
 

 

 

 

GROWTH AND GUIDANCE: A STUDY OF NEURON MORPHOLOGY AND HOW 

IT IS MODIFIED BY FRACTAL AND EUCLIDEAN ELECTRODES IN VITRO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

 

CONOR TYE ROWLAND 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

 

Presented to the Department of Physics 

and the Division of Graduate Studies of the University of Oregon 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy  

 

March 2023 



 

ii 

 

DISSERTATION APPROVAL PAGE 

 

Student: Conor Tye Rowland 

 

Title: Growth and Guidance: A Study of Neuron Morphology and How it is Modified by 

Fractal and Euclidean Electrodes In Vitro. 

 

This dissertation has been accepted and approved in partial fulfillment of the 

requirements for the Doctor of Philosophy degree in the Department of Physics by: 

 

Raghuveer Parthasarathy, PhD Chairperson 

Richard Taylor, PhD  Advisor 

Jayanth Banavar, PhD  Core Member 

Cris Niell, PhD  Institutional Representative 

 

and 

 

Krista Chronister, PhD  Vice Provost for Graduate Studies  

 

Original approval signatures are on file with the University of Oregon Division of 

Graduate Studies.  

 

Degree awarded March 2023 

  



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 Conor Tye Rowland  

This work is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

 



 

iv 

 

DISSERTATION ABSTRACT 

 

Conor Tye Rowland 

 

Doctor of Philosophy 

 

Department of Physics 

 

March 2023 

 

Title: Growth and Guidance: A Study of Neuron Morphology and How it is Modified by 

Fractal and Euclidean Electrodes In Vitro. 

 

 

For well over a century, neuroscientists have been studying the inherent ties 

between neuronal morphology and functionality. Santiago Ramón y Cajal, in his work that 

ultimately awarded him a Nobel Prize in 1906, established that neurons function as the 

fundamental unit of the nervous system. Ramón y Cajal himself recognized the relationship 

between neuronal form and function by proposing the wiring economy principle, which 

states that the nervous system’s complex network of neurons is efficiently wired in a way 

that minimizes wiring length. The research within this dissertation works towards the goal 

of optimizing the design of the electrode-neuron interface of medical implants by building 

upon Ramón y Cajal’s foundational ideas and integrating them with the techniques of 

fractal analysis. 

The dissertation begins by addressing the question of how electrode geometry 

impacts the morphology of the networks of neurons and glia interfacing with the electrode. 

This was done by interacting dissociated mouse retinal cell cultures in vitro with vertically 

aligned carbon nanotube (VACNT) electrodes grown on a silicon dioxide (SiO2) substrate 

and patterned into Euclidean and fractal geometries. The VACNT-SiO2 material system 

was shown to perform exceptionally well at guiding neurons onto the VACNTs and glia 
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onto the surrounding SiO2. Furthermore, the electrode geometries that performed the best 

at supporting a healthy network of neurons and glia were those that balanced providing a 

large VACNT electrode area with maintaining connectedness in the surrounding SiO2 

surface and allowing it to interpenetrate the VACNT electrode. 

Following these in vitro experiments, three-dimensional models of pyramidal 

neurons from the CA1 region of the rat hippocampus were reconstructed using confocal 

microscopy. The fractal properties of the neurons and how these relate to their functionality 

were then analyzed. It was then demonstrated that the natural, fractal behavior of the 

neurons, though limited in its scaling range, was sufficient to provide the neurons with an 

optimal balance between connectivity and building and operating costs. 

The dissertation concludes by reviewing the results of these studies, providing 

directions for future work, and discussing the implications regarding electrode design. 

This dissertation includes previously published co-authored material. 
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CHAPTER I 

INTRODUCTION 

Ever since humans discovered the ability to generate and control electricity, inquiring 

scientists have been investigating its effects on the body. All the way back in 1755, French physician 

Charles LeRoy caused a blind patient to perceive flashes of light by sending current through a wire 

wrapped around the patient’s head. Following this in 1791, Luigi Galvani, an Italian physician, laid 

the foundations of electrophysiology by causing the leg of a frog to contract as current was sent 

through a bimetallic arc contacting two points on a nerve passing through the leg1. Moving forward 

to the modern day, implants meant to interface with the nervous system have been the focus of broad 

interdisciplinary research. The functionality of these implants includes stimulating electrical signals 

in the body’s neurons and sensing the signals that are naturally flowing through the neurons. For 

example, electronic devices have been implanted into human retinas with the aim of restoring vision 

to patients with degenerative retinal diseases2–9. Additionally, more than 150,000 deep brain 

stimulation implant surgeries have been performed targeting neurological disorders such as 

Parkinson’s disease10. 

While studying the response of neurons to the introduction of implants can lead to 

enhancements in the performance of medical devices, it also provides information about their 

fundamental behavior and the degree to which this behavior can be controlled. Such studies should 

also accommodate interactions with glia, which are prevalent throughout the nervous system11. 

Although neurons and glia were discovered around the same time, research of the latter has been 

slower to gain momentum12 even though they play central roles in controlling neuronal network 

structure and functionality13. Specifically, whereas neurons are crucial for carrying the body’s 

electrical signals, glia are equally crucial because of their supporting role as the neurons’ life support 

system. As such, studies examining interactions between implants and neurons without the inclusion 
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of glia may suffer from providing an incomplete understanding of the neurons’ natural behavior. 

Significantly, implants are frequently referred to as bionic devices in recognition of the 

importance of bio-inspiration and the need for biocompatibility at the cell-implant interface (‘bio’ is 

Greek for ‘life’). Regardless of its application, an implant’s operation must be sustainable in terms 

of toxicity, durability, and efficiency. The factors that ensure biocompatibility can be pictured as 

three legs of a stool, with each leg playing a vital role for stability. The two legs that have received 

the most attention by researchers are the chemical environment and physical textures established by 

the implant surface as it interacts with the body. The third leg is the shape of an implant’s electrodes 

and is tied to the central focus of this dissertation. The stimulating electrodes used in conventional 

implants feature Euclidean geometries like squares, hexagons, and circles, which are fundamentally 

different to the complex, fractal geometry adopted by neurons that has seen ongoing study for several 

decades14. Motivated by the principle of bio-inspiration, this dissertation provides a study of the 

morphology of neurons and the impact that fractal and Euclidean electrode geometries have on this 

morphology. With this aim in mind, it’s informative to briefly examine how fractal geometry has 

been applied to better understand the behavior of other natural systems. 

The term ‘fractal’ was introduced in 1975 by Benoit Mandelbrot to highlight similarities 

between a diverse range of natural systems and the scale invariant properties of mathematical patterns 

researched over the previous century15,16. Immediately after Mandelbrot introduced the world to the 

field of fractal geometry, an ever-growing body of research formed that details the fractal scaling 

properties of a plethora of natural systems. Due to the diversity of morphological complexity across 

neuron types, fractal analysis has seen successful application as a tool for the classification of 

neurons17–22. In addition to neurons, the apparent ubiquity of fractals in nature has been observed in 

systems across a vast range of sizes. From the smallest to the largest systems in the universe, fractal 

scaling properties are abundant. Some commonly cited examples of natural fractals include trees23, 
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rivers24, coastlines25, mountains26, clouds27, lightning28, and snowflakes29, but the list certainly 

doesn’t end there. Fractal scaling has also been observed in the texture of magnetic domains30, 

magnetic monopole excitation dynamics in spin ice31, nanoparticle aggregation32, the folding of DNA 

globules33, gene expression dynamics34, ion channel kinetics35, the growth of bacterial colonies36, the 

vasculature of the retina37, the bronchial tree of the lungs38, heartbeat39 and neuronal spike train40 

dynamics, the structure of the cerebellum41, the folds of the brain’s cortical surface42, graphs of 

cortical functional connectivity networks43, the foraging behavior of animals44, the dynamics of 

rainfall45, wind speed46, and ocean currents47, the edges of Saturn’s rings48, and the structure of 

supernovae remnants49, clouds in the interstellar medium50, and the cosmic web51. 

Given the prevalence of fractal scaling behavior in natural systems, it’s critical to ask what 

might be driving this. Is there an inherent functional benefit associated with fractal scaling in 

biological systems? What physical mechanisms are at play in non-biological systems that give rise 

to fractal scaling? The answer, of course, varies depending on the system of interest. The fractal 

structure of clouds has been shown to result from turbulent diffusion52. Similarly, for clouds in the 

interstellar medium, magnetohydrodynamic turbulence has been linked to their fractal structure53. 

The intricate, highly ramified branches of fractal river basins has been shown to arise from a global 

minimization of energy expenditure54. The jagged, highly irregular morphology of fractal coastlines 

has been shown to naturally form over time due to their ability to minimize the eroding power of the 

ocean55. Turning to biological systems, the fractal structure of trees has been tied to their growth rate 

and ability to efficiently capture light56. The lung’s fractal structure maximizes its gas-exchange 

surface area and allows it to optimally adapt to a variety of physiological conditions57. The fractal 

structure of the brain’s connectivity networks have been shown to provide a balance between 

maximizing information transfer while minimizing wiring costs58. The densely packed, fractal 

folding of DNA globules benefit from being largely unknotted, allowing parts of the globule to 
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rapidly unfold and become available for transcription59.  

Recognizing the power of fractal geometry to characterize the behavior of so many natural 

systems, it straightforwardly follows to question whether interactions of neurons with the artificial 

electrode surfaces of an implant would benefit from matching the electrode design to the natural, 

fractal properties of the neurons. Should this proposed matching allow the neurons growing on the 

electrode surfaces to flourish, the effect can be thought of as a kind of ‘fractal resonance’. While a 

diverse range of studies have demonstrated the impact of patterning on the behavior of neurons and 

glia60–71, these patterning strategies have not included fractal designs. Consequently, these studies 

investigate neuronal and glial behavior on surfaces patterned into geometries distinctly dissimilar to 

the geometry adopted by neurons and glia, potentially forcing them away from their natural behavior. 

Addressing the absence of studies that test fractal designs, the experiments described in this 

dissertation work towards testing the ‘fractal resonance’ hypothesis.  

Following a brief review in chapter II of the relevant background information that forms a 

basis for understanding and motivating the experiments detailed in this dissertation, chapter III 

describes experiments that investigated the morphology of the network of neurons and glia that 

formed on electrodes patterned into the relatively simple H-Tree fractal as well as the Euclidean 

geometries of rows of lines and a uniform grid. Capitalizing on the H-Tree fractal’s multi-scaled 

branches, ranging in size from tens of microns to several millimeters, neuronal and glial interactions 

with an electrode are examined ranging from the individual cell scale to the network scale. Vertically 

aligned carbon nanotubes are employed as the electrode material due to their biocompatibility and 

beneficial physical texture. By using in vitro co-cultures of neurons and glia, the ‘herding’ of these 

cells is demonstrated whereby neurons predominately adhere to the electrodes and glia to the gaps 

surrounding the electrodes. This novel self-assembly prevents glia from dominating the electrode-

neuron interface but still allows them to maintain close enough proximity to the neurons on the 
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electrode to continue acting as their life-support system.  

Having successfully demonstrated the guidance of neurons to the electrode interface, would 

growth be enhanced on an electrode that is patterned into a bio-inspired design matching the precise 

fractal characteristics of the neurons, thereby demonstrating ‘fractal resonance’? To appropriately 

achieve this however, the precise fractal characteristics of the neuron must first be determined. 

Although the H-Tree fractal benefits from relative simplicity, it isn’t bio-inspired because its fractal 

characteristics are distinctly different to those of a neuron. Chapter IV describes experiments that aid 

the move towards bio-inspired fractal electrodes by investigating the relationship between the fractal 

properties of neurons and their functionality. Using confocal microscopy to create three-dimensional 

reconstructions of pyramidal neurons from the CA1 region of the rat hippocampus, the fractality of 

these neurons is determined to originate from a combination of the scaling of their branch lengths 

and the forking and weaving behavior of their branches. Distorted versions of these neurons are 

created to examine the consequences of deviating away from the natural fractal form. It is found that 

such distortions cause the neurons to deviate away from an optimal balance of connectivity with 

respect to building and operational costs. Regarding the application of neurons interfacing with the 

electrode surface of an implant, deviations from this optimal balance are hypothesized to suppress 

growth. 

In chapter V, this dissertation concludes with a review of the conclusions drawn from the 

experiments detailed in chapters III and IV and provides suggestions for directions forward regarding 

future experiments that can further test the models of cell behavior presented here. For example, 

techniques are suggested that can further examine neuronal and glial behavior by quantifying their 

network topography, distinguishing between different cell types, and identifying neuron-electrode 

anchor points. Additionally, preliminary results from studies extending the connectivity-cost 

optimization model developed in chapter IV to retinal bipolar neurons are presented and implications 
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for how this informs electrode designs meant to test the ‘fractal resonance’ hypothesis are discussed. 

The work presented throughout chapters III and IV of this dissertation would not have been 

possible without the combined efforts of my collaborators, for which I am very thankful. The work 

presented within chapter III has been adapted from previously published co-authored work by Saba 

Moslehi (SM), Conor Rowland (CR), Julian H. Smith (JHS), William J. Watterson (WJW), David 

Miller (DM), Cris M. Niell (CMN), Benjamín J. Alemán (BJA), Maria-Thereza Perez (MTP), and 

Richard P. Taylor (RPT) in Controlled assembly of retinal cells on fractal and Euclidean electrodes, 

PLOS ONE 17, e0265685 (2022) and by SM, CR, JHS, Willem Griffiths (WG), WJW, CMN, BJA, 

MTP, and RPT in Comparison of fractal and grid electrodes for studying the effects of spatial 

confinement on dissociated retinal neuronal and glial behavior, Scientific Reports 12, 17513 (2022). 

My contributions to the above publications include fabricating VACNT electrodes, developing 

methods to analyze neuronal and glial cell behavior, and performing retinal cell cultures, 

immunocytochemistry, fluorescence microscopy, and image analysis. I would like to thank SM, 

WJW, DM, and BJA for their work developing the VACNT synthesis process. I would like to thank 

MTP for her work providing retinal cell culture and immunocytochemistry protocols. I would like to 

thank SM for her contributions to fabricating VACNT electrodes. I would like to thank SM and JHS 

for their contributions to performing retinal cell cultures, immunocytochemistry, and fluorescence 

microscopy. I would like to thank SM, WJW, and JHS for their contributions to developing methods 

to analyze neuronal and glial cell behavior. Finally, I would like to thank SM, JHS, and WG for their 

contributions to performing image analysis.  

 The work presented within chapter IV has been adapted from previously published 
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CHAPTER II 

BACKGROUND 

Neuronal Morphology and Functionality 

Following Santiago Ramón y Cajal’s groundbreaking research that included beautiful 

illustrations of the complex morphology of neurons72, a vast body of research has formed around 

the goal of categorizing the many different types of neurons. Given the incredible range of neuronal 

morphologies, it is unsurprising that the different types of neurons occupy a wide variety of functional 

roles. In the retina alone, it is estimated that there are over 100 neuron types73–75. The first step 

towards understanding the relationship between morphology and functionality is to define the basic 

structural features of a neuron. These include the neuron’s cell body (often referred to as the soma), 

dendrites, and axon. Figure 2-1 provides a diagram labelling each of these features. The collection of 

all of a neuron’s dendrites can be referred to as its dendritic arbor. Similarly, if a neuron’s axon 

bifurcates into multiple branches, this can be referred to as its axonal arbor. Also depicted in Fig. 2-

1 are the myelin sheath (which insulates the neuron’s axonal arbor and is provided by Schwann cells 

in the peripheral nervous system or oligodendrocytes in the central nervous system), nodes of Ranvier 

(which aid in the efficient propagation of action potentials), and synapses (which allow neurons to 

connect and transfer electrical or chemical signals to each other).  

While Fig. 2-1 provides a useful model for understanding the basic structural and functional 

components of neurons, it doesn’t capture the variety of ways in which different neuron types employ 

these components. Some neuron types feature dense dendritic arbors but sparse axonal arbors, while 

others don’t have any dendrites at all and their primary function is to stimulate other neurons using 

their axonal arbor. Amazingly, it has been shown that individual neurons within the hippocampus 

contain up to 60000 synaptic connections76. The impressive diversity seen across different neuronal  
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Figure 2-1.  Diagram labelling the primary structural features of a neuron. (Adapted from Biology 

by Connie Rye et al.77) 

morphologies can instantly be appreciated from the illustrations created by Ramón y Cajal. Figure 

2-2 shows one such illustration including several neuron types within the mammalian cerebellum. 

Given this diversity, it becomes apparent that categorizing different types of neurons must account 

for neuronal morphology. 

While the detailed categorization of the many neuron types is undeniably an important field 

of research, another valuable approach is to examine universal behavior within and across different 

neuron types. Such studies provide us with a better understanding of the fundamental principles 

underlying neuron growth. Building on Ramón y Cajal’s wiring economy principle, previous studies 

have demonstrated that the power-law scaling of various morphological metrics derived from a  
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Figure 2-2.  Illustration of various neuron types within the mammalian cerebellum. (Adapted from 

Texture of the Nervous System of Man and the Vertebrates by Santiago Ramón y Cajal72) 

neuron’s dendritic arbor as well as self-similarity within the arbor are tied to the neuron’s ability to 

create optimally wired networks that minimize various costs, including metabolic expenditures78,79, 

wire volume80–82, and signal attenuation and delay83–85. However, these studies have relied on 

extracting power-law and self-similarity scaling exponents using large datasets of neurons. One 

consequence of this is that these studies do not address how variations in scaling properties across 

different neurons within a dataset might also be related to their functionality. 

Fractal analysis provides a potential avenue for addressing this issue because it allows for a 

quantification of the self-similarity of an individual neuron’s dendritic arbor. Although numerous 

previous studies have quantified the fractal scaling properties of dendritic arbors, this was typically 

done measure the complexity of the arbor or to test the effectiveness of fractal analysis at 
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appropriately categorizing neuron types17,21,86–100. However, the propensity for neurons to display 

fractal scaling leads to an important question. Why does the body rely on fractal neurons rather than, 

for example, the Euclidean wires prevalent in everyday electronics? The research presented in 

chapter IV of this dissertation addresses this question by charting relationships between the fractal 

properties of neurons and their functional demands. 

Fractal Analysis 

The seeds of fractal analysis were sown well before Benoit Mandelbrot coined the term 

‘fractal’. Starting in the late 1800s to early 1900s, mathematicians like Georg Cantor, Helge von 

Koch, and Giuseppe Peano, with their analyses of the Cantor set, Koch curve, and Peano curve, 

challenged the effectiveness of Euclidean geometry to appropriately characterize structures 

displaying highly disjoint, irregular, or jagged features. Mandelbrot, recognizing that many natural 

systems display these features, developed fractal geometry to better understand them. Whereas the 

morphology of coastlines, trees, and clouds was often simply viewed as disordered and irregular, 

Mandelbrot had the insight to identify the structures’ underlying order. Critically, Mandelbrot 

identified that many natural systems display statistical self-similarity that can be characterized by a 

fractal dimension, D, that exists in between the integer dimensions associated with Euclidean 

geometry. Whereas some mathematical fractals like the Peano curve (for which D = 2) are still 

described by integer dimensionality, this is typically not the case for natural systems. 

The difference between the ‘perfect’ self-similarity of many mathematical fractals and the 

statistical self-similarity of many natural systems can be better understood by examining the behavior 

of fractal bifurcating trees. The leftmost tree in Fig. 2-3 is generated using a power-law distribution 

of branch lengths and a constant forking angle. The behavior of higher order branches within the tree 

are seen to be self-similar to the tree as a whole. The middle-left and middle-right trees in Fig. 2-3 

are constructed in the same manner as the leftmost tree except that statistical variations have been 
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inserted into the distribution of branch lengths (middle-left) and the forking angles (middle-right). 

The rightmost tree in Fig. 2-3 has had a statistically varying weave inserted into its branches but 

maintains the same branch length distribution and forking angle as the leftmost tree. By inserting 

these variations into the leftmost tree’s branches, the tree deviates away from the self-similar 

condition and instead displays statistical self-similarity. This statistical self-similarity is further 

visualized in Fig. 2-4, which shows a tree with weaving branches and statistical variations in its 

branch lengths and forking angles. By clipping off and zooming in on higher order branches within 

the tree, the statistical self-similarity of the structure becomes apparent. 

 

Figure 2-3.  Statistical variations of a fractal bifurcating tree. 

 

Figure 2-4.  Visual demonstration of statistical self-similarity within a fractal bifurcating tree. The 

leftmost image shows the entire tree, while the three images from middle-left to right show zoom-ins 

of higher order branches within the tree. The color of each zoom in is shared with the leftmost image 

to indicate its placement within the tree. 

For many natural systems, their statistical self-similarity is tied to their fractal properties and 

so it is valuable to measure their D value. To elucidate the measurement of a structure’s D value, it 

is useful to start by examining a simple mathematical fractal. Consider the Koch curve, which is 
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generated by iterative replacement of straight line segments with lines that have a kink in the middle. 

Figure 2-5A illustrates what the Koch curve looks like as the number of iterations increases. The 

kinked line that replaces the straight line segments is often referred to as the ‘generator’ of the Koch 

curve. Figure 2-5B shows what the Koch curve looks like as the sharpness of the generator’s kink is 

changed. As the kink increases in sharpness, the corresponding D value of the Koch curve also 

increases. These Koch curves provide a visual demonstration of the relationship between D and the 

space-filling properties of a fractal. As D increases, so too does the degree to which a fractal fills 

space.  

 

Figure 2-5.  Constructing the Koch curve. (A) Diagram of a Koch curve as the number of iterations 

used to generate the curve increases. (B) Diagram of multiple Koch curves constructed using different 

generators. The D value of each curve depends on the shape of its generator. 

The traditional Koch curve’s generator has a kink corresponding to a 60° angle. Assuming 

the traditional Koch curve is built starting with a straight line of unit length, the corresponding length 

of each of the 4 line segments comprising the generator is 1/3. Using the following equation, the 



 

14 
 

 

theoretical fractal dimension, DT, of the Koch curve can be calculated: 

 
𝐷𝑇 = −

𝑙𝑜𝑔(𝑁𝜀)

𝑙𝑜𝑔(𝜀)
 (Eq. 2-1) 

Here, Nε is the number of elements in the generator and ε is the scaling factor of those elements. For 

the traditional Koch curve, Nε = 4 and ε = 1/3, which gives a DT value of approximately 1.26. Though 

Eq. 2-1 is useful in its application to mathematical fractals displaying regular self-similar scaling in 

their structure, the question remains as to how D can be measured for physical fractals that instead 

display statistical self-similarity. 

Addressing this question, Mandelbrot adopted a technique employed by Lewis Fry 

Richardson in his measurements of the scaling properties of coastlines. For structures that can be 

represented by a continuous curve, such as coastlines, the structure’s D value can be measured by 

counting the number, NR, of straight rulers of length LR that are needed to trace it across a range of 

LR values. If NR follows a power-law relationship with LR (as given by Eq. 2-2 below), then the D 

value of the curve can be measured over the range of LR values for which the relationship holds. 

 𝑁𝑅 ∝ 𝐿𝑅
−𝐷 (Eq. 2-2) 

Another useful technique that has commonly been employed to measure the D value of a 

structure is the ‘box-counting method’. An important advantage that this technique has over 

Richardson’s ‘coastline method’ is that it doesn’t require any continuity in a structure. The box-

counting method simply relies on counting the number of boxes, NB, occupied by a structure when it 

is placed in a grid of boxes of side length LB. Similar to the coastline method, if a power-law 

relationship between NB and LB holds over a range in LB, then the D value of the structure can be 

measured as follows: 

 𝑁𝐵 ∝ 𝐿𝐵
−𝐷 . (Eq. 2-2) 

Figure 2-6 shows example scaling plots for three different Koch curves as given by the coastline and 
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box-counting methods with the DT and D values of the corresponding curve indicated at the top of 

each plot. 

 

Figure 2-6.  Coastline and box-counting fractal analyses applied to three different Koch curves. The 

left column shows the scaling plots resulting from application of the coastline method to Koch curves 

constructed from generators with kinks corresponding to 10°, 60°, and 80° angles (from top to 

bottom). The right column shows the scaling plots resulting from application of the box-counting 

method to the same three Koch curves. The measured D value is indicated at the top of each plot. 

