model were small 

and partly non-

significant. Note 

that the global integration model tries to enforce an across-the-board number-of-levels effect that 

is not apparent in the data (see Figure 3.3, first and third top panels). In contrast, the dynamic 

integration model captured the fact that performance costs arose, both at level-specific decision 

points, and whenever at least one additional structural level was relevant beyond the cue level for 

the current decision. Additional relevant structural levels beyond that did not add additional 

costs. This pattern is particularly clear across structure levels, with no presented cues (i.e., cue 

level 1 in Figure 3.3, first top panel). In structure level 2, there were small but highly robust costs 

over and above those incurred at the same cue level in a level 1 structure, but there were no 

Table 3.4. Fixed effects from all cue-based and serial-order models in Experiment 1, with 

performance cost as the outcome variable. 

Cue-Based Format 

 Ballistic Model Global Integration Model Dynamic Integration Model 

 (AIC = 440.49) (AIC = 414.85) (AIC = 369.76) 

Predictors b SE t p b SE t p b SE t p 

L2 B 0.47 0.020 23.42 <0.001 0.46 0.026 17.63 <0.001 0.33 0.030 11.03 <0.001 

L3 B 0.70 0.025 27.80 <0.001 0.65 0.029 22.21 <0.001 0.50 0.034 14.97 <0.001 

L4 B 0.41 0.040 10.19 <0.001 0.37 0.043 8.69 <0.001 0.27 0.047 5.72 <0.001 

L2 G - - - - 0.02 0.033 0.49 0.622 - - - - 

L3 G - - - - 0.09 0.029 3.05 0.002 - - - - 

L4 G - - - - 0.07 0.026 2.50 0.013 - - - - 

L2 D - - - - - - - - 0.13 0.031 4.07 <0.001 

L3 D - - - - - - - - 0.22 0.033 6.82 <0.001 

L4 D - - - - - - - - 0.23 0.041 5.65 <0.001 

Filter 0.02 0.01 2.12 0.034 0.05 0.012 4.44 <0.001 0.07 0.012 6.04 <0.001 

Serial-Order Format 

 Ballistic Model Global Integration Model Dynamic Integration Model 

 (AIC = -109.23) (AIC = -1395.81) (AIC = -1256.85) 

Predictors b SE t p b SE t p b SE t p 

L2 B 0.37 0.011 33.54 <0.001 0.32 0.010 33.45 <0.001 0.11 0.013 8.78 <0.001 

L3 B 0.27 0.019 14.01 <0.001 0.20 0.016 12.00 <0.001 0.001 0.021 0.04 0.971 

L4 B 0.22 0.033 6.72 <0.001 0.13 0.028 4.57 <0.001 0.04 0.033 1.13 0.260 

L2 G - - - - 0.12 0.010 11.79 <0.001 - - - - 

L3 G - - - - 0.12 0.010 12.16 <0.001 - - - - 

L4 G - - - - 0.14 0.010 14.35 <0.001 - - - - 

L2 D - - - - - - - - 0.24 0.008 29.16 <0.001 

L3 D - - - - - - - - 0.35 0.017 21.06 <0.001 

L4 D - - - - - - - - 0.27 0.029 9.38 <0.001 

Note. The outcome for each of the three models was standardized performance cost. Fixed effects were nested within 
task and participant. L = level. B = ballistic variable. G = global integration variable. D = dynamic integration variable. N = 
23. All predictors are defined in Table 2 for cue-based and Table 3 for serial-order. 
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additional costs in structure levels 3 or 4. The same general pattern repeats itself for structure 

level 3 versus 2 at cue level 2, and for structure level 4 versus 3 at cue level 3.  

Across all models, the coefficient for the filtering variable was highly significant, 

indicating that even irrelevant cues had a small, but robust effect on performance. The 

preregistration for Experiment 2 was submitted before we had conducted analyses including the 

filtering variable in Experiment 1. Therefore, we also present modeling results without that 

variable in Appendix B (B5), which produced overall qualitatively similar conclusions as the 

analyses with the complete model.2 

 
2 The reliable filtering effect also raises an interesting substantive question: Does it reflect 

perceptual/attentional interference that arises because of additional objects on the screen, or is it better 

understood as a kind of proactive interference caused by the fact that the irrelevant cues were relevant in 

other encountered conditions? To address this question, we ran a short control experiment in which a new 

group of participants (N=39) performed only the trials from structural level 1 in the cue-based format 

from Experiment 1, with all four cue levels (which in this case were never relevant, and therefore 

meaningless). Results (presented in Appendix B6) showed a small, but robust perceptual/attentional 

filtering cost (i.e., in the control experiment), but a significantly larger cost in the hierarchical control 

context. We interpret this increased filtering cost as reflecting proactive interference from the instructed 

and/or in previous blocks experienced, hierarchical control structure.  

Figure 3.3. Performance results and model fits for Experiment 1 in cue-based (top panels) 
and serial-order (bottom panels) formats. Error bars indicate 95% within-subject 
confidence intervals. 
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2.2.2. Serial-Order Models 

For the serial-order format, again the ballistic updating predictors were highly reliable, 

accounting for the fact that there were robust performance costs at chunk transition points, and 

these costs increased with additional levels (see Figure 3.3 bottom panels, and Table 3.4 for full 

results from the three models). As in the cue-based format, both the global integration and 

dynamic integration models led to a robust increase in fit over the ballistic model. However, here 

the Χ
2 

value was substantially higher for the global integration model (Χ
2
(3)=1292.58, p<.001) 

than for the dynamic integration model (Χ
2
(3)=1153.61, p<.001), and AIC values indicated a 

better fit for the former than the latter (-1395.81 vs. -1256.85). The global integration model 

clearly captured the presence of number-of-levels effects across all sequence positions, including 

within-chunk positions 2 and 3 (which required no chunk transitions). Further, contrary to the 

ballistic updating model, we found that the same level-specific transition cost increased with 

relevant structural level. For example, the level 2 chunk transition cost in a level 3 structure (at 

the start of the second chunk in a two-chunk sequence, i.e., sequence position 4) was higher than 

the level 2 chunk transition cost in level 2 structure (sequence position 1 in the one-chunk 

condition), and the cost of switching to the second or fourth chunk within a 12-element sequence 

(at positions 4 and 10) was even higher than that. 

2.2.3. Model Limitations 

Overall, the modeling provided a reasonable account of the pattern of empirical results. 

Nevertheless, there were a few points where predicted and empirical results diverged. In the cue-

based format, the most significant point of misfit was for cue levels 3 and 4 at structural levels 3 

and 4, where all three models predicted a steeper increase from cue level 3 to 4 for structural 

level 4 than for structural level 3. In contrast, the empirical results showed a parallel increase 
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across structural levels. One possible explanation for this pattern is that the two cues relevant for 

levels 3 and 4 were perceptually integrated (i.e., vertically or horizontally aligned stars 

surrounding one of the two possible context letters, e.g., “A” or “B”). This may have made it 

more difficult to interpret each cue in isolation, and for that reason made the effect of cue level 4 

more similar across structural levels 3 and 4.  

Another pattern of model misfit occurred in the serial-order format on structural level 4 

(four-chunk super-plans). Specifically, the overall best-fitting, global integration model predicted 

greatest costs at transitions between the two-chunk plans (positions 1 and 7). Yet, empirically, 

this predicted pattern of costs did not appear across positions 1 and 7, versus 4 and 10 (i.e., at 

chunk transitions within the super-chunks). This source of misfit also affected the prediction for 

chunk transitions on level 3. Here, empirical costs were much smaller for position 4 than 1 (as 

predicted). However, in trying to account for the opposite pattern on level 4, the models could 

not recover this difference. A likely reason for this misfit arises from the way in which we 

implemented level 4, namely as a chunk-level serial-order reversal between the two, two-chunk 

plans (e.g., chunk 1–chunk 2 –– chunk 2–chunk 1). This means that there was always a complete 

repetition of chunks across the boundary of the two-chunk plans, which may have reduced costs 

at those boundaries. As shown in Appendix B7, adding a post-hoc chunk repetition predictor to 

the model eliminates the fit issue on level 3 and leads to a substantial increase in model fit.  

Finally, the task-specific results in each format can be found in Appendix B (B8-9). For 

the cue-based format, these results show another source of misfit. We found that for one of the 

three task domains, the spatial rules task, there was no clear differentiation between structural 

level 1 versus levels 2-4 in the no-cue condition (cue level 1), a difference that is particularly 

critical for ruling out the ballistic model. We believe that the most likely reason for this 
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difference in the overall pattern is that the spatial rules task was presented first in the 

experimental session, when participants may not have been fully familiarized with the complex 

overall procedure. In Experiment 2, we were able to replicate the characteristic cost pattern for 

the spatial rules task.  

3. Experiment 2 

 Results from Experiment 1 revealed consistent evidence in favor of the dynamic 

integration model across all three tasks when the hierarchical structure was implemented through 

environmental cues. In contrast, when hierarchical control was based on sequential plans, we 

obtained robust evidence in favor of the global integration model. Given the complex pattern of 

results and the exploratory nature of our modeling procedure, we wanted to provide an 

independent replication before considering further theoretical implications. Also, in the 

Experiment 1 procedure, participants always completed the cue-based format before the serial-

order format. Therefore, in Experiment 2 we repeated the design from Experiment 1 for one of 

the three tasks (spatial rules) and counter-balanced the order of the two formats, in order to check 

that the format order was not responsible for our findings. We preregistered our predictions and 

analyses prior to analysis of Experiment 2.  

3.1. Methods 

3.1.1. Participants 

Data were collected from 84 University of Oregon undergraduate psychology students. 

Participation was voluntary, and subjects received class credits for completing the study. 

Because this was an online study conducted during the COVID pandemic, we oversampled 

participants in order to arrive at a sufficient number of participants after applying our a-priori 

cut-off criteria (see Section 3.2.). Subjects signed up to participate through the university’s 
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SONA system for human subjects research. After signing up, they were given a link to the 

experiment on Pavlovia. The study was conducted in a single online session and lasted about 1.5 

hours. 

3.1.2. Stimuli, Design, and Procedure 

Stimuli and design were the same as in Experiment 1. Participants were instructed to 

complete all the levels in both hierarchical formats, bookended with the switching task, for the 

spatial rules task only. Because of the online format, instructions were presented in the form of 

self-paced slides, and participants had to click through the full set of instructions for a given 

section before continuing onto the task. The instruction slides are presented in Appendix C. We 

kept the instructions as consistent as possible to those in Experiment 1.  

For the cue-based context, participants completed 624 total trials across the four levels: 

72 trials on Level 1, 120 trials on Level 2, 168 trials on Level 3, and 264 trials on Level 4. For 

the serial-order context, participants completed 864 total trials across the four levels: 72 trials on 

Level 1, 144 trials on Level 2 (6 different three-element chunks, repeated 8 times each), 216 

trials on Level 3 (6 different two-chunk sequences, repeated 6 times each), and 432 trials on 

Level 4 (6 different four-chunk super-plans, repeated 6 times each). The intertrial interval was 

500ms in the cue-based context and 50ms in the serial-order context. The switching task 

included 50 trials at the beginning of the session and another 50 trials at the end. Importantly, in 

this version of the experiment, format order (cue-based vs. serial-order) was counterbalanced 

across participants.  

3.2. Results and Discussion 

The same exclusion criteria as Experiment 1 were used for Experiment 2. However, in 

order to avoid skewing the upper RT cutoff from trials in which the participant had clearly turned 
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their focus from the experiment, we removed all trials with RTs above 20 seconds before 

calculating the 99.5th percentile for each level (0.15% of total serial-order trials, and 0.11% of 

total cue-based trials). We excluded trials with RTs below 200ms or above the upper RT cutoff. 

After excluding 8 subjects who did not complete all components of the experiment and 

23 subjects with accuracy rates below 70%, we used the data from 53 subjects in our analyses. 

Though this exclusion rate seems high, it is not surprising given the complexity of the 

experiment and the fact that motivation and performance tend to vary more for online studies 

than for in-person studies, which can be more carefully controlled and monitored. 

Other than excluding the within-task nesting parameter (because there was only one task 

pair in Experiment 2), all analyses were the same as in Experiment 1. Means and standard 

deviations can be found in Table 3. 

3.2.1. Cue-Based Models 

Observed and model-predicted performance is shown in Figure 3.4 (top panels). Most of 

the model-based variables were significant predictors of performance in the three models (for 

complete results of each of the models, see Table 3.5). The same pattern as in Experiment 1 was 

found, with both dynamic integration (Χ
2
(3)=60.61, p<.001) and global integration 

(Χ
2
(3)=37.83, p<.001) models fitting the data significantly better than the ballistic model. 

Further, as was the case in Experiment 1, the dynamic integration model provided the best fit, 

with an AIC of -234.02 (vs. AIC=-211.24 for global integration).  

As in Experiment 1, the cost increase from cue level 3 to 4 was more parallel across 

structural levels 3 and 4 than any of the models predicted. Possible reasons for this misfit were 

discussed in the context of Experiment 1 (Section 2.2.3).  
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3.2.2. Serial-Order Models 

Observed and model-predicted performance is shown in Figure 3.4 (bottom panels), and 

results from the three linear mixed models are shown in Table 3.5. Again, the pattern of results 

matches that found in Experiment 1, with significantly better model fit for both dynamic 

integration (Χ
2
(3)=966.98, p<.001) and global integration (Χ

2
(3)=1056.15, p<.001) models, 

relative to the ballistic model. The global integration model yielded the best fit, with a lower AIC 

(-1647.98) than that of the dynamic integration model (AIC=-1558.82). Further, all predictors 

were statistically robust for the global integration model but not for the dynamic integration 

model. This finding is again in line with Experiment 1, indicating that for serial order control, the 

cognitive system requires integration across all levels, at each point of sequential execution. 

