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Coastal salt marshes offer crucial ecological benefits, including carbon sequestration, 

habitat for many species, and protection against storm surges and erosion. However, human 

activity has led to significant dieback of these ecosystems on both a national and global scale. 

Much of the northeastern US salt marshes are experiencing exacerbated loss due to grid ditching, 

an outdated practice in which standing pools of water were drained by a series of narrow ditches 

to reduce mosquito populations. Identifying ditches is an important step in tracking salt marsh 

health, yet ecologists currently lack an efficient method to do so, mostly relying on walking the 

fields between tides or manually delineating ditches in aerial imagery. This project investigates 

an alternate workflow for identifying ditches in high-resolution drone imagery captured by the 

Salt Marsh UAV group at University of Massachusetts Amherst. I implement U-Net, a machine 

learning that originates from medical imaging, to sift through all the varied water features in a 

single salt marsh site and classify each pixel in an image as background, ditch, or non-ditch, a 

process called semantic segmentation. Ultimately, the goal is to produce georeferenced 

shapefiles that precisely locate ditches on the ground. I use pre-trained versions of U-net and 

experiment with various parameters to tune the models for optimal results. This is a form of 

transfer learning, taking models from one domain and repurposing to another. MobileNet-UNet 

exhibits the highest performance and produces strong ditch segmentation results that ecologists 
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can utilize with minimal post-processing. Future research should experiment with using 

multispectral bands like near infrared (NIR) and short-wave infrared (SWIR) or a Digital 

Elevation Model (DEM) to provide the model with more information. This project provides 

ecologists an automated method of identifying ditches and demonstrates that transfer learning is 

a viable alternative to traditional remote sensing water feature extraction methods.  
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Introduction 

 
Coastal salt marshes have significant ecological value due to the crucial roles they play 

in protecting against storm surges and erosion (Donatelli et al. 2018), regulating atmospheric 

greenhouse gas levels via carbon sequestration (Lockwood and Drakeford 2020), and providing 

sanctuary for many fish, wildlife, and waterfowl (Kennish 2001). Over the past few decades, 

these fragile ecosystems have experienced substantial platform dieback from a host of human-

caused stressors. Platform dieback occurs through a process called slumping in which sections of 

the platform banks fragment and collapse into the creek network. It is estimated that over 50% of 

the original US salt marsh habitat have been lost (Watzin and Gosselink 1992). The most notable 

human impacts include the transformation of salt marshes for agricultural, residential, and 

industrial use, sea level rise from global warming, 

subsidence from groundwater and petroleum 

extraction, and the practice of grid ditching (Kennish 

2001; Jin et al. 2016; Watson et al. 2017).   

Grid-ditching is an approach to managing 

mosquito populations in which narrow ditches are 

dug at regular intervals to drain stagnant pools of 

water where mosquitos are likely to breed. Grid-

ditching is extensive in northeastern salt marshes 

because of efforts by the Civilian Conservation 

Corps (CCC) to reduce the health impacts of 

mosquitos and provide employment opportunities 

as a part of the “New Deal” initiative. It is now an outdated method but the prevailing ditches 

Figure 1. An example of a narrow ditch 

cutting through a Massachusetts salt marsh. 

Credit: Ryan Wicks. 
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impact more than 90% of New England salt marshes by altering the physical and hydrological 

characteristics of the platform (Kennish 2001).  

Tracking salt marsh dieback is an urgent issue since platforms exponentially lose their 

capability to trap sediment as they recede, meaning dieback triggers a feedback loop that 

accelerates further loss (Donatelli et al. 2018). To monitor platform changes, identifying ditches 

is an important step. However, remote sensing scientists do not currently have an efficient way to 

do this.  

Most traditional remote sensing methods of water segmentation assess spectral 

properties. The normalized difference water index (NDWI) is a multispectral index that 

combines an image’s green band and near-infrared band to differentiate water from vegetation 

(McFeeters 1996). Similarly, the modified normalized difference water index (MNDWI) 

combines the green band and short-wave infrared band to extract water features (Xu 2006) and is 

one of the most widely used (Feyisa 2014). The automated water extraction index (AWEI) 

considers five spectral bands and suppresses noise from shadowy areas to improve accuracy 

(Feyisa 2014).  