Below this, the DT value of the corresponding Koch curve is also indicated. The bottom-left (red) and 

top-right (magenta) insets of each plot show what the corresponding Koch curve looks like when 

represented at small and large size scales. The specific size scales are indicated by the highlighted 

data points in the scaling plot. 
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After Mandelbrot’s demonstration of the effectiveness of fractal geometry at characterizing 

the behavior of many natural systems, it was quickly adopted by many researchers. However, as the 

body of research applying fractal analysis to natural systems grew, an important question became the 

focus of debate - when is it appropriate to label behavior as fractal? In his seminal work15,16, 

Mandelbrot introduced fractality as an umbrella terminology to unite studies of scale invariant 

behavior in physical and mathematical systems. Importantly, he didn’t introduce precise scaling 

ranges into the definition of fractality. While this was in part because of the clear contrast between 

the infinite pattern repetition of mathematical fractals and the limited pattern repetition of physical 

fractals, it crucially was also because the scaling range necessary for fractality to impact functionality 

varies considerably between physical objects. Addressing this debate, a survey was conducted that 

revealed published experimental studies of fractality in physical systems typically displayed scale 

invariance over only 1.3 orders of magnitude101,102. Guidelines from the survey authors for whether 

scaling plots with limited range are useful included: 1) “[it] condenses the description of a complex 

geometry”, 2) “It allows one to correlate in a simple way properties and performances of a system to 

its structure.” As will be demonstrated in chapter IV of this dissertation, investigating the morphology 

and functionality of neurons using fractal analysis meets these guidelines.  

Carbon Nanotubes as an Implant Electrode Material 

Carbon nanotubes (CNTs) are a patternable electrode material that simultaneously meet the 

multiple demands of medical implants that interface with neural tissue. In particular, the material 

must be biocompatible and follow a stringent set of electrical, chemical, and mechanical properties. 

Electrically, the electrode must inject sufficiently large currents into the neural tissue, ideally through 

a purely capacitive means103. Chemically, electrode materials must resist degradation in the 

physiological environment of neural tissue and should support surface functionalization to increase 

their hydrophilicity, thereby preventing neuronal cell death and stimulating neurite outgrowth104, and 
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also reduce the voltage threshold needed for neuronal stimulation105. Mechanically, they need to be 

strong and yet flexible to reduce inflammation and glial scarring in the surrounding tissue106–108. 

Furthermore, soft materials (i.e., mechanically compliant)109,110 and materials with rough, textured 

surfaces111,112 can enhance neurite outgrowth, elongation rate, and branching. 

CNTs are electrically conductive and have a double-layer capacitance that compares 

favorably to most other materials113. They are mechanically flexible114–116 yet incredibly strong117, 

and their molecular-scale diameter promotes strong adhesion and electrical coupling with 

neurons118,119. Vertically aligned carbon nanotubes (VACNTs) can be patterned and synthesized 

using chemical vapor deposition (CVD) to form high-aspect-ratio structures with heights exceeding 

500 µm120, and because neurons adhere strongly to CNTs, patterned CNTs can be used as scaffolds 

to guide neurite growth121. Importantly, while the biocompatibility of CNTs depends on the kind of 

tissue the CNTs interact with as well as the method of CNT synthesis, several types of neural tissue, 

including hippocampal and cortical neurons, glial cells, and retinal precursor cells120–124, have been 

shown in vitro to be biocompatible with CNTs. Additionally, CNTs can be chemically functionalized 

to further improve their biocompatibility. Neurons cultured on functionalized CNTs have been shown 

to display improved neurite outgrowth and branching125,126. Furthermore, previous studies have 

highlighted CNTs ability to decrease glial scar tissue formation127 and have demonstrated their 

capacity to stimulate neurons effectively105,118,128 and boost signal transmission129–132.  Due to this 

combination of useful properties, CNTs have been employed in multi-electrode arrays (MEAs) for 

epiretinal implants133,134 and in vitro MEA studies where CNTs improved the signal-to-noise ratio, 

lowered the stimulation threshold, and minimized glial scarring135.  

Throughout chapter III of this dissertation, VACNTs are employed as an electrode material 

to examine how various electrode geometries impact the morphological properties of in vitro cultures 

of retinal neurons and glia. The specific VACNT preparation that is used was motivated by the 
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beneficial properties associated with CNTs described above and by a previous study (on which I am 

a co-author) that tested the impact of various VACNT preparations on the growth of retinal 

neurons136. The results of that study indicated that unfunctionalized VACNTs grown via CVD on an 

aluminum/iron catalyst layer (labelled as Al/Fe) had significantly more neurite growth than similarly 

grown VACNTs functionalized with oxygen plasma (labelled as Al/Fe+Pl). They also performed 

better than both functionalized and unfunctionalized VACNTs grown on an iron catalyst layer 

(labelled as Fe+Pl and Fe, respectively). A qualitative representation of this result is shown in Fig. 2-

7. 

 

Figure 2-7.  Impact of VACNT preparation on neurite growth. Fluorescence images of β-tubulin III 

labelled neurons (red), GFAP labeled glia (green), and cell nuclei (blue) on multiple VACNT 

preparations. (a) Fe, (b) Al/Fe, (c) Fe+Pl, and (d) Al/Fe+Pl preparations showing the occurrence of 

neurite-bearing cells and the extent of neurite outgrowth in the different preparations. The arrows in 

each image indicate examples of neurite growth. The scale bars all correspond to 50 µm. (Figure 

adapted from The Roles of an Aluminum Underlayer in the Biocompatibility and Mechanical 

Integrity of Vertically Aligned Carbon Nanotubes for Interfacing with Retinal Neurons by Saba 

Moslehi et al.136) 
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Surface Patterning as a Mechanism for Controlling Neuronal and Glial Behavior 

A diverse range of previous studies have investigated the impact that a surface’s various 

physical properties have on the behavior of neurons and glia. For example, materials with nano-rough 

surface features as well as those that have been patterned at the micro-scale using lithography have 

been used to control cell attachment and guidance66,67,137–141 and test their ability to reduce gliotic 

responses142,143. Neurite growth has been shown to be enhanced by soft, textured surfaces138,144–146 

through their close resemblance to the structure of the extracellular matrix (ECM)120,147. In contrast, 

glial coverage achieved by cell growth and division was seen to be dampened on textured as well as 

softer substrates as a result of weakened surface interactions143,148–153. Consistent with these results, 

an experiment employing a co-culture of neurons and glia demonstrated that neurons accumulate on 

rows of nanowires while glia accumulate in the flat regions between them142. Despite all these efforts, 

the mechanisms controlling the interactions of different cell types with various surfaces are yet to be 

fully understood. 

The research presented in chapter III of this dissertation focuses on the importance of the 

combination of electrode geometry and material properties for controlling neuronal and glial 

behavior. Whereas fractal surface texturing has been shown to enhance capacitance103,154 and cell 

growth155–158, surfaces employing fractal branch patterns to selectively direct cell growth have not 

been considered. Most previous studies of directed cell growth have all focused on single-scale 

(Euclidean) geometries. A critical aim of the research presented in chapter III is to display the 

capability of patterned VACNT electrodes to ‘herd’ neurons and glia, where herding implies that 

neurons preferentially adhere to and form dense networks on the textured, fractal branches of the 

electrode and glial cells primarily cover the smooth SiO2 surface of the gaps between the electrode 

branches. 
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CHAPTER III 

RETINAL CELL ASSEMBLY AT THE LARGE SCALE 

The work presented within this chapter has been adapted from previously published co-

authored work by S. Moslehi, C. Rowland, J. H. Smith, W. J. Watterson, D. Miller, C. M. Niell, B. 

J. Alemán, M.-T. Perez, and R. P. Taylor in Controlled assembly of retinal cells on fractal and 

Euclidean electrodes, PLOS ONE 17, e0265685 (2022) and by S. Moslehi, C. Rowland, J. H. Smith, 

W. Griffiths, W. J. Watterson, C. M. Niell, B. J. Alemán, M.-T. Perez, and R. P. Taylor in 

Comparison of fractal and grid electrodes for studying the effects of spatial confinement on 

dissociated retinal neuronal and glial behavior, Scientific Reports 12, 17513 (2022). 

This chapter begins by providing an overview of the experimental methods used to 

investigate the impact of large-scale lateral patterning of vertically aligned carbon nanotube 

(VACNT) electrodes on the assembly of retinal neuronal and glial cells in vitro. The results of the 

experiment are then presented qualitatively and quantitatively. Patterns featuring several different 

Euclidean and fractal geometries are examined. The Euclidean patterns include rows of VACNTs of 

varying width separated by rows of bare silicon dioxide (SiO2) of varying width, while the fractal 

patterns include H-Tree fractals of varying fractal dimension and number of repeating levels. The 

behavior of the network of neurons that forms on the patterned VACNTs is investigated by measuring 

the degree of process growth on the VACNT surfaces as well as the surrounding SiO2 surfaces. In a 

similar fashion, the behavior of the glial cells is investigated by measuring the degree to which they 

cover the VACNT and SiO2 surfaces. A model is presented that details the impact that electrode 

geometry has on the behavior of the neurons and glia. The implications of the model are then tested 

by comparing two different pattern geometries, specifically a Euclidean grid and an H-Tree fractal. 

In general, it is found that the VACNT-SiO2 material system performs well at supporting neuron 

growth on the VACNTs while also guiding glial growth onto the surrounding SiO2 and that electrode 
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geometries which strike a balance between providing a large VACNT surface while also allowing 

the surrounding SiO2 surface to interpenetrate the VACNT surface in a manner that maintains the 

connectedness of the SiO2 surface are likely to perform the best at supporting healthy networks of 

neurons and glia over the long term. 

Electrode Patterning 

In total, 13 unique geometries were used to pattern the VACNT electrodes. Each of these 13 

geometries were partitioned into three primary groups. The first group was patterned into Euclidean 

rows of electrode width, WCNT, and separation, WSi. The second group was patterned into H-Tree 

geometries of fractal dimension, D, and repeating level, m. Here, repeating level refers to how many 

different size scales the ‘H’ pattern are present in the design (i.e. 4 repeating levels means H’s at 4 

different size scales are used to construct the fractal). The third group was patterned into a Euclidean 

grid with square chambers of constant width, WSi. For each of these groups, the overall width of the 

electrode, W, the area covered by the electrode, ACNT, the bounding area of the electrode, Abounding, 

and the area of the SiO2 surface contained within the bounding area of the electrode, ASi, are all 

affected by the specific choice of geometric parameters used in the electrodes patterning. Table 3-1 

gives a summary of each of these geometric measurements for all of the electrode groups. The naming 

convention for the subgroups within the Euclidean Rows group (given as S[WSi]C[WCNT]) indicates 

the WSi and WCNT values corresponding to that subgroup. The naming convention for the subgroups 

within the Fractal group (given as D-m) indicates the fractal dimension and repeating level 

corresponding to that subgroup. Figure 3-1 indicates how WCNT, WSi, and W are measured for each of 

the electrode groups. 
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Table 3-1.  Geometric measurements for each of the patterned electrode groups. 

Subgroup 
WCNT 

(µm) 

WSi  

(µm) 

W 

(µm) 

ACNT 

(µm2) 

ASi 

(µm2) 

Abounding 

(µm2) 

Euclidean Rows 

S100C100 100 100 6.0×103 1.8×107 1.7×107 3.5×107 

S75C100 100 75 6.0×103 2.0×107 1.5×107 3.5×107 

S50C100 100 50 6.0×103 2.4×107 1.2×107 3.6×107 

S25C100 100 25 6.0×103 2.9×107 7.0×106 3.6×107 

S75C75 75 75 6.0×103 1.8×107 1.8×107 3.6×107 

S50C50 50 50 6.0×103 1.8×107 1.8×107 3.6×107 

S25C25 25 25 6.0×103 1.8×107 1.8×107 3.6×107 

Fractal 

1.1-4 20 X 6.0×103 8.0×105 1.8×107 1.9×107 

1.5-4 20 X 6.0×103 1.5×106 2.1×107 2.3×107 

2-4 20 X 6.1×103 2.3×106 2.4×107 2.7×107 

2-5 20 X 6.3×103 4.6×106 2.3×107 2.8×107 

2-6 20 X 6.3×103 8.8×106 1.8×107 2.8×107 

Grid 

X 20 61 3.5×103 5.4×106 6.9×106 1.2×107 

 

 

Figure 3-1.  Example measurements of various geometric widths on each patterned electrode group. 

CNT width, WCNT, SiO2 width, WSi, and overall electrode width, W, are indicated on schematics of 

example patterns from the (a) Euclidean Rows, (b) Fractal, and (c) Grid groups. Panels (d), (e), and 

(f) show zoom-ins on the regions within the red squares in (a), (b), and (c), respectively.  
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VACNT Synthesis and Characterization 

Microfabrication and lithography techniques were used to synthesize the VACNT electrodes 

following procedures that have been described in detail elsewhere136. Briefly, 2-inch silicon wafers 

with a 300 nm thermal oxide (SiO2) top layer were cleaned and patterned using photolithography 

techniques. After photoresist development, a 2-5 nm aluminum (Al) adhesive layer was deposited 

thermally followed by an electron-beam deposition of a 3-5 nm iron (Fe) catalyst layer. After 30 

seconds of acetone soaking accompanied by sonication to lift off the photoresist layer, the wafer was 

then cut into individual samples with each sample featuring one electrode. Not all of the fabricated 

samples were used in the dissociated cell culture experiments. Some samples were eliminated due to 

visible defects or were saved for further SEM characterization. Chemical vapor deposition (CVD) 

techniques were used to synthesize VACNTs on the catalyst patterns in a 2-inch quartz tube. A 2:1 

mixture of ethylene (C2H4):hydrogen (H2) (200 and 100 SCCM, respectively) accompanied by a 600 

SCCM flow of Argon (Ar) was maintained during the 3-minute growth time at 650°C. This technique 

resulted in patterned electrodes consisting of entangled ‘forests’ of VACNTs (Fig. 3-2 and Fig. 3-3) 

with heights in the range of 20-45 µm. The electrodes were then stored in integrated circuit trays in 

a desiccator cabinet. The top surface and sidewalls of the VACNTs, their heights and general 

conditions were inspected using a ZEISS-Ultra-55 scanning electron microscope. No visual 

differences were observed between samples from the various electrode designs and fabrication runs. 

During culture, the samples were placed in 4-well culture plates (Sarstedt, Newton, NC) with one 

sample per well. 
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Figure 3-2.  Schematic and scanning electron microscopy (SEM) images of electrodes from the 

Fractal group with different fractal dimensions and repeating levels. Left column from top to bottom: 

(D = 1.1 and m = 4, labelled as 1.1-4), (D = 1.5 and m = 4, labelled as 1.5-4), (D = 2 and m = 4, 

labelled as 2-4), (D = 2 and m = 5, labelled as 2-5), (D = 2 and m = 6, labelled as 2-6). Right column: 

equivalent SEM image of the area marked by the red square in each electrode on the left column. The 

scale bars are 100, 200, 400, 200 and 200 µm from top to bottom. 
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Figure 3-3.  SEM images of patterned VACNT forests taken before the culturing experiments. (a) 

Top-down view of entangled VACNTs on the forest’s top surface, (b) View of the sidewall of a 

VACNT row taken at a 40° angle. Scale bars are 2 and 10 µm, respectively. 

Dissociated Retinal Cell Cultures 

Wildtype C57BL/6J mice were kept at animal welfare services at University of Oregon (UO) 

with full time access to fresh water and food supplies. Handling and culture procedures involving the 

mice were performed according to protocols approved by the UO’s Institutional Animal Care and 

Use Committee (IACUC) under protocol 16-04, in compliance with the ARRIVE and National 

Institutes of Health guidelines for the care and use of experimental animals. Dissociated retinal cell 

cultures were employed using protocols described elsewhere69,136,159. Briefly, postnatal day 4 (PN4) 

mice were euthanized by decapitation and their retinas quickly dissected and kept in Dulbecco’s 

Modified Eagle Medium (DMEM – ThermoFisher Scientific, Waltham, MA) containing high-

glucose, sodium pyruvate, L-glutamine, and phenol red. For each culture experiment, four retinas 

were transferred into an enzyme solution containing DMEM, papain (Worthington Biochemical 

Corporation, Lakewood, NJ) and L-cysteine (Sigma-Aldrich, St Louis, MO). The digested retinas 

were carefully rinsed with DMEM and transferred to new DMEM containing B27 (Sigma-Aldrich, 
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St Louis, MO) and L-glutamine-penicillin-streptomycin (Sigma-Aldrich, St Louis, MO). The 

dissociated retina solution was then centrifuged, and the resulting cell pellet was re-suspended in the 

DMEM/B27/antibiotic solution. The cell suspension (500 µL) was subsequently seeded onto each 

well containing an electrode. The cells were cultured for 17 DIV at 37°C and 5% CO2. The culture 

medium was first changed at 3 DIV and then every other day until the end of the culture time. No 

protocols such as precoating the surfaces with poly-D-lysine (PDL) or poly-L-lysine (PLL) were 

used to increase the neuronal and glial adhesion to the different surface types. The live cell density 

as measured by a hemocytometer was (3.7 ± 0.4) × 106 cells/mL. 

Immunocytochemistry 

The immunocytochemistry protocol is described in detail elsewhere69,136,159. Briefly, the cells 

were fixed with 4% paraformaldehyde (PFA), rinsed with a phosphate buffered solution (PBS) and 

pre-incubated in PBS-complete, containing PBS, Triton-X (Sigma-Aldrich, St Louis, MO), bovine 

serum albumin (BSA) (Sigma-Aldrich, St Louis, MO), goat normal serum and donkey normal serum 

(Jackson ImmunoResearch, West Grove, PA). The cells were subsequently incubated with PBS-

complete containing the primary antibodies, mouse anti-β-tubulin III (neuronal marker for several 

neuron types in the mouse retina160,161 – Sigma-Aldrich, St Louis, MO) and rabbit anti-glial fibrillary 

acidic protein (GFAP; glia marker – Agilent, Santa Clara, CA) over night at 4°C. The cells were then 

rinsed and incubated with PBS-complete containing the secondary antibodies Cy3 goat anti-mouse 

IgG and AlexaFluor 488 donkey anti-rabbit IgG (Jackson ImmunoResearch, West Grove, PA). The 

secondary antibody solution was then removed and the cells rinsed with PBS. The samples were 

transferred to microscope slides and mounted with Vectashield containing DAPI (fluorescent cell 

nuclear marker that binds to DNA – Vector Laboratories, Burlingame, CA). 

Fluorescence Microscopy 

A Leica DMi8 inverted fluorescence microscope was used to take 20× images in the Cy3 
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(excited at 550 nm, emission peak at 570 nm), AlexaFluor 488 (excited at 493 nm, emission peak at 

519 nm) and DAPI (excited at 358 nm, emission peak at 461 nm) channels for all electrodes. The top 

VACNT and bottom SiO2 surfaces were imaged separately with the focus being adjusted to these 

surfaces. The 2048 × 2048 pixel2 (662.65 × 662.65 µm2) field of views (FOVs) in each channel were 

then stitched together using an automated stitching algorithm with 10% overlap at the edges of 

neighboring FOVs to create full electrode images. 

Post-culture SEM imaging 

For post-culture SEM imaging, cells were fixed in 1.25% and 2.5% glutaraldehyde solutions 

in deionized (DI) water for 10 and 20 minutes, respectively. After rinsing 3 times in PBS for 10 

minutes each, the wafers were submerged in increasing concentrations of ethanol (50%-100%) for 

15 minutes each for dehydration. They were then submerged in a 2:1 solution of ethanol:HMDS for 

20 minutes followed by a 20-minute rinse in 1:2 ethanol:HMDS and finally a 20-minute rinse in 

99.9% HMDS. The cells were left in fresh 99.9% HMDS overnight to let it evaporate. The electrodes 

were then coated with a 20 nm thick layer of gold before SEM imaging. 

Quantitative Measurement of the Neuron Process Length and Glial Coverage 

Neuron process growth was chosen as the morphological phenotype measurement of 

neuronal cell health and function162,163. This was in part based on the long-term goal of employing 

electrodes for neuron stimulation and the high density of stimulation sites on the processes. The 

quantitative analysis involved a calculation of the density of processes (i.e. total length of the 

neurons’ dendrites and axons within a given surface area). Based on their role of promoting neuron 

homeostasis and survival, the glial analysis focused on quantifying the surface area expressing the 

cytoskeletal marker GFAP143. This analysis involved a calculation of their surface coverage density 

(referred to hereafter as ‘coverage’, i.e. the surface area covered by glia normalized to the total surface 

area available).  
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To perform this quantitative analysis, binary masks were created for each electrode geometry 

and applied to all acceptable FOVs for each electrode so that the SiO2 and VACNT surfaces could 

be analyzed separately. Unacceptable FOVs (e.g. those with any abnormalities such as VACNT 

deformations) were rare: typically 2 out of 50 FOVs. An automated image analysis algorithm (based 

on one previously reported by Wu et al.164) was integrated with the binary masks to detect and 

measure the process length per FOV on the SiO2 and VACNT surfaces separately. In cases when 

processes physically overlapped (for example, when they ‘bundled’ together and followed a common 

route on the surface or when multiple processes followed the same electrode edge), the algorithm 

detected these as one process. This resulted in an undercount of processes, especially on the VACNT 

surface, but did not affect the general results of the experiments. For each electrode, the normalized 

process length on the SiO2 (NSi) and the VACNT (NCNT) surfaces was then defined as the total process 

length on each surface across all FOVs (NLSi or NLCNT) divided by the total area of that surface in the 

electrode (ASi or ACNT): 

 
𝑁𝑆𝑖 =  

𝑁𝐿𝑆𝑖

𝐴𝑆𝑖
 (Eq. 3-1) 

 
𝑁𝐶𝑁𝑇 =  

𝑁𝐿𝐶𝑁𝑇

𝐴𝐶𝑁𝑇
 

(Eq. 3-2) 

Adopting the above definitions for NSi and NCNT, these parameters have units of µm-1
. 

For the glia, a semi-automated thresholding algorithm was integrated with the binary masks 

to detect and measure the glial area per FOV on the SiO2 and VACNT surfaces separately. For each 

electrode, the normalized glial area on the SiO2 and the VACNT surfaces were then defined as the 

total glial area on each surface across all FOVs (GASi or GACNT) divided by the total area of that 

surface: 
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𝐺𝑆𝑖 =

𝐺𝐴𝑆𝑖

𝐴𝑆𝑖
  (Eq. 3-3) 

 
𝐺𝐶𝑁𝑇 =

𝐺𝐴𝐶𝑁𝑇

𝐴𝐶𝑁𝑇
  

(Eq. 3-4) 

Adopting the above definitions for GSi and GCNT, these parameters are unitless. To minimize the error 

in detecting neuron process length and glial area around the edges of the electrodes on both surfaces, 

FOVs were inspected, and mask measurements were adjusted manually if necessary to allow for the 

correct detection of in-focus features. Figure 3-4 illustrates an application of the glial coverage and 

neuron process detection algorithms to the VACNT surface of a fractal electrode. 

 

Figure 3-4.  Representative images of the algorithm’s process for detecting glial coverage and neuron 

processes. Fluorescence images of (a) glia and (e) neurons on the VACNT and SiO2 surfaces of a 

fractal electrode where the focus is set on the VACNT surface. (b, f) The binary masks associated 

with the FOVs shown in (a) and (e) respectively. (c, g) Combination of the FOVs in (a, b) and (e, f) 

respectively for isolating the glia and neurons on the VACNT surface. (d, h) Applying the glia 

thresholding and neuron process detection algorithms to the FOVs shown in (c) and (g). 

In order to quantitatively compare the total neuron process length and total glial coverage 

area of the VACNT and SiO2 surfaces, three ‘herding’ parameters were introduced. Neuron herding, 

N, glia herding, G, and combined herding, GN, were defined as follows: 
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𝑁 =  

𝑁𝐶𝑁𝑇

𝑁𝑆𝑖 + 𝑁𝐶𝑁𝑇
 (Eq. 3-5) 

 
𝐺 =  

𝐺𝑆𝑖

𝐺𝑆𝑖 + 𝐺𝐶𝑁𝑇
 

(Eq. 3-6) 

 𝐺𝑁 = 𝐺 × 𝑁 (Eq. 3-7) 

N and G values greater than 0.5 indicate successful guiding of neuron processes and glial cells to the 

desired VACNT or SiO2 surface, respectively. Specifically, the N > 0.5 condition corresponds to 

more neuron processes existing on the VACNT surface than the SiO2 surface. The G > 0.5 condition 

corresponds to more glial coverage on the SiO2 surface than the VACNTs surface. GN was calculated 

to compare combined herding powers between various electrode groups. 

Statistical Analysis 

All statistical analyses presented within this chapter were done using functions available in 

MATLAB’s Statistics Toolbox. The Shapiro-Wilk test was performed to determine the normality of 

the various neuronal and glial parameters. Because some of the distributions failed the normality 

criteria, the nonparametric Kruskal-Wallis test for significance (with a significance level of 0.05) was 

used to compare the medians of neuronal and glial parameters against various null hypotheses (for 

example GSi and GCNT were tested against the null hypothesis that surface material would not impact 

glial behavior). When multiple groups were being compared and significance was found using the 

Kruskal-Wallis test, the nonparametric post-hoc Dunn’s test (with a significance level of 0.05) was 

used to determine which group pairings had a significant difference. Table 3-2 provides a summary 

of how many electrodes and how many independent cultures were used in these experiments for each 

electrode group. Some samples were excluded due to complications in fabrication or culturing 

procedures. Each independent culture included electrodes from multiple groups. 
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Table 3-2.  Total number of each electrode geometry used as well as the number of independent 

cultures for each electrode design. 

