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Large-scale decentralized networks have many advantageous fault tolerance properties 

over their centralized counterparts. These properties enable resiliency in the face of 

faulty, and even adversarial behavior. Consensus protocols are a way to coordinate state 

across these networks and are what makes them extremely robust to adversaries. This 

paper investigates the effectiveness of different consensus protocol designs by 

examining various questions about the relationships between blockchain consensus 

parameters and network externalities. In this research we develop a linear regression 

model to estimate which characteristics of blockchains are associated with the highest 

levels of byzantine fault tolerance. This quantitative research provides evidence for 

whether there are statistically significant relationships between aspects of blockchain 

design and voting power centralization. Finally, we explore what key network metrics 

are used by node operators in the decision making process to participate in the mining 

process. 
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Introduction 

Distributed Computing 

Distributed computing is a forty year old field of science that primarily aims to improve 

scalability and redundancy in computer systems. Scalability has received the bulk of the 

attention in this field because of the applications to computationally intensive projects. This has 

led scalability to be extensively explored in both academic and practical settings. On the other 

hand, until recently, much of the focus of redundancy has been academic. The goal of 

redundancy is to eliminate single points of failure by replicating the same computation across 

multiple different machines. In (Lamport et al. 1982), the authors introduce the allegory of a 

group of Byzantine Generals' attempt to achieve consensus on when to attack a city. In doing so, 

the authors outlined the fundamental problem faced by redundancy and formalized the study of 

consensus: the ability for distributed systems to maintain reliability in the face of arbitrary 

failures and adversarial behavior. For many years the study of consensus stayed within the 

context of closed, “permissioned”, networks. The number of nodes, their identities, and 

communications are known by all participants in these networks. To join the network, nodes 

must first ask for permission before they are allowed to participate in consensus. Permissioned 

networks have many practical applications such as businesses that want redundancy for 

sensitive information. They are also relatively easy to set up, maintain, and easy to coordinate 

because there is a high degree of certainty about the participants in the network. The type of 

consensus protocols that developed for these networks are commonly known as classical or 

Byzantine Fault Tolerant (BFT) protocols, characterized by quorum based consensus. BFT 

consensus protocols have since been adopted to work in permissionless settings (Kwon, 2014) 

but still operate under many of the same assumptions and limitations. One such limitation is the 

quadratic communication overhead. This overhead makes BFT protocols unfavorable for large-

scale consensus as linear node participation scales with superlinear performance degradation.  

 

In 2008 a pseudonymous entity by the name of Satoshi Nakamoto introduced a new type of 

consensus, now known as chain-based consensus. As opposed to BFT consensus, chain-based 

consensus allows node participation to scale linearly with sublinear performance degradation. 

This breakthrough was made possible by relaxing assumptions BFT consensus protocols made 

about voting finality and network communication between nodes. While BFT consensus has 

historically been extremely limited in scope due to scaling issues, chain-based consensus 

opened the door for large-scale, permissionless, peer to peer redundancy in computer networks. 
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This allowed for the creation of extremely large and fault tolerant networks known as 

blockchains. Equally important to Nakamoto’s new type of protocol, was the idea of using 

consensus to distribute parts of the ownership of a database instead of simply distributing parts 

of the computer processes. The idea of a community owned data system has various 

implications, including the creation of a trillion-dollar cryptocurrency industry.  

 
Blockchains 

Blockchain is an all-encompassing term that refers to a specific type of distributed system and 

data structure. The first blockchain is largely agreed to be Bitcoin.  

 

From a distributed systems perspective, a blockchain is a type of protocol that allows multiple 

parties to form consensus on the ordering and inclusion of transactions. A major part of the 

protocol is the type of consensus protocol used to form agreement between nodes, such as the 

one invented by Satoshi Nakamoto. However there are many other important parts of a 

blockchain’s protocol including resource pricing and the peer-to-peer (p2p) networking layer. A 

blockchain network consists of many different people running clients of the same protocol on 

their computers. There are often many different types of clients as there are advantages and 

disadvantages for implementing a protocol in one programming language over another. The 

strength of the network comes from the fact that if a node violates the protocol, other nodes will 

kick them off the network by dropping them as a peer. The reason for protocolizing a 

blockchain as opposed to everyone running the same client is that it helps decentralize the 

development of the network.  

 

The term “blockchain” originates from the type of data structure used to maintain consensus of 

transactions. When transactions are submitted to the network, nodes bundle them together and 

form consensus on the ordering in batches. These batches are referred to as blocks, and since the 

history of the network is essentially a long chain of blocks, the network became known as a 

“blockchain”.  
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Figure 1:  Blockchain Diagram 

 

Source: https://bitcoin.org/bitcoin.pdf  

 

In this image are two blocks, each containing a list of transactions (tx), the cryptographic hash 

of the data in the previous block (prev hash), and a number nodes must solve for when forming 

consensus (nonce). It is important to note that the blockchain data structure only gives nodes the 

history of transactions. The current state of the blockchain (ie: the current balance of each 

account), is maintained in a different data structure known as a Merkle tree, and is computed 

locally by replaying the ordering of transactions from the very first block. This is why it is 

important to distinguish that blockchain protocols are only used for the ordering and inclusion 

of transactions.  

 

Although blockchain is an all-encompassing term, it is important to recognize that it originated 

from the data structure used to keep track of consensus. The Bitcoin whitepaper does not call 

the network a “blockchain”, but rather a “distributed timestamp server”. This definition is more 

in line with the type of distributed system a blockchain is, however the data structure definition 

has become more popular despite the fact that it reveals very little about the actual network.  

