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 The International Linear Collider (ILC) is a planned electron-positron collider which will 

probe the frontier of fundamental physics by serving as a Higgs factory. By producing a large 

number of high-quality Higgs events, we will be able to make extremely accurate measurements 

of the Higgs’ properties; to perform these it is imperative that our detectors are as sensitive as 

possible. To this end, a proposal called MAPS presents a potential upgrade of the 

electromagnetic calorimeter of the ILC’s SiD detector to higher granularity digital pixels. This 

work explores analytical methods within this new digital regime using a clustering algorithm, 

showing that MAPS can at minimum replicate the performance of the old design. The 

performance of the old design is then examined in detail, where evidence is found of 

performance degradation in regions where particles are packed closely together, thus 

confounding the measurement of their neighbors. The heightened spatial resolution of MAPS 

addresses this, allowing closely-packed particles to be more easily separated from one another 

and thus increasing the fidelity of their measurement.  
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The Standard Model and the International Linear Collider 

 The Standard Model (SM) is one of the most successful and accurate physical theories 

ever devised. In it, there exist just twenty-five fundamental particles (plus twelve antiparticles): 

twelve fermions (and their antiparticles) that make up the visible matter in the universe and 

thirteen bosons, which mediate the fundamental forces (except gravity, which the SM does not 

explain). The gluon (of which there are eight flavors, distinguished by their differing color 

quantum numbers) mediates the strong force, the force that holds atoms together. Two W bosons 

(W+ and W-) together with the Z boson mediate the weak force, which is responsible for 

phenomena like radioactive decay. Then there is the photon, which composes light and mediates 

the electromagnetic force. This is responsible for almost all day-to-day forces we experience, 

like the force keeping you from falling through the floor, and the forces between electrically 

charged materials and magnets. Finally, there is the Higgs boson, which is closely associated 

with the mechanism that is responsible for giving the other fundamental particles mass. 
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Figure 1: The Standard Model 

https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_P

articles.svg/1200px-Standard_Model_of_Elementary_Particles.svg.png 

A helpful reference diagram of the particles of the Standard Model. This chart is roughly 

analogous to the more familiar Periodic Table, but details components more fundamental than the 

elements. 

 Despite the extraordinary success of the SM, we understand that it is an incomplete 

description of nature due to its inability to explain phenomena like gravity or dark matter. There 

exist several potential additions to the model and parameters of it which are not known which 

may be able to account for these observations, but it remains to be seen if these describe our 

universe. The most promising path toward determining if this is the case lies with the Higgs 

boson. Theorized since the 1960’s, it was not discovered until 2012 at the Large Hadron Collider 

(LHC), located at the European Organization for Nuclear Research (CERN). As such, a number 

of its properties are still not known to the remarkable degree that those of many of the other SM 
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particles are, leaving ample room for them to deviate from the predictions of the SM. If such 

deviation is found, this could indicate the presence of new processes, particles, or other 

phenomena (new physics). For example, one of the most famous problems vexing modern 

physicists is dark matter, a mysterious substance that does not interact with the electromagnetic 

force, and is therefore invisible, but makes up a staggering approximately 80% of the matter in 

the observable universe. If we find that the Higgs decays to invisible particles more often than 

the SM predicts, then this may mean that dark matter particles are being produced, which could 

then be further probed. Another example is the asymmetry between antimatter and normal 

matter. Antimatter can be created in particle colliders, but is largely absent in the universe as a 

whole. The SM predicts that matter and antimatter should have existed in equal quantities in the 

early universe, so there should exist some explanation for there being so staggeringly much more 

matter today, 13.8 billion years later. If we observe some asymmetry in the way that the Higgs 

decays, this might point the way to a modification to the SM which could account for the lack of 

antimatter. In order to probe these questions, a new particle collider is being planned to add to 

the discoveries made by the LHC: the International Linear Collider (ILC) [1] [2]. 
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Figure 2: The International Linear Collider [2] 

A diagram of the ILC from the Technical Design Report (TDR). The full collider is 31 km in 

length, to potentially be upgraded to higher energy and 45 km in length. For perspective, each 

dash in the dashed line below the collider is a full soccer field. The blue lines show the path of the 

electron beam, and the green path shows that of the positron (anti-electron) beam, which is created 

from the electron beam in the gray cylinder on the left. 

