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DISSERTATION ABSTRACT

Max Vargas

Doctor of Philosophy

Department of Mathematics

March 2023

Title: Representations of Partition Categories

We explain a new approach to the representation theory of the partition

category based on a reformulation of the definition of the Jucys-Murphy elements

introduced originally by Halverson and Ram and developed further by Enyang.

Our reformulation involves a new graphical monoidal category, the affine partition

category, which is defined here as a certain monoidal subcategory of Khovanov’s

Heisenberg category. We use the Jucys-Murphy elements to construct some special

projective functors, then apply these functors to give self-contained proofs of results

of Comes and Ostrik on blocks of Deligne’s category Rep(St). We then study a

restriction functor Rep(St)→ Rep(St−1) and prove a conjecture of Comes and Ostrik

involving this functor. Finally, we use the restriction functor to verify a criterion of

Benson, Etingof, and Ostrik, thereby identifying the abelian envelope of Rep(St) with

the Ringel dual of the category of locally finite-dimensional Par t-modules.

This dissertation includes published co-authored material.
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CHAPTER I

INTRODUCTION

Throughout this dissertation, fix an algebraically closed field k of characteristic

0 as well as a parameter t ∈ k. Chapters II and III both contain material that has

been published and co-authored with Jonathan Brundan in [BV22].

1.1 Overview

In [Del07], Deligne introduced a class of diagrammatic monoidal categories which

generalize a number of classical groups. His motivation was to construct examples

of tensor categories which do not exhibit the property of moderate growth. That is,

he wanted his categories to contain objects X for which the number of composition

factors ofX⊗n should be a super-exponential function of n. The first of these examples

is the category Rep(St), which may be defined as the additive Karoubi envelope of

the partition category, Par t, presented below. When t is a natural number, the usual

category Rep(St) of finite-dimensional representations of the symmetric group is a

certain quotient category of Rep(St) (its semisimplification). For values of t 6∈ N,

Rep(St) can be thought to interpolate between the usual categories Rep(St). From a

representation theoretic perspective, however, Rep(St) remains most interesting when

t ∈ N; otherwise this category is a semisimple abelian category.

This dissertation focuses primarily on the underlying category Par t, which we

now proceed to define via a monoidal presentation. This approach is based on Comes

[Com20, Thm. 2.11]; see also [LSR21, Prop. 2.1]. We use the string calculus for strict

monoidal categories with the convention that vertical composition f ◦ g is given by

stacking f on top of g and horizontal composition f ? g is given by placing f to the

left of g.
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Definition 1.1.1. The partition category Par t is the strict k-linear monoidal category

generated by one object ||| and the morphisms

: ||| ? ||| → ||| ? ||| , : ||| ? ||| → ||| , : ||| → ||| ? ||| , •◦ : ||| → 1 , •◦ : 1→ ||| (1.1.1)

subject to the following relations, as well as the ones obtained from these by horizontal

and vertical flips:

= , = , (1.1.2)

= , •◦ = •◦ , (1.1.3)

= , = , (1.1.4)

•◦ = , = , (1.1.5)

= ,
•◦
•◦

= t1. (1.1.6)

We will sometimes denote the object |||?a simply by a. Note |||?0 = 1.

Traditionally, e.g. in [CO11, Def. 2.11] or [Del07, § 8], the partition category is

thought of in terms of set partitions instead of generators and relations as above. In

particular, in loc. cit., the morphism spaces HomPar t(a, b) are shown to have bases

given by set partitions of {1, . . . , a, 1′, . . . , b′}. To establish the connection between

their approach and ours, we make use of partition diagrams. By a b × a partition

diagram, we mean the diagram of a morphism f ∈ HomPar t(a, b) built from vertical and

horizontal compositions of the generators in Definition 1.1.1 which has no “floating”

components (any such component can be removed at the cost of the scalar t by

the “dimension relation” (1.1.6)). Labeling the boundary points (from right to left)

along the bottom and top rows of f by 1, . . . , a and 1′, . . . , b′, such a partition diagram

encodes a set partition of {1, . . . , a, 1′, . . . , b′}. Here is an example of a 9×7 partition
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diagram.

•◦

7 6 5 4 3 2 1

9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′

(1.1.7)

This partition diagram determines the set partition

{1, 4, 1′, 2′, 3′, 4′, 6′, 8′} t {2, 6} t {3, 5, 9′} t {7, 5′} t {7′}.

There is an equivalence relation on the set of partition diagrams where two diagrams

are equivalent if they determine the same partition of their boundaries. For example,

the morphism inside Par t represented by (1.1.7) is equal to the one represented by

the tidier diagram below because they determine the same partition on the labels of

the endpoints.

•◦

7 6 5 4 3 2 1

9′ 8′ 7′ 6′ 5′ 4′ 3′ 2′ 1′

(1.1.8)

From the defining relations, any diagrams which are equivalent in this sense are

equal as morphisms in Par t. In fact, the converse holds and one obtains a basis for

HomPar t(a, b) by fixing a set of representatives for the equivalence classes of b × a

partition diagrams. The special case when a = b = 0 implies that

EndPar t(1) = k. (1.1.9)

In this dissertation we take a module-theoretic approach to the representation

theory of Par t, working in terms of the associated path algebra:

Part :=
⊕
a,b∈N

HomPar t(a, b)

3



Our analysis takes advantage of the fact that Part has a split triangular decomposition,

following the definition in [BS, Rmk. 5.32]. This is discussed in §2.8 and the key

principle is that for any partition diagram, there is an equivalent partition diagram

which is a composition of various “merges” at the bottom, then crossings, then “splits”

at the top as in (1.1.8). It follows that the category Part-Modlfd of locally finite-

dimensional Part-modules is an upper finite highest weight category in the sense

of [BS]. In particular, there are standard and costandard modules, indecomposable

projective modules have standard flags satisfying BGG reciprocity, and so on. In fact,

Par t is a monoidal triangular category in the sense of Sam and Snowden [SS22] who

have also developed these ideas in a general setting.

With standard modules in hand, our story follows the ideas presented by

Okounkov and Vershik in their approach to the representation theory of the symmetric

groups [OV05]. In the main part of the thesis, we study an induction functor D

induced by the monoidal operation |||?? on Par t given by “multiplication with the

generating object”. This plays analogy to the induction functors in the setting of

symmetric groups ind
Sn+1

Sn
(?) = kSn+1⊗? : Rep(Sn) → Rep(Sn+1). We introduce a

new monoidal category, the affine partition category, in order to better understand

the Enyang-Jucys-Murphy elements of [Eny13]. These let us split the functor D into

indecomposable constituents. Together with some facts about a new family of central

elements of Par t, this affords a new and self-contained analysis of the block structure

of Par t. This was originally worked out by Comes and Ostrik, although their proof

ultimately appealed to results about the partition algebras due to Martin [CO11,

§ 6.3].

The final chapters study a well-known restriction functor F t
t−1 : Rep(St) →

Rep(St−1). After reinterpreting this in terms of modules over path algebras to
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obtain a functor Rt
t−1 : Part−1-Mod → Part-Mod in the other direction, we prove a

conjecture of Comes and Ostrik. Namely, restriction gives an equivalence between the

principal blocks of the corresponding categories [CO11, Conj. 6.8]. Finally, we study

the behavior of Rt
t−1 on tilting modules. This allows us to apply a recent theorem

from [BEO23] to identify the abelian envelope of Rep(St) with the Ringel dual of

Part-Modlfd in the sense of [BS].

1.2 Organization and main results

Now we go into more detail regarding the layout of the thesis and formulate some

of the main results more precisely. Chapter II is dedicated mostly to introducing

the general techniques that will be used in the sequel. We set up a dictionary to

pass from the framework of k-linear categories and functors to that of modules over

their associated path algebras. Using the theory of highest weights granted by the

split triangular decomposition of Part, we quickly re-prove a classic result of Deligne

which was also proven by Comes and Ostrik using different methods: the isomorphism

classes of irreducible, indecomposable projective, indecomposable injective, standard,

and costandard modules are all indexed by the set of integer partitions, P . Those

modules corresponding to a partition λ ∈ P are denoted by L(λ), P (λ), I(λ),∆(λ),

and ∇(λ), respectively.

The main content of this disseration starts with chapter III. We pass from the

functor |||?? : Par t → Par t to the induction functor D : Part-Modlfd → Part-Modlfd,

and then show that it respects modules with a filtration by standard objects.

Specifically, we establish the following combinatorial rule for determining the sections

of D∆(λ). Comes and Ostrik produced a similar result for generic parameter values

in their proof to classify blocks [CO11, Prop. 5.15].

5



Theorem (See Th. 3.9.1). For λ ∈ P, there is a filtration 0 = V0 ⊆ V1 ⊆ V2 ⊆

V3 = D∆(λ) such that

V3/V2
∼=

⊕
a∈add(λ)

∆
(
λ+ a

)
,

V2/V1
∼= ∆(λ)⊕

⊕
b∈rem(λ)

⊕
a∈add(λ− b )

∆
(
(λ− b ) + a

)
,

V1/V0
∼=

⊕
b∈rem(λ)

∆
(
λ− b

)
,

where add(λ) is the set of addable boxes to λ and rem(λ) is the set removable boxes

from λ.

This chapter also discusses the affine partition category, which we construct as a

certain subcategory of Khovanov’s Heisenberg category. A key feature of APar is its

two new generating morphisms: the ‘left dot’ • and the ‘right dot’ • . It turns out

Par t is a “cyclotomic” quotient of APar and the images of the left and right dots under

this homomorphism APar → Par t produce elements in the partition category which

are closely related to Enyang-Jucys-Murphy elements for the partition algebras. Much

the same as how Jucys-Murphy elements for the symmetric group algebras provide

endomorphisms (i.e., natural transformations) of the induction functors ind
Sn+1

Sn
, the

Enyang-Jucys-Murphy elements provide endomorphisms of D. From this we find a

functorial decomposition D =
⊕

a,b∈kDb|a into summands. Each Db|a also respects

standardly-filtered modules, with a more refined combinatorial rule than the one

provided above.

We also construct a family of central elements for the partition algebra in order

to study a Harish-Chandra homomorphism Z(Part) → Z(Sym) from the center of

Part to the center of its Cartan subalgebra. This Harish-Chandra homomorphism

allows us to recover Deligne’s result that Part is semisimple if and only if t 6∈ N. In
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the non-semisimple case, we use the functors Db|a to rediscover the block structure

of Part-Modlfd. The classification of blocks is summarized below, but more detailed

statements lie throughout §3.10.

Theorem (See Th. 3.10.5). The locally unital algebra Part is semisimple if and

only if t 6∈ N. In the case t ∈ N, the non-simple blocks of Part are in bijection with

isomorphism classes of irreducibles in kSt-Modfd. All of the non-simple blocks are

Morita equivalent, having infinitely many isomorphism classes of irreducible modules

parametrized by N. If L(n),∆(n), and P (n) are the nth irreducible, standard, and

indecomposable projective of some non-simple block, then:

(i) For each n ≥ 0, ∆(n) is of length two with head L(n) and socle L(n+ 1).

(ii) P (0) is isomorphic to ∆(0), while for n ≥ 1 the module P (n) has a two step

∆-flag with top section ∆(n) and bottom section ∆(n− 1).

(iii) For each n ≥ 1, P (n) is self-dual with irreducible head and socle isomorphic to

L(n) and completely reducible heart radP (n)/ socP (n) ∼= L(n− 1)⊕ L(n+ 1).

The theorem immediately implies that each non-simple block is equivalent to the

category of finite-dimensional modules over the algebra defined by the following quiver

with relations:

This equivalence was already proven in [CO11, Th.6.4], though the approach here is

independent of the results of Martin.

In chapter IV, we turn our attention to the restriction functor Rt
t−1 :

Part−1-Modlfd → Part-Modlfd. Since t is now changing, we use ∆t(λ) to mean the

7



standard Part-module corresponding to λ, and similarly for other families mentioned

above. The main result in this chapter describes the effect of Rt
t−1 on standard

modules:

Theorem (See Th. 4.3.10). For λ ∈ P, there is a short exact sequence

0→ ∆t(λ)→ Rt
t−1∆t−1(λ)→

⊕
a∈add(λ)

∆t

(
λ+ a

)
→ 0

From this point, the remainder of the dissertation focuses on the consequenes

of this filtration. The first is an affirmative answer to the conjecture of Comes

and Ostrik involving the principal blocks of Part-Modlfd and Part−1-Modlfd — the

indecomposable subcategories containing the irreducible module L(∅) corresponding

to the empty partition.

Theorem (See Th. 4.4.4). The restriction functor Rt
t−1 induces an equivalence

between the principal blocks of Part−1-Modlfd and Part-Modlfd.

Finally, chapter V gives an alternate description of the abelian envelope of

Rep(St). This was originally constructed in [CO14] by considering the heart of

a certain t-structure inside the homotopy category of Rep(St), but more general

constructions have appeared recently (eg. as in [BEO23, Cou21, HS22]). In the case

of Part-Modlfd, we show that the tilting modules familiar in highest weight theory are

the same as the splitting objects of [BEO23, § 2.2]. Proceeding to check the critera

provided in [BEO23, Thm. 2.42] regarding a characterization of abelian envelopes,

this gives our last result:

Theorem (See Th. 5.2.3). The Ringel dual of Part-Modlfd is the abelian

envelope of Rep(St).

8



CHAPTER II

FOUNDATIONS

Fix an algebraically closed field k of characteristic 0. Many of the definitions in

this chapter make sense over any field, but several results require these assumptions

so we fix them now for simplicity. We also establish the standing assumption that

all categories will be k-linear (and small) and algebras will be over k, unless specified

otherwise. Functors between these categories are also assumed to be k-linear. This

chapter summarizes the general background and theoretical techniques to be used

throughout the rest of the dissertation. This includes a recollection of k-linear

categories and their path algebras, monoidal categories, and finally the triangular

decomposition of the partition category. In the final section, we use the machinery of

this triangular decomposition to provide a quick classification of irreducible modules

for the partition category, first proven by Deligne in his seminal paper [Del07].

Most sections of this chapter (except §§2.1 and 2.4) contain previously published

co-authored material (with J. Brundan) appearing in [BV22].

2.1 Categories and their path algebras

Here we discuss a dictionary between k-linear categories and locally unital k-

algebras. Let A be a locally unital k-algebra. That is, A is a non-unital k-algebra

which is equipped with distinguished system of mutually orthogonal idempotents

{ei ∈ A ||| i ∈ I} indexed by some set I so that

A =
⊕
i,j∈I

ejAei.

From A, one can construct a k-linear category C (A) whose objects are given by the

indexing set I and whose morphisms are given by HomC(A)(i, j) := ejAei for i, j ∈ I.

The identity morphism of the object i ∈ I is given by ei, and composition is induced by

multiplication: for any two morphisms a ∈ HomC(A)(i, j) and b ∈ HomC(A)(j, k), the
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composition b◦a is given by the product ba. Whenever A is locally finite-dimensional,

in the sense that ejAei is finite-dimensional for all i, j ∈ I, then C (A) is locally finite,

in the sense that HomC(A)(i, j) is finite-dimensional for all i, j ∈ I.

Conversely, if C is a k-linear category then we can construct a locally unital

k-algebra A(C ) which we call the path algebra of C . Letting O(C ) denote the object

set of C , define A(C ) :=
⊕

X,Y ∈O(C) HomC (X, Y ). The distinguished idempotents of

A(C ) are the identity morphisms 1X for all X ∈ O(C ). Given a ∈ HomC (X, Y ) and

b ∈ HomC (W,Z), the product ba is defined as below.

ba =


b ◦ a if Y = W

0 else.

The full algebra structure on A(C ) is obtained by linearly extending the above rule.

Notice that for any X, Y ∈ O(C ), 1YA(C )1X = HomC (X, Y ). If C is locally finite,

then A(C ) is locally finite-dimensional.

Under these constructions, notice that we have C (A(C )) = C and A(C (A)) = A

for any k-linear categories C and locally unital k-algebras A. So, the data of A is

fundamentally equivalent to the data contained in the original category C . Henceforth

we will drop the notation A(C ) for the path algebra of C , opting instead to just use

A (or some other symbol whenever appropriate).

Now fix a k-linear category C with path algebra A. Given a left A-module

M =
⊕

X∈O(C) 1XM , there is an associated covariant k-linear functor F : C → Vec

from C to the category of k-vector spaces. On objects X ∈ O(C ), F (X) := 1XM .

Given a morphism a ∈ HomC (X, Y ), the linear map F (a) : 1XM → 1YM is obtained

by acting on the left with a. This construction can be performed in the opposite

direction too. Starting with a (k-linear) covariant functor F : C → Vec, there is an

associated A-module M built as follows. Define for each X ∈ O(C ) the vector space

10



1XM := F (X). Then M :=
⊕

X∈O(C) 1XM . Given a ∈ 1YA1X and m ∈ 1ZM , the

left A-module structure on M is given by

a ·m =


F (a)(m) if X = Z

0 else.

The data of the module M is equivalent to the data of the original functor F . That

is to say, these constructions provide isomorphisms between the category A-Mod of

left A-modules and the category of k-linear covariant functors C → Vec. Because of

this, we will refer to the latter category as the category of left C -modules, denoted

C -Mod.

Imitating the above constructions with right A-modules and contravariant

functors C → Vec yields an isomorphism between the category of right A-modules

and the category of contravariant functors from C to Vec. Following as above,

contravariant functors C → Vec will be called right C -modules and the category

of such modules will be denoted Mod-C .

Restricting our attention to the category Vec fd of finite-dimensional k-vector

spaces, let C -Modlfd (resp. Modlfd-C ) be the category of covariant (resp.

contravariant) functors C → Vec fd. Also let A-Modlfd (resp. Modlfd-A) be the

category of locally finite-dimensional left (resp. right) A-modules: those A-modules

M for which each subspace 1XM (resp. M1X) is finite-dimensional for all X ∈ O(C ).

Then there is an equivalence C -Modlfd ' A-Modlfd (resp. Modlfd-C ' Modlfd-A).

Finally, there is the category A-Proj (resp. Proj-A) of finitely generated

projective left (resp. right) A-modules. If A is locally finite-dimensional then this is a

subcategory of A-Modlfd (resp. Modlfd-A). Under the contravariant (resp. covariant)

Yoneda embedding, A-Proj (resp. Proj-A) is equivalent to the Karoubi envelope

Kar(C ) of C — this is the idempotent completion of the additive envelope Add(C ).

11



2.2 Restriction and induction along functors

Consider a functor F : A → B between two locally finite categories with path

algebras A =
⊕

X,Y ∈O(A) 1YA1X and B =
⊕

X,Y ∈O(B) 1YB1B. Precomposition with

F allows us to naturally restrict B-modules G : B → Vec to recover A-modules

G ◦ F : A → Vec. This easy construction on the categorical level translates to the

algebra level to give a restriction functor

resF : B-Mod→ A-Mod. (2.2.1)

To describe this functor, consider a B-module M =
⊕

X∈B 1XM . Then define

resF M = 1FM :=
⊕

Y ∈O(A)

1F (Y )M. (2.2.2)

The left action of A on 1FM is defined so that a ∈ A1Y acts on the summand

1F (Y )M by the linear map F (a) and zero on all other summands. For a B-module

homomorphism φ : M → N , we obtain the restricted A-module morphism resF (φ) :

1F (M)→ 1F (N). For the summand corresponding to Y ∈ O(A), resF (φ) just applies

the evident linear map 1F (Y )M → 1F (Y )N,m 7→ φ(m). It is easy to see that resF is

an exact functor.

An analogous construction can be applied to get an exact functor between

categories of right modules:

F res : Mod-B → Mod-A. (2.2.3)

In particular, F res sends a right B-module M to M1F :=
⊕

Y ∈O(A) M1F (Y ). An

alternate notation for these functors (e.g. used by Sam and Snowden in [SS22]) is F ∗

and (F op)∗, respectively.

View B itself as a (B,B)-bimodule and restrict on the right to get B1F =⊕
X∈O(A) B1F (X). This is a (B,A)-bimodule, and moreover, the functor resF :

B-Mod → A-Mod is isomorphic to
⊕

X∈O(A) HomB(B1FX ,−). The tensor-Hom
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adjunction in the setting of module categories for locally unital algebras (eg. as

in [BS, Lem. 2.2]) gives a left adjoint to resF , namely

indF := B1F ⊗A − : A-Mod→ B-Mod. (2.2.4)

Having already remarked that resF is exact, it follows that indF is right exact and

sends projective A-modules to projective B-modules. Choosing X ∈ O(A) and

examining indF A1X , we have

indF A1X := B1F ⊗A A1X ∼= B1F (X).

From this observation along combined with the fact that left adjoints are

cocontinuous, it follows that if M is a finitely generated A-module, then indF M

is a finitely generated B-module. Alternatively, for any such M there is a surjection⊕
i∈I A1Xi →M for I a finite set. Then apply the right exactness of indF .

Here is another construction, starting with a left restriction to get the module

1FB =
⊕

X∈O(A) 1FXB. This is a (A,B)-bimodule. Since resF is also isomorphic

to 1FB ⊗B −, the tensor-Hom adjuction in this setting gives a right adjoint, the

coinduction along F :

coindF :=
⊕

Y ∈O(B)

HomA(1FB1Y ,−) : A-Mod→ B-Mod

The functor coindF is right exact and sends injectives to injectives, being a right

adjoint to the exact functor resF . In [SS22, §3.6], the same functors were studied

under the names F! and F∗, respectively. Similar constructions can be made with

right modules instead of left modules to recover functors F ind and F coind. These

are called (F op)! and (F op)∗ in [SS22], respectively.

Lemma 2.2.1. Let F : A → B be a functor as above.

(1) If B1F is a projective right A-module then indF and F coind are exact functors.
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(2) If 1FB is a projective left A-module then F ind and coindF are exact functors.

Proof. This follows from the definitions of these functors and basic properties of

projective modules in abelian categories.

Lemma 2.2.2. Let A be a category (with path algebra A) having additive envelope

Â = Add(A) (with path algebra Â). The natural inclusion I : A → Â extends to an

equivalence Kar(I) : Kar(A)→ Kar(Â) . Hence

indI : A-Mod→ Â-Mod

is an equivalence.

Proof. The first statement follows since Kar(I) is fully faithful and dense. By

Yoneda, indI : A-Proj → Â-Proj is an equivalence. It immediately follows that

indI : A-Mod → Â-Mod is an equivalence (see [BD17, Cor. 2.5]) But this is true by

combining the first statement with the Yoneda equivalence.

It follows in the case of Lemma 2.2.2 that the right adjoint, resI , is also an

equivalence. So the right adjoint of resI (being coindI) will also be an equivalence

and indI ∼= coindI .

Suppose that F,G : A → B are functors. A natural transformation α : F ⇒ G

induces natural transformations resα : resF ⇒ resG, indα : indG ⇒ indF and coindα :

coindG ⇒ coindF . In particular, restricting to weight spaces, we can explicitly define

these natural transformations as follows. Starting with resα, for any B-module M

and any Y ∈ O(A), we have:

resα(M) : 1F (Y )M → 1G(Y )M, m 7→ αY ·m (2.2.5)
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For indF and coindF , take any A-module N and objects X ∈ O(A) and Y ∈ O(B).

Then we have for each 1F (X)-subspace

indα(M) : B1G(X) ⊗A 1XN → B1F (X) ⊗A 1XN (2.2.6)

b⊗m 7→ b · αX ⊗m

coindα(M) : HomA(1G(X)B1Y , N)→ HomA(1F (X)B1Y , N) (2.2.7)

ϕ 7→ (b 7→ ϕ(αX · b))

Similarly, α induces natural transformations αres : Gres ⇒ F res, αind : F ind ⇒ Gind

and αcoind : F coind ⇒ Gcoind. Assuming for simplicity1 that A = B, so that F

and G are k-linear endofunctors of A , these constructions define k-linear monoidal

functors

res∗ : End k(A)→ End k(A-Mod)rev, ind∗, coind∗ : End k(A)op → End k(A-Mod),

(2.2.8)

∗res : End k(A)op → End k(Mod-A)rev, ∗ind, ∗coind : End k(A)→ End k(Mod-A).

(2.2.9)

Here, End k(A) denotes the strict k-linear monoidal category of (k-linear)

endofunctors and natural transformations, “op” means the opposite category with

the same monoidal product, and “rev” means the same category with the reversed

monoidal product.

2.3 Duality

Continue with A and B be the path algebras of locally-finite categories A and

B, respectively. There is a contravariant functor

?~ : A-Mod→ Mod-A (2.3.1)

1To formulate analogs of (2.2.8) and (2.2.9) without this assumption, one needs to work in the
strict 2-category of k-linear categories.
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taking V =
⊕

X∈OA 1XV to V ~ :=
⊕

X∈OA(1XV )∗, the direct sum of the linear

duals of the “weight spaces” 1XV . The restriction of this to locally finite-

dimensional modules is an equivalence, with quasi-inverse given by the restriction

of the analogously-defined duality functor

~? : Mod-A→ A-Mod (2.3.2)

in the other direction. To obtain a duality (= contravariant auto-equivalence) on

A-Modlfd from (2.3.1) and (2.3.2), one also needs a k-linear equivalence σ : A →

Aop. Restriction along σ gives equivalences resσ : Modlfd-A → A-Modlfd and σres :

A-Modlfd → Modlfd-A, hence, we obtain the duality functor

?©σ := resσ ◦?~ = ~? ◦ σres : A-Modlfd → A-Modlfd. (2.3.3)

Given a functor F : A → B, we obviously have that

?~ ◦ resF ∼= F res ◦?~ (2.3.4)

as functors from B-Mod to Mod-A. We deduce that

~? ◦ F ind ∼= coindF ◦~?, ~? ◦ F coind ∼= indF ◦~? (2.3.5)

as functors from Mod-A to B-Mod.

2.4 Monoidal categories

By a monoidal category, we mean a (k-linear) category C equipped with a

bifunctor ? : C ×C → C , k-linear in both variables of course, along with associativity

and unit contraints satisfying the pentagon and triangle axioms (see [EGNO15]).

Typically in this dissertation we require that EndC (1) ∼= k. Usually our monoidal

categories will also be strict monoidal, defined diagrammatically by generators and

relations. Note that we use the symbol ? for the monoidal product, reserving the

more traditionally-used ⊗ for the tensor product ⊗k over the ground field k.
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Given another category A , we say that A is a (strict) C -module category if there

is a (strict) monoidal functor Ψ : C → End k(A) (see [EGNO15] for an alternate

definition). A left (resp. right, two-sided) tensor ideal I of C is the data of subspaces

I(X, Y ) ≤ HomC (X, Y ) for all X, Y ∈ O(C ), such that these subspaces are closed

in the obvious sense under the monoidal product on the left (resp. right, two-sides)

as well as composition either before or after with any morphism. Then C/I is the

category with the same objects as C and morphisms that are the quotient spaces

HomC (X, Y )/I(X, Y ). If I is a left (resp. right) tensor ideal, then C/I is a left

(resp. right) C -module category. If I is a two-sided tensor ideal, then C/I is again a

monoidal category.

An object X ∈ O(C) has a left dual if there is some X∨ ∈ O(C) with evaluation

and coevaluation morphisms evX : X∨?X → 1 and coevX : 1→ X?X∨ satisfying the

zig-zag relations. Nameley, the zig-zag relations state that the following compositions

are the identity on X and X∨, respectively.

X
coevX ? idX−−−−−−→ X ? X∨ ? X

idX ? evX−−−−−→ X (2.4.1)

X∨
idX ? coevX−−−−−−→ X∨ ? X ? X∨

evX ? idX−−−−−→ X∨ (2.4.2)

There is another notion that X has a right dual if there is some ∨X with morphisms

X ev : X ? ∨X → 1 and X coev : 1→ ∨X ?X satisfying similar zig-zag identities. We

say that C is rigid if every object has a left and right dual.

In adopting the diagrammatic notation for categorical calculations in this

dissertation, the identity morphism of X is often represented by |||X . Evaluation

and coevaluation are depicted as caps and cups, where the “phase change” between

X and X∨ occurs at the critical point.

evX =
X∨ X

, coevX =
X∨X
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The zig-zag equations 2.4.1 turn into the following, explaining the terminology.

X

=

X

,

X∨

=

X∨

(2.4.3)

A related notion is that of a pivotal category; this is when C is a rigid monoidal

category equipped with the data of isomorphisms αX : X
∼−→ (X∨)∨ natural in X ∈

O(C ). Moreover, the morphisms αX must respect the monoidal structure of C , in

that αX?Y = αX ? αY for all X, Y ∈ O(C ). For a pivotal category, the notions of left

and right duals coincide. In such a category, assuming also that EndC (1) ∼= k, the

dimension of an object X is defined by the value of the morphism evX∨ ◦(αX⊗1X∨)◦

coevX ∈ k.