 

Economics & Distributed Computing 
Economics plays many roles in the design of blockchains and permissionless distributed 

systems in general, which is why it is a good topic for my major oriented thesis. Game theory is 

central to the incentive structures of blockchains. The primary goal of any blockchain is to 

incentivize nodes to act honestly under any circumstance. Any collusion or deviation from 

consensus rules could be disastrous for the network and the applications built on top of it. These 

incentive structures are commonly known as cryptoeconomics. By joining the best security 

properties of cryptography with the best economic incentives, it is believed that nodes can be 

prevented from acting maliciously. Fundamental to cryptoeconomics, is how to make the 

incentive for consensus participation, typically a native digital currency, as attractive as 

possible. This generally boils down to balancing the issuance of the currency against a 

https://bitcoin.org/bitcoin.pdf
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mechanism that removes it from circulation. Although out of scope for this paper, it is an 

inherently economic question and is a central theme to the sustainability of a blockchain.  

 
Majority Attacks 

Blockchains have a very large attack surface. Outside of attacks related to users accounts or 

implementation bugs, there are a number of ways to compromise a blockchain by directly 

attacking the consensus protocol. The most well known of these is the majority attack. Although 

there are various types of nodes in a blockchain network, only two are first-class citizens and 

have authority over the network.   

 

The first is the blockproducer, sometimes referred to as a miner or validator. These nodes act as 

the “server” of the network and are responsible and rewarded for publishing updates to the 

network. However, there is a high economic cost to operating this type of node. To prevent 

spam and other sybil attacks, blockproducers only receive voting power over what updates are 

published if they have committed resources towards the network. Ideally each human would get 

one vote, but because we can’t authenticate whether a single person is using a single computer, 

consensus must happen in the resource paradigm. In proof-of-work blockchains, the original 

version of the resource paradigm, voting power is determined by your proportion of allocated 

computing power relative to the rest of the blockproducers. In proof-of-stake blockchains, a 

newer version of the resource paradigm, voting power is determined by your proportion of stake 

relative to the rest of the blockproducers. Stake is essentially collateral that a blockproducer 

escrows to the network.  

 

The second type of node is the full node. These nodes act as the “clients” of the network and 

have lower hardware requirements so that the average person can operate them. Although 

operators are not explicitly rewarded for running a full node, it is the only way to access the 

network as a first-class citizen without running a block producing node. The reason that this is 

important, is that if you access the network through a trusted third party’s node, you lose the 

security benefits that make blockchains different from other networks in the first place. Once 

the blockproducers come to consensus and publish an update, every full node downloads the 

block and makes sure that the update is a valid state transition. Validity is proven by re-

executing the transactions in the order they were given and checking that the protocol rules 

were followed. If the block does not follow protocol rules and is an invalid state transition, full 
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nodes will reject it and revert to the last valid block. In proof-of-stake protocols, blockproducers 

are explicitly punished for publishing an invalid block by slashing their stake. In proof-of-work 

protocols blockproducers are implicitly punished by incurring high computational costs without 

any reward. Protocol rules enforce many various things including the payment of fees per unit 

of compute, that transactions were signed correctly, and the issuance schedule of the native 

currency was followed correctly. In doing so, full nodes verify that blockproducers are 

following the protocol that the community has agreed upon. This gives clients of blockchain 

networks much more power than in traditional client server models.  

 

A majority attack is an attempt to gain control over a byzantine threshold of the total 

blockproducers’ voting power to disrupt the safety or liveness of a blockchain. Safety is the 

guarantee that no malicious update has been committed to the network and liveness is the 

guarantee that the network will not stop. In blockchains with a synchrony assumption, this 

threshold is 50%. In blockchains with a partial synchrony assumption, this threshold is 33% for 

liveness and 66% for safety. Majority attacks can be executed by colluding with other 

blockproducers or purchasing more of the resource that grants you voting power. The effect of a 

majority attack depends on the type of consensus protocol being used, however full nodes will 

always prevent consensus rules from being changed. Nevertheless, majority attacks can still 

result in censorship of specific transactions or users, the blockchain halting on chains with 

partially synchronous BFT consensus, and double spends on chains with chain-based consensus 

protocols. This is due to the fact that these protocols rely on probabilistic transaction finality.  

 

Research Exploration 

In this thesis I explore how certain design choices impact a blockchain’s resistance to a majority 

attack. To do so, it is important to gain a deep understanding of how blockchains, and their 

consensus protocols work. The literature review is a summary of my research into the history of 

blockchain development.  
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Definitions and Abbreviations 

1. Asynchrony: A communication model that assumes nothing about network delays or 
time bounds. In this model consensus rounds don’t progress until nodes have responses 
from all other nodes 

2. Blockchain: A type of distributed network that forms consensus on the ordering and 
inclusion of transactions 

3. Blockproducers: The nodes that form consensus on what updates to push to the 
network. Sometimes referred to as “miners” or “validators” depending on whether the 
network is proof-of-work or proof-of-stake based  

4. Blocks: A bundle of transactions submitted to the network 
5. Blocksize: The size of updates made by blockproducers 
6. Blocktime: The amount of time that passes between updates made by blockproducers 
7. Byzantine faults: a computer fault that presents different symptoms to different 

observers 
8. Byzantine threshold: The proportion of voting power in a consensus protocol that once 

passed, allows an adversary to execute a majority attack 
9. Consensus: the study of achieving overall system reliability in the presence of faulty 

processes 
10. Full nodes: The type of node that a typical person will use to access the network as a 

client 
11. Liveness: The guarantee that a distributed system will not halt  
12. Majority attack: An attack in which adversaries target the consensus protocol to 

disrupt the safety or liveness of a blockchain  
13. Nakamoto Coefficient: The number of block producing nodes necessary to collude and 

execute a Majority attack 
14. Nodes: The actors within a blockchain network 
15. Partial synchrony: A communication model that operates under an asynchrony 

assumption until a network timeout and then operates under the assumption that a non-
response is a byzantine fault 

16. Permissioned network: A network in which nodes must ask and receive permission 
from existing nodes to join the network 

17. Permissionless network: A network in which nodes can freely join and leave a 
network at anytime 

18. Safety: The guarantee that nothing bad has happened in a distributed system 
19. Synchrony: A communication model that assumes all nodes will have complete 

information about the network by Δ. In this model consensus rounds will always 
progress once Δ has passed as a non-response results in the assumption that the node 
has dropped from consensus participation 
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Literature Review 
The Origins of Blockchains 