Culture 

Duration 
3 DIV 7 DIV 17 DIV 

Subgroup 

Number 

of 

electrodes 

Number of 

independent 

cultures 

Number 

of 

electrodes 

Number of 

independent 

cultures 

Number 

of 

electrodes 

Number of 

independent 

cultures 

Euclidean Rows 

S100C100 6 3 11 7 8 6 

S75C100 3 2 4 4 6 4 

S50C100 3 1 5 4 6 4 

S25C100 3 1 5 4 4 2 

S75C75 3 1 6 3 4 3 

S50C50 3 1 6 3 5 3 

S25C25 2 1 6 3 5 2 

Fractal 

1.1-4 X X X X 7 2 

1.5-4 X X X X 7 5 

2-4 X X X X 9 4 

2-5 X X X X 11 5 

2-6 X X X X 10 4 

Grid 

X X X X X 7 3 

 

Qualitative Observations of Herding in the Euclidean Rows and Fractal Groups 

To begin, qualitative observations were made for the Euclidean Rows group using 

fluorescence and electron microscopy at 17 DIV to establish the basic herding properties of the retinal 

cells. Large numbers of glial cells were observed in the SiO2 gaps, but they were confined by the 

electrodes and never traversed them. Individual glia rarely attached to the electrodes (Fig. 3-5b and 

f) and when doing so typically exhibited a more branched morphology (Fig. 3-5e). In contrast, neuron 

processes grew on both the gap and electrode surfaces, although they were considerably longer and 

formed more complex networks on the electrodes. For both the gaps and electrodes, neuron somas 

were seen to cluster together and the relatively simple networks in the gaps featured fewer but larger 
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clusters (Fig. 3-5c and g). The neuron processes followed the top and the bottom edges of the 

electrodes upon reaching them and were able to climb up or down the sidewalls to connect cell 

clusters that existed on both surfaces (Fig. 3-5c, g, and h). The peak glia and neuron process locations 

along the direction perpendicular to the electrode rows (i.e. in the Y direction) were identified using 

the neuron process length and the glial coverage area algorithms by summing the neuron process 

length and the glial coverage area along the rows (i.e. in the X direction). The result demonstrates 

that glial coverage area peaked within the gaps and neuron process length was largest on the 

electrodes and peaked at their edges (Fig. 3-5a and d). 

Figure 3-6 summarizes the retinal cell responses to electrodes from the Fractal group imaged 

at 17 DIV. One notable characteristic of their multi-scaled geometry is the frequent change in branch 

direction. Although glia rarely adhered to the electrodes, they elongated themselves along the 

branches and were not restricted by their 90° turns (Fig. 3-6a). Glial cells were observed in the gaps 

of all Fractal subgroups by 17 DIV, even for the most restricted gap connections (see the 2-6 Fractal 

subgroup image in Fig. 3-6b). Neurons readily grew processes on the electrodes, forming networks 

that followed their edges and made 90° turns at branch junctions (Fig. 3-6e, f, and k). It should be 

noted that fractals with more than 6 repeating levels were excluded from the experiment because 

including more levels would have closed the electrode geometry to form disconnected gaps. 

To facilitate more detailed observations, three categories were defined that characterize the 

behavior of the cells within the SiO2 gaps. Figure 3-6 shows columns of example images of the 

neurons and glia, along with schematic representations immediately below these images: the 

electrode region (Fig. 3-6a, e, i-1, and j-1), the ‘boundary’ region (Fig. 3-6b, f, i-2, and j-2), the 

‘cluster’ region (Fig. 3-6c, g, i-3, and j-3), and the ‘desert’ region (Fig. 3-6d, h, i-4, and j-4). Furthest 

away from the electrodes were the desert regions, which featured a few individual neurons and small 
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Figure 3-5.  Neuronal and glial behaviors on electrodes from the Euclidean Rows group imaged at 

17 DIV. (a) Sum of glial coverage areas shown in panel (b) (measured in pixels with a pixel width 

of 0.32 µm), revealing peaks within the SiO2 gaps. (b) Representative fluorescence image of GFAP 

labelled glial cells of a S75C75 electrode superimposed on the regions of glial coverage identified by 

the algorithm (green). (c) Representative fluorescence image of β-Tubulin III labeled neurons of the 

same region in (b) superimposed on the neuron processes identified by the algorithm (red). (d) Sum 

of process lengths (in pixels) shown in panel (c), revealing peaks coinciding with the electrode edges. 

(e) Representative fluorescence image of a GFAP labelled glial cell (green) on the VACNT top 

surface of a S75C75 electrode. (f) Zoom-in representative fluorescence image of GFAP labeled glial 

cells of the area marked in (b). (g) Zoom-in representative fluorescence image of β-Tubulin III 

labeled neurons (red) of the area marked in (c). (h) SEM image of a S50C50 Euclidean electrode 

taken at 40° tilt showing neuron clusters and connecting processes (false-colored) adhering to the top 

surface and sidewalls of the electrode (7 DIV). The dotted black lines in (a) and (b) and the cyan 

lines in (e) and (f) locate the edges of the VACNT rows. Scale bars are 100 µm in (b) and (c), 50 µm 

in (e), (f), and (g), and 10 µm in (h). 

clusters with weak processes, along with a scattering of glial cells. Nearer to the electrodes, neurons 

aggregated into larger clusters physically connected to each other by bundles of processes and 

accompanied by significant numbers of glia. These are labelled as the cluster regions – in recognition 

of these typically larger clusters relative to those in the other regions. Many of these networks were 

connected to neurons on the electrodes via the boundary regions, which formed in some places along 

the electrode-gap interface. These boundary regions were composed of small to medium-sized  

  



 

34 
 

 

 

Figure 3-6.  Examples of the assembly of neurons and glia on electrodes from the Fractal group. All 

fluorescence images within this figure show GFAP labelled glia (green) and β-tubulin III labelled 

neurons (red) imaged at 17 DIV. (a) The rare occurrence of glia following the 90° turn of a 2-6 

electrode branch. (b) Glial coverage in the gap of a 2-6 electrode. (c) Glial coverage in the gap of a 

1.1-4 electrode close to its branches. (d) Individual glia in a desert region away from the branches of 

a 1.1-4 electrode. (e) Neurons and their processes on a 2-6 electrode’s branches. (f) Neuron clusters 

and processes in a ‘boundary’ region interacting with the neurons on the nearby branches of a 2-6 

electrode. Neuron processes were semi-automatically traced using the Fiji simple neurite tracer and 

were false-colored. (g) Neuron clusters and processes forming a cluster neuronal network in the gaps 

of a 1.1-4 electrode. (h) individual neurons in a desert region of a 1.1-4 electrode far from the 

branches. (i) and (j) Schematic of the glial and neuronal network regions. (i-1) and (j-1) show the 

electrode with few glial cells and multiple processes connecting individual neurons and small to 

medium-sized clusters. (i-2) and (j-2) show the ‘boundary’ region featuring small to medium glial 

coverage regions and clusters connecting to each other and to neurons on the electrodes using 

multiple processes. (i-3) and (j-3) show the ‘cluster’ region featuring larger glial coverage and 

clusters with bundles of processes connecting them. (i-4) and (j-4) show the ‘desert’ region furthest 

from electrodes featuring very few glial cells, mostly individual neurons and very few processes. (k) 

Merged fluorescence image of glia and neurons on a 2-4 electrode showing all the different regions. 

Scale bars on (a), (b), (c), (f), and (g) are 100 µm, on (d) and (h) are 200 µm, and on (e) and (k) are 

50 µm. The electrode edges are highlighted in cyan in (a), (b), (c), (e), (f), (g), and (k). Schematic 

panels were created in BioRender. 
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clusters and accompanied by occasional glial coverage. Figure 3-6k captures these various behaviors 

in one wide field of view (FOV). 

The desert regions were most prevalent for the 1.1-4 Fractal subgroup. Their size diminished 

with increasing D and m until they vanished completely for the 2-5 and 2-6 Fractal subgroups. In 

contrast, the contributions of the boundary regions increased with D and m, with the 2-6 Fractal 

subgroup displaying the most processes connecting from the gaps to the electrodes (Fig. 3-6f). The 

cluster regions were prevalent for the D = 1.5-4 electrodes. Based on this D and m dependence, the 

sizes of the regions varied between the different electrodes. The importance of these regional 

behaviors along with their D and m dependence will be returned to later after quantifying the herding 

behavior of the various electrodes. 

Having identified these three regions for the SiO2 gaps within the electrodes from the Fractal 

group, it is prudent to revisit the cell behavior within the gaps of the Euclidean Rows group. These 

tended to be dominated by boundary regions with an absence of deserts. Although less prevalent in 

comparison to the Fractals group, some cluster regions were apparent within the Euclidean Rows 

group and their time evolution is shown in Fig. 3-7a, b, and c. These show three regions containing 

glial cells on both the electrode and gap surfaces at the 3, 7, and 17 DIV. Notably, through cell 

Figure 3-7.  Examples of fluorescence images of neurons and glia interacting with electrodes from 

the Euclidean Rows group and analysis of their behavior at all culture times. All fluorescence images 

within this figure show GFAP labelled glia (green) and β-tubulin III labelled neurons (red). (a, b, c) 

Glial cells on the VACNT and SiO2 gaps of S75C75 electrodes at (a) 3 DIV, (b) 7 DIV, and (c) 17 

DIV. (d, e, f) Merged fluorescence images of neuronal networks showing glia and neurons on 

different regions of the same electrodes shown in (a), (b), and (c). Panel (g) is a zoom-in on the region 

marked in (f) with the green channel removed in order to clearly highlight neuron processes bundling 

in the SiO2 gap. Scale bars are 50 µm in (a) through (g). The cyan lines mark the edge between the 

VACNT electrode (top half) and SiO2 gap (bottom half) in (a) through to (f). (h, i, j, k) Time 

evolution of GSi, GCNT, NSi, and NCNT for all Euclidean Rows electrodes averaged at each culture time. 

The glial cells follow a gradual increase in surface coverage across the culture time while the neuron 

processes show a peak at 7 DIV. The error bars correspond to the 95% confidence intervals. Stars in 

(h), (i), (j), and (k) indicate the degree of significance: * denotes p ≤ 0.05, *** denotes p ≤ 0.001, 

and **** denotes p ≤ 0.0001. 
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division and growth, the glia have started to cover increasingly larger areas in the gaps by 17 DIV. 

Figure 3-7d, e, and f show different regions from the same electrodes as Fig. 3-7a, b, and c, now 

including the neuronal behavior. Whereas the neuron processes have grown from 3 to 7 DIV to 

connect the clusters, 17 DIV reveals fewer but larger clusters connected by bundles of processes, as 

shown in Fig. 3-7g. Visual inspection revealed that this signature of network formation was mildest 

on the electrode surfaces when compared to the gaps. 

Quantification of Herding in the Euclidean Rows and Fractal Groups 

The time evolution for the Euclidean Rows group is quantified in Fig. 3-7h, i, j, and k where, 

at each DIV, all the subgroups are combined. Consistent with the qualitative observations, GCNT was 

an order of magnitude smaller than GSi and both increased with time. In contrast, NCNT and NSi 

exhibited a peak at 7 DIV. Statistical comparisons between all DIV pairs revealed that GSi was 

significantly lower at 3 DIV than at 7 and 17 DIV (p ≤ 0.001 and p ≤ 0.0001, respectively) and was 

significantly lower at 7 DIV than at 17 DIV (p ≤ 0.001). GCNT was also significantly lower at 3 DIV 

than at 7 and 17 DIV (p ≤ 0.05 and p ≤ 0.0001, respectively). NSi and NCNT were significantly lower 

at 3 and 17 DIV than at 7 DIV (both with p ≤ 0.001). 

Figure 3-8 summarizes the glial and neuronal behavior on the SiO2 and VACNT surfaces of 

the Euclidean Rows and Fractal groups at 17 DIV with respect to their effective feature sizes and 

geometries. Figure 3-8a and c show the relationship of GSi and NSi with WSi for the Euclidean Rows 

group at 17 DIV. For these plots, subgroups with identical WSi but different WCNT were combined 

(e.g., S25C25 was combined with S25C100 and so on) since statistical tests showed no significant 

differences between same WSi subgroups, indicating that WCNT did not significantly impact glial and 

neuronal growth in the gaps. In Fig. 3-8a, GSi consistently increased with WSi up to 75 µm and then 

decreased for WSi = 100 µm (in agreement with qualitative observations of smaller glial coverage in 

the S100C100 SiO2 gaps). However, a statistical test showed no significant differences in GSi between 
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any pairs with different WSi. Figure 3-8c shows a gradual decrease in NSi as WSi increases with 

statistical tests revealing that NSi at WSi = 50 µm is significantly lower than NSi at WSi = 100 µm (p ≤ 

0.05). Figure 3-8b and d show the relationship of GCNT and NCNT with WCNT for the Euclidean Rows 

group at 17 DIV. For these plots, the subgroups with identical WCNT but different WSi (i.e. all 

electrodes with WCNT = 100 µm) were combined since statistical tests showed no significant 

differences between any pairs with the same WCNT, indicating that WSi did not significantly impact 

glial and neuronal growth on the VACNT surface. No clear increasing or decreasing trends were 

observed for GCNT or NCNT and no significant differences were detected between any pairs with 

different WCNT. 

Figure 3-8e-h summarizes the glial and neuronal behavior on both surfaces of the Fractal 

group as a function of D and m. GSi peaked for the 1.5-4 subgroup, although statistical tests revealed 

a significant difference only between the 2-5 and 2-6 subgroups (p ≤ 0.05). GCNT was more than an 

order of magnitude smaller than GSi and was almost constant across all Fractal subgroups, with the 

1.1-4 subgroup having the lowest value. Statistical tests showed no significant differences in GCNT 

between any pairing within the Fractal subgroups. NSi and NCNT gradually increased with D, but not 

with m. Statistical comparisons revealed no significant differences in NCNT between any pairing 

within the Fractal subgroups. As for NSi, the following Fractal subgroups were significantly different: 

1.1-4 versus 2-5 (p ≤ 0.001), 1.1-4 versus 2-6 (p ≤ 0.05), and 1.5-4 versus 2-5 (p ≤ 0.05). 

In terms of herding, when grouping the electrodes from the 17 DIV Euclidean Rows group 

together, it was found that NCNT was significantly higher than NSi (p ≤ 0.0001) and that GSi was 

significantly higher than GCNT (p ≤ 0.0001) (Fig. 3-9a and b). Exactly the same result was found when 

grouping electrodes from the Fractal group together (Fig. 3-9c and d), demonstrating the herding 

capabilities of the VACNT-SiO2 material system for both electrode geometries. 
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Figure 3-8.  Glial and neuronal behavior for the Euclidean Rows and Fractal groups at 17 DIV. (a) 

GSi median plotted against WSi, (b) GCNT median plotted against WCNT, (c) NSi median plotted against 

WSi, (d) NCNT median plotted against WCNT. (e), (f), (g), and (h) show the GSi, GCNT, NSi, and NCNT 

medians, respectively, plotted against D. Because the 2-4, 2-5, and 2-6 Fractal subgroups share the 

same D value, they are all plotted at D = 2 with a slight shift from one another. In order of increasing 

m value, they are plotted from left to right as 2-4, 2-5, and then 2-6. The error bars correspond to the 

95% confidence intervals. Stars in (c), (e), and (g) indicate the degree of significance: * denotes p ≤ 

0.05 and *** denotes p ≤ 0.001.  
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Figure 3-9.  Comparison of glial and neuronal behavior on VACNT and SiO2 surfaces for the 

Euclidean Rows and Fractal groups at 17 DIV. Statistical analysis showing boxplots comparing (a) 

GSi and GCNT, and (b) NSi and NCNT for the 17 DIV Euclidean Rows group. (c) and (d) are the same 

as (a) and (b) except that they show the results for the Fractal group. Stars in all panels indicate the 

degree of significance: **** denotes p ≤ 0.0001. The red plusses indicate outliers within a group. 

To further quantify the herding of neurons and glia, the parameters N and G were introduced. 

Adopting these measures, N and G values greater than 0.5 indicate successful guiding of neuron 

processes and glial cells to the desired VACNT and SiO2 surfaces, respectively. The N and G values 

of the Euclidean Rows and Fractal groups are examined to provide an overall view of the herding 

power of each group. Analysis of the individual parameters NCNT, NSi, GCNT, and GSi and their 

dependences on the various electrode subgroups will be returned to later. Figure 3-10a shows a 

scatterplot of N versus G measured at 17 DIV for the Euclidean Rows and Fractal groups. The dashed 

black line represents a threshold, GT, in glial herding at G ~ 0.95, beyond which no electrodes in the 

Euclidean Rows group were observed. Electrodes in the Fractal group, on the other hand, were not 
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limited by this threshold and achieved significantly higher G values than the Euclidean Rows group 

(p ≤ 0.0001). Based on GT, the Fractal group was divided into two regimes in Fig. 3-10a: low (G ≤ 

GT) and high (G > GT) regimes. Note the following overall observations for Fig. 3-10a: 1) almost all 

electrodes (90% in the Euclidean Rows group and 95% in the Fractal group) were successful at 

herding (i.e. both G > 0.5 and N > 0.5), again highlighting the favorable material qualities of the 

VACNTs for herding, 2) in the low regime, the Fractal group achieved significantly higher N values 

than the Euclidean Rows group (p ≤ 0.001), 3) in the high regime, the Fractal group’s enhanced 

neuron herding collapsed such that they shared the same approximate range of N values as the 

Euclidean Rows group. 

 

Figure 3-10.  Quantification of the overall herding of neurons and glia for the Euclidean Rows and 

Fractal groups. (a) Scatterplot of N (neuron herding) versus G (glial herding) for the Euclidean Rows 

and Fractal groups at 17 DIV where each data point represents one electrode (G is plotted in the range 

of 0.5 to 1 for clarity, but it should be noted that there was one outlier in the Euclidean Rows group 

with G < 0.5 that, though not shown here, was included in the statistical analysis of the groups). The 

dashed line marks the threshold value in G that no Euclidean Rows electrode surpassed. (b) 

Histogram of the number of electrodes, n, with a given G for the Euclidean Rows and Fractal groups 

at 17 DIV. (c) Histogram of the number of electrodes, n, with a given N for the Euclidean Rows and 

low regime Fractal groups at 17 DIV. (d) Histogram of the number of electrodes, n, with a given GN 

for the Euclidean Rows group at 3 and 17 DIV as well as the Fractal group at 17 DIV.  
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The combined herding parameter GN was also introduced to quantify the power of the 

electrode groups to simultaneously herd both neurons and glia. At 17 DIV, the Euclidean Rows group 

exhibited significantly lower GN values compared to the Fractal group (p ≤ 0.01). Figure 3-10d shows 

the histogram of the number of electrodes, n, with a given GN value for Euclidean Rows (3 and 17 

DIV) and Fractal (17 DIV) groups. This indicates that not only did time evolution increase the 

combined herding power, but also that this power was amplified at 17 DIV for the Fractal group 

when compared with the Euclidean Rows group.  

Discussion of Herding in the Euclidean Rows and Fractal Groups 

The experiments detailed throughout this chapter relied on the well-established behavior that 

glia accumulate on smooth rather than textured surfaces143,151,152. Whereas many previous studies 

investigated pure glial cultures on substrates made of a single material featuring different textures, 

the work presented within this chapter focuses on retinal neuron-glia co-cultures on a multi-material 

system (smooth SiO2 and textured VACNT) to provide confirmation that different cell types within 

a co-culture could be ‘herded’ onto different regions through a manipulation of surface texture69. To 

achieve this, micron-scale lateral patterning of the VACNTs was combined with their surface nano-

roughness effects. This contrasts with previous studies that used unpatterned nano-rough 

surfaces127,143,151, nano-ripples and micro-grooves152, and nanowires69. While the work presented here 

found in general that the cell morphologies on the two surfaces were consistent with those observed 

in previous studies, the relatively large VACNT heights used in these experiments were shown to be 

an important factor in the system’s design - glia residing on the SiO2 surfaces never extended 

processes over nearby VACNT surfaces which acted as barriers to the glia and therefore guided glial 

coverage across the SiO2 surface. 

The patterned VACNTs examined in this chapter follow previous studies that have examined 

the manipulation of neuronal networks using patterned substrates to guide cell attachment66,122,165. 
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Based on previous studies examining the migration of neurons166–169, the neurons within the VACNT-

SiO2 material system examined here are expected to utilize neuron-substrate forces to migrate across 

the smooth SiO2 surfaces with average speeds of 10-20 µm/h. As such, neurons that initially landed 

proximal to the VACNT electrode branches had a high chance of their growing processes finding the 

electrode edges during the first few hours of culturing. The strong cell-VACNT adhesion forces 

experienced by these neurons would have competed with the neuron-neuron aggregation forces, 

presumably slowing down cluster formation and resulting in the emergence of the boundary regions 

(note that these cell-VACNT adhesion forces were not sufficiently strong to stop cluster formation 

completely – as indicated by the observation of mainly small to medium-size clusters on the electrode 

surfaces and NCNT exhibiting a rise and fall in complexity with culture time – see Fig. 3-7k). Neurons 

that landed further away from the electrodes would have been less likely to encounter their edges and 

would therefore have experienced fewer anchor points, mainly in the form of other cells or rough 

impurities on the surface. In these regions, the neurons therefore had a higher tendency to aggregate 

and follow cluster network formation. The desert regions were likely caused by neurons anchored to 

the VACNT electrodes secreting chemical signals, regulating ion fluxes, neurotransmitters, and 

specialized signaling molecules170 which encouraged stronger interaction between neurons on the 

VACNTs and on the nearby SiO2 gaps. 

These developments would have been accompanied and supported by an interplay with glial 

cells. Glia likely started proliferating through cell division and growth and, in this process, acted as 

a support system for the neurons, following chemical cues170 that increased their surface coverage 

close to the neuron-rich regions171,172. This emergence of glial coverage was then likely to support 

not only neuronal survival and process development, but also migration along their fibers173,174 

towards the electrodes. These observations agree with other studies on smooth surfaces showing that 

in glial-neuronal co-cultures, glia direct neurons to glial-rich regions using chemical cues175. As a 
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sign of their subtle growth interaction, frequent cases of neuron process development were observed 

on top of regions covered with glia (Fig. 3-6k and Fig. 3-11). 

 

Figure 3-11.  Fluorescence images of neuron clustering and process growth in close proximity to 

glia-covered regions. The images in (a) and (b) show two different regions of β-tubulin III labelled 

neurons (red) and GFAP labelled glia (green) growing on a SiO2 surface. The location of the neuronal 

clusters and processes are heavily correlated with the regions covered by glia. The scale bar in the 

bottom right corresponds to 100 µm and applies to both (a) and (b). 
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To place the results of this work in the context of studies examining neuron-glia interactions, 

it is informative to now consider how the fractal properties of the electrodes influence these inter-

dependent networks of neurons and glia. Although previous studies have modelled individual cell 

locomotion through environments with complicated geometries168,176,177, the discussion above 

emphasizes the additional roles played by cell growth and assembly behavior (e.g., glial cell division 

and neuron process bundling and pruning) when considering cells connected in networks. The fractal 

electrode design integrates two sets of related, multi-scaled patterns – the branches and the gaps – 

that both impact cell organization favorably. The repeating patterns of the branches build long edges 

that interface with the gaps. The consequence for neurons and glia is that the fractal patterns with 

high D and m values offer increased accessibility of electrode edges to the gaps, so increasing 

favorable interactions between cells in both regions. More specifically, the large edge lengths are 

likely to accommodate the neurons’ tendency to grow processes along the top and bottom edges of 

the electrode sidewalls, and for the sidewalls to act as anchor points for neuron clusters in the gaps 

to adhere to. These effects can be seen in the large density of processes connecting the neuronal 

networks on the VACNT electrodes to those in the SiO2 gaps observed in Fig. 3-6f. Furthermore, the 

close proximity of the electrode branches to the surrounding gaps, which ensures closeness of the 

neuron-rich electrodes to the glial cells in the gaps, is crucial because neurons and glia thrive when 

in such close proximity178. 