While spectral indices have proved useful, they are not well-suited for the aim of this 

study. These indices are typically used on satellite imagery, especially Landsat imagery for 

regional water segmentation, with a moderate spatial resolution of 30 meters. As a result, 

spectral indices tend to miss small features like ditches that are much thinner than 30 meters. The 

drone flight images in this study have a spatial resolution of 0.026 meters, more than a hundred 

times higher than Landsat.  

However, the bigger issue is that spectral indices rely on the distinct spectral signature of 

water, meaning that all water pixels are classified the same. There is no way to segment an image 
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into multiple water feature classes using spectral properties only. One alternative is using an 

object-oriented approach through a software like eCognition. This professional remote sensing 

system utilizes color, shape, texture, and object size in addition to local neighborhood statistics 

to perform classification. While eCognition performs well on many remote sensing tasks (Tamta 

et al. 2015; Xing and Shen 2018; Yang et al. 2018; Xue and Lin 2020) it is not open-source and 

again has mostly been tested on satellite imagery with moderate spatial resolution.  
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Background 

AI in Geoscience  

Earth science is at a critical point of transformation as artificial intelligence (AI) 

continues to spread throughout the many subdomains and enhance the ability of geoscientists to 

monitor the Earth’s subsystems and respond to environmental changes. Sun et al. (2022) 

summarize existing applications of AI to all major Earth spheres and find that while Earth AI 

remains in its beginning phase, recent literature shows promising results on all fronts. The main 

challenge geoscientists face is the lack of standardized, labeled datasets for training and machine 

learning (ML) expertise for model development and optimization. Nonetheless, there have been 

successes in the improved prediction of earthquakes, hurricanes, drought, wildfires, sea ice 

thickness, groundwater levels, and more.  

CNN Water Segmentation 

 Hydrology is one of the earth sciences fields that has greatly benefited from AI. In 

addition to research regarding water forecasting, water quality, rainfall runoff, and river 

sediments and discharge (Sun et al., 2022), there is substantial research on water segmentation 

(Akiyama et al. 2020; Miao et al. 2018; Singh et al. 2019; Weng et al. 2020). Water 

segmentation is possible with pixel-wise classification and scholarship in this domain tends to 

either compare the segmentation results of different models or tinker with an existing model to 

optimize it for a specific task. Most of these segmentation models are convolution neural 

networks (CNN), with two of the most popular being SegNet (Badrinarayanan et al. 2017) and 

U-Net (Ronneberger et al. 2015).  
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 In their comparison of SegNet, U-Net, DeepLab, and DenseNet, Sing et al. (2019) found 

that all CNN models outperformed the traditional Support Vector Machine (SVM) method for 

segmenting water from ice. Of the four CNNs, SegNet showed the least improvement over the 

SVM. DenseNet is a newer, less studied architecture and gave poor quantitative results but 

showed strong generalization ability on the unlabeled data. DeepLab had poor generalization 

ability but strong quantitative results. U-Net performed the best overall.  

 CNNs have also been tested for the segmentation of surface waters as current methods for 

monitoring lakes and rivers tend to be labor-intensive and have low generalization ability 

(Akiyama et al. 2020; Weng et al. 2020). When trained on RGB river images of sizes 256 x 256 

and 512 x 512, SegNet produced strong results at both resolutions, confirming the potential of 

the CNN approach (Akiyama et al. 2020). A modified version of the SegNet architecture, SR-

SegNet, offers even higher accuracy (Weng et al. 2020). SR-SegNet outperformed traditional 

methods of identifying surface water with an SVM or an NDWI, as well FCN, DeconvNet, and 

standard SegNet. Miao et al. (2018) propose RRF DeconvNet, along with a new loss function to 

sharpen segmentation edges, to segment water bodies in high-resolution Google Earth images.  

Despite the encouraging prospect of surface water monitoring using CNNs, scholarship in 

this area has yet to explore the segmentation of different water features. Current research is 

focused on binary water classification, i.e. whether each pixel in an image is water or not.  