Finally, while level 4 costs had deviated from the predicted pattern in Experiment 1 (which we 

attributed to the presence of chunk repetitions across super-chunk transitions), in the current 

Figure 3.4. Performance results and model fits for Experiment 2 in cue-based (top panels) 
and serial-order (bottom panels) formats. Error bars indicate 95% within-subject 
confidence intervals. 
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experiment, the 

profile of costs was 

closer to 

predictions, at least 

for the first super-

chunk. However, as 

in Experiment 1, 

including a variable 

that accounts for 

chunk repetitions 

led to an increase in 

fit (see S7; note 

specifically, the size 

of the level 4 costs 

for sequence position 4). This suggests that, again, repetition benefits muted the profile of costs 

that would otherwise have been observed on level 4. 

4. General Discussion 

Our goal was to determine the source of processing constraints that result from increasing 

the number of levels within a hierarchical control structure. For that purpose, we manipulated the 

number of relevant levels (between one and four) within separate blocks of trials. We also 

established control structures either through environmental signals (cues) or in form of 

memorized, sequential plans. Hierarchical control structures are decision trees, in which a 

higher-level (and therefore earlier) decision establishes a contextual setting that governs lower-

Table 3.5. Fixed effects from all cue-based and serial-order models in Experiment 2, with 

performance cost as the outcome variable. 

Cue-Based Format 

 Ballistic Model Global Integration Model Dynamic Integration Model 

 (AIC = -179.41) (AIC = -211.24) (AIC = -234.02) 

Predictors b SE t p b SE t p b SE t p 

L2 B 0.30 0.017 17.92 <0.001 0.26 0.021 12.28 <0.001 0.18 0.024 7.35 <0.001 

L3 B 0.64 0.021 31.11 <0.001 0.62 0.024 26.17 <0.001 0.51 0.027 18.76 <0.001 

L4 B 0.32 0.032 9.83 <0.001 0.28 0.035 8.02 <0.001 0.22 0.038 5.89 <0.001 

L2 G - - - - 0.07 0.027 2.42 0.016 - - - - 

L3 G - - - - 0.03 0.023 1.48 0.140 - - - - 

L4 G - - - - 0.08 0.021 3.62 <0.001 - - - - 

L2 D - - - - - - - - 0.13 0.025 5.19 <0.001 

L3 D - - - - - - - - 0.14 0.026 5.20 <0.001 

L4 D - - - - - - - - 0.16 0.033 4.90 <0.001 

Filter 0.04 0.008 5.64 <0.001 0.08 0.010 7.88 <0.001 0.09 0.010 8.95 <0.001 

Serial-Order Format 

 Ballistic Model Global Integration Model Dynamic Integration Model 

 (AIC = -597.83) (AIC = -1647.98) (AIC = -1558.82) 

Predictors b SE t p b SE t p b SE t p 

L2 B 0.39 0.011 34.53 <0.001 0.34 0.010 35.56 <0.001 0.16 0.013 12.78 <0.001 

L3 B 0.28 0.019 14.66 <0.001 0.22 0.016 13.73 <0.001 0.02 0.020 0.83 0.409 

L4 B 0.32 0.033 9.73 <0.001 0.23 0.027 8.33 <0.001 0.09 0.033 2.59 0.010 

L2 G - - - - 0.11 0.010 11.17 <0.001 - - - - 

L3 G - - - - 0.10 0.010 9.82 <0.001 - - - - 

L4 G - - - - 0.14 0.010 14.25 <0.001 - - - - 

L2 D - - - - - - - - 0.22 0.008 26.64 <0.001 

L3 D - - - - - - - - 0.30 0.017 17.95 <0.001 

L4 D - - - - - - - - 0.35 0.029 12.22 <0.001 

Note. The outcome for each of the three models was standardized performance cost. Fixed effects were nested within 
participant. L = level. B = ballistic variable. G = global integration variable. D = dynamic integration variable. N = 53. All 
predictors are defined in Table 2 for cue-based and Table 3 for serial-order. 
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level decisions. As each additional level adds a decision point, it is not surprising that level-

dependent decision costs arose whenever a potential change on a particular level needed to be 

considered. This is consistent with essentially any conceivable model of hierarchical control. 

Indeed, for the cue-based format, costs increased with every additional cue presented on a given 

trials, as long as that cue was relevant in that particular structure level. For the serial-order 

format, costs increased whenever a transition occurred between a subunit of the sequence, and 

the costs were larger with more nested units to be considered (i.e., elements, three-element 

chunks, two-chunk sequential plans, and four-chunk super-plans).  

The theoretically more important question concerns what happens after the decision 

about a higher-level setting has been made. If the cognitive system is optimized for processing 

efficiency, it should retain the most recently reached point in the decision tree for subsequent 

lower-level decisions. Any such lower-level decision would then start from that point, instead of 

requiring routing through the previous decisions again. Based on our results, we can clearly 

reject such a pure ballistic model of hierarchical control.  

In the cue-based format, this was reflected in the finding that lower-level decisions were 

negatively affected whenever higher structure levels were relevant, even on trials in which no 

higher-level cues were shown. For example, in the zero-cue condition (cue level 1), there was a 

small but highly robust difference between structure level 1 performance and performance in the 

remaining three structure levels. Equally, at cue level 2, performance was better in the level 2 

structure than in either of the remaining structure levels (3 or 4). For the serial-order format, the 

ballistic model predicts that within-chunk positions 2 and 3 should not require any updating or 

consideration of higher-level settings. Nevertheless, these positions showed a very clear ordinal 

scaling of performance cost as a function of number of levels. 
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While results for cue-based and serial-order hierarchical control are both inconsistent 

with the pure ballistic model, the similarity in cost profiles between formats ends here. The just-

mentioned finding that costs increased with the number of structural levels across all positions in 

the serial-order format conforms with the assumption of the global integration model that all 

potentially relevant aspects (i.e., levels) need to be integrated for each individual decision during 

sequence execution. In contrast, for the cue-based format, data were consistent with what we 

have referred to as the dynamic integration model. The critical data pattern here is that in the 

absence of higher-level cues, lower-level decisions are negatively affected to the same degree by 

all relevant higher levels– additional costs are only incurred when there is a next-highest 

structural level to be considered; levels beyond that do not influence performance. In the 

remainder of this discussion, we will address the theoretical implications of these results in turn. 

4.1. The Limitations on Ballistic Control and the “Next-Level-Up” Effect 

 One possible reason for peoples’ limited ability to benefit from previous higher-level 

decisions in a ballistic manner is that having to maintain the higher-level setting in working 

memory absorbs resources that would otherwise be available for lower-level decisions. Evidence 

from dual-task studies suggests that working memory maintenance demands may impose 

unspecific costs on simultaneous RT tasks, but these results also provide little evidence for 

interference between working memory load and parallel executed decisions (e.g., Moss, 

Kikumoto, & Mayr, 2020). The present data pattern is also not consistent with a static, 

maintenance-cost view. If maintenance were the critical factor, we would expect that costs 

generally scale with the increase in maintenance demands from increasing the number of 

structural levels. Yet for the cue-based format, that clearly was not the case, as additional costs 
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were incurred only for the next structural level up from the highest-level cue presented on a 

given trial, but not for additional structural levels beyond that.  

 What then is behind this next-level-up cost? We believe that the most likely explanation 

involves stimulus-driven retrieval in order to dynamically integrate the stimulus with the current 

task rule. Specifically, we suggest that a stimulus which requires a decision triggers an “upward” 

retrieval process to activate the necessary and sufficient context relevant for that decision. For 

example, when in a 4-level structural context, if a level 2 cue appears (frame color), the relevant 

context is the level 3 rule, which is required to interpret that level 2 cue (e.g., 

“red=vertical/green=horizontal”). The exact constellation of higher-level cues that have put this 

rule into place is not relevant for the lower-level decision and therefore does not need to be 

retrieved. Consequently, performance is not affected by whether the level 2 cue appears within a 

level 3 or level 4 structural context. This “upward-retrieval” account necessarily assumes that 

during encoding of cues, people do not keep a perceptual record of the input information (i.e., the 

cues). If that were all they retained, interpretation of the next-level cue would also require the 

perceptual record from one further level up (and so forth). Instead, we suggest that the cue 

information is translated during encoding into the functionally relevant instructions (e.g., 

“red=vertical/green=horizontal”), and it is these instructions that are retrieved. This account is 

consistent with recent evidence from Ehrlich & Murray (2021), who used stimuli in a working 

memory task that could be encoded either veridically or in terms of functionally relevant rules 

for post-delay responding. Results indicated that participants immediately encoded information 

into response rules rather than retaining stimulus information. 

One important assumption behind our explanation of the next-level-up effect in the cue-

based format is that it is prompted by experienced, stimulus/cue-driven ambiguity or conflict, 
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rather than by the mere presence of a higher-level structure. Incidentally, our task design allowed 

for an additional, and originally unintended test of this explanation of costs. In order to make 

structural level 4 manageable for participants, we included this level in a “degenerate” manner, 

namely by having the level 4 cue indicate whether level 3 cues were necessary or could be 

ignored in favor of applying the default rule set associated with one of the level 3 cues (e.g., cue 

letter “A;” see Figure 3.1a). Thus, when the A context matched the default rule set, participants 

only experienced ambiguity about what to do when the letter B appeared as a cue. The upward-

checking assumption would predict that only in this case is it important to reaffirm whether the 

current level 4 context requires use of the level 3 cues or not. To test this prediction, we split the 

structural level 4 data into the default-matching level 3 cue (“A”) and the non-default cue (“B”) 

groups. Figure 3.5 shows the results for both experiments, with structural level 4 split into 

default and non-default trials, along with the results from the remaining conditions. As apparent, 

the prediction that costs arise mainly for the non-default letter was very clearly confirmed for 

Experiment 1, 

and at least 

partially 

confirmed for 

Experiment 2, 

namely for cue 

level 4. Overall, 

this pattern of 

results provides 

an additional 

Figure 3.5. Cued performance, with structure level 4 split out into two 
groups. Level 4 “A” represents the level 3 cue that signaled the same rule 
set as the “default context,” and Level 4 “B” represents the level 3 cue that 
signaled the other possible rule set. Error bars indicate 95% within-subject 
confidence intervals. 
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confirmation that much of the costs in the cue-based format arise dynamically, in order to resolve 

stimulus/cue-driven ambiguity.  

4.2. Why Does Serial-Order Control Require Integration across All Levels? 

 From the qualitatively different patterns of hierarchical control costs across formats, one 

might conclude that fundamentally different control architectures are involved in the cue-based 

and serial-order formats. For the latter, we found number-of-levels effects for every single trial, 

even when no context transition was necessary (i.e., within-chunk positions 2-3). So why would 

overall contextual load matter here but not in the cue-based format? Does a serial-order control 

structure impose complexity-dependent maintenance demands that are not required for an 

environmental signals-based control structure? While we currently cannot rule out such a global 

maintenance-cost account, we suggest instead that this cost pattern reflects the specific needs of 

serial-order control, which requires keeping track of one’s current position within task space. A 

sequential position is one point within a space with as many dimensions as hierarchical levels. 

For example, the current location within a level 4 sequence is jointly defined by the chunk super-

plan, the chunk plan, the chunk, and the within-chunk position. Given that position within the 

sequence changes on every trial, this step of cross-level integration also needs to occur on every 

trial.  

 A substantial literature addresses how sequential representations are reflected in the 

within-sequence pattern of RTs or accuracy rates (Mayr, 2009; Restle, 1970; Rosenbaum et al., 

1983; Schneider & Logan, 2006; Verwey, Shea, & Wright, 2015). One of the most pervasive 

findings in literature is that large costs arise at transitions between sequence subunits (i.e., 

between chunks), suggesting that our cognitive system deals with the problem of serial-order 

mainly at these transition points. To our knowledge, the current study provides the first 
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systematic assessment of how the overall control structure complexity of a sequence affects 

performance. The finding of level effects across all sequence positions is novel and important, as 

it indicates that the serial-order representation needs to be referenced continuously, at every 

position of a sequence. These results are also consistent with recent work using EEG decoding of 

three-level serial-order control structures and (Kikumoto & Mayr, 2018), which demonstrated 

the continuous identity representation of individual sequential elements, within-chunk position 

codes, and individual chunks. These are exactly the aspects that need to be represented and 

integrated on every trial in order to keep track of one’s position in the overall sequence. 

 Though our results demonstrate a difference in cost patterns between the cue-based and 

serial-order formats, this does not necessarily imply that the two formats use fundamentally 

different processing architectures. A more parsimonious assumption would be that our cognitive 

system always applies dynamic stimulus-driven integration of necessary and sufficient context 

information through “upward retrieval.” The difference comes from the fact that what is 

necessary and sufficient varies across format. The serial-order format requires the integration of 

all relevant levels in order to keep track of current sequence position. In contrast, in the cue-

based format there is no danger in “getting lost in task space,” because higher-level transitions 

are reliably indicated through external cues. Therefore, here checking the next-level-up context is 

sufficient for interpreting the current stimulus.  