Turning to the impact that the SiO2 gap sizes have on cell behavior, it is important to 

understand how the D and m values of the fractal patterns affect the ‘openness’ and scaling of the 

gaps. Low D and m value fractals provide gaps that scale up in size quickly and the overall pattern 

is therefore much more open, whereas the gaps in high D and m value fractals are much tighter and 

scale up in size slowly. Consequently, low D and m value fractals offer much more physical 

freedom within the gaps, while high D and m value fractals result in a more restrictive environment. 
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Combining this effect with the impact that D and m have on the electrode edge length and proximity 

of electrode branches to the surrounding gaps, high D and m value fractals are expected to 

encourage boundary regions and reduce desert regions since there are no large gaps far away from 

branches. In contrast, low D and m value fractals are expected to minimize boundary regions and 

encourage deserts with their vast, empty gaps. Forming between the boundary and desert regions, 

growth of cluster regions is expected to be encouraged for mid D and m value fractals. Taken 

together, this model suggests that for the fractal patterns examined in this work, those with mid to 

high D and 4 to 5 repeating levels will promote the most favorable cell interactions. They are likely 

to enhance glial coverage inside their multi-scaled gaps without restricting the glia and prevent the 

formation of large deserts. These glia will also fuel the formation of the neuronal networks in the 

cluster regions. The large edge length of the fractal VACNT branches combined with their close 

proximity to the SiO2 gaps would then enhance the growth of neuron processes in the boundary 

region and facilitate connection of the neuronal networks in the cluster region to those on the 

VACNT branches. 

Revisiting the examination of glial coverage in the SiO2 gaps of the Euclidean Rows group 

(Fig. 3-8a), GSi did not show a statistically significant increase with gap width up to the largest 

investigated gap of width WSi = 100 µm. This suggests that, although they likely benefitted from 

being proximal to the neuron-rich electrodes, their gap sizes were insufficient to offer the necessary 

freedom to encourage large glial coverage. Figure 3-12 shows fluorescence images emphasizing that 

the SiO2 gaps in the Fractal group start near the same size scale as the Euclidean Rows group and 

then repeat at increasingly larger sizes. The advantage of connecting to larger gaps for the 1.5-4, 2-

4, and 2-5 Fractal subgroups is demonstrated by plotting the median GSi versus the minimum gap 

width, WSi-min, (the WSi-min values for the 1.1-4, 1.5-4, 2-4, 2-5, and 2-6 Fractal subgroups are 56 µm, 

101 µm, 134 µm, 61 µm, and 25 µm, respectively – see Fig. 3-13 for a schematic illustrating the 
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measurement of WSi-min). The median GSi values for these 3 Fractal subgroups are notably higher than 

the Euclidean Rows subgroups with similar WSi values (note that WSi = WSi-min for the electrodes in 

the Euclidean Rows group). In particular, the GSi values of the 2-5 and 1.5-4 Fractal subgroups are 

significantly higher than the Euclidean Rows subgroups with WSi = 50 µm and 100 µm, respectively 

(both with p ≤ 0.05). In contrast, the 2-6 Fractal subgroup held no advantage over the Euclidean Rows 

group because their WSi-min gaps were not connected to gaps sufficiently large to encourage 

proliferation. They consequently lost the interconnected, multi-scaled freedom of afforded to the 1.5-

4, 2-4, and 2-5 Fractal subgroups, and instead approached the more filled character of the Euclidean 

Rows group (i.e., higher electrode areas, ACNT, and lower gap areas, ASi - Table 3-1). The 1.1-4 Fractal 

subgroup held no advantage because their WSi-min gaps connected to vast regions dominated by 

deserts. This behavior is supported by the qualitative inspections of the images shown in Fig. 3-12. 

In summary, the 1.1-4 Fractal subgroup was too ‘open’, and the 2-6 Fractal subgroup and Euclidean 

Rows group were too ‘restricted’. In this spectrum, the 1.5-4, 2-4, and 2-5 Fractal subgroups appear 

to have the optimal balance for glial coverage provided through integration of a fractal distribution 

of small and large interconnected SiO2 gap areas proximal to interpenetrating fractal electrode 

branches. 

To quantify the impact of this glial cell behavior on neuron process length in the gaps, NSi 

was plotted as a function of GSi in the scatterplot of Fig. 3-14a. The electrodes from the low and high 

regimes within the Fractal group are marked with different symbols to detect any possible variations 

in trends for NSi or GSi between the two regimes. Although the low regime was limited to lower GSi, 

some of the high regime also appeared in this low range, indicating that low GCNT values must also 

have played a role in achieving the high G herding powers associated with the high regime. The 

similarity of these two regimes in terms of their NSi versus GSi relationship indicates a common cell 

behavior in the gaps, which will now be explained in terms of an interplay of the boundary, cluster, 
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and desert regions. 

 

Figure 3-12.  Study of the impact of SiO2 gap size on glial behavior. Representative fluorescence 

images of GFAP labelled glial cells (green) at 17 DIV are shown for one quarter of the full images 

of electrodes from the 1.1-4 (bottom right), 1.5-4 (top left), 2-4 (top right), and 2-6 (bottom left) 

Fractal subgroups along with the S50C50 (middle left) Euclidean Rows subgroup. White or gray 

masks have been imposed on to the images to highlight the locations of the VACNT electrodes and 

the lower-right scale bars are 500 µm. A plot of the median GSi against WSi-min at 17 DIV is also 

shown. The dashed arrows connect the images to their corresponding datapoints in the plot. The blue 

diamond symbols represent the Fractals group and the red pentagrams represent the Euclidean Rows 

group. Note that WSi-min = WSi for the Euclidean Rows group and that there are 4 datapoints 

corresponding to the 4 distinct widths of SiO2 gaps within this group. 
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Figure 3-13.  Schematic indicating the measurement of the minimum gap width for the 2-5 Fractal 

subgroup. (a) Schematic image of the 2-5 Fractal subgroup. (b) Marker indicating the measurement 

of the minimum gap width, WSi-min, using a zoom-in on the region within the red box shown in (a). 

The same method for measuring WSi-min is applied to all Fractal subgroups.  

To quantify the impact of this glial cell behavior on neuron process length in the gaps, NSi 

was plotted as a function of GSi in the scatterplot of Fig. 3-14a. The electrodes from the low and high 

regimes within the Fractal group are marked with different symbols to detect any possible variations 

in trends for NSi or GSi between the two regimes. Although the low regime was limited to lower GSi, 

some of the high regime also appeared in this low range, indicating that low GCNT values must also 

have played a role in achieving the high G herding powers associated with the high regime. The 

similarity of these two regimes in terms of their NSi versus GSi relationship indicates a common cell 

behavior in the gaps, which will now be explained in terms of an interplay of the boundary, cluster, 

and desert regions. 

Beginning with the Euclidean Rows group which lies on the left side of Fig. 3-14a, as 

expected from their relatively low GSi values revealed in Fig. 3-12, these electrodes showed a 

dominance of boundary regions due to a lack of large gaps to support deserts and a reduction of the 

cluster networks because of small glial coverage. However, cluster networks were evident for some 

electrodes within the Euclidean Rows group with WSi down to 50 µm. This was indicated by the 

significant decrease in NSi (p ≤ 0.05) seen in Fig. 3-8c potentially due to increased pruning and  
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Figure 3-14.  Study of the relationship between neuron and glial behavior on the SiO2 surfaces and 

between neuronal behavior on the SiO2 and VACNT surfaces for the Fractal and Euclidean Rows 

groups. (a) Scatterplot of NSi versus GSi for 17 DIV Euclidean Rows group (red pentagram) as well 

as the low (diamond) and high (filled square) regimes of the Fractal group. The inset of (a) provides 

a histogram of the number of electrodes, n, with a given NSi for all Fractal subgroups. (b) Scatterplot 

of NCNT versus NSi for 17 DIV Euclidean Rows group as well as the low and high regimes of the 

Fractal group. The solid black line represents the NCNT = NSi condition. The solid blue, dashed blue, 

and solid red lines are fits through zero for the Fractal group’s low and high regimes, and the 

Euclidean Rows group, respectively. The top inset of (b) provides a histogram of the number of 

electrodes, n, with a given NCNT for all Fractal subgroups. The bottom inset of (b) provides a 

histogram of the number of electrodes, n, with a given NCNT for Fractal group’s low and high regimes. 
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bundling as the edges became less influential as the gap widths increased from 50 m to 100 m. 

Nevertheless, the Euclidean Rows group was in general boundary-dominated with large NSi values 

and the observed sharp increase in NSi with GSi (Fig. 3-14a) was likely due to the supporting role of 

glial cells on neuronal survival and function. The slight dampening of this rise seen at higher GSi 

might again be due to the presence of pruning and bundling of the cluster network. 

In comparison, the Fractal group featured far fewer neuron processes in the gaps as quantified 

by the lower NSi values across the full range of GSi (the few data points from the Fractal group residing 

in the scatter of the Euclidean group’s data are the 2-6 Fractal subgroup, which were previously 

pointed out to have collapsed into the Euclidean condition in terms of their gap behavior). To 

determine the origin of this suppression in NSi, the histogram of the number of electrodes, n, with a 

given NSi for each of the Fractal subgroups is plotted in the Fig. 3-14a inset (the equivalent box plot 

is shown in Fig. 3-15). In general, it is seen that increases in D and m produced higher NSi values. For 

example, most of the 1.1-4 subgroup is located on the histogram’s left side because its vast deserts 

dominated over the boundary and cluster regions and supported few processes. The 1.5-4 subgroup 

is next because their large cluster networks efficiently bundled and pruned processes. The increasing 

role of the process-rich boundary regions explains the increase in NSi when moving from the 2-4 to 

the 2-5 subgroup. This dependence of NSi on D and m is re-iterated in Fig. 3-8g. (A speculative 

explanation for the 2-6 subgroup having lower NSi values than the 2-5 subgroup is that a combination 

of the lower GSi of the 2-6 subgroup and the relative increase in the proximity of their electrode 

branches to the surrounding SiO2 gaps would increase the tendency of processes to grow on the 

VACNTs and their edges rather than the gaps.) Due to the subtle nature of the NSi suppression 

process, along with the scattered data it generates, fitting any form to the NSi versus GSi trend for both 

the Euclidean Rows and Fractal groups has been avoided. 
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Figure 3-15.  Study of neuronal behavior on the SiO2 and VACNT surfaces for the Fractal group. 

Statistical analysis showing boxplots for NSi (a) and NCNT (b). Stars in (a) indicate the degree of 

significance: * denotes p ≤ 0.05 and *** denotes p ≤ 0.001. The red plusses in panel (a) indicate 

outliers. No significance was observed in NCNT. 

Equipped with this picture of how GSi and NSi describe cell behavior in the gaps, their 

interaction with the electrode branches will now be examined. The scatterplot of Fig. 3-14b illustrates 

how NSi varies with NCNT for the Euclidean Rows group as well as the low and high regimes of the 

Fractal group. The solid black line (given by NSi = NCNT) represents the threshold for successful 

herding. Interestingly, almost all electrodes reside above this threshold. Additionally, NCNT increases 

with NSi for each of the three groups, as indicated by their fit lines. Although these linear guides are 

useful for comparing the data to the NSi = NCNT condition, they are not meant to imply a strictly linear 

behavior. A comparison of Fig. 3-14a inset with Fig. 3-14b top inset (and the equivalent box plots in 

Fig. 3-15) highlights this trend for the Fractal group: the increase in NCNT values with the rise in D 

and m has a similar trend to that of the NSi increase. Fractal subgroups with a large number of neuron 

processes in the gaps and a large electrode interface generated large NCNT values. This is also revealed 

in Fig. 3-8g, h. 

Although the fractal parameters influence NCNT, they are not sufficiently powerful to produce 

a statistically significant difference between the low regime of the Fractal group and the Euclidean 

Rows group, a result that highlights the strong adhesive properties of the VACNT surface (this is 
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also true of other geometric factors, as indicated by the lack of NCNT dependence on electrode width 

within the Euclidean Rows group as shown in Fig. 3-8d). For similar NCNT values within the 

Euclidean Rows and Fractal groups, the higher NSi values of the Euclidean Rows group (Fig. 3-14a) 

led to the observed drop in the data gradient when comparing the Euclidean Rows (red slope in Fig. 

3-14b) and Fractal (blue slope) groups. Crucially, although the Euclidean Rows and Fractal groups 

supported similar numbers of processes, NCNT does not reflect their advantageous locations on the 

Fractal group electrodes. A large density of neurons were located at electrode branch edges (Fig. 3-

5c and d) close to the glial coverage in the gaps which ensures neuronal health179,180. The longer edge 

lengths of the electrodes within the Fractal group therefore promoted this potential health advantage. 

Finally, the collapse in the gradient (NCNT versus NSi) when moving from the low to high 

regime within the Fractal group was caused by a drop in NCNT (lower inset of Fig. 3-14b). This may 

have been induced by a change in glial behavior between the two regimes. In particular, in addition 

to the high regime supporting GSi values larger than those reached in the low regime, GCNT dropped 

when moving to the high regime. The GCNT values of the Euclidean Rows group were significantly 

higher than those of the Fractal group’s high regime (p ≤ 0.0001). Additionally, although no 

statistically significant difference in GCNT was observed between any of the Euclidean subgroups, 

when grouping together all Euclidean subgroups with WCNT = 100 µm, they have a significantly 

higher GCNT value (p ≤ 0.05) than the Fractal group (which has WCNT = 20 µm). It is therefore likely 

that the larger widths of the Euclidean electrodes were less restrictive to glial growth and that this 

was responsible for their high GCNT values. The majority of the electrodes within the Fractal group 

(61%) lie in the high regime because, along with their higher GSi values, their narrow electrode widths 

generated small GCNT values. However, there isn’t a clear geometric dependence in terms of which 

Fractal subgroups have high or low G values due to ‘natural’ (i.e., not originating from differences 

in fabrication and/or culture batches, etc.) statistical variations in the GSi and GCNT values. 
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When moving from the low to high regime within the Fractal group, the increase in the GSi 

median value was not statistically significant whereas the drop in GCNT was (p ≤ 0.0001). A possible 

scenario therefore is that the significant drop in NCNT (p ≤ 0.01) is being driven by GCNT (Fig. 3-16). 

The electrode’s material properties that caused neurons to thrive, and thereby allowing for them to 

extend many processes, needed to be supplemented by chemical cues provided by a small number of 

glial cells on the VACNT surface. The collapse observed in Fig. 3-10 and Fig. 3-14b would likely be 

triggered if this number fell below a critical value. Electrodes with longer edges that promoted 

stronger process interactions with the boundary regions might be expected to be more robust in terms 

of preventing this collapse. Accordingly, in general it is found that the Fractal subgroups that were 

less prone to collapse were those with higher D and m values. 

 

Figure 3-16.  Comparison of neuronal and glial behavior on the VACNT surface for the low and 

high regimes within the Fractal group. Statistical analysis showing boxplots for GCNT (a) and NCNT 

(b). Scatterplot of NCNT versus GCNT (c) showing the different cell behaviors on the VACNT and SiO2 

surfaces for the low and high regimes. No significance was observed in NSi and GSi between the two 

regimes. Stars in (a) and (b) indicate the degree of significance: ** denotes p ≤ 0.01 and **** denotes 

p ≤ 0.0001. The red plusses in panels (a) and (b) indicate outliers. 

Comparing the Impact of the Grid and 2-5 Fractal Electrode Geometries on Cell Behavior 

Having assessed the behavior of the networks of neurons and glia that formed on the 

Euclidean Rows and Fractal electrode geometries and developed a model for understanding the 

characteristics of the networks, the model will now be applied in a comparison between the Grid and 

2-5 Fractal electrode designs. This specific pair was chosen as comparators for a number of reasons. 

Both geometries provide a fully connected VACNT surface, while having distinctly different 
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behavior with respect to the connectedness of their SiO2 surface. The gaps in the 2-5 Fractal provide 

an ‘open’ system, while the isolated chambers of the Grid provide a ‘closed’ system (see Fig. 3-1b 

and c). These contrasting behaviors allow for an investigation of the impact of SiO2 gap 

connectedness on the herding of neurons and glia. Additionally, the 2-5 Fractal was chosen out of all 

the other Fractal designs due to its high performance with respect to NSi and NCNT, while 

simultaneously allowing for a large GSi (Fig. 3-8c, g, and h). Further, the size of the minimum gap 

width, WSi-min, is 61 µm for the 2-5 Fractals, which is equal to the chamber width of the Grids. It 

should be emphasized that this is not meant to be an exhaustive comparison between the impact that 

‘open’ and ‘closed’ electrode geometries have on neuron and glia network formation, but simply as 

a first test of the model of cell behavior proposed up to this point. 

Beginning by focusing on some qualitative observations of cell behavior on the Grid and 2-5 

Fractal geometries, Fig. 3-17 and Fig. 3-18 show representative fluorescence images of cell 

interactions with the electrodes. Glia were observed on both the SiO2 and VACNT surfaces of both 

electrodes at 17 DIV. As expected from the previous results, the glia residing on the SiO2 never 

extended processes over nearby VACNTs. In terms of morphology, the glia exhibited a spread-out 

shape typically featuring multiple long processes on the SiO2 surfaces of both electrodes. In contrast, 

glia residing on the VACNT surfaces of both electrodes frequently adopted a more elongated 

morphology that was restricted by the shape of the underlying VACNT surface and although rare, 

even made 90° turns at the VACNT turning points. 

Neurons adhered to and grew processes on both the SiO2 and VACNT surfaces of the Grid 

and 2-5 Fractal electrodes. For both surfaces, neuron somas often clustered together and some of the 

processes connecting the clusters formed bundles (Fig. 3-17l and p). This behavior was observed 

more frequently on the SiO2 surface than the VACNT surface. Neurons on the two surfaces were 

connected via clusters attached to the VACNT sidewalls and processes were frequently observed 
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Figure 3-17.  Representative examples of fluorescence images of retinal cells interacting with the 

Grid and 2-5 Fractal electrodes at 17 DIV. GFAP labelled glia (green) and DAPI labelled cell nuclei 

(blue) on the VACNT surfaces of the (a) Grid and (b) 2-5 Fractal electrodes. Glia accumulating on 

the SiO2 surfaces of the (c) Grid and (d) 2-5 Fractal electrodes. The structure of glia on the VACNT 

surfaces of the (e) Grid and (f) 2-5 Fractal electrodes as well as the SiO2 surfaces of the (g) Grid and 

(h) 2-5 Fractal electrodes. β-tubulin III labelled neurons (red) extending processes that follow the 

VACNT electrodes of the (i) Grid and (j) 2-5 Fractal electrodes. (k) Neuron clusters inside the 

chambers of a Grid electrode sending processes towards the VACNT sidewalls. (l) Large neuron 

clusters on the SiO2 surface connecting to the neurons on the VACNT surface of a 2-5 Fractal 

electrode. Neuron processes following the VACNT electrodes of the (m) Grid and (n) 2-5 Fractal 

electrodes. (o) Neuron cluster attached to the VACNT sidewall of a chamber within a Grid electrode 

sending processes onto both the SiO2 and VACNT surfaces. (p) Neuron clusters and connecting 

processes on the SiO2 and VACNT surfaces of a 2-5 Fractal electrode. The images in (c) and (k) 

show the same FOV, as do (d) and (l). Electrode edges are highlighted with white lines except for 

panels (i), (j), (m), and (n) which concentrate on the behavior of processes along the edges because 

the lines would have obscured these processes. Scale bars are: 10 µm in (e) and (f); 20 µm in (g), (h), 

(m), (n), and (o); 40 µm in (p); 50 µm in (a), (b), (c), (i), (j), and (k); and 100 µm in (d) and (l). 



 

57 
 

 

 

Figure 3-18.  Additional examples of fluorescence images of retinal cells interacting with the Grid 

and 2-5 Fractal electrodes at 17 DIV. (a) GFAP labelled glia (green) and DAPI labeled cell nuclei 

(blue) inside the gaps of a 2-5 Fractal electrode. (b) β-tubulin III labelled neurons (red) as well as 

glia and cell nuclei within the gaps of a 2-5 Fractal electrode. The whole gap area is interconnected, 

giving the glia the potential to cover large surfaces. Neurons, glia, and cell nuclei accumulating on 

the (c) VACNT and (d) SiO2 surfaces of a Grid electrode. Neurons, glia, and cell nuclei outside and 

within the patterned area of a Grid electrode with the focus being on the (e) VACNT and (f) SiO2 

surfaces. (g) Cell clusters sending neuron processes towards VACNT sidewalls in two side-by-side 

chambers of a Grid electrode. The images in (c) and (d) show the same FOV at two different focal 

planes, as do (e) and (f). Scale bars are 100 µm in (a), 200 µm in (b), and 50 µm in (c), (d), (e), (f), 

and (g). 

following the top and bottom edges of the sidewalls (Fig. 3-17i and j). The large clusters on the SiO2 

surfaces were much more common for the 2-5 Fractal than the Grid electrodes, particularly in regions 

accompanied by large glial coverage. Large clusters were occasionally evident in some chambers of 

the Grid electrodes, and this most often occurred when glia were present. For example, in Fig. 3-17c 

and k the cluster in the central chamber (which has no glia) appears to be smaller than those in the 

surrounding four chambers (which are occupied by glia). 

Moving on to quantitative measures, the effect of the SiO2-VACNT material system on the 

glial and neuronal distributions on the two surfaces was studied through a statistical comparison of 

GSi versus GCNT and NSi versus NCNT for the Grid and 2-5 Fractal electrodes separately. There was no 
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significant difference between GSi and GCNT for the grids (Fig. 3-19a), whereas GSi was significantly 

higher for the 2-5 Fractals (p ≤ 0.001, Fig. 3-19c). NSi was significantly lower than NCNT for both the 

Grids and 2-5 Fractals (p ≤ 0.01, Fig. 3-19b, d). 

 

Figure 3-19.  Comparison of glial and neuronal behavior on the SiO2 and VACNT surfaces for the 

Grid and 2-5 Fractal electrodes at 17 DIV. Statistical analysis showing boxplots of GSi (left) 

compared with GCNT (right) for the (a) Grids and (c) 2-5 Fractals, as well as NSi (left) compared with 

NCNT (right) for the (b) Grids and (d) 2-5 Fractals. The y axes of (a) and (c) display the range of GSi 

and GCNT values and the y axes of (b) and (d) display the range of NSi and NCNT values. Stars in panels 

(b), (c), and (d) indicate the degrees of significance: *** and ** denote p ≤ 0.001 and p ≤ 0.01, 

respectively. The red plus in panel (d) is an outlier.  

 Having assessed the effect of the SiO2 and VACNT regions on the glial and neuronal 

distributions for each electrode design separately, the success of the two electrodes in achieving the 

desired cell distributions (i.e. concentrating neurons and glia in the VACNT and SiO2 regions, 

respectively) can now be compared. Figure 3-20a and b show scatterplots of GSi versus GCNT and 

NCNT versus NSi for the Grid and 2-5 Fractal electrodes. The black lines represent the conditions GSi 

= GCNT and NCNT = NSi. All 2-5 Fractals successfully achieved the condition GSi > GCNT, while only 2 
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out of 7 Grids did so. On the other hand, all the Grids were successful in achieving the condition NCNT 

> NSi, whereas 9 out of 11 of the 2-5 Fractals were successful in doing so. The solid red and blue lines 

are fits through zero for the Grids and 2-5 Fractals and are included as guides to the eye. Although 

these linear guides are useful for comparing the data to the GSi = GCNT and NCNT = NSi conditions 

(represented by the slopes of the black lines), they are not meant to imply a strictly linear behavior. 

 

Figure 3-20.  Study of the relationship of GSi with GCNT and NCNT with NSi for the Grid and 2-5 Fractal 

electrodes. (a) Scatterplot of GSi versus GCNT for the Grids (red) and 2-5 Fractals (blue). (b) 

Scatterplot of NCNT versus NSi for the Grids (red) and 2-5 Fractals (blue). The solid black lines 

represent the GSi = GCNT and NCNT = NSi conditions in (a) and (b), respectively. The solid red and blue 

lines are fits through zero for the Grids and 2-5 Fractals, respectively. 

Finally, the Grid and 2-5 Fractal electrodes were compared directly for each of the four 

parameters (GSi, GCNT, NSi, and NCNT). In terms of glial behavior, results of statistical comparisons 

confirmed that the 2-5 Fractals had significantly higher GSi than the Grids (p ≤ 0.01, Fig. 3-21a), 
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while the Grids had significantly higher GCNT than the 2-5 Fractals (p ≤ 0.05, Fig. 3-21b). Considering 

neuronal behavior, the Grids had significantly higher NSi and NCNT compared to the 2-5 Fractals (p ≤ 

0.05 and 0.01, respectively, Fig. 3-21c and d). The outlier in Fig. 3-19d and Fig. 3-21c has the lowest 

NSi likely due to it having the lowest GSi value among all 2-5 Fractals (this low GSi was due to 

variations across different electrodes within a culture). 