However, sometimes it is necessary to identify the types of water features present, where a water 

feature is a conglomeration of pixels that make up a larger collection like a pond or creek. This is 

the case when tracking salt marsh health. In this instance, whether a water pixel belongs to a 

ditch or a different water feature is crucial to monitoring the salt marsh platform. There are 

studies that use ML to perform multi-class pixel-wise land cover segmentation. Enwright et al. 
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(2019) found that Random Forest (RF) and various CNN classifiers demonstrated high modeling 

capacity for such image segmentation, but water was still treated as a single class, as is common 

in land cover analysis.  

This study aims to close this gap in research.  Water feature segmentation is a challenging 

remote sensing task since all water features share similar spectral properties, but CNNs offer a 

promising alternative.  
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Dataset 

There are currently no labeled salt marsh datasets with delineated water features, so part 

of this study includes creating one from drone 

imagery. These salt marsh images are from the 

Essex Bay site in Ipswich, Massachusetts site at 

low tide in spring. This site was selected over 

other salt marsh sites for training and testing 

since it contains moderate, but not severe, 

slumping and is the most representative of 

Massachusetts salt marshes. The low tide 

spring drone flight was chosen because the minimal vegetation provides the highest visibility of 

water features for the year. Since ditches are relatively static water features, it is unnecessary to 

obtain a ditch shapefile layer more than once a year.  

We use the LabelMe (Wada 2022) annotation software to label 50 RGB Essex Bay 

images and create corresponding segmentation masks. All images are size 1500 x 2000 with a 

spatial resolution of 0.026 meters. LabelMe allows the user to draw boundaries on an image and 

classify all pixels included in that feature. In this way, we can label images beyond the single 

pixel level. Each water pixel is labeled as belonging to either the “ditch” class or to the “non-

ditch” class. The non-ditch water feature class exists to help the model differentiate ditches from 

all other water features. Any linear channel that appears to be manmade is considered a ditch and 

any naturally occurring water feature is considered non-ditch, as shown in Figure 3. Pixels not 

part of labeled features are classified as background. Table 1 shows the distribution of class 

samples in the dataset.  

Figure 2. An orthomosaic of the Essex Bay salt 

marsh in Ipswich, Massachusetts at low tide in 

spring. 
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The labeled dataset is augmented with rotations and vertical and horizontal flips to 

produce a dataset of 200 images. This process is illustrated in Figure 4. Finally, an 80-10-10 split 

is used to divide the dataset into training, validation, and testing data.  The training dataset 

contains 160 images and the validation and testing datasets each contain 20 images.  

 

Figure 3. An RGB drone image (left) with its corresponding segmentation map created with 

LabelMe software (right) where green indicates a non-ditch water feature and red indicates a ditch.  

 

Table 1. Distribution of class samples in the dataset 

Class Percentage of Pixels 

Non-ditch 13.8 

Ditch 1.1 

Background 85.1 
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Figure 4. Data augmentation example. The original image (top) is rotated and flipped to produce 

an additional three unique images (below).  
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Methods 

Performance Metrics 

This study uses two standard evaluation metrics for semantic segmentation tasks: Jaccard 

Index and Dice Coefficient. Both metrics quantify the degree of overlap between the predicted 

labels and the ground truth labels for a particular class, where 1 indicates perfect overlap and 0 

indicates no overlap. Jaccard and Dice scores are more robust measures of model performance 

than pixel accuracy because they are less impacted by class imbalances in the dataset.  

 

1. Jaccard Index (or Intersection over Union) 

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑇𝑇𝑇𝑇𝑐𝑐

𝑇𝑇𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑇𝑇𝑐𝑐 + 𝐹𝐹𝐹𝐹𝑐𝑐
 

2. Dice Coefficient (or F1 Score) 

         𝐷𝐷𝐷𝐷𝐽𝐽𝐷𝐷𝑐𝑐 =  
2 ∙  𝑇𝑇𝑇𝑇𝑐𝑐

2𝑇𝑇𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑇𝑇𝑐𝑐 + 𝐹𝐹𝐹𝐹𝑐𝑐
 

 

Where 𝑇𝑇𝑇𝑇𝑐𝑐 is the number of true positive pixels in class c ∈ C ; 𝐹𝐹𝑇𝑇𝑐𝑐 is the number of false 

positive pixels in c; 𝐹𝐹𝐹𝐹𝑐𝑐 is number of false negative pixels in c. 