The ILC differs from the LHC in a few critical ways. First, it is a linear collider rather 

than circular. This choice was made to avoid the effects of synchrotron radiation, a phenomenon 

which causes accelerating charged particles to radiate away their energy. To keep charged 

particles moving in a circle, they must constantly be accelerated to change the direction they are 

moving, so circular colliders must fight against this effect on top of ramping up the particles’ 

energies. Synchrotron radiation also saps far more energy from low-mass particles than it does 

from high-mass particles, so heavier particles feel much less of its effects. This is precisely the 

reason that synchrotron radiation is manageable in the case of the LHC; it collides protons, 

which are relatively heavy. The ILC instead collides electrons and positrons (the antiparticle of 

electrons), which are much lighter than protons and thus much more susceptible to synchrotron 

radiation. This makes a linear collider much more attractive in order to avoid the much stronger 
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energy drain. The main trade-off is that the beams only get one chance to collide rather than 

being able to make multiple laps around the collider. This, combined with electrons and 

positrons having much smaller cross-sections, means that the beams must be squeezed down to 

an extremely small size in order to ensure that the particles interact. This is a significant 

challenge, but ultimately worth it to reap the benefits of electron-positron collisions.  

As opposed to electrons and positrons, protons are not fundamental particles, instead 

being composed of three quarks bound together using gluons by the strong force. When colliding 

at the energies produced in the LHC, they break apart and are able to form new particles within 

the debris. However, because there are six quarks plus the gluons that bind them together going 

into the collision, that debris can become very messy, producing large numbers of particle tracks 

which need to be sifted through. Electron-positron colliders reduce this problem drastically by 

using matter and antimatter; upon colliding, instead of breaking apart, electrons and positrons 

undergo a process called annihilation, which simply frees up their energy to cleanly create new 

particles, leaving no debris.  

After the electron and positron collide, the energy gained from the accelerator may create 

a Z boson and a Higgs boson. This process is called Higgsstrahlung and will be the primary 

production method of Higgs bosons at the first phase of the ILC (with center-of-mass energy of 

250GeV). The clean, controlled nature of this process makes the ILC an ideal environment for 

producing large numbers of Higgs bosons with low background noise, acting as a ‘Higgs factory’ 

[3]. These particles are incredibly short lived, almost immediately (on the order of 10-22s [4][5]) 

decaying into other particles which fly into the detectors, often in concentrated streams called 

jets.  
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By detecting these precisely, we can trace their paths backward and reconstruct the original Z 

and Higgs they came from, allowing us to probe the Higgs’ properties. This detection is planned 

to be done by two main detectors, called ILD and SiD, the latter of which is the focus of this 

work. 
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An Introduction to Monolithic Active Pixel Sensors 

 The SiD detector [6], depicted in Figure 3, consists of a number of sub-detectors, each of 

which contribute to the full detector’s ability to measure particles. My research focuses on SiD’s 

electromagnetic calorimeter (ECal), a device which measures the energy of incoming electrons, 

positrons, and photons as precisely as possible (a diagram showing where different particles tend 

to interact is shown in Figure 4). The ECal is constructed of thirty alternating tungsten and 

silicon layers, with the last ten tungsten layers being twice as thick as the first twenty to offset 

cost. Its shape is that of a dodecagonal prism, with the long section with a dodecagonal cross-

section referred to as the “barrel” and the remaining two faces referred to as the “endcaps.” 

When a photon, electron, or positron, enters the detector, it hits the densely-packed (high-Z) 

atoms in the tungsten, creating a shower of additional electrons and photons that develops 

through the layers, depositing energy in the silicon which can be measured.  

 

Figure 3: The SiD Detector [7] 

A 3D model of the SiD detector. Different subsystems are modeled with different colors. The red 

subsystem in the center is the Tracker, the pink subsystem is the Hadronic Calorimeter (HCal), 

and the green subsystem sandwiched between them is the ECal.  
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Figure 4: Particle-Sub-Detector Interactions 

https://indico.cern.ch/event/471037/contributions/1980825/attachments/1225875/1794509/ATLA

S-Introduction.pdf 

A diagram showing which parts of a detector several different particles generally interact with. 