By a symmetric monoidal category, we mean a monoidal category equipped with

isomorphisms σX,Y : X ? Y → Y ? X satisfying the hexagon relation, and moreover,

σY,X ◦σX,Y = idX?Y for all X, Y ∈ O(C). See [EGNO15] for the full definition. A rigid

monoidal category C which is also symmetric can readily be equipped with a pivotal

structure. Such a structure can be described by identifying, for any X ∈ O(C ), its

left and right duals. In order to perform this identification, it is enough to prescribe

the evaluation map X ? X∨ → 1 and coevaluation map 1 → X∨ ? X. They are

diagrammatically defined as follows:

evX∨ =
X∨ X

, coevX∨ =
X X∨

In other words, we have evX∨ = evX ◦σX,X∨ and coevX∨ = σX∨,X ◦ coevX . In this

case, the dimension of X is the value of the morphism 1→ 1 : evX ◦σX,X∨ ◦ coevX .

2.5 Induction product

Let C be a strict monoidal category with path algebra C. The monoidal product

? on C extends canonically to the Karoubian envelope, Kar(C ). This section describes

a monoidal product f? which makes C-Mod into a (no longer strict) monoidal category.
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It turns out that C-Proj is closed under f? and this product agrees with the extension

of ? to Kar(C ) through the contravariant Yoneda equivalence. The algebraist’s

formulation of the definition for f? is given in the next paragraph; see also [SS15,

(2.1.14)], [SS22, §3.10], where f? is called Day convolution. Using f? , we can make the

split Grothendieck group K0(C) of the category C-Proj into a ring with multiplication

[P ][Q] := [P f?Q]. (2.5.1)

Its identity element is the isomorphism class of the distinguished projective module

C11, where 1 ∈ O(C ) is the unit object.

Here is the detailed definition of f? . Let C � C be the k-linearization of the

Cartesian product C × C . The objects in C � C are pairs (X1, X2) ∈ O(C ) × O(C ),

and the morphism space from (X1, X2) to (Y1, Y2) is HomC (X1, Y1)⊗ HomC (X2, Y2).

We denote its path algebra by

C � C =
⊕

X1,X2,Y1,Y2∈O(C)

1Y1C1X1 ⊗ 1Y2C1X2 .

Multiplication in C � C is the obvious “tensor-wise” product just like for a tensor

product of algebras. If C is locally finite, so too is C �C. Given V1, V2 ∈ C-Mod, let

V1 � V2 =
⊕

X1,X2∈O(C)

1X1V1 ⊗ 1X2V2

be their tensor product over k viewed as a left C � C-module in the obvious way.

In fact, this defines a functor � : C-Mod � C-Mod → C � C-Mod. The monoidal

product on C is a functor ? : C � C → C . Let

C1? =
⊕

X1,X2∈O(C)

C1X1?X2

be the (C,C �C)-bimodule obtained by restricting the right C-module C along this

functor. Induction along ?, that is, the functor ind? = C1?⊗C�C : C � C-Mod →

C-Mod from (2.2.4), is left adjoint to the restriction functor res? from (2.2.1). Then
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the induction product is the composition

f? := ind? ◦ � : C-Mod� C-Mod→ C-Mod. (2.5.2)

Thus, for V1, V2 ∈ C-Mod, we have that V1
f?V2 = C1? ⊗C�C (V1 � V2). Associativity

of f? (up to natural isomorphism) follows from “transitivity of induction”, i.e., the

associativity of tensor products of modules over locally unital algebras. We obviously

have that

C1X1
f?C1X2

∼= C1X1?X2 (2.5.3)

for X1, X2 ∈ O(C ). This justifies our earlier assertion that f? extends the monoidal

product ? on Kar(C ). It also follows that V1
f?V2 is finitely generated if both V1 and

V2 are finitely generated. The induction product f? is right exact in both arguments,

but in general it is not left exact.

Lemma 2.5.1. If C1? is a projective right C �C-module then the induction product

f? is biexact.

Proof. This follows from Lemma 2.2.1.

Finally suppose that C is a strict symmetric monoidal category, so that there is

given a symmetric braiding σ. From this, we obtain a braiding indσ making C-Mod

into a k-linear symmetric monoidal category too.

Remark 2.5.2. There is a second convolution product f? which we call the

coinduction product. This is defined by replacing ind? with coind? in (2.5.2). It is easy

to understand on injective rather than projective modules. It will not often be used

subsequently, but note that the induction and coinduction products are interchanged

by duality.
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2.6 Projective functors

Suppose that C is a strict monoidal category and A is a strict C -module category,

denoting their path algebras by C and A as usual. The data of the functor Ψ : C →

End k(A) is equivalent to the data of a strictly associative and unital k-linear monoidal

functor ? : C � A → A . For f ∈ HomC (X,X ′), we sometimes denote the evaluation

of the natural transformation Ψ(f) on Y ∈ O(A) simply by fY : X ? Y → X ′ ? Y .

The definition of the induction product ? from (2.5.2) extends naturally to this

setting, thereby defining a functor

f? := ind? ◦ � : C-Mod� A-Mod→ A-Mod (2.6.1)

which makes A-Mod into a (no longer strict) C-Mod-module category. For objects

X ∈ O(C ) and Y ∈ O(A), we have that

C1X f?A1Y ∼= A1X?Y , (2.6.2)

i.e., f? extends ? : C � A → A . Using f? to define the action as in (2.5.1), the split

Grothendieck group K0(A) becomes a left module over the split Grothendieck ring

K0(C).

Now fix X ∈ O(C ) and consider the functor X? : A → A . There is an adjoint

pair of endofunctors (indX?, resX?) of A-Mod defined by induction and restriction

along X?:

indX? := A1X? ⊗A where A1X? :=
⊕
Y ∈OA

A1X?Y , (2.6.3)

resX? := 1X?A⊗A where 1X?A :=
⊕
Y ∈OA

1X?YA. (2.6.4)

The general properties discussed earlier give that resX? is exact, and indX? is right

exact and sends (finitely generated) projectives to (finitely generated) projectives.

Thus, indX? restricts to a well-defined functor indX? : A-Proj → A-Proj. Note also
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that

indX?(A1Y ) ∼= A1X?Y (2.6.5)

for all Y ∈ O(A). One can also interpret indX? as a special induction product, thanks

to the following lemma.

Lemma 2.6.1. For any X ∈ O(C ), we have that indX? ∼= C1X f? .

Proof. This follows from the chain of isomorphisms

A1X? ⊗A V ∼= (A1? ⊗C�A (C1X � A))⊗A V

∼= A1? ⊗C�A ((C1X � A)⊗A V )

∼= A1? ⊗C�A (C1X � V ) = C1X f?V
for V ∈ A-Mod.

Lemma 2.6.2. If X has a left dual Y in C then there is an isomorphism φ : 1X?A
∼→

A1Y ? of (A,A)-bimodules given explicitly by

ϕ

 f

X

· · ·

· · ·

 = f

Y

· · ·

· · ·
(2.6.6)

Hence, the functors resX? and indY ? are isomorphic.

Proof. It is easily checked that φ is a bimodule homomorphism. It is an isomorphism

because it has a two-sided inverse ψ defined by

ψ

 g

· · ·

· · ·

Y

 = g

X

· · ·

· · ·
.

Corollary 2.6.3. If X has a left dual Y in C then (indX?, indY ?) and (resX?, resY ?)

are adjoint pairs of functors.
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From the corollary, we deduce that if X is rigid, then both of the functors indX?

and resX? have both a right and a left adjoint. Moreover, as discussed earlier, both

of these functors are exact and they preserve finitely generated projectives. We will

refer to finite direct sums of direct summands of endofunctors of A-Mod of this sort

as projective functors.

2.7 The symmetric category

It is worth recalling the following basic example. The symmetric category Sym

is the free strict symmetric monoidal category on one object. Our analysis of

the partition category in chapter III is largely motivated by the Okounkov-Vershik

approach to the representation theory of symmetric groups which we review here

[OV05]. In string diagrams, we denote this generating object simply by |||; then an

arbitrary object is the monoidal product |||?n for some n ≥ 0. Morphisms in Sym are

generated by a single morphism depicted by the crossing

: ||| ? ||| → ||| ? ||| (2.7.1)

subject to the relations

= , = . (2.7.2)

Sometimes it is convenient to identify objects in Sym with natural numbers, so that the

object set {|||?n |n ∈ N} of Sym is identified with N. For m,n ≥ 0, the morphism space

HomS ym(n,m) is {0} if m 6= n, while if m = n it consists of k-linear combinations of

string diagrams representing permutations in the symmetric group Sn, i.e., we have

that EndSym(n) = kSn. Note our general convention here is to number strings by

1, . . . , n from right to left, so that the transposition (1 2) ∈ Sn is represented by the

string diagram

· · ·
13 2n

.
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Let Sym be the path algebra of Sym . Thus, we have that

Sym =
⊕
n≥0

kSn. (2.7.3)

Since k is of characteristic zero, we deduce from Maschke’s theorem that Sym is

a semisimple locally unital algebra. In this case, the induction product f? making

Sym-Mod into a monoidal category is nothing more than the usual induction product

on representations of the symmetric groups: we have that

V f?W = ind
Sn+m
Sn×Sm(V �W )

for V ∈ kSn-Mod and W ∈ kSm-Mod viewed as Sym-modules using (2.7.3). In fact,

the induction product f? and the coinduction product f? on Sym-Mod are isomorphic

as ind
Sn+m
Sn×Sm

∼= coind
Sn+m
Sn×Sm (as always for finite groups).

Recall that the irreducible kSn-modules are the Specht modules S(λ)

parametrized by the set Pn of partitions λ = (λ1, λ2, . . . ) of n. Hence, the

irreducible Sym-modules are the Specht modules S(λ) parametrized by all partitions

λ ∈ P =
⊔
n≥0Pn. We sometimes write |λ| for the size λ1 + λ2 + · · · of a partition

λ ∈ P , and `(λ) for its length, that is, the number of non-zero parts. We will

often identify λ ∈ P with its Young diagram. For example, the partition (5, 32, 2) is

identified with

0 1 2 3 4

−1 0 1

−2 −1 0

−3 −2

The content of the node in row i and column j of a Young diagram is the integer

c = j − i (as above). Let add(λ) be the set consisting of the contents of the addable

nodes of λ, that is, the places in the Young diagram where a node can be added

to the diagram to obtain a new Young diagram. Similarly, let rem(λ) be the set of
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contents of the removable nodes of λ, that is, the places in the Young diagram where

a node can be removed from the diagram to obtain a new Young diagram. Note that

all of the addable and removable nodes of a Young diagram are of different contents

(another of the benefits of working in characteristic zero). For a ∈ add(λ), let λ+ a

be the partition obtained by adding the unique addable node of content a to the

diagram. For b ∈ rem(λ), let λ − b be the partition obtained by removing the

unique removable node of content b from the diagram.

The combinatorial notions just introduced arise naturally on considering

branching rules for the symmetric group. In our setup, the sums over all n ≥ 0

of the usual restriction and induction functors res
Sn+1

Sn
and ind

Sn+1

Sn
= kSn+1⊗kSn are

isomorphic to the functors

F := res||| ? : Sym-Modfd → Sym-Modfd, E := ind||| ? : Sym-Modfd → Sym-Modfd,

(2.7.4)

notation as in (2.6.3) and (2.6.4). This follows because the functor

||| ? :Sym → Sym , g
· · ·

· · ·
7→ g

· · ·

· · ·
. (2.7.5)

coincides with the natural inclusion Sn ↪→ Sn+1 on permutations g ∈ Sn ⊂ EndSym(n).

The canonical adjunction makes (E,F ) into an adjoint pair of functors. In fact, these

functors are are biadjoint, i.e., there is also an adjunction making (F,E) into an

adjoint pair. The effect of the functors F and E on the Specht module S(λ) is well

known: we have that

FS(λ) ∼=
⊕

b∈rem(λ)

S(λ− b ), ES(λ) ∼=
⊕

a∈add(λ)

S(λ+ a ). (2.7.6)

We finally recall a bit about the Jucys-Murphy elements in Sym . One natural

way to obtain these is to start from the affine symmetric category ASym , which is the

strict k-linear monoidal category obtained from Sym by adjoining an extra generator
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•◦ subject to the equivalent relations

•◦ = •◦ + , •◦ = •◦ + . (2.7.7)

The path algebra ASym is isomorphic to
⊕

n≥0AHn where AHn is the nth degenerate

affine Hecke algebra. There is an obvious faithful strict k-linear monoidal functor

i : Sym → ASym . There is also a unique (non-monoidal) full k-linear functor

p : ASym → Sym (2.7.8)

such that p ◦ i = IdSym and

p

(
··· •◦

12n

)
= 0 (2.7.9)

for all n ≥ 1. For 1 ≤ j ≤ n, the jth Jucys-Murphy element of the symmetric group

Sn is

xj = p

(
··· •◦ ···

1n j

)
=

j−1∑
i=1

(i j) ∈ kSn, (2.7.10)

i.e., it is the sum of the transpositions “ending” in j. Whenever we use this notation,

it should be clear from context exactly which symmetric group we have in mind. Note

x1 = 0 always. We may also occasionally write x0, which should be interpreted as

zero by convention.

The Jucys-Murphy elements x1, . . . , xn generate a commutative subalgebra of

kSn known as the Gelfand-Tsetlin subalgebra. As concisely explained by [OV05],

for λ ∈ Pn, each Jucys-Murphy element acts diagonalizably on the Specht module

S(λ), and the Gelfand-Tsetlin character of S(λ) recording the dimensions of the

simultaneous generalized eigenspaces of x1, . . . , xn may be obtained from the contents

of standard λ-tableaux. Indeed, Young’s orthonormal basis {vT} for S(λ) indexed by

standard λ-tableaux T is a basis of simultaneous eigenvectors for x1, . . . , xn, with xj
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acting on vT as the content contj(T) of the node labelled by j in T . We will assume

the reader is familiar with these ideas without giving any further explanation.

The functor p induces an isomorphism ASym/I ∼→ Sym where I is the left tensor

ideal of ASym generated by the morphism •◦ . It follows that Sym is a strict left

ASym-module category. The functors E and F from (2.7.4) are also the induction

and restriction functors ind||| ? and res||| ? defined using this categorical action of ASym

on Sym . The advantage of passing from Sym to ASym here is that the object ||| of ASym

has the endomorphism defined by the dot, giving us a natural transformation

α := •◦ ? : ||| ?⇒ ||| ? .

Applying the general construction from (2.2.8) to this, we obtain endomorphisms

x := resα : F ⇒ F, x∨ := indα : E ⇒ E. (2.7.11)

Explicitly, on a kSn-module V , xV is the endomorphism of FV = resSnSn−1
V defined

by multiplying on the left by xn ∈ kSn, while x∨V is the endomorphism of EV =

kSn+1⊗kSnV defined by multiplying the bimodule kSn+1 on the right by xn+1 ∈ kSn+1.

For c ∈ k, let Fc and Ec be the c eigenspaces of x : F ⇒ F and x∨ : E ⇒ E,

respectively — x and x∨ are diagonalizable as char(k) = 0. Since x∨ is the mate of

x and E and F are biadjoint, it follows that Ec and Fc are biadjoint endofunctors of

Sym-Modfd for each c ∈ k. The description of Gelfand-Tsetlin characters of Specht

modules from the previous paragraph is equivalent to the assertion that the functors

Ea and Fb take the Specht module S(λ) to exactly the summands S(λ + a ) and

S(λ − b ) in (2.7.6), or to zero if a /∈ add(λ) or b /∈ rem(λ), respectively. It follows

that

F =
⊕
b∈Z

Fb, E =
⊕
a∈Z

Ea. (2.7.12)
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2.8 Triangular decomposition of the partition category

In this section we return to the partition category defined in the introduction,

expanding on its triangular structure as illustrated by the discussion surrounding

(1.1.7) and (1.1.8). As a preliminary, observe that Par t is a rigid monoidal category.

The justification of this fact requires only to specify the evaluation ev : ||| ? ||| → 1 and

coevaluation coev : 1→ |||?||| morphisms for the single generating object of Par t. They

are defined below in terms of the generating morphisms provided in Definition 1.1.1.

ev = :=
•◦

, coev = := •◦ . (2.8.1)

In particular, it can easily be checked using (1.1.5) that these definitions satisfy the

zig-zag identites of (2.4.3).

Let c be a connected component in some partition diagram representing a

morphism in Par t. We call c an upward branch if c has at least two endpoints on

its top boundary and no endpoints on its bottom boundary, and a downward branch

if it has at least two endpoints on its bottom boundary but no endpoints at the top:

c = ···
(upward)

or c = ···
(downward)

.

We call c an upward leaf if it has exactly one endpoint at the top and no endpoints

at the bottom, and a downward leaf if it has no endpoints at the top and exactly one

at the bottom:

c = •◦
(upward)

or c = •◦
(downward)

.

We refer to c as an upward tree if it has more than one endpoint at the top and exactly

one endpoint at the bottom, and a downward tree if it has exactly one endpoint at

the top and more than one endpoint at the bottom:

c =
···

(upward)

or c =
···

(downward)
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We say that c is a double tree if c has more than one endpoint at the top and more than

one endpoint at the bottom. In that case, it is equivalent to the composition of an

upward tree and a downward tree; for example, the rightmost connected component

in (1.1.8) is a double tree. Finally we say that c is a trunk if c has exactly one endpoint

both at the top and at the bottom:

c = .

Any connected component of a partition diagram can be represented either as an

upward branch, an upward leaf, an upward tree, a downward branch, a downward

leaf, a downward tree, a double tree, or a trunk.

Let f be an m× n partition diagram. We say f is

– a permutation diagram if all of its connected components are trunks, in which

case we must have that m = n;

– an upward partition diagram if its connected components are trunks, upward

branches, upward leaves and upward trees, in which case we must have that

m ≥ n;

– a downward partition diagram if its connected components are trunks, downward

branches, downward leaves and downward trees, in which case we must have

that m ≤ n.

Let f be an upward m × n partition diagram. We say that it is strictly upward if

m > n. Let c1, . . . , ck be the connected components of f that are either trunks or

upward trees, indexing them so that their bottom endpoints are in order from right

to left in f . We say that f is normally ordered if the rightmost of the top endpoints

of each of c1, . . . , ck are also in order from right to left in f . In other words, f is

normally ordered if it can be drawn so that the right edges of all of the upward trees
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and trunks in f are non-crossing. Similarly, we define strictly downward and normally

ordered downward partition diagrams.

Now we can define some monoidal subcategories of Par t. Let Sym be the

symmetric category as defined in §2.7. There is a strict k-linear symmetric monoidal

functor

i◦t : Sym → Par t (2.8.2)

sending the generating object and the generating morphism of Sym to the generating

object and the generating morphism of Par t that is represented by the crossing. By the

discussion in §1.1 stating that Par t has basis consisting of partition diagrams, it follows

that this functor is faithful. We use it to identify Sym with a monoidal subcategory

of Par t. In other words, Sym is identified with the subcategory of Par t consisting

of all objects and all the morphisms which can be written as linear combinations of

permutation diagrams.

Next, let Par [ be the strict k-linear monoidal category generated by one object

||| and the morphisms

: ||| ? ||| → ||| ? ||| , : ||| → ||| ? ||| , •◦ : 1→ ||| (2.8.3)

subject to the relations (1.1.2) to (1.1.4) and their flips in a vertical axis. We call

this the upward partition category. The cup can also be defined in Par [ as in (2.8.1).

Any upward partition diagram can be interpreted as a string diagram representing a

morphism in Par [. Moreover, the defining relations in Par [ imply that two upward

m×n partition diagrams which are equivalent in the sense that they define the same

partition of the set {1, . . . , n, 1′, . . . ,m′} labelling the endpoints are also equal as

morphisms in HomPar [(n,m). There is a strict k-linear monoidal functor

i[t : Par [ → Par t (2.8.4)
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sending the generating morphisms of Par [ to the corresponding ones in Par t. Note

that any diagram built from compositions and monoidal products of the generating

morphisms (2.8.3) can be interpreted as an upward m× n partition diagram. Hence,

equivalence classes of upward m × n partition diagrams span HomPar [(n,m). Since

their images in HomPar t(n,m) are linearly independent too, this functor is faithful.

We use it to identify Par [ with a monoidal subcategory of Par t. In other words, Par [

is identified with the monoidal subcategory of Par t consisting of all objects and all

of the morphisms which can be written as linear combinations of upward partition

diagrams. Also let Par− be the monoidal subcategory of Par [ consisting of all objects

and all of the morphisms which can be written as linear combinations of normally

ordered upward partition diagrams.

Similarly to the previous paragraph, we define Par ], the downward partition

category, to be the strict k-linear monoidal category generated by one object ||| and

the morphisms that are the flips of (2.8.3) in a horizontal axis, subject to the relations

that are the flips of the ones for Par [. The cap can also be defined in Par ] as in (2.8.1).

Evidently, Par ] ∼= (Par [)op with isomorphism being defined by the flip σ in a horizontal

axis. There is a strict k-linear monoidal functor

i]t : Par ] → Par t (2.8.5)

sending the generating morphisms of Par ] to the corresponding ones in Par t. We have

that i]t = σ ◦ i[t ◦ σ, so we deduce from the previous paragraph that i]t is faithful too.

We use it to identify Par ] with a monoidal subcategory of Par t. In other words, Par ]

is identified with the monoidal subcategory of Par t consisting of all objects and all

of the morphisms which can be written as linear combinations of downward partition

diagrams. Also let Par + be the monoidal subcategory of Par ] consisting of all objects
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and all of the morphisms which can be written as linear combinations of normally

ordered downward partition diagrams.

Finally we let Part be the path algebra of Par t. It is a locally unital algebra

with distinguished idempotents {1n |n ∈ N} arising from the identity endomorphisms

of the objects of Par t. We also have the path algebras Par[, Par−, Sym, Par+, Par]

of Par [,Par−, Sym ,Par +,Par ], which we may view as locally unital subalgebras of

Part via the embeddings (2.8.2), (2.8.4) and (2.8.5). The following theorem is the

triangular decomposition of Part.

Theorem 2.8.1. Let K :=
⊕

n≥0 k1n viewed as a locally unital subalgebra of Part.

Multiplication defines a linear isomorphism

Par− ⊗K Sym⊗K Par
+ ∼→ Part. (2.8.6)

Hence, we also have isomorphisms

Par− ⊗K Sym
∼→ Par[, (2.8.7)

Sym⊗K Par
+ ∼→ Par], (2.8.8)

Par[ ⊗Sym Par]
∼→ Part. (2.8.9)

Proof. Any partition diagram is equivalent to a diagram that is the composition

of a normally ordered upward partition diagram, a permutation diagram, and a

normally ordered downward partition diagram; see (1.1.8) for an example of such

a decomposition. Moreover, equivalence classes of these sorts of diagrams give bases

for Part, Par
−, Sym and Par+. This implies that (2.8.6) is an isomorphism. Then

(2.8.7) to (2.8.9) follow as in [BS, Rem. 5.32].
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Theorem 2.8.1 is all that is needed to see that the locally finite-dimensional

locally unital algebra

Part =
⊕
m,n∈N

1mPart1n

has a split triangular decomposition in the sense of [BS, Rem. 5.32]. Spelling this out

in the case of Part, we have:

– distinguished idempotents that are indexed by an upper finite poset. In this

case, N equipped with the ordering reverse to the usual one.

– locally unital subalgebras Par−, Sym, and Par+.

– subspaces Par[ = Par− · Sym and Par] = Sym · Par+ which are subalgebras,

and not merely subspaces.

– the multiplication map of (2.8.6) is an isomorphism.

– for n,m ∈ N, 1mSym1n is zero unless m = n, 1mPar
−1n and 1nPar

+1m are zero

unless n < m (with the reverse ordering), and 1nPar
−1n = 1nPar

+1n = k1n

for all n ∈ N.

The subalgebras Par[ and Par] are referred to as the negative and positive Borel

subalgebras, respectively. Additionally, Sym = Par[ ∩ Par] is the Cartan subalgebra.

We stress that our imposition that the ordering on N be reversed gives an upper finite

poset, conforming to the general conventions of [BS].

2.9 Classification of irreducible modules and highest weight structure

As Part has a triangular decomposition with Cartan subalgebra Sym being

semisimple, we can appeal to the general results of [BS, §5.5] to obtain the

classification of irreducible Part-modules. Alternatively, this follows from the results

in [SS22, §5.5], but note that Sam and Snowden use the language of lowest weight
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rather than highest weight categories. Since isomorphism classes of irreducible Part-

modules are in bijection with isomorphism classes of indecomposable projective Part-

modules, and the latter are identified with isomorphism classes of indecomposable

objects in Kar(Par t), the results discussed in this section are equivalent to the

classification obtained originally in [CO11, Th. 3.7].

The algebra Part is Z-graded with 1mPart1n being in degree m−n. The induced

gradings on the subalgebras Par[ and Par] make these into positively and negatively

graded algebras, respectively, with degree zero components in both cases being the

semisimple algebra Sym. It follows that the Jacobson radicals of Par[ and Par] are

the direct sums of their non-zero graded components. Moreover, the quotients by

their Jacobson radicals are naturally identified with Sym, i.e., there are locally unital

algebra homomorphisms

π[ :Par[ � Sym, π] :Par] � Sym. (2.9.1)

Let infl] : Sym-Modfd → Par]-Modfd and infl[ : Sym-Modfd → Par[-Modfd be the

functors defined by restriction along these homomorphisms. The modules{
S[(λ) := infl[ S(λ)

∣∣ λ ∈ P}, {
S](λ) := infl] S(λ)

∣∣ λ ∈ P} (2.9.2)

give full sets of pairwise inequivalent irreducible modules for Par[ and Par],

respectively.

As in [BS, (5.13)–(5.14)], we define the standardization and costandardization

functors

j! := indPart
Par]
◦ infl] : Sym-Modfd → Part-Modlfd, (2.9.3)

j∗ := coindPart
Par[
◦ infl[ : Sym-Modfd → Part-Modlfd, (2.9.4)

where indPart
Par]

:= Part⊗Par] and coindPart
Par[

:=
⊕

n∈N HomPar[(Part1n, ?). From (2.8.6)

to (2.8.8) it follows that Part is projective both as a right Par]-module and as a left
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Par[-module, hence, these functors are exact. Then we define the standard and

costandard modules for Part by

∆(λ) := j!S(λ) = indPart
Par]

S](λ), ∇(λ) = j∗S(λ) = indPart
Par[

S[(λ), (2.9.5)

respectively.

Theorem 2.9.1. The Part-modules {L(λ) | λ ∈ P} defined from

L(λ) := hd ∆(λ) ∼= soc∇(λ)

give a complete set of pairwise inequivalent irreducible left Part-modules. Moreover,

Part-Modlfd is an upper finite highest weight category in the sense of [BS, Def. 3.34]

with weight poset (P ,�), where � is the partial order on P defined by λ � µ if and

only if either λ = µ or |λ| > |µ|. Its standard and costandard objects are the modules

∆(λ) and ∇(λ), respectively.

Proof. This follows immediately from [BS, Cor. 5.39] using the triangular

decomposition from Theorem 2.8.1 and the semisimplicity of Sym; see also [SS22,

§5.5].

The fact established in Theorem 2.9.1 that Part-Modlfd is an upper finite highest

weight category has several significant consequences. As is the case for any category

equivalent to A-Modlfd for a locally finite locally unital algebra A (‘Schurian’ in the

language of [BS]), L(λ) has a projective cover we denote by P (λ) ∈ Part-Modlfd. Let

Part-Mod∆ be the exact subcategory of Part-Modlfd consisting of all modules with a

∆-flag, that is, a finite filtration whose sections are of the form ∆(λ) for λ ∈ P . For

any V ∈ Part-Mod∆, the multiplicity (V : ∆(µ)) of ∆(µ) as a section of some ∆-flag

in V is well-defined independent of the flag, indeed, it can be calculated from

(V : ∆(µ)) = dim HomPart(V,∇(µ)). (2.9.6)
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This follows from the fundamental Ext-vanishing property of highest weight

categories, namely, that

dim ExtiPart(∆(λ),∇(µ)) = δi,0δλ,µ (2.9.7)

for any λ, µ ∈ P and i ≥ 0; see [BS, Lem. 3.48]. The definition of highest weight

category gives that P (λ) has a ∆-flag, so that Part-Proj is a full subcategory of

Part-Mod∆. Moreover, from (2.9.6), one obtains the usual BGG reciprocity formula

(P (λ) : ∆(µ)) = [∇(µ) : L(λ)]. (2.9.8)

The functor σ : Par t
∼→ (Par t)op defined by flipping diagrams in a horizontal

axis can also be viewed as a locally unital anti-involution of the algebra Part. It

interchanges the subalgebras Par[ and Par], and restricts to an anti-involution also

denoted σ on the subalgebra Sym. Let ?©σ be the duality on Sym-Modfd taking a

finite-dimensional left Sym-module to its linear dual viewed again as a left module

using the anti-automorphism σ. Since σ(g) = g−1 for a permutation g ∈ Sn ⊂ Sym,

this is the usual duality on each of the subcategories kSn-Modfd. It is well known

that the irreducible kSn-modules are self-dual, hence,

S(λ)©σ ∼= S(λ) (2.9.9)

for all λ ∈ P . There is also a duality ?©σ on Part-Modlfd defined as in (2.3.3). Similarly,

as σ interchanges Par[ and Par], we get contravariant equivalences also denoted ?©σ

between Par]-Modlfd and Par[-Modlfd. Similarly to (2.3.4) and (2.3.5), we have that

?©σ ◦ infl[ ∼= infl] ◦?©σ , indPart
Par]
◦?©σ ∼=?©σ ◦ coindPart

Par[
. (2.9.10)

Hence:

j!◦?©σ ∼=?©σ ◦ j∗, j∗◦?©σ ∼=?©σ ◦ j! (2.9.11)
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as functors from Sym-Modfd to Part-Modlfd. Then from (2.9.9) and (2.9.11), we

deduce that

∆(λ)©σ ∼= ∇(λ), ∇(λ)©σ ∼= ∆(λ), L(λ)©σ ∼= L(λ) (2.9.12)

for λ ∈ P .