4.3. Maintenance and Updating in Working Memory 

 Our results are broadly consistent with models of working memory that assume a 

distinction between maintenance and updating modes (e.g., Badre, 2012; Kessler & Meiran, 

2008; Kessler & Oberauer, 2014; Mayr, Kuhns, & Hubbard, 2014; O’Reilly, 2006). In these 

models, maintenance is typically regarded to be the default mode that is geared towards shielding 
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current information from new input. Therefore, it is plausible to assume that in the cue-based 

format with no cues presented, participants remain in the efficient maintenance mode. In 

contrast, presentation of potentially relevant cues triggers an updating process, for which costs 

track with the amount of information (i.e., number of levels) to be considered on a given trial. In 

this regard, the number-of-levels effect might be considered an instance of the set-size effect on 

updating costs that is typically found when the amount of information that needs updating is 

experimentally manipulated (Kessler & Oberauer, 2014).  

So how then do our results from the serial-order and cue-based formats fit with this 

maintenance/updating distinction? Interestingly, research by Kessler and Meiran (2008) indicates 

that while people can partially update working memory content, the updating cost for a given 

amount of updated information is larger when there is additional to-be-maintained information in 

working memory. The authors attribute these extra costs to a “global” updating process that “is 

responsible for stabilizing the representations in working memory after the relevant modification 

takes place” (p. 1346). This is not unlike our interpretation of the pervasive number-of-levels effects 

in the serial-order format: When moving through a sequence, each position change requires 

reintegration of position information with all remaining relevant aspects in order to keep track of the 

current location within the sequence. Similarly, for the next-level-up effect in the cue-based format, 

the current stimulus or cue needs to be integrated with the relevant higher-level working memory 

content in order to be accurately interpreted.  

It is, however, important to acknowledge that there are critical differences between the 

standard working memory updating paradigm and hierarchical control situations. In the former, 

participants need to handle unrelated pieces of information. In the latter, control-relevant information 

is structured and interrelated: Information on different hierarchical levels is essentially connected 

through if-then rules. It is not clear how these types of relationships affect the updating/maintenance 
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dynamics or whether they warrant an expansion of standard working memory models. While the 

standard model assumes that all information is alike and hierarchical structures emerge from the 

information represented (Crittenden & Duncan, 2014), neurologically informed conceptualizations 

assume that working memory is segregated into hierarchically organized, functionally separate 

cortical/subcortical loops (Badre & Nee, 2018). A detailed account of where processing costs emerge 

during hierarchical control is critical for continuing to develop our understanding of these working 

memory processes.  

4.4. Conclusion and Broader Implications 

 In principle, hierarchical control should allow a complex problem to be parsed into 

subproblems that can be solved independently without needing to reconsider the earlier, higher-

level decisions upon which the lower-level decisions are contingent. As our results indicate, the 

cognitive system does not comply with this ideal. Rather, it appears that each lower-level 

decision requires a context check to determine the currently valid rules. While the pure ballistic 

model can be refuted, it is also important to acknowledge that the cost of checking an established 

context remains lower than the cost incurred when that original contextual setting was put into 

place (i.e., costs at cued updating points or transitions between sequential subunits are larger than 

at points where no obvious updating/transition is necessary). Thus, there are considerable savings 

from previous higher-level decisions, likely because the last-established setting remains highly 

accessible for retrieval. Further, our results show that the context check during lower-level 

decisions comes in different degrees, depending on how hierarchical control is established. For 

the cue-driven format, it is only necessary to retrieve the “next-level-up” rule from the current 

decision. In contrast, for the serial-order format, all relevant levels need to be integrated on every 

trial in order to establish location within the current sequential context.  
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 The fact that lower-level decisions require checking across levels implies that the 

supposedly independent representational spaces that should arise from hierarchical control 

structures are not truly insulated from each other. On the one hand, produces interference and 

therefore a loss of efficiency. On the other hand, this may allow for information exchange, 

generalization, or the induction of abstract patterns across representational units. For example, 

contingencies that affect lower-level decisions in one subspace can partially generalize to 

alternate subspaces (Bryck & Mayr, 2005). In the case of serial-order control, people can extract 

abstract relationships between successive chunks to efficiently code an overall sequence (Restle, 

1970). Future research should address this question of the degree to which the less efficient, non-

ballistic features of control are the very aspects that allow useful information to be integrated 

across different regions of a task space. The way hierarchical control operates may be a 

compromise between the opposing goals of efficient performance on the one hand and efficient 

representations through learning and structure building on the other. 
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CHAPTER IV 

INDIVIDUAL DIFFERENCES IMPLICATIONS OF THE HIERARCHICAL CONTROL 

ARCHITECTURE 

 

1. Introduction 

With the cognitive revolution came the discovery of hierarchical structure as an essential 

feature of complex action and thinking. Hierarchical structures dissect large problems into small, 

independently manageable subproblems, and provide the basis for generalization and 

generativity by allowing recombination of existing processes to achieve new goals or cognitive 

products. Hierarchical structures are key to executing complex sequences such as in music, 

dance, or language, by organizing individual elements recursively into short subsequences 

(chunks). However, they can also be implemented through environmentally prompted contexts 

that modulate how specific signals in the environment need to be interpreted.  

The hierarchical organization of task spaces also implies that differences in cognitive 

functioning between people may result not (or not only) from the specific types of processes or 

content domains of a particular task. Rather, the characteristics of the of control structure itself 

may be what drives differences between people in task performance. Concretely, the key 

question here is whether, and how exactly, higher levels of control produce unique individual 

differences variance. To address this question, we examined individuals’ performance across 

three different task domains in which we applied hierarchical control structures that varied from 

one to four different levels (see Figure 4.1). We implemented these structures in a serial-order 

format, that is in terms of memorized sequences, and in a cue-driven format, with control 

contexts prompted through external signals. In addition, we assessed each participant’s fluid 



 

89 

 

intelligence, working memory capacity, and long-term memory ability in order to examine how 

level-specific variance may relate to existing, theoretically important constructs. To test key 

hypotheses about the nature of individual differences variance within this set of task demands, 

we used structural equation modeling. We begin here by situating our specific hypotheses and 

questions within the existing literature on hierarchical control.  

1.1. Costs of Hierarchical Control 

Considerable research documents how hierarchical structures are expressed in terms of 

performance costs. More complex hierarchical structures produce longer RTs and greater error 

rates. Evidence from research with the task-switching paradigm suggests that when more than 

one task can occur within the same context (presumably requiring at least a two-level control 

structure), RTs and error rates increase, in what is known as global or mixing costs (Mayr, 2001; 

Figure 4.1. Diagram of the hierarchical rule structure in (a) cue-based format and (b) serial-order 
format. Example trials in the highest task level (level 4) are shown below each diagram. The arrow 
within the stimulus frame indicates the correct response and was not presented in the actual trial. 
From Moss & Mayr (2022). 
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Rubin & Meiran, 2005). Moreover, additional costs are observed whenever higher-level 

representations need to be updated or changed. For example, there is consistent evidence that 

when executing memorized action sequences, chunk transitions produce large increases of RTs 

and error rates, as do trial-to-trial transitions between tasks in the task-switching paradigm, 

known as local switch costs (Kray & Lindenberger, 2000). Yet, performance costs associated 

with higher levels of hierarchical control do not necessarily imply level-specific processing 

constraints. In principle, it is possible that basic subcomponents are used recursively to build up 

complex structures. In this case, there is no need to assume that worse performance with higher-

level structures indicates the use of distinct sets of cognitive resources. Such a single-factor 

hypothesis presents the baseline model against which any more complex model of individual 

differences within hierarchical control structures needs to be tested.  

1.2. Evidence in Favor of Unique Higher-Level Variance 

Based on available empirical evidence, there is reason for skepticism about such a single-

factor model. For example, it has been demonstrated that higher levels of control are more 

dependent on working memory capacity and fluid intelligence than lower-level structures (e.g., 

Bo & Seidler, 2009; Kikumoto & Mayr, 2018). Further, these cognitive abilities have been 

shown to strongly correlate with each other (Unsworth et al., 2014). Work with the task-

switching paradigm has indicated that unique individual differences variance is established when 

two tasks are performed within the same block (global switch costs), and additional variance 

emerges when tasks need to be changed (local switch costs). Maybe the most direct exploration 

of this issue has been carried out by Carpenter et al. (1990), who found that error patterns in 

performing the Tower of Hanoi task pointed to specific problems in coordinating a complex 

hierarchical control structure and were relatively strongly related to performance in the Raven 
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Progressive Matrices task. As these authors argue, the demands in terms of operating within 

hierarchical control structures are responsible for shared variance between these two—otherwise 

very different—types of tasks. A similar, general argument had been made earlier by Marshalek 

et al. (1983) based on the finding that independent of content, complex tasks share more 

individual differences variance than simple tasks, again supposedly because of the shared 

demand on hierarchical coordination.  

These general observations however, leave a number of possibilities and open questions 

about how exactly unique, level-specific variance emerges within hierarchical control structures. 

For example, the existing evidence is largely consistent with just two different sources of 

variance—one when no hierarchical control is necessary, and the other whenever any kind of 

higher-level control is required, no matter the number of levels. Importantly however, 

neuroimaging research documents a dorsal-frontal continuum from lower to higher levels of 

control, apparently distinguishing at least three levels of control (Badre & D’Esposito, 2009; 

Koechlin et al., 2003; but see also Badre & Nee, 2018; Duncan, 2010; Riddle et al., 2020). Such 

a neuroanatomical dissociation between multiple levels does not require the assumption of 

unique sources of individual differences at each level of control, but raises the possibility that 

such a differentiation could also exist.  

1.3. Temporal Dynamics: Updating versus “Mere-Structure” Effects and Serial-Order versus 

Cue-Based Control 

Another important question regards the temporal dynamics of hierarchical processing 

constraints that are responsible for individual differences. Such constraints could be very local in 

nature and arise only when higher-level representations need to be updated. However, it is also 

possible that merely operating within a complex hierarchical structure taps critical resources, 
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such as a limited working memory space, even in the absence of an obvious, local updating 

operation. Moss and Mayr (2022) recently showed that for the question of whether control costs 

are local or global in nature, it may matter whether hierarchical control is established through 

environmental cues or through memorized action sequences. In the former, behavioral costs 

arose specifically at points at which the currently relevant, highest level of control needs to be 

updated and/or integrated with the next lower level of control. This was demonstrated clearly on 

trials when no cues were present and the last-established setting could simply be reused. Here, no 

performance costs arose. In contrast, when operating within a memorized, serial-order control 

structure, complexity (i.e., the number of levels of that structure) appeared to matter for every 

single trial, regardless of whether an obvious transition between higher-level representations was 

required. Therefore, one might expect that level-specific individual differences variance would 

also become apparent on each trial of a hierarchically organized sequence, but only on trials for 

which higher-level representations need to be updated when operating within a cue-based 

hierarchical structure. Within the structural equation modeling framework this requires testing 

for separate sources of variance from trials on which updating might occur, such as between 

higher-level transitions in serial-order control situations, or when relevant cues are presented for 

cue-based situations.  

1.4. The Architecture of Hierarchical Control 

If unique individual differences variance is indeed generated at higher levels, then one 

particularly interesting question concerns the “degree of modularity” of these sources of 

variance. At one end of the spectrum are traditional models of hierarchical control that have 

implicitly or explicitly assumed an additive and ballistic architecture. Here, higher levels set 

parameters for the lower levels, which then implement these parameters autonomously. Such an 
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architecture can be translated into a latent variable structure in which one latent factor 

representing the lowest level explains some variance for all observed variables (common 

variance), no matter how many levels of control were required. The next higher level latent 

factor then explains residual, or unique, variance for all measures that were performed within at 

least a two-level structure, and so forth. For a purely additive model, one would test as an 

additional constraint that the loadings of each lower-level latent factor remain constant across 

measures reflecting the same basic tasks, irrespective of the number of additional levels relevant 

for that task. This reflects the idea that the total variance in each measure is simply the sum of 

independent, level-specific sources of variance. Here, the idealized correlation matrix generated 

by this model essentially consists of “level-specific bands” of increasing intercorrelations.  

We tested this purely additive architecture against an alternative way in which unique 

higher-level variance could arise, with relaxed additivity assumptions. We refer to this model as 

the “graded hierarchical control model.” It reflects the idea that there is a common resource, such 

as a global workspace or working memory that handles hierarchical control and that is more 

relevant as more levels are added (Carpenter et al., 1990; Marshalek et al., 1983). This model can 

be captured by a variant of the strict “additive” model, in which there are only two factors: a 

lower-level general factor and one higher-level factor whose loadings increase as a function of 

task levels. A critical prediction of this model is that correlations will increase for higher levels 

as a function of distance from the diagonal.  

1.5. Structural Effects on Decision Efficiency versus Threshold 

Prominent models of how our cognitive system makes action decisions distinguish two 

important parameters: The efficiency with which decision-relevant information accumulates over 

time, called drift rate, and how much information is required to make a decision, called decision 



 

94 

 

threshold (Ratcliff & McKoon, 2008). Plausibly, requiring additional levels of control could 

either reduce information processing efficiency or increase cautiousness. Therefore, failing to 

distinguish these two aspects may make it difficult to clearly characterize the underlying latent 

structure, or may lead to incorrect inferences about the nature of processing constraints. Indeed, 

Lerche and colleagues (2020) recently showed that separating out drift rate and threshold 

separation is critical in order to detect the psychometric structure underlying simple and complex 

versions of the same tasks. In the context of hierarchical control, the examination of processing 

efficiency and decision threshold as separate processes is particularly important given that 

existing evidence with the task-switching paradigm already suggests that people increase their 

decision boundaries when operating with multiple tasks (i.e., level 2) compared to a single-task 

condition (i.e., level 1). 