The three classes in our case are ditch, non-ditch , and background.
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Model Architectures and Hyperparameters 

This study focuses on the U-net architecture due to its success in medical imaging and 

transferability to remote sensing tasks. Figure 5 displays the traditional U-net architecture as 

presented by Ronnebeger et al. (2015). The model consists of two main parts: the contracting 

path and the expansive path. The contracting path uses a series of convolutions, pooling, and 

downsampling operations to capture increasingly higher-level features from the input image. The 

expansive path is symmetrical to the contracting path and uses a series of upsampling operations 

and convolutional layers to recover the spatial resolution of the original image. Low-level 

features such as edges, colors, and texture are combined with high-level features like object 

classes or shape using skip connections, shortcuts that feed the output of one layer to layers 

farther ahead in the network. This preserves spatial information needed for accurate 

segmentation. The output of the model is a 2-dimensional map where each pixel in the input 

image is assigned a probability of belonging to one of the three classes. The class with the 

highest probability is selected for each pixel, resulting in a segmentation mask (Ronnebeger et al. 

2015). 



 

18 
 

       
 

 
   Figure 5. Example of U-net architecture for 32 x 32 image. 

 

Because there are five pooling layers that reduce the resolution by a factor of 2 in the 

contracting path, input images are required to have dimensions that are multiples of 32. To 

accommodate for this standard, I downsize my images from 1500 x 2000 to 1472 x 1984.   

I also evaluate three convolutional encoders in place of the contracting path:  VGG-16, 

Resnet50, MobileNet. The VGG-16 encoder, originating from image classification, uses very 

small filters like the classic U-net (Simonyan and Zisserman, 2014). The Resnet50 encoder has a 

deep residual network that simplifies the training of deep models (He et al. 2016), and the 

MobileNet encoder features fewer parameters and computations as it was designed for mobile 

devices (Howards et al. 2017).  I use weights for each of these three encoders that are pretrained 
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on the ImageNet dataset and fine tune the models during training. ImageNet, with over 14 

million images, is a promising candidate for remote sensing transfer learning because it includes 

natural landscapes and bodies of water (Deng et al., 2009).  

All models are compiled with the Adam optimizer and a 0.001 learning rate. They are 

trained with a batch size of 4 and 40 steps per epoch, ensuring a full pass through the training 

data each epoch. The small batch size is due to computational constraints. The validation batch 

size is 4 and is used to compute Jaccard and Dice metrics for early stopping.  

Loss Functions 

This study uses two loss functions as provided in the segmentation_models package: 

Jaccard and Dice loss.  I use these loss functions rather than categorical cross entropy since they 

translate more directly to mask overlap.  

1. Jaccard Loss 

𝐿𝐿 =  1 −  
1
3
�

𝑇𝑇𝑇𝑇𝑐𝑐
𝑇𝑇𝑇𝑇𝑐𝑐 + 𝐹𝐹𝑇𝑇𝑐𝑐 + 𝐹𝐹𝐹𝐹𝑐𝑐

3

𝑐𝑐=1

 

2. Dice Loss 

𝐿𝐿 =   
1
3
�

(1 + 𝛽𝛽2)  ∙  𝑇𝑇𝑇𝑇𝑐𝑐
(1 + 𝛽𝛽2)  ∙ 𝐹𝐹𝑇𝑇𝑐𝑐 + 𝛽𝛽2 ∙ 𝐹𝐹𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑇𝑇𝑐𝑐

3

𝑐𝑐=1

 

 

Where 𝑔𝑔𝑔𝑔𝑐𝑐 is the ground truth and 𝑝𝑝𝑐𝑐𝑐𝑐 is the prediction for class c ∈ C.  

  

Environment 
 
 I use Colab Pro+, a Jupyter notebook service hosted by Google Research. All models are 

trained using a runtime with 55 GB of available RAM and premium GPUs.   
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Shapefile Extraction 

The final step in the workflow involves converting the segmentation maps output from 

the best-performing model from raster to vector format. This process transforms the water 

feature segmentations from collections of pixels into delineated polygons, resulting in shapefiles. 