 

Figure 3-21.  Comparison between the Grid and 2-5 Fractal electrodes at 17 DIV in terms of the glial 

and neuronal behavior on the SiO2 and VACNT surfaces. Statistical analysis showing boxplots of (a) 

GSi, (b) GCNT, (c) NSi, and (d) NCNT between the Grid and 2-5 Fractal electrodes. Stars in all panels 

indicate the degrees of significance: ** and * denote p ≤ 0.01 and p ≤ 0.05, respectively. The red plus 

in panel (c) is an outlier. 

Discussion of Cell Behavior on Grid and 2-5 Fractal Electrode Geometries 

As expected from the results seen earlier in this chapter, the smallest gap size, WSi-min, in the 

2-5 Fractal design was large enough to avoid restricting glial coverage from extending between the 

SiO2 gaps, as suggested by the extended morphology of the glia located in/around the WSi-min gaps 

(Fig. 3-17d and Fig. 3-18a). Due to the smallest SiO2 regions within the 2-5 Fractal electrode being 

connected to increasingly larger areas, the glia were provided with the freedom to expand their 
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coverage across these large regions (Fig. 3-18b). Although the width of the Grid electrodes’ chambers 

matched WSi-min for the 2-5 Fractal electrodes, the disconnected character of the Grid electrodes 

prevented glia that resided in one chamber from accessing other regions of the electrode (Fig. 3-17c). 

This left regions within the Grid electrodes devoid of glia and resulted in the Grids having 

significantly lower GSi values than the 2-5 Fractal electrodes (Fig. 3-21a). Since it is well-known that 

glia act as the neurons’ life support system179,181 and their presence significantly improves synaptic 

connections between neurons182, this may have significant negative effects on the survival and 

function of neurons in the long term. 

Considering neuronal behavior on the SiO2 surfaces, neurons rely on surface adhesion for 

their development and survival. Due to their closer proximity to the VACNT sidewalls, neurons in 

the chambers of the Grid electrodes had a higher chance of adhering to and growing their processes 

along the electrode edges than those in the larger gaps of the 2-5 Fractal electrode. This attraction of 

processes to the sidewalls rather than to the SiO2 surface could have been further encouraged by 

chemical signals (neurotrophic factors)170,183–185 from neurons and glia on the VACNT surface, 

potentially lowering NSi for the Grids compared to the 2-5 Fractals. Additionally, the closer proximity 

to the VACNT sidewall also caused the behavior of the cells within the Grids’ chambers to be 

dominated by the effects characteristic of the boundary regions discussed earlier in this chapter. In 

contrast, the behavior of the neurons in the gaps of the 2-5 Fractals would have been characterized 

by both boundary and cluster regions. The addition of the cluster regions to the gaps of 2-5 Fractals 

results in a higher tendency for aggregation of neurons into larger clusters and for bundling of their 

processes when compared to the Grids. This clustering behavior even left many locations in the gaps 

of the 2-5 Fractals completely empty of processes. It is therefore possible that the inclusion of cluster 

regions in the 2-5 Fractals could explain their significantly lower NSi values compared to the Grids 

(Fig. 3-21c). 
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Consistent with previous results129,136 and with the experiment comparing the Euclidean 

Rows and Fractal groups presented earlier in this chapter, the VACNT surface supported neuron 

process growth that was larger compared to the SiO2 surface for both the Grid and 2-5 Fractal 

electrodes (Fig. 3-19b and d). CNT nano-roughness mimics some properties of the extracellular 

matrix (ECM), provides guided neuron process growth, and improves neuron adhesion120,147. In 

addition, they provide favorable mechanical flexibility that can improve neuron process growth and 

branching186, so establishing a suitable environment for neuronal adhesion, survival, and growth 

without the need of any further chemical surface modification136. As was seen from the previous 

results comparing the Euclidean Rows and Fractal groups, these favorable CNT properties then 

resulted in the significantly larger NCNT than NSi values for both the Grid (Fig. 3-19b) and 2-5 Fractal 

electrodes (Fig. 3-19d). Due to their sensitivity to topographical cues69,71,187,188, the processes 

exhibited a tendency to follow the top and bottom edges of VACNT sidewalls for both electrodes 

(Fig. 3-17i and j). The large, connected edge length of both electrode designs provided the 

opportunity for clusters to form and anchor to the VACNT sidewalls. The larger NCNT values for the 

Grids when compared to the 2-5 Fractals (Fig. 3-21d) is likely explained by an increase in the 

prevalence of boundary regions which are characterized by clusters near or anchored to the Grid’s 

VACNT sidewalls facilitating greater connections between the processes in the chambers and those 

on the VACNT surface (Fig. 3-17o and Fig. 3-18e-g). 

Moving on to a discussion of the behavior of the glial cells, it is interesting to consider the 

result that GCNT is higher for the Grids than the 2-5 Fractals. This is puzzling because the two 

electrodes have similar ACNT values and the VACNT surface hinder cell division and growth. Based 

on these considerations, it is expected that GCNT would be similar for the two electrodes. Although 

speculative, the Grids’ neuron-rich VACNT surfaces might have shifted the fate of some of the 

existing retinal progenitor cells in the environment189,190 towards becoming glia. It is known that, in 
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vivo, neuronal stem/progenitor cells have the capability to differentiate into different neuronal cell 

types191 depending on the physical, biochemical, and topographical cues present in their 

environment192 and perhaps this effect extended to the in vitro environment193,194 examined in this 

chapter. Accordingly, the larger NCNT values for the Grids over the 2-5 Fractals (Fig. 3-21d) might 

have induced their larger GCNT values (Fig. 3-21b). This relationship between neurons and glia on the 

Grids’ VACNT surfaces is further suggested by Fig. 3-22, which provides a scatterplot of GCNT versus 

NCNT. The same overall trend of GCNT increasing with NCNT was also observed for the Euclidean Rows 

and Fractal groups. This relationship might also continue even after all the progenitor cells in culture 

have differentiated. As mentioned earlier when discussing a possible cause of the separation of the 

Fractal group into two regimes, having even a small number of glia on the surface of the VACNTs 

is likely associated with an increase in NCNT because the glia provide chemical cues that promote 

process extension for the neurons residing on the VACNTs.  

 

Figure 3-22.  Study of the relationship of GCNT with NCNT for the Grid and 2-5 Fractal electrodes. 

Scatterplot of GCNT versus NCNT for the Grids (red) and 2-5 Fractals (blue). 

Returning to Fig. 3-21a and b, the smaller values of GSi and larger values of GCNT for the 

Grids compared to 2-5 Fractals combine to generate the lack of significant difference between the 
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two parameters in Fig. 3-19a. In contrast, the larger values of GSi and smaller values of GCNT in Fig. 

3-21a and b lead to the significant difference for the 2-5 Fractals seen in Fig. 3-19c. Although NCNT 

is significantly larger than NSi for both the Grids and the 2-5 Fractals, the difference is larger for the 

Grids (Fig. 3-19b and d). These characteristics can also be seen in Fig. 3-20. The 2-5 Fractal data lie 

higher above the black line than the Grid data in Fig. 3-20a and the converse is true for Fig. 3-20b. 

The observed increase in NCNT with NSi in Fig. 3-20b is consistent with the previously proposed model 

describing the behavior of boundary regions. 

In terms of the underlying aim of herding glia onto the SiO2 surface and neurons onto the 

VACNT surface, the 2-5 Fractal electrodes performed better at the former and the Grid electrodes at 

the latter. However, the relative lack of nearby glia for the neurons on the Grids’ VACNT surfaces 

is expected to have detrimental impacts on their survival and electrical activity in the long term. 

Although the Grid electrodes examined here had chambers on the scale of the individual glial cell 

bodies, it is informative to consider the impact of increasing the chamber size. If larger Grids were 

to be fabricated, some beneficial effects for glial surface coverage might be achieved. However, 

although larger chambers might offer an increased physical freedom for glial coverage due to their 

less-restricted geometry, there would be an accompanying reduction in proximity to the VACNTs. 

This would have multiple negative impacts. 1) Neurons and glia benefit from chemical cues170,183 

from each other and both cell types thrive when in close proximity. Implementing a larger chamber 

size will decrease this proximity between glia in the middle of the chambers and neurons on the 

VACNT surface. 2) The glia in the middle of the chambers will attract more neurons away from the 

VACNT sidewalls. This would increase the distance between neurons in the middle of the chamber 

and those anchored at the sidewalls (which mediate connections across the two surfaces), potentially 

reducing NCNT. 3) For very large chamber sizes, cluster regions will likely become more prevalent 

and increase the probability of having gap areas devoid of cells, wasting space in the electrode design. 
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4) The reduced spatial density of VACNTs will provide less textured surface to support and stimulate 

the neurons.  

Having established superior glial coverage in the gaps for the 2-5 Fractals, it is pertinent to 

discuss the amount of glia needed to keep neurons healthy and functional on the VACNT electrodes. 

Figure 3-23, which provides a plot of NCNT versus GSi, examines the correlation between the glia 

inside the SiO2 gaps and neurons on the VACNT electrodes. Considering the 2-5 Fractals, NCNT 

increases with GSi with the shown linear fit described by an R2 of 0.63. This fit is not meant to imply 

a strictly linear behavior, but instead to highlight the following key observations. Firstly, the data 

trend suggests that an absence of glia (i.e. GSi = 0) impedes growth of neuron processes substantially. 

However, the data does not reveal a distinct lower limit (i.e. a GSi value below which NCNT falls to 

zero). This is backed up by qualitative observations showing that there are some VACNT regions 

that support processes even in the absence of nearby glia. Secondly, when variations in GSi within 

the culture result in more glia, this increased presence promotes neuronal growth. Whereas it is 

possible that further increases in GSi might eventually cause NCNT to saturate or even show a 

depletion195,196, the 17 DIV 2-5 Fractal system examined here operates within a regime in which there 

is no upper limit – the more glia the better. By comparing variations within the 2-5 Fractal electrode, 

neuron process growth can be taken as an indicator of health because all other geometric factors are 

constant. It should be stressed that this assumption cannot be extended to comparisons across the two 

electrode geometries. In particular, the higher NCNT values achieved by the Grids compared to the 2-

5 Fractals arises from the geometric factors discussed earlier (i.e. the sidewalls facilitating greater 

connections across the SiO2 and VACNT regions) along with the Grid’s larger GCNT values. For 

completeness, a linear fit for the Grids is included, but note that the Grid’s significantly lower GSi 

values exclude meaningful observations regarding the relationship between NCNT and GSi. 
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Figure 3-23.  Study of the relationship of NCNT with GSi for the Grid and 2-5 Fractal electrodes. 

Scatterplot of NCNT versus GSi for the Grids (red) and 2-5 Fractals (blue). The solid red and blue lines 

are fits through zero for the Grids and 2-5 Fractals, respectively. 

The above discussion focuses on the relative amounts of glia that are favorable for the 

VACNT-SiO2 material system examined here rather than declaring absolute values for broader 

systems. Previous studies highlight that populations of cell types and consequently ratios of neurons 

to glia can vary widely between the strains of the same mammalian species197 and across subregions 

of the same structure as a function of neuronal density198. With the current understanding of the 

neuron to glia ratio, it is challenging to determine a lower or upper limit for the number of glia needed 

in the gaps to guarantee the health and survival of the neurons on the VACNT electrodes. Previous 

studies claimed that a minimal glial occupation is necessary for protecting neurons from death but 

did not quantify the degree of occupation necessary196. It should also be acknowledged that the glial 

coverage and cell arrangements reported in the in vitro system examined in this chapter are vastly 

different to the glial coverage and cell distributions in a gliotic nervous tissue affected by 

neurodegenerative conditions181,199 or insertion of an implant199,200. 
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Finally, it is important to compare the current investigation of cell behavior on the Grid 

electrode geometry to previous studies in similar geometries. Various grid formations have been 

featured in glial investigations. A pioneering study in 1978 demonstrated that glial cells in 11 DIV 

cultures could be confined to square islands of palladium surrounded by a non-adhesive dried agarose 

film arranged in a grid pattern201 in spite of negligible height differences between the palladium 

islands and surrounding agarose film. The VACNT electrodes examined in this chapter have much 

taller walls compared to the 1978 study. This emphasizes the enhanced restricting role of the 

electrode walls compared to the restrictive role of adherent and non-adherent surfaces. With regard 

to the size of a grid’s chambers, studies have shown an increase in glial coverage as a function of 

increased surface area within a grid array using chamber sizes ranging from 75 to 200 µm202. For 

grid patterns defined by trenches203, the largest trench spacing of 500 µm provided the highest glial 

coverage. These findings emphasize glial preference for geometries that provide greater physical 

freedom. For example, these trenches can be thought of as being equivalent to the SiO2 gaps between 

the electrodes examined throughout this chapter and, accordingly, the glia accumulated within them. 

These findings were therefore consistent with the discussion provided here of physical freedom 

promoting glial coverage. Other studies investigated the interaction of neurons with grid patterns of 

negligible heights140,204. These showed that neurons followed the patterns and only deviated from 

them in longer cultures. The relatively large height of the VACNT electrodes examined in this chapter 

can potentially provide more robust confinement of neurons and their processes to the electrode 

surface for longer times. In another study, hippocampal neurons and glia were shown to colocalize 

on grid patterns with negligible heights in 26 DIV cultures194. The goal of this study was 

fundamentally different to the experiments presented in this chapter in which two cell types are 

guided into different regions of the electrode while keeping them in close proximity to each other. 

Whereas most of the previous studies discussed here focused on pure glial or neuron cultures, the 
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current experiment has investigated a co-culture of neurons and glia to observe their behavior in more 

similar conditions to in vivo tissue. Additionally, although these previous studies examined cell 

behavior on a grid geometry, they also employed chemical approaches to guide cells to the desired 

areas within the grid. These chemical treatments may not be stable enough for long term in vivo 

applications and are fundamentally different to the electrode designs examined in this chapter in 

which their gaps offer the potential for cells to expand their coverage through growth and cell 

division. 
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CHAPTER IV 

MODELLING NEURON BEHAVIOR AT THE SMALL SCALE 

The work presented within this chapter has been adapted from previously published 

co-authored work by J. H. Smith, C. Rowland, B. Harland, S. Moslehi, R.D. Montgomery, 

K. Schobert, W. J. Watterson, J. Dalrymple-Alford, and R. P. Taylor in How neurons exploit 

fractal geometry to optimize their network connectivity, Scientific Reports 11, 2332 (2021), 

by C. Rowland, B. Harland, J. H. Smith, S. Moslehi, J. Dalrymple-Alford, and R. P. Taylor 

in Investigating Fractal Analysis as a Diagnostic Tool That Probes the Connectivity of 

Hippocampal Neurons, Frontiers in Physiology 13, 932598 (2022), and by C. Rowland, J. 

H. Smith, S. Moslehi, B. Harland, J. Dalrymple-Alford, and R. P. Taylor in Neuron Arbor 

Geometry is Sensitive to the Limited-Range Fractal Properties of their Dendrites Frontiers 

in Network Physiology 3, 1072815 (2023). 

 This chapter begins by providing a summary of the experimental methods used to 

investigate the morphological properties of hippocampal pyramidal neurons from the CA1 

region of the rat hippocampus. A technique for reconstructing and distorting three-

dimensional models of the dendritic arbors of neurons is described as well as several metrics 

of morphological complexity that are used when analyzing the models. Methods for 

measuring various geometric parameters directly related to the functionality of the neurons 

are also explained. Following this, an analysis of the fractal properties of the neurons arbors 

and their constituent branches is provided using four different methods (two for the arbors 

and two for the branches). While there are various fractal analyses that can be applied to 

neurons, here the fractal dimension of a neuron’s branch is measured using a coastline 

analysis as well as a tortuosity scaling analysis, and the fractal dimension of a neuron’s arbor 
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is measured using a box-counting analysis as well as a cumulative mass analysis (Table 4-1 

provides a list of these fractal dimensions). Then, relationships between the fractal dimension 

of the neurons’ arbors and their various functional parameters are charted. Using these 

relationships, an optimization model is employed that describes the functional benefits of the 

neurons’ specific fractal geometry. It is found that the optimization model informs how the 

natural, fractal properties of the neurons are associated with an ability to balance its need to 

connect to other neurons while also building and operating an arbor and that deviations from 

the neurons natural state bring it away from an optimized condition. 

Table 4-1.  Summary of all measured fractal dimensions. 

DBC coastline fractal dimension of a neuron’s branch 

DBT tortuosity fractal dimension of a neuron’s branch 

DA box-counting (or covering) fractal dimension of a neuron’s arbor 

DM mass fractal dimension of a neuron’s arbor 

 

Rodent Husbandry 

Eighty PVGc male hooded rats were used (8–10 months old and weighing between 

366 and 456 grams at surgery). The rats were maintained in reversed 12-h light schedule (8 

a.m. to 8 p.m.) in their colony room so that all behavioral testing was conducted during the 

dark phase when activity levels are higher. Body weights were restricted to 85 to 90% of 

free-feeding weight during testing, with free food access for surgery, recovery, and during 

subsequent 40-day continuous enrichment period. All protocols detailed in this chapter 

conformed to the NIH Guide for the Care and Use of Laboratory Animals and were approved 

by the Animal Ethics Committee, University of Canterbury. 

Image Acquisition, Model Reconstruction, and Model Distortion 

The rats were given an overdose of sodium pentobarbital, their brains were removed 
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fresh without perfusion, rinsed with Milli-Q water, and a 4mm block containing the 

hippocampus was cut in the coronal plane using a brain matrix (Ted Pella, Kitchener, 

Canada). These tissue blocks were processed with a metallic Golgi-Cox stain, which stains 

1% to 5% of neurons so that their cell bodies and dendritic arbors can be visualized. 200 µm 

thick coronal brain sections spanning the bilateral dorsal hippocampus were taken using a 

microtome. A standard microscope was used to locate isolated neurons in the dorsal CA1 

subfield (Fig. 4-1A). A Leica laser scanning confocal microscope was used to collect high-

resolution image stacks (Fig. 4-1B) for these arbors. An example of one of the images within 

a stack is shown in Fig. 4-1C. The image stacks were captured using a 20x glycerol objective 

lens with a 0.7 numerical aperture, providing an x and y resolution of 0.4 µm. The step size 

(z distance between image stacks) was 2 µm. 

 

Figure 4-1.  Demonstration of the neuron arbor reconstruction process. (A) Schematic 

diagram of a coronal slice through the rat hippocampus at Bregma -4.52mm showing the 

collection region (red box) within hippocampal CA1 (darkened area); the somata layer is 

denoted by the dashed line. (B) A stack of confocal micrographs of Golgi-Cox stained cells. 

Three 774 µm by 774 µm cross-sections separated by 2 µm in the z-direction are shown. (C) 

An example confocal micrograph (x-y layer) showing multiple neighboring dendritic arbors, 

each spanning the oriens (SO), pyramidale (SP), radiatum (SR), and lacunosum-moleculare 

(SLM) strata of the CA1 region. The dashed lines represent the strata boundaries, and the 

scale bar corresponds to 100 µm. (D) A three-dimensional model of a neuron’s dendritic 

arbor, reconstructed from a z-stack of confocal micrographs, featuring the apical (blue) and 

basal (red) arbors and the soma (black). (E) Schematic providing an example measurement 

of a weave angle, , forking angle, , forking length, L, and width, W, for a neuron’s 

dendrites.  
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Arbors were manually traced through the image stacks using Neurolucida (MBF 

Bioscience, Williston, VT, USA)205 to create three-dimensional models (Fig. 4-1D). The 

models were then exported to the Wavefront .obj format and their soma removed, leaving 

only the arbor’s dendrites. In this format, the arbor reconstructions were defined by sets of 

connected, cylindrical segments. The median length and width, W, of the segments were 2.4 

µm and 1.4 µm, respectively. Each cylinder was constructed using two sets of rings of 16 

points (vertices) and 32 connecting triangles (faces). At a dendrite’s terminal point, the final 

segment had 14 faces that formed an end cap. Bifurcating dendrites started new segments at 

the same location as the last set of 16 vertices from the parent dendrite. The forking length, 

L, between two bifurcations along a dendritic branch had a median value of 42 µm. Note that 

L also includes lengths between a branch’s forking point and its terminal point, as well as 

between a forking point and the point connected to the neuron’s soma. For the apical arbors, 

one primary dendrite extended from the apex of the soma and all other apical dendrites were 

either directly or indirectly connected to this primary dendrite. For the basal arbors, multiple 

primary dendrites extended from the soma. 

In order to perform the box-counting and profile analyses (explained below), the 

Wavefront files were used to create voxelized versions of the neuron arbors. The voxelization 

was performed at a resolution of 4 voxels/µm for box-counting and 1 voxel/µm for the profile 

calculation. In both cases, the arbor models were voxelized “exactly,” meaning that if any 

part of the polygonal Wavefront model fell inside a voxel, the three-dimensional coordinate 

of that voxel was included in the voxelized representation of the arbor. 

Distorted versions of the neuron arbors were created using rotation quaternions206 by 

multiplying the weave angles, θ, and forking angles, , of the arbor’s dendritic branches by 
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a common factor α, called the angle multiplier. The weave angles were defined as the angles 

between connecting segments along a branch and had a median value of 12°. The forking 

angles were defined as the first weave angle following a bifurcation point on a branch and 

had a median value of 37°. Figure 4-1E shows example measurements of θ and . When 

distorting θ, those angles furthest from the soma were rotated first and, working inwards, 

each subsequent angle was then rotated one at a time until all of the angles had acquired their 

new values. When an angle was rotated, the entire connected section of the branch between 

that angle and the terminal endcaps was also rotated. This rotation occurred in the plane of 

the two vectors that define that angle. The range of α values used (0.5 to 2 in steps of 0.25) 

was chosen to ensure that separate branches rarely intersected, so ensuring a physically 

reasonable condition. 

The effect that α had on the distributions of θ and  can be seen in Fig. 4-2. Because 

our investigation focused on the weaving and forking deviations of connected segments 

relative to the dashed lines shown in Fig. 4-1E, their measured angles did not distinguish 

between whether the segments fell to the left or right of these lines. Accordingly, for the rare 

examples when the value of θ or  was greater than 180° (corresponding to segments crossing 

over the dashed line) after distortion, it was adjusted to ensure that it remained within the 

range of 0° to 180°. For example, when α = 2 was applied to a natural (i.e. undistorted)  

value of 100°, the resulting distorted  was measured as 160° rather than 200°. This 

measurement scheme caused the slight non-linearity seen at large α values for the red and 

blue curves of Fig. 4-2d. The percentages of θ values crossing the dashed line after distortion 

were 0.009% and 0.07% for α = 1.5 and 2, respectively. The corresponding percentages for 

the  values were 0.7% and 2.7%. Note that if the weave and forking angles were not 
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distinguished between and had instead been treated as one set of angles, the combined 

distribution would follow a similar behavior to that shown in Fig. 4-2a and b due to the 

relatively small number of forking angles. 

 

Figure 4-2.  Study of the impact of the angle multiplier on the weave and forking angles. 

Histograms of the number, n, of occurrences of (A) θ and (C)  values across all basal arbors. 

The impact of modifying these angles is shown for three α values. (B, D) Changes to the 

mean and standard deviation of the distribution of these angles as a function of α. 

Calculating the Coastline Fractal Dimension of a Neuron’s Branch 

Within this chapter, a dendritic branch is defined as any path that starts from the soma 

and ends at the tip of a dendrite (Fig. 4-3B). Note that within this definition, different 

branches commonly have shared sections (Fig. 4-3C). To calculate a branch’s coastline 

fractal dimension, DBC, a three-dimensional extension of the traditional method pioneered by 

Richardson207 and then Mandelbrot25 in their discovery of the fractal character of meandering 

coastlines has been used. The ‘coastline method’ examines a branch at different resolutions 

through its employment of a ruler of length, LR. Shown in Fig. 4-4A, the branch is segmented 
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into a series of rulers. The branch’s fractal scale invariance can then be revealed through the 

following power-law relationship between LR and the number of rulers needed to span the 

branch’s entire length, NR:  

 𝑁𝑅 ∝ 𝐿𝑅
−𝐷𝐵𝐶 (Eq. 4-1) 

DBC can be extracted from a log-log plot of NR versus LR. In this analysis, LR was normalized 

to the largest possible ruler length connecting the soma to the branch endpoint, LE. 

This fractal scaling was limited at fine scales by the finite sizes of the branches, which 

set a fine scale ‘cut-off’. Rulers smaller than 4 µm (which approaches 2.5 µm, the median 

value of the branch segment length) were not considered because smaller rulers would start 

to detect the linear character of the cylindrical segments rather than the fractal character of 

the meandering branches. At the course scale, rulers spanning up to 40 µm were allowed, 

which provides an order of magnitude scaling on the log-log plots used to extract DBC. This 

‘one-order’ rule was applied to all branch sizes to standardize the fitting procedure that 

generated their DBC values and was chosen in order to maximize the number of branches 

used in the comparison of the two examined methods for measuring branch fractal dimension 

(the second being tortuosity fractal dimension). Selecting this one-order range excluded only 

35 of the 3354 total undistorted branches, compared to, for example, 1930 branches if 1.5 

orders was used as the scaling range. 