Notably, this is not a diagram of SiD, but of the ATLAS detector at the LHC, though these 

interactions are the same for SiD and the structure is highly similar.  

In the baseline design outlined in the ILC Technical Design Report (TDR) [2][6], the 

silicon is divided into 13 mm2 hexagonal analog pixels capable of measuring the amount of 

energy deposited in each. We can achieve good performance with this design, but incoming 

photons, electrons, and positrons may enter the detector very close together, and the lack of 

granularity can make it difficult to disentangle them. This limits the spatial precision of the 

reconstruction process, and thus the detector’s ability to make precision measurements of the 

Higgs.  

To address this, a novel design has been proposed, based on monolithic active pixel 

sensors (MAPS). In this new design, the silicon is divided into a grid of 25μm x 100μm 
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rectangular digital pixels which each record a hit if a particle passes through them, but not the 

particle’s energy. Fortunately, by carefully counting the number of hits, we can still extract the 

energy of an incoming particle despite not being able to measure it as directly. Additionally, 

because the pixels are much smaller, we gain a much higher resolution measurement of the 

location of each particle in the detector. This is illustrated in Figure 5 below, which depicts 

displays from each detector for the same event in which a neutral pion decays to two photons, 

each of which enter the detector and create the showers shown. MAPS provides a much finer 

spatial resolution, allowing us to pinpoint the center of each shower more precisely and separate 

the two showers from each other more easily. 

 

Figure 5: TDR vs. MAPS Showers [8] 

Displays of the TDR detector (left) and in MAPS (right) for an event in which a neutral pion 

decays to two photons. 

This measurement may then be paired with data from the other components of the 

detector to identify the particle and reconstruct the Z boson, if present, from all its decay 

products. In the event that the reconstruction does yield a Z-boson, we can use it, along with our 

knowledge of the total energy in the system, to find the Higgs. We can examine the reconstructed 

Z boson and find its “recoil mass:” the effective mass of particles other than the Z boson which 

are present in the event. If this recoil mass matches that of the Higgs, then we know that there is 
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a Higgs in the event before examining its decay products. This is useful because if the Higgs can 

decay into invisible dark matter particles, we would never be able to observe them directly. 

Using recoil mass, we can still identify the Higgs in these events and determine how often it 

decays to invisible particles. The Standard Model predicts this will happen only about 0.1% of 

the time [5], so if we find this to be happening at an elevated rate, that would be an indication of 

new physics. 

This reconstruction process consists of a number of steps, first gathering the raw hits into 

clusters, then reconstructing particles from these clusters, next finding jets of particles, then from 

these jets finally reconstructing the Z, and from it the Higgs. Here, I will focus first on the 

performance of the initial clustering stage in MAPS, before exploring how MAPS can contribute 

to improving the jet reconstruction stage.  
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Pixel Hit Clustering 

 The loss of a direct analog energy readout from each pixel is the most significant 

disadvantage of MAPS compared to the TDR baseline detector design. At first glance, it seems 

that this should lead to a reduction in the detector’s energy resolution (how precisely it can 

measure energy), but with careful analysis this may be recovered.  

 We can measure the energy of a particle by counting the number of Minimum Ionizing 

Particles (MIPs), which are charged particles above a minimum energy threshold (here 0.1 

MeV). By counting how many are present in each layer of the detector, we can track the 

development of the shower produced by an incoming particle, and from this extract its energy. 

However, MAPS cannot determine which hits (pixels which have been activated by the impact 

of some particle) were caused by a MIP and which were caused by some other particle, nor can it 

tell if one MIP activates multiple pixels. Thus, we must use approximate methods to try to count 

MIPs. One way to do this is to simply count up all the hits, though it is clear that this leaves 

significant room for improvement, as shown in Figure 6 [8].  

 

Figure 6: Scaled Energy Resolution of MIPs vs. All Hits [8] 

Two histograms, the left showing the scaled energy resolution measurement from examining all 

hits, and the right showing the measurement of scaled energy resolution from examining MIPs. 
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 Nonetheless, this provides a good starting point to which improvements may be made. In 

this work, the hits are grouped into clusters. MIPs often enter the silicon at an angle, activating 

one or more adjacent pixels by entering one pixel and traveling through the silicon to activate the 

others. Figure 7 is a clear example of this phenomenon, and of how clustering can help to resolve 

it. The cluster in the center of the display is created by a single MIP, entering the silicon layer in 

the black pixel at a shallow angle and traveling through the red pixels, activating all of them. 