Blockchains spun out of a political effort known as the crypto wars. Originally starting in the 

1970s, the crypto wars were an effort by the public sector to democratize access to 

cryptography. Before this effort, cryptography was a technology tightly guarded by various 

governments and militaries around the world. This movement was largely started when (Diffie 

& Hellman, 1976) was published. The paper fittingly opens with the statement “We stand today 

on the brink of a revolution in cryptography” and closes with “We hope this will inspire others 

to work on this fascinating area in which participation has been discouraged in the recent past 

by a nearly total government monopoly”. Diffie and Hellman not only kicked off an academic 

movement, but also a political one. Many began to realize that cryptography was a way to 

maintain privacy rights and individual freedoms in the information age. This realization 

elevated the crypto wars from a scholarly subject to a fight for democracy. The crypto wars had 

many successes including a series of legal battles that brought cryptography and code under the 

protection of the First Amendment. The crypto wars were also foundational in paving the way 

for online privacy rights in an era of big data and surveillance. 

 

The Cypherpunks, the proponents of the crypto wars and the individuals that carried on the 

torch from Diffie and Hellman, realized that despite all of their successes they still had a huge 

problem. Cryptography did not guarantee privacy by itself. Traffic and metadata information 

could reveal almost as much information as unencrypted data. Furthermore, cryptography did 

not inherently have any censorship resistant properties. This problem led to the creation of 

platforms such as TOR, Pirate Bay, and ultimately blockchains, which aim to complement the 

privacy properties of cryptography with censorship resistant guarantees. Satoshi’s comment that 

“Bitcoin is an implementation of Wei Dai’s b-money proposal on Cypherpunks” (Benjyz, 2014) 

indicates that the original intention of blockchains was to solve the censorship problem of 

cryptography.  
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Timeline of Consensus Protocols 
1980-2008 

Academic BFT research laid the groundwork for consensus in the face of Byzantine behavior. 

Seminal papers such as (Leslie Lamport et al. 1982) and (Michael J. Fischer et al. 1986) helped 

formalize the area of study. Further work such as (Cynthia Dwork et al. 1988), (Miguel Castro 

et al. 1999), and (Hagit Attiya et al. 1994), helped tackle existing problems. Although these 

protocols were studied under many constraints, such as permissioned and low participation 

settings, they undoubtedly blazed the path for blockchains.  

 

2008-2014 

(Nakamoto, 2008) built upon much of the work done by BFT research, but adopted consensus 

for the permissionless setting. Although assumptions about network communication and finality 

had to be relaxed, Satoshi showed that consensus protocols could scale to the global level. The 

introduction of chain based protocols ignited a renewed interest in consensus, and led to 

hundreds of new attempts at consensus protocols, each with different focuses and tradeoffs. 

(Buterin, 2014) demonstrated that virtual machines, complete with their own Turing-complete 

programming language, could be built on top of consensus protocols. While state machine 

replication was not a new concept in consensus, previously, it was not believed possible that 

complex state transitions could be done on permissionless consensus. This was made possible 

by creating a blockchain-native virtual instruction set that operates as a common CPU for all 

nodes to use. This environment is known as the Ethereum Virtual Machine, and was particularly 

important because it introduced the concept of making instructions resource limited through the 

use of a gas meter. Every operation code for each instruction has its own price based on the 

usage of the physical resources of the actual computer running a node. Resource pricing is 

defined in the yellow paper, the protocol’s formal specification. Resource pricing and opcodes 

are often updated over time to better balance node expenses from running the virtual machine’s 

state transitions on their own physical hardware.  

 

The synchrony assumption of chain-based consensus previously forced blockchains to have 

enormously slow blocktimes, such as bitcoin’s 10 minutes, or else safety could be disrupted. 

(Sompolinsky & Zohar, 2013) demonstrated that slow blocktimes could be worked around. By 

counting stale and orphaned blocks as part of the chain’s weight, nodes could mine 

asynchronously at times with only a minimal trade off in security. Many blockchains such as 

Ethereum have adapted this fork choice rule in order to lower blocktimes to a couple seconds.  
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2014-2017 

(Kwon, 2014) was the next big innovation in consensus as it introduced secure proof-of-stake 

by using a BFT protocol. Prior to Tendermint, it was believed that proof-of-stake was not 

possible due to the long range attack, also known as costless simulation. This problem is 

inherent to the fact that proof-of-stake relies on a resource that is tracked by the very database 

that an adversary is trying to manipulate. Proof-of-work protocols do not have this problem as 

the resource is computing power which is external to the network. Although this solved the core 

proof-of-stake issue, many believed that it was actually a step back in permissionless consensus. 

Tendermint’s reliance on BFT consensus meant that it faced many of the scaling issues that had 

originally led to Satoshi’s chain based protocol. Tendermint eventually circumvented this 

problem by taking advantage of its consensus protocol's fast transaction finality to enable secure 

communication between tendermint based chains and scale horizontally. Most of the contention 

against this scaling approach comes from the fact that it is very hard to run full nodes for 

multiple chains as the network of blockchains continues to grow. The need for chain based 

proof-of-stake wasn’t solved until two years later when (Kiayias et al. 2016) was published. Ten 

days later, another chain based proof-of-stake protocol (Daian et al. 2016) was published. Both 

have different approaches to the long range attack with Ouroboros using a preassigned slot 

leader and Snow White using checkpointing.  

 

2017-Present 

A number of engineers have begun combining different protocols to achieve the best properties 

of both. (Buterin et al. 2020) overlays a chain based protocol with a BFT based finality protocol 

and is being used in the current Ethereum protocol. More recently, there has been a focus on the 

use of directed acyclic graph (DAG) based consensus in BFT protocols in papers such as 

(Danezis et al. 2021). Although DAGs have been used in GHOST protocols to help calculate 

uncle rewards, the implementation into BFT protocols for transaction ordering is novel. This 

approach removes the communication overhead that plagues BFT protocols, because it allows 

nodes to interpret transaction order locally which separatees consensus logic from the peer-to-

peer (p2p) networking layer. Rather than sending a confirmation vote for each consensus round, 

each node has a local view of the graph in which they can interpret proposals and votes without 

additional communication. 
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Blockchain consensus has begun to especially diverge from classical consensus within the past 

few years due to the emphasis on scaling. One such example is the idea of modular blockchains. 