2. Methods 

2.1. Participants 

Data were collected from a total of 209 subjects for session 1. Of those subjects, 201 also 

completed session 2. Because of various problems that arose during session 2, the data from 

eight subjects were excluded, leaving a total of 193 subjects for analysis. Participation was 

voluntary and was monetarily compensated through both an hourly base rate and additional 

accuracy-based incentives that could be earned throughout the experiment. 

2.2. Session 1 

2.2.1. Stimuli and Design 

In session 1, two hierarchical control formats, cue-based and serial-order, were used, each 

with four different possible levels, and each with the same set of three “primary tasks.” We will 

first describe the primary tasks and then the implementation of the control structures. 
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2.2.1.1. Tasks. Across both formats, participants worked with a spatial rules task, an odd-

one-out task, and a number judgment task. For the spatial rules task (adapted from Mayr, 2002), 

in every trial, a white circle (60-pixel diameter) appeared randomly in one quadrant of a frame 

(60 pixels off-center), and participants were instructed to indicate which quadrant the circle 

would end up in if they applied one of two possible spatial rules: horizontal or vertical. 

Responses were made with the right-hand index finger, using the 4, 5, 1, and 2 keys on the 

keyboard number pad. These keys correspond to each quadrant of the frame (top left, top right, 

bottom left, and bottom right, respectively).  

For the odd-one-out task, a rectangle (40x75 pixels) appeared in each quadrant of a frame 

(60 pixels off-center), with one rectangle different in color (blue or green, versus black for all 

other rectangles), and one rectangle different in pattern (vertical stripes, diagonal zig-zags, or 

checkers, versus solid for all other rectangles). Participants were instructed to use the same 

response mapping as in the spatial rules task to indicate which rectangle was the odd-one-out, 

based on either the color or the pattern rule.  

For the number judgment task, participants were shown numbers randomly chosen on 

each trial from 1, 2, 3, 4, 6, 7, 8, 9 (Arial font, size 88). Numbers were presented individually, 

centered inside the frame. Participants were instructed to judge whether the number was lower or 

higher than 5 (L/H), or whether it was odd or even (O/E). Responses were made with the right 

index finger using the left and right arrow keys, with the left arrow key representing the 

judgment to the left of the slash (L or O), and the right arrow key representing the judgment to 

the right of the slash (H or E).  

2.2.1.2. Cue-Based Control Structure. In the cue-based format, participants were 

presented with intermittent in-trial visual cues to indicate which task rule to use. At the lowest 
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level (structure level 1), a single rule was prompted at the beginning of the block, and 

participants were instructed to apply this rule in every trial. For structure level 2, the frame color 

indicated which rule to use. The specific mapping between frame color and rule for each task 

pair was instructed at the beginning of the block. For structure level 3, the conjunction of frame 

color and above-frame letter cue indicated which rule to use. For structure level 4, the orientation 

of stars around the letter cue indicated whether to use the same rule combination as indicated in 

structure level 3, including the conjunction of frame color and letter cue, or to ignore the letter 

cue and instead, determine which rule to use based on an instructed “default” rule structure (see 

Figure 1a). We chose this arrangement on structural level 4 after pilot work revealed that a 

complete reversal of level 3 rules through level 4 rules was too difficult for participants. 

Cue presentation was determined the same way across all structure levels, irrespective of 

which structural levels were relevant on a given block. When higher-level cues were displayed, 

all lower-level cues were displayed as well. The trial-wise probability of displaying a level 2 cue 

was .333. In trials with level 2 cues, the probability of also displaying a level 3 cue was .5 (.167, 

overall). In trials with level 3 cues, the probability of also displaying a level 4 cue was .5 (.083 

overall). For trials without cues (or with lower cue level than hierarchical structure level), 

participants were told to use the rule indicated by the most recently displayed cue(s). After an 

incorrect response, a diagram of the current block’s cue meanings would appear in the top right 

corner of the screen (similar to the instruction diagram), and participants would need to make a 

correct response before continuing to the next trial. 

2.2.1.3. Serial-Order Control Structure. In the serial-order format, no trial-by-trial cues 

were provided. Instead, the relevant rule on a given trial was specified through sequences of 

varying hierarchical complexity. Sequences were explicitly instructed at the beginning of each 



 

97 

 

block and participants “cycled through” repeatedly until the end of the block (as in Mayr, 2009). 

For structure level 1, participants simply repeated the same rule across trials. Note that except for 

the omission of visual cues, this condition is identical to structure level 1 in the cue-based 

format. For level 2, three-trial sequences of rules (“chunks”) were instructed, which were 

repeated until the end of the block (see Figure 1b). These chunks used one of the following 

possible formats: A-B-B, A-A-B, A-B-A (and the inverse of each). For level 3, two chunks were 

grouped into a six-element plan, while avoiding chunk repetitions (e.g., A-B-B–B-A-B). Level 4 

chunk super-plans used the same basic, two-chunk plans as on level 3, but added a chunk-level 

reversal of that plan to create a 12-element sequence (e.g., A-B-B–B-A-B––B-A-B–A-B-B). The 

instruction screen for level 4 contained six rules (like on level 3), but also included a down arrow 

on the left side and an up arrow on the right side, indicating that participants were to execute a 

fourth-level sequence. After an incorrect response, the sequence of rules would be displayed 

above the frame, with the incorrect response colored red. For structure level 4, one of the arrows 

would also be red after an error, to indicate location within the 12-element sequence. Participants 

needed to make a correct response in order to continue on to the next trial. 

2.2.1.4. Cued Switching Task. Finally, we also included a standard cued switching task, 

for which participants were instructed to perform the same three tasks as in the cue-based and 

serial-order structures, but instead of receiving block-wise rule sequences or in-trial symbolic 

cues, one of the two rules was presented at the center of the screen for the whole trial, starting 

100ms prior to stimulus onset. Rules were randomly chosen and followed no pattern or 

hierarchical structure. Because these results are not relevant to our main question, we are not 

using these data in the current paper. 

 



 

98 

 

2.2.2. Procedure 

This was a 2.5-hour session. All components were completed on the computer (24-inch 

display), with participants completing tasks first in the cue-based format, and then in the serial-

order format. The session was bookended with the cued switching task, such that participants 

performed the first half of the switching task, then the two contexts, and then the second half of 

the switching task. A trained experimenter used images and examples to instruct participants 

before each section of the experiment. Within each of the four components, participants 

completed the spatial rules task, followed by the odd one out task, and then the number 

judgement task. In the cue-based and serial-order formats, participants completed all structure 

levels in a “mountain structure” (level order: 1-2-3-4-3-2-1) for each task.  

Within the two formats, the number of trials varied across hierarchical level, so that 

participants completed more trials for each increase in complexity. For the cue-based context, 

participants completed 1440 total trials across the four levels: 144 trials (48 per task) on level 1, 

288 trials (96 per task) on level 2, 432 trials (144 per task) on level 3, and 576 trials (192 per 

task) on level 4. For the serial-order context, participants completed 1296 total trials across the 

four levels: 108 trials (36 per task) on level 1, 216 trials on level 2 (18 different 3-element 

chunks (6 per task), repeated 4 times each), 324 trials on level 3 (18 different two-chunk 

sequences (6 per task), repeated 3 times each), and 648 trials on level 4 (18 different four-chunk 

super-plans (6 per task), repeated 3 times each). The switching task included 108 trials (36 per 

task) at the beginning of the session and another 108 trials at the end. The intertrial interval was 

50ms in the cue-based format, 10ms in the serial-order format, and 300ms for the switching 

tasks. For cued trials in the cue-based format, cues were displayed with the onset of task stimuli 

and remained on the screen for 1000ms. Participants could respond any time after stimulus onset 
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(regardless of whether the cues were on the screen). If no response was made after the 1000ms 

cue display period, the cues would disappear, and only the frame and stimulus would remain 

until a response was made. For the switching tasks, rule cues were displayed at the center of the 

screen for 500ms before the onset of task stimuli and remained on the screen until a correct 

response was made. 

Monetary incentives were earned based on block-wise accuracy rates. For the level 1 

hierarchical structures in both formats, participants earned $0.03 for every block they completed 

with at least 95% accuracy. For level 2, they earned $0.03 for every block they completed with at 

least 85% accuracy. For levels 3-4, they earned $0.03 for every block they completed with at 

least 75% accuracy. Based on this, participants could earn up to $9.36, in addition to the $10 

hourly base rate. 

2.3. Session 2 

2.3.1. Stimuli and Design 

Participants completed nine tasks in the second session, in order to get performance 

scores from three different tasks for each of the three related latent factors: fluid intelligence, 

working memory capacity, and long-term memory. The tasks were modeled after those used by 

Brewer and Unsworth (2012), and Unsworth et al. (2014). 

2.3.1.1. Fluid Intelligence Measures. For fluid intelligence (gF), participants completed 

the Raven Advanced Progressive Matrices task, the Number Series task, and the Letter Sets task. 

The Ravens is a measure of abstract reasoning in which different 3x3 matrices of 

geometric patterns are displayed, with the bottom right of the pattern missing, for each trial. 

Participants must select the correct image to complete the matrix, from a set of eight options. The 

trials are presented in order of increasing difficulty, and participants are instructed to try each 
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problem in turn, as they become more difficult to solve. For this task, our participants had 10 

minutes to complete the 18 odd-numbered problems (from the original total of 36 items). Scores 

were calculated as the total number of correct responses. Because of technical issues with the 

stimulus display, unrelated to any other parts of session 2, we did not get Ravens scores for the 

first 49 participants. Therefore, we applied multiple imputation, using the scores from all other 

session 2 tasks, to estimate Ravens scores for those participants with missing data. 

For the number series task, participants needed to determine what unstated rule each 

series of numbers followed, in order to determine the next element in the series. For each trial, 

the number series was presented visually on the left side of the screen, and five answer choices 

were provided on the right side. Each answer choice corresponded to a number on the keyboard 

number line. Participants had 4.5 minutes to complete the 15 problems, and their scores were 

calculated as the total number of correct responses. 

The letter sets task required participants to identify letter patterns. For each trial, five sets 

of letters containing four letters each were presented on the screen. Four of the sets of letters 

followed the same pattern rule, and participants were instructed to determine which letter set did 

not follow that pattern. Each answer choice corresponded to a number on the keyboard number 

line. Participants were given 5 minutes to complete 20 items, and their scores were calculated as 

the total number of correct responses. 

2.3.1.2. Working Memory Capacity Measures. For working memory capacity (WMC), 

participants completed a color change detection task, an orientation change detection task, and a 

space task. 

For the color change detection task, four or six colored squares were presented at random 

non-overlapping positions on the screen. All squares were different colors, and they could be any 
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of the following colors: red, green, blue, yellow, orange, pink, purple, white, or black. The 

squares were presented on the screen for 200ms, followed by a blank-screen 600ms retention 

interval. After the retention interval, one of the squares would reappear in its original position, in 

either its original color, or a different color. Participants were instructed to respond to whether 

the square was the same color as before using the left and right arrow keys, with the left arrow 

indicating a change in stimulus color and the right arrow indicating no change in stimulus color. 

The probe square remained on the screen until a response was made. Square color changed on 

50% of trials, and participants completed 11 blocks of 18 trials. 

For the orientation change detection task, three or five black circles were presented at 

random non-overlapping positions on the screen. Each circle was rotated randomly and 

contained a drawn radius in order to indicate circle orientation. The circles were presented on the 

screen for 250ms, followed by a blank-screen 650ms retention interval. After the retention 

interval, one of the circles would reappear in its original position, at either the same orientation 

as it was originally, or rotated at least 90 degrees. Participants were instructed to respond to 

whether the circle was at the same orientation as before using the left and right arrow keys, with 

the left arrow indicating a change in stimulus orientation and the right arrow indicating no 

change in stimulus orientation. The probe circle remained on the screen until a response was 

made. Circle orientation changed on 50% of trials, and participants completed 11 blocks of 18 

trials. 

For the space task, six letter stimuli (A, B, C, D, E, and F) were simultaneously presented 

on an imaginary circle on the computer screen for 200ms. Participants were instructed to 

remember as many locations as possible over a 600ms retention interval. After the retention 

interval, one of the letter stimuli would appear in the center of the screen as a probe, and 
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participants reported the original location of the probe letter by pressing a corresponding key on 

the keyboard number pad. The response keys mapped onto the on-screen positions, starting at the 

top left position and moving clockwise: 8, 9, +, 3, 2, 4. The probe stayed on the screen until a 

response was made. Participants completed 11 blocks of 18 trials. 

For each of the WMC tasks, performance for each set size condition was converted to a 

standard capacity estimate (K) by Cowan’s formula: K = N*(H-FA), where N is set size, H is hit 

rate, and FA is false alarm rate (2001). Scores were calculated by averaging K across set size for 

the color and orientation tasks separately. For the space task, there was only one set size (six), 

and so K was calculated for that set size alone. 

2.3.1.3. Long-Term Memory Measures. For long-term memory (LTM), participants 

completed a picture source-recognition task, a paired-associates cued recall task, and a delayed 

free recall task. 