Figure 4-4A provides a graphical representation of how the segmented versions of a 

branch were generated. Initially, a spherical shell of radius LR was centered on the branch 

end connected to the soma. The start point of the first segment was set at this location and 

the end point was set where the branch intersects the spherical shell. If the spherical shell 

intersected the branch at multiple locations, then the location which had the shortest path  
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Figure 4-3.  Schematic illustrating the paths taken by dendritic branches. (A) An example 

reconstruction of a neuron’s basal arbor with the neuron’s soma colored in cyan and its 

dendrites in black. (B) An example of the paths taken by a neuron’s dendrites. S denotes the 

point where the dendrites initially extend out of the soma. B1 and B2 denote the points at 

which the dendrites bifurcate. E1, E2, and E3 denote the endpoints of the dendrites. (C) The 

three dendritic branches seen in (B) separated from one another. The red and cyan colors are 

used to indicate sections that are shared between branches. 

 

Figure 4-4.  Examples of the measurements needed to implement the coastline and tortuosity 

fractal analyses. (A) Schematic demonstrating the placement of rulers along the branch of a 

neuron. The black curve shows an example neuron branch, the connected red dots show the 

segmented version of a branch at a given ruler length, LR, the transparent red circles represent 

the spherical shells used to determine where to place each segment, and each red X indicates 

where the branch intersects the spherical shell, each of which has a radius equal to LR. After 

the branch has been fully segmented (A-right), the number of rulers used to span the branch, 

N, can then be counted for multiple ruler lengths. (B) The same branch shown in (A) with a 

chosen branch section of path length, LP, highlighted in red and the Euclidean distance, LD, 

separating the ends of this section shown by the dashed cyan line. The tortuosity, T, of paths 

can then be measured across paths of varying length. 
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length along the branch from the intersection to the center of the spherical shell was chosen. 

The next segment was defined using the same process, but the spherical shell was instead 

centered at the end point of the previous segment. However, once the first segment was 

placed, parts of the branch that had already been segmented but which intersected the shell 

were not considered when placing a new segment. This ensured that in general each new 

segment was placed closer to the branch terminal point than the previous segment. This 

process was repeated until the spherical shell no longer intersected the branch. If part of the 

branch remained unaccounted for, then a truncated segment was inserted to connect the 

endpoint of the previous segment to the branch’s terminal point. For cases when a truncated 

segment existed at the terminal point, the truncated segment was counted as a fraction of a 

segment. For example, for a ruler length of 10 µm, if the segmented version of the branch 

was comprised of 12 full segments and a truncated segment of length 2 µm then NR was 

counted as 12.2. 

The above analysis was performed on both the undistorted and distorted neuron 

branches. For the undistorted neurons, a method for calculating the normalized coastline 

fractal dimension, DBCN, of all the branches within a given neuron was employed. 

Normalizing LR to the Euclidean distance separating the ends of a branch, LE, allowed for a 

direct comparison of N across branches with different lengths. DBCN was calculated by 

plotting all of the branches on a single log-log graph of N versus LR/LE and extracting the 

magnitude of the slope of the combined data. In order to avoid having some branches 

dominate the fine and coarse scales of the fit, only the range of LR/LE over which all of the 

neuron’s branches contributed was used in the fitting procedure. It should be stressed that 

this normalization procedure was used only to demonstrate the similar fractal character of 
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different-sized branches. 

Derivation of Tortuosity Fractal Dimension 

The fractal dimension of a selected section of a neuron’s branch, DB, can be 

quantified using the power-law dependence of the number of rulers, NR, spanning the branch 

section and the ruler length, LR, being used, where LR can be normalized to the largest ruler 

length spanning the chosen section, LD. 

 
𝑁𝑅 ∝ (

𝐿𝑅

𝐿𝐷
)

−𝐷𝐵

 (Eq. 4-2) 

In the coastline method described in the previous section, DB is labelled as DBC, the full 

branch length is considered (i.e. LD = LE) instead of a section of a branch, and NR is measured 

as LR is reduced. 

For the tortuosity method, DB is labelled as DBT and ruler count variations are 

converted to length variations by substituting NR = LT/LR into Eq. 4-2, where LT is the total 

length of all the rulers, yielding 

 𝐿𝑇 ∝ 𝐿𝑅
−(𝐷𝐵𝑇−1)𝐿𝐷

𝐷𝐵𝑇 . (Eq. 4-3) 

Whereas the coastline method sets the second term of Eq. 4-3 constant and investigates the 

dependence on LR, the tortuosity method sets the first term constant by considering a ruler 

length set at the finest possible resolution, causing LT to approach the total length of the 

chosen branch section, LP, and investigates the changes in LP as LD is reduced. Substituting 

LT for LP and keeping LR constant in Eq. 4-3 then generates the following relationship: 

 𝐿𝑃 ∝ 𝐿𝐷
𝐷𝐵𝑇 . (Eq. 4-4) 

The definition of tortuosity used here is the ratio of a path’s curvilinear length, LP, to the 

Euclidean distance between the two endpoints of that path, LD (which is equivalent to the 
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largest ruler length spanning the branch section), where a path is defined as any section of a 

neuron’s branch connecting two points on that branch. 

 
𝑇 =

𝐿𝑃

𝐿𝐷
 (Eq. 4-5) 

Substituting Eq. 4-4 into Eq. 4-5 then gives 

 
𝑇 ∝ 𝐿𝑃

𝐷𝐵𝑇−1
𝐷𝐵𝑇 . (Eq. 4-6) 

Labelling the exponent of Eq. 4-6 as S and solving for DBT yields 

 
𝐷𝐵𝑇 =

1

1 − 𝑆
. (Eq. 4-7) 

Calculating the Tortuosity and Tortuosity Fractal Dimension of a Neuron’s Branch 

Before calculating the tortuosity fractal dimension, DBT, of a branch, it must first be 

sectioned into all of the possible paths along that branch. An example path and its associated 

LP and LD lengths are shown in Fig. 4-4B. LP was calculated by summing the lengths of all 

of the cylindrical segments spanning the chosen section of the branch. LP can in principle be 

used to measure the length of any branch section - from the smallest sections approaching 

the segment length through to the largest possible section approaching the length of an entire 

branch. In each case, LP captures the fractal tortuosity (i.e. meandering) of a branch. In 

contrast, LD represents the length of the straight, Euclidean line connecting the two ends of a 

chosen section along the branch. T was measured across all possible paths along a branch 

and plotted against LP on a log-log plot. The DBT value of that branch can then be extracted 

using the slope of this log-log plot and substituting it into Eq. 4-7. 

Due to the large noise inherent in plots of T versus LP, it was first divided into bins 

over the desired scaling range (4 µm to 40 µm was chosen in order to match the range 

examined in the coastline fractal analysis) before fitting the data to extract DBT. The average 



 

80 
 

 

T value was then calculated for each bin and the binned data was fitted on a log-log plot, 

yielding DBT for the chosen branch. A single DBT value was also calculated for all of the 

branches across all neurons. This procedure was the same as that for calculating DBT for an 

individual branch except that the data from all the paths within all of the branches across all 

neurons was combined onto a single plot of T versus LP. Note that duplicate paths exist due 

to different branches having overlapping sections (Fig. 4-3C) and therefore any duplicated 

data has been removed before performing the fit. 

Calculating the Arbor Radius of a Neuron 

The arbor radius, RA, of a neuron can be defined as its radius of gyration and can be 

measured as the root mean square distance between any two points on the arbor94. However, 

for reconstructions of arbors in which the lengths of the dendritic segments (i.e. the cylinders) 

comprising the arbor are not uniform, RA can also be calculated as 

 

𝑅𝐴
2 =

1

𝐿𝐴
2 ∑ ∑ 𝛿𝑙𝑖𝛿𝑙𝑗(𝑟𝑖 − 𝑟𝑗)

2
𝐾

𝑗=1

𝐾

𝑖=1

 (Eq. 4-8) 

where LA is the total length of all the dendrites within the arbor, δli is the length of dendritic 

segment i, ri is the position vector of dendritic segment i, and K is the total number of 

dendritic segments208. 

Modified Sholl Analysis 

Traditionally, Sholl analyses of neurons are performed by counting the number of 

intersections of the neuron’s arbor with concentric rings (in two dimensions) or spheres (in 

three dimensions) of increasing radii centered at the neuron’s soma. In parts of this chapter, 

a modified version of a traditional three-dimensional Sholl analysis is employed that 

calculates the number of intersections, NI, of a neuron’s arbor with concentric spheres of 
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increasing radii, r, averaged across spheres centered at 25 randomly selected locations on a 

neuron’s arbor within a distance of RA/√2 of the center of mass of the arbor208. This sampling 

of many local origins rather than just one origin centered on the soma accommodates 

potential variations arising from some parts of the neurons possessing different structural 

qualities than others. Restricting the selection of local origins to be within RA/√2 of the center 

of mass of the arbor reduces the number of spheres that have large portions extending beyond 

the arbor’s periphery. This approach also allows alignment with the cumulative mass fractal 

analysis (detailed below) which similarly samples many locations94. 

Calculating the Covering Fractal Dimension of a Neuron’s Arbor 

A three-dimensional, modified, ‘sliding’ box-counting analysis89 was used to 

calculate the box-counting fractal dimension of the neurons’ arbors, DA, sometimes referred 

to as the ‘covering’ fractal dimension. The voxelized dendritic arbor was embedded into a 

three-dimensional array of boxes and the number of boxes, Nbox, occupied by the arbor was 

counted across a range of box sizes, Lbox. The minimum box count was selected after sliding 

the embedded array of boxes in every coordinate direction simultaneously in 0.25 µm steps. 

Figure 4-5 shows examples of the boxes occupied by a neuron across various box sizes. If a 

neuron’s arbor displays fractal scale invariance, then the following power-law relationship 

holds between Nbox and Lbox: 

 𝑁𝑏𝑜𝑥 ∝ 𝐿𝑏𝑜𝑥
−𝐷𝐴 (Eq. 4-9) 

Given that an arbor has a limited physical size and that the reconstructions examined here 

are created with a limited resolution, this fractal scaling will only hold over a finite range. At 

the fine size scale, Lbox was limited to be greater than 2 µm as the median length and width 

of the dendritic segments comprising the reconstructed models are 2.6 µm and 1.4 µm, 
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respectively. This helps avoid resolution effects arising from the segment shapes. At the 

coarse scale, Lbox was limited to be less than one fifth of the largest extent of the arbor in the 

x, y, or z-directions to ensure sufficient counting statistics. Within these limits, a straight line 

was fitted for all sets of points that range over at least an order of magnitude on the log-log 

plot of Nbox versus Lbox and the fit with maximal R2 was chosen to measure DA. 

 

Figure 4-5.  Visualization of the space occupied by a neuron’s arbor across multiple size 

scales. From left to right, each image shows the boxes occupied by a neuron’s basal arbor 

with increasing box size as determined by the box-counting analysis. 

Calculating the Mass Fractal Dimension of a Neuron’s Arbor 

To perform a cumulative mass fractal analysis (also referred to as the mass-radius 

method) of a neuron’s arbor, Lin, the total length of all dendrites within concentric spheres of 

increasing radii, r, was calculated and averaged across randomly selected sphere centers 

using the same process as the modified Sholl analysis. The range of r examined is also the 

same as that used in the modified Sholl analysis. For a neuron with fractal branches, the mass 

fractal dimension, DM, of its arbor can be measured from this cumulative mass analysis using 

the following relationship94,209: 

 𝐿𝑖𝑛~𝑟𝐷𝑀 (Eq. 4-10) 

DM is referred to as the mass fractal dimension because it measures the change in 

cumulated mass of the object as a function of the size of the region considered (relating length 

to mass assumes that the branch width does not vary substantially, which is a reasonable 

approximation for the cylindrical segments comprising the neuron reconstructions used in 
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this chapter). Thus, the slope of a log-log plot of Lin versus r provides a quantitative value of 

DM. However, once the radius of a sphere reaches a large enough value that the entire arbor 

is contained within the sphere, Lin will become equal to LT. As such, this power-law scaling 

only holds over a finite range of r. The scaling range of the fit used to calculate DM was 

chosen to be consistent with the scaling range examined when calculating DA using the box-

counting method. 

Calculating the Surface Area, Bounding Area, Bounding Volume, and Profile Area of 

a Neuron’s Arbor 

In order to quantify the potential for a neuron’s dendrites to connect to other neurons 

as well as the costs associated with building and operating those dendrites, the following 

metrics were utilized: surface area (As), bounding area (Ab), bounding volume (Vb), and 

profile area (P). To measure As, the surface area of a neuron’s arbor was calculated by 

summing the area of all the triangular faces defining the cylindrical segments of the arbor’s 

dendrites. However, due to some faces being partially positioned inside the branches of an 

arbor, a technique was employed that measures As more precisely by increasing the resolution 

of the triangular faces and then removing those faces with all three corners inside a branch. 

To measure Ab and Vb, the bounding area and volume of the arbor, respectively, were 

calculated using the convex hull method210. An example of the convex hull of a neuron’s 

arbor is provided in Fig. 4-6. 

Calculating P required a more involved process than As, Ab, and Vb that made use of 

the voxelized version of a neuron’s arbor. As the arbor reconstructions used here did not 

include an arbor’s dendritic spines, the potential contribution of the dendritic spines to an 

arbor’s profile were accounted for in the calculation of P by uniformly expanding the 
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voxelized arbor by 2 µm in every direction. The orange region around the black dendrites 

seen in Fig. 4-7 represents the space around the dendrites in which a spine could grow in 

order to form a synapse with an axon passing through the arbor. While including a solid 

orange region assumes a high spine density, lower densities could be accommodated by 

reducing the profile by a density pre-factor. Given that the comparisons in this chapter are 

made across the same neuron type with the same spine density, the value of the pre-factor 

will not impact the results. 

The voxelized and expanded arbor was then orthographically projected onto the x-y 

plane. After projection, the points were rounded and any duplicate points occupying the same 

location were removed. Because the location of the points has been rounded, each point 

represents a 1 µm2 area and the total area occupied by this projection can be measured by 

counting the number of remaining points constituting the projection. The area of this 

projection divided by the bounding area of the neuron is then proportional to the probability 

of connection with an axon travelling parallel to the z-direction and passing through the 

dendritic arbor. However, because the axons that pass through the arbors of our CA1 neurons 

can arrive from any direction76,211, the average profile of each neuron’s arbor was calculated 

as though it were viewed from any point on the surface of a sphere containing the neuron’s 

arbor with its origin at the neuron’s center of mass. To accomplish this, a set of polar and 

azimuthal angles were defined that corresponded to uniformly distributed viewpoints on the 

sphere. Rotating the voxelized and expanded arbor by these angles and then projecting the 

result onto the x-y plane yields what the arbor would look like if seen from the given 

viewpoint. P was then calculated by averaging the area of the projections corresponding with 

each of our uniformly distributed viewpoints. Because it is impossible to distribute a general  
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Figure 4-6.  Visualization of the convex hull of a neuron’s arbor. A neuron’s basal arbor 

(left) and its convex hull (middle) are shown. Overlapping them (right) and making the faces 

of the convex hull transparent demonstrates how the convex hull encapsulates the arbor. 

 

Figure 4-7.  Measurement and mapping of the profile area of a neuron’s arbor. (A) A 

neuron’s basal arbor viewed from the direction for which P peaks. The zoom-in shows a 

black dendrite surrounded by an orange region representing the zone in which spines may 

extend. (B) The same arbor viewed from a different direction. (C) and (D) show the 

equivalent profile spheres. The middle point on the sphere’s surface shown in (C) and (D) 

corresponds to the profile of the arbor as seen from the viewpoints shown in (A) and (B), 

respectively. 
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number of perfectly equidistant points on the surface of a sphere212, the set of points was 

defined using the Fibonacci lattice, a commonly used and computationally efficient method 

for uniformly distributing the points213.  

The colored spheres in Fig. 4-7 (comprised of 10001 points) give a visual 

representation of the variation in profile with respect to the viewpoint. The P values used in 

this chapter, however, were calculated using only 201 viewpoints, which is sufficient for 

convergence - P for 201 viewpoints deviates by less than 1% from the value achieved when 

approaching infinite viewpoints.  

H-Tree Generation 

The neurons examined in this chapter have had several of their properties compared 

to H-Trees to identify the similarities and differences to a traditional mathematical fractal 

pattern in which its fractal dimension, D, can be set by scaling the lengths, L, of the H-Tree’s 

branches (it should be emphasized that any similarities do not imply a shared growth 

mechanism214). Figure 4-8 shows examples of the H-Tree models used in the comparisons. 

Whereas these H-Trees extended into three-dimensional space (middle and bottom row), 

two-dimensional H-Trees have also been included (top row) for visual comparison. The D 

values of these H-Trees were determined using the length scaling relationship: 

 
𝐿𝑖 =

𝐿1

2
𝑖−1

𝐷

 (Eq. 4-11) 

where Li is the branch length of the ith iteration. The length of the first iteration, L1, of any 

given H-Tree was chosen such that the total length of all its branches was constant across all 

D values. The number of iterations in the H-Trees was set to 12 to be close to the largest 

number of branch levels observed for the basal arbors (which was 11) and the width of the 
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H-Tree’s branches was chosen to be 1 µm, which is similar to the 1.4 µm median width of 

the branches for the basal arbors. Whereas the theoretical D value of the straight H-Tree 

models is set by the scaling of its branch lengths, incorporating a statistical weave into the 

paths taken by the branches (bottom row of Fig. 4-8) causes the ‘true’ D value of the H-Tree 

to deviate from the theoretical D value associated with the scaling of its branches. For 

consistency when comparing the H-Trees and neurons, the ‘true’ D value of the H-Trees will 

be labelled as DA and measured using the same box-counting method applied to the neurons. 

 

Figure 4-8.  Example H-Tree models in two and three dimensions. A visual comparison of 

H-Tree models extending into two-dimensional (top row) and three-dimensional (middle 

row) spaces for D = 1.1 (left), D = 1.5 (middle), and D = 1.9 (right). While the branches of 

the ‘exact’ H-Trees in the top two rows are straight, the bottom row of ‘statistical’ H-Trees 

were generated by introducing a distribution of weave angles into the branches of the H-

Trees in the middle row. 

Study of the Geometric Origin of a Neuron’s Fractal Properties 

 The first step taken towards addressing the question of which geometric features of 

a neuron’s arbor contribute to its fractal properties is of course to create high-resolution 
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models that faithfully represent its arbor. Figure 4-1A-D provides a visual representation of 

the process used to create three-dimensional models of the neurons examined in this chapter, 

those being pyramidal neurons from the CA1 region of the rat hippocampus. Figure 4-1A 

shows a schematic diagram of a coronal slice through the rat hippocampus and indicates the 

specific part of the CA1 region from which the neurons were imaged. Figure 4-1B shows an 

example of a stack of images that were taken using confocal microscopy and Fig. 4-1C uses 

one example image from a stack to indicate the various strata of the CA1 region in which 

these neurons’ arbors reside. Axonal and dendritic arbors extend from neuron somas located 

in the stratum pyramidale (SP), with the dendritic arbor featuring component apical and basal 

arbors. The dendritic branches of the apical and basal arbors extend into the neighboring 

stratum radiatum (SR) and stratum oriens (SO), respectively, and adopt a complex branched 

morphology that is used to efficiently connect to and collect signals from the axons of other 

neurons76. Figure 4-1D shows an example three-dimensional reconstruction of a neuron’s 

dendritic arbor created using a stack of confocal microscopy images. The axons that form 

synapses with these dendritic arbors originate either from within the CA1 region and connect 

to them from every direction (e.g. O-LM cells, basket cells, bistratified cells and axo-axonic 

cells)211, or they originate from other regions such as the neighboring CA2 which extends 

axons parallel to the strata (e.g. Schaffer collaterals). Unless specified otherwise, the analyses 

presented throughout this chapter focus specifically on the neurons’ basal arbors. 

In principle, a neuron’s dendrites could follow a perfectly straight line with 

dimension D = 1 or meander along a very winding trajectory that completely fills space with 

a dimension of D = 3. If the arbor features fractal dendrites instead of these integer 

dimensions characterizing Euclidean shapes, then each of these dendrites will be quantified 
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by an intermediate D value lying between 1 and 3. The same, of course, is true when 

analyzing the entire dendritic arbor. Fractals with larger contributions of fine patterns will 

have higher D values than fractals with lower contributions of fine patterns. An initial 

examination of the size of the neurons’ arbors showed that their mean arbor radius, RA, was 

approximately 100 µm and that the mean volume occupied by their dendrites, Vm, was 

approximately 5000 µm3. Converting RA to a spherical volume and comparing this to Vm 

showed that the neurons’ arbor occupied less than 1% of the space local to its dendrites, 

indicating that the arbors, and by extension their constituent dendrites, are very likely to have 

D values well below 3. 

Because many mathematical fractals are generated by scaling the length of some 

feature, a clear place to start when examining the fractal properties of a neuron’s arbor is to 

compare the scaling of its forking length, L, to that of H-Trees. Figure 4-9 shows the scaling 

relationship between the number of branches, N, with a given L/Lmax measured for a D = 1.4 

H-Tree (Fig. 4-9A, C, and E) and a typical neuron arbor (Fig. 4-9B, D, and F). Here, L has 

been normalized by Lmax, which is defined as the maximum L value within any given arbor. 

The branch section levels are defined such that i = 1 corresponds to branch sections emerging 

from the soma, i = 2 to branch sections emerging from the first forks, etc., with neurons 

featuring a median of 7 levels (other common level assignments such as the Strahler 

scheme215 generate similar findings to those below). The H-Tree exhibits a well-defined 

reduction in L/Lmax as i increases (Fig. 4-9C) which translates into a power-law decrease in 

N as L/Lmax increases (Fig. 4-9E). This power-law behavior is expected since it generates the 

scale invariance of fractal geometry: the magnitude of the data line’s gradient in Fig. 4-9E 

equals the H-Tree’s D value of 1.4. In contrast, this behavior is notably absent for the neuron  
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Figure 4-9.  Comparison between the scaling properties of an H-Tree and a neuron arbor. 

(A) A D = 1.4 H-Tree and (B) an example neuron’s arbor. The branch level, i, is colored as 

follows: red (1st branch level), orange (2nd), yellow (3rd), green (4th), blue (5th) and purple 

(6th). (C) Histogram corresponding to the H-Tree shown in (A) of the number of branches, 

N, with a given value of the normalized forking length, L/Lmax. Here, the forking length, L, 

has been normalized to the maximum forking length, Lmax. (D) The same as (C) but for the 

neuron shown in (B). Panels (E) and (F) show the analysis of (C) and (D) plotted in log-log 

space. 

in Fig. 4-9D, L/Lmax does not exhibit a systemic reduction in N with respect to i and 

consequently the Fig. 4-9F data does not follow a well-defined slope. Figure 4-10 shows the 

L/Lmax distributions of six more example neurons, and demonstrates that while every neuron 

has a unique distribution, none of them exhibit a systemic reduction in N with respect to i. 

This result demonstrates that the L distribution alone is insufficient to generate the fractal 
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character of the branches and indicates that in addition to branch lengths, the angles that 

determine the forking behavior along with the way branches weave between the forks must 

also play a role. 

 

Figure 4-10.  Extra examples of forking length scaling behavior of neuron arbors. Each panel 

shows the normalized forking length histogram of a different neuron’s arbor for comparison 

with Fig. 4-9D. The legend shown in the top-left panel applies to all other panels.  

Analysis of the Fractal Dimension of a Neuron’s Branches 

 Within this section, two methods are presented for measuring the fractal dimension 

of a neuron’s branches that accommodate the length scaling of a branch as well as its weaving 

and forking behavior. Initially, the results from a traditional method employed in the first 

demonstration of nature’s fractality207 are presented. This is followed by a novel method that 

examines a branch’s tortuosity208,216, T, across multiple scales. The measured branch fractal 

dimension, DB, is then compared between the two methods. 