Traditionally, each machine in the network participates in state machine replication. Every node 

receives the same input, executes the input, receives an output, and then compares the results to 

other nodes where consensus on the correct output is eventually formed. Modular blockchains 

offload parts of state machine replication to different networks. This is only possible because 

the network where consensus is formed and state is settled, is able to check that the other 

networks actually performed the work they were supposed to. (Ben-Sasson et al. 2018) 

demonstrates how execution of state transitions can be outsourced to untrusted third parties. 

This is done by the untrusted third party encoding the execution trace of transaction execution 

into a polynomial, and then verifying that the third party knows the polynomial. Verification of 

the polynomial is succinct because if the polynomial is of degree n, we only need n + 1 unique 

points to identify it. This allows the settlement network to focus on consensus networking and 

the availability of transaction data, while execution can be outsourced to a single powerful 

computer without raising hardware requirements for the rest of the nodes. A bottleneck for 

many blockchains is data availability, the need for transaction data to be available at all times in 

case a node falls out of sync with the network and needs to build the current state themselves. 

Traditionally, consensus requires each node to store all of the state itself. Since blockchains rely 

on decentralization for security, forcing all nodes to store an ever increasing amount of state can 

be extremely harmful. Eventually people may get priced out of the network as they are forced to 

buy more storage and compute to keep up with state bloat. (Mustafa Al-Bassam et al. 2018) 

introduced a solution to this. The data needed to reconstruct state is not held by nodes on the 

consensus network, but on a separate network in which it is easily verifiable that data is not 

being withheld or manipulated by probabilistically sampling the data. This is possible by a 

technique called data availability sampling which is core to many of the modular blockchains 

designs and is a proposal for Ethereum’s scaling plans.  

 

Evaluating Consensus Protocols 
Consensus protocols are often rigorously evaluated for fault tolerance with formal security 

proofs. This is done by reducing a protocol into a mathematical model to prove correctness of 

intended properties. Although many protocols such as Satoshi’s Bitcoin are introduced without 

any formal proof, distributed systems academics and engineers take it upon themselves to try to 

prove security or the absence of it. Bitcoin was not given a generic security proof until (Juan A. 

Gray et al. 2014). Most recently was (Francesco D’Amato et al. 2022) which argued that 
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Ethereum's current consensus protocol needed to be changed because of how its complexity 

hinders formal security analysis.  

 

Despite the abundance of rigorous protocol evaluation, there is a lack of comparisons of fault 

tolerance between protocols themselves. Distinguishing between correlation and causation 

makes qualitative measurements of fault tolerance extremely difficult. (Bulat Nasrulin et al. 

2022) compares different protocols by benchmarking transaction throughput, latency, and CPU 

usage however it is not comprehensive because it doesn’t factor in many key components such 

as state bloat, minimum hardware requirements for nodes, or how fault tolerance is optimized 

differently in each protocol. Other papers such as (Gengrui Zhang et al. 2022) closely examine 

message complexity, however are not immediately applicable to permissionless blockchains 

because they assume nodes share equal voting power. Similarly, (Fan-Qi Ma et al. 2021) 

addresses in what situations stochastic performance can destabilize consensus, however does 

not factor in that in practice nodes have varying amounts of voting power. (Lewis-Pye & 

Roughgarden, 2021) explores fundamental differences in permissionless consensus protocols 

such as synchronicity, sybil resistance mechanisms, and impossibility theorems. However, it 

does not examine protocols in production and examine how stake is distributed amongst nodes. 

(Evan Sultanik et al. 22) explores fault tolerance extensively by not only looking at stake 

distribution, but also properties exogenous to the protocol itself such as network delay, network 

topology, and ISP reliance. Although this was a thorough dive into networking centralities, it 

did not examine the protocols themselves but rather the infrastructure they rely on. Factoring 

this into a comparison of the protocols themselves would provide the greatest indication of fault 

tolerance.  

 

A couple metrics are commonly used to measure stake distribution including Nakamoto 

coefficients and Gini coefficients. Nakamoto coefficient was a metric introduced by former 

Coinbase CTO, Balaji Srinivasan. It represents the minimum number of entities needed to 

compromise a subsystem of blockchains. Nakamoto coefficient is typically used in the context 

of stake distribution, in which case the Nakamoto coefficient is equal to the minimum number 

of entities needed to reach a Byzantine threshold. However, Nakamoto coefficients can also be 

used in reference to client implementations, developers, nodes, exchanges, or others. It was 

loosely based off of the Gini coefficient and Lorenz curve which model the dispersion of 

income inequality.  
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Summary 
The research process of this thesis demonstrated just how far blockchains have developed since 

the original Bitcoin whitepaper. However, many of these developments are not reducible into 

metrics or quantitative statements that would make comparison practical. To continue 

investigating the original question of whether certain design choices of blockchains are 

correlated with higher resistance to majority attacks, I must compare blockchains that are easily 

comparable. As such, the experimental portion of this thesis focuses on consensus parameters 

rather than different consensus protocols.  
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Regression Modeling  
OLS Model 

My primary question is “what is the relationship between blockchain consensus parameters and 

network resistance to majority attacks?”. This question can be broken down into independent 

variables (blockchain consensus parameters) and a dependent variable (Nakamoto coefficient). 

In econometrics, Ordinary Least Squares (OLS) regressions are a common method for 

estimating the correlation of independent variables with a dependent variable.  