For the picture source-recognition task, participants were presented with a total of 40 

pictures. Pictures were presented randomly in one of four quadrants of a white frame, one at a 

time for one second each. Participants were instructed to pay attention to both the picture and the 

quadrant in which it appeared. At test, participants were presented again with each of the 40 

pictures in random order, in the center of the screen, and for each picture, they had five seconds 

to indicate which quadrant it had originally appeared in. Responses were made using the 4, 5, 1, 

and 2 on the keyboard number pad, corresponding to the four quadrants of the frame (top left, 

top right, bottom left, and bottom right, respectively). Scores were calculated as the total number 

of correct responses. 

For the paired-associates task, participants were given three lists of 10 word pairs each. 

All words were common nouns, and the 10 pairs were presented vertically for two seconds each, 
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with the cue word at the top and the target word on the bottom. At test, participants were 

presented with each of the 10 cue words (in random order) with ‘???’ below, where the target 

word was originally. For each cue word, participants were given five seconds to type in the 

associated target word and then press ENTER. The same procedure was used for all three lists, 

and scores were calculated as the total number of correct responses. 

For the delayed free recall, participants were given six lists of 10 words each. All words 

were common nouns, and they were presented at the center of the screen for one second each. 

After presentation of all ten words, participants completed a digit-sorting distractor task for 16 

seconds, in which eight three-digit numbers appeared for two seconds each, and participants 

were required to write the digits for each number in ascending order on a piece of paper. After 

the distractor task, participants were given 45 seconds to type as many words as they could 

remember from the current list of 10, in any order. The same procedure was used for all six lists, 

and scores were calculated as the total number of correct responses. 

2.3.2. Procedure 

This was a 1.5-hour session. All components were completed on the computer (24-inch 

display), with participants completing all tasks within each domain, starting with the gF tasks, 

followed by the WMC tasks, and then the LTM tasks. The tasks were completed in the following 

order: Ravens, number series, letter sets, color change detection, orientation change detection, 

space task, picture source-recognition, paired-associates, delayed free recall. As in session 1, a 

trained experimenter used images and examples to instruct participants before each section of the 

experiment. 
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3. Results and Discussion 

We first inspected average performance profiles across all relevant conditions. As 

depicted in Figure 4.2, we fully replicated our previous within-individual results with the same 

set of tasks. In particular, 

we found that with each 

additional level came 

additional performance 

costs. As in our previous 

work, number of levels 

costs were present even 

for non-transition trials in 

the serial-order format. In 

contrast, in the cue-based 

context costs arose only 

when the highest-relevant level had to be updated or integrated with the next level down. 

Performance cost was used here in order to directly compare our results to those of the previous 

study. However, using drift rate as the outcome yielded qualitatively similar results.  

3.1. Drift Diffusion Parameter Estimation 

 We used task and level to derive all possible conditions. Level here is broken into six 

steps, based on the questions posed in Section 1.3 and our previous results concerning 

integration: levels 1 and 2 included all trials completed in their respective task level, while levels 

3 and 4 were both split out into integration and non-integration sub-levels. For level 3, non-

integration trials were those in which no real updating was required (cue level 1 in cue-based, 

Figure 4.2. Side by side comparison of performance by condition in 
Experiment 1 of the previous study and data from the current study. 
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and within-chunk in serial-order), and all other level 3 trials were labelled as integration. For 

level 4, non-integration trials were those in which no higher-level updating was required (cue 

levels 1-2 in cue-based, and within-sequence in serial-order), and all other level 4 trials were 

labelled as integration. For cue-based and serial-order formats separately, this six-level variable, 

along with task type (three levels) were used to estimate diffusion model parameters using the 

maximum likelihood optimization criterion implemented in fast-dm-30 (Voss, Voss, & Lerche, 

2015). Parameters were estimated separately for each participant, each task, and each of the six 

redefined levels. In line with Lerche et al. (2020), thresholds were associated with correct (1) and 

incorrect (0) responses, the starting point was centered between thresholds, and the intertrial 

variabilities of drift rate and starting point were fixed to zero. 

 From this procedure, we estimated drift rate and threshold separation in all conditions, for 

both cue-based and serial-order formats. These estimated parameters, in each task level 

condition, were used as our main observed variables. Before entering them into structural 

equation models, we standardized all observed variables in order to avoid estimation problems 

that could arise from the differences in variance of drift rate, threshold separation, and all 

secondary, psychometric variables. 

3.2. Structural Equation Modeling 

Before modeling, we again examined performance across all relevant conditions, for both 

drift rate and threshold separation parameters (see Table 4.1 for measures from the cue-based 

hierarchical format, Table 4.2 for measures from the serial-order hierarchical format, and Table 

4.3 for fluid intelligence, working memory capacity, and long-term memory measures). Most of 
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our measures had generally acceptable skewness and kurtosis values3, indicating that they are 

approximately normally distributed, and all measures had generally acceptable reliability or 

communality scores.4  

 Correlations for the secondary measures (from fluid intelligence, working memory 

capacity, and long-term memory tasks) were generally stronger between measures for the same 

construct, and weaker between measures for different constructs.5 Correlations among the task 

level variables for both drift rate and threshold separation within each format generally seemed 

to go up with hierarchical task level, with level 1 variables showing the weakest correlations. For 

drift rate in both formats, the task level variables showed relatively weak relationships with 

secondary measures, with some increase in correlations with the higher-level variables. For 

threshold separation in both formats, the task level variables showed negative correlations with 

secondary measures, with the strongest negative correlations with level 1 variables, and the 

relationship lessening with higher-level variables (for correlation matrices, see Tables D1 and D2 

in Appendix D).  

 

 
3 Drift rate for Dot Rule, Level 1 in the serial-order format showed high kurtosis (5.85). A square root 

transformation was applied in order to reduce this, and then the difference between old and new means 

was subtracted from the transformed variable. After transformation, kurtosis=2.17. 
4 Communality reflects the degree of relationship between each variable and all other variables. Although 

not an ideal measure, it can be used as a crude estimate of reliability (for example, see Engle et al., 1999). 
5 This was not the case for the picture source-recognition task, which may have been due to the fact that 

we did not include new images in the test phase, as is typically done. 
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Table 4.1. Descriptives for drift rate (v) and threshold separation (a) parameters estimated 

for all level and cue levels of each task in the cue-based format. 

Parameter Level, cue level Task Mean SD Skew Kurtosis Communality 

Drift Rate 
(v) 

 

1, 1-4 

DR 0.082 0.028 0.773 0.223 .355 

OO 0.095 0.029 0.680 0.096 .363 

NJ 0.062 0.018 1.072 1.500 .295 

2, 1-4 

DR 0.051 0.011 0.826 0.764 .488 

OO 0.048 0.009 0.372 -0.377 .480 

NJ 0.037 0.007 0.208 -0.332 .457 

3, 1 

DR 0.068 0.018 0.681 0.239 .401 

OO 0.074 0.017 0.644 0.493 .333 

NJ 0.048 0.013 0.468 0.252 .392 

3, 2-4 
(3i) 

DR 0.027 0.007 0.103 0.414 .502 

OO 0.026 0.008 -0.099 -0.460 .618 

NJ 0.024 0.006 -0.034 0.023 .480 

4, 1-2 

DR 0.050 0.011 0.332 -0.075 .541 

OO 0.049 0.009 0.356 -0.251 .450 

NJ 0.037 0.007 0.519 0.594 .506 

4, 3-4 

(4i) 

DR 0.018 0.008 -0.105 0.042 .527 

OO 0.021 0.008 -0.577 0.209 .599 

NJ 0.022 0.006 -0.296 -0.407 .469 

Threshold 
Separation 

(a) 

1, 1-4 

DR 51.035 15.985 0.372 -0.707 .354 

OO 44.152 12.858 0.335 -0.900 .381 

NJ 62.881 15.576 0.323 -0.409 .234 

2, 1-4 

DR 77.833 15.984 -0.048 -0.530 .643 

OO 72.166 12.383 0.090 -0.139 .616 

NJ 94.200 17.421 0.081 0.016 .634 

3, 1 

DR 65.860 17.276 0.692 0.301 .404 

OO 61.587 12.820 0.570 0.178 .317 

NJ 76.079 18.487 0.532 0.182 .399 

3, 2-4 

(3i) 

DR 100.767 21.820 -0.091 -0.496 .675 

OO 92.357 17.279 0.060 -0.401 .739 

NJ 114.553 23.130 -0.313 0.026 .677 

4, 1-2 

DR 84.542 22.109 0.464 0.039 .672 

OO 77.265 18.619 0.510 0.612 .721 

NJ 92.977 22.110 0.077 -0.488 .696 

4, 3-4 
(4i) 

DR 99.893 20.837 -0.017 0.186 .673 

OO 97.897 18.221 -0.044 0.106 .632 

NJ 114.398 22.200 -0.670 0.477 .688 

Note. DR = Direction Rule; OO = Odd One Out; NJ = Number Judgment. Communality calculated as a 
crude indicator of reliability separately for each standardized parameter, across level and cue level. 
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Table 4.2. Descriptives for drift rate (v) and threshold separation (a) parameters estimated 

for all level and element positions of each task in the serial-order format. 

Parameter Level, element Task Mean SD Skew Kurtosis Communality 

Drift Rate 
(v) 

 

1, all 

DR 0.081 0.022 1.625 5.698† .439 

OO 0.093 0.027 0.842 0.523 .355 

NJ 0.060 0.017 1.332 3.122 .315 

2, all 

DR 0.053 0.012 0.705 0.363 .577 

OO 0.060 0.012 0.976 1.799 .374 

NJ 0.041 0.008 0.424 0.567 .379 

3, 1/4/7/10 

(3i) 

DR 0.050 0.015 0.723 1.504 .590 

OO 0.051 0.013 0.775 2.823 .443 

NJ 0.038 0.011 0.356 0.676 .517 

3, else 

DR 0.035 0.011 0.712 1.558 .487 

OO 0.033 0.010 0.119 0.202 .427 

NJ 0.031 0.008 0.168 0.295 .621 

4, 1/7 

(4i) 

DR 0.032 0.009 0.425 1.820 .682 

OO 0.034 0.010 0.118 1.805 .658 

NJ 0.028 0.008 -0.283 1.764 .527 

4, else 

DR 0.019 0.012 -0.350 0.517 .740 

OO 0.024 0.013 -0.174 1.890 .716 

NJ 0.025 0.009 -0.008 0.655 .692 

Threshold 
Separation 

(a) 

1, all 

DR 45.945 10.900 0.128 -0.576 .407 

OO 41.188 10.931 0.228 -0.809 .326 

NJ 60.347 14.231 0.186 -0.091 .206 

2, all 

DR 74.910 14.268 0.036 -0.282 .521 

OO 66.133 11.012 0.170 0.063 .467 

NJ 91.726 16.592 -0.043 0.003 .508 

3, 1/4/7/10 
(3i) 

DR 72.766 15.085 0.121 -0.560 .416 

OO 66.552 14.307 0.538 -0.037 .445 

NJ 84.784 18.562 0.280 -0.481 .610 

3, else 

DR 83.706 14.437 -0.147 -0.315 .425 

OO 80.636 15.542 0.249 -0.296 .437 

NJ 98.721 19.854 -0.112 -0.352 .470 

4, 1/7 

(4i) 

DR 93.763 18.546 0.252 0.122 .522 

OO 87.168 18.590 0.259 0.175 .549 

NJ 103.599 24.397 -0.116 0.084 .541 

4, else 

DR 92.134 17.338 0.265 0.307 .688 

OO 85.677 18.034 0.135 -0.445 .604 

NJ 100.574 22.060 -0.143 -0.282 .717 

Note. DR = Direction Rule; OO = Odd One Out; NJ = Number Judgment. Communality calculated as a 
crude indicator of reliability separately for each standardized parameter, across level and element. 
†A square root transformation was applied in order to reduce kurtosis, and then the difference between 
old and new means was subtracted from the transformed variable. After transformation, kurtosis=2.17. 
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We used confirmatory factor analysis to determine the latent individual difference 

structure present in our data. Specifically, we applied a sequence of bifactor measurement 

models in which standardized task level variables loaded onto level-based latent factors with 

increasing specificity (depicted in Figure 4.3). These models allowed us to examine whether and 

which higher hierarchical task levels predict unique variance, by first including a latent variable 

that is composed of variance common to all task levels, and then progressively including 

additional latent variables that are composed of only the residual (or unique) variance common to 

hierarchical tasks with at least two levels, then three, then four, and all their combinations. This 

sequence of measurement models was applied separately for serial-order and the cue-based 

formats and for the drift rate and the threshold separation parameters. In all models, method 

variance was accounted for by allowing covariance of all adjacent-level variables within task.  

 After running all possible models, it was determined that each of the four hierarchical 

levels as defined in our paradigm do not contribute unique variance from the levels below, when 

included in the same model (see Tables 4.4 and 4.5 for fit indices of drift rate and threshold 

separation models, respectively). However, we did find evidence of two such levels. First, the 

 

Table 4.3. Descriptives for all secondary measured variables. 