The duality ?©σ will be called the Chevalley duality on Part-Modlfd, following the

language of [BS, Def. 4.49]
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CHAPTER III

BLOCKS OF THE PARTITION CATEGORY

This chapter contains previously published co-authored material from [BV22].

We introduce an auxiliary monoidal category APar , the affine partition category.

We define this as a certain monoidal subcategory of the Heisenberg category Heis ,

exploiting an observation of Likeng and Savage from [LSR21]. We then use APar to

give a new approach to the definition of the Jucys-Murphy elements of Part. These

were first defined in the context of the partition algebra by Halverson and Ram [HR05]

and computed recursively by Enyang [Eny13]. We also construct more general central

elements.

The second half of this capter studies these central elements and their

images under an analog of the Harish-Chandra homomorphism. This affords us

a decomposition of Par t-Mod as a product of subcategories, which turn out to be

precisely the blocks. In fact, Part is semisimple if and only if t /∈ N, while if t ∈ N

the non-simple blocks are in bijection with partitions of t. We also determine the

structure of the non-simple blocks and explicitly show that they are all equivalent,

recovering the results of Comes and Ostrik [CO11]. Our approach is similar to the

Okounkov-Vershik approach to representations of Sym as reviewed in §2.7.

3.1 Schur-Weyl duality

Recall the generators and relations for the partition category from Definition 1.1.1.

The following theorem of Deligne will play a key role in this section; see e.g. [Com20,

Th. 2.3] for a proof.

Theorem 3.1.1. Suppose that t ∈ N. Let Ut be the natural permutation

representation of the symmetric group St with standard basis u1, . . . , ut. Viewing

kSt-Modfd as a symmetric monoidal category via the usual Kronecker tensor product
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⊗, there is a full symmetric monoidal functor ψt : Par t → kSt-Modfd sending the

generating object ||| to Ut and defined on generating morphisms by

ψt
( )

: Ut ⊗ Ut → Ut ⊗ Ut , ui ⊗ uj 7→ uj ⊗ ui ,

ψt
( )

: Ut ⊗ Ut → Ut, ui ⊗ uj 7→ δi,jui ,

ψt
( )

: Ut → Ut ⊗ Ut, ui 7→ ui ⊗ ui ,

ψt
(
•◦
)

: Ut → k , ui 7→ 1 ,

ψt
(
•◦
)

: k→ Ut 1 7→ u1 + · · ·+ ut .

Furthermore, the linear map HomPar t(n,m) → HomkSt(U
⊗n
t , U⊗mt ), f 7→ ψt(f) is an

isomorphism whenever t ≥ m+ n.

For the next corollary, we assume some basic facts about semisimplification of

monoidal categories; e.g., see [BEEO20, Sec. 2] which gives a concise summary of

everything needed here.

Corollary 3.1.2. When t ∈ N, the functor ψt induces a monoidal equivalence ψt

between the semisimplification of Kar(Par t) and kSt-Modfd. In particular, Part is

not a semisimple locally unital algebra in these cases.

Proof. The functor ψt extends canonically to a functor Kar(Par t) → kSt-Modfd. It

is well known that every irreducible kSt-module appears as a constituent of some

tensor power of Ut, hence, this functor is dense. Now the first statement follows from

the fullness of the functor ψt using [BEEO20, Lem. 2.6]; see also [Del07, Th. 2.18]

and [CO11, Th. 3.24]. Since Kar(Par t) has infinitely many isomorphism classes of

irreducible objects, it is definitely not equivalent to its semisimplification kSt-Modfd.

This shows that Kar(Par t) is not a semisimple Abelian category as it contains non-

zero negligible morphisms. Equivalently, the path algebra Part is not semisimple in

these cases, which is the second statement.

39



Remark 3.1.3. Continue to assume that t ∈ N. By the general theory of

semisimplification, the irreducible objects in the semisimplification of Kar(Par t)

correspond to the indecomposable projective Part-modules P (λ) of non-zero

categorical dimension. In [Del07, Prop. 6.4], Deligne showed that P (λ) has non-

zero categorical dimension if and only if t−|λ| > λ1−1, in which case the irreducible

object of the semisimpliciation arising from P (λ) corresponds under the equivalence

ψt to the irreducible kSt-module S(κ) where κ := (t− |λ|, λ1, λ2, . . . ).

Through the next few sections, our goal is to introduce the affine partition

category. In one sense, this is an extension of the partition category with extra

generators and relations. Though it would be nice to view Par t as embedding into its

affine version, our realization of the affine partition category is as a subcategory of

the Heisenberg category of [Kho14] and does not satisfy the final relation in (1.1.6)

which is dependent on t. So we introduce the generic partition category Par as the

strict monoidal category with the same generating object and generating morphisms

as Par t subject to all of the same relations except for the final relation in (1.1.6),

which is omitted. The morphism

T :=
•◦
•◦
∈ EndPar (1) (3.1.1)

is strictly central in Par , so that Par can be viewed as a k[T ]-linear monoidal category.

For t ∈ k, let

evt : Par → Par t (3.1.2)

be the canonical functor taking T to t11. Using the basis theorem for Par t for infinitely

many values of t, one obtains a basis theorem for the generic partition category: each

morphism space HomPar (n,m) is free as a k[T ]-module with basis given by a set of

representatives for the equivalence classes of m × n partition diagrams. From this,
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we see that evt induces an isomorphism k ⊗k[T ] Par ∼= Par t, where on the left hand

side we are viewing k as a k[T ]-module so that T acts as t. This point of view is

often useful since it can be used to prove a statement involving relations in Par t for

all values of t just by checking it for all sufficiently large positive integers, in which

case Theorem 3.1.1 can often be applied to reduce to a question about symmetric

groups. To make a precise statement, let

φt := ψt ◦ evt : Par → kSt-Modfd, (3.1.3)

assuming t ∈ N.

Lemma 3.1.4. If f ∈ HomPar (n,m) satifies φt(f) = 0 for infinitely many values of

t ∈ N then f = 0.

Proof. We can write f =
∑

i pi(T )fi for polynomials pi(T ) ∈ k[T ] and fi running over

a set of representatives for the equivalence classes of m×n partition diagrams. Since

φt(f) = 0 we have that
∑

i pi(t)φt(fi) = 0 for infinitely many values of t. By the final

assertion in Theorem 3.1.1, this implies that
∑

i pi(t) evt(fi) = 0 for infinitely many

values of t ≥ m+n. By the basis theorem in Par t, this means for each i that pi(t) = 0

for infinitely many values of t. Hence, pi(T ) = 0 for each i.

We note that the proof of Lemma 3.1.4 depends on our standing assumption that

the ground field k is of characteristic zero.

3.2 Heisenberg category

Next we recall the definition of the Heisenberg category Heis which was

introduced by Khovanov in [Kho14]. We follow the approach of [Bru18]; Khovanov’s

category is denoted Heis−1(0) in the more general setup developed there.
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Definition 3.2.1 ([Bru18, Rem. 1.5(2)]). The Heisenberg category Heis is the strict

monoidal category with two generating objects ↑ and ↓ and five generating morphisms

:↑ ? ↑→↑ ? ↑ , : 1→↓ ? ↑ , :↑ ? ↓→ 1 , : 1→↑ ? ↓ , :↓ ? ↑→ 1,

subject to the following relations:

= , = , (3.2.1)

= , = , (3.2.2)

= 0, = 11, (3.2.3)

= − , = . (3.2.4)

Here, we have used the the sideways crossings which are defined from

:= , := .

It is also convenient to introduce the shorthand

•◦ := , (3.2.5)

which automatically satisfies the degenerate affine Hecke algebra relation as in (2.7.7):

•◦ = •◦ + , •◦ = •◦ + . (3.2.6)

Note by (3.2.3) that

•◦ = = 0. (3.2.7)

In addition, the following relations hold, so that Heis is strictly pivotal with duality

functor defined by rotating diagrams through 180◦:

= , = , (3.2.8)

•◦ := •◦ = •◦ , := = . (3.2.9)
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Then we obtain further variations on (3.2.6) by rotating through 90◦ or 180◦ using

this strictly pivotal structure. One more useful consequence of the defining relations

is that

= , (3.2.10)

There is also a symmetry σ : Heis → Heisop
, which is the strict monoidal functor

that is the identity on objects and sends a morphism to the morphism obtained by

reflecting in a horizontal axis and then reversing all orientations of strings.

Khovanov constructed a categorical action of Heis on Sym-Modfd =⊕
n≥0 kSn-Modfd, i.e., a strict monoidal functor

Θ : Heis → End k(Sym-Modfd). (3.2.11)

Explicitly, this takes the generating objects ↑ and ↓ to the induction functor E and

the restriction functor F , respectively, notation as in (2.7.4), and Θ takes generating

morphisms for Heis to the natural transformations defined on a kSn-module V as

follows (where g is an element of the appropriate symmetric group):( )
V

: kSn+2 ⊗kSn+1 kSn+1 ⊗kSn V → kSn+2 ⊗kSn+1 kSn+1 ⊗kSn V,

g ⊗ 1⊗ v 7→ g(n+1 n+2)⊗ 1⊗ v,( )
V

: kSn ⊗kSn−1 V → kSn+1 ⊗kSn V, g ⊗ v 7→ g(n n+1)⊗ v,

( )
V

: kSn+1 ⊗kSn V → kSn ⊗kSn−1 V, g ⊗ v 7→

 g2 ⊗ g1v if g = g2(n n+1)g1 for gi ∈ Sn,

0 otherwise,( )
V

: V → V, v 7→ (n−1 n)v,

( )V : kSn ⊗kSn−1 V → V, g ⊗ v 7→ gv,

( )V : V → kSn ⊗kSn−1 V v 7→
n∑
i=1

(i n)⊗ (i n)v,
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( )V : kSn+1 ⊗kSn V → V, g ⊗ v 7→

 gv if g ∈ Sn,

0 otherwise,

( )V : V → kSn+1 ⊗kSn V v 7→ 1⊗ v,(
•◦
)
V

: kSn+1 ⊗kSn V → kSn+1 ⊗kSn V, g ⊗ v 7→ gxn+1 ⊗ v,(
•◦
)
V

: V → V, v 7→ xnv.

In the last two formulae, we have used the Jucys-Murphy elements xn+1 ∈ kSn+1

and xn ∈ kSn from (2.7.10), respectively; the natural transformations here are the

endomorphisms of E and F denoted x and x∨ just before (2.7.12). All of the other

formulae displayed here can also be found in [LSR21, §3]. Note in particular that the

clockwise bubble acts as multiplication by n on any V ∈ kSn-Modfd.

It is known moreover that the functor Θ is faithful. Indeed, in [Kho14], Khovanov

uses the functor Θ to prove a basis theorem for morphism spaces in Heis , and the

argument implicitly establishes the faithfulness of Θ over fields of characteristic zero.

We will not use this here in any essential way.

3.3 The affine partition category

Now the background is in place and we can make a new definition.

Definition 3.3.1. The affine partition category APar is the monoidal subcategory of

Heis generated by the object ||| :=↑ ? ↓ and the following morphisms

:= + , (3.3.1)

:= , := , (3.3.2)

•◦ := , •◦ := , (3.3.3)

• := •◦ + , • := •◦ + , (3.3.4)

• := + , • := + . (3.3.5)
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We refer to the morphisms in (3.3.4) as the left dot and the right dot, and the

morphisms in (3.3.5) as the left crossing and the right crossing, respectively. The

other shorthands for the generating morphisms of APar introduced in Definition 3.3.1

are the same as the symbols used for generators of the partition category. This

is deliberate, indeed, the morphisms (3.3.1) to (3.3.3) generate a copy of the generic

partition category Par as a monoidal subcategory of Heis . This important observation

is due to Likeng and Savage; see Corollary 3.4.4 below. For now, we just need

the following, which is proved in [LSR21] by a direct calculation using the defining

relations in Heis .

Lemma 3.3.2 ([LSR21, Th. 4.1]). There is a strict monoidal functor

i : Par → APar (3.3.6)

sending the generating object and generating morphisms of Par to the generating object

and generating morphisms in APar denoted by the same diagrams.

Because of the symmetry of the generators of APar under rotation through 180◦,

the strictly pivotal structure on Heis restricts to a strictly pivotal structure on APar .

The left and right dots are duals, as are the left and right crossings. Moreover, the

cap and the cup making ||| into a self-dual object are given by the same formula (2.8.1)

as we had before in Par , hence, i is a pivotal monoidal functor. Note also that

T =
•◦
•◦

= . (3.3.7)

Also, the symmetry σ on Heis restricts to σ : APar → APar op. This just reflects affine

partition diagrams in a horizontal axis, just like the earlier anti-automorphism σ on

Par t. Here are some further relations, all of which are easily proved using the defining

relations in Heis :

• = • ,
•

=
•

, •
•◦ = •

•◦ , •
• = •

• . (3.3.8)
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Of course, the horizontal and vertical flips of all of these also hold. The next two

lemmas establish some less obvious relations.

Lemma 3.3.3. The following relations hold in APar :

• =
•◦•

=
•◦• , • =

•◦ •
=
•◦ • , (3.3.9)

• = • , • = • , (3.3.10)

•
= • =

•
,

•
= • =

•
, (3.3.11)

•
•

= =
•
•
,

•
•

= =
•

•
. (3.3.12)

Proof. For each of (3.3.9) to (3.3.11), it suffices just to prove the first equality, and

then all the others follow using σ and duality to reflect in horizontal and/or vertical

axes. For (3.3.9), use (3.3.8) and (1.1.5). To prove (3.3.10), we expand as morphisms

in Heis to see that

• (3.2.3)
= •◦ + •◦ +

(3.2.6)
=

(3.2.7)
•◦ + +

(3.2.3)
= + = • .

For (3.3.11), we again expand the left hand side as a morphism in Heis :

•
(3.2.3)

= +
(3.2.3)

=
(3.2.4)

+
(3.2.1)

= + = • .

Finally, to prove (3.3.12), the second set of relations follows from the first set of

relations by composing on the bottom with a crossing and using (3.3.11). For the

first set of relations, it suffices to prove the first equality, the second then follows by

duality. Expanding both of the left crossings as morphisms in Heis produces a sum

of four terms, two of which are zero, so we obtain:

•
• (3.2.3)

= +
(3.2.3)

=
(3.2.4)

+
(3.2.1)

= +
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(3.2.4)
= − + = = .

Corollary 3.3.4. As a monoidal category, the subcategory APar of Heis is generated

by the object ||| , the five undotted generators (3.3.1) to (3.3.3), and the left dot.

Proof. The relations (3.3.9) and (3.3.10) together show that the right dot and the left

and right crossings may be written in terms of the left dot and the other undotted

generating morphisms.

Lemma 3.3.5. The following relations hold:

• = • + • + • − • − • , (3.3.13)

• = • +
•

+
•
− • − • , (3.3.14)

• = • + • + • − • − • , (3.3.15)

• = • + • + • − • − • . (3.3.16)

Proof. To prove (3.3.13), we observe by composing on the bottom with the crossing

and using relations from Par plus (3.3.11) that the relation we are trying to prove is

equivalent to

• + • +
•

=
•

+ • + • .

Now we expand the left hand side in terms of morphisms in Heis using (3.2.3)

and (3.2.7), then we use (3.2.6) to commute the dot past a crossing in the first

and fourth terms:

• + • +
•

=
•◦

+ + •◦ + •◦ +
•◦

+ 3
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= •◦ + + + •◦ + +
•◦

+ 3 .

Similarly, the expansion of the right hand side is

•
+ • + • =

•◦
+ +

•◦
+ + •◦ + 3

= •◦ + + +
•◦

+ + •◦ + 3 ,

where we commuted the dot past a crossing just in the first term. These are equal.

To deduce (3.3.14), first apply duality to (3.3.13), i.e., rotate through 180◦. Then

compose on the top and bottom with a crossing and simplify using relations in Par

together with (3.3.11).

To prove (3.3.15), we rewrite its left hand side, replacing the right crossing with

a left dot using (3.3.10), then we apply (3.3.13) to push this left dot past the right

hand string:

• = • = • + • + • − • − • .

Now we simplify the five terms on the right hand side of the equation just displayed

to obtain the five terms on the right hand side of (3.3.15) (there is no need here to

expand in terms of morphisms in Heis). The following treats the first term:

• = • (3.3.10)
= • .

The second and third terms are easy to handle, we omit the details. For the fourth

and the fifth terms, it suffices by symmetry to consider the fifth term, which we

rewrite as follows:

• = • (3.3.10)
= • (3.3.11)

= • .

Finally (3.3.16) follows easily from (3.3.15) on composing on the bottom with the

crossing of the leftmost two strings and using (3.3.11).

48



Corollary 3.3.6. The category APar has object set {|||?n | n ∈ N} (which we often

identify simply with N) and morphisms that are linear combinations of vertical

compositions of morphisms in the image of i : Par → Heis together with the morphisms

· · ·
12n

• (3.3.17)

for all n ≥ 1.

Proof. In view of Corollary 3.3.4, we just need to show that one can obtain the

endomorphism of n defined by the left dot on the mth string (m = 1, . . . , n) by

taking a linear combinations of compositions of morphisms in the image of i and the

given morphism (3.3.17) (in which the left dot is on the first string). This follows by

induction on m using relations (3.3.13) and (3.3.10).

Remark 3.3.7. We have not attempted to formulate or prove a basis theorem for

the morphism spaces in APar . Creedon and De Visscher do this by combining their

work with results of Khovanov [CD23]. They also show that APar is actually the full

monoidal subcategory is Heis generated by the object |||.

3.4 Action of APar on kSt-Modfd

Suppose that t ∈ N. The restriction of the functor Θ from (3.2.11) to the

subcategory APar is a strict monoidal functor APar → End k(Sym-Modfd) sending

the generating object ||| to the endofunctor E ◦ F (induction after restriction). Since

E ◦ F takes kSt-modules to kSt-modules, the restriction of Θ gives strict monoidal

functors

Θt : APar → End k(kSt-Modfd). (3.4.1)

The functor Θt takes ||| to the endofunctor indStSt−1
◦ resStSt−1

= kSt⊗kSt−1 of kSt-Modfd;

this should be interpreted as the zero functor in the case t = 0. The natural
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transformations arising by applying Θt to the other generating morphisms of APar

may be computed using the formulae after (3.2.11) (taking n := t). Explicitly, one

obtains the following for V ∈ kSt-Modfd and g, h ∈ St:( )
V

: kSt ⊗kSt−1 kSt ⊗kSt−1 V → kSt ⊗kSt−1 kSt ⊗kSt−1 V,

g ⊗ h⊗ v 7→ gh⊗ h−1 ⊗ hv,(
•

)
V

: kSt ⊗kSt−1 kSt ⊗kSt−1 V → kSt ⊗kSt−1 kSt ⊗kSt−1 V,

g ⊗ h⊗ v 7→ g ⊗ h⊗ (h−1(t) t)v,(
•
)
V

: kSt ⊗kSt−1 kSt ⊗kSt−1 V → kSt ⊗kSt−1 kSt ⊗kSt−1 V,

g ⊗ h⊗ v 7→ gh⊗ (h−1(t) t)⊗ v,( )
V

: kSt ⊗kSt−1 kSt ⊗kSt−1 V → kSt ⊗kSt−1 V, g ⊗ h⊗ v 7→ δh(t),tgh⊗ v,( )
V

: kSt ⊗kSt−1 V → kSt ⊗kSt−1 kSt ⊗kSt−1 V, g ⊗ v 7→ g ⊗ 1⊗ v,(
•◦
)
V

: kSt ⊗kSt−1 V → V, g ⊗ v 7→ gv,(
•◦
)
V

: V → kSt ⊗kSt−1 V, v 7→
t∑
i=1

(i t)⊗ (i t)v,

(
•
)
V

: kSt ⊗kSt−1 V → kSt ⊗kSt−1 V, g ⊗ v 7→
t∑

j=1

g(j t)⊗ v,

(
•
)
V

: kSt ⊗kSt−1 V → kSt ⊗kSt−1 V, g ⊗ v 7→
t∑

j=1

g ⊗ (j t)v.

Recall the natural kSd-module Ut from Theorem 3.1.1; in particular, U0 is the zero

module. Using the Kronecker product, we can consider Ut⊗ as an endofunctor of

kSt-Modfd. Also let trivSt be the trivial module.
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Lemma 3.4.1. The functor Θt is monoidally isomorphic to the strict monoidal

functor

Φt : APar → End k(kSt-Modfd) (3.4.2)

which sends the generating object ||| to the endofunctor Ut⊗ and taking the generating

morphisms for APar to the natural transformations defined as follows on V ∈

kSt-Modfd and 1 ≤ i, j ≤ t:( )
V

: Ut ⊗ Ut ⊗ V → Ut ⊗ Ut ⊗ V, ui ⊗ uj ⊗ v 7→ uj ⊗ ui ⊗ v,(
•

)
V

: Ut ⊗ Ut ⊗ V → Ut ⊗ Ut ⊗ V, ui ⊗ uj ⊗ v 7→ ui ⊗ uj ⊗ (i j)v,(
•
)
V

: Ut ⊗ Ut ⊗ V → Ut ⊗ Ut ⊗ V, ui ⊗ uj ⊗ v 7→ uj ⊗ ui ⊗ (i j)v,( )
V

: Ut ⊗ Ut ⊗ V → Ut ⊗ V, ui ⊗ uj ⊗ v 7→ δi,jui ⊗ v,( )
V

: Ut ⊗ V → Ut ⊗ Ut ⊗ V, ui ⊗ v 7→ ui ⊗ ui ⊗ v,(
•◦
)
V

: Ut ⊗ V → V, ui ⊗ v 7→ v,(
•◦
)
V

: V → Ut ⊗ V, v 7→
t∑
i=1

ui ⊗ v,

(
•
)
V

: Ut ⊗ V → Ut ⊗ V, ui ⊗ v 7→
t∑

j=1

uj ⊗ (i j)v,

(
•
)
V

: Ut ⊗ V → Ut ⊗ V, ui ⊗ v 7→
t∑

j=1

ui ⊗ (i j)v.

Proof. There is an isomorphism kSt ⊗kSt−1 trivSt−1

∼→ Ut, g ⊗ 1 7→ gut. Combining

this with the tensor identity, we obtain a natural kSt-module isomorphism

(α
(t)
1 )V : kSt ⊗kSt−1 V

∼→ Ut ⊗ V, g ⊗ v 7→ gut ⊗ gv (3.4.3)

for V ∈ kSt-Modfd. This defines an isomorphism α
(t)
1 : kSt⊗kSt−1

∼⇒ Ut⊗. Let

α
(t)
n := α

(t)
1 · · ·α

(t)
1 be the n-fold horizontal composition of α

(t)
1 . This is a natural

isomorphism α
(t)
n : (kSt⊗kSt−1)

◦n ∼⇒ (U⊗)◦n whose value on a kSt-module V is given
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explicitly by the map(
α(t)
n

)
V

: gn ⊗ · · · ⊗ g1 ⊗ v 7→ gnut ⊗ gngn−1ut ⊗ · · · ⊗ gngn−1 · · · g1ut ⊗ gngn−1 · · · g1v.

Now define Φt : APar → End k(kSt-Modfd) to be the strict monoidal functor taking

the object n to (Ut⊗)◦n, and defined on a morphism f ∈ HomAPar (n,m) by Φt(f) :=

α
(t)
m ◦Θt(f)◦

(
α

(t)
n

)−1
. It is immediate from this definition that α(t) =

(
α

(t)
n

)
n≥0

: Θt ⇒

Φt is an isomorphism of strict monoidal functors.

It remains to check that Φt as defined in the previous paragraph is equal to the

functor Φt defined on generating morphisms in the statement of the lemma. So we

need to check for each generating morphism f ∈ HomAPar (n,m) that the formula for

Φt(f)V written in the statement of the lemma is equal to
(
α

(t)
m

)
V
◦Θt(f)V ◦

(
α

(t)
n

)−1

V

for V ∈ kSt-Modfd and t ∈ N. This is a routine but lengthy calculation. We just go

through a couple of the cases.

If f is the crossing, we need to show that
((
α

(t)
2

)
V
◦Θt(f)V ◦

(
α

(t)
2

)−1

V

)
(ui⊗uj⊗

v) = uj ⊗ ui ⊗ v. Now we consider four cases. If t 6= i 6= j 6= t we have that((
α

(t)
2

)
V
◦Θt(f)V ◦

(
α

(t)
2

)−1

V

)
(ui ⊗ uj ⊗ v)

=
((
α

(t)
2

)
V
◦Θt(f)V

)
((i t)⊗ (j t)⊗ (j t)(i t)v)

=
(
α

(t)
2

)
V

((i t)(j t)⊗ (j t)⊗ (i t)v)

= uj ⊗ ui ⊗ v.

If i = j we have that((
α

(t)
2

)
V
◦Θt(f)V ◦

(
α

(t)
2

)−1

V

)
(ui ⊗ uj ⊗ v)

=
((
α

(t)
2

)
V
◦Θt(f)V

)
((i t)⊗ 1⊗ (i t)v)

=
(
α

(t)
2

)
V

((i t)⊗ 1⊗ (i t)v)

= uj ⊗ ui ⊗ v.
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If i = t 6= j we have that((
α

(t)
2

)
V
◦Θt(f)V ◦

(
α

(t)
2

)−1

V

)
(ui ⊗ uj ⊗ v)

=
((
α

(t)
2

)
V
◦Θt(f)V

)
(1⊗ (j t)⊗ (j t)v)

=
(
α

(t)
2

)
V

((j t)⊗ (j t)⊗ v)

= uj ⊗ ui ⊗ v.

Finally if i 6= t = j we have that((
α

(t)
2

)
V
◦Θt(f)V ◦

(
α

(t)
2

)−1

V

)
(ui ⊗ uj ⊗ v)

=
((
α

(t)
2

)
V
◦Θt(f)V

)
((i t)⊗ (i t)⊗ v)

=
(
α

(t)
2

)
V

(1⊗ (i t)⊗ (i t)v)

= uj ⊗ ui ⊗ v.

This completes the check in this case.

If f is the left dot, we have that((
α

(t)
1

)
V
◦Θt(f)V ◦

(
α

(t)
1

)−1

V

)
(ui ⊗ v) =

((
α

(t)
1

)
V
◦Θt(f)V

)
((i t)⊗ (i t)v)

=
t∑

j=1

(
α

(t)
1

)
V

((i t)(j t)⊗ (i t)v) =
t∑

j=1

(i t)(j t)ut ⊗ (i t)(j t)(i t)v.

If i = t this is
∑t

j=1 uj ⊗ (j t)v which is right. If i 6= t we pull out the j = i and j = t

terms of the sum, simplify the three types of terms separately, then recombine to get

the desired expression
∑t

j=1 uj ⊗ (i j)v.

We now have in our hands monoidal functors φt from (3.1.3), i from (3.3.6), and

Φt from (3.4.2). Let

Act : kSt-Modfd → End k(kSt-Modfd) (3.4.4)

be the monoidal functor induced by the Kronecker product, i.e., Act(V ) = V⊗ for a

kSt-module V and Act(f) = f⊗ for a homomorphism f : V → V ′.
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Lemma 3.4.2. For every t ∈ N, the following diagram commutes up to the obvious

canonical isomorphism of monoidal functors:

(3.4.5)

Proof. The composition Φt ◦ i takes the nth object of APar to (Ut⊗)◦n, while Act ◦φt

takes it to U⊗nt ⊗. Let

β(t)
n : (Ut⊗)◦n

∼⇒ U⊗nt ⊗

be the canonical isomorphism between these functors defined by associativity of tensor

product. Then β(t) =
(
β

(t)
n

)
n≥0

: Φt ◦ i ⇒ Act ◦φt is an isomorphism of monoidal

functors. To see this, we need to check naturality. This follows because the five

formulae defining φt from Theorem 3.1.1 tensored on the right with a vector v are

exactly the same as the formulae defining Φt on these five generating morphisms from

Lemma 3.4.1.

Now we can prove the main theorem justifying the significance of the affine

partition category. Let

Ev : End k(kSt-Modfd)→ kSt-Modfd (3.4.6)

be the (non-monoidal) functor defined by evaluating on trivSt . There is an obvious

isomorphism of functors Ev ◦Act
∼⇒ IdkSt-Modfd

defined on V by the isomorphism

V ⊗ trivSt → V, v ⊗ 1 7→ v.