 

OLS regression models adhere to the format: 

Yi = 𝛽𝛽0 + 𝛽𝛽1X1 + 𝛽𝛽2X2 + 𝛽𝛽3X3 + 𝛽𝛽4X4… + Ui 

 

➢ Yi  = the dependent variable being measured 

➢ 𝛽𝛽0 = the intercept (constant) 

➢ 𝛽𝛽1 = the slope coefficient for variable “1” 

➢ X1 = independent variable “1” 

➢ Ui = the error (disturbance) term that represents all other factors that affect Yi 

 

OLS models assign betas to each of the independent variables by minimizing the residual sum 

of squares (RSS):   

𝑅𝑅𝑅𝑅𝑅𝑅 =  �
𝑛𝑛

𝑖𝑖=1

(𝑌𝑌𝑖𝑖  − 𝑦𝑦𝚤𝚤�)2 

To obtain a unique solution to this optimization problem, OLS models must have more 

observations than independent variables. Furthermore, OLS models must restrict the 

independent variables to as few as possible because of a phenomena known as overfitting. 

Fitting extremely complex models causes machine learning models to learn the random noise in 

the data instead of the relationship we are trying to estimate. This causes problems with causal 

inference and using the model to predict outside of the training sample. Due to these problems, 

it is important that my model remains simple with respect to the amount of observations I can 

collect.  

 

OLS models are useful because they demonstrate that a one unit change in Xi is associated with 

a 𝛽𝛽i unit increase in Yi. Under strong assumptions about the error term, 𝛽𝛽i is the effect of Xi on 
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Yi. OLS models explicitly assume that the data modeled has a linear relationship. Although this 

is a strong assumption, OLS is an extremely performant and flexible model because nonlinear 

data can be represented through transformations and basis expansions. The flexibility of the 

model is shown by its widespread use in academic and industry settings of statistical learning. 

In prediction settings, OLS will often outperform more complex algorithms in accuracy and 

training time. However, my decision for using OLS is because the linear assumption makes 

interpretation of the betas straight forward. This is important as my research question is looking 

at relationships within the data with the sole purpose of causal inference.  
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Data Collection 
 

Although blockchains have been around since 2009, the population sample of blockchains that I 

can collect data for is extremely small. This is because many blockchains fail to sufficiently 

decentralize protocol development, and so when projects run out of runway they are abandoned. 

As a result, there is a limited amount of blockchains that are running and have organic user 

activity. Additionally, I could not collect data on proof-of-work blockchains for the first 

research question, because it is extremely difficult to get reliable numbers on voting power 

distribution due to mining pools. I ended up collecting data on 18 blockchains primarily from 

the Cosmos ecosystem. Although it would have been preferable to run full nodes and query 

parameters myself, this requires extensive time and technical expertise. As a result, my data was 

drawn from Mintscan Block Explorer and Coingecko. I compiled this data into a CSV file using 

the software ModernCSV. The data frame is attached in the appendix at the end.  

 

Because of the results from the first research question, I collected and investigated additional 

data drawn from Etherscan.io. All of this data was from the Ethereum blockchain. In addition to 

this, I used QuickLatex to render my exported tables.  
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Research Question #1: Nakamoto Coefficient and Consensus 
Parameters 

 
Hypothesis 
I am exploring the research question “what is the relationship between blockchain consensus 

parameters and network resistance to majority attacks?”. In the literature review it was 

suggested that lowering the barrier of entry to network participants is extremely important for 

decentralization. In this research, I am investigating what design choices blockchain engineers 

should make to maximize decentralization. My hypothesis is that Nakamoto coefficients will 

negatively correlate with higher hardware requirements. Simply stated, blockchains with high 

barriers of entry will have the highest levels of voting power centralization.  

 

H0 (Null hypothesis): No statistically significant relationships between Consensus Parameters 

and Nakamoto Coefficients 

 

HA (Alternative hypothesis): Statistically significant relationships between Consensus 

Parameters and Nakamoto Coefficients 

 

OLS Model and Rational 
 

Nakamoto_Coefficienti = 𝛽𝛽0 +𝛽𝛽1Block_time1 + 𝛽𝛽2Block_size2 + 𝛽𝛽3num_validators3+ 

𝛽𝛽4network_age4 + 𝛽𝛽5market_cap6  + Ui 

 

Nakamoto coefficient is the number of malicious entities required to reach a Byzantine 

threshold. In partially synchronous protocols, this is the number of malicious entities required to 

reach ⅓ of total stake for liveness and ⅔ of total stake for safety. For the purpose of this 

research, we will only focus on the liveness threshold as all data was drawn from partially 

synchronous BFT protocols.  

 

Blocktime is the amount of time that passes in between state transitions. Because nodes must 

check for transaction validity, and then sum the new inputs to the historical state in order to 

compute the current state, the faster the blocktime the more computationally expensive the state 

transition becomes as the node has to do the same amount of work in less time. If the blocktime 

is too fast, nodes can be priced out of the network which can lead to centralization. 
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Blocksize is the amount of data contained in each block. This places a similar constraint on 

nodes as the more megabytes the block is, the more bandwidth a node requires to download it. 

In between blocktimes, nodes must fully download the proposed block, verify the state 

transition, and then broadcast its vote before the consensus round ends. This places minimum 

hardware and internet requirements on nodes which can cause some to become priced out of the 

network. 

 

Number of validators represents the protocol's hard limit of how many nodes can participate in 

consensus. This is also known as the “active validator set”. Although some protocols such as 

Ethereum do not have a limit, most BFT protocols such as those in the Cosmos ecosystem do. 

This is to limit the communication complexity during consensus rounds which helps keep 

networks performant. However, it also places a hard limit on the potential for voting power 

distribution.  

 

Network age must be controlled for because the longer it has been around, the greater the 

chance that more people know about it and would run nodes. As such, it would be unfair to 

compare a brand new blockchain to one that has been around for many years. 

 

Market cap is important to control for as a more popular coin will reach a wider audience than a 

lesser known coin. As such, the population that would consider running a node for it will be 

larger which may affect stake distribution. 

 

Running the Model: RQ #1 
Before running the model, I plotted the Nakamoto coefficient against the various independent 

variables to see if any trends emerged. Below are the graphs for each of the variables:  
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The data was smoothed using the geom_smooth() function via a generalized additive model. 