Factor Measure Mean SD Skew Kurtosis Reliabilityb 

Fluid 
Intelligence 

Letter Sets 10.49 2.981 0.188 -0.403 .87 

Number Series 9.41 2.517 0.004 -0.708 .78 

Ravens Matricesa 10.46 2.121 -0.594 0.962 .63 

Working 
Memory 

Capacity 

Color K 2.92 0.707 -0.398 -0.244 .81 

Orientation K 1.58 0.698 -0.609 1.531 .87 

Space K -2.07 0.796 -0.405 -0.109 .92 

Long-Term 
Memory 

Pic Source Recognition 29.43 6.052 -0.687 -0.131 .77 

Paired Associates 15.29 7.312 0.135 -0.990 .90 

Delayed Free Recall 26.36 9.621 0.690 0.258 .90 

a. Values calculated after imputing values for 49 individuals, because of technical issues. Descriptives 
were not significantly different from those calculated without the imputed values. 

b. Split-half reliability calculation: Spearman-Brown Coefficient. For Ravens, this was calculated only for 
cases with complete (non-imputed) data. 
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general factor 

accounted for 

significant shared 

variance across 

all levels. This 

factor will be 

referred to here 

as the “lower-

level” factor, as it 

is the only one 

that includes 

variance in 

performance on 

task level 1. 

Beyond this, 

variance specific 

to the higher task 

levels (observed 

variables in levels 

2-4) yielded a “higher-level” factor (see Figure 4.4). This means that after accounting for the 

variance shared across all levels, there was still significant unique variance associated with this 

higher level. This structure provided the best model fit across format and parameter, indicating 

that there may be a general representational structure that the cognitive system can flexibly apply 

Figure 4.3. Flow chart of SEM testing, with example structures. Each number or 
range indicates a latent factor for hierarchical level, and ‘i’ indicates that only 
integration trials were included for those levels. Latent factors in the same model 
are separated by a bar. For example, ‘1-4 | 3-4i’ represents a model with two 
factors: one factor with loadings from all observed variables (common variance), 
and another factor with loadings from only the integration variables in task levels 
3 and 4 (residual variance for those conditions). 
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to different task spaces. Further, this two-level bifactor model provided a better fit than any other 

combination, including models with latent factors for only integration variables. This means that 

there may not be unique individual differences variance for integration processes, even though 

we found evidence of integration-based processing constraints within individuals. 

With the “best” model in each format and parameter, we then tested whether the strictest 

additive model of hierarchical control would fit the data, by applying within-task equality 

Figure 4.4. Best bifactor model of hierarchical level in each format and parameter. Paths indicate which 
observed variables (squares) load onto the different latent variables (circles). The numbers to the left of the 
observed variables represent their standardized loadings onto each of the latent factors (Lvl1 = Level1-4; 
Lvl2 = Level2-4). Factor loadings in parentheses were not significant, and those with a † were marginal 
(p<.10). All other loadings were significant. 
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constraints to the loadings on the lower-level factor. In all four models, these results produced 

significantly worse fit (drift rate: cue-based Χ2(15)=60.02, p<.001, serial-order Χ2(15)=45.18, 

p<.001; threshold separation: cue-based Χ2(15)=44.98, p<.001, serial-order Χ2(15)=34.23, 

p=.003). Therefore, we can reject the purely additive model of hierarchical control.  

Instead, the two factors showed a level-congruent tradeoff in loadings. The loadings for 

the lower-level 

factor decreased as 

the hierarchical 

level of the 

observed variables 

increased, and the 

opposite pattern 

occurred for the 

higher-level factor. 

Though this pattern 

in the lower-level 

factor was not 

predicted, the 

increasing amount 

of variance 

captured by the 

higher-level factor 

Table 4.4. Drift rate model fit comparison table. 

Cue-Based Format 
 Model Χ2 df RMSEA CFI NNFI AIC BIC 

1 1-4 360.30 117 0.10 0.81 0.76 8879.75 9055.94 

2 1-4 | 4 308.75 111 0.10 0.85 0.79 8840.21 9035.97 

3 1-4 | 3-4‡ 207.81 105 0.07 0.92 0.89 8751.26 8966.60 

4 1-4 | 2-4 192.06 102 0.07 0.93 0.90 8741.51 8966.64 

5 1-4 | 4i 318.99 114 0.10 0.84 0.79 8844.45 9030.42 

6 1-4 | 3-4i 227.65 111 0.07 0.91 0.88 8759.10 8954.86 

7 1-4 | 2-4i 225.02 108 0.07 0.91 0.87 8762.47 8968.02 

8 1-4 | 3-4 | 4† 196.09 99 0.07 0.93 0.89 8751.54 8986.46 

9 1-4 | 2-4 | 4† 182.12 96 0.07 0.93 0.90 8743.57 8988.27 

10 1-4 | 2-4 | 3-4† 131.95 90 0.05 0.97 0.95 8705.40 8969.68 
11 1-4 | 3-4i | 4i - - - - - - - 

12 1-4 | 2-4i | 4i† 219.42 105 0.08 0.91 0.87 8762.88 8978.21 

13 1-4 | 2-4i | 3-4i† 186.71 102 0.07 0.94 0.90 8736.16 8961.29 

14 1-4 | 2-4i | 3-4i | 4i - - - - - - - 

15 1-4 | 2-4 | 3-4 | 4 - - - - - - - 

Serial-Order Format 

 Model Χ2 df RMSEA CFI NNFI AIC BIC 
1 1-4 389.04 117 0.11 0.85 0.80 8420.11 8596.29 

2 1-4 | 4 284.27 111 0.09 0.90 0.87 8327.34 8523.10 

3 1-4 | 3-4 241.09 105 0.08 0.92 0.89 8296.16 8511.50 

4 1-4 | 2-4 217.68 102 0.08 0.93 0.90 8278.75 8503.87 

5 1-4 | 4i 318.41 114 0.10 0.88 0.85 8355.48 8541.45 

6 1-4 | 3-4i‡ 318.17 111 0.10 0.88 0.84 8361.24 8557.00 

7 1-4 | 2-4i‡ 311.46 108 0.10 0.89 0.84 8360.53 8566.08 

8 1-4 | 3-4 | 4‡ 192.06 99 0.07 0.95 0.92 8259.13 8494.04 

9 1-4 | 2-4 | 4‡ 164.51 96 0.06 0.96 0.94 8237.58 8482.28 

10 1-4 | 2-4 | 3-4‡ 161.96 90 0.06 0.96 0.93 8247.03 8511.31 

11 1-4 | 3-4i | 4i† 313.35 108 0.10 0.88 0.84 8362.42 8567.97 

12 1-4 | 2-4i | 4i - - - - - - - 

13 1-4 | 2-4i | 3-4i - - - - - - - 

14 1-4 | 2-4i | 3-4i | 4i - - - - - - - 
15 1-4 | 2-4 | 3-4 | 4† 128.82 84 0.05 0.97 0.95 8225.89 8509.74 

Note. RMSEA = root mean square error of approximation; CFI = comparative fit index; NNFI = 
non-normed fit index; AIC = Akaike information criterion; BIC = Bayesian information criterion. 

Fit statistics only reported for models that converged (versus dashes for invalid models). 

†At least one of the Level factors in the model did not have significant variance. 
‡At least three loadings on an upper-level factor were nonsignificant and not marginal (p>.10). 
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with task level increases is consistent with the graded hierarchical control model.  

After determining that both cue-based and serial-order variables fit the same type of 

individual differences structure, we integrated serial-order and cue-based variables into the same 

model, to determine whether there is shared variance within hierarchical level, across format. 

Thus far, we have only managed to identify parallel structures across format. In this next step, 

we were able to 

investigate directly 

how they relate to 

one another. In this 

large integrated 

model, we allowed 

both cue-based 

level factors to 

covary with both 

serial-order level 

factors. As shown 

in Figure 4.5, the 

analogous levels 

shared a significant 

amount of variance, 

for both drift rate 

and threshold 

Table 4.5. Threshold separation model fit comparison table. 

Cue-Based Format 
 Model Χ2 df RMSEA CFI NNFI AIC BIC 

1 1-4 292.69 117 0.09 0.92 0.89 7919.84 8096.03 

2 1-4 | 4† 267.98 111 0.09 0.93 0.90 7907.13 8102.89 

3 1-4 | 3-4‡ 218.66 105 0.07 0.95 0.92 7869.81 8085.15 

4 1-4 | 2-4 162.55 102 0.06 0.97 0.96 7819.70 8044.82 

5 1-4 | 4i† 274.82 114 0.09 0.93 0.90 7907.97 8093.94 

6 1-4 | 3-4i 247.48 111 0.08 0.94 0.91 7886.63 8082.40 

7 1-4 | 2-4i‡ 242.55 108 0.08 0.94 0.91 7887.71 8093.25 

8 1-4 | 3-4 | 4 - - - - - - - 

9 1-4 | 2-4 | 4 - - - - - - - 

10 1-4 | 2-4 | 3-4† 113.49 90 0.04 0.99 0.98 7794.64 8058.92 
11 1-4 | 3-4i | 4i† 246.49 108 0.08 0.94 0.91 7891.64 8097.19 

12 1-4 | 2-4i | 4i† 239.69 105 0.08 0.94 0.91 7890.84 8106.18 

13 1-4 | 2-4i | 3-4i - - - - - - - 

14 1-4 | 2-4i | 3-4i | 4i† 225.35 99 0.08 0.94 0.91 7888.50 8123.42 

15 1-4 | 2-4 | 3-4 | 4 - - - - - - - 

Serial-Order Format 

 Model Χ2 df RMSEA CFI NNFI AIC BIC 
1 1-4 317.14 117 0.09 0.87 0.83 8537.47 8713.66 

2 1-4 | 4 284.14 111 0.09 0.89 0.85 8516.48 8712.24 

3 1-4 | 3-4 227.63 105 0.08 0.92 0.89 8471.97 8687.31 

4 1-4 | 2-4 189.54 102 0.07 0.94 0.92 8439.88 8665.00 

5 1-4 | 4i† 310.30 114 0.09 0.88 0.83 8536.63 8722.60 

6 1-4 | 3-4i† 293.54 111 0.09 0.88 0.84 8525.87 8721.63 

7 1-4 | 2-4i† 287.13 108 0.09 0.89 0.84 8525.47 8731.02 

8 1-4 | 3-4 | 4 - - - - - - - 

9 1-4 | 2-4 | 4† 177.08 96 0.07 0.95 0.92 8439.41 8684.11 

10 1-4 | 2-4 | 3-4 - - - - - - - 

11 1-4 | 3-4i | 4i - - - - - - - 

12 1-4 | 2-4i | 4i - - - - - - - 

13 1-4 | 2-4i | 3-4i - - - - - - - 

14 1-4 | 2-4i | 3-4i | 4i - - - - - - - 
15 1-4 | 2-4 | 3-4 | 4† 122.43 84 0.05 0.98 0.96 8408.77 8692.62 

Note. RMSEA = root mean square error of approximation; CFI = comparative fit index; NNFI = 
non-normed fit index; AIC = Akaike information criterion; BIC = Bayesian information criterion. 

Fit statistics only reported for models that converged (versus dashes for invalid models). 

†At least one of the Level factors in the model did not have significant variance. 
‡At least three loadings on an upper-level factor were nonsignificant and not marginal (p>.10). 
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separation, with the strongest relationship 

between the lower-level factor in cue-based 

and serial-order formats. Importantly, even 

for the higher-level factors in which 

variance profiles may be more different 

across format because of the requirements of 

the cue-based and serial-order tasks on these 

levels, a large amount of the variance was 

shared across format. This finding indicates 

that not only do individual differences in 

performance of hierarchical tasks conform to 

analogous latent structures across task 

format, but they actually share variance 

within levels. Clearly there is a strong 

relationship between performance of tasks 

defined by external cues and performance of tasks defined by memorized sequences, and such 

relationships exist for both level-general and level-specific variance. 

3.2.1. Alternative Models 

 The modeling procedure yielded a clearly winning structure for threshold separation. 

However, the results were not quite as strong for drift rate. In both cue-based and serial-order 

formats, there were other models that proved to be close contenders. In the cue-based format, the 

alternative model was the one in which the higher-level latent factor contained loadings only to 

the integration variables for levels three and four. In line with our predictions concerning 

Figure 4.5. Structural models of cross-format 
relationships for (a) drift rate, and (b) threshold 
separation. Double headed arrows connecting 
the latent factors represent correlations between 
the constructs. Gray dashed lines represent non-
significant paths. All other paths were significant. 
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updating or integration costs in the cue-based format, this indicates that there may be variance 

unique to upper-level integration processes, at least in cue-driven hierarchical tasks. For serial-

order, a similar “runner up” model was identified, in which the higher-level latent factor 

contained loadings to all observed variables in levels three and four (including both integration 

and non-integration variables). Though these models were close in fit, based on the order of 

model testing and on the results of chi-square tests, it was determined that the models discussed 

in the previous section were “better.” It is important to note, however, that this finding should be 

interpreted carefully, govem that, with higher sample sizes, additional differenitations along the 

lines hinted at through the close contender models might have easily emerged. Further, 

determining the variance structures of these hierarchical task parameters might depend on the 

influence of other factors not accounted for in this initial set of tests. Therefore, though we will 

continue here with the assumption that the ‘1-4 | 2-4’ model is currently the most parsimonious 

for all four parameter-by-format model sets, it should be understood that this would need to be 

replicated in future work in order to determine with more confidence the true variance structures 

of hierarchical settings.  