Were we to simply count all the hits in this image, this particle would essentially be counted 

eleven times, since it activated eleven pixels. Clustering solves this issue, because once these hits 

are clustered together, the MIP is only counted once. This method has been shown to recover the 

energy resolution of the TDR design and even the potential to exceed it [7][11], which is 

expanded upon in this work. 

 

Figure 7: Example Cluster 

An example cluster formed by merging adjacent hits. The cluster itself consists of a single hit 

where the MIP that created it entered the detector, in black, and ten adjacent hits which were 

created by the MIP traveling within the silicon after entering (not given MIP designation because 

they were not caused by a MIP entering the silicon). Nearby hits which are not part of this cluster 

are also shown in green (MIP) and blue (non-MIP), each of which are in their own, separate, 

single-hit clusters. 
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Methodology 

 Given that the ILC is still in its research and development phase, there exists no complete 

physical detector to provide data to form clusters with. As such, this work is based entirely on 

Monte Carlo simulations built using Geant4[9]. These allow for a detector to be built, tested, and 

tweaked virtually rather than using physical prototypes. Furthermore, because we are in control 

of the simulation, we may extract not only the data from the virtual detector, but the originally 

generated particles as well. This gives us two lists of data: the Monte Carlo Truth (MCT) data, a 

list of all particles generated by the simulation and all their properties; and the hit data, the data 

output by the detector once the generated particles are sent into it. Having access to the MCT 

data allows us to run Python analyses on the hit data using pyROOT[10] and compare the results 

to “truth,” giving diagnostics on how accurate these analyses are.  

 The clustering portion of this work is largely based on prior efforts by Professor James 

Brau, who wrote the framework for this analysis. To expand on this, I built my own clustering 

algorithm to run alongside the old one, comparing their outputs and revealing bugs in both.  

Results & Analysis 

 Using these methods, previous results were able to be replicated, including the 

measurement of scaled energy resolution from Figure 6, shown below in Figure 8. Additionally, 

the robustness of the clustering algorithm was improved. These enhancements mostly consisted 

of removal of edge-case bugs, such as those shown in Figure 9. 
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Figure 8: MIP Resolution Replication 

A replication of the MIP energy resolution measurement shown in Figure 6. 

 

Figure 9: Example Bugged Cluster 

An example of a bugged cluster which has now been remedied. Three hits are not successfully 

joined to the cluster.  
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With this in hand, we are able to examine a number of different parameters to 

characterize the detector and the clusters we create from its measurements, with the goal of 

finding ways to further improve our ability to count MIPs. First, we examine the number of 

clusters per layer in Figure 10, which shows us how the showers generated by incoming particles 

tend to behave as they develop through the calorimeter. This distribution is given for clusters 

with at least one hit caused by a MIP entering the silicon (MIP clusters, in red) and clusters with 

no such hits (non-MIP clusters, in blue).  

We can see that the shape of each distribution is nearly identical, and the peak of each 

distribution is around layer ten, the midpoint of the thin layers. This is dependent on the energies 

of the particles entering the detector; low energy particles have less energy to impart to the 

shower they generate, so it does not penetrate as far into the detector as a shower from a high-

energy particle, which can provide the energy to penetrate much further. Thus, if higher-energy 

particles had MIP clusters represent a larger portion of their produced clusters, we would expect 

the distribution of MIP clusters to be shifted deeper into the calorimeter than that of non-MIP 

clusters. Given that the distributions here are identical, we can safely say that this is not the case, 

and rule out any simple methods of differentiating MIP clusters from non-MIP clusters based on 

the layer they lie in. 
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Figure 10: Distribution of Cluster Count Per Layer 

A distribution of the number of clusters found in each layer of the calorimeter. The final ten layers 

are twice as thick as the first twenty. Clusters containing at least one hit caused by a MIP entering 

the silicon are in red, and clusters with no such hits are in blue. 