The gray band is the 95% confidence level interval for prediction from the model. Given the 

presence of overplotting, this smoothing helps us identify possible trends, however does not 

guarantee that they exist. Because of the large differences in market capitalization of the 

blockchains in the dataset, an additional graph was added which does a logarithmic 

transformation of market capitalization. This makes it easier to examine the variation between 

market capitalization and Nakamoto coefficient.  

 

These graphs show no clear, linear trend between the independent variables and Nakamoto 

coefficient. Part of the difficulty of this experiment is the low variation in the population 

sample. Drawing conclusions from 18 samples is an extremely small sample for this experiment 

which is further emphasized by the huge confidence level bands in the graphs. However, given 

the large number of factors that influence Nakamoto coefficient, it is possible that trends are not 

identifiable because the other variables are not controlled for.  

 

When running the OLS model developed previously, we get the following estimates: 
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In the first OLS model none of the coefficients are statistically significant except for the 

constant. The R squared is 0.160 which is low, but not surprising, given the large amount of 

factors that go into a blockchains Nakamoto coefficient. Other variables that could play a role 

include how well documented the node operating process is, how much the network is 

subsidizing blockproducers with inflationary rewards, and how expensive it is to get into the 

active blockproducer set. As a result it is not surprising that this model would only explain 16% 

of the variance of the dependent variables. Because of the large variance in the data, I did a 

linear-logarithmic transformation. This lets us interpret a 1% change in the independent variable 

as a 𝛽𝛽/100 change in Nakamoto coefficient.  

 

In the log transformed model the R squared is 0.416 which is much higher than the non-

transformed model. This indicates that some of the relationships between the independent 

variables and dependent variables may be logarithmic. The variable blocktime has a coefficient 

of -0.741 which means that a 1% increase in blocktime results in a 0.00741 decrease in 

Nakamoto Coefficient. Although the estimator is almost negligible and is not statistically 

significant, it opposes the original hypothesis. This is because the coefficient can be interpreted 

as an increase in blocktime, and lowering of hardware requirements and the barrier to entry, is 

correlated with an increase in stake centralization. The variable blocksize has a coefficient of -

0.103 and is not statistically significant. Regardless, it can be interpreted as a 1% increase in 

blocksize being correlated with a 0.00103 decrease in Nakamoto Coefficient. Like the previous 

variable, this opposes the original hypothesis. The variable network age has a coefficient of -

1.04 and is also not statistically significant. Although it is negligible, it opposes our hypothesis 

as the longer a network has been around, the more people may know about it which increases 

the potential for stake decentralization. Because these variables are not statistically significant 

we can not reject the null hypothesis that there is no relationship between blocktime, blocksize, 

and network age with a blockchain’s Nakamoto Coefficient.  

 

On the other hand, the variables validators and market capitalization have statistically 

significant results. The variable validators has a coefficient of 3.195 and is significant to the 

0.01 level. This can be interpreted as a 1% increase in the validator cap being correlated with a 

0.03195 increase in Nakamoto Coefficient. Although this is a relatively small factor in the 

Nakamoto Coefficient, it supports the original hypothesis that lowering the barrier to entry 

allows stake to decentralize more. The variable market capitalization has a coefficient of -0.763 

and is significant to the 0.05 level. This can be interpreted as a 1% increase in the market 
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capitalization being correlated with a 0.00763 decrease in Nakamoto Coefficient. Like the 

previous variable, this is a very small correlation. At first it seems that this coefficient opposes 

the original hypothesis as an increase in market capitalization should bring more attention to the 

blockchain and thus potential for stake decentralization. However, there is also a well known 

phenomenon called Maximal Extractable Value (MEV) which occurs in blockchains with high 

economic activity and creates stake centralization in the nodes with the most voting power. This 

is because blockproducers can propose blocks to the network that include their own transactions 

that frontrun transactions from other users. The profit from this frontrunning allows those nodes 

to buy more voting power, propose blocks more often, and extract more value. Over the long 

run this compounds stake centralization in the most powerful nodes. Given this relationship it is 

difficult to tell whether this variable supports or opposes the original hypothesis.   

 

Evaluation: RQ #1 

This experiment attempted to answer the question of whether there are relationships between 

blockchain consensus parameters and Nakamoto Coefficient based on a sample of 18 

blockchains. Given that many of the results were not statistically significant, we can not answer 

this question in the affirmative. As a result, we fail to reject the null hypothesis that there are no 

statistically significant relationships between consensus parameters and Nakamoto Coefficients. 

The results also do not support my original hypothesis that Nakamoto Coefficients will 

negatively correlate with higher hardware requirements. Rather, there is no relationship at all. 

During the research and data collection process of this experiment I realized that there are an 

innumerable amount of factors that contribute to Nakamoto Coefficient and stake 

decentralization that I would simply not be able to account and control for. Ultimately, it was 

not surprising that I was not able to draw causal relationships from my results, however it was 

surprising that I was unable to find any strong correlations. 

 

This experiment also provided clarity on what types of relationships OLS regressions could 

model. In particular, I felt that modeling financially incentivized relationships could be captured 

by this type of model extremely well as it would be much easier to collect and find data for. In 

the second research question I examine one such relationship.   
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Research Question #2: Network Hash Rate and Network Usage 
 
Hypothesis 
For the second research question I am exploring the question “what network metrics are most 

correlated with increasing the incentive to run a block producing node?”. The largest reason for 

running a block producing node is to generate revenue. Given that the market is extremely 

competitive, and some blockchains have high start-up and fixed costs, the decision to run a 

block producing node is almost entirely financially motivated. My hypothesis is that the 

decision to run a block producing node will be primarily based on network activity.  