3.3. The Impact of Fluid Intelligence, Working Memory Capacity, and Long-Term Memory 

Once we identified the best model in each format and parameter context, we added all the 

secondary measures into each of the final models and allowed their latent factors to covary with 

each other and with both level factors. The goal of this was twofold: We wanted to determine 

whether hierarchical levels (as defined by their latent factors) maintain unique variance, even 

after accounting for shared variance with other related constructs, and if so, to characterize the 

relationships among them. All four models indicated that the two hierarchical level factors are 

unique from fluid intelligence (gF), working memory capacity (WMC), and long-term memory 
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(LTM) constructs. Further, the factor loadings remained largely unaffected by the addition of 

these new factors: The same loading patterns identified in the levels-only models were again 

observed in these full models. 

The pattern of relationships between level factors and the secondary measures was also 

consistent across format, but not parameter. The drift rate models showed positive correlations 

between the level factors and psychometric factors (see Figure 4.6). In both cue-based and serial-

order formats, these correlations were higher for the higher-level factor, indicating that the other 

cognitive processes become more important to the rate of evidence accumulation in decision 

making as hierarchical task level increases, but that they are involved regardless of task level. 

Interestingly, a very different pattern emerged in the threshold separation models. For both cue-

based and serial-order formats, there were negative correlations between the lower-level general 

factor and all psychometric factors, but positive correlations between the higher-level factor and 

all psychometric factors (see Figure 4.7). This indicates that the amount of information required 

for a given decision may be more sensitive to other cognitive processes, such that individuals 

who have higher gF, WMC, and/or LTM ability may be able to more effectively adjust their 

decision-making thresholds to be closer (less information needed) when dealing with lower-level 

processes and farther (more cautious; more information needed) when using the cognitive 

resources necessary to deal with higher-level processes.  
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Figure 4.6. Best drift rate models with fluid intelligence (gF), working memory capacity (WMC), and 
long-term memory (LTM). Paths connecting latent factors represent correlations between them. 
Paths between observed and latent factors indicate which observed variables load onto which 
factors. The numbers to the left of the observed variables represent their standardized loadings 
onto the factors (Lvl1 = Level1-4; Lvl2 = Level2-4). Factor loadings in parentheses were non-
significant, and those with a † were trending (p<.10). All others were significant (p<.05). 
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Figure 4.7. Best threshold separation models with fluid intelligence (gF), working memory capacity 
(WMC), and long-term memory (LTM). Paths connecting latent factors represent correlations 
between them. Paths between observed and latent factors indicate which observed variables load 
onto which factors. The numbers to the left of the observed variables represent their standardized 
loadings onto the factors (Lvl1 = Level1-4; Lvl2 = Level2-4). Factor loadings in parentheses were 
non-significant, and those with a † were trending (p<.10). All others were significant (p<.05). 
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Taking these relationships a step further, we looked at the amount of variance in each of 

the level factors accounted for independently by each of the different additional constructs using 

structural regression. This allowed us to parse out the direct effects of each of the three other 

cognitive constructs on performance in the different hierarchical levels. 

When holding the others constant, none of the cognitive constructs significantly predicted 

performance on the lower-level factor, indicating that whatever processes are common to 

performance in all hierarchical task levels are not affected by any single cognitive construct 

alone. Again here, the pattern of results was consistent within estimated parameter, across both 

cue-based and serial-order formats. In the drift rate models, the relationship between the higher-

level factor and both WMC and gF remained significant in structural regressions, indicating that 

WMC and gF 

may each 

account for 

unique 

variance in 

higher-level 

processing 

efficiency (see 

Figure 4.8). 

For threshold 

separation, 

only the path 

from WMC to 

Figure 4.8. Structural regression models for drift rate in both formats, with working 
memory capacity (WMC), long-term memory (LTM), and fluid intelligence (gF) 
predicting both Level factors. Single headed arrows connecting the latent factors 
represent standardized path coefficients, i.e., the amount of variance in one factor 
that is predicted directly by the other factor. Gray dashed lines represent non-
significant paths. All other paths were significant. 
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the higher-level factor remained significant in structural regressions for both cue-based and 

serial-order formats, meaning that WMC may be the only of these three cognitive abilities that 

independently contributes to the process of determining decision threshold when handling higher 

hierarchical levels (see Figure 4.9).  

These relationships cannot account for the specific patterns of shared contributions from 

WMC, LTM, and gF, and they do not allow for any strong general interpretation about the 

directional relationships between these constructs. However, they do indicate that gF and WMC 

are independently involved in higher-level processing efficiency, while only WMC is 

independently involved in determining decision thresholds in the higher level. Although none of 

these cognitive abilities factors could predict variance in the lower level factor on their own, it is 

important to 

remember that 

they showed 

significant 

positive 

correlations in 

the non-

directional 

models of drift 

rate and 

significant 

negative 

correlations in 

Figure 4.9. Structural regression models for threshold separation in both formats, 
with working memory capacity (WMC), long-term memory (LTM), and fluid 
intelligence (gF) predicting both Level factors. Single headed arrows connecting the 
latent factors represent standardized path coefficients, i.e., the amount of variance 
in one factor that is predicted directly by the other factor. Gray dashed lines 
represent non-significant paths. All other paths were significant. 
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the non-directional models of threshold separation. Taken together, this implies that individuals 

with higher cognitive abilities generally tended to have lower decision thresholds when handling 

lower-level information (i.e., require less information to make the easier decisions), and higher 

decision thresholds when faced with more complex task requirements. Higher working memory 

capacity may also uniquely augment this ability further, to increase decision threshold when 

handling higher-level processes. However, the ability to flexibly shift strategy depending on 

hierarchical levels (as indicated by the combined pattern of negative correlations with lower 

level and positive correlations with higher level) appears to arise mostly from the shared effects 

of different cognitive abilities on decision threshold. 

4. Conclusions 

 In this project, we attempted to use individual differences information to characterize the 

architecture of hierarchical control. Our empirical approach would have allowed up to four 

different levels of control to emerge across three different task domains and two distinct modes 

of inducing control structures (cue-based and serial-order). In addition, we also tried to 

differentiate between trials during which control levels did and did not require updating, and to 

parse out two different performance aspects, namely processing efficiency (i.e., drift rate) and 

decision threshold, that were derived from drift diffusion modeling of individuals’ RT and 

accuracy information. Our theoretical starting point was the “standard” model of hierarchical 

control, in which control flows ballistically from higher to lower levels (Miller et al., 1960).  

Across condition and parameter constellations, our structural equation modeling provided 

relatively clear evidence for only two levels. This was expressed in terms of separate bifactor 

models for each modality/parameter constellation, in which the first factor captures variance 

common to all task levels and control schemas and a second, independent “hierarchical control” 
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factor captures the unique variance common to any condition in which at least one additional 

level needs to be considered.  

While the validity of the bifactor model is consistent with some degree of modularity 

between the two levels of organization, the hypothesis of complete additivity could be clearly 

rejected. Specifically, the loadings on the lower-level factor declined across task levels, 

indicating that the addition of higher task levels affected lower-level processing. At the same 

time, loadings for the second, hierarchical control factor increased across task levels. This pattern 

indicates that while additional task levels beyond the second level did not generate new, unique 

variance, these additional levels did provide a more robust representation of the common 

hierarchical control variance. This pattern is most consistent with the concept of a common 

resource that is required whenever hierarchical control comes into play and becomes the more 

critical as more of it is required (with level increases). It also appears to be the case that 

individual differences variance does not follow the expected pattern in terms of integration costs, 

in which level-specific individual difference variance would become apparent only on trials for 

which higher-level representations required updating in the cue-based format. Unlike our 

previous finding that performance is affected by the need to integrate cross-level information for 

cue-based hierarchical tasks, the best models here did not appear to differentiate between 

updating and non-updating trials. This implicates global control costs as more important for 

individual differences in performance within hierarchical control structures. 

 In line with the standard model, much of the neuroscience research on hierarchical 

control is consistent with an anatomical gradient that tracks roughly with hierarchical task level. 

Our evidence of just two levels of individual differences variance, where the second level 

captures any hierarchical control variance, does not fully support this view. Instead, the 
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emergence of a hierarchical control factor with increasing loadings across levels is most 

consistent with a multi-demand system view as proposed by Duncan and colleagues (2010). 

However, while we can be fairly confident about the emergence of the two-factor separation in 

our paradigm, including the increase of relevance of the second factor depending on number of 

levels, we need to exert some caution regarding the rejection of more complex models. Our 

statistical power was limited for discovering variance unique to higher levels, or for updating 

versus non-updating events. That said, our findings do indicate that individual differences in 

hierarchical control likely involve some combination of a non-strict additive model and the 

graded workspace model.  

 The finding that the best fitting model structure was the same for both cue-based and 

serial-order task formats indicated that the two formats conform to the same individual 

differences patterns. In a more direct assessment of the relationship between performance 

differences in these two formats, we integrated them into the same model and allowed the latent 

variables to covary across format. These models provided an answer to the question of whether 

performance in the two different hierarchical task formats is related. Clearly, much of the 

variance in performance accounted for by each of the Level factors is actually shared between 

both cue-based and serial-order formats. This means that not only are the performance patterns 

similar across hierarchical format, but they are directly related. Additionally, the lower-level 

factors shared more variance across format than the higher-level factors, indicating that most of 

the common variance across all levels is more strongly related across format, while some of the 

higher-level factor variance may still rely on format-specific resources. 

 The best model structure across task formats was also shared across drift diffusion 

parameters. For both drift rate and threshold separation, the same two-level model yielded 
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similar results: Loadings onto the lower-level factor decreased with task level, while loadings 

onto the higher-level factor increased with task level. These similar loading patterns might lead 

one to believe that the different drift diffusion parameters are not really capturing separate 

decision-making processes in hierarchical task execution. However, the distinct roles of drift rate 

and threshold separation become clear when viewed in relation to other related cognitive 

constructs. 

 One important finding of this work is the relationships between individual differences in 

performance on different hierarchical levels and individual differences in WMC, gF, and LTM, 

for different components of the decision-making process. Individual differences in processing 

efficiency on both hierarchical levels showed positive relationships with the other cognitive 

constructs (better processing efficiency related to higher scores in the other factors). Further, the 

independent contributions of working memory capacity and fluid intelligence variance appeared 

to be particularly relevant for the higher level. On the other hand, decision threshold showed a 

negative relationship between the lower-level factor and other cognitive constructs, and a 

positive relationship between the higher-level factor and other cognitive constructs. Here, 

working memory capacity also provided additional, independent influence on the higher level. 

 The correlations between factors in Figure 4.7 show that the three constructs are 

negatively related (at similar strengths) to the lower-level factor and positively related (again, at 

similar strengths) to the higher-level factor. However, in separating the contributions of each of 

the three cognitive constructs, only WMC showed a significant independent effect on the higher-

level decision threshold process. One interpretation of this finding would be that individuals with 

higher WMC are more likely able to flexibly shift their strategy depending on which hierarchical 

level they are dealing with, with lower-level tasks requiring less information, and therefore 
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allowing the decision threshold to lower. There may also be a shared effect of WMC, LTM, and 

gF when dealing with higher levels of the hierarchical tasks. The shared effects of the different 

cognitive constructs on decision threshold would indicate that individuals with higher cognitive 

abilities are more willing (or able) to take on increased risk in the form of higher uncertainty at 

the decision point, in the lower levels of a hierarchical task, but can adjust this threshold to be 

more conservative when dealing with the higher, more complex, levels. Together, these findings 

provide a distinction in the roles of related cognitive processes in different hierarchical levels of 

control, and demonstrate the importance of parsing out the different aspects of decision-making 

in order to gain a fuller understanding of individual differences of hierarchical control. 
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CHAPTER V 
 

GENERAL DISCUSSION 

 

 

The goal of this dissertation was to characterize hierarchical control structures. Though 

the topic of hierarchical representations is important in the field of cognitive psychology, many 

questions remain. Specifically, what are the connections between hierarchical components? How 

do these relationships help or hinder an individual in trying to execute a hierarchical task? And 

how does performance vary across task formats, across hierarchical task levels, and across 

individuals?  

Traditional models indicate that the different hierarchical components and levels are 

represented by the cognitive system as distinct, ballistic, and modular. Such a design would 

indicate a “divide and conquer” approach to complex, hierarchical information, which would 

allow the system to completely avoid interference across components. By insulating components 

from each other, the lower levels of the hierarchy could be “programmed” by higher levels, 

which would increase the overall efficiency with which a hierarchical structure could be 

traversed. On the other hand, a completely modular system would not be able to take advantage 

of relationships between hierarchical components. For hierarchical tasks in which these types of 

connections exist, it would be more beneficial to allow the integration of information across 

components, in order to identify and use the relationships in a way that could allow more 

efficient storage and retrieval of related items. I have shown here that although there is some 

degree of independence across hierarchical components, cognitive representations of complex 

tasks also utilize integration and interference processes. Our cognitive system seems to benefit 

from both modularity and integration by allowing a compromise between the two different 
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processes. Chapter 2 used a unique variant of an explicit sequencing paradigm to demonstrate 

that the cognitive system allows the sharing of information across different chunks in complex 

sequences. In a modular system as described by Miller and colleagues (1960), the contents of 

each chunk should be fully insulated from each other chunk. However, we found that the 

cognitive system can identify patterns in the chunks and utilize them to allow better sequence 

execution. Further, this process of identifying and integrating information across chunks is not 

learned gradually, but instead, happens right from the outset. This indicates that not only is the 

cognitive system able to relate hierarchical components to one another, but it can do so 

automatically. 