We may also examine the properties of each cluster, such as size and the number MIPs 

contributing to creating each cluster, and how these relate. It is immediately apparent from 

Figure 11 that events are dominated by clusters containing only one or two hits, with the 

remainder making up less than a percent of the total. The number of MIPs follows a similar 

trend, though this is an incomplete picture without information about how these relate to cluster 

size, as the two are inherently linked. However, we can at least still see that the largest clusters 

tend not to be mostly made up of MIPs, since there are no clusters with >15 MIPs, and the 

distribution is overall skewed left.  
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Figure 11: Cluster Size & MIP Distribution 

Distributions of the number of clusters of each size (left) and the number of MIPs in each cluster 

(right). 

This is further clarified by Figures 12 and 13; most clusters consist of a single hit made 

by a MIP, followed closely by clusters formed from a single hit not made by a MIP, then by two-

hit clusters with one, zero, and two MIPs. As cluster size (the number of hits a cluster contains) 

continues to increase from that point, the number of entries becomes relatively insignificant, but 

clusters with zero or one MIP are most common. Figure 13 makes clear how dominated the 

analysis is by low multiplicity clusters.  
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Figure 12: Cluster MIPs vs. Size 

A 2D-Histogram of the number of MIPs in each cluster vs. the size of each cluster. A lower bound 

cutoff is imposed, not plotting a bin if the number of entries in it falls below 102. 

 

Figure 13: Cluster MIPs for Each Size 

Stacked histograms showing the number of clusters containing different numbers of MIPs (in 

different colors) up to size 10. Logarithmic scale is on the left; linear scale is on the right. 
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Figure 14 presents the average number of MIPs in each size cluster, which 

illustrates how well counting clusters approximates counting MIPs. This is plotted in a 

profile plot, where for each bin a horizontal line is plotted to denote the mean of the 

entries in the bin, and a vertical line is plotted denoting their standard deviation (RMS). 

For example, here size nine clusters have approximately three MIPs on average, with an 

RMS of approximately 0.5. Bins past size ten begin to lose significance due to low 

statistics. Size one and two clusters have the same average number of MIPs per cluster at 

approximately 0.7. This means that purely counting clusters overcounts MIPs for these 

sizes. Fortunately, this can easily be accounted for by weighting the count such that size 

one and two clusters are only counted as approximately 0.7 of a cluster instead of 1. We 

can also make similar adjustments to the other sizes of cluster to get a full set of weights 

for each cluster size with sufficient statistics. This technique does require knowledge 

from the MCT which the real detector would not have access to, but this is not a problem. 

We can calibrate these values based on the simulation first, then use those to weight the 

real data.  
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Figure 14: Average Cluster MIPs vs. Size Profile Plot 

A profile plot of the average number of MIPs in each cluster for each cluster size. The horizontal 

line on each bin marks the mean of the entries in that bin, and the vertical lines extending from it 

mark the standard deviation (RMS) of the distribution. 

These data show that the results of prior work have been replicated and give ample 

diagnostic data on the behavior of clusters. We can see that clustering provides a better method 

for counting MIPs than simply counting hits, and that it is able to account for important effects 

like size two clusters having the same number of MIPs as size 1 clusters. We can also see that the 

analysis is dominated by low multiplicity clusters. This limits opportunities for clever treatment 

of more complex cases to make a large impact on the overall results, but does simplify the 

analysis. With this understood, we may move to a different part of the reconstruction process in 

order to understand where this approach might stand to improve it. 
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Jet Finding & Analysis 

 From clustering, we move up the chain of steps in the event reconstruction process to jet 

finding. This takes the collection of particles identified in the detector and groups them into jets, 

which are then used to reconstruct the decay products of the Z. In this work, we examine 

Higgsstrahlung events with a Z and a Higgs in the final state, with the Higgs decaying invisibly. 

These events were generated by Chris Potter, with further details in the next subsection.  