 

H0(Null hypothesis): No statistically significant relationships between number of block 

producing nodes and network activity 

 

HA(Alternative hypothesis): Statistically significant relationships between number of block 

producing nodes and network activity 

 

This experiment will be conducted on data solely from the Ethereum blockchain. Ethereum was 

chosen because there is a large variety of data that can be tested that is widely documented and 

available. Although Ethereum switched from a proof-of-work based blockchain to a proof-of-

stake blockchain in August 2022, we will be looking at historical data from when it was proof-

of-work based.  

 

OLS Model and Rational 

 

PoW_Difficultyi = 𝛽𝛽0 +𝛽𝛽1network_utilization1 + 𝛽𝛽2daily_transactions2 + 𝛽𝛽3active_addresses3+ 

𝛽𝛽4market_capitalization4  

 

In proof-of-work blockchains, voting power is determined by a node's proportion of allocated 

compute relative to the total allocated compute of all block producing nodes. Using your 

compute to propose blocks for consensus is known as “mining”. To propose a block in the old 

Ethereum proof-of-work protocol, nodes must incrementally nonce a hashing function until the 

output is numerically less than the proof-of-work difficulty. The difficulty is a mechanism that 

helps keep blocktimes relatively constant. If the hash did not change in difficulty, blocktime 
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would become increasingly faster as more compute joined, which would cause instability and 

centralization in the network. Ethereum’s difficulty mechanism works by making the hash 

harder to solve if blocks are proposed faster than 12 seconds, and making the hash easier to 

solve if blocks are proposed slower than 12 seconds.  

 

Because the proof-of-work difficulty is effectively a rate limiting mechanism for how many 

people are mining the network at any given time, it is a good metric for how much interest there 

is to participate in consensus. Although we can not track the number of nodes or how much 

voting power a specific node may have, proof-of-work difficulty is a metric that will indicate 

the total number of people that think mining is profitable. It is important to note that this is not a 

perfect metric as there have been drastic improvements in efficiency for the mining process over 

the years. Originally mining was done on standard desktops, however as mining got more 

competitive, specialized hardware built for the sole purpose of mining emerged. 

 

Figure 10: Evolution of Bitcoin Mining Efficiency 

 

Source:https://dataalways.substack.com/p/the-merge-and-cryptos-electricity  
 

This figure shows how over time bitcoin mining has gotten more efficient in terms of energy 

over gigahashes (one billion hashes per second). Although this research question is 

investigating network data about Ethereum, the evolution of bitcoin mining equipment is a 

https://dataalways.substack.com/p/the-merge-and-cryptos-electricity
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phenomenon that has also occurred in the Ethereum mining industry. As a result of this, we can 

not perfectly assume that an increase in difficulty was because more people joined the network. 

Rather, a more efficient mining rig may have been released. However, for the purposes of this 

experiment, we will make the assumption that an increase in difficulty represents an increase in 

the number of people who think mining the blockchain is profitable.  

 

Network utilization is the average gas used over the gas limit per block. Gas is a resource cost 

for using a specific opcode in the Ethereum Virtual Machine. 1 gas is equivalent to 1 gwei, 

which itself is equivalent to 10-9 ether, the native currency of Ethereum. A full list of the 

opcodes and corresponding gas costs can be found on the Ethereum Foundation’s website. Each 

block has a gas limit which used to be determined by the miners, however is now hard coded 

into the protocol itself. The gas limit has increased from 3 million gas in 2015 to 30 million in 

2022. Given this, network utilization is effectively a measure of how much demand there is to 

use the network. Ethereum has a dynamic fee market that increases depending on network 

utilization.  

 

Daily transactions is another commonly observed metric which measures the total amount of 

transactions that took place in a given day. A transaction is an action initiated by an externally-

owned account (EOA). This is done by calling a function such as transfer(), bundling it into a 

transaction, signing it with your accounts private key, and then sending it to the network where 

it is gossiped around until it is included into a block. It is important to note that some 

transactions are larger and use more gas than others. As a result, daily transactions are not as 

good of a metric for measuring network usage as network utilization, however it is often 

commonly cited.  

 

Active addresses is the number of unique addresses that used the network as a sender or receiver 

on a particular day. This metric is also not perfect because one person may control multiple 

addresses. A well documented phenomenon known as “wash-trading”, where a person sends an 

asset back and forth between accounts they own, is sometimes done to artificially inflate active 

addresses or trading volume addresses. Like daily transactions, active addresses is another 

commonly cited metric however it has its problems.  

 

Market capitalization is a measure of the total supply times the market price of Ethereum. This 

metric is also commonly used in a node operator's decision on whether to mine or not. To 
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collect their profits, a miner must sell their rewards over the counter or on the open market. 

Oftentimes, the market price fluctuates on whether the network is over or undervalued, which 

itself is represented by market capitalization. Because of this, market capitalization is an 

important factor for miners to consider. 

 

By investigating these commonly used variables, I hope to see which is most influential on the 

decision making process to participate in the mining process. I also hope to answer the question, 

“what network metrics are most correlated with increasing the incentive to run a block 

producing node?”.  

 

Running the Model: RQ #2 

Like the previous experiment, I plotted the data before running the model to see if any 

immediate relationships were apparent. Once again, the data was smoothed using a generalized 

additive model with the gray band representing the 95% confidence level interval. It is 

important to note that the smoothing is used to help identify possible trends in the presence of 

overplotting, however it does not guarantee that any trends actually exist.  

 

Because we are plotting relatively volatile variables against each other, I first plotted the 

independent variable against time before plotting the independent variable against network 

difficulty. This helps visualize how the independent variable has changed as Ethereum has 

matured. Below are the graphs for each of the variables with data from 2015 to 2023: 
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In these graphs a couple interesting things stand out. The first is that in network utilization, 50% 

has an extremely high frequency. This is because of a change Ethereum made to their fee 

market known as EIP-1559 (Ethereum Improvement Proposal). This change made the gas-limit 

and block-size variable instead of constant, and set a target of 15 million gas but a hard limit of 

30 million. The purpose of the change was to increase security, by removing denial of service 

attack vectors, and also make fee markets more predictable through some other changes. 