 In Chapter 3, I broadened the scope from within-level modularity to across-level 

integration. Findings revealed an interesting structure of cognitive costs in hierarchical control. 

According to traditional hierarchical models, cognitive costs should only have accrued as a result 

of level-specific updating requirements. However, we found that in cue-based hierarchical tasks, 

the cognitive system required integration of multiple levels, such that even if a higher-level 

setting has already been established, a cue on the level below would still trigger a process in 

which hierarchical task information needed to be integrated across level before determining a 

response. In serial-order hierarchical tasks, this integration cost was present on every trial, 

indicating that simply moving from position to position within a complex sequence is enough of 

a change to require reintegration of multiple levels of information. This work provided an 

example of non-ballistic hierarchical control processes, across both serial-order and cue-

contingent contexts. 

 Chapter 4 built on the previous chapter, taking on an individual differences approach. 

Here, a hierarchical structure with independent, modular levels would most likely take the form 
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of a set of additive “level” latent factors, starting with a general level accounting for common 

variance across all levels. Each level above this would represent the unique variance in 

performance on that level, after accounting for the common variance in the level(s) below. 

Further, the lower level or levels should be insulated from effects of higher levels. We did not 

find this to be the case. In fact, there appeared to be an inverse relationship between levels, in 

which, as loadings increase for one level factor, they decrease for the other. These levels may 

still represent a hierarchical performance structure, but with more relaxed additivity 

requirements. Additionally, variance in related cognitive constructs significantly predicted 

performance in the different hierarchical levels. 

Characterizing the Relationships within a Hierarchical Task Structure 

 Through these chapters, I have addressed the questions raised in the introduction. The 

first question concerning connections between hierarchical components has been heavily 

debated. Previous theoretical models (e.g., Cooper & Shallice, 2000; Miller et al., 1960) and 

empirical work (e.g., Badre & D’Esposito, 2007; Povel & Collard, 1982) have argued that the 

cognitive system divides complex tasks into subcomponents, which occupy distinct 

representational subspaces. This division into independent “levels” of information protects 

lower-level decisions from the cognitive demands of handling higher-level information. For 

instance, when playing a song on the piano, the execution of individual notes is “programmed” 

by higher-level information (e.g., what song you are playing, where in the song you are, etc.). 

Thus, the action of pressing the correct key on the piano is informed by previously set higher-

level information, but that information does not need to be retrieved in its entirety for each 

lower-level decision of which key to press. Though there are some convincing arguments for this 

idea of independent levels in the representation of hierarchical tasks, others have demonstrated 
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that this may not always be the case. Some have argued for a fully non-hierarchical 

representation in which all represented components are connected through mechanisms such as 

associative chaining (Botvinick & Plaut, 2002), adaptive context maintenance (Reynolds et al., 

2012), or representation of all information within a global workspace (Dehaene et al., 1998; 

Waltz et al., 2000). Still others have argued that hierarchical representations may not be arranged 

in perfectly distinct levels (e.g., Farooqui et al., 2012; Yokoi & Diedrichsen, 2019), or that the 

cognitive representation of hierarchical components may in fact include information concerning 

relationships between them, meaning that they are not fully independent of one another (e.g., 

Amalric et al., 2017; Dehaene et al., 2015; Restle, 1970). 

 In Chapter 2, I provided evidence in favor of this last idea. Though serial-order 

processing requires a hierarchical representation of the complex sequence, broken down into 

subsequences, or chunks, of elements, these chunks are not fully insulated from one another. In 

fact, the cognitive system is able to automatically detect abstract patterns in the chunks and in 

this way, can identify similarities across chunks, leading to better execution of sequences 

containing chunks that share patterns. In Chapter 3, I demonstrated that a conventional ballistic 

updating model in which higher hierarchical levels “program” lower levels did not fit the pattern 

of performance costs. Instead, some information is shared and integrated across hierarchical 

level, even when the updating of settings may not be “strictly” necessary. In Chapter 4, I found 

that individual differences in performance do not fall cleanly into levels that parallel the level 

structure of the hierarchical task being executed, as would have been expected according to the 

traditional model of hierarchical control.  

 The second question addressed here concerns the utility or cost of these relationships. As 

previously stated, my findings in Chapter 2 supported the idea that there are performance 
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benefits to the cognitive system being able to identify relationships between chunks in a complex 

sequence. In Chapter 3, I modeled different processes by which hierarchical information is used, 

in order to determine where processing costs arise. Though it may be necessary to do so, the 

integration of information across levels is costly in terms of task performance. Fortunately, the 

cognitive system seems to be able to maintain a conjunctive representation of some higher-level 

information, at least in a cue-contingent context, so that integration is not required across all 

levels at every decision point. 

Does Hierarchical Control Generalize across Situation? 

 The third question is fairly broad in scope, concerning how performance varies across 

contexts, across hierarchical levels, and across individuals. In Chapter 3, I compared the pattern 

of processing constraints in two different contexts, using both cue-based and serial-order task 

formats. Importantly, the two formats yielded different patterns: The serial-order format showed 

evidence of updating cross-level information at every decision-point, regardless of whether 

higher-level information (e.g., chunk identity) had changed, while the cue-based format showed 

evidence of integrating cross-level information only when adjacent levels required updating, with 

further-away level information remaining set, when possible. This interaction of hierarchical 

structure size and decision level appear to determine the pattern of performance costs in a cue-

based context. In Chapter 4, I again compared cue-based and serial-order performance, but in an 

individual differences context. Here, we found that, although there may not be a direct task-

level-to-representation-level relationship, performance variance did fall into lower and higher 

level factors. After accounting for variance common to all the tasks and levels, a unique higher 

level could be identified. This structure of individual differences was the same across different 

components of the decision-making process, as well as the different hierarchical task formats. 
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Additionally, the level factors showed distinct relationships with other cognitive constructs. 

However, both levels remained distinct, even after accounting for the variance they shared with 

related cognitive processes, indicating that hierarchical processing is unique, and not simply a 

combination of these other related cognitive processes. 

This important and often ignored question in hierarchical control about whether different 

types of hierarchical tasks rely on the same underlying structures is not easy to answer. Though 

Chapter 3 provided ambiguous results in this aspect, Chapter 4 showed clearly parallel individual 

difference structures across serial-order and cue-based contexts. Given the mixed results across 

these two studies, clearly the question of how different hierarchical formats relate to one another 

and whether they are established from the same building blocks is a gap in the current literature 

around hierarchical control that needs to be addressed. 

Limitations and Future Directions 

So, where do we go from here? In addition to expanding the research around hierarchical 

control in different contexts, there are many lingering questions that future research needs to 

address. This work concerns hierarchical control only in explicit contexts. In all the experiments 

presented here, task rule structures were explicitly instructed. The findings cannot be used to 

address any questions of gradual learning and implicit acquisition of hierarchical structures. The 

focus of these studies has been about execution of a given hierarchy and not the application of a 

hierarchical structure onto a neutral task. For instance, tasks in which individuals are not 

presented with a hierarchical rule structure and need to spontaneously impose a hierarchy on the 

provided information could yield different results. The mechanism by which individuals identify 

situations in which hierarchical structures are useful is unknown. However, given our finding 

that the cognitive system automatically extracts and utilizes abstract patterns in the chunks of a 
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complex sequence, it is possible that there are other ways in which humans are programmed to 

handle such complex information in the form of hierarchical representations. 

Conclusion 

 An important contribution of this paper is the direct assessment of different types of 

hierarchical structures, which are usually presented in disparate literatures. Serial-order and cue-

driven hierarchical tasks are typically either assumed to utilize the same cognitive representation 

structures, or their potential relationship is completely ignored. I used a multi-level, multi-

format, multi-task paradigm in order to directly address the question of how the structures of 

these different task formats relate to one another, and to bring an important and under-studied 

question to the surface. There appear to be parallels between serial-order and cue-based 

hierarchical structures, but they may also possess some features that are specific to the 

requirements of their different contexts. Beyond the relationships between types of hierarchical 

task structures, I have provided evidence of the ways in which our cognitive system can balance 

the disparate processes of modularity and integration, enforcing some independence between 

hierarchical components, but also allowing useful information to be shared across them. This 

arrangement is advantageous and may be what allows individuals to more efficiently represent 

and use hierarchical information. 
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APPENDIX A 

INSTRUCTIONS SCRIPT USED IN EXPERIMENT 1 OF CHAPTER 3 
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APPENDIX B 

SUPPLEMENTAL REGRESSION MODELS FOR CHAPTER 3 

B1. Performance results and model fits with RT as the dependent variable, for Experiment 1 in 

cue-based (top panels) and serial-order (bottom panels) formats. Error bars indicate 95% within-

subject confidence intervals. 

 
 

 

B2. Performance results and model fits with error rate as the dependent variable, for Experiment 

1 in cue-based (top panels) and serial-order (bottom panels) formats. Error bars indicate 95% 

within-subject confidence intervals. 
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B3. Performance results and model fits with RT as the dependent variable, for Experiment 2 in 

cue-based (top panels) and serial-order (bottom panels) formats. Error bars indicate 95% within-

subject confidence intervals. 

 

 
 

 

B4. Performance results and model fits with error rate as the dependent variable, for Experiment 

2 in cue-based (top panels) and serial-order (bottom panels) formats. Error bars indicate 95% 

within-subject confidence intervals. 
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B5. Performance results and model fits in the cue-based format, for Experiment 1 (top panels) 

and Experiment 2 (bottom panels) with the performance cost measure as dependent variable. 

Models were constructed without including the filtering variable. We include these analyses here 

because the preregistration for Experiment 2 had been submitted before this variable was added 

to the analysis of cue-based models in Experiment 1. Error bars indicate 95% within-subject 

confidence intervals. 

 

 
 

 

Models that included the filtering variable (see Fig. 3 and 4) produced better fits than the 

corresponding models without the filtering variable (shown here). We also tested each of the 

models in S6 against the corresponding models that included the filtering variable. In Experiment 

1, the ballistic (Χ2(1)=4.48, p=.03), global integration (Χ2(1)=19.54, p<.001), and dynamic 

integration (Χ2(1)=35.82, p<.001) models all provided significantly better fit when the filtering 

variable was included. The filtering models also showed significantly better fit in Experiment 2 

(ballistic Χ2(1)=31.19, p<.001; global integration Χ2(1)=59.84, p<.001; dynamic integration 

Χ2=76.36, p<.001). 
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B6. Performance at each cue level in each task, for Experiment 1 (at structural level 1 only), 

versus the experiment in which all cue levels were shown in a level 1 structure. Error bars 

indicate 95% within-subject confidence intervals. 

 

 
 

For a statistical test of the “pure” filtering effects, we used a linear contrast for the cue-level 

factor to predict performance costs in the control experiment (L1-only). This linear contrast was 

highly reliable, t=9.39, p<.001, suggesting perceptual/attentional costs even in the complete 

absence of hierarchical control demands. In a second step, we included the data from the 

corresponding level 1 structural condition in Exp. 1 (Level 1 from Experiment 1). A robust 

interaction between experiment and the linear cue-level contrast emerged, t=4.78, p<.001, 

indicating that the filtering effect was amplified in the hierarchical situation. We interpret this 

increased filtering effect in the hierarchical context as a result of proactive interference from the 

instructed and/or in previous blocks experienced, hierarchical control structure. Inspection of the 

figure suggests that the filtering-cost pattern might be driven mainly by the contrast between 

level 3 and level 4 cues. However, when we repeated the above analysis after excluding level 4 

data, we obtained a qualitatively similar, though somewhat muted pattern as for the full data set 

(control experiment only: t=2.25, p<.05, interaction between experiments: t=2.39, p<.05). 
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B7. Results and model fits in the serial-order format, for Experiment 1 (top panels) and 

Experiment 2 (bottom panels). Models were constructed with an additional chunk repetition 

variable included. For both experiments, this model produced better fit than the original model. 

Error bars indicate 95% within-subject confidence intervals. 

 

 
 

In addition to the clear differences in AIC between models that included the chunk repetition 

variable and those that did not, we tested each of the models presented in Figures 3 and 4 against 

the corresponding chunk repetition models in S8. In Experiment 1, the ballistic (Χ2(1)=554.24, 

p<.001), global integration (Χ2(1)=335.62, p<.001), and dynamic integration (Χ2(1)=344.00, 

p<.001) models all provided significantly better fit when the chunk repetition variable was 

included. The chunk repetition models also showed significantly better fit in Experiment 2 

(ballistic Χ2(1)=425.58, p<.001; global integration Χ2(1)=249.65, p<.001; dynamic integration 

Χ2(1)=296.51, p<.001). 
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B8. Performance results and model fits in the cue-based format, separately for each task in 

Experiment 1. Error bars indicate 95% within-subject confidence intervals. 
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B9. Performance results and model fits in the serial-order format, separately for each task in 

Experiment 1. Error bars indicate 95% within-subject confidence intervals. 
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APPENDIX C 

INSTRUCTION SLIDES USED IN EXPERIMENT 2 OF CHAPTER 3 

Instruction slides used in Experiment 2. Each instruction screen was self-paced, and participants 
had to click through them in order, to learn the tasks. 

Beginning of experiment instruction slides: 

   

   

   
 

Instruction slides for cue-based format: 
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Instruction slides for serial-order format: 
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APPENDIX D 

CORRELATIONS OF MEASURED VARIABLES IN CHAPTER 4 
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