The precision of this process depends directly on how well we can determine the 

properties of jets. In particular, the energy resolution of each jet is critical. If the jet energy 

resolution is poor, then so too will be the resolution of the reconstructed Z. Here, MAPS has the 

opportunity to leverage its high granularity to improve over the TDR design. Jets are composed 

of many particles, with the density of particles increasing toward the center of the jet. If this 

density becomes sufficiently high, the resolution of the particles in this inner region begins to 

degrade, since they become packed tightly enough together that the detector begins having 

difficulty distinguishing them. Thus, it merges, misidentifies, or misattributes energy to them, 

introducing inaccuracy in the reconstruction of the particles and ultimately the jet. The smaller 

pixel size of MAPS allows the particles to be much closer together before this happens, which 

should improve their reconstruction.  

Methodology 

 As in clustering, much of the process of jet analysis consists of comparing the data output 

by the simulated detector to the data generated by the simulation itself. There are two main 

differences, however. First, the detector being simulated is not MAPS, as the number of pixels 

would make this computationally untenable, but the TDR detector. Instead of directly examining 

MAPS, we can instead examine in detail the TDR design, identifying exactly where and how its 
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performance begins to degrade, and in which of these areas MAPS stands to make an 

improvement. Second, the most basic unit we will be examining is not single hits, but particles. 

For the data coming directly from the simulation, again called Monte Carlo truth (MCT), this is 

easy to retrieve, but this takes some work for the detector data. Fortunately, this work has already 

been done for us, encapsulated in the PandoraPFA algorithm [12]. This algorithm pieces together 

the information in each sub-detector, using clusters and charged tracks to reconstruct particles as 

a list of Particle Flow Output (PFO) data (so named because PandoraPFA is a “particle flow” 

algorithm). These data are a list of reconstructed particles analogous to the MCT data and 

represent the most complete picture we have of what the detector can see. As such, we can 

determine how well the detector is able to measure different particles by directly comparing the 

PFO and MCT data. For instance, neutrinos may be created in events, but these interact with 

other matter extremely rarely (in order to have just a 50% chance of stopping a neutrino, one 

would need to place a light year of solid lead in front of it). As such, the MCT contains all of the 

information for these particles, but the PFO never contains them, since they are nearly invisible 

to the detector.   

 The process of jet finding is similarly performed using PyJet, a Python-based 

implementation of FastJet [13], using an anti-kt clustering algorithm with R=1. It is important to 

note that FastJet is primarily intended for use in hadron colliders like the LHC, which perform 

their clustering in a different coordinate system than in electron-positron colliders, so the jets 

formed by it are slightly distorted, though not in any way that would compromise the parameters 

we examine. Jets are formed inclusively (i.e. using the “inclusive_jets” function in PyJet), then a 

cut is made requiring jet energy >5GeV to ensure we are only examining true jets. Additionally, 

we examine only two-jet events where both jets have a combined energy of >100GeV and lie 
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well within the barrel (|cos(θ)| > 0.5, θ being the angle from the beam axis) (an example event is 

shown in Figure 15). These requirements are assessed based on the MCT data alone. This 

removes the vast majority of events, but ensures that we have removed all possible factors which 

could impact the measurement aside from the performance of the detector itself. The barrel 

requirement ensures that there are no geometric effects from the corners where the barrel and 

endcaps meet; the two-jet requirement simplifies the underlying physics; the combined energy 

requirement ensures that the jets are well-behaved and constitute the majority of the energy 

of the Z (which has energy approximately equal to 110GeV). Finally, only events where the Z 

decays to a quark-antiquark pair (Z→qq) are examined in order to select events with less 

complex physics.  

 

Figure 15: Example Two-Jet Event 

A display of an example event with the above cuts applied. Each dot is a particle with color 

denoting jet membership and size proportional to energy.  
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PyJet is used on both the PFO and MCT datasets to produce two corresponding sets of 

jets, which can then be examined and compared in concert with the original lists of particles, all 

of which is again done using pyROOT[10] and Python. To compare these sets of data, we must 

also determine a method for matching MCT and PFO objects (particles or jets) to each other. For 

this purpose, we use a parameter Rab = 1 - cos(θab) = 1 - (pxapxb + pyapyb + pzapzb)/(papb), where a, 

b indicate the objects being compared, pka is the k-component of the momentum of object a, and 

pa is the total momentum of object a. For example, Rjj compares two jets, whereas Rjp compares 

a particle to the center of the jet that contains it. Rab ranges from 0 to 2, with small Rab indicating 

the two objects are close together (meaning that the momenta are in very similar directions), and 

large Rab indicating they are far apart.  