However in our graphs, this makes it appear as if the network utilization is only 50% most of 

the time when in reality, that 50% is 100% of “normal” gas prices before they get very 

expensive. It will be very important to reflect this in our OLS model so the data is not skewed.  

 

Additionally, in the network difficulty vs. daily addresses chart there is a clear cluster of outliers 

where the days with the most daily addresses happened on a day with extremely low network 

difficulty. Similarly, in the network difficulty vs. daily transactions there are a couple clusters 

where the network difficulty was zero. Both of these factors can be attributed to the fact that in 

August 2022, Ethereum switched from proof-of-work to proof-of-stake during a hot swap and 

incredible feat of engineering known as “the Merge”. As a result the difficulty went to zero as 

no one was mining blocks anymore.  

 

Besides these anomalies, daily addresses appear to actually be strongly correlated with network 

difficulty, not including the data after Ethereum switched to proof-of-stake and difficulty went 

to zero. Although part of this can be attributed to reverse causality as you must generate an 

active daily address to participate in the mining process,  it is also possible that daily addresses 

could be a strong factor in the decision to mine in the first place.  

 

Before running the OLS model, I cleaned the data to remove anything after EIP-1559. This also 

includes all of the data that was biased because of the Merge when proof-of-stake difficulty 

went to zero. The rationale for doing this is that if post-EIP-1559 data is included, network 

utilization data would be skewed as there will be a higher frequency of 50% usage than should 

actually be represented. If post-Merge data is included the effect on the dependent variable 

(network difficulty) will be heavily skewed as it will be zero despite any changes in the 

independent variables. As a result, to remove bias from the data, anything after EIP-1559 was 

deleted.  
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This model has an R squared of 0.708 meaning that 70.8% of the variation in the dependent 

variable is explained by the independent variables. All of the coefficients are statistically 

significant to the 0.01 level. The first variable, network utilization, has a coefficient of 

1,922.732. This can be interpreted as a 1% increase in network utilization as having a 1,922.732 

increase in network difficulty. The coefficient daily transactions has a coefficient of -0.002 

which although statistically significant, is negligible on the overall network difficulty. Similarly, 

the daily addresses coefficient was 0.00002 and statistically significant, but given the context is 

negligible. In addition, the market capitalization variable has a coefficient of 0.020 which is 

negligible. Finally, network difficulty has a constant of 210.223. This means that without any 

network utilization, daily transactions, daily addresses, and a market capitalization of zero, the 

network has a difficulty of 210.223 tera hashes per block. Given that an Apple M1 Pro can 

generate 5 megahashes per second (Lovejoy, 2021) and an Ethereum block is produced about 

every 12 seconds, a difficulty of 210.223 would be equivalent to 3,504 M1 Pro Macbooks 

mining the network concurrently.  

 

(210.223𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒 ∗ 1000)/(12𝑠𝑠𝑠𝑠𝑠𝑠 ∗  5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒)  =  3503.71 𝑀𝑀1 𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
 

Although mining equipment is much more efficient than an M1 Macbook pro, this comparison 

still demonstrates how unlikely a network difficulty of 210.223 tera hashes per block would be 

for a network with zero activity. In turn, this indicates that my model most likely suffers from 

omitted variable bias and a number of factors that I did not control for. Despite this, if we make 

strong assumptions about omitted variable bias and causality, the model reflects that the 

decision to mine Ethereum is largely driven by network utilization. 

 

Evaluation: RQ #2 

Although the model does not capture every variable that affects proof-of-work difficulty, it 

provides strong evidence that mining difficulty is strongly correlated with various network 

activity metrics. This conclusion follows the intuition that originally led to my hypothesis, the 

decision to front high startup costs and participate in mining, is driven by key performance 

indicators. The high statistical significance of the results also reflects that my experiment was 

well suited for an OLS model unlike the first research question.  
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In retrospect, it may have been appropriate to conduct a lagged regression. This is because it is 

likely that some time passes before a node operator observes a key metric and actually begins 

participating in the network. In addition, it may have been interesting to conduct a difference-in-

differences experiment to look at the discontinuities caused by EIP-1559 and the Merge. It 

would be interesting to look at how fee markets changed before vs. after EIP-1559 or the energy 

consumption before vs. after the Merge, or even voting power centralization before vs. after the 

Merge. To conduct the experiment, we would need a counterfactual to observe the treatment 

effects of each change. For these experiments, since both changes were hard forks, we could 

observe the forks that did not accept the change. Although this would not be a perfect 

counterfactual, it may still provide an interesting experiment design. Results from this type of 

experiment could be used to better inform future protocol changes such as the heavily 

researched Multidimensional EIP-1559 (Buterin, 2022). 
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Conclusion 
 
This research explored the relationships between blockchain consensus parameters and network 

externalities. The results of this experiment yielded a lack of statistical significance, failure to 

reject the null hypothesis, and an overall conclusion that the model had many omitted variables. 

Because of the weak conclusions of the first experiment, we conducted a second experiment 

that better fit within the constraints of OLS and the available data. The direction of the second 

experiment was largely guided by the fact that causal inference was an impractical task given 

the immaturity and insufficient population of blockchains available to sample from.  

 

Nevertheless, the work of this research can be extended in multiple unique directions. To hunt 

for causality, researchers could isolate a specific treatment variable such as a particular feature 

of a consensus protocol. Researchers could then create two blockchains that are similar in every 

aspect except for the treatment variable, which would allow for the isolation of the treatment 

effect of the specific variable. Although this could be done with consensus parameters, this 

could be generalized back to the original question of differences between consensus protocols 

themselves. Isolation of the treatment effect could be done via a difference in differences 

experiment as the blockchain without the treatment effect could serve as an appropriate 

contrapositive. Because this may take many resources, it may be better to run the difference in 

differences experiment in a simulation setting by using Monte Carlo methods or imputing data 

from blockchains that are running in production.  

 

Regardless, there are many different ways for us to expand on our previous work. We hope that 

the research and topics explored in this thesis will help improve the decentralization and 

robustness of blockchain networks.  
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