Theorem 3.4.3. There is a unique (non-monoidal) functor

p : APar → Par (3.4.7)
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such that p ◦ i = IdPar and

p

 ···
12n

•

 = ···
12n

•◦•◦ . (3.4.8)

Moreover, for any t ∈ N, the following diagram of functors commutes up to natural

isomorphism:

(3.4.9)

The functor p also maps

···
12n

• 7→ T ···
1n

, ···
123n

• 7→ ···
123n

, ···
123n

• 7→ ···
123n

. (3.4.10)

Proof. For t ∈ N, let γ
(t)
n : U⊗nt ⊗ trivSt

∼→ U⊗nt be the obvious isomorphism sending

uin ⊗ · · · ⊗ ui1 ⊗ 1 7→ uin ⊗ · · · ⊗ ui1 . We say that f ∈ HomAPar (n,m) is good if there

exists a morphism f̄ ∈ HomPar (n,m) such that

φt(f̄) = γ(t)
m ◦ Ev(Φt(f)) ◦

(
γ(t)
n

)−1
(3.4.11)

for all t ∈ N. If f is good, there is a unique f̄ such that (3.4.11) holds for all

t. To see this, suppose that f̄ and f̄ ′ both satisfy (3.4.11) for all t ∈ N. Then

φt(f̄) = γ
(t)
m ◦ Ev(Φt(f)) ◦

(
γ

(t)
n

)−1
= φt(f̄

′), so that φt(f̄ − f̄ ′) = 0 for all t ∈ N. In

view of Lemma 3.1.4 this implies that f̄ = f̄ ′ as claimed.

Suppose that f ∈ HomAPar (n,m) and g ∈ HomAPar (l,m) are both good. Then

f ◦ g is good with f ◦ g := f̄ ◦ ḡ. This follows because

φt(f̄◦ḡ) = γ(t)
m ◦Ev(Φt(f))◦

(
γ(t)
m

)−1◦γ(t)
m ◦Ev(Φt(f))◦

(
γ

(t)
l

)−1
= γ(t)

m ◦Ev(Φt(f◦g))◦
(
γ

(t)
l

)−1
.

Similarly, sums of good morphisms are good with f + g := f̄ + ḡ.

In this paragraph, we show that every morphism in APar is good. In view of the

previous paragraph, it suffices to show that some family of generating morphisms for
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APar are all good. Hence, in view of Corollary 3.3.6, it is enough to show that i(f)

is good for every morphism f in Par and that the morphisms (3.3.17) are good for

all n. For f ∈ HomPar (n,m), the morphism i(f) is good with i(f) := f . This follows

from the following calculation using Lemma 3.4.2:

γ(t)
m ◦ Ev(Φt(i(f))) ◦

(
γ(t)
m

)−1
= γ(t)

m ◦ Ev(Act(φt(f))) ◦
(
γ(t)
m

)−1
= φt(f).

Also the morphism f from (3.3.17) is good for every n. To see this, let f̄ be the

morphism on the right hand side of (3.4.8). Using the definition in Theorem 3.1.1,

φt(f̄) is the map uin⊗· · ·⊗ui1 7→
∑t

j=1 uin⊗· · ·⊗ui2⊗uj. Also using the definition in

Lemma 3.4.1, Ev(Φt(f)) is the map uin⊗· · ·⊗ui1⊗1 7→
∑t

j=1 uin⊗· · ·⊗ui2⊗uj⊗1.

On contracting the final ⊗1 using γ
(t)
n , these are equal, as required to prove that f is

good.

Now we can define a functor p making (3.4.9) commute (up to natural

isomorphism) for all t ∈ N. On objects, define p by declaring that p(n) = n for

each n ≥ 0. On a morphism f ∈ HomAPar (n,m), we define p(f) := f̄ . The checks

made so far imply that this is a well-defined functor satisfying (3.4.8). The equation

(3.4.11) shows that γ(t) =
(
γ

(t)
n

)
n≥1

: Ev ◦Φt ⇒ φt ◦ p is a natural isomorphism. We

have also already shown that p ◦ i = IdPar and that (3.4.8) holds. Thus, we have

established the existence of a functor p : APar → Par satisfying all of the properties

in the statement of the theorem. The uniqueness of p follows from Corollary 3.3.6.

It remains to check the three properties (3.4.10). These can be checked using the

commutativity of (3.4.9) in the same way as we just established (3.4.8). Alternatively,

and possibly quicker, they can be deduced directly from (3.4.8) using the relations

(3.3.9) to (3.3.11), respectively. We leave the details to the reader.
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The faithfulness of i in the following corollary was already proved in two different

ways in [LSR21]. Our approach is similar in spirit to the first proof given in loc. cit.,

i.e., the argument used to prove [LSR21, Th. 5.2].

Corollary 3.4.4. The functor i : Par → APar is faithful and the functor p : APar →

Par is full.

Proof. This follows because p ◦ i = IdPar .

Corollary 3.4.5. The functor p induces an isomorphism APar/I ∼→ Par where I is

the left tensor ideal of APar generated by the morphism • − •◦•◦ .

Proof. The left tensor ideal I is the data of subspaces I(n,m) of HomAPar (n,m) for

each m,n ≥ 0 which are closed under vertical composition on the top or bottom

with any morphism and closed under horizontal composition on the left with any

morphism. It is clear from (3.4.8) that p sends morphisms in I to zero, hence, p

induces a functor p̄ : APar/I → Par . This is surjective on objects and full. To see that

it is faithful, suppose that f + I(n,m) ∈ HomAPar/I(n,m) = HomAPar (n,m)/I(n,m)

is a morphism sent to zero by p̄, hence, p(f) = 0. In view of Corollary 3.3.6 and

the definition of I, we may assume that f = i(f̄) for some f̄ ∈ HomPar (n,m). Then

f̄ = p(i(f̄)) = p(f) = 0, so that f = i(f̄) = 0.

Composing the functor p : APar → Par with evaluation at any t ∈ k gives a full

functor

pt := evt ◦p : APar → Par t (3.4.12)

such that

···
12n

• 7→ ···
12n

◦◦ , ···
12n

• 7→ t ···
12n

, (3.4.13)
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···
123n

• 7→ ···
123n

, ···
123n

• 7→ ···
123n

. (3.4.14)

Like in Corollary 3.4.5, the functor pt induces an isomorphism APar/It
∼→ Par t where

It is the left tensor ideal of APar generated by T − t11 and • − •◦•◦ .

3.5 Jucys-Murphy elements for partition algebras

Now we can explain how affine partition category is related to the works of

Enyang [Eny13] and Halverson-Ram [HR05]. These are concerned with the partition

algebra, which is the endomorphism algebra

Pn(t) := EndPar t(n) = 1nPart1n. (3.5.1)

By analogy, we define the affine partition algebra to be

APn := EndAPar (n) = 1nAPar1n. (3.5.2)

Let us denote the elements of APn defined by the left and right dots on the jth string

by XL
j and XR

j , and the elements defined by the left and right crossings of the kth

and (k + 1)th strings by SLk and SRk :

XL
j := ··· ···

1jn

• , XR
j := ··· ···

1jn

• , (3.5.3)

SLk := ··· ···
1kk+1n

• , SRk := ··· ···
1kk+1n

• (3.5.4)

for 1 ≤ j ≤ n and 1 ≤ k ≤ n − 1. We note that
{
XL
j , X

R
j

∣∣ j = 1, . . . , n
}

are

algebraically independent, so they generate a free polynomial algebra of rank 2n

inside APn(t); this follows easily from the basis theorem for morphism spaces Heis

proved in [Kho14]. Taking the images of the elements (3.5.3) and (3.5.4) under the

functor pt from (3.4.12) gives us elements of Pn(t) denoted

xLj := pt(X
L
j ), xRj := pt(X

R
k ), sLk := pt(S

L
k ), sRk := pt(S

R
k ). (3.5.5)
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The notation here depends implicitly on the values of n and t, which should be clear

from the context. By (3.4.13) and (3.4.14), we have that xL1 = ··· •◦•◦ , xR1 = t, sL1 = 1

and sR1 = (1 2) ∈ Sn ⊂ Pn(t).

Theorem 3.5.1. Suppose that t ∈ N and let ψt : Pn(t) → EndkSt(U
⊗n
t ) be

the homomorphism induced by the functor φt from Theorem 3.1.1. The elements

xLj , x
R
j , s

L
k , s

R
k ∈ Pn(t) satisfy

ψt(x
L
j )(uin ⊗ · · · ⊗ ui1) =

t∑
i=1

uin ⊗ · · · ⊗ uij+1
⊗ (i ij)

[
uij ⊗ · · · ⊗ ui2 ⊗ ui1

]
,

(3.5.6)

ψt(x
R
j )(uin ⊗ · · · ⊗ ui1) =

t∑
i=1

uin ⊗ · · · ⊗ uij ⊗ (i ij)
[
uij−1

⊗ · · · ⊗ ui2 ⊗ ui1
]
,

(3.5.7)

ψt(s
L
k )(uin ⊗ · · · ⊗ ui1) = uin ⊗ · · · ⊗ uik ⊗ (ik ik+1)

[
uik−1

⊗ · · · ⊗ ui2 ⊗ ui1
]
,

(3.5.8)

ψt(s
R
k )(uin ⊗ · · · ⊗ ui1) = uin ⊗ · · · ⊗ uik+2

⊗ (ik ik+1)
[
uik+1

⊗ · · · ⊗ ui2 ⊗ ui1
]

(3.5.9)

for 1 ≤ i1, . . . , in ≤ t, where we are using the diagonal action of St on tensor powers

of Ut.

Proof. This follows from the commutativity of (3.4.9), (3.5.5) and the formulae in

Lemma 3.4.1.

Corollary 3.5.2. Identifying Pn(t) with the partition algebra in [Eny13] by reflecting

diagrams through a vertical axis to account for the fact that we number vertices from

right to left rather than from left to right, the elements (3.5.5) are related to the

elements L 1
2
, L1, . . . and σ 3

2
, σ2, . . . of the partition algebra Pn(t) defined in [Eny13]
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according to the dictionary

xLj ↔ Lj, t− xRj ↔ Lj− 1
2
, sLk ↔ σk+ 1

2
, sRk ↔ σk+1. (3.5.10)

Hence, by [Eny13, Th. 5.5], the elements xLj and t−xRj are identified with the Jucys-

Murphy elements introduced originally by Halverson and Ram in [HR05].

Proof. Enyang’s elements are defined by a recurrence relation which is independent

of the value of the parameter t. Hence, his elements can be viewed as specializations

at T = t of corresponding elements of the generic partition algebra EndPar (n). To

identify them with our elements, we can use Lemma 3.1.4 to see that it suffices

to check that they act in the same way on U⊗nt for infinitely many values of the

parameter t ∈ N. This follows on comparing (3.5.6) to (3.5.9) to the formulae in

[Eny13, Prop. 5.2, Prop. 5.3].

Remark 3.5.3. Alternatively, one can prove Corollary 3.5.2 inductively, using the

recurrence relations in Lemma 3.3.5 which are equivalent to Enyang’s recurrence

relations [Eny13, (3.1)–(3.4)]. In fact, all of the relations derived in loc. cit. can now

be deduced easily using the relations in APar derived in the previous section.

Remark 3.5.4. Recently, Creedon [Cre21] has introduced a renormalization of the

Jucys-Murphy elements, which he denotes by N1, N2, . . . , N2n ∈ Pn(t). They are

defined in terms of the Enyang-Halverson-Ram elements simply by N2j−1 := Lj− 1
2
− t

2

and N2j := Lj − t
2
. The dictionary between Creedon’s elements and ours is

xLj − t
2
↔ N2j,

t
2
− xRj ↔ N2j−1. (3.5.11)

The motivation for such a renormalization will be discussed further in Remark 3.6.5

below.
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3.6 Central elements

By the center of a (k-linear) category A , we mean the (unital) commutative

algebra Z(A) := Endk(IdA) of endomorphisms of the identity endofunctor of A . Thus,

an element z ∈ Z(A) is a tuple (zX)X∈O(A) such that zY ◦f = f ◦zX for all morphisms

f : X → Y in A . Equivalently, in terms of the path algebra A, it is the algebra

Z(A) :=

z = (zX)X∈O(A) ∈
∏

X∈O(A)

1XA1X

∣∣∣∣∣ za = az for all a ∈ A

 , (3.6.1)

interpreting the products in the obvious way. We note that there is an algebra

isomorphism

EndA�Aop(A)
∼→ Z(A), ζ 7→ (ζ(1X))x∈O(A) ∈

∏
X∈O(A)

1XA1X , (3.6.2)

where the algebra on the left is the endomorphism algebra of the A � Aop-module

associated to the (A,A)-bimodule A. If A is locally finite-dimensional, then it

is a locally finite-dimensional A � Aop-module, hence, by [BS, Lem. 2.10], the

endomorphism algebra EndA�Aop(A) ∼= Z(A) is a pseudo-compact topological algebra

with respect to the pro-finite topology. That is, the topology of Z(A) is such that the

ideals of finite codimension form a base of neighborhoods of 0. Pseudo-compactness

means that Z(A) is isomorphic to lim←−Z(A)/J where the inverse limit is over all ideals

of finite codimension.

In the locally finite-dimensional case, Z(A) is isomorphic to the algebra C(A)∗

that is the linear dual of the cocenter C(A). The cocenter is a cocommutative

coalgebra isomorphic to CoendA�Aop(A) in the notation of [BS, (2.15)]. To define

C(A) explicitly, note that the space D :=
⊕

X,Y ∈OA(1XA1Y )∗ is naturally an (A,A)-

bimodule with 1YD1X = (1XA1Y )∗. Also each 1XD1X is a coalgebra as it is the

dual of the finite-dimensional algebra 1XA1X . Hence,
⊕

X∈OA 1XD1X is a coalgebra.
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Then the cocenter is

C(A) :=
( ⊕
X∈OA

1XD1X

)/
J (3.6.3)

where J is the coideal spanned by the elements{
af − fa

∣∣X, Y ∈ OA, a ∈ 1XA1Y , f ∈ 1YD1X
}
.

To identify C(A)∗ with Z(A), note that the linear dual of the coalgebra⊕
X∈OA 1XD1X is the algebra

∏
X∈OA 1XA1X ; the annihilator J◦ of the coideal J

defines a subalgebra of
∏

X∈OA 1XA1X which is exactly the center Z(A) according to

the original definition (3.6.1).

In this subsection, we are going to construct a family of elements (z(r))r≥1 in

the center Z(APart) of the affine partition category APar t. We start by introducing

some convenient shorthand. Given a monomial xrys ∈ k[x, y], we use the notation

•xrys :=
(
•
)◦r
◦
(
•
)◦s

(3.6.4)

to denote the element of EndAPar (|||) on the right hand side, that is, it is the rth

power of the right dot (represented by x) composed with the sth power of the left dot

(represented by y). It then makes sense to label dots by polynomials f(x) ∈ k[x, y],

meaning the linear combination of the morphisms •xrys just as f(x) is the linear

combination of its monomials. We are also going to use generating functions in the

same way as explained in the context of Heis in [BSW20, §3.1]. For these, u will be a

formal variable which should always be interpreted by expanding as formal Laurent

series in k((u−1)), e.g., (u− x)−1 = u−1 + u−2x+ u−3x2 + · · · .

Let

©(u) := u11 − •
•◦
•◦

(u−x)−1 = u11 − •
•◦
•◦

(u−y)−1 ∈ u11 + u−1 EndAPar (1)[[u−1]]. (3.6.5)

62



For r ≥ 0, the coefficient of u−r−1 in this formal Laurent series is − •◦•x
r•◦ ; the xr here

can be replaced by yr due to the third relation in (3.3.8). Also introduce the rational

function

αx(u) :=
(u− (x+ 1))(u− (x− 1))

(u− x)2
∈ k(x, u). (3.6.6)

The expansion of this as a power series in k[x][[u−1]] is

αx(u) = 1− (u− x)−2 = 1− u−2 − 2xu−3 − 3x2u−4 − 4x3u−5 − · · · , (3.6.7)

αx(u)−1 = 1 + u−2 + 2xu−3 + (3x2 + 1)u−4 + (4x3 + 4x)u−5 + · · · . (3.6.8)

The following elementary lemma will play a fundamental role in the rest of the article.

It would be hard to formulate this without the aid of generating functions.

Lemma 3.6.1. The following bubble slide relations hold in APar :

©(u) = •αy(u)

αx(u)
©(u) , ©(u) = •αx(u)

αy(u)©(u) . (3.6.9)

Proof. The two equations are equivalent, so we just prove the first one. When working

with Heis , we adopt the notation of [BSW20, §3.1]: an open dot labelled by xr means

the rth power of the open dot in Heis , and (u) is the formal Laurent series from

[BSW20, (3.13)]. Under the embedding of APar into Heis , we have that

©(u+ 1) = (u+ 1)11 − •
•◦
•◦

(u−(y−1))−1 = (u+ 1)11 − •◦(u−x)−1 = 11 + (u).

The bubble slide relation for Heis from [BSW20, (3.18)] gives that

(u) = •◦αx(u) (u) = •◦ •◦αx(u) αx(u)−1 (u) .

According to (3.3.4), the label x on the open dot on the ↓ string translates into the

label x− 1 on a closed dot in APar , and the label x on the open dot on the ↑ string

translates into the label y − 1 on a closed dot in APar . So the relation just recorded
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can be written equivalently as

©(u+ 1) = •αy−1(u)

αx−1(u)
©(u+ 1) = •αy(u+1)

αx(u+1)
©(u+ 1) .

Replacing u by u− 1 everywhere gives the desired relation.

The rational function αy(u)/αx(u) ∈ k(x, y, u) will also be important later on.

The low degree terms of its expansion as a power series in u−1 can be computed using

(3.6.7) and (3.6.8):

αy(u)

αx(u)
= 1+2(x−y)u−3 +3(x2−y2)u−4 +

[
4(x3 − y3) + 2(x− y)

]
u−5 + · · · . (3.6.10)

For n ≥ 0, let

Cn(u) =
∑
r≥0

C(r)
n u−r :=©(u)?1n?©(u)−1 = •αy(u)

αx(u)
· · · •αy(u)

αx(u)
•αy(u)

αx(u)

n 2 1

∈ 1nAPar1n[[u−1]],

(3.6.11)

where the final equality follows by applying the bubble slide relation repeatedly. Then

we define

C(u) =
∑
r≥0

C(r)u−r := (Cn(u))n≥0 ∈
∏
n≥0

1nAPar1n[[u−1]]. (3.6.12)

Note by (3.6.10) that C(0) = 1 and C(1) = C(2) = 0.

Theorem 3.6.2. C(u) ∈ Z(APar)[[u−1]].

Proof. The interchange law immediately gives that

Cm(u)

· · ·

· · ·

· · ·
f

= ©(u) ©(u)−1· · ·

· · ·
f

=
©(u) ©(u)−1

f
· · ·

· · ·
=

f

· · ·

· · ·

· · ·
Cn(u)

for any f ∈ HomAPar (n,m).

The proof of the following corollary is similar to an argument used to simplify

some analogous central elements in the quantum Heisenberg category in [MS22,

Prop. 4.3].
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Corollary 3.6.3. For each r ≥ 1, the element Z(r) = (Z
(r)
n )n≥0 ∈

∏
n≥0 1nAPar1n

defined from

Z(r)
n :=

n∑
i=1

(
(XL

i )r − (XR
i )r
)

=
(
XL

1

)r
+ · · ·+

(
XL
n

)r − (XR
1

)r − · · · − (XR
n

)r
belongs to Z(APar) (notation as in (3.5.3) and (3.5.4)). Moreover, the elements

Z(1), Z(2), . . . generate the same subalgebra Z0(APar) of Z(APar) as the elements

C(3), C(4), . . . .

Proof. Let f(u) := αy(u)/αx(u) for short. Then define g(u) := f ′(u)/f(u) =

d
du

(ln f(u)) to be its logarithmic derivative. We have that

g(u) =

(
− 1

u− (x− 1)
+

2

u− x
− 1

u− (x+ 1)

)
−
(
− 1

u− (y − 1)
+

2

u− y
− 1

u− (y + 1)

)
= 2 · 3(y − x)u−4 + 2 · 6(y2 − x2)u−5 + 2 · [10(y3 − x3) + 5(y − x)]u−6 + · · · .

We deduce for r ≥ 1 that the u−r−3-coefficient of g(u) is equal to 2
(
r+2

2

)
(yr−xr) plus

a linear combination of terms (ys − xs) for 1 ≤ s < r with s ≡ r (mod 2).

The coefficients of the power series C ′(u)/C(u) are polynomials in the coefficients

of the series C(u). Hence, by the theorem, these coefficients are all central. To

compute them, we take logarithmic derivatives of (3.6.11) to obtain the identity

C ′n(u)/Cn(u) =
n∑
i=1

··· ···•
1in

g(u) .

Using the previous paragraph and the definition of Z(r), we deduce for r ≥ 1 that the

central element defined by the u−r−3-coefficient of C ′(u)/C(u) is equal to 2
(
r+2

2

)
Z(r)

plus a linear combination of Z(s) for 1 ≤ s < r with s ≡ r (mod 2). Finally, induction

on r shows that each Z(r) is central.

The argument just given shows that each Z(r) lies in the subalgebra generated

by C(3), C(4), . . . . Conversely, by exponentiating an anti-derivative of the series
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C ′(u)/C(u), one shows that each C(r) can be expressed as a polynomial in

Z(1), Z(2), . . . . Hence, the two families of elements generate the same subalgebra

of Z(APar).

Taking the images of C(u) and each Z(r) under the functor pt from (3.4.12) give

c(u) =
∑
r≥0

c(r)u−r := (cn(u))n≥0 ∈ Z(Part)[[u
−1]], (3.6.13)

where cn(u) =
∑
r≥0

c(r)
n u−r := pt(Cn(u)),

z(r) :=
(
z(r)
n

)
n≥0
∈ Z(Part), where z(r)

n := pt(Z
(r)
n ). (3.6.14)

The elements c
(r)
n and z

(r)
n belong to the center Z(Pn(t)) of the partition algebra Pn(t).

In terms of the Jucys-Murphy elements (3.5.5), we have that

z(r)
n =

n∑
i=1

[(
xLi
)r − (xRi )r] = (xL1 )r + · · ·+ (xLn)r − (xR1 )r − · · · − (xRn )r. (3.6.15)

From Corollary 3.5.2, it follows that z
(1)
n equals zn−nt where zn is the central element

from [Eny13, Th. 3.10(2)]. In fact, z
(1)
n is closely related to the central elements of

the group algebras kSt defined by sums of transpositions:

Lemma 3.6.4 ([Eny13, Prop. 5.4]). If t ∈ N then ψt(z
(1)
n ) : U⊗nt → U⊗nt is equal to

the endomorphism defined by the action of
∑

1≤i<j≤t ((i j)− 1) ∈ Z(kSt).

Remark 3.6.5. After constructing the elements z
(r)
n ∈ Z(Pn(t)) in the manner

explained above, we came across a recent paper of Creedon which constructs

similar central elements; see [Cre21, Th. 3.2.6]. To explain the connection,

recall that the rth supersymmetric power sum in variables x1, . . . , xn, y1, . . . , ym is

pr(x1, . . . , xn|y1, . . . , ym) = xr1 + · · · + xrn − yr1 − · · · − yrm. The expression on the

right hand side of (3.6.15) is pr(x
L
1 , . . . , x

L
n |xR1 , . . . , xRn ). It is easy to see that these

elements belong to Z(Pn(t)) for all r ≥ 1 if and only if pr(x
L
1 − t/2, . . . , xLn − t/2|xR1 −
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t/2, . . . , xRn − t/2) ∈ Z(Pn(t)) for all r ≥ 1. Moreover, pr(x
L
1 − t/2, . . . , xLn − t/2|xR1 −

t/2, . . . , xRn − t/2) ∈ Z(Pn(t)) coincides with the rth supersymmetric power sum

pr(N2, N4, . . . , N2n|−N1,−N3, . . . ,−N2n−1) in Creedon’s renormalized Jucys-Murphy

elements from (3.5.11). Creedon showed that his elements are central in Pn(t) by a

direct check of relations. This gives an independent way to verify that the eleemnts

z(r) = (z
(r)
n )n≥0 belong to Z(Par t): Creedon’s calculations show that they commute

with all crossings (a surprisingly hard calculation), and after that it is easy to see

that they commute with all other generators of Par t.

Remark 3.6.6. In [CO11, Def. 4.5], Comes and Ostrik define another family of

central elements ωr(t) = (ωrn(t))n≥0 which lift the central elements of the group

algebras kSt defined by the sums of all r-cycles. We expect that our elements z
(r)
n

and their elements ωrn(t) are closely related, but we do not know any explicit formula.

In particular, the Comes-Ostrik elements should generate the same subalgebra of

Z(Part) as our elements.

3.7 Harish-Chandra homomorphism

Although we just explain in the case of Par t, the general development in

this section is valid for any monoidal triangular category, replacing Sym with

the (semisimple) Cartan subcategory and replacing the set P of partitions by a

set parametrizing isomorphism classes of irreducible representations of the Cartan

subcategory.

According to the general definition (3.6.1), the center of the partition category

is a subalgebra of the unital algebra
∏

n≥0 1nPart1n. Let K+ (resp., K−) be the

left ideal (resp., right ideal) of Part generated by the strictly downward partition

diagrams (resp., the strictly upward partition diagrams). From the triangular basis,

it is easy to see that 1nK
+1n = 1nK

−1n. We denote this by Kn. It is a two-sided
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ideal of the finite-dimensional algebra 1nPart1n, and we have that

1nPart1n = kSn ⊕Kn. (3.7.1)

Equivalently, Kn is the two-sided ideal of 1nPart1n spanned by morphisms that factor

through objects m < n. By analogy with Lie theory, we define the Harish-Chandra

homomorphism

ĤC :
∏
n≥0

1nPart1n →
∏
n≥0

kSn, (zn)n≥0 7→ (HCn zn)n≥0, (3.7.2)

where HCn : 1nPart1n � kSn is the projection along the direct sum decomposition

(3.7.1). It is obvious from (3.7.1) that the restriction of ĤC to Z(Part) defines an

algebra homomorphism

HC : Z(Part)→ Z(Sym) =
∏
n≥0

Z(kSn). (3.7.3)

As each kSn is semisimple with its isomorphism classes of irreducible

representations parametrized by Pn, we can identify the algebra appearing on the right

hand side of (3.7.3) with the algebra k[P ] of all functions from the set P to the field k

with pointwise operations. Under this identification, the tuple (zn)n≥0 ∈
∏

n≥0 Z(kSn)

corresponds to the function f : P → k such that f(λ) is the scalar that zn acts by

on the Specht module S(λ) for each λ ∈ Pn. Then the Harish-Chandra homorphism

becomes a homomorphism

HC : Z(Part)→ k[P ]. (3.7.4)

To describe HC more explicitly in these terms, let λ ∈ Pn be a partition. As we have

that EndPart(∆(λ)) ∼= EndSym(S(λ)) ∼= k, an element z = (zn)n≥0 ∈ Z(Part) acts on

the standard module ∆(λ) as multiplication by a scalar denoted χλ(z). This defines

an algebra homomorphism

χλ : Z(Part)→ k. (3.7.5)
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To compute χλ(z), note that it is the scalar by which zn acts on the highest weight

space 1n∆(λ), which is the scalar arising from the action of HCn(zn) ∈ Z(kSn) on

S(λ). It follows that

χλ(z) = HCn(zn)(λ) = HC(z)(λ). (3.7.6)

Recall that Z(Part) is a commutative pseudo-compact topological algebra with

respect to the profinite topology. Let Spec(Z(Part)) be its set of open (= finite-

codimensional) maximal ideals.

Lemma 3.7.1. Spec(Z(Part)) = {kerχλ | λ ∈ P}.

Proof. Points in Spec(Z(Part)) parametrize isomorphism classes of finite-dimensional

irreducible modules for Z(Part) Let Lλ be the irreducible Z(Part)-module associated

to χλ : Z(Part) → k. Then we need to show that any finite-dimensional irreducible

Z(Part)-module L is isomorphic to Lλ for some λ ∈ P . To see this, we find it easiest

to work equivalently in terms of irreducible comodules over the cocenter C := C(Part)

defined in (3.6.3). So let L be an irreducible C-comodule and L∗ be the dual comodule,

there being no need to distinguish between left or right since C is cocommutative. By

definition, C is a quotient of the coalgebra D that is the direct sum of the coalgebras

(1nPart1n)∗ for all n ≥ 0. Since L∗ is isomorphic to a subcomodule of the regular

C-comodule, it follows that L∗ is isomorphic to a subquotient of the restriction of the

regular D-comodule to C. Hence, L∗ is isomorphic to a subquotient of (1nPart1n)∗

for some n. So L is isomorphic to a subquotient of 1nPart1n. Now recall that the left

Part-module Part1n has a ∆-flag, and z ∈ Z(Part) acts on ∆(λ) as multiplication

by the scalar χλ(z). Hence, all composition factors of the finite-dimensional Z(Part)-

module 1nPart1n are of the form Lλ for λ ∈ P .
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Let ≈t be the equivalence relation on P defined by

λ ≈t µ⇔ χλ = χµ. (3.7.7)

From Lemma 3.7.1, we see that the equivalence classes P/ ≈t parametrize the points

in Spec(Z(Part)).