Results & Analysis 

 We can use Rjj to examine how well the detector is able to reconstruct jets by comparing 

MCT and PFO jets. We can take each MCT jet in descending order of energy (so that the more 

dominant jet is favored in tiebreaker cases) and match it to the nearest (lowest Rjj) PFO jet. We 

can double-check that this does not match to the wrong jet by examining the distribution of Rjj, 

given by Figure 16, and observing that it has a single peak. If this did not select the correct jet, 

then there should be two peaks: one at the average Rjj between an MCT jet and its PFO 

counterpart and one at the average Rjj between the two jets. We can also use this to characterize 

the performance of the detector. The distribution peaks at roughly Rjj = 10-4 = .8 degrees, 

indicating good spatial reconstruction of the PFO. 
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Figure 16: log(Rjj) Distribution 

A histogram of Rjj between each MCT jet and its matched PFO jet. The distribution is slightly 

non-gaussian with a left-sided tail.  

 We can see from Figure 17 how this matched Rjj varies with jet energy. It shows that 

higher energy MCT jets have their PFO partner reconstructed closer to them than low energy 

jets. This makes sense, since we know that the detector can reconstruct high energy jets better.  
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Figure 17: Jet Energy vs. log(Rjj) 

A 2D histogram of the energy of each MCT jet vs. log(Rjj) between it and the PFO jet matched to 

it. 

 More important than Rjj is energy resolution, which tells us how precisely the detector is 

able to measure the energy of a jet. There are two ways to examine this: scaled, or unscaled. 

Unscaled energy resolution is defined as the standard deviation of the distribution of (EMCT - 

EPFO)/EMCT. This examines how well the detector can measure the jet’s energy by taking the 

difference between the actual and measured energies, then scaling it by the energy to account for 

how large this change is in relation to the jet itself (an energy difference of 5GeV is much worse 

for a 20GeV jet than an 80GeV jet). However, because we know that the detector can measure 

higher energy jets better than low energy jets, this still has a dependence on jet energy. This is 

removed, at least in principle, by examining the scaled resolution, defined as the standard 

deviation of the distribution of (EMCT - EPFO)/(EMCT)1/2, which will generally be preferred here.  
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In Figure 18, we see an overall scaled jet energy resolution of approximately 35%/(EMCT)1/2, 

which is in-line with what we should expect.  

 

Figure 18: Jet Scaled Energy Resolution 

A histogram of the scaled energy resolution of all jets. There is a slight bias in the positive 

direction, indicating that the PFO tends to underestimate jet energy. 

Additionally, we can see how this scales with Rjj in Figure 19 (wherein each jet is placed 

in a bin corresponding to a range of Rjj values as in a histogram, then the mean and standard 

deviation of the scaled energy resolution of the jets in each bin is plotted as a horizontal line and 

vertical lines respectively). As expected, when Rjj is small, the scaled resolution is good, and 

when Rjj is large, the scaled resolution is poor. When the detector poorly reconstructs a jet’s 

position in space, it also poorly reconstructs its energy, and vice versa. Notably, there is also a 

slight positive bias in the means of the bins, indicating that the PFO tends to systematically 

underestimate the jet energy; similar behavior is observed in Figures 21 and 22.  
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Figure 19: Jet Scaled Energy Resolution vs. log(Rjj) 

A profile plot of the scaled energy resolution of jets for each Rjj. The horizontal lines indicate the 

mean scaled energy resolution of each bin, and the vertical lines denote the standard deviation 

(RMS) of the distribution. The two rightmost bins have little statistical significance due to low 

entries. 