The first method, termed the ‘coastline’ fractal analysis, is a three-dimensional 

extension of a traditional method pioneered by Richardson207 and then Mandelbrot25 in their 

discovery of the fractal character of meandering coastlines. The log-log scaling plot for this 
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analysis is shown in Fig. 4-11A. Normalizing the ruler length, LR, to the Euclidean distance 

separating the two ends of a branch, LE, allows scaling plots for branches with different 

lengths to be plotted on a common x-axis. Figure 4-11B demonstrates that all of the branches 

within a given arbor condense onto a single line, indicating that they are quantified by a 

common fractal dimension, DBCN. To extract DBCN, the black data corresponding to the 

scaling range of LR/LE shared by all branches within the arbor (i.e. the region over which all 

of the individual plots overlap) is fitted. The red dots in Fig. 4-11B indicate the data that are 

excluded from the fit. The inset employs a histogram to compare the mean DBC across all 

branches within the arbor, 〈DBC〉, (1.031 as indicated by the cyan line) with DBCN (1.032 as 

indicated by the red line). The scaling range of the fit in Fig. 4-11A is restricted to 1 order of 

magnitude to provide a standardized fitting procedure for extracting DBC. Figure 4-12 shows 

the fit used in Fig. 4-11A when it is extended to larger scales so that it spans 1.5 orders. The 

inset provides a histogram showing a comparison of DBC values for fits over 1 and 1.5 orders 

of all branches across all neurons long enough to have a scaling range up to 1.5 orders. It 

should be noted that the uncertainty associated with the measurement of DBC cannot be 

calculated from the results of the simple linear regressions employed here. This is due to the 

lack of independence of the data being plotted, which results from the existence of 

correlations between the measured NR values for given LR values in a similar range. To better 

characterize the quality of these linear fits in future work, methods like maximum likelihood 

estimation217 should be used to calculate the uncertainty of DBC. 

Figure 4-13 further demonstrates DBC’s lack of dependence on branch length by 

plotting the values of all the individual branches across all of the neurons examined. A 

branch’s ‘path length’, LB, is given by the total length of all the cylindrical segments spanning  
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Figure 4-11.  Coastline scaling analysis of a neuron’s branch. (A) The coastline scaling plot 

of the number of rulers spanning the branch, N, versus the normalized ruler length, LR/LE, 

measured for a single branch within a natural neuron’s arbor. The red insets show examples 

of segmented versions of the branch corresponding to ruler lengths of 6.4 µm (left) and 34.7 

µm (right). The slope of the line yields a coastline fractal dimension, DBC, of 1.036. (B) The 

equivalent coastline scaling plot including all the branches within the selected neuron’s arbor. 

The black data correspond to the scaling range of LR/LE shared by all branches within the 

arbor, whereas the red data correspond to the range in which some branches do not contribute 

and are accordingly removed when fitting the data. The slope of the line yields a normalized 

coastline fractal dimension, DBCN, of 1.032. The inset at the right shows a histogram of the 

number of branches, n, of a given DBC within the neuron’s arbor. The vertical red and cyan 

lines correspond to DBCN and the mean coastline fractal dimension across all the branches 

within the neuron’s arbor, 〈DBC〉, respectively. 

the branch from soma to tip (in terms of ruler measurement, LB approximates to the total 

length of all rulers spanning the branch when the ruler is set to equal the smallest resolution 

possible). Although DBC can vary considerably between individual branches, their collective 

behavior reveals an independence of DBC with respect to LB. The branch weave and forking 

angles, labelled as θ and , respectively, have also been mathematically manipulated by 

multiplying every θ and  value by a common factor α (Fig. 4-1E shows a schematic 

indicating example measurements of θ and ). This changes the DBC values as follows.  
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Figure 4-12.  Examination of the coastline fractal analysis scaling range. The coastline 

scaling plot of the number of rulers spanning the branch, N, versus the normalized ruler 

length, LR/LE, measured for the same neuron branch shown in Figure 4-11A. The solid cyan 

line represents the fit used to extract DBC over the 1 order of magnitude scaling range seen in 

Figure 4-11A, while the dashed cyan line represents the extension of this fit up to 1.5 orders 

of magnitude. The upper-right inset shows a histogram comparing the DBC values extracted 

from fits over 1 (cyan) and 1.5 (red) orders of magnitude for all branches across all neurons 

long enough to have a scaling range up to 1.5 orders. 

Values of α higher than 1 increase the angles above their natural values and cause the neuron 

branches to curl up, causing DBC to rise because the amount of fine structure in the branch’s 

shape increases. Similarly, reducing α causes the branches to gradually straighten out, 

decreasing the amount of fine structure, and causing DBC to drop. The insets at the top of Fig. 

4-13 provide a visual demonstration of this curling process. 

Whereas the coastline method considers the entire length of the branch and examines 

how the branch properties change with measurement resolution, the second method used to 

investigate a branch’s fractal behavior considers the finest resolution and examines how the 

branch properties vary when investigating increasingly small sections of the branch. This 

second approach aligns with one of the traditional measures of tortuosity, T, that quantifies  
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Figure 4-13.  Examining the independence of coastline fractal dimension on branch length. 

Coastline fractal dimension, DBC, plotted against branch length, LB, (measured in µm) for all 

of the branches across all neurons. The larger, outlined squares indicate binned averages of 

the underlying data in the range of 50 to 250 µm. The upper insets show the path of a single 

neuron branch for three values of α where the location of the neuron’s soma is indicated by 

the black dot. The colors of the data shown in this plot correspond to the α values shown in 

the insets. 

the extent to which the meandering branch deviates from a straight trajectory. Several 

different tortuosity metrics have been used in previous studies of a variety of biological 

structures208,216,218–221. Due to its mathematical connection to fractal measurement, the 

definition of tortuosity that is used in the subsequent analyses is based the ratio of a path’s 

curvilinear length, LP, to the Euclidean distance between the two endpoints of that path, LD 

(which is equivalent to the largest ruler length spanning the branch section). 

By measuring the LP and LD values (see Fig. 4-4B for a schematic illustrating an 

example measurement of LP and LD) of many differently sized paths along the branches of 

all the neurons and averaging the resulting T values across all of these branches, the 
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relationship between T and LP can be charted. Figure 4-14 shows this relationship plotted 

over the same scaling range (4 to 40 µm) used to measure DBC (Fig. 4-11A). Note that the 

exact values of the x-axes are different only because of the normalization scheme used in the 

coastline fractal analysis. Given the mathematical relationship between T and the coastline 

method, T is expected to follow the power-law relationship with LP revealed in Fig. 4-14, 

with the slope, S, of the log-log plot related to branch fractal dimension using Eq. 4-7. 

Accordingly, increasing α results in the data following a steeper trend. The inset of Fig. 4-14 

confirms intuition that the T value averaged across the data line will increase with α.  

 

Figure 4-14.  Tortuosity fractal analysis of all neuron branches. Scaling plot of tortuosity, T, 

against path length, LP, (measured in µm) for seven values of α as indicated by the upper-

right color bar. The data shown represent binned averages of T across all possible paths 

within all of the branches across all neurons. The upper-left inset shows how the average 

value of tortuosity across the LP range examined in the main plot, TAve, increases with α. 

Figure 4-15 plots DBC against DBT measured for all of the individual branches across 

all neurons and allows for a direct comparison of the two techniques used for determining 

branch dimension. The black line indicates the expected relationship, DBC = DBT. To compare 

the data to this line, for each α value the DBC value averaged across all branches across all 
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neurons is also plotted. Recognizing that the tortuosity scaling plots for the individual 

branches are inherently more noisy than the equivalent coastline scaling plots (compare Fig. 

4-11A and Fig. 4-16 which show the scaling behaviors for the same branch), the DBT values 

obtained from the procedure shown in Fig. 4-14 which benefits from fitting the combined 

data of all neurons are also plotted. Given the scatter observed in the individual branch data 

points, the close match of the two techniques to the line is impressive. In addition to 

demonstrating the power of confirming branch dimension using two techniques, Fig. 4-15 

also emphasizes that neuron fractal behavior varies considerably from branch to branch, but 

nevertheless systematic behavior emerges when looking across the collective behavior of 

many neurons. 

 

Figure 4-15.  Comparison of the coastline and tortuosity fractal dimensions. Coastline fractal 

dimension, DBC, plotted against tortuosity fractal dimension, DBT, for all of the branches 

across all neurons for seven values of α. The lower-right color bar indicates the α value of 

the corresponding data. The larger, outlined squares show the mean of the underlying DBC 

data points plotted against the DBT value extracted from Figure 4-14 for each α value. The 

black line indicates DBC = DBT. 
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Figure 4-16.  Tortuosity fractal analysis of a single neuron’s branch. Double-logarithmic 

plot of tortuosity, T, (unitless) versus path length, LP, (measured in µm) for the same branch 

shown in Fig. 4-11A. Each black square represents the average T value of all possible paths 

within the branch for the given LP value. The cyan line shows the fit used to calculate the 

branches tortuosity fractal dimension, DBT. The inset demonstrates the averaging procedure 

by plotting T versus LP, where each red dot represents a single path along the branch and the 

black squares represent their binned averages (which correspond to those shown in the main 

plot). 

Analysis of the Fractal Dimension of a Neuron’s Arbor 

 With the fractal behavior of the neurons’ branches now established using the 

coastline and tortuosity scaling analyses, two more techniques will be applied to investigate 

the fractal behavior of the neurons’ arbors. First, the cumulative mass fractal analysis will be 

employed, a technique that can be related to Sholl analysis, a traditional measure of the 

complexity of a neuron’s arbor222. The box-counting fractal analysis will then be employed, 

and its results compared with the cumulative mass fractal analysis. Though each technique 

probes the scaling behavior of a neuron’s arbor in a unique way, they both quantify the fractal 

dimension of the arbor by examining the relative contributions of coarse and fine scale 

structure to the arbor’s morphology.  



 

99 
 

 

 Beginning with the cumulative mass analysis (also referred to as the mass-radius 

method), this technique charts the total length of dendrites, Lin, within a sphere of radius r as 

the radius of the sphere increases. Similarly, the modified Sholl analysis measures the 

number of intersections, NI, of an arbor’s branches with spherical shells of increasing radii. 

Figure 4-17 shows the results of these analyses when applied to a set of neuron arbors. As r 

increases, both NI and Lin rapidly increase, with NI displaying a maximum of 21 at r = 73 µm, 

followed by a decrease as r nears the mean arbor radius, RA, of 98 µm. While the increase in 

NI and Lin reflect the fractal character of the repeating patterns established by the arbors’ 

branches208,209, the decrease in NI is a consequence of the measurement technique – it reflects 

the increased chance of the larger outer spherical shells reaching beyond the space occupied 

by the dendrites. The observed saturation in Lin for large r (which approaches the mean of 

the sum of all of an arbor’s forking lengths) indicates that the fractal scaling behavior must 

exist over a limited range, as expected for any finitely sized physical object. Figure 4-18A, 

which plots Lin versus r on a double-logarithmic scale, provides an example measurement of 

the mass fractal dimension, DM, of a given neuron’s arbor. 

Whereas the cumulative mass analysis provides a link to traditional neuroscience 

research through its relationship to Sholl analysis, the box-counting analysis is a commonly 

adopted technique within fractal studies. Similar to the coastline fractal analysis, which 

counts the number of rulers as ruler size is reduced, the box-counting analysis replaces the 

rulers with boxes to accommodate the fact that the arbors feature multiple branches. Figure 

4-18B shows the results of the box-counting analysis when applied to the same arbor seen 

in Fig. 4-18A, plotting the number of boxes occupied by an arbor, Nbox, versus the box size, 

Lbox. The range of Lbox used to measure the arbor fractal dimension, DA, in the box-counting  
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Figure 4-17.  Comparison of modified Sholl and cumulative mass analyses. The results of a 

modified Sholl analysis (red) measuring the average number of intersections of an arbor’s 

dendrites, NI, with a sphere surface of radius r, and a cumulative mass analysis (blue) 

measuring the total length of all dendrites, Lin, within a sphere of the same radius. Each curve 

represents the mean behavior across a set of arbors and the shaded region around each curve 

shows the standard error from the mean. The inset shows an example neuron’s arbor with its 

arbor radius, RA, denoted by the red dashed ring and example sphere radii used in the analyses 

denoted by the concentric cyan rings. The black dashed line at 98 µm indicates the mean 

arbor radius. 

analysis was also applied to the range of r used to measure DM. Figure 4-19B shows how the 

fractal behavior of an arbor starts to break down outside of the range of Lbox seen in Fig. 4-

19A and provides distributions of the DA values of both the apical and basal arbors of the 

neurons in Fig. 4-19C. The means of the distributions are DA = 1.42 (basal) and 1.43 (apical), 

indicating that their branches have similar scaling characteristics despite the apical arbors 

having longer branches that typically feature more forks. 

Although the cumulative mass and box-counting analyses yield fractal measurements 

that are in agreement with one another, it is clear from Fig. 4-18 that the results of the linear 

regression in the box-counting analysis, yielding DA = 1.40, correspond to a better fit than 

the results of the cumulative mass analysis, yielding DM = 1.42. It should be noted that both  
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Figure 4-18.  Comparison between mass and box-counting fractal analyses. (A) A scaling 

plot of the cumulative mass analysis showing the total dendritic length, Lin, within a sphere 

plotted against its radius r. The left inset shows rings with a radius of 5μm at 3 example 

locations on a neuron while the right inset shows spheres with a radius of 25 µm at the same 

locations. (B) A scaling plot of the number of boxes occupied by a neuron, Nbox, plotted with 

respect to the size of the boxes, Lbox. The left inset shows a representation of the space 

occupied by a neuron at a box size of 3.1 µm while the right inset shows the same neuron at 

a box size of 20.3 µm. 

DM and DA belong to a spectrum of dimensions and their magnitudes can be compared using 

a multi-fractal analysis223,224.  For the neuron arbors examined here, the box-counting 

analysis serves as a more global measure of fractality because it accommodates the whole 

arbor while the cumulative mass analysis is biased towards the central section (through its  
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Figure 4-19.  Box counting fractal analysis of a neuron’s arbor. (A) Example log-log scaling 

plot of the number of boxes occupied by a neuron’s arbor, Nbox, versus the box size, Lbox, 

used when measuring arbor fractal dimension, DA. (B) Expanding the scaling plot in (A) to 

cover a larger range of Lbox shows the size scales at which the scaling properties of the arbor 

transition to the Euclidean conditions, DA = 3 at the large scale and DA = 2 at the small scale. 

The transition to DA = 2 at the small scale occurs because the reconstructed arbor models are 

made of hollow cylinders whose surface is two-dimensional. The insets show the boxes 

occupied by the arbor at small (4 µm) and large (20 µm) box sizes. The arrows indicate the 

limits used when determining the scaling range used to measure the arbor’s DA value. (C) 

Histogram of the number of arbors, n, with a given DA value for both the apical and basal 

arbors. 

restriction of the local sphere centers to be within RA/√2 of the center of mass of the arbor). 

If the arbor’s branches start to, for example, weave or fork less towards the arbor periphery, 

a dimension that measures the whole arbor would be expected to be lower than one that 

focuses on the central region. 

While the observed differences between DA and DM are relatively small, based on 

this potential effect and also on the relative qualities of the associated fits, DA will be focused 

on throughout the rest of this chapter because its associated functional parameters similarly 

quantify the neuron’s whole arbor. However, both dimensions highlight two intriguing 
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qualities: 1) the spatial interaction of the branches and gaps in the arbor generates a much 

greater fractal complexity than that displayed by the individual branches, 2) given that the 

arbor could assume a fractal dimension up to 3, the fractal complexity is nevertheless 

relatively low when compared to the capacity of some mathematical fractals to fill space.  

Charting the Relationship Between Functionality and Fractal Dimension 

 Transitioning into an analysis of the dependence of a neuron’s functionality on its 

fractal behavior, it is prudent to begin by clarifying the way in which functionality is 

measured here before examining how a neuron is impacted by distortions away from its 

natural morphology. The functionality of a neuron is tied to its ability to efficiently form a 

vast, connected network with other neurons. The connections within this network depend on 

the dendritic arbors of neurons forming synapses with the axonal arbors of other neurons. A 

useful proxy for measuring the connectivity of a neuron is its profile area208, which captures 

the potential of a neuron’s dendritic arbor to connect to passing axons. Large dendritic arbors 

have large profiles and therefore a better chance of connecting to passing axons. However, 

the metabolic costs of an arbor, which have been associated with both mass and surface 

area79,225, also increase with size. As such, the morphology of a neuron’s arbor must provide 

it with a delicate balance between connectivity and cost in order to effectively fulfill its 

functional role. 

Given the relationship between a neuron’s morphology and its functionality, it is 

useful to examine the impacts of distortions away from the neuron’s natural morphology. By 

simultaneously changing the forking and weaving behavior of the branches within a neuron’s 

arbor, the arbor is brought away from its natural self-avoiding state. Figure 4-20 demonstrates 

this by plotting DA against the angle multiplier, α, and showing that both increasing and 



 

104 
 

 

decreasing α results in a rise in DA. This effect can be understood in terms of the interplay of 

the fractal branches and gaps. When α increases or decreases from 1 (i.e. the natural 

condition), the branches deviate away from their natural self-avoiding state and so move 

closer together. This generates an increase in the ratio of fine to coarse structure and a 

corresponding rise in DA. This effect is visualized by the upper insets of Fig. 4-20, which 

show an example arbor for the natural case (middle) and for lower (left) and higher (right) α 

values.  

Figure 4-20 also demonstrates that distortions in a neuron’s arbor away from its 

natural state impact its ability to efficiently connect to axons passing through the arbor. Here, 

connectivity efficiency, P/As, is measured as the ratio of an arbor’s average profile area, P, 

to the total surface area of all its branches, As. This metric has been adopted because previous 

studies have established that the arbor’s physical structure is sufficient for describing the 

connection process, with chemical steering playing a relatively minor role226,227. In particular, 

the arbor’s dendritic density82,228–230 and resulting physical profile231 are powerful indicators 

of its potential to connect to other neurons. When viewed from a particular orientation, P is 

measured as the total projected area of its arbor. Large profiles will therefore result in the 

increased exposure of synapses, which are responsible for receiving signals from other 

neurons. When calculating the profile from the arbor projections, an extra layer (colored 

orange in Fig. 4-20 upper inset and Fig. 4-7) is incorporated surrounding the branches 

(colored black) to account for outgrowth of dendritic spines - small protrusions which 

provide the majority of an arbor’s synaptic connections. For each arbor shown in the upper 

insets of Fig. 4-20, P is therefore the sum of the projected black and orange areas. P has been 

normalized by As to accommodate for the range in neuron sizes and associated surface areas. 
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Figure 4-20.  Examining the impact of the angle multiplier on neuron arbor fractal dimension 

and profile blocking. Plot of P/As (the arbor’s profile, P, averaged over all orientations and 

normalized to the arbor’s surface area, As) (red) and arbor fractal dimension, DA, (blue) 

against α. Both the red and blue lines show the mean across all arbors and their variations are 

represented by the shown standard errors from the mean. The upper insets show an example 

neuron’s arbor for α = 0.5 (left), 1 (middle), and 1.5 (right). The lower insets show the profile 

spheres corresponding to the arbors they are under. The black dot on the middle profile 

sphere indicates the orientation with maximal P/As for the middle arbor. The color bar 

corresponds to the range of P/As values shown on the profile spheres and all three profile 

spheres have been plotted over the same range. 

The general approach of averaging P/As across all orientations of the arbor has been adopted 

to allow for the fact that axons originating from within the CA1 region connect to the 

dendritic arbors from every direction211. The profile variation with orientation can be 

visualized by mapping the P/As values obtained from each orientation onto a spherical 

surface. The profile spheres and neurons shown in the insets of Fig. 4-20 have been viewed 

from a common direction which corresponds to the middle point on each profile sphere’s 
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surface. For the natural arbor, the orientation for which P/As peaks is marked by the black 

dot. Typically, this peak occurs in the direction that the Schaffer collateral axons enter from 

the CA2 region76 and so maximizes the connectivity of the natural neurons to those incoming 

axons. 

The inverse relationship between P/As and DA observed when distorting the neuron 

arbors can be traced to the increased fine structure of high DA neurons causing branches to 

block each other and so reduce the overall profile. Including this blocking effect is important 

for capturing the neuron’s connectivity because multiple connections of an axon to the same 

dendritic arbor are known to generate redundancies231. Therefore, if a straight axon is 

connected to an exposed branch, subsequent connections to blocked branches wouldn’t 

increase the connectivity and should be excluded. Figure 4-21A summarizes this blocking 

effect by plotting P/As directly against DA for the natural and distorted arbors together. Figure 

4-21B demonstrates that this blocking reduction in P/As is also seen for H-Trees (which have 

had a statistical weave incorporated their branches as seen in Fig. 4-8), highlighting that the 

blocking dependence on DA is general to fractals. Figure 4-21C and D explore another well-

known fractal effect that high DA fractals increase the ratio of the object’s surface area, As, 

to its bounding area, Ab,
16,86 (i.e. the surface area of the volume containing the arbor, as 

quantified by its convex hull). Figure 4-21E and F combines the ‘increased surface area 

effect’ seen in Fig. 4-21C and D with the ‘blocking area effect’ seen in Fig. 4-21A and B by 

plotting the connectivity density, P/Ab, (i.e. the multiplication of P/As and As/Ab) against DA. 

In effect, P/Ab quantifies the large surface area of the arbor while accounting for the fact that 

some of this area will be blocked and therefore excluded from the profile P. Normalizing P 

using Ab serves the additional purpose of measuring the arbor’s potential connectivity in a  
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Figure 4-21.  Study of the relationship between arbor fractal dimension and neuron 

functionality. Dependences of the functional parameters P/As, As/Ab, P/Ab, and Vm/Vb on arbor 

fractal dimension, DA, for neurons (left column) and H-Trees (right column). For the data 

shown in the left column, the red scatter corresponds to the natural arbors while the blue 

scatter corresponds to the distorted arbors. For the data shown in the right column, all the 

scatter is blue and includes H-Trees with both straight and weaving branches. The cyan lines 

represent binned averages of the underlying data, and the black lines show 3rd degree 

polynomial fits to the data. 

way that is independent of its size. Accordingly, P/Ab serves as an effective measure of the 

neurons’ capacity to form a network. 

The clear rise in P/Ab revealed by Fig. 4-21E and F highlights the functional 

advantage offered by high DA arbors – incoming axons will experience the large connectivity 

density. Note that the plotted connectivity density is for individual neuron arbors. Because 

of the inter-penetrating character of the arbors of neighboring neurons, the collective 

connectivity density will be even larger due to their combined profiles. If this functionality 
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was the sole driver of neuron morphology, then all neurons would therefore exploit high DA 

values approaching 3. Yet, both the apical and basal arbors cluster around relatively low 

values of DA = 1.41 suggesting that there are additional, negative consequences of increasing 

DA. Figure 4-21G and H plots the ratio of the volume occupied by the branches, Vm, to the 

neuron’s bounding volume, Vb, (i.e. the arbor’s convex hull volume). The more densely 

packed structures associated with high DA arbors produce the observed rise of Vm/Vb. 

Assuming constant tissue density, Vm is proportional to the neuronal mass, and the rise in 

Vm/Vb therefore quantifies the increase in mass density and associated ‘building’ costs of high 

DA arbors. Aside from this, there is also an ‘operational’ cost. It is well-known from 

allometric scaling relationships that metabolic costs generally increase with mass225,232. 

Specifically, previous research proposed that the amount of ATP expended by neurons 

increases with As
79,231. Revisiting Fig. 4-21A and C, As/Ab therefore charts how the 

normalized energy cost increases with DA, and P/As measures how efficiently an arbor 

establishes a given connectivity. 

Taken together, the panels of Fig. 4-21 summarize the competing consequences of 

increasing DA for both the neurons and H-Trees: the benefits of enhanced connectivity 

density increase (Fig. 4-21E and F), but so does the cost of building (Fig. 4-21G and H) and 

operating (Fig. 4-21C and D) the arbor. The distinct forms of these three factors are 

highlighted using 3rd degree polynomial fits (black) which closely follow the binned average 

values of the data (cyan). This observation of neuron behavior across large DA ranges 

provides a clear picture of their tolerances for the above factors and highlights both the shared 

behavior and subtle differences to standard mathematical fractals such as H-Trees. In 

particular, the high operating cost, the sharp increase in building cost, and the flatter gradient 
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of the connectivity efficiency curve at high DA could explain why the natural neurons (red) 

don’t exceed DA = 1.51. Nor do they occur below DA = 1.33 because of the low connectivity 

density. To explore how the neurons’ fractal structure balances these factors, Fig. 4-22 plots 

the ratios of the rates of change of connectivity density with operating cost  
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as proposed optimization indicators with the prediction that peaks in RPA and RPV indicate the 

DA value near which the optimal balance occurs. By definition, RPA and RPV chart how 

changes in DA impact the rate of change of connectivity density with respect to the rates of 

change of operating and building costs, respectively. Given that connectivity density, 

operating cost, and building cost all increase with DA, a neuron must carefully develop its 

arbor in such a way to maximize increases in connectivity density (captured by the derivative 

of P/Ab) while minimizing increases in cost (captured by the derivatives of Vm/Vb and As/Ab). 