Lemma 3.7.2. The image of HC : Z(Part) → k[P ] consists of of all functions

f ∈ k[P ] which are constant on ≈t-equivalence classes. Moreover, for each subset S

of P that is a union of ≈t-equivalence classes, there is a unique central idempotent

1S ∈ Z(Part) such that

HC(1S)(λ) =

 1 if λ ∈ S,

0 otherwise.
(3.7.8)

If S is a single equivalence class then 1S is a primitive idempotent, and Z(Part) =∏
S∈P/≈t 1SZ(Part).

Proof. It is clear from (3.7.6) that any function in the image of HC is constant on

≈t-equivalence classes. Conversely, take a function f ∈ k[P ] which is constant on

equivalence classes. For an equivalence class S ∈ P/ ≈t, let LS be the irreducible

Z(Part)-module associated to the central character χλ (λ ∈ S). The previous lemma

shows that these give a full set of pairwise inequivalent irreducible finite-dimensional

Z(Part)-modules. It follows that the cocommutative coalgebra C(Part) decomposes

as a direct sum of indecomposable coideals

C(Part) =
⊕

S∈P/≈t

CS,

where CS is the injective hull of LS. Then we consider the linear map θ : C(Part)→

C(Part) defined by multiplication by the scalar f(λ) (λ ∈ S) on the summand CS.

This is a comodule homomorphism. Now we use that

Z(Part) = C(Par t)∗ ∼= EndC(Part)(C(Part))
op
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as holds for any coalgebra, e.g., see [BS, Lem. 2.2]. It implies that θ defines an element

of Z(Part). The image of this element under HC is the function f ∈ k[P ].

To prove the existence of the idempotent 1S for any S that is a union of ≈t-

equivalence classes, we apply the construction in the previous paragraph to obtain

1S ∈ Z(Part) such that 1S acts as the identity on the indecomposable summands CS′

of C(Part) for all ≈t-equivalence classes S ′ ⊆ S and as zero on all other summands.

This is an idempotent satisfying (3.7.8), and it is a primitive idempotent if and only

if S is a single equivalence class. We then have that

Z(Part) =
∏

S∈P/≈t

1SZ(Part)

as this is the algebra decomposition that is dual to the decomposition of C(Part) as

the direct sum of its indecomposable coideals.

For S ∈ P/ ≈t, the primitive central idempotent 1S ∈ Z(Part) from Lemma 3.7.2

is not an element of Part, but we have that 1S = (1S,n)n≥0 for idempotents 1S,n =

1S1n = 1n1S ∈ 1nPart1n. Moreover, for a fixed n the idempotent 1S,n is zero for

all but finitely many S, so that 1n =
∑

S∈P/≈t 1S,n. The locally unital algebras

1SPart =
⊕

m,n≥0 1S,mPart1S,n are the blocks of the partition algebra Part, and we

have the block decompositions

Part =
⊕

S∈P/≈t

1SPart, Part-Mod =
∏

S∈P/≈t

1SPart-Mod. (3.7.9)

Representatives for the isomorphism classes of irreducible 1SPart-modules are given

by the modules L(λ) for all λ ∈ S.

Lemma 3.7.3. The following properties are equivalent:

(i) Part is semisimple.

(ii) All of the ≈t-equivalence classes are singletons.
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(iii) HC : Z(Part)→ k[P ] is surjective.

(iv) HC : Z(Part)→ k[P ] is an isomorphism.

Proof. If (i) holds, then Part is a direct sum of locally unital matrix algebras indexed

by the set P that labels its irreducible representations. Hence, its center is the direct

product
∏

λ∈P kλ. It follows easily that HC is an isomorphism, i.e., (iv) holds.

Obviously, (iv) implies (iii).

The equivalence of (ii) and (iii) follows from Lemma 3.7.2.

It remains to show that (ii) implies (i). Assuming (ii), Lemma 3.7.2 shows for

any λ ∈ P that there is a primitive central idempotent in Z(Part) which acts as the

identity on ∆(λ) and as zero on L(µ) for all µ 6= λ. We deduce that all composition

factors of ∆(λ) are isomorphic to L(λ). Since this is a highest weight module we

have that [∆(λ) : L(λ)] = 1, so actually ∆(λ) is irreducible. This is the case for all

λ ∈ P , so by BGG reciprocity we deduce that P (λ) = ∆(λ) = L(λ) for all λ, and (i)

holds.

Remark 3.7.4. When Part is semisimple, the standardization functor j! :

Sym-Modfd → Par t-Modlfd sends the irreducible Sym-modules S(λ) to the irreducible

Part-modules ∆(λ) = L(λ) for all λ ∈ P . It follows easily that j! is an equivalence of

categories in the semisimple case (although it is not a monoidal equivalence). Since

the center is a Morita invariant, it follows that Z(Sym) ∼= Z(Part) in the semisimple

case. Recalling that Z(Sym) ∼= k[P ], this gives another way to understand the

equivalence (i)⇒(iv) of Lemma 3.7.3.

Remark 3.7.5. As Part-Modlfd is an upper finite highest weight category, there is

also a canonical partial order on P , called the minimal order in [BS, Rem. 3.68],

which we denote here by �t. By definition, this is the partial order generated by

72



the relation λ �t µ if [∆(λ) : L(µ)] 6= 0. As always for highest weight categories,

the equivalence relation ≈t defining the blocks of Part is the transitive closure of the

minimal order �t. We will describe �t explicitly in Corollary 3.10.7 below.

3.8 “Blocks”

In the previous section, we introduced an equivalence relation ≈t on P whose

equivalence classes parametrize the blocks of Part. The relation ≈t was defined in

terms of the central characters χλ : Z(Part) → k arising from the irreducible Part-

modules L(λ); see (3.7.7). On the other hand, in (3.6.13) and (3.6.14), we constructed

some explicit central elements of Part. Let∼t be the equivalence relation on P defined

from

λ ∼t µ⇔ χλ|Z0(Part) = χµ|Z0(Part) (3.8.1)

where Z0(Part) is the subalgebra of Z(Part) generated by the elements
{
c(r)
∣∣ r ≥ 3

}
(equivalently, by the elements

{
z(r)

∣∣ r ≥ 1
}

). We refer to the ∼t-equivalence classes

as “blocks”. We obviously have that

λ ≈t µ⇒ λ ∼t µ, (3.8.2)

i.e., “blocks” are unions of blocks. Defining 1S as in Lemma 3.7.2, there are induced

“block” decompositions

Part =
⊕

S∈P/∼t

1SPart, Part-Mod =
∏

S∈P/∼t

1SPart-Mod. (3.8.3)

In this section, we are going to describe the relation ∼t in explicit combinatorial

terms.

Lemma 3.8.1. The images of the elements xLj , x
R
j , s

L
k , s

R
k ∈ 1nPart1n from (3.5.5)

under the Harish-Chandra homomorphism ĤC from (3.7.2) are

HCn(xLj ) = xj, HCn(xRj ) = t− j + 1, (3.8.4)
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HCn(sLk ) = 1, HCn(sRk ) = (k k+1), (3.8.5)

where xj ∈ kSn is the Jucys-Murphy element from (2.7.10).

Proof. Applying HCn to the relations (3.3.15) and (3.3.16) (on the kth, (k+1)th and

(k + 2)th strings) we deduce that HCn(sLk+1) = (k k+1 k+2) HCn(sLk )(k+2 k+1 k)

and HCn(sRk+1) = (k k+ 1 k+ 2) HCn(sRk )(k+ 2 k+ 1 k). Now (3.8.5) follows by

induction on k, the base case k = 1 being immediate from (3.4.14). Note for this that

(k k+1 k+2)(k k+1)(k+2 k+1 k) = (k+1 k+2).

Applying HCn to the relations (3.3.13) and (3.3.14) (on the jth and (j + 1)th

strings), using also (3.3.10), we deduce that HCn(xLj+1) = (j j+1) HCn(xLj )(j j+1) +

HCn(sRj ) and HCn(xRj+1) = (j j+1) HCn(xRj )(j j+1)−HCn(sLj ). Now (3.8.4) follows

using (3.8.5) and induction on j, the base case j = 1 being immediate from (3.4.13).

Note for this that (j j+1)xj(j j+1) + (j j+1) = xj+1.

Lemma 3.8.2. For λ ∈ Pn, we have that

χλ(c(u)) =
n∏
i=1

αconti(T)(u)

αt−i+1(u)
(3.8.6)

where T is some fixed standard λ-tableau and αx(u) is as in (3.6.6).

Proof. Note by (3.7.6) that χλ(c(u)) = HCn(cn(u))(λ) ∈ k[[u−1]]. To compute this, we

use Lemma 3.8.1 and the explicit formula for cn(u) = pt(Cn(u)) arising from (3.6.11)

to deduce that

HCn(cn(u)) =
n∏
i=1

αxi(u)

αt−i+1(u)
∈ Z(kSn)[[u−1]].

To evaluate this at λ, we act on the basis vector vT from Young’s orthonormal basis

for S(λ), remembering that xivT = conti(T)vT.

Lemma 3.8.1 suggests some combinatorics of weights. Let P be the free Abelian

group on basis {Λc | c ∈ k}. Let εc := Λc − Λc+1 and αc := εc − εc−1. We define the
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weight of a rational function f(u) ∈ k(u) to be

wt f(u) :=
∑
c∈k


 Multiplicity of c

as a pole of f(u)

−
 Multiplicity of c

as a zero of f(u)


Λc ∈ P. (3.8.7)

For example, wtαc(u) = −Λc−1 + 2Λc − Λc+1 = αc. For λ ∈ Pn, let wtt(λ) be the

weight of the rational function appearing on the right hand side of (3.8.6). As the

coefficients of the power series c(u) generate the subalgebra Z0(Part), the equivalence

relation ∼t defined by (3.8.1) satisfies

λ ∼t µ⇔ wtt(λ) = wtt(µ). (3.8.8)

This suggests using elements of P rather than ∼t-equivalence classes to index the

“blocks” from (3.8.3): for any γ ∈ P , let

S(γ) :=
{
λ ∈ P

∣∣ wtt(λ) = γ
}
. (3.8.9)

Then define

prγ : Part-Mod→ Part-Mod (3.8.10)

to be the projection functor defined by multiplication by the central idempotent 1S(γ)

from Lemma 3.7.2. In other words, prγ projects a Part-module V to its largest

submodule all of whose irreducible subquotients are of the form L(λ) for λ ∈ P with

wtt(λ) = γ. The admissible γ ∈ P which parametrize “blocks” are the ones with

S(γ) 6= ∅; if S(γ) = ∅ then prγ is the zero functor.

Lemma 3.8.3. For λ ∈ Pn and any standard λ-tableau T , we have that

wtt(λ) =
n∑
i=1

(αconti(T) − αt−i+1) = (εt−|λ| − εt) + (ελ1−1 − ε−1) + · · ·+ (ελk−k − ε−k)

(3.8.11)
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for any k ≥ `(λ). Moreover, given another partition µ ∈ P, we have that wtt(λ) =

wtt(µ) if and only if the infinite sequences (t−|λ|, λ1−1, λ2−2, . . . ) and (t−|µ|, µ1−

1, µ2 − 2, . . . ) are rearrangements of each other.

Proof. The first equality in (3.8.11) follows immediately from Lemma 3.8.2. To deduce

the second equality, take k ≥ `(λ). For 1 ≤ r ≤ k the contents of the nodes in the

rth row of the Young diagram of λ are 1 − r, 2 − r, . . . , λr − r, and we have that

α1−r + · · ·+ αλr−r = ελr−r − ε−r. Also αt + αt−1 + · · ·+ αt−n+1 = εt − εt−n. Now the

desired formula follows easily.

Rearranging the right hand side of (3.8.11) gives that εt−|λ| + ελ1−1 + ελ2−2 +

· · · + ελk−k = wtt(λ) + ε−1 + ε−2 + · · · + ε−k + εt for any k ≥ `(λ). Hence, we have

that wtt(λ) = wtt(µ) if and only if

εt−|λ| + ελ1−1 + ελ2−2 + · · ·+ ελk−k = εt−|µ| + εµ1−1 + εµ2−2 + · · ·+ εµk−k

for all k � 0. This is clearly equivalent to saying that the infinite sequences (t −

|λ|, λ1 − 1, λ2 − 2, . . . ) and (t − |µ|, µ1 − 1, µ2 − 2, . . . ) may be obtained from each

other by permuting the entries.

The final assertion from Lemma 3.8.3 shows that ∼t is exactly the same as the

equivalence relation on partitions defined in [CO11, Def. 5.1]. The equivalence classes

of this relation were investigated in detail in [CO11, §5.3]. The following summarizes

the results obtained there. For the statement, we say that λ ∈ P is typical if it is

the only partition in its ∼t-equivalence class; otherwise we say that λ is atypical. Of

course, these notions depend on the fixed value of the parameter t.

Theorem 3.8.4 (Comes-Ostrik). If t /∈ N then all partitions are typical. If t ∈ N

then there is a bijection Pt
∼→ {atypical ∼t-equivalence classes} taking κ ∈ Pt to the
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∼t-equivalence class {κ(0), κ(1), κ(2), . . . } where

κ(n) := (κ1 + 1, . . . , κn + 1, κn+2, κn+3, . . . ) ∈ Pt+n−κn+1 , (3.8.12)

i.e., it is the partition obtained from κ by adding a node to the first n rows of its

Young diagram then removing its (n + 1)th row. Moreover, still assuming t ∈ N, a

partition λ ∈ P is typical if and only if t− |λ| = λi − i for some i ≥ 1.

Example 3.8.5. For any t ∈ N, the ∼t-equivalence class associated to κ = (t) ∈ Pt

is

S =
{
∅, (t+1), (t+1, 1), (t+1, 12), · · ·

}
.

For t ∈ N− {0, 1}, the ∼t-equivalence class associated to κ = (1t) ∈ Pt is

S =
{

(1t−1), (2, 1t−2), (22, 1t−3), · · · , (2t−1), (2t), (2t, 1), (2t, 12), · · ·
}
.

As noted in [CO11, Cor. 5.23] (using a different argument for the forward

implication), the first assertion of Theorem 3.8.4 allows us to recover the following

well known result of Deligne [Del07, Th. 2.18]: Rep(St) is semisimple if and only if

t /∈ N. In terms of the path algebra Part, Deligne’s result can be stated as follows.

Corollary 3.8.6 (Deligne). Part is semisimple if and only if t /∈ N.

Proof. We already know that Part is not semisimple if t ∈ N by Corollary 3.1.2.

Conversely, if t /∈ N, we apply the criterion from Lemma 3.7.3, noting that all ≈t-

equivalence classes are singletons thanks to (3.8.2) and the first part of Theorem 3.8.4.

Remark 3.8.7. When t /∈ N, the above arguments show for λ, µ ∈ P with λ 6= µ

that there is a central element in the subalgebra Z0(Part) of Z(Part) which acts

by different scalars on the irreducible modules L(λ) and L(µ). It follows in these

cases that Z0(Part) is a dense subalgebra of the pseudo-compact topological algebra
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Z(Part)
1. We do not expect that this is the case when t ∈ N, but nevertheless

Z0(Part) is still sufficiently large to separate blocks. This will be established in

Corollary 3.10.6 below, which shows for any value of t that the relations ∼t and ≈t

coincide, so that “blocks” are blocks, and (3.8.3) is always the same decomposition

as (3.7.9); see also [CO11, Th. 5.3].

3.9 Special projective functors

From now on, we will primarily be interested in parameter values t ∈ N, so that

Part is not semisimple. Consider the atypical block {κ(0), κ(1), κ(2), . . . } associated

to κ ∈ Pt. From (3.8.12), it follows that κ(n) is obtained from κ(n−1) by adding

κn − κn+1 + 1 nodes to the nth row of its Young diagram, leaving all other rows

unchanged. The partition κ(0) is the smallest of all of the κ(n), hence, it is maximal

in the highest weight ordering from Theorem 2.9.1. It follows that

P (κ(0)) ∼= ∆(κ(0)). (3.9.1)

The indecomposable projectives ∆(κ(0)) are exactly the ones of non-zero categorical

dimension mentioned already in Remark 3.1.3, with the irreducible kSt-module

associated to the image of ∆(κ(0)) under the equivalence ψt between the

semisimplification of Kar(Par t) and kSt-Modfd being the Specht module S(κ). It

is also useful to note for t ∈ N and κ ∈ Pt that the associated block {κ(0), κ(1), . . . } is

the set S(γ) from (3.8.9) for

γ := (εκ1 − εt) + (εκ2−1 − ε−1) + · · ·+ (εκt−t+1 − ε−t) ∈ P. (3.9.2)

This is follows easily using (3.8.11) and (3.8.12).

1These algebras are certainly not equal since Z(Part) ∼=
∏
λ∈P kλ is of uncountable dimension.
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In order to understand the structure of the atypical blocks more fully, we are

going to use the endofunctor ||| ? : Par t → Par t. Let

D := res||| ? = 1||| ?Part⊗Part : Part-Mod→ Part-Mod (3.9.3)

be the corresponding restriction functor from (2.6.4). This obviously preserves

locally finite-dimensional modules. The object ||| is self-dual so, by Lemma 2.6.2, the

restriction functor D is isomorphic to the induction functor ind||| ?. By Corollary 2.6.3,

D is a self-adjoint projective functor, so it preserves finitely generated projectives

(and finitely cogenerated injectives). To make the canonical adjunction as explicit

as possible, we note that its unit and counit are induced by the bimodule

homomorphisms

η : Part → 1||| ?Part ⊗Part 1||| ?Part, f

· · ·

· · ·
1n

1m

7→ f

· · ·

· · ·
1nn+1

1mm+1

⊗ · · ·
1n

1n

n+1n+2

,

(3.9.4)

ε : 1||| ?Part ⊗Part 1||| ?Part → Part, f

· · ·

· · ·
1n

1mm+1

⊗ g

···

· · ·

1n

1n+1

n+1

7→
f

g
· · ·
· · ·

· · ·

1n+1

1m

.

(3.9.5)

Using (2.3.4), it follows that D commutes with the duality ?©σ on Part-Modlfd.

Theorem 3.9.1. For λ ∈ P, there is a filtration 0 = V0 ⊆ V1 ⊆ V2 ⊆ V3 = D∆(λ)

such that

V3/V2
∼=

⊕
a∈add(λ)

∆
(
λ+ a

)
,

V2/V1
∼= ∆(λ)⊕

⊕
b∈rem(λ)

⊕
a∈add(λ− b )

∆
(
(λ− b ) + a

)
,
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V1/V0
∼=

⊕
b∈rem(λ)

∆
(
λ− b

)
.

Proof. This follows from Lemma 3.11.2 below, which constructs the filtration

explicitly. The proof of Lemma 3.11.2 is valid over fields of positive characteristic.

Now we are going to use the affine partition category APar to decompose the

endofunctor D as a direct sum of special projective functors Db|a. The approach here

is analogous to the way the affine symmetric category ASym was used to decompose

E and F as direct sums of Ea and Fb in (2.7.12). As noted at the end of §3.3, Par t

is isomorphic to the quotient of APar by a left tensor ideal. Hence, Par t is a strict

APar -module category. The self-adjoint functor D is also the restriction functor res||| ?

arising from this categorical action of APar on Par t. Now the left and right dots give

us natural transformations

α := • ? : ||| ?⇒ ||| ?, β := • ? : ||| ?⇒ ||| ? .

Applying the general construction from (2.2.8) to these, we obtain commuting

endomorphisms

x := resα : D ⇒ D, y := resβ : D ⇒ D. (3.9.6)

LetDb|a be the summand ofD that is the simultaneous generalized eigenspace of x and

y of eigenvalues a and b, respectively. Explicitly, D = res||| ? is defined by tensoring

with the bimodule 1||| ?Part, and the endomorphisms x and y of D are induced by

the bimodule endomorphisms ρ and λ of 1||| ?Part given by left multiplication by

xRm+1 and xLm+1, respectively, on the summand 1m+1Part of 1||| ?Part for each m ≥ 0.

Then, Db|a is the functor defined by tensoring with the summand of 1||| ?Part that

is the simultaneous generalized eigenspaces of ρ and λ for the eigenvalues a and b,

respectively. As 1m+1Part =
⊕

n≥0 1m+1Part1n with each 1m+1Part1n being finite-
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dimensional, these endomorphisms are locally finite, so we have that

D =
⊕
a,b∈k

Db|a. (3.9.7)

Lemma 3.9.2. For a, b ∈ k, the endofunctor Db|a commutes with the duality ?©σ, i.e.,

Db|a◦?©σ ∼=?©σ ◦Db|a.

Proof. This follows from the fact that D commutes with the duality ?©σ , and σ fixes

both the left dot and the right dot.

Lemma 3.9.3. For a, b ∈ k, the endofunctors Db|a and Da|b are biadjoint.

Proof. The adjunction (Da|b, Db|a) is induced by the self-adjunction of D. The unit

η̄ of adjunction comes from the bimodule homomorphism that is the composition of

the unit η from (3.9.4) with the projection onto the generalized a and b eigenspaces

of ρ and λ on the left tensor factor and the generalized b and a eigenspaces of ρ and

λ on the right tensor factor. The counit ε̄ of adjunction comes from the composition

of the counit ε from (3.9.5) with the inclusion of the generalized b and a eigenspaces

of ρ and λ on the left tensor factor and the generalized a and b eigenspaces of ρ and

λ on the right tensor factor. To check the zig-zag identities, one just needs to use the

relations

• = • , • = • , • = • , • = • ,

i.e., the fact that the left and right dots are duals.

When a 6= b, Lemma 3.9.3 can also be proved a bit more easily using the

description of Db|a given in the following lemma, since the projection functor prγ

commutes with ?©σ thanks to (2.9.12).

Lemma 3.9.4. Let prγ be the projection functor defined by (3.8.10). If a 6= b then

Db|a ∼=
⊕
γ∈P

prγ+αa−αb ◦D ◦ prγ .

81



Also
⊕

γ∈P prγ ◦D ◦ prγ
∼=
⊕

a∈kDa|a.

Proof. Take a module V in the “block” parametrized by γ ∈ P , so that wtt(λ) = γ

for all irreducible subquotients of V . We need to show that Db|aV is in the “block”

parametrized by γ+αa−αb. Since Db|a is exact, we may assume that V is irreducible,

so V = L(λ) for λ ∈ P with wtt(λ) = γ. The module DV = 1||| ?Part ⊗Part V ∼= 1||| ?V

is generated by the finite-dimensional vector spaces 1m+1V for all m ≥ 0. Hence,

Db|aV is generated by the simultaneous generalized eigenspaces of xRm+1 and xLm+1 on

1m+1V of eigenvalues a and b, respectively. Consequently, if L(µ) is an irreducible

subquotient of Db|aV , then c(u) must act on L(µ) in the same way as ||| ? cm(u) acts

on a simultaneous eigenvector v ∈ 1m+1V for xRm+1 and xLm+1 of eigenvalues a and

b. Also cm+1(u) acts on v ∈ V as multiplication by χλ(c(u)), the rational function

displayed on the right hand side of (3.8.6). Using (3.6.9), we deduce that

χµ(c(u)) =
αa(u)

αb(u)
× χλ(c(u)).

Hence, wtt(µ) = wtt(λ) + αa − αb.

Our main combinatorial result about the functors Db|a is as follows.

Theorem 3.9.5. For λ ∈ P and a, b ∈ k, there is a filtration 0 = V0 ⊆ V1 ⊆ V2 ⊆

V3 = Db|a∆(λ) such that

V3/V2
∼=

 ∆(λ+ a )

0

if a ∈ add(λ) and b = t− |λ|

otherwise,

V2/V1
∼=



∆(λ)⊕∆(λ)

∆(λ)

∆
(
(λ− b ) + a

)
0

if t− |λ| = a = b ∈ rem(λ)

if t− |λ| 6= a = b ∈ rem(λ) or t− |λ| = a = b /∈ rem(λ)

if a 6= b ∈ rem(λ) and a ∈ add(λ− b )

otherwise,
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V1/V0
∼=

 ∆(λ− b )

0

if a = t− |λ|+ 1 and b ∈ rem(λ)

otherwise.

In particular, when t ∈ Z, the functor Db|a is zero unless both a and b are integers.

Proof. See §3.11 below.

The following corollary is an immediate consequence of the theorem, but actually

it has a much easier proof which we include below.

Corollary 3.9.6. For λ ∈ P and a, b ∈ k with a 6= b, there is a filtration 0 = V0 ⊆

V1 ⊆ V2 ⊆ V3 = Db|a∆(λ) such that

V3/V2
∼=

 ∆(λ+ a )

0

if a ∈ add(λ) and b = t− |λ|

otherwise,

V2/V1
∼=

 ∆
(
(λ− b ) + a

)
0

if b ∈ rem(λ) and a ∈ add(λ− b )

otherwise,

V1/V0
∼=

 ∆(λ− b )

0

if a = t− |λ|+ 1 and b ∈ rem(λ)

otherwise.

Direct proof avoiding Theorem 3.9.5. Let γ := wtt(λ). By Lemma 3.9.4, we can

computeDb|a∆(λ) by applying prγ+αa−αb to the ∆-flag forD∆(λ) from Theorem 3.9.1.

This produces a module with a ∆-flag consisting of all ∆(µ) in the original ∆-flag

such that wtt(µ)−wtt(λ) = αa − αb. It just remains to compute wtt(µ)−wtt(λ) for

the various possible µ. If µ = λ + c for c ∈ add(λ) then, by a computation using

the first equality from (3.8.11), we have that wtt(µ)−wtt(λ) = αc−αt−|λ|; for this to

equal αa−αb we must have b = t−|λ| and c = a. If µ = λ− d for d ∈ rem(λ) then,

by a similar computation, wtt(µ) − wtt(λ) = αt−|λ|+1 − αd; for this to equal αa − αb

we must have d = b and a = t− |λ|+ 1. Finally if µ = (λ− d ) + c for d ∈ rem(λ)
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and c ∈ add(λ − d ) then wtt(µ) − wtt(λ) = αc − αd; for this to equal αa − αb we

must have c = a and d = b.

3.10 Blocks

We assume throughout the section that t ∈ N. We are going to describe

the structure of the atypical “blocks,” revealing in particular that they are

indecomposable, hence, they are actually blocks. Recall from Theorem 3.8.4 that

the atypical “blocks” are parametrized by partitions κ ∈ Pt, with the irreducible

modules in the “block” being the ones labelled by the partitions {κ(0), κ(1), . . . }. This

is the set S(γ) from (3.8.9) where γ ∈ P is obtained from κ according to (3.9.2).

The first step is to show that all of the atypical “blocks” are equivalent to each

other. The proof of this uses the special projective functors Db|a with a 6= b. These are

the ones which can be defined just using information about central characters rather

than requiring the Jucys-Murphy elements; cf. Lemma 3.9.4 and Corollary 3.9.6. In

view of Remark 3.6.6, this sort of information was already available to Comes and

Ostrik in an equivalent form, and indeed they were also able to prove a similar result

by an analogous argument; see [CO11, Lem. 5.18(2)] and [CO11, Prop. 6.6].

Lemma 3.10.1. Let κ and κ̃ be partitions of t such that κ̃ is obtained from κ by

moving a node from the first row of its Young diagram to its (r + 1)th row for some

r ≥ 1. Let a := κr+1 − r + 1 and b := κ1. Then for all n ≥ 0 we have that

Db|a∆(κ(n)) ∼= ∆(κ̃(n)) and Da|b∆(κ̃(n)) ∼= ∆(κ(n)).

Proof. Let γ, γ̃ ∈ P be defined from κ and κ̃ according to (3.9.2). From this formula

it follows that γ̃ = γ + αa − αb where a = κr+1 − r + 1 and b = κ1 as in the

statement of the lemma. Note that a 6= b. So we can apply Lemma 3.9.4 to see

that Db|a∆(κ(n)) = prγ+αa−αb(D∆(κ(n))) and Da|b∆(κ̃(n)) = prγ−αa+αb
(D∆(κ̃(n))).
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Now we use this description to show that Db|a∆(κ(n)) ∼= ∆(κ̃(n)). The proof that

Da|b∆(κ̃(n)) ∼= ∆(κ(n)) is similar and we leave this to the reader.

Fix n ≥ 0 and let Bn be the set of µ ∈ P which are obtained from κ(n) by

removing a node, removing a node then adding a different node, or adding a node.

Bearing in mind that a 6= b, the standard modules ∆(µ) for µ ∈ Bn include all of the

ones which are sections of the ∆-flag from Theorem 3.9.1 which could possibly be in

the same block as ∆(κ̃(n)). Now it suffices to show for m ≥ 0 that κ̃(m) ∈ Bn if and

only if m = n. There are four cases to consider.

Case one: n = 0. We have that κ(0) = (κ2, κ3, . . . , κr+1, . . . ) and κ̃(0) =

(κ2, κ3, . . . , κr+1+1, . . . ), which is κ(0) with one node added to the rth row of its Young

diagram. We definitely have that κ̃(0) ∈ B0. All other µ ∈ B0 satisfy |µ| ≤ |κ̃(0)|.