Now that we understand the behavior of the jets, we can examine their structure. Within a 

given jet, we can examine Rjp, which is calculated in the same way as Rjj, but instead of 

comparing two jets it compares the central axis of the jet to one of its constituent particles. We 

also need to determine the energy resolution of each particle, which is done similarly to 

comparing jets. We define the scaled energy resolution in the same way as before, using the 

standard deviation of the distribution of (EMCT - EPFO)/(EMCT)½, but now for all particles in a jet 

instead of all jets in an event. For each MCT particle, we examine Rpp (also defined in the same 

way as Rjj but comparing particles instead of jets) and match it to the closest PFO particle. Rpp is 

also required to be > 10-5 in order to select the best quality matches. This selection is based on 

Figure 20, which shows how scaled energy resolution varies with Rpp for photons. Then, once 
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these matched pairs are formed, we can calculate the energy resolution and Rjp for each particle 

and see how they relate, as shown in Figure 21, again for photons. The decision to examine 

photons in Figures 20-22 is made because other particles’ measurements rely on information 

from subdetectors other than the Ecal. Thus, we do not wish to examine them in order to measure 

the performance of the Ecal in relative isolation. 

 

Figure 20: log(Rpp) vs. log(Photon Scaled Energy Resolution) 

A 2D histogram of Rpp vs. scaled energy resolution for photons, calculated before any of the cuts 

mentioned in the beginning of this section aside from Z→qq. This informs the cut of Rpp > 10-5, 

removing the worst-resolution concentration of photons.  
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Figure 21: Scaled Photon Resolution vs. log(Rjp)  

A profile plot of the scaled energy resolution of particles for each Rjp. The horizontal lines indicate 

the mean scaled energy resolution of each bin, and the vertical lines denote the RMS of the 

distribution.  

Though the effect is not overly pronounced, there is a clear trend of scaled resolution 

improving as Rjp increases, up to roughly Rjp = 10-2 = 8 degrees before leveling off. This means 

that photons in the center of a jet tend to be reconstructed slightly more poorly than those on the 

outskirts. The concentration of particles tends to increase as one approaches the center of a jet, so 

this can be interpreted as evidence that in the busy inner-jet environment the particles get close 

enough that the detector is not able to reconstruct them as well. 

This effect is even more pronounced when the photons are split into >5, 3-5, and <3GeV 

energy ranges, with the higher energies showing a more pronounced trend (Figure 22). These 

higher-energy photons comprise a higher proportion of the overall jet energy, so are more 

important than the lower-energy photons to measure accurately. Seeing that the TDR design’s 
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reconstruction ability degrades for these higher-energy photons in busier environments is a 

strong point in favor of MAPS.  

 

Figure 22: Scaled Photon Resolution vs. log(Rjp) for <3, 3-5, 5GeV Photons 

Profile plots of the scaled energy resolution of photons for each Rjp. Each plot is the same as in 

Figure 21 except split into three energy ranges.  
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Summary & Outlook 

 There is substantial evidence in favor of MAPS as a replacement of the TDR SiD Ecal 

design due to the potential for performance improvements provided by the higher-granularity 

pixels. By using clustering methods, MAPS is able to replicate the energy resolution of the TDR 

design, meaning that MAPS does not sacrifice the detector’s ability to measure energy in return 

for its improved spatial resolution. Additionally, there is still room for improvement; though 

these clusters are dominated by low-complexity structures, the analysis may still be augmented 

further through a more sophisticated algorithm. This might include structure-based weighting or 

algorithms which can place non-adjacent hits into the same cluster or separate adjacent hits into 

different clusters. However, the complexity of the algorithm must be weighed against 

diminishing returns, given the low number of complex clusters for these methods to improve 

upon. Nonetheless, this represents an interesting line for future research to pursue, though for our 

purposes it is sufficient to confirm that the performance of MAPS at least matches the TDR. 

 Additionally, we observe a degradation in the TDR detector’s ability to measure particles 

in the center of jets, where they tend to be most concentrated. The smaller pixel size of MAPS 

allows for easier spatial separation of particles within this environment, presenting an 

opportunity for improvement of the detector’s measurement. Further research is ongoing to find 

more evidence to confirm this, looking into how the PFO forms each particle from clusters of 

energy and data from the tracker. Understanding these clusters (different from the clusters 

mentioned in the first half of this work) can allow us to understand in more detail how the PFO is 

performing its reconstruction and precisely where this begins to break down. The observed 

systematic underestimation of PFO energy has also been noted and will be fixed in the future. 
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However, given MAPS’s demonstrated potential to match and exceed the TDR baseline, it is 

probable that future efforts will focus on optimizing the simulation for MAPS instead.  
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