Larger values of RPA and RPV indicate that increases in DA correspond to larger increases in 

connectivity density with respect to the associated increases in cost. For a neuron to have an 

arbor that optimally balances these functional constraints, it needs to achieve the largest 

values of RPA and RPV. Interestingly, though these proposed optimization indicators are fairly 

simple, Fig. 4-22 demonstrates that their associated connectivity-cost optimization curves 

generated peaks close to the natural neurons’ mean DA value of 1.42. This suggests that 
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although high DA structures offer superior connectivity density, the positive consequences of 

increasing DA beyond the peaks in RPA and RPV rapidly diminish in terms of the increasing 

operating and building costs associated with those high DA values.  

 

Figure 4-22.  Examining the relationship between functionality optimization and arbor 

fractal dimension. The ratio, RPA, of the derivatives of P/Ab and As/Ab for the neurons (A) and 

H-Trees (B), along with the ratio, RPV, of the derivatives of P/Ab and Vm/Vb for the neurons 

(C) and H-Trees (D) plotted against arbor fractal dimension, DA. The peaks of the solid 

curves in (A), (B), (C), and (D) occur at DA = 1.36, 1.37, 1.40, and 1.38, respectively. 

 Although Eqs. 4-12 and 4-13 seem to be effective in quantifying the connectivity-

cost optimization, another approach would be to consider if the neurons are sensitive to the 

rate of change of the ratios of connectivity density with operating cost 
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Adopting this approach, R*
PA reduces solely to the rate of change of connectivity efficiency, 

which as mentioned previously does not capture the ‘increased surface area effect’ (charted 

by As/Ab) shown in Fig. 4-21C. As seen in Fig. 4-23A, R*
PA does not contain a peak close to 

the natural neurons’ mean DA value of 1.42, suggesting that the approach of using a derivative 

of the ratio of P/Ab to As/Ab is not effective because it ignores the importance of connectivity 

density. R*
PV similarly does not contain a peak. Although Eq. 4-15 doesn’t cancel component 

functional parameters in the way Eq. 4-14 does, it is also ineffective at predicting the 

behavior of the natural neurons, suggesting that the derivative of the ratio of P/Ab to Vm/Vb 

does not directly influence the optimization process. It will be interesting to see if the results 

of future research examining a broad range of neuron types find that RPA and RPV (as defined 

by Eqs. 4-12 and 4-13) remain effective at predicting the peak in the histogram of a neuron’s 

natural DA value. 

 

Figure 4-23.  Examining alternative definitions of functionality optimization. (A) Plot of 

R*
PA, the derivative of the ratio of P/Ab to As/Ab against arbor fractal dimension, DA. (B) Plot 

of R*
PV, the derivative of the ratio of P/Ab to Vm/Vb against arbor fractal dimension, DA. Both 

(A) and (B) apply to the neuron arbors.  
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Having gained an understanding of the relationship between DA and connectivity-

cost optimization, it is informative to determine whether similar behaviors exist for branch 

fractal dimension, DBC. Examining the relationship between the fractal properties of an arbor 

and its constituent branches is a clear first step towards this. Figure 4-24A plots DA against 

mean branch fractal dimension, 〈DBC〉, for seven values of the angle multiplier, α. While DA 

is seen to rise as the arbors deviate away from the natural condition where α = 1 (as expected 

from the results of Fig. 4-20), the same is not true for 〈DBC〉, which increases or decreases as 

together with α. This difference stems from the fact that the fractality of a neuron’s arbor 

depends on an interplay between its branches and the gaps between them. As there are no 

gaps present when examining an individual branch, straightening out the path taken by the 

branch can only cause it to approach the linear Euclidean condition. However, even though 

this different behavior exists between the arbor and its branches, the specific dependence of 

DA on 〈DBC〉 given in Fig. 4-24A can be used to investigate the relationship between 〈DBC〉 

and connectivity-cost optimization. Figure 4-24B shows a plot RPA and RPV against 〈DBC〉 for 

seven values of α. This plot was generated by first using Fig. 4-24A to convert the 〈DBC〉 

values for each α value to their associated DA values and then using Fig. 4-22A and C to 

convert these DA values to their respective RPA and RPV values. As shown by the falling RPA 

and RPV values, the balance between connectivity and cost deteriorates as 〈DBC〉 and DA move 

away from their natural values.  

Figure 4-24 emphasizes that even for neuron arbors composed of dendrites with very 

mild fractality (characterized by low dimensions close to those of Euclidean straight lines 

and charted over just one order of magnitude), 〈DBC〉 nevertheless serves as a key parameter 

for charting the interplay between the arbor branches and their gaps, resulting in a systematic  



 

113 
 

 

 

Figure 4-24.  The impact of changing branch fractal dimension on arbor fractal dimension 

and functionality optimization. (A) Arbor fractal dimension, DA, plotted against the mean 

coastline fractal dimension, 〈DBC〉, for seven values of α as indicated by the lower-right color 

bar. The shown data represent the mean of DA and 〈DBC〉 across all arbors for each α value, 

with the error bars indicating the standard error from the mean. The three upper insets show 

an example neuron’s arbor imaged from the same viewpoint for three values of α, as 

indicated by the color of the arbor. (B) The connectivity-cost optimization curves, RPA (blue) 

and RPV (red), plotted against 〈DBC〉.  

shift from natural to non-optimal DA values. The asymmetry of the curves in Figure 4-24 

draw attention to the sensitivity of neuron behavior to changes in their 〈DBC〉 values. 

Distortions that increase the dendrites’ weaving and forking angles lead to small increases in 

DA compared to the sharper rises observed for distortions that reduce these angles. In 

particular, arbors featuring dendrites close to the Euclidean condition are highly sensitive to 
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distortions. For example, the small reduction in 〈DBC〉 from 1.02 (α = 0.75) to 1.01 (α = 0.5) 

is accompanied by an increase in DA from 1.42 (α = 0.75) to 1.46 (α = 0.5) – relative to the 

dendrites, the arbor’s dimension increases approximately fourfold. The associated reductions 

in RPA and RPV values exhibit similar sensitivities to DBC. 
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CHAPTER V 

CONCLUSIONS AND FUTURE EXPERIMENTS 

Artificial electrode interfaces that are chemically and physically compatible with 

biological systems hold great promise for fundamental and applied research and could lead 

to significant advances in medical implants. Because of their role as the body’s electrical 

wiring, neurons and the glial cells that serve as their life-support system have been a major 

focus of this field of research. In chapter III of this dissertation, the impact that variations in 

surface topography have on the morphology of neuronal and glial networks was studied using 

patterned VACNTs grown on a smooth SiO2 surface. Specifically, in vitro co-cultures of 

mouse retinal neurons and glia were examined for a range of Euclidean and fractal electrode 

geometries. While the VACNT-SiO2 material system was shown to have a powerful ability 

to ‘herd’ neurons onto the VACNTs and glia onto the SiO2, subtleties in the behavior of the 

neurons and glia on the Euclidean and fractal electrodes were identified, demonstrating the 

importance of electrode geometry in combination with electrode material properties.  

In particular, ‘cluster’ neuronal networks on the SiO2 gaps surrounding the VACNT 

electrodes qualitatively displayed some of the structural characteristics of small-world 

networks: the neurons clustered into large groups of somas typically supported by glial 

coverage and connected to other clusters via bundled processes. This network was connected 

to neurons on the VACNTs through a ‘boundary’ region featuring a large density of smaller 

neuron clusters and processes close to the VACNT electrodes. The SiO2 surfaces far away 

from any VACNTs were dominated by ‘desert’ regions characterized by sparse neuron 

clustering, limited process growth, and low glial coverage. Within the range of gap widths 

examined here (25 µm - 100 µm), the Euclidean Rows electrode design was in general found 
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to be dominated by boundary regions. The 2-5 and 2-6 Fractal designs, which feature the 

most constricted gaps amongst the Fractal designs, were similarly dominated by boundary 

regions. In comparison, the 1.1-4 Fractal design’s sparse electrode and very large SiO2 gaps 

were dominated by desert regions. While the remaining 1.5-4 and 2-4 Fractal designs 

contained both cluster and boundary regions, they were in general dominated by cluster 

regions. For the group of fractal H-Tree electrode designs, it was accordingly found that 

electrodes characterized by a mid-to-high fractal dimension and repeating level optimized 

the cell response by inducing large glial coverage in the gaps and fueling the formation of 

cluster regions that were connected to nearby boundary regions which themselves connected 

to the dense network of neuron processes on the VACNT electrode surface. Lastly, the Grid 

electrode design was found to be boundary dominated and performed well at accumulating 

neurons on the VACNT surfaces. This was likely due to the close proximity of the neurons 

in the Grid’s chambers to the VACNT sidewalls. However, the relative lack of nearby glia 

for the neurons on the Grid’s VACNTs is expected to negatively impact their long-term 

survival and electrical activity196.  

It is hoped that the approach of studying the interaction of these regions can be used 

to inform other future electrode designs, along with other material systems and chemical 

treatments. For example, whereas the Euclidean Rows and Grid designs examined here 

closely matched the smallest scales of the Fractal designs, future experiments could consider 

wider gaps (or in the case of the Grid design a larger chamber size). The model presented 

here predicts that increasing the gap or chamber width enough to induce a significant increase 

in glial coverage for the Euclidean Rows and Grid designs will ultimately have a negative 

impact. Due to the single-scaled, disconnected character of the SiO2 gaps in the Euclidean 
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Rows and Grid designs, an increase in the gap or chamber width sufficient to encourage more 

glial coverage will likely come at a detriment to the neurons, stemming from an overall 

decrease in the proximity of the electrode surfaces to the clusters of neurons in the 

surrounding SiO2 gaps. This prediction is further suggested by the Grid design’s significantly 

larger NCNT and NSi values when compared to the 2-5 Fractal design, which has a lower 

proximity between the electrode surfaces and clusters of neurons in the surrounding SiO2 

gaps than the Grid design. 

Although the fundamental ability to herd neurons and glia has been demonstrated 

here, future studies will need to confirm the benefits of this herding in terms of neuronal 

health and electrical stimulation. Considering health consequences, the behavior of the 

neurons and glia on the electrode designs examined here appeared to operate within a regime 

in which the increased presence of nearby glia correlated with enhanced growth of neuron 

processes on the electrodes, pointing to a ‘the more glia the better’ approach for neuronal 

health. It should be cautioned that this operational regime is not expected to be universal and 

that upper limits of glial accumulation might need to be identified and quantified for some 

systems. In particular, although the in vitro studies presented here represent a simple, 

controlled model for in vivo behavior233, differences between these environments will need 

to be accommodated in the long-term. For example, in vivo experiments will involve 

electrode interactions with three-dimensional, structurally intact tissue. Glia will then be 

present in both the electrode layer and in the tissue above the electrode. As such, it would be 

beneficial to guide the glia in the space above the electrode away from its surface and into 

its surrounding gaps to allow more neurons to be attracted towards the surface of the 

electrode. This increased proximity between the neurons and the electrode would thereby 
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allow for easier electrical stimulation of the neurons.  

Based on the results presented here, it is reasonable to hypothesize that there exists 

an optimized combination of electrode material and geometry that will maximize the positive 

responses of different cell types within the tissue interacting with the electrode. As an 

example, the 2-5 Fractal electrode design can be modified through branch elimination or 

rotation to remove barriers in the electrode’s central gap region while connecting the pattern 

to a boundary rectangle to maintain a fully connected electrode. Such strategies increase the 

connectedness and accessibility of the SiO2 gaps for the glia while keeping their proximity 

to the VACNT branches approximately the same (Fig. 5-1A and B). In contrast to these 

positive modifications, introducing extra branches into the 2-5 Fractal design to increase 

proximity will likely lead to negative consequences, in particular creating closed SiO2 

regions that reduce the connectedness of the geometry (Fig. 5-1C). In the long term, an 

optimized combination of material and geometry could be used to maximize the efficiency 

of implants for neuronal recording and stimulation. 

Another useful direction for future studies is to define the cell characteristics of the 

boundary, cluster, and desert regions more precisely to allow their areas, their locations, and 

therefore their contributions to herding to be quantified. This includes analyzing the neuronal 

network topography (such as clustering coefficient and shortest pathlengths) of the cluster 

regions to potentially confirm their small-world characteristics234,235. While the experiments 

detailed in chapter III quantified neuron process length and glial coverage as morphological 

measures of the cells, future studies would benefit from considering refined morphological 

characteristics using more specific cell markers and additional measures such as Sholl 

analysis. This would allow for distinguishing between subcategories of cells, for example,  
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Figure 5-1.  Examples of improved and worsened electrode geometries. (A, B) Improved 

electrode based on the 2-5 Fractal design enclosed within a rectangular boundary. For design 

(A), the first-order H has been removed from the tree and the four outer corners have been 

connected to the rectangular boundary. For design (B), the 2-5 Fractal design has been cut in 

half through the zeroth-order branch segment. Each half was then rotated through 180° and 

attached to the boundary. In this second design, the H-Tree branches spread from the 

boundary inwards rather than spreading out from the origin. By removing the branch 

occupying the central section of the design, both the (A) and (B) modifications create a 

completely connected SiO2 gap region while keeping the proximity of the gaps to the 

electrodes roughly comparable to the original 2-5 Fractal design. (C) Worsened 2-5 Fractal 

design in which extra lines connect the top-left and top-right endpoints as well as the bottom-

left and bottom-right endpoints within each H at every repeating level of the fractal. This 

modification increases the proximity between the gaps and the electrodes but decreases the 

gap connectedness drastically. 

different glial cell types (Müller cells/astrocytes and microglia)181 and different states of glial 

activation as well as different neuronal subpopulations such as bipolar and ganglion cells236. 

This will aid in quantifying differences in cell morphology between the boundary, cluster, 

and desert regions, and so allow them to be differentiated more accurately. Given the 

different functional roles of, for example, Müller cells/astrocytes and microglia, these 

distinguishing markers will also allow a greater understanding of the impact of electrode 

geometry on glial cell activation. 

Whereas the morphology of the network of neurons and glia was the focus of chapter 

III, future studies targeting applications may benefit from analyzing the adhesive strength of 

the neuronal networks along with their electrical properties. Detection of cell-electrode 

anchor points by immunostaining (e.g. vinculin and focal adhesion kinase)237,238 will provide 

both a better understanding of the process of network formation and a robust assessment of 
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its attachment to the electrodes. Future studies examining the electrical properties of the 

networks may use calcium imaging and microelectrode array (MEA) systems to confirm 

neuronal stimulation. Such studies will help clarify the impact that the clustering and 

bundling observed here have on the connectivity efficiency associated with small-world 

networks239,240. 

Finally, the in vitro study examined here deliberately employed large-scale fractal 

electrodes to manipulate networks of cells. Practically, these large sizes are more applicable 

to brain stimulation techniques10 than to retinal implants, which require individual electrodes 

to be near 20 µm in width in order to restore visual acuity to a level above legal 

blindness241,242. In future studies working towards the goal of improving the design of retinal 

implant electrodes, the electrode sizes examined here would need to be shrunk significantly. 

This reduction in size would of course have an impact on how the neurons interact with the 

electrode. Instead of manipulating the morphology of neuronal networks at the large scale, 

electrode designs on the scale of 20 µm would manipulate the morphology of individual 

neurons. Although the H-Tree electrode designs were shown to influence herding, their 

shapes are radically different to those of individual neurons (in particular, their straight lines 

and 90o turns are strikingly unnatural in comparison to the branches of an individual neuron). 

Should the ‘fractal resonance’ hypothesis proposed in chapter I of this dissertation be correct, 

matching the electrode’s geometry to the precise fractal characteristics of the neurons they 

interact with would result in increased neuron-electrode connectivity and allow the neuron 

to maintain a structure associated with its natural functionality. 

Aiming towards the goal of testing the ‘fractal resonance’ hypothesis, the 

experiments detailed in chapter IV examined the precise fractal characteristics of the arbors 
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and individual branches of pyramidal neurons from the CA1 region of the rat hippocampus 

and demonstrated that these fractal characteristics are tied to the neuron’s functionality. First, 

to clarify the origin of the neurons’ fractality, the relationship between the fractal scaling 

properties of a neuron’s individual branches and its arbor as a whole was investigated by 

employing methods for measuring the fractal dimensions of both the neuron’s arbor, DA, and 

its branches, DB. It was found that the underlying fractal scaling properties of a neuron’s 

arbor arise from a combination of variations in the weave angle, forking angle, and length 

scaling distributions of its branches, highlighting the difference between the statistical self-

similarity displayed by neurons and the ‘perfect’ self-similarity displayed by exact, 

mathematical fractals like H-Trees and Koch curves. Interestingly, though the fractal 

behavior of the neurons’ branches was shown to be very mild (characterized by DB values 

close to 1), it was found that the branches exhibit the same fractal behavior irrespective of 

the length of the branch within the measurable fractal range. Additionally, as the branches of 

an arbor spread out in space, the resulting arbor properties depend on two embedded fractal 

patterns – the branches and the gaps forming between them. This spatial relationship 

generates a much larger complexity for the arbors than that of their individual branches. 

As noted at the end of the Fractal Analysis section within chapter II of this 

dissertation, the fractality of physical systems has seen a fair amount of debate that has 

stemmed from two main factors. Firstly, physical fractals are inherently limited in the ranges 

over which they display scale-invariance. Secondly, Benoit Mandelbrot’s definition of fractal 

did not include a scaling range requirement. Surveys looking across many different examples 

of physical fractals have found that their scaling ranges are typically between 0.5 and 2 orders 

of magnitude, with the most common scaling range being 1.3 orders of magnitude101,102. In 
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addition to discussing scaling ranges, previous debates that centered around the 

appropriateness of labelling physical systems as fractal have focused on two important 

questions: 1) Does fractal analysis provide a useful description of the system? 2) Does fractal 

analysis allow one to correlate some relevant property of the system to its structure? Many 

previous studies have employed fractal dimension as a useful characterization of the 

complexity of neuron arbors17,21,89–91,93–96 and in doing so addressed the first question. 

However, the second question has gone largely unaddressed. 

Within this dissertation, multiple fractal analyses have been applied to neurons to 

better understand the origin of the fractal properties of both their arbors and branches. Each 

of these analyses required a scaling range of at least one order of magnitude (which falls 

within the typical range measured for physical fractals) and found the arbors’ mean DA value 

to be 1.42, while their branches’ mean DB value was 1.04. Even though this notable 

difference exists between the fractal dimension of the arbors and branches, they both were 

found to relate to the neuron’s ability to optimally balance the benefits of connectivity with 

building and operational costs (see Figs. 4-22 and 4-24). These results effectively address the 

second question. As such, while the analyses of the arbors and branches of the neurons 

examined within this dissertation have demonstrated limited-range fractal scaling, these 

analyses have proven useful in better understanding the morphology and functionality of the 

neurons, bolstering the appropriateness of labelling the arbor and branches of these neurons 

as fractal. However, it should be emphasized that the fractal dimension of the neuron 

branches are very close to 1, and so future work should be done test the degree to which these 

slightly non-linear branches behave differently from perfectly straight branches. 

Examining the relationship between the fractal properties of a neuron’s arbor and its 
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branches further, it was found that distorted neuron models generated by altering the natural 

weaving and forking behavior of the neuron negatively impacted the branches’ inherent, self-

avoiding behavior. Regardless of whether the weaving and forking behavior was reduced or 

amplified, the distorted neuron models displayed an increase in DA. For the neurons 

examined here, distortions that reduced the fractal weave of their branches, bringing them 

nearer to the Euclidean condition of straight lines (given by DB = 1), induced relatively large 

changes in the fractal characteristics of their arbors. Based on this observation, it is 

anticipated that neuron types with naturally occurring low DB values that are distorted in a 

manner that reduces their weaving and forking behavior will experience large changes in 

their arbor fractal characteristics. This however assumes a similar arbor density to the 

neurons examined here - this behavior may not be seen for sparsely branching neurons. It is 

also intriguing to consider neurons with large naturally occurring DB values and examine 

whether distortions through increases in their weave and forking angles would experience a 

similar sensitivity to DB. It is hoped that future studies across different neuron types will 

investigate these behaviors. 

One inevitable but useful property associated with measurements of DA and DB is that 

they are sensitive to how all three branch parameters (weave angle, forking angle, and branch 

length) impact a neuron’s morphology. Therefore, they can be related to more traditional 

parameters used to study specific consequences of the neuron’s complexity. This was 

highlighted by comparisons between DB and tortuosity, T. Whereas the method of measuring 

T employed here can be used to quantify the weave of an individual branch measured at a 

specific size scale, DB captures a more comprehensive picture by accounting for the weave's 

power-law growth in tortuosity across increasingly large scales. This was demonstrated by 
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deriving the mathematical relationship between branch tortuosity and a traditional measure 

of fractal scaling and using measurements of the neurons’ branches to confirm the agreement 

between the two associated dimensions, DBT and DBC.  

Having clarified the origin of the neurons’ fractal characteristics, relationships 

between them and the functionality of the neurons were then investigated.  Ultimately, it was 

demonstrated that the fractal scaling of the neurons’ arbors, though limited in range, provides 

a morphology that efficiently establishes connections with other neurons while balancing the 

building and operating costs of their arbors. As such, the neurons’ natural distribution of DA 

values was found to occupy a range that provides most of the neurons with an optimal balance 

between connectivity and cost. Additionally, distorted neuron models with a forking and 

weaving behavior that deviates away from the natural (i.e. undistorted) condition displayed 

a deterioration in this optimal balance. It should be emphasized that many physical fractals 

are also limited in their scaling range102, demonstrating the effectiveness of fractal-like 

behavior for optimizing essential processes ranging from oxygen transfer within the lungs57, 

to light collection by trees56, to connecting neuronal networks within the brain58. 

Based on this connectivity-cost optimization model, it is expected that different 

neuron types adopt different DA values depending on the relative importance of connectivity 

and cost. Neurons with a greater need for connectivity are expected to optimize around higher 

DA. For example, Purkinje neurons, characterized by a DA value of approximately 1.817, 

feature planar dendritic arbors that are nearly space-filing, with the goal of ensuring 

thousands of synaptic connections with the axons of granule cells that project perpendicularly 

through the Purkinje neuron’s arbor. 

Future studies may also be able to apply this connectivity-cost optimization model to 
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identify neurons associated with a pathological condition. For example, neurons impacted by 

Alzheimer’s disease might have their fractal optimization altered. This may explain previous 

observations of Alzheimer’s disease relating to changes in the scaling behavior of neurons243. 

In an initial attempt to test this hypothesis, a study comparing the impact that lesions in the 

anterior thalamic nucleus of rats had on the optimization of hippocampal CA1 pyramidal 

neurons was conducted244. The results of this study revealed no significant difference 

between the DA value of neurons from lesioned and non-lesioned rats, suggesting that any 

morphological changes induced by lesions in the anterior thalamic nuclei are too small to be 

detected by fractal analysis of the neurons’ arbors. Similarly, although the neurons from both 

groups of rats did display peaks in their optimization curves, no difference was found 

between the optimal DA values extracted from these curves for the two groups of rats. 

Another promising direction for future studies applying this connectivity-cost 

optimization model is to automate the analysis techniques and apply them to broad datasets 

of publicly available neuron reconstructions. In doing so, the specific fractal optimization of 

many different neuron types can be investigated. Working towards this goal, preliminary 

work has already shown the effectiveness of the model by applying modified versions of the 

techniques detailed in chapter IV to a dataset of mouse retinal bipolar neurons245 publicly 

available on NeuroMorpho.Org246. The results of these preliminary analyses are shown in 

Figure 5-2. Ultimately, the connectivity-cost optimization curve (as measured by RPV, Figure 

5-2C) associated with these retinal bipolar neurons displays a peak within the range of the 

neurons’ natural distribution of DA (Figure 5-2D) values. Interestingly, the optimal DA value 

associated with the peak in RPV occurs at a slightly lower DA value than the peak in the 

neurons’ DA distribution. This suggests that the functionality of retinal bipolar neurons likely 
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requires an arbor that deviates slightly from the optimal condition, in favor of increased 

connectivity. 

 

Figure 5-2.  Preliminary results of the connectivity-cost optimization model applied to 

retinal bipolar neurons. The functional parameters P/Ab (A) and Vm/Vb (B) plotted against 

arbor fractal dimension, DA. (C) The connectivity-cost optimization curve, RPV, plotted 

against DA. (D) The distribution of the neurons’ natural DA values. 

 Returning to the ‘fractal resonance’ hypothesis, these preliminary results on retinal 

bipolar neurons indicate that the fractal characteristics of these neurons are naturally suited 

to balance connectivity and cost. This has significant implications with respect to the design 

of the electrode interface of retinal implants. Should the interactions of retinal neurons with 

the electrode interface cause their morphology to deviate away from the naturally optimized 

condition, it is likely that there will be direct negative consequences regarding the 

functionality of the connecting neurons. However, designing the electrode to match the 

fractal characteristics of the neurons, thereby allowing it to maintain a naturally optimized 
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morphology, will likely result in increased neuron-electrode connectivity and a preservation 

of the neurons’ natural functionality.  
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