Since all κ̃(m) with m > 0 have |κ̃(m)| > |κ̃(0)|, none of these belong to B0.

Case two: 1 ≤ n < r. We have that κ(n) = (κ1+1, κ2+1, . . . , κn+1, . . . , κr+1, . . . ) and

κ̃(n) = (κ1, κ2+1, . . . , κn+1, . . . , κr+1+1, . . . ), which is κ(n) with a node removed from

the first row and a node added to the rth row of its Young diagram. We definitely

have that κ̃(n) ∈ Bn. For m < n, κ̃(m) is of smaller size than κ(n) and its rth row is of

length κr+1 + 1. This cannot be obtained from κ(n) by removing a node since κ(n) has

rth row of length κr+1. So it does not belong to Bn. For m > n, κ̃(m) is of greater

size than κ(n) and its first row is of length κ1. This cannot be obtained from κ(n) by

adding a node since κ(n) has first row of length κ1 + 1. So again it does not belong

to Bn.

Case three: n = r. We have that κ(n) = (κ1 + 1, κ2 + 1, . . . , κr + 1, κr+2, . . . ) and

κ̃(n) = (κ1, κ2 + 1 . . . , κr + 1, κr+2, . . . ), which is κ(n) with a node removed from the

first row of its Young diagram. We definitely have that κ̃(n) ∈ Bn. The κ̃(m) with

m < n have |κ̃(m)| ≤ |κ̃(n)| − 1 = |κ(n)| − 2 so are not elements of Bn. The κ̃(m) with
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m > n have (r + 1)th row of length κr+1 + 2, so these are not elements of Bn either

since this is at least two more than the length of the (r + 1)th row of κ(n).

Case four: n > r. We have that κ(n) = (κ1 + 1, κ2 + 1, . . . , κr+1 + 1, . . . ) and

κ̃(n) = (κ1, κ2 + 1, . . . , κr+1 + 2, . . . ), which is κ(n) with a node removed from its first

row and a node added to its (r + 1)th row. We definitely have that κ̃(n) ∈ Bn. The

κ̃(m) with m > n are of greater size than κ(n) and have first row of length κ1; these

cannot be obtained by adding a node to κ(n). The κ̃(m) with r + 1 ≤ m < n are

of smaller size than κ(n) and have (r + 1)th row of length κr+1 + 2; these cannot be

obtained by removing a node from κ(n). The κ̃(m) with m ≤ r have first row of length

≤ κ1 and (r + 1)th row of length κr+2, whereas these two rows of κ(n) are of lengths

κ1 + 1 and κr+1 + 1 > κr+2, so these are not elements of Bn.

Theorem 3.10.2 (Comes-Ostrik). Let κ and κ̃ be partitions of t, denoting the

associated ∼t-equivalence classes by S := {κ(0), κ(1), . . . } and S̃ := {κ̃(0), κ̃(1), . . . }.

There is an equivalence of categories

Σ : 1SPart-Mod→ 1S̃Part-Mod

between the corresponding “blocks” such that ΣL(κ(n)) ∼= L(κ̃(n)) for all n ≥ 0. The

functor Σ is a composition of the special projective functors Db|a (a 6= b), hence, it is

a projective functor.

Proof. We may assume that κ̃ is obtained from κ by moving a node from the first

row of its Young diagram to its (r + 1)th row for some r ≥ 1. Thus, we are in

the situation of Lemma 3.10.1. The lemma gives us functors Db|a : 1SPart-Mod →

1S̃Part-Mod and Da|b : 1S̃Part-Mod→ 1SPart-Mod such that Db|a∆(κ(n)) ∼= ∆(κ̃(n))

and Da|b∆(κ̃(n)) ∼= ∆(κ(n)). These functors are also biadjoint thanks to Lemma 3.9.3.

It follows easily that they are quasi-inverse equivalences of categories as claimed in the
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theorem. In more detail, the unit and counit of one of the adjunctions gives natural

transformations Da|b ◦Db|a ⇒ Id and Id ⇒ Db|a ◦Da|b. We claim that these natural

transformations are isomorphisms. They are non-zero, hence, they are isomorphisms

on all standard modules. The functors are exact and indecomposable projectives

have finite ∆-flags, so it follows that the natural transformations are isomorphisms

on all indecomposable projectives. Then we get that they are isomorphisms on an

arbitrary module by considering a two step projective resolution and applying the

Five Lemma.

The next lemma does use the functors Db|a in the case a = b, i.e., it definitely

requires the full strength of Theorem 3.9.5 rather than merely Corollary 3.9.6.

Lemma 3.10.3. Let κ ∈ Pt and S := {κ(0), κ(1), . . . } be the corresponding ∼t-

equivalence class. For each n ≥ 0, there is an endofunctor Πn : Part-Mod →

Part-Mod such that Πn∆(κ(m)) = 0 for m 6= n, n+ 1, and moreover there exist short

exact sequences 0 → ∆(κ(n)) → Πn∆(κ(n)) → ∆(κ(n+1)) → 0 and 0 → ∆(κ(n)) →

Πn∆(κ(n+1)) → ∆(κ(n+1)) → 0. The functor Πn is a composition of the special

projective functors Db|a (a, b ∈ Z), hence, it is a projective functor.

Proof. In view of Theorem 3.10.2, it suffices to prove the lemma in the special case

that κ = (t), when S = {∅, (t + 1), (t + 1, 1), (t + 1, 12), . . . } as in Example 3.8.5.

Then we take Π0 := D0|t ◦ · · · ◦Dt−1|1 ◦Dt|0 and Πn := D−n|−n for n > 0. Now it is

just a matter of applying Theorem 3.9.5 to see that these functors have the stated

properties.

The situation for Π0 is the most interesting. To understand this, let u := d t
2
e and

v := b t
2
c. Then one checks that Dv+1|u−1 ◦ · · · ◦Dt−1|1 ◦Dt|0(∆(∅)) ∼= ∆((u)); each of

these functors adds a single node to the first row of the Young diagram. After that we
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apply Dv|u to get a module with a two step ∆-flag, with a copy of ∆((u+ 1)) at the

top and a copy of ∆((v)) at the bottom. Note this is obtained from Theorem 3.9.5

in a slightly different way according to whether u = v (i.e., t is even) or u = v + 1

(i.e., t is odd). Also, this is now a module in an atypical block. Finally we apply

D0|t ◦D1|t−1 ◦ · · ·Dv−1|u+1 to end up with the desired two step ∆-flag with a copy of

∆(κ(1)) = ∆((t + 1)) at the top and ∆(κ(0)) = ∆(∅) at the bottom; each of these

functors adds a single node to the first row of the Young diagram labelling the module

at the top and removes a node from the Young diagram labelling the module at the

bottom. This is what Π0 is meant to do to ∆(∅). A similar argument shows that

Π0∆((t + 1)) has a ∆-flag with the same two sections. It is also easy to check that

Π0∆(κ(m)) = 0 for m > 1, indeed, Dt|0 already annihilates these standard modules.

The functors Πn = D−n|−n for n > 0 are easier to analyze. Noting that κ(n) =

∆((t+1, 1n−1)), the module Πn∆(κ(n)) has a two step ∆-flag with ∆(κ(n+1)) = ∆((t+

1, 1n)) at the top and ∆(κ(n)) at the bottom; this uses the t − |λ| = a = b /∈ rem(λ)

case from Theorem 3.9.5. Similarly, Πn∆(κ(n+1)) has a ∆-flag with the same two

sections. Finally, one checks that Πn∆(κ(m)) = 0 for m 6= n, n+ 1.

Remark 3.10.4. In the proof of the next theorem, we will show that the functor Πn

from Lemma 3.10.3 satisfies Πn∆(κ(n)) ∼= Πn∆(κ(n+1)) ∼= ΠnL(κ(n+1)) ∼= P (κ(n+1))

for all n ≥ 0.

Now we can prove the main result about blocks. This can also be deduced from

[CO11, Th. 6.10], but the proof of that appealed to results of Martin [Mar96] in

order to obtain the precise submodule structure of the indecomposable projectives,

whereas we are able to establish this by exploiting the highest weight structure and

the Chevalley duality ?©σ .
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Theorem 3.10.5. Let κ ∈ Pt and S := {κ(0), κ(1), . . . } be the corresponding ∼t-

equivalence class.

(i) For each n ≥ 0, the standard module ∆(κ(n)) is of length two with head L(κ(n))

and socle L(κ(n+1)).

(ii) The indecomposable projective module P (κ(0)) is isomorphic to ∆(κ(0)), while

for n ≥ 1 the module P (κ(n)) has a two step ∆-flag with top section ∆(κ(n)) and

bottom section ∆(κ(n−1)).

(iii) For each n ≥ 1, P (κ(n)) is self-dual with irreducible head and socle isomorphic

to L(κ(n)) and completely reducible heart radP (κ(n))/ socP (κ(n)) ∼= L(κ(n−1))⊕

L(κ(n+1)).

Proof. To improve the readability, we write simply P (n),∆(n) and L(n) in place

of P (κ(n)),∆(κ(n)) and L(κ(n)). For n ≥ 0, Lemma 3.10.3 shows that the module

Pn := Πn−1 ◦ · · ·Π1 ◦ Π0(∆(0)) has a two step ∆-flag with top section ∆(n) and

bottom section ∆(n − 1). Since ∆(0) is projective by the minimality observed in

(3.9.1) and each Πi is a projective functor, Pn is projective. Since Pn has L(n) in

its head, it must contain the indecomposable projective P (n) as a summand, so we

either have that P (n) ∼= Pn if Pn is indecomposable, or P (n) ∼= ∆(n) otherwise. In

the former case, (P (n) : ∆(m)) = δm,n + δm,n−1, while (P (n) : ∆(m)) = δm,n in

the latter situation. Now we apply BGG reciprocity to deduce for any m ≥ 0 that

[∆(m) : L(n)] = δn,m + δn,m+1 if Pn is indecomposable and [∆(m) : L(n)] = δn,m

otherwise. Hence, for each m ≥ 0, we either have that ∆(m) ∼= L(m), or ∆(m) is of

composition length two with composition factors L(m) and L(m+ 1).

We claim for any n ≥ 0 that ∆(n) ∼= L(n) if and only if ∆(n + 1) ∼= L(n + 1).

Suppose first that ∆(n) ∼= L(n). Since Πn commutes with duality by Lemma 3.9.2,
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this implies that Πn∆(n) is self-dual. But this module has a two step ∆-flag with top

section ∆(n+ 1) and bottom section ∆(n) ∼= L(n). The only way such a module can

be self-dual is if ∆(n+1) ∼= L(n+1) (and the module must be completely reducible).

Conversely, suppose for a contradiction that ∆(n+ 1) ∼= L(n+ 1) but ∆(n) 6∼= L(n).

Then ∆(n) is of length two with composition factors L(n) and L(n + 1), so that

P (n + 1) has a two step ∆-flag with top section ∆(n + 1) ∼= L(n + 1) and bottom

section ∆(n). Since Πn+1∆(n) = 0 according to Lemma 3.10.3 and Πn+1 is exact,

we must have that Πn+1L(n + 1) = 0. Since ∆(n + 1) ∼= L(n + 1), this implies that

Πn+1∆(n+ 1) = 0, which contradicts Lemma 3.10.3.

From the claim, we see that if ∆(n) is irreducible for any one n ≥ 0, then it is

irreducible for all n ≥ 0. Since all atypical “blocks” are equivalent by Theorem 3.10.2,

it follows in that case that the standard modules ∆(λ) for all λ ∈ P are irreducible.

This implies that the minimal ordering �t from Remark 3.7.5 is trivial, hence, the

blocks are trivial and Part is semisimple, which contradicts Corollary 3.8.6. Thus,

we have proved that ∆(n) must be of length two for every n ≥ 0, and (i) is proved.

Property (ii) follows immediately from (i) and BGG reciprocity as noted earlier.

It remains to prove (iii). Take n ≥ 1. By Lemma 3.10.3, we have that Πn−1∆(n+

1) = 0. Since Πn−1 is exact and L(n + 1) is a composition factor of ∆(n + 1),

it follows that Πn−1L(n + 1) = 0 too. From this, we deduce that Πn−1∆(n) ∼=

Πn−1L(n). By Lemma 3.10.3 again, Πn−1∆(n − 1) has the same composition length

as Πn−1∆(n) ∼= Πn−1L(n). Also ∆(n − 1) has L(n) as a constituent. Using the

exactness of Πn−1 again, we must therefore have that Πn−1∆(n− 1) ∼= Πn−1L(n). As

observed earlier in the proof, this module is isomorphic to P (n), so using that L(n)

is self-dual and Πn−1 commutes with duality, we now see that P (n) is self-dual. We

also know that it has length four with irreducible head L(n), [P (n) : L(n)] = 2 and
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[P (n) : L(n − 1)] = [P (n) : L(n + 1)] = 1. The only possible structure is the one

claimed.

Corollary 3.10.6 (Comes-Ostrik). All “blocks” of Part-Mod are indecomposable,

hence, they coincide with the blocks.

Corollary 3.10.7. The minimal ordering �t from Remark 3.7.5 is the partial order

such that κ(m) �t κ(n) for each κ ∈ Pt and m ≤ n, with all other pairs of partitions

being incomparable.

In general, in an upper finite highest weight category, the standard objects can

have infinite length. Our final corollary, which is also noted in [SS22, Rem. 6.4],

shows that this is not the case in Part-Modlfd. Consequently, the full subcategory

consisting of all modules of finite length has enough projectives and injectives, indeed,

this subcategory is an essentially finite highest weight category in the sense of [BS,

Def. 3.7].

Corollary 3.10.8. The locally unital algebra Part is locally Artinian, i.e., the left

ideals Part1n and the right ideals 1nPart are of finite length for all n ≥ 0.

Proof. Theorem 3.10.5 shows that all indecomposable projective left Part-modules

are of finite length, hence, all finitely generated projectives are of finite length too.

This includes all of the left ideals Part1n. Since there is a duality ?©σ , it also follows

that all fintely cogenerated injective left Part-modules are of finite length. This

includes all of the duals (1nPart)
~, hence, each 1nPart is of finite length as a right

module.

3.11 Proof of Theorem 3.9.5

It just remains to prove Theorem 3.9.5. In fact, we will prove the following

slightly stronger result, from which Theorem 3.9.5 follows easily on applying the
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functors involved to the Specht module S(λ). To state this stronger result, let j! :

Sym-Modfd → Part-Modlfd be the standardization functor from (2.9.3), Ea and Fb

be the refined induction and restriction functors from (2.7.12), Db|a be the special

projective functor from (3.9.7), and prc : Sym-Modfd → Sym-Modfd be the functor

defined by multiplication by the identity element of the symmetric group Sc if c ∈ N,

i.e., it is the projection onto kSc-Modfd followed followed by the inclusion of kSc-Modfd

into Sym-Modfd, or the zero functor if c ∈ k− N.

Theorem 3.11.1. For a, b ∈ k, there is a filtration of the functor Db|a ◦ j! :

Sym-Modfd → Part-Modlfd by subfunctors 0 = S0 ⊆ S1 ⊆ S2 ⊆ S3 ⊆ S4 = Db|a ◦ j!

such that

S4/S3
∼= j! ◦ Ea ◦ prt−b,

S3/S2
∼= j! ◦ prt−a ◦ prt−b,

S2/S1
∼= j! ◦ Ea ◦ Fb,

S1/S0
∼= j! ◦ prt−a ◦Fb.

(Recall that a subfunctor S of a functor T : Sym-Modfd → Part-Modlfd is a functor

S : Sym-Modfd → Part-Modlfd such that SV is a submodule of TV for all V ∈

Sym-Modfd and Sf = Tf |SV for all f ∈ HomSym(V, V ′); then the quotient T/S is the

obvious functor with (T/S)(V ) := TV/SV .)

The proof will take up the rest of the subsection. We begin by constructing a

filtration of the functor D◦j! : Sym-Modfd → Part-Modlfd. Note that D◦j!
∼= M⊗Sym

where M is the (Part, Sym)-bimodule

M := 1||| ?Part ⊗Par] infl] Sym. (3.11.1)
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We also have the (Part, Sym)-bimodules

N4 = Part ⊗Par] infl](Sym1||| ?), (3.11.2)

N3 := Part ⊗Par] infl] Sym, (3.11.3)

N2 := Part ⊗Par] infl](Sym1||| ? ⊗Sym 1||| ?Sym) (3.11.4)

N1 := Part ⊗Par] infl](1||| ?Sym). (3.11.5)

The functors Sym-Modfd → Part-Modlfd defined by tensoring with N4, N3, N2 and

N1 are isomorphic to j! ◦ E, j!, j! ◦ E ◦ F and j! ◦ F , respectively.

For m ≥ n ≥ 0, let Bm,n be the basis for 1mPar
−1n defined by representatives

for the equivalence classes of normally ordered upward partition diagrams. By

Theorem 2.8.1, the vector space M is isomorphic to 1||| ?Par
− ⊗K Sym, hence, it has

basis {
f ⊗ g

∣∣m ≥ 0, n ≥ 0,m+ 1 ≥ n, f ∈ Bm+1,n, g ∈ Sn
}
. (3.11.6)

For any f ∈ Bm+1,n, let c(f) be the connected component of the diagram containing

the top left vertex. In the language from §2.8, this component could be a trunk, an

upward tree, an upward leaf, or an upward branch. Then we introduce the following

subspaces of M :

– Let M1 be the subspace of M spanned by all f ⊗ g in this basis such that c(f)

is a trunk.

– Let M2 be the subspace spanned by all f ⊗ g such that c(f) is either a trunk

or an upward tree.

– Let M3 be the subspace spanned by all f ⊗ g such that c(f) is either a trunk,

an upward tree, or an upward leaf.

– Let M0 := 0 and M4 := M .
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The following is a generalization of Theorem 3.9.1.

Lemma 3.11.2. The subspaces 0 = M0 ⊂ M1 ⊂ M2 ⊂ M3 ⊂ M4 = M

are sub-bimodules of the (Part, Sym)-bimodule M . Moreover, there are bimodule

isomorphisms θi : Ni
∼→Mi/Mi−1 for each i = 1, . . . , 4.

Proof. The fact that each Mi is a sub-bimodule of M is easily checked by vertically

composing a basis vector f ⊗ g with an arbitrary partition diagram on the top and

with any permutation diagram on the bottom. One just needs to note that the action

on top involves res||| ?, so that the top left vertex is untouched. This implies that the

type c(f) does not change if it is a trunk or an upward leaf, while if it is an upward

tree it can only be changed to another upward tree or to a trunk.

We show in this paragraph that there is a bimodule isomorphism

θ1 : N1 →M1, f

· · ·

· · ·
⊗ g
· · ·

· · ·
7→ f

· · ·

· · ·
⊗ g
· · ·

· · ·
(3.11.7)

for any m ≥ 0, n > 0, f ∈ 1mPart1n−1 and g ∈ Sn. This is a well-defined bimodule

homomorphism. By Theorem 2.8.1, N1 is isomorphic as a vector space to Par− ⊗K

1||| ?Sym, hence, it has basis{
f ⊗ g

∣∣m ≥ n− 1 ≥ 0, f ∈ Bm,n−1, g ∈ Sn
}
. (3.11.8)

The vector space M1 has basis given by all f1 ⊗ g for m + 1 ≥ n > 0, f1 ∈ Bm+1,n

and g ∈ Sn such that c(f1) is a trunk. As it is normally ordered, any such f1 is of the

form

f1 = f

· · ·

· · ·
for a unique f ∈ Bm,n−1. Moreover, f1 ⊗ g = θ1(f ⊗ g) for every g ∈ Sn. It follows

that θ1 takes a basis for N1 to a basis for M1, so it is an isomorphism.
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Next we show that there is a bimodule isomorphism

θ2 : N2 →M2/M1, f

· · ·

· · ·
⊗ g
· · ·

· · ·
⊗ h

· · ·

· · ·
7→

· · ·

· · ·

f
g ⊗ h

· · ·

· · ·
+M1 (3.11.9)

for m ≥ 0, n > 0, f ∈ 1mPart1n and g, h ∈ Sn. Again, this is a well-

defined bimodule homomorphism. By Theorem 2.8.1, N2 is isomorphic to Par− ⊗K

Sym1||| ? ⊗Sym 1||| ?Sym. Also kSn is free as a right kSn−1-module with basis given by

{(i i+1 · · · n) | 1 ≤ i ≤ n}, which is a set of Sn/Sn−1-cosets. It follows that N2 has

basis{
f ⊗ (i i+1 · · · n)⊗ g

∣∣m ≥ n > 0, f ∈ Bm,n, 1 ≤ i ≤ n, g ∈ Sn
}
. (3.11.10)

The vector space M2/M1 has a basis given by all f2⊗ g+M1 for m+ 1 ≥ n > 0, f2 ∈

Bm+1,n and g ∈ Sn such that c(f2) is an upward tree. Any such f2 is equal to

f2 =
f

·· ··
· · ·

· · ·

i 1n

for a unique f ∈ Bm,n and a unique 1 ≤ i ≤ n (the index of the string at which the

component c(f2) meets the bottom of f). Moreover, f2⊗g = θ2(f⊗(i i+1 · · · n)⊗g)

for each g ∈ Sn. It follows that θ2 takes a basis for N2 to a basis for M2/M1, so it is

an isomorphism.

The isomorphism θ3 is defined by

θ3 : N3 →M3/M2, f

· · ·

· · ·
⊗ g
· · ·

· · ·
7→ f

· · ·

· · ·
•◦ ⊗ g

· · ·

· · ·
+M2 (3.11.11)

for m ≥ 0, n ≥ 0, f ∈ 1mPart1n and g ∈ Sn. This is obviously a well-defined

bimodule homomorphism. It is an isomorphism because it takes the basis

{f ⊗ g |m ≥ n ≥ 0, f ∈ Bm,n, g ∈ Sn} (3.11.12)

for N3 to the basis for M3/M2 consisting of all f3 ⊗ g + M2 for m + 1 > n ≥ 0, f3 ∈

Bm+1,n and g ∈ Sn such that c(f3) is an upward leaf.
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Finally, we construct the isomorphism θ4. The vector space N4 has basis

{f ⊗ g |m− 1 ≥ n ≥ 0, f ∈ Bm,n+1, g ∈ Sn+1}. (3.11.13)

We define the linear map

θ4 : N4 →M4/M3, f

· · ·

· · ·
⊗ g
· · ·

· · ·
7→ f

·· ··
· · ·

· · ·

i 1n+1
⊗ g′
· · ·

· · ·
+M3, (3.11.14)

where f ⊗ g is a vector from the basis for N4 just displayed, and g′ ∈ Sn and 1 ≤ i ≤

n + 1 are defined from the equation g = (i i+1 · · · n+1)g′. To see that this linear

map is actually a bimodule isomorphism, we construct a bimodule homorphism in

the other direction and show that it is a two-sided inverse of θ4. Consider the map

φ : M → N4, f

· · ·

· · ·
⊗ g
· · ·

· · ·
7→ f

· · ·

· · ·
⊗ g

· · ·

· · ·
(3.11.15)

for m ≥ 0, n ≥ 0, f ∈ 1m+1Part1n and g ∈ Sn. It is easy to show that this is a

well-defined bimodule homomorphism. Moreover, M3 ⊆ kerφ since applying φ to

any basis vector f ⊗ g ∈ M3 produces a downward leaf, a cap or a downward tree

which can be pushed across the tensor to act as zero on infl] Sym. Hence, φ induces

a homomorphism φ̄ : M4/M3 → N4. It remains to check that φ̄ ◦ θ4 and θ4 ◦ φ̄ are

both identity morphisms, which is straightforward.

In the next two lemmas, we finally need to make some explicit calculations with

the relations involving the left and right dots in the affine partition category. However,

we are working now with Par t, not with APar , so all string diagrams from now on

should be interpreted as the canonical images of these morphisms in APar under

the functor pt : APar → Part from (3.4.12). We will also use the notation from

(2.7.10) for an open dot on the interior of a string, meaning the canonical image of

this morphism in ASym under the functor p : ASym → Sym from (2.7.8). This is quite

different from an open dot at the end of a string!
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Lemma 3.11.3. Suppose that m ≥ 0, n ≥ 0, f ∈ 1mPart1n and g ∈ Sn.

(i) The following holds in the bimodule M = 1||| ?Part⊗Par] infl] Sym for i = 1, . . . , n:

•

· · ·

··· · · ·

f

i 1n

⊗ g
· · ·

· · ·
≡ f•◦ · · ·

· · ·
⊗ g
· · ·

· · ·
(mod M2).

(ii) The following holds in the bimodule M for i = 0, 1, . . . , n (the case i = 0 is

when there are no strings to the right of the dangling dots):

•◦•

· · ·

··· · · ·

f

i 1n

⊗ g
· · ·

· · ·
≡ (t− i) f•◦ · · ·

· · ·
⊗ g
· · ·

· · ·
(mod M2).

Proof. (i) We proceed by induction on i = 1, . . . , n. The base case i = 1 follows from

(3.4.13). For the induction step, we take i > 1 and assume the result has been proved

for i− 1. Then we apply (3.3.13) to commute the left dot past the string to its right.

This produces a sum of five terms. Ordering these terms in the same way as they

appear on the right hand side of (3.3.13), the induction hypothesis can be applied to

the first term, to produce the right hand side that we are after. It remains to show

that the other four terms lies in M2. These terms are as follows:

•

· · ·

··· ···

f

i 1n

⊗ g
· · ·
· · ·

+ •

· · ·

··· ···

f

i 1n

⊗ g
· · ·
· · ·

− •

· · ·

··· ···

f

i 1n

⊗ g
· · ·
· · ·

−
•

· · ·

··· ···

f

i 1n

⊗ g
· · ·
· · ·

.

The second and third terms here are zero already in M because, in both of them, the

diagram to the left of the tensor is equivalent to a diagram with a downward tree at

the bottom. It remains to show that the first and the fourth terms lie in M2. For the
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fourth term, we note that

•

· · ·

··· ···

f

i 1n

= •

· · ·

··· ···

f

i 1n

.

The left dot can now be absorbed into the morphism f , changing it to some other

morphism f ′. The result is a linear combination of morphisms in all of which the

top left vertex is connected to the bottom edge, so that the connected component

containing this vertex is either a tree or a trunk, and it belongs to the sub-bimodule

M2. The reason the first term lies in M2 is very similar, one just needs to rewrite

the right crossing using (3.3.10), and then it is easy to see that the top left vertex is

again connected to the bottom edge.

(ii) Again we proceed by induction. The base case i = 0 follows from (3.4.13) using

that T = t11. For the induction step, we consider some i > 0. Then we apply

(3.3.14) to commute the right dot past the string to its right. This produces a sum

of five terms. This time, the induction hypothesis can be applied to the first term, to

produce the vector that we are after but scaled by (t− i+ 1) rather than the desired

(t− i). The remaining four terms are as follows:

•
· · ·

··· · · ·

f

i 1n

⊗ g
· · ·

· · ·
+

•

· · ·

··· · · ·

f

i 1n

⊗ g
· · ·

· · ·

−
•

· · ·

··· ···

f

i 1n

⊗ g
· · ·

· · ·
−

•◦
•

· · ·

··· ···

f

i 1n

⊗ g
· · ·

· · ·
.

In the first term here, the left dot is some morphism in Part, which has the effect

of changing f to some other morphism f ′. After doing that, it is clear that the top

left vertex is still connected to the bottom edge, so the first term lies in M2. For the

second and third terms, the left and right dots can be commuted across the tensor

98



using (3.8.4), then again we see that these morphisms lie in M2 since the top left

vertex is connected to the bottom edge again. For the final term, we note that

•◦•
(3.3.11)

=
•◦ •

(3.3.10)
=

•◦ •
(1.1.3)

=
(1.1.5)

• .

Making this substitution in the middle of the picture reveals that the final term is

exactly the expression studied in (i). On applying the conclusion of (i), we deduce

that it contributes exactly the needed correction to complete the proof.

Lemma 3.11.4. Consider the bimodule endomorphisms ρ and λ of M defined on

1m+1Part1n⊗kSn by the left action of xRm+1⊗1n and xLm+1⊗1n, respectively, for each

m,n ≥ 0. These endomorphisms preserve each of the sub-bimodules Mi (i = 1, 2, 3, 4),

hence, ρ and λ induce endomorphisms also denoted ρ and λ of each of the subquotients

Mi/Mi−1. Moreover, for each i, the isomorphism θi from Lemma 3.11.2 satisfies

θi ◦ ρi = ρ ◦ θi, θi ◦ λi = λ ◦ θi, (3.11.16)

where ρi, λi : Ni → Ni are defined as follows:

(i) ρ1 and λ1 are the bimodule endomorphisms of N1 defined on the subspace

1mPart1n−1⊗kSn by the left actions of (t−n+1)1m⊗1n and 1m⊗xn, respectively,

for each m ≥ 0, n > 0.

(ii) ρ2 and λ2 are the bimodule endomorphisms of N2 defined on 1mPart1n⊗kSn⊗

kSn by the right action of 1n ⊗ xn ⊗ 1n and the left action of 1m ⊗ 1n ⊗ xn,

respectively.

(iii) ρ3 and λ3 are both equal to the bimodule endomorphism of N3 defined on

1mPart1n ⊗ kSn by multiplication by (t− n).

(iv) ρ4 and λ4 are the bimodule endomorphisms of N4 defined on 1mPart1n+1⊗kSn+1

by the right actions of 1n+1 ⊗ xn+1 and (t− n)1n+1 ⊗ 1n+1, respectively.
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Proof. (i) Recall the definition of θ1 from (3.11.7). Take a vector f⊗g in the basis for

N1 from (3.11.8). By (3.8.4), we have that xLn ≡ xn (mod Kn) and xRn ≡ (t−n+1)1n

(mod Kn) where Kn is the two sided ideal of 1nPart1n from (3.7.1). Since the strictly

downward partition diagrams which generate K+ are zero on infl] Sym, it follows that

ρ(θ1(f ⊗ g)) = f
· · ·

· · ·

•
⊗ g
· · ·

· · ·
= f

· · ·

· · ·•
⊗ g
· · ·

· · ·

= (t− n+ 1) f
· · ·

· · ·
⊗ g
· · ·

· · ·
= θ1(ρ1(f ⊗ g)),

λ(θ1(f ⊗ g)) = f
· · ·

· · ·

•
⊗ g
· · ·

· · ·
= f

· · ·

· · ·•
⊗ g
· · ·

· · ·

= f
· · ·

· · ·
⊗ g
· · ·

· · ·

•◦
= θ1(λ1(f ⊗ g)).

This shows as the same time that ρ and λ both leave M1 invariant.

(ii) Recall the definition of θ2 from (3.11.9). The argument for λ is similar to in (i).

It follows from the calculation

λ(θ2(f ⊗ g ⊗ h)) =
• · · ·

· · ·

f
g ⊗ h

· · ·

· · ·
+M1 =

•

· · ·

· · ·

f
g ⊗ h

· · ·

· · ·
+M1

=
· · ·

· · ·

f
g ⊗ h

· · ·

· · ·

•◦
+M1 = θ2

(
f

· · ·

· · ·
⊗ g
· · ·

· · ·
⊗ h

· · ·

· · ·

•◦
)

= θ2(λ2(f ⊗ g ⊗ h)),

where f ⊗ g ⊗ h is one of the basis vectors for N2 from (3.11.10). For ρ, we instead

have that

ρ(θ2(f ⊗ g ⊗ h)) =

• · · ·

· · ·

f
g ⊗ h

· · ·

· · ·
+M1 =

•

· · ·

· · ·

f
g ⊗ h

· · ·

· · ·
+M1

= θ2

 f
g

•

· · ·

· · ·
⊗ · · · ⊗ h

· · ·

· · ·


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= θ2

 f
g

•◦

· · ·

· · ·
⊗ · · · ⊗ h

· · ·

· · ·


= θ2

(
f

· · ·

· · ·
⊗ g

· · ·

· · ·•◦
⊗ h

· · ·

· · ·

)
= θ2(ρ2(f ⊗ g ⊗ h)).

(iii) Recall the definition of θ3 from (3.11.11). Note that ρ = λ by the third relation

from (3.3.8). For ρ, we need to show that ρ(θ3(f ⊗ g)) = (t − n)θ3(f ⊗ g) for

any basis vector f ⊗ g ∈ 1mPart1n ⊗ kSn ⊂ N3 from (3.11.12). This follows from

Lemma 3.11.3(ii) taking i = n.

(iv) Instead of working with θ4 from (3.11.14), it is easier to use the inverse map φ̄

induced by the homomorphism φ : M → N4 from (3.11.15). We need to show that

φ◦ρ = ρ4◦φ. This follows from the following calculations for f⊗g ∈ 1m+1Part1n⊗kSn

and m,n ≥ 0:

φ(ρ(f ⊗ g)) = φ

(
f

· ·

· · ·

•
⊗ g
· · ·

· · ·

)
= f

· ·

· · ·
•

⊗ g
· · ·

· · ·
= f

·· ·

· · ·•
⊗ g

· · ·

· · ·

= f

·· ·

· · ·
⊗ g

· · ·

· · ·
•◦

= f

·· ·

· · ·
⊗ g

· · ·

· · ·•◦
= ρ4(φ(f ⊗ g)),

φ(λ(f ⊗ g)) = φ

(
f

· ··

· · ·

•
⊗ g
· · ·

· · ·

)
= f

· ··

· · ·

•
⊗ g

· · ·

· · ·
= f

·· ·

· · ·•
⊗ g

· · ·

· · ·

= (t− n) f

·· ·

· · ·
⊗ g

· · ·

· · ·
= λ4(φ(f ⊗ g)).

Proof of Theorem 3.11.1. The functor Db|a ◦ j! is defined by tensoring with the

bimodule M that is the simultaneous generalized a eigenspace of the endomorphism

ρ and generalized b eigenspace of the endomorphism λ defined in Lemma 3.11.4.

Lemma 3.11.2 defines a filtration of M with sections Mi/Mi−1
∼= Ni for i = 1, . . . , 4.

Then Lemma 3.11.4 shows that the endomorphisms ρ and λ preserve this filtration,

hence, the filtration of M induces a filtration of the summand M . Moreover, for each
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i, M i/M i−1 is isomorphic to the summand N i of N defined by the simultaneous

generalized a-eigenspace of the endomorphism ρi and generalized b eigenspace of

the endomorphism λi. By the descriptions of ρi and λi, it follows that N i⊗Sym is

isomorphic to the functor j! ◦Ea ◦ prt−b, j! ◦ prt−a ◦ prt−b, j! ◦Ea ◦ Fb or j! ◦ prt−a ◦Fb

for i = 4, 3, 2, 1, respectively. It remains to observe that Sym is semisimple, so

every Sym-module is flat. This means that the filtration of M induces a filtration

0 = S0 ⊆ S1 ⊆ S2 ⊆ S3 ⊆ S4 = Db|a◦j! such that Si ∼= M i/M i−1⊗Sym ∼= N i⊗Sym.
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CHAPTER IV

RESTRICTION FUNCTOR

There is a well-known ‘restriction’ functor F t
t−1 : Rep(St) → Rep(St−1) which

interpolates between Deligne’s categories for different parameters of t ∈ k. Comes

and Ostrik conjectured that this restriction functor provides an equivalence of

categories between the nontrivial principle blocks of Rep(St) and Rep(St−1) whenever

t ∈ Z>0. Recall that Deligne’s category Rep(St) is monoidally equivalent to the

full subcategory Part-Proj of Par t-Modlfd consisting of finitely generated projectives.

In this light, the first portion of this chapter provides an interpretation of this

restriction functor in terms of path algebras and bimodules over them. To this

end, we introduce a new intermediate category Par×t−1 along with functors Par t →

Add(Par×t−1) and Par t−1 → Add(Par×t−1). The composition of these functors, at

the level of module categories, will allow us to induce, then restrict, locally finite-

dimensional Par t−1-modules to get locally finite-dimensional Par t-modules and vice-

versa. This construction gives a module-theoretic version of the restriction functor

Rt
t−1 : Part−1-Modlfd → Part-Modlfd. After studying Rt

t−1 and its interaction

with standardly-filtered modules, we show that it gives an equivalence between the

principal blocks of Part−1-Modlfd and Part-Modlfd, thereby proving the Comes-Ostrik

conjecture.

4.1 Phantom partitions

Fix some t ∈ k. Throughout this chapter, it is sometimes useful to distinguish

between objects of Par t (or Part-Mod) and of Par t−1 (or Part−1-Mod, or any other

category Par u for another value of u ∈ k). In particular, we use subscripts Xt ∈

O(Par t) when there may be potential confusion for which category an object X is

contained in. We also fix the notations |||t and 1t ∈ O(Par t) for the monoidal generator
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and unit object of Par t, actually reserving the unscripted ||| and 1 to mean the monoidal

generator and unit of Par t−1.

Definition 4.1.1. The phantom partition category Par×t−1 is the strict symmetric

monoidal category obtained from Par t−1 by adjoining a new generating object × and

generating morphisms:

×

·
: × → 1,

·

×
: 1→ ×

subject to the relation that these morphisms are two-sided inverses of each other:

×

×
=

(
·

×
)
◦

(
×

·
)

=
×

×
= id×, ×

·
·

=

(
×

·
)
◦

(
·

×
)

=
·
·

= id1,

(4.1.1)

Remark 4.1.2. The dots appearing in these new morphisms are purely decorative

and serve only to help distinguish the top or bottom of a diagram.

Introducing new nomenclature, a phantom partition diagram is a diagram

obtained by taking a partition diagram, f , and inserting some (perhaps zero) symbols

× along the top and bottom rows of f . Given a phantom partition diagram f , say

that f is a partition diagram with phantoms if it contains at least one symbol ×. In

the other case, we say f is phantomless.

Given n ∈ N, let W n be the set of words in the letters {|||,×} of length n and let

W :=
⋃
n∈NW

n be the set of all words. Then O(Par×t−1) = W . Suppose w and w′

are any two words with k(w) and k(w′) of the letters being |||, respectively. Then the

isomorphism between 1 and × induces an isomorphism HomPar t−1(|||⊗k(w), |||⊗k(w′))
∼−→

HomPar×t−1
(w,w′). This map is described on a basis of partition diagrams by inserting

phantoms × in the unique way along the bottom and top rows to spell the words w

and w′, respectively. Hence, the path algebra of Par×t−1 inherits a basis consisting of

phantom partition diagrams.
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The restriction functor of the Comes and Ostrik conjecture is defined using

Deligne’s categories Rep(St) and Rep(St−1). In order to understand the induced

functor at the level of modules over Part and Part−1, we pass through additive

envelopes. Introducing the object ||| := ||| ⊕ × ∈ Add(Par×t−1), the following special

matrices are crucial for building the restriction functor in this setting. These matrices

are morphisms in Add(Par×t−1), i.e., matrices of morphisms in Par×t−1.

=

 0

0 ×
×

 : ||| → |||, =



0 0 0

0 0 ×
× 0

0 ×
× 0 0

0 0 0 ×
××
×


: ||| ? ||| → ||| ? |||

(4.1.2)

=

 0 0 0

0 0 0 × ×
×

 : ||| ? ||| → |||, =



0

0 0

0 0

0
× ×
×


: ||| → ||| ? |||

(4.1.3)

◦ =

(
◦

×
·
)

: ||| → 1, ◦ =

 ◦
·
×

 : 1→ |||

(4.1.4)

Remark 4.1.3. In the above definitions, we implicitly make the following

identification

||| ? ||| = (||| ⊕ ×)?2 = (||| ? |||)⊕ (||| ?×)⊕ (× ? |||)⊕ (× ?×).

More generally, the summands of |||?n are words w ∈ W n for any n ∈ N. The ordering

of the summands comes from the strict monoidal structure on Add(Par×t−1) which is
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inherited by that on Par×t−1, described as follows. Consider objects X1⊕ . . .⊕Xn, Y1⊕

. . .⊕ Ym, X ′1 ⊕ . . .⊕X ′n′ and Y ′1 ⊕ . . .⊕ Y ′m′ ∈ O(Add(Par×t−1)) along with morphisms

f : X1 ⊕ · · ·Xn → Y1 ⊕ Ym and g : X ′1 ⊕ · · · ⊕X ′n′ → Y ′1 ⊕ · · · ⊕ Y ′n′ . The monoidal

product is defined on objects by

(X1 ⊕ · · · ⊕Xn) ? (X ′1 ⊕ · · · ⊕X ′n′) =
⊕

1≤i≤n
1≤j≤n′

Xi ? X
′
j,

where the summands on the right hand side are ordered lexicographically with respect

to the indices (i, j). To compute the product f ? g, recall that f is a m × n matrix

whose (p, q)-entry is given by a morphism (f)p,q : Xq → Yp, and similarly for g. Then

f ? g :
⊕

1≤i≤n
1≤j≤n′

Xi ? X
′
j →

⊕
1≤i≤m
1≤j≤m′

Yi ? Y
′
j

is a (mm′)× (nn′) matrix whose entries are given by the monoidal products fp,q ?gr,s.

We refer to this monoidal structure on Add(Par×t−1) as the Kronecker structure as

the product f ? g is given by the Kronecker product of matrices. Following the

usual convention with diagrams, the Kronecker product of morphisms introduced in

(4.1.5)-(4.1.8) will be denoted by horizontal juxtaposition.

Remark 4.1.4. Obviously Add(Par×t−1) contains Par×t−1 as the full subcategory of

objects being all words w ∈ W (rather than finite direct sums of words). It also

contains Par t−1 as the full subcategory whose objects are |||?n = ||| · · · |||︸︷︷︸
n

for all n ∈ N.

So there are faithful inclusion functors

I : Par t−1 → Add(Par×t−1), J : Par×t−1 → Add(Par×t−1)
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In performing calculations, it is useful to express the blue morphisms of (4.1.2)-

(4.1.3) in terms of the following elementary matrices:

=

 0

0 0

 : ||| → |||, =



0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


: ||| ? ||| → ||| ? ||| (4.1.5)

=

 0 0 0

0 0 0 0

 : ||| ? ||| → |||, =



0

0 0

0 0

0 0


: ||| → ||| ? ||| (4.1.6)

◦ =

(
◦ 0

)
: ||| → 1, ◦ =

 ◦
0

 : 1→ ||| (4.1.7)

×

·
=

(
0

×
·
)

: ||| → 1,
×

·
=

 0

×
·

 : ||| → 1 (4.1.8)

These matrices are just another set of special morphisms inside of Add(Par×t−1).

They allow us to write the blue morphisms of (4.1.2)-(4.1.3) as sums of Kronecker

products of these. Compositions and Kronecker products of any matrices in (4.1.5)-

(4.1.8) are again elementary matrices.

||| := ||| + ×
× , := + ×

× + ×
× + ×

××
× (4.1.9)

◦ := ◦ + ×
× , ◦ := ◦ + ×

× (4.1.10)

:= + × ×
× = + × ×

× (4.1.11)
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Example 4.1.5. As an example, consider the following matrix built from Kronecker

products and compositions of those in (4.1.5)-(4.1.8).

×

××

This is a matrix with rows indexed by W 4 and columns indexed by W 3 with a single

non-zero entry: (
×

××

)
|||×||||||,×|||×

=
×

××
.

Lemma 4.1.6. The object ||| ⊕ × ∈ O(Add(Par×t−1)) is a special symmetric Frobenius

object of dimension t.

Proof. This is straightforward and is mostly relation-checking. The fact that ||| ⊕ ×

has the appropriate dimension is simply due to the additivity of dimension. We claim

that ||| ⊕ × is a special Frobenius object whose structure maps are given by (4.1.9)-

(4.1.11). To prove this, it amounts to checking that these morphisms satisfy the

relations (1.1.2)-(1.1.6). This is straightforward, so we do not scribe the calculations

for each relation — only for (1.1.3).

= ( ) ◦ ( ) ◦ ( )

=
( (

+ × ×
×

) (
||| + ×

×
) )

◦
( (
||| + ×

×
) (

+ ×
× + ×

× + ×
××
×

) )
◦
( (

+ ×
× + ×

× + ×
××
×

) (
||| + ×

×
) )

=
(

+ ××
× + ×

× + ×××
××

)
◦
(

+ ×
× + ×

× + ××
×× + ×

× + ×
××
× + ×

×
×
× + ×××

×××
)

◦
(

+ ×
× + ×

× + ××
×× + ×

× + ×
××
× + ×

×
×
× + ×××

×××
)

= +
×

×

×
+

×

×
+

×

×

×

×

×
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= ( ) ◦ ( )

=
(

+ ×
× + ×

× + ×
××
×

)
◦
( (
||| + ×

×
) (

+ × ×
×

) )
=
(

+ ×
× + ×

× + ×
××
×

)
◦
(

+ ××
× + ×

× + ×××
××

)
= +

×

×

×
+

×

×
+

×

×

×

×

×

By Lemma 4.1.6 and the universal property of Par t, there is a symmetric tensor

functor F t
t−1 : Par t → Add(Par×t−1) given from the assignment |||t 7→ |||t−1 ⊕× and

F t
t−1 ( ||| ) = ||| , F t

t−1 ( ) = (4.1.12)

F t
t−1

(
◦
)

= ◦ , F t
t−1

(
◦
)

= ◦ (4.1.13)

F t
t−1 ( ) = , F t

t−1 ( ) = (4.1.14)

Remark 4.1.7. It will be useful to know how F t
t−1 is defined in terms of the Kronecker

products and compositions of elementary matrices in (4.1.5)-(4.1.8), generalizing

(4.1.9)-(4.1.11). Suppose for convenience that f ∈ Par t is a partition diagram. Then

F t
t−1(f) is the sum of all matrices obtained by erasing connected components of f ,

replacing the erased boundary points on the bottom and top edges by the symbol ×

and coloring the resulting picture red. As an example,

F t
t−1

(
◦

)
= ◦ +

×
+ ◦

×

×
+ ◦

× ××

×

+
×

×

×
+
×

× ××

×
+ ◦
× ××

×

×

×
+
× ××

×

×

××

In order to handle some of the calculations in §4.3 involving general partition

diagrams with arbitrary amounts of connected components, it will be convenient to

introduce a bit more notation to deal with the sums described above. Let C(f)

denote the set of connected components of f and let S ⊆ C(f) be any subset. Define
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f [S ×] as the diagram obtained from erasing those connected components c ∈ S and

replacing the top and bottom boundary points by ×. Then F t
t−1(f) is given by the

following formula.

f× := F t
t−1(f) =

∑
S⊆C(f)

f [S ×] (4.1.15)

4.2 Restriction and induction functors

Having obtained functors F t
t−1 : Par t → Add(Par×t−1) and I : Par t−1 →

Add(Par×t−1), restriction and induction allows us to construct a new functor from

the category of locally finite-dimensional left Part-modules to the category of locally

finite-dimensional left Part−1-modules. In the formalism from §2.2, inducing along I

then restricting along F t
t−1 defines a functor Rt

t−1 : Part−1-Modlfd → Part-Modlfd on

module categories.

Rt
t−1 := resF tt−1

◦ indI : Part−1-Modlfd → Part-Modlfd (4.2.1)

Under this definition, it is obvious that Rt
t−1 has a right adjoint given by the functor

resI ◦ coindF tt−1
and a left adjoint resI ◦ indF tt−1

.

Since the functor I : Par t−1 → Add(Par×t−1) is given by composing an equivalence

(Par t−1 → Par×t−1) with the inclusion J : Par×t−1 ↪→ Add(Par×t−1), Lemma 2.2.2

provides that indI itself is an equivalence. So it has quasi-inverse given by its right

adjoint resI . Consequently, coindI is an equivalence by the same reason and then

indI ∼= coindI .

Lemma 4.2.1. The functor Rt
t−1 is exact.

Proof. This follows since Rt
t−1 is a composition of exact functors.
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Recall the Chevalley duality functor ?©σ from §2.9. Following (2.3.4) and (2.3.5),

Rt
t−1 commutes with duality:

resF tt−1
◦ indI ◦?©σ ∼= resF tt−1

◦?©σ ◦ coindI

∼=?©σ ◦ resF tt−1
◦ coindI

∼=?©σ ◦ resF tt−1
◦ indI

So there is an isomorphism

Rt
t−1◦?©σ ∼=?©σ ◦Rt

t−1 (4.2.2)

Let At−1 be the path algebra of Add(Par×t−1). The functors F t
t−1 and I provide

At−1 with a (Part, Part−1)-bimodule structure. Then define

M := 1F tt−1
At−11I . (4.2.3)

Lemma 4.2.2. There is an isomorphism of functors

Rt
t−1(−) ∼= M ⊗Part−1 −.

Proof. Recall that there are natural isomorphisms below, for any N ∈ Part−1-Mod

and any N ′ ∈ At−1-Mod.

indI N = At−11I ⊗Part−1 N, resF tt−1
N ′ ∼= 1F tt−1

At−1 ⊗At−1 N
′

Hence for any N ∈ Part−1-Mod,

Rt
t−1N

∼= 1F tt−1
At−1 ⊗At−1 At−11I ⊗Part−1 N

∼=

 ⊕
X∈O(Add(Par×t−1))

1F tt−1
At−11X

⊗At−1

 ⊕
Y ∈O(Add(Par×t−1))

1YAt−11I

⊗Part−1 N

∼=
⊕

X∈O(Add(Par×t−1))

(
1F tt−1

At−11X

)
⊗1XAt−11X (1XAt−11I)⊗Part−1 N

∼= 1F tt−1
At−11I ⊗Part−1 N

∼= M ⊗Part−1 N
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Going back to the definition restriction as in (2.2.2) and (2.2.3), observe that

there is a vector space decomposition as below where 1n := 1|||?n . Therefore, M has a

vector space decomposition

M ∼=
⊕
n,m∈N

1nAt−11m. (4.2.4)

Viewing M as a left Part-module, we can cut with any of the local units 1n ∈ Part,

n ∈ N. Obviously, 1nM = 1nM .

Lemma 4.2.3. Let m,n ∈ N and let v = ||| · · · |||︸︷︷︸
m

∈ Wm. With the lexicographical

ordering on W n, the subspace 1nA1m of M has a basis consisting of elementary

column vectors (0, . . . , 0, fw, 0, . . . , 0)T of length |W n| = 2n with a single nonzero

entry corresponding to some word w. Fixing w ∈ W n and collecting the basis elements

whose nonzero entries lie in the w-th entry, those fw form a basis of HomPar×t−1
(m,w).

Such a basis for 1nM1m is identified with a set of phantom partition diagrams whose

top row is a word of length n and bottom row is v.

Proof. Starting with (4.2.4), fix some n,m ∈ N. By definition,

1nAt−11m = HomAdd(Par×t−1)(|||
?m
, |||?n)

= HomAdd(Par×t−1)(|||
?m, (||| ⊕ ×)?n)

= HomAdd(Par×t−1)

(
|||?m,

⊕
w∈Wn

w

)
∼=
⊕
w∈Wn

HomAdd(Par×t−1) (|||?m, w)

∼=
⊕
w∈Wn

HomPar×t−1
(|||?m, w)
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All that remains to note is that each summand HomPar×t−1
(|||?m, w) has basis consisting

of phantom partition diagrams f with bottom row spelling v = ||| · · · ||| and top row

spelling the word w.

Remark 4.2.4. For any t ∈ k and s ∈ N, one can just as well define more

general restriction functors F t
t−s with the assistance of a new category Par×,st−s. This

category Par×,st−s can be constructed from Par t−s by adjoining s new generating objects

×t−1,×t−2 . . . ,×t−s which are all isomorphic to 1t−s, and then taking the additive

envelope. Then the functor F t
t−s : Par t → Add(Par×,st−s) is defined by sending |||t to

|||t−s ⊕ ×t−s ⊕ · · · ⊕ ×t−1. Similar to (4.1.15), applying this functor to any partition

diagram f results in a sum over all ways of erasing connected components of f while

replacing the boundary points of an erased component by phantoms with a common

index. Then one obtains functors Rt
t−s : Part−s-Modlfd → Part-Modlfd.

For a pair s, r ∈ N, F t−s
t−s−r has an canonical extension to the additive envelope,

named with the same symbol by an abuse of notation:

F t−s
t−s−r : Add(Par×,st−s)→ Add(Par×,s+rt−s−r)

This functor sends |||t−s 7→ |||t−s−r ⊕ ×t−s−r ⊕ · · ·×t−s−1 and ×t−i 7→ ×t−i for i =

1, . . . , s. It is easy to see that there is a natural isomorphism F t
t−s−r

∼= F t−s
t−s−r ◦ F t

t−s.

Consequently, Rt
t−s◦Rt−s

t−s−r
∼= Rt

t−s−r. Later on, the functors Rt
−1 will be of particular

interest for t ∈ Z≥0.

4.3 A filtration on restriction

This section studies Rt
t−1 and its behavior on standard modules. Let ∆t :

Sym-Modlfd → Part-Modlfd denote the standardization functor (2.9.3). Fixing m ∈

N, the main goal of this section is understanding Rt
t−1∆t−1(kSm) as a (Part, Sym)-

bimodule.
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By (2.8.7), along with the fact that Par− has a k-basis comprised of normally

ordered upwards partition diagrams, it follows that ∆t−1(kSm) has basis indexed

indexed by pairs (f, σ) where σ ∈ Sm and f is a normally ordered upwards partition

diagram.

Lemma 4.3.1. Fix m ∈ N. Then Rt
t−1∆t−1(kSm) has a basis over k indexed by pairs

(f, σ) where σ ∈ Sm and f ∈M1m is a phantom partition diagram whose underlying

partition diagram is normally ordered and upwards. Hence, as a free right Sm-module,

Rt
t−1∆t−1(kSm) has basis consisting of phantom parition diagrams whose underlying

partition diagram is normally ordered and upwards.

Proof. Given w ∈ W n for some n ∈ N, let 1w be the idempotent which is the

identity on the summand w of |||. There is a decomposition 1n =
∑

w∈Wn 1w into

mutually orthogonal idempotents. From this, we recover the following decomposition

of Rt
t−1∆t−1(kSm) making use of Lemma 4.2.3.

Rt
t−1∆t−1(kSm) ∼= M ⊗Part−1 ∆t−1(kSm)

=

(⊕
n

1nM

)
⊗Part−1 ∆t−1(kSm)

=

(⊕
n∈N

⊕
w∈Wn

1wM

)
⊗Part−1 ∆t−1(kSm)

∼=
⊕
n∈N

⊕
w∈Wn

(
1wM ⊗Part−1 ∆t−1(kSm)

)
=
⊕
n∈N

⊕
w∈Wn

(
1wM ⊗Part−1 Part−1 ⊗Par] infl] kSm

)
∼=
⊕
n∈N

⊕
w∈Wn

(
1wM ⊗Par] infl] kSm

)
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Fixing some n ∈ N and w ∈ W n, let k(w) denote the number of letters ||| appearing

in w. Then there is an isomorphism of right Part−1-modules γ : 1wM
∼−→ 1k(w)Part−1

defined by erasing all phantom ×’s. Making use of the triangular decomposition

Part−1
∼= Par− ⊗K Sym⊗K Par

+, we recover an isomorphism

1wM ⊗Par] infl] kSm ∼= 1k(w)Par
− ⊗K Par

] ⊗Par] infl] kSm

∼= 1k(w)Par
−1m ⊗ kSm.

Observing that 1k(w)Par
−1m ⊗ kSm is nonzero if and only if k(w) ≥ m,

Rt
t−1∆t−1(kSm) ∼=

⊕
n∈N

⊕
w∈Wn

k(w)≥m

(
1k(w)Par

−1m ⊗ kSm
)

In conclusion, for every word w with k(w) ≥ m, there is a nonzero summand

1k(w)Par
−1m ⊗ kSm which has basis indexed by pairs (f, σ) where σ ∈ Sm and f

is a normally ordered upwards partition diagram. Since the isomorphism γ was just

given by erasing the phantom ×’s, the result follows.

The notation Bm will denote a chosen basis for ∆t(kSm) corresponding to pairs

(f, σ) with σ ∈ Sm and f ∈ Par−1m a normally ordered upwards partition diagram.

The basis element corresponding to some (f, σ) is just the composition fσ ∈ Bm.

Similarly, B×m will denote a chosen basis for Rt
t−1(kSm) corresponding to pairs (f, σ),

this time with f ∈ M1m a phantom partition diagram which is normally ordered

and upwards. Once again, fσ ∈ B×m is the basis element corresponding to some pair

(f, σ). Diagrammatically,

fσ =
σ
···
f

Notice that the bases Bm and B×m do not depend on t.

Remark 4.3.2. There is always an evident inclusion Bm → B×m given by sending

some fσ to the same diagram in B×m. There is also another map ζ : B×m → Bm, where
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ζ(fσ) is the (phantomless) partition diagram obtained by erasing all phantoms; ζ just

picks out the underlying partition diagram of fσ.

Example 4.3.3. The weight space 15R
t
t−1∆t−1(kS2) ∼= 15M12⊗kS2 has the following

vector-space decomposition,

15R
t
t−1∆t−1(kS2) ∼=

⊕
w∈W 5

k(w)≥2

1k(w)∆t−1(kS2)

A k-basis for the summand corresponding to the word |×||× is given by the following

set of diagrams, where σ runs over S2, for a total of 12 basis elements.

σ

◦× ×
,

σ

◦× ×
,

σ

◦× ×
,

σ

× ×
,

σ

× ×
,

σ

× ×

The proofs of the next few lemmas make use of several linear maps, the first

of which is defined here. These will only be homomorphisms over k, not as Part-

modules. There is a surjection ϕ : Rt
t−1∆t−1(kSm)→ ∆t(kSm) defined as follows. Let

fσ ∈ B×m be a basis element corresponding to a pair (f, σ) as in Lemma 4.3.1. Then

ϕ(fσ) =


fσ if fσ is phantomless

0 otherwise

(4.3.1)

Proposition 4.3.4. For m ∈ N, there is an injection of Part-modules

0→ ∆t(kSm)
ι−→ Rt

t−1∆t−1(kSm)

Proof. Consider the Sym-modules 1m∆t(kSm) and 1mR
t
t−1∆t−1(kSm). Since the only

word w ∈ Wm with k(w) ≥ m is w = ||| · · · |||, there is an isomorphism

1mR
t
t−1∆t−1(kSm) ∼= 1mM ⊗Part−1 ∆t−1(kSm) ∼= 1m∆t−1(kSm)

Hence, as right Sym-modules, the spaces 1m∆t(kSm) and 1mR
t
t−1∆t−1(kSm) are

isomorphic. Additionally, it is an easy observation that any vector in these subspaces

is a highest weight vector. It follows that there is a homomorphism ∆t(kSm) →

Rt
t−1∆t−1(kSm) which is an isomorphism on the 1m-weight spaces.
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To see that ι is injective, consider a basis element fσ of ∆t(kSm). By the action

of Part through (4.1.15), it follows that

ι(fσ) = (fσ)× · ( ||| · · · |||︸︷︷︸
m

)

=
∑

S⊆C(fσ)

(fσ)[S ×] · ( ||| · · · |||︸︷︷︸
m

)

= fσ +
∑

S⊆C(fσ)
S 6=∅

(fσ)[S ×] · ( ||| · · · |||︸︷︷︸
m

)

Each term in the final summation apart from fσ contains a partition diagram with

phantoms. With (4.3.1), it now follows that ϕ ◦ ι = id∆t(kSm). So ι is injective.

Observe that, by Lemma 4.3.1, Rt
t−1∆t−1(kSm) has a vector space filtration 0 =

N−1 ⊆ N0 ⊆ N1 ⊆ · · · ⊆ Rt
t−1 where

Ni := k
〈
fσ ∈ B×m ||| f has at most i phantoms.

〉
(4.3.2)

There are projections p` : Rt
t−1∆t−1(kSm)→ N` defined on basis elements by p`(fσ) =

fσ if fσ ∈ N` and p`(fσ) = 0 otherwise. Letting N ` = N`/N`−1 and p` be the

composition of p` with this quotient, the next graded decomposition is immediate.

Rt
t−1∆t−1(kSm) ∼=

⊕
`∈N

N ` (4.3.3)

Let Q := Rt
t−1∆t−1(kSm)/ι(∆t(kSm)) and also let π : Rt

t−1∆t−1(kSm) → Q be

the quotient map.

Lemma 4.3.5. The quotient Q has basis given by the images of fσ ∈ B×m where f

has at least one phantom. Denote this set by BQ
m.

Proof. By Lemma 4.3.1, the images of all fσ ∈ B×m certainly span the quotient.

Additionally, since p0 : Rt
t−1∆t−1(kSm) → N0 is defined by killing all diagrams with

phantoms, it follows that all those fσ ∈ B×m with π(fσ) ∈ BQ
m lie in the kernel of p0.
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Also, the composition p0 ◦ ι : ∆t(kSm)→ N0 is an isomorphism as it sends a basis to

a basis. Since the k-span of those fσ where f has phantoms isomorphically projects

onto
⊕

`≥1N `, it follows that
∑

`≥0 p` is an isomorphism.

ι(∆t(kSm)) + ker(p0)
p0+

∑
`≥1 p`−−−−−−−→∼= N0 ⊕

(⊕
`≥1

N `

)
By (4.3.3), we conclude there is an internal decomposition Rt

t−1∆t−1(kSm) ∼=

ι(∆t(kSm))⊕ ker(p0). The result now follows.

Although Lemma 4.3.5 allows us to identify BQ
m with B×m, we choose to keep the

two distinct. However, whenever speaking of some π(fσ) ∈ BQ
m, we allow ourselves

to access the associated phantom partition diagram fσ ∈ B×m

Now enters the next linear map with the aid of Lemma 4.3.5. Given π(fσ) ∈ BQ
m,

define f̃ σ̃ ∈ Bm+1 to be the unique (phantomless) partition diagram obtained by

collecting all phantoms of fσ into a single tree, connected to the bottom left corner

of fσ. The new diagram has m + 1 components attached to the bottom row. This

assignment produces a linear map

ψ : Q→ ∆t(kSm+1), π(fσ) 7→ f̃ σ̃ (4.3.4)

Example 4.3.6. Consider the summand of 15R∆t−1(kS2) corresponding to the word

w = |× ||× from the previous example. Then ψ is defined on this subspace as follows.

There are decoratory gray lines above which is the normally ordered f̃ and below

which is σ̃.

ψ

(
π

(
σ

◦× ×
))

=

σ

◦
, ψ

(
π

(
σ

◦× ×
))

=

σ

◦

ψ

(
π

(
σ

◦× ×
))

=

σ

◦
, ψ

(
π

(
σ

× ×
))

=

σ
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ψ

(
π

(
σ

× ×
))

=

σ

, ψ

(
π

(
σ

× ×
))

=

σ

Lemma 4.3.7. For all n ∈ N, the dimensions of 1nQ and 1n∆t(kSm+1) over k are

equal.

Proof. Notice first that for π(fσ) ∈ BQ
m, it is true that π(fσ) ∈ 1nQ if and only if the

word along the top row of fσ is of length n. So, it follows that ψ is a weight-space

preserving linear map.

With the above consideration in mind, it is enough to provide a two-sided inverse

to ψ. Given fσ ∈ Bm+1, let f̂ σ̂ ∈ B×m be the unique phantom partition diagram

obtained by erasing the connected component of fσ attached to the bottom left

corner of fσ, replacing those erased boundary points along the top row by phantoms.

Now define ψ̂ : ∆t(kSm+1) → Q on a basis by fσ 7→ π(f̂ σ̂) for fσ ∈ Bm+1. It is

easily seen that for any π(fσ) ∈ BQ
m, (ψ̂ ◦ ψ)(π(fσ)) = π(fσ). Similarly, for any

fσ ∈ Bm+1, (ψ ◦ ψ̂)(fσ) = fσ.

Before getting into the next proposition, here is a summary of the previous

handful of results. By working with explicit bases, proposition 4.3.4 and Lemma 4.3.5

allow us to view ∆t(kSm) and Q as complimentary linear subspaces of Rt
t−1∆t−1(kSm).

Then Lemma 4.3.7 shows that ψ is a weight-space preserving isomorphism

∆t(kSm+1) ∼= Q by constructing an inverse ψ̂ which lifts through Rt
t−1∆t−1(kSm),

making the following diagram commute.
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The next proposition shows that ψ can be replaced by a proper isomorphism of Part

modules.

Theorem 4.3.8. For m ∈ N, there is a short exact sequence of (Part, Sym)-

bimodules

0→ ∆t(kSm)
ι−→ Rt

t−1∆t−1(kSm)
π−→ ∆tE(kSm)→ 0

Proof. Throughout this lemma, we remind ourselves that π(fσ) = fσ + im(ι) for

any π(fσ) ∈ BQ
m. Thanks to Lemma 4.3.7, it is enough to exhibit a surjection

∆t(kSm) → Q as Part-modules. First, it is easily seen that (4.3.4) restricts to an

isomorphism of left kSm+1-modules 1m+1Q ∼= 1m+1kSm+1.

1m+1ψ : 1m+1Q→ kSm+1, ·· ··×
i

σ
+ im(ι) 7→ ·· ··

i

σ

Frobenius reciprocity now gives a homomorphism of Part-modules Ψ : ∆t(kSm+1)→

Q which restricts to an isomorphism between the 1m+1 weight spaces.

Before proving surjectivity of Ψ, here is some notation. Let f be a phantom

partition diagram with ` letters ||| along the bottom row. If we want to erase the

connected component attached to the ith letter ||| and replace the erased boundary

points by ×, we will denote this by placing a symbol × at the bottom of the ith letter

×. Illustratively, the diagram

· · ··×i
f

(4.3.5)

denotes the phandom partition diagram obtained from f by erasing the component

labeled ‘i’, and replacing all boundary points by ×.

The proof of surjectivity of Ψ is inductively for each weight space. Fix some

n ∈ Z>m and define subspaces 1nQ[p] ⊆ 1nQ for m ≤ p < n as below, recalling
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Remark 4.3.2.

1nQ[p] := k
〈
fσ ∈ 1nQ ∩B×m ||| ζ(fσ) has at most p connected components

〉
This provides a vector space filtration

0 ⊆ 1nQ[m] ⊆ 1nQ[m+ 1] ⊆ · · · ⊆ 1nQ[n− 1] = 1nQ.

Now enters the inductive argument. Consider first 1nQ[m]. For any basis element

fσ ∈ 1nQ[m] ∩ B×m, ζ(fσ) consists entirely of upwards trees and trunks. Recycling

the construction in (4.3.4) and using (4.1.15) shows that

Ψ(f̃ σ̃) = f̃Ψ(σ̃)

=
∑

S⊆C(f̃)

f̃ [S×] ·Ψ

(
·· ··
i

σ

)

=
∑

S⊆C(f̃)

f̃ [S×] ·

(
·· ··×
i

σ
+ im(ι)

)

= ·· ··×i
σ

f̃
+ im(ι)

= ·· ··
σ

f
+ im(ι)

= fσ + im(ι)

Suppose now that for some m < p ≤ n − 1, it is known that 1nQ[p − 1] ⊆ im(Ψ).

Choose one of our basis elements fσ ∈ 1nQ[p] ∩ B×m. Without loss of genereality,

suppose ζ(fσ) contains exactly p connected components. Let C∪(f̃) ⊂ C(f̃) be the

set of components of f̃ which are branches or leaves. A similar calculation as the base

case shows

Ψ(f̃ σ̃) = f̃Ψ(σ̃)
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=
∑

S⊆C(f̃)

f̃ [S×] ·

(
·· ··×
i

σ
+ im(ι)

)

=
∑

S⊂C∪(f̃)

·· ··×i
σ

f̃ [S×]
+ im(ι)

= ·· ··×i
σ

f̃ [∅×]
+

∑
S⊂C∪(f̃)
S 6=∅

·· ··×i
σ

f̃ [S×]
+ im(ι)

= ·· ··×i
σ

f̃
+

∑
S⊂C∪(f̃)
S 6=∅

·· ··×i
σ

f̃ [S×]
+ im(ι)

= ·· ··
σ

f
+

∑
S⊂C∪(f̃)
S 6=∅

·· ··×i
σ

f̃ [S×]
+ im(ι)

= fσ +
∑

S⊂C∪(f̃)
S 6=∅

·· ··×i
σ

f̃ [S×]
+ im(ι)

Every term appearing in the final summation is a diagram with less than p connected

components. So the summation is in the image of Ψ by the inductive hypothesis and

hence there is some g ∈ ∆t(kSm+1) for which

Ψ(g) =
∑

S⊂C∪(f̃)
S 6=∅

·· ··×i
σ

f̃ [S×]
+ im(ι)

Finally, it follows that fσ + im(ι) = Ψ(f̃σ̃ − g). The case that p = n − 1 completes

the proof.

Corollary 4.3.9. There is a short exact sequence of functors from Sym -Modfd to

Part -Modlfd.

0→ ∆t → Rt
t−1 ◦∆t−1 → ∆t ◦ E → 0
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Proof. The functors here are given by tensoring with the bimodules appearing in

Theorem 4.3.8.

Theorem 4.3.10. For λ ∈ P, there is a short exact sequence of (Part, Sym)-

bimodules

0→ ∆t(λ)→ Rt
t−1∆t−1(λ)→

⊕
a∈add(λ)

∆t

(
λ+ a

)
→ 0

Proof. Immediate from Corollary 4.3.9 and the fact that the bimodules appearing in

Theorem 4.3.8 are flat right Sym-modules, seeing as Sym is semisimple.

Recall that a module N has an standard flag if there is a filtration 0 = N0 ⊂

N1 ⊂ · · ·N` = N with Ni/Ni−1
∼= ∆(λi) for all i = 1, . . . , ` and some partitions

λ1, . . . , λ`.

Corollary 4.3.11. If N is a left Part−1-module with a standard flag, then Rt
t−1N is

a Part-module with a standard flag.

Proof. This follows from Lemma 4.2.1 and Theorem 4.3.10.

4.4 The Comes-Ostrik conjecture

We are now in a position to prove the Comes-Ostrik conjecture. Assume that

t ∈ Z>0. Here is a general (yet specific) lemma to the case at hand. Recall that an

essentially finite algebra is a locally unital algebra A so that each 1iA and A1i is

finite-dimensional.

Lemma 4.4.1. Let A and B be essentially finite algebras and suppose there is an

equivalence F : A-Modfd → B-Modfd. If there is an exact functor F̃ : A-Modfd →

B-Modfd so that F̃L ∼= FL for all irreducibles L ∈ A-Modfd, then F̃ is an equivalence

too.
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Proof. We first note that F̃ is fully faithful. To see faithfulness, take any nonzero A-

module homomorphism f : V → W so that F̃ (f) = 0. Let L ⊆ W be an irreducible

submodule in the image of f and let V ′ = f−1(L). There is a surjection g : V ′ � L

and an injection h : L ↪→ W . The restriction f |V ′ has a factorization fV ′ = h ◦ g.

Either F̃ (h) = 0 or F̃ (g) = 0. But since F̃ is exact and F̃L ∼= FL, this would be

impossible. So F̃ has to be faithful. Consequently, it is also full since Hom-spaces in

these two categories are of the same (finite) dimension due to F being an equivalence.

Now let PL be the projective cover of the irreducible module L ∈ A-Modfd.

Similarly, let PF̃L be the projective cover of F̃L ∈ B-Modfd. We claim that

F̃PL ∼= PF̃L. Since F̃ is fully faithful, HomB(F̃PL, F̃L) ∼= HomA(PL, L) 6= 0. So

F̃PL is indecomposable (by exactness) and has F̃L ∼= FL as an irreducible quotient.

Consequently, there is a surjection PFL � F̃PL. But in the Grothendieck group

of B, F̃PL and FPL ∼= PFL are equal. So the surjection PFL � F̃PL must be an

isomorphism as both modules have the same dimension.

It now follows that F̃ is essentially surjective when restricted to the subcategories

of projective A- and B-modules. Hence it is an equivalence since it is fully faithful

too. Knowing that F̃ restricts to an equivalence A-Proj → B-Proj, we deduce the

full equivalence A-Mod→ B-Mod (see [BD17, Cor. 2.5]).

The rest of this section has a bit of bookkeeping, so here is some setup. Let

pr0,t denote the projection of Part-Modlfd onto the principal block containing the

irreducible module Lt(∅), as in (3.8.10). Also let (Part-Modlfd)0 be said principal

block. Taking the partition κt = (t), the indecomposable projectives in (Part-Modlfd)0

are given by Pt(n) := Pt(κ
(n)
t ) as described in Theorem 3.10.5 and ordered by

Corollary 3.10.7. So κ
(0)
t = ∅, κ(1)

t = (t + 1), κ
(2)
t = (t + 1, 1), and so on. Similarly,

let ∆t(n) := ∆t(κ
(n)
t ). Also let Lt(n) = Lt(κ

(n)) be the nth irreducible module in the
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principal block. Recall that ∆t(n) is indecomposable with two composition factors:

irreducible socle Lt(n+ 1) and irreducible head Lt(n) for n ≥ 0.

Lemma 4.4.2. For any n ∈ N,

(pr0,t ◦Rt
t−1)(∆t−1(n)) ∼= ∆t(n).

Proof. This is a case analysis using the combinatorial rule provided by

Theorem 4.3.10. If n = 0 then κ
(0)
t−1 = ∅ and the ∆-factors of Rt

t−1∆t−1(n) are

∆t(∅) and ∆t((1)). Since t > 0, only ∆t(∅) = ∆t(0) is in the principal block. So

(pr0,t ◦Rt
t−1)(∆t−1(0)) ∼= ∆t(0).

If n = 1, then κ
(n)
t−1 = (t) and the ∆-factors of Rt

t−1∆t−1(1) are ∆t((t + 1)) and

∆t((t, 1)). Only ∆t((t+ 1)) = ∆t(1) is in the principal block.

If n ≥ 1, then κ
(n)
t−1 = (t, 1n−1) and the ∆-factors of Rt

t−1∆t−1(n) are ∆t((t +

1, 1n−1)), ∆t((t, 1
n−1, 1)), and ∆t((t, 1

n)). Only ∆t((t + 1, 1n−1)) = ∆t(n) is in the

principal block.

Lemma 4.4.3. For any n ∈ N,

(pr0,t ◦Rt
t−1)(Lt−1(n)) ∼= Lt(n).

Proof. Suppose for the sake of contradiction that (pr0,t ◦Rt
t−1)(Lt−1(n)) 6∼= Lt(n) for

some n ∈ N. Let ` ∈ N be minimal so that (pr0,t ◦Rt
t−1)(Lt−1(`)) 6∼= Lt(`). From

Lemma 4.2.1 and Lemma 4.4.2, there is an exact sequence

0→ (pr0,t ◦Rt
t−1)(Lt−1(`+ 1))→ ∆t(`)→ (pr0,t ◦Rt

t−1)(Lt−1(`))→ 0.

Since ∆t(`) has length 2, either (pr0,t ◦Rt
t−1)(Lt−1(`)) = 0 or (pr0,t ◦Rt

t−1)(Lt−1(`)) ∼=

∆t(`). In the first case, it follows that (pr0,t ◦Rt
t−1)(Lt−1(` + 1)) ∼= ∆t(`). But there

is also an exact sequence

0→ (pr0,t ◦Rt
t−1)(Lt−1(`+ 2))→ ∆t(`+ 1)→ (pr0,t ◦Rt

t−1)(Lt−1(`+ 1))→ 0.
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These last two observations show there is a surjection ∆t(`+ 1)→ ∆t(`), impossible.

In the case where (pr0,t ◦Rt
t−1)(Lt−1(`)) ∼= ∆t(`), one has (pr0,t ◦Rt

t−1)(Lt−1(` +

1)) = 0. Repeating the above argument would give a surjection ∆t(`+2)→ ∆t(`+1),

another contradiction. So it must be that (pr0,t ◦Rt
t−1)(Lt−1(n)) ∼= Lt(n) for all n ∈

N.

Theorem 4.4.4. For t ≥ 1, the composition

pr0,t ◦Rt
t−1 : (Part−1-Modlfd)0 → (Part-Modlfd)0

is an equivalence.

Proof. By Theorem 3.10.5, there is an equivalence (Part−1-Modlfd)0
∼−→ (Part-Modlfd)0

and both these categories are essentially finite, in that they are equivalent to

categories of finite-dimensional modules over essentially-finite algebras (see [BS,

Cor. 2.20]). Now apply Lemma 4.4.3 and Lemma 4.4.1.
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CHAPTER V

THE ABELIAN ENVELOPE

This chapter provides an alternate perspective of the abelian envelope of Rep(St)

involving tilting modules and Ringel duality. After briefly reviewing some basics

about abelian envelopes and splitting objects, we use the restriction functor Rt
−1

from chapter IV to show that tilting modules for the partition category can be

identified with splitting objects. This allows us to connect the Benson-Etingof-Ostrik

construction of abelian envelopes in [BEO23] to tilting theory and Ringel duality

studied in [BS].

5.1 Review of abelian envelopes

Throughout this section let C be a locally-finite Karoubian rigid monoidal

category with EndC (1) ∼= k. Generally, C is not abelian and so is not a full-fledged

tensor category in the sense of [EGNO15]. However, one can ask to find an abelian

envelope of C if it exists. Such an abelian envelope is the data of a tensor category

D and a monoidal functor F : C → D so that for any other tensor category D ′,

composition with F induces an equivalence between the category of faithful monoidal

functors C → D ′ and the category of exact monoidal functors D → D ′. That is, for

each G : C → D ′ there exists a unique functor (up to isomorphism) G ′ : D → D ′

making the following diagram commute up to isomorphism:

Any two abelian envelopes of C are equivalent, so we often speak of the abelian

envelope of C .
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Remark 5.1.1. In the case of Deligne’s category Rep(St), Comes and Ostrik were the

first to construct the abelian envelope by examining the heart of a certain t-structure

on the homotopy category of Rep(St) [CO14]. Later, the abelian envelope of Rep(GLt)

was constructed by Entova, Hinich, and Serganova by clever use of inverse and direct

limits of representations of the general linear supergroup GL(m|n) with m − n = t

[EHS18]. More recently, Harman and Snowden build abelian envelopes for a class of

Oligomorphic groups as a kind of completed group algebra [HS22].

The Benson-Etingof-Ostrik construction (and also Coulembier’s approach in

[Cou21]) of abelian envelopes involves the use of splitting objects. With C as above,

an object S ∈ O(C ) is splitting if for each morphism f : X → Y in C , the morphism

f⊗ idS : X⊗S → Y ⊗S is split. That is, f⊗ idS is the direct sum of a zero morphism

and an isomorphism.

It is proven in [BEO23] that the splitting objects of C form a thick tensor ideal;

the full subcategory consisting of splitting objects of C is Karoubian and closed

under taking tensor products with arbitrary objects of C . Let (Si)i∈I be a family of

irredundant representatives for the isomorphism classes of indecomposable splitting

objects and suppose the following finiteness property : for any splitting object S, there

are finitely many i ∈ I for which HomC (Si, S) is nonzero. Under this assumption,

Benson, Etingof, and Ostrik build the coalgebra C :=
⊕

i,j∈I HomC (Si, Sj)
∗ and

a functor F : C → C-Comodfd from C to the category of finite-dimensional C-

comodules.

After proving that C-Comodfd has a monoidal structure, Benson, Etingof, and

Ostrik show that under certain conditions, C-Comodfd is the abelian envelope of

C . The first condition is that C must be of finite type: there exists a splitting

object S ∈ O(C ) so that every indecomposable splitting object Si (i ∈ I) appears

128



as a summand of X ⊗ S for some X ∈ O(C ). The second condition is that C is

separated, meaning that F is faithful. Lastly, C must be complete, meaning that F(C )

is equivalent to Kar(F(C )). Their main theorem on abelian envelopes is summarized

below. More details can be found in [BEO23].

Theorem 5.1.2 (Benson-Etingof-Ostrik). Let C be a monoidal category with the

finiteness property (as well as the other properties listed at the beginning of this

section). Also suppose C is of finite type. Then C admits a fully faithful monoidal

functor E : C → D into a (multi-)tensor category D with enough projectives if and

only if C is separated and complete. Moreover, in this case there exists a tensor

embedding E ′ : C-Comodfd → D so that E ∼= E ′ ◦ F and C-Comodfd is the abelian

envelope of C .

5.2 Ringel duality and the abelian envelope

Since many of the projective modules for Part are self-dual (Theorem 3.10.5),

they have a standard flag and (finite) costandard flag. Hence, they are tilting

modules1. A classification of indecomposable tilting modules up to isomorphism is

provided by Brundan and Stroppel [BS, Thm.4.18]. In the setting for Part-Modlfd,

the classifcation states that there is exactly one indecomposable tilting module T (λ)

for each partition λ ∈ P , up to isomorphism. Specifically, T (λ) is characterized

uniquely by the property that it has ∆(λ) as the bottom section in any standard flag.

Recalling the definition (3.8.12), the tilting module for Part-Modlfd corresponding to

the partition λ ∈ P is:

Tt(λ) =


Pt(κ

(n+1)) λ = κ(n) for some κ ∈ Pt and n ∈ N

Pt(λ) otherwise.

(5.2.1)

1In a general upper-finite highest weight category, tilting modules potentially have infinite
‘descending’ costandard flags.
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Note that whenever λ is not of the form κ(n) for some κ ∈ Pt and n ∈ N, Pt(λ) = L(λ)

is irreducible.

Lemma 5.2.1. If T ∈ Part−1-Modlfd is tilting, then Rt
t−1T is tilting too.

Proof. This follows from (4.2.2) and Corollary 4.3.11, noting that standard flags turn

into costandard flags upon applying Chevalley duality.

In the next lemma, we make use of the restriction functorsRt
−1 : Par−1 -Modlfd →

Part -Modlfd as in Remark 4.2.4. It is an easy consequence of the fact that F t
t−1 is

monoidal that

(||| ⊕ ×) ? F t
t−1(−) ∼= F t

t−1 ◦ (||| ?−).

More generally,

(||| ⊕ ×−1 ⊕ · · · ⊕ ×t−1) ? F t
−1(−) ∼= F t

−1 ◦ (||| ?−).

Bringing back the functor Dt : Part-Mod→ Part-Mod of (3.9.3), it follows that there

is a natural isomorphism

Dt ◦Rt
−1
∼= Rt

−1 ◦ (D−1 ⊕ Id⊕ · · · ⊕ Id︸ ︷︷ ︸
t+1

), (5.2.2)

where Id denotes the identity functor on Part−1-Mod. Letting Dn
t = Dt ◦ · · · ◦Dt︸ ︷︷ ︸

n

,

we have

Dn
t ◦Rt

t−1
∼= Rt

−1 ◦

(
n⊕
`=0

(D`
−1)⊕(n`)(t+1)(n−`)

)
(5.2.3)

Lemma 5.2.2. An indecomposable X ∈ Part-Proj is splitting if and only if it is

tilting.

Proof. We start by showing that every tilting is splitting. Since every projective

appears as a summand of a direct sum of finitely many Qt(n) := Part1n, it is enough

to check that tiltings split morphisms f : Qt(n) → Qt(m) for any n,m ∈ N. By
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the combinatorial rule provided in Theorem 4.3.10, the module V := Rt
−1∆−1(∅) has

a section ∆(∅). Since V is tilting by Lemma 5.2.1, it follows from (5.2.1) that V

contains the tilting module Tt(∅) as a summand. Consider the following commuting

diagram, using Lemma 2.6.1:

The right-most vertical arrow, given by the natural isomorphism (5.2.3), is split as

Par−1-Mod is semisimple. Hence, it follows that V is a splitting object and so is

Tt(∅), being a summand of a splitting object. Moreover, since splitting objects form

a thick tensor ideal, all Tt(λ) for λ ∈ P are splitting since they appear as a summand

of Dm
t V = Qt(m) f?V for a suitable m ∈ N.

It remains to see that those indecomposable projectives which are not tilting are

also not splitting. First consider Pt(∅) = ∆(∅). This is the unit with respect to f? .

Since there is a non-split map f : Pt(∅)→ Pt(∅(1)), it is immediate that 1Pt(∅)
f?f = f

is not split. So Pt(∅) is not a splitting object. Consider now Pt(κ
(0)) for any κ ∈ Pt

and look at the morphism 1Pt(κ(0))
f?f : Pt(κ

(0)) f?Pt(∅) → Pt(κ
(0)) f?Pt(∅(1)). By

Lemma 3.10.1, Dm
t Pt(κ

(0)) = Qt(m) f?Pt(κ(0)) will contain a summand of Pt(∅) for an

appropriate m and we get a commuting diagram below, where the first two vertical

arrows are non-split. Consequently, Pt(κ
(0)) cannot be a splitting object.
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Lemma 5.2.3. The category Part-Proj has the finiteness property.

Proof. By Lemma 5.2.2, any splitting object S if a finite direct sum of indecomposable

tilting modules. It follows from Theorem 3.10.5 that there are only finitely many Tt(λ)

with HomPart(T (λ), S) being nonzero.

Consider now T :=
⊕

λ∈P Tt(λ) and the algebra B := EndPart(T )op =(⊕
λ,µ∈P HomPart(Tt(λ), Tt(µ)

)op

. In the language of [BS], T is a tilting generator.

Equipping B with the profinite topology, Brundan and Stroppel build the coalgebra

Coend(T ) := {f ∈ B∗ ||| f vanishes on some two-sided ideal of finite codimension}.

There is an identification Comodfd- Coend(T ) = B-Modfd. Brundan and Stroppel also

construct the Ringel duality functor G : Part-Mod → Comodfd- Coend(T ), defined

on any N ∈ Part-Mod below.

G(N) :=
{
f ∈ HomPart(N, T )∗ ||| f vanishes on a submodule

of HomPart (N,T ) with finite codimension

}
We can now show that B-Modfd, equipped with the functor G, is the abelian envelope

of Part, and hence, also of Rep(St).

Theorem 5.2.4. The Ringel dual B-Modfd of Part-Modlfd is the abelian envelope of

Rep(St).

Proof. As usual, identify Rep(St) with Part-Proj by means of the Yoneda equivalence.

We just need to check the conditions provided in Theorem 5.1.2. The first is that

Rep(St) is of finite type. We claim the module Tt(∅) is a generator for the splitting

ideal. From Lemma 3.10.1 and Lemma 3.10.3, any splitting (=tilting) object in a

nontrivial block of Part-Modlfd is a summand of DnTt(∅) ∼= Qt(n) f?Tt(∅) for some

n ∈ N. For those tiltings Tt(λ) in a trivial block, the same is true and is easily

deduced from Theorem 3.9.1.
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The other conditions we have to check is that Rep(St) is both separated and

complete. Let G : Part-Modlfd → B-Modfd be the Ringel duality functor and let

T = G(Rep(St)) be the image of this functor. Completeness amounts to showing

that T is equivalent to its Karoubi envelope, and separatendess requires us to show

that F is faithful. This, however, is true by [BS, Thm.4.27]. So Rep(St) is separated

and complete.
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