To obtain shapefiles for the Essex Bay ditches, I first use the output segmentation maps 

(.jpg extension) and their corresponding world files (.pgw extension) to create GeoTIFF images 

with the Geospatial Data Abstraction Library (GDAL). A GeoTIFF is a georeferenced TIFF 

image, which is the standard format for raster imagery used in Geographic Information Systems 

(GIS). I then vectorize the GeoTIFFs using GDAL to create the shapefiles. 

Next, I employ GeoPandas to merge all shapefiles into a single file. In this final shapefile, 

polygons belonging to the background class have a value of 0, the ditch class has a value of 1, 

and the non-ditch class has a value of 2. 
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Results 

Quantitative Results 

Table 2. Performance of all models on the 20 test images using Jaccard loss during training.

 
 

Table 3. Performance of all models on the 20 test images using Dice loss during training.

 
 

 

As shown in Tables 2 and 3, the models with encoders pretrained on ImageNet (VGG-

UNet, ResNet50-UNet, and MobileNet-UNet) generally outperform the U-Net model without 

pretraining. This demonstrates the advantage of transfer learning even when fine-tuning with 

much larger images than those used for pretraining. The ImageNet dataset contains images of 

size 256 x 256 on average (Deng et al., 2009), which are considerably smaller than the 1500 x 

2000 salt marsh images used in this study.  

MobileNet-UNet consistently outperforms the other models in terms of mean IoU and 

mean Dice scores, regardless of the loss function used. It also achieves the highest overall 

performance on the ditch class, obtaining an IoU of 0.45 and a Dice coefficient of 0.62 when 

trained with Dice loss. The performance of other models on the ditch class remains relatively low 

with Dice loss.  
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When trained with Jaccard loss, the other models show improvement for the ditch class. 

ResNet50-UNet demonstrates the best results, with an IoU of 0.41 and Dice coefficient of 0.58. 

In summary, Jaccard loss yields better outcomes for all classes, while Dice loss achieves the 

overall best results for the ditch class specifically.  

Qualitative Results 

Figures 6, 7, and 8 display the results of the MobileNet-UNet model trained with Dice 

loss on several test images. Three key observations regarding the segmentation of the ditch class 

can be made. 

First, although the model does not miss any instances of ditch water features, many 

ditches appear discontinuous in the predicted segmentation despite being continuous in the 

ground truth segmentation, as exemplified in Figure 6. This occurs because many ditches are 

partially obscured by vegetation overhang in the drone imagery, and the model likely relies 

heavily on color for its ditch class prediction. When vegetation overhang is present, those 

portions of the ditch become unrecognizable to the model. The penalty associated with 

connecting such ditches by classifying the obstructing vegetation pixels as ditch instead of 

background is apparently too high for the model to attempt. 

Second, the model tends to misclassify narrow non-ditch water features as ditches, as 

demonstrated in Figure 7. In these images, the natural creek channel has a width similar to 

ditches, and the model classifies linear sections of the channel as ditch while classifying curvy 

sections as non-ditch. This suggests that the model has learned the narrow, linear characteristics 

of ditches but struggles when these features are mixed with non-ditch water elements.  

Lastly, despite these limitations, the segmentation results are still valuable for the purpose 

of delineating ditches, particularly with some post-processing. The non-ditch and background 
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classes can be masked out in the shapefile, and any disjointed ditches can be connected using 

buffers or other GIS methods. This approach enhances the overall usability of the segmentation 

results for monitoring salt marsh health. 

 

 

Figure 6. MobileNet-UNet results on a sample of the test images with disjoint ditches boxed in 

yellow. Ditches are shown in red in the ground truth segmentations and in blue in the predictions. 

Non-ditch water features are shown in green.  
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Figure 7. MobileNet-UNet results on a sample of the test images. Ditches are shown in red in the 

ground truth segmentations and in blue in the predictions. Non-ditch water features are shown in 

green.  
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Figure 8.  MobileNet-UNet results on a sample of the test images containing narrow creeks (non-

ditch) that the model misclassifies as ditches.  Ditches are shown in red in the ground truth 

segmentations and in blue in the predictions. Non-ditch water features are shown in green.  
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Conclusion and Future Works 

This study demonstrates the effectiveness of U-Net-based architectures for semantic 

segmentation of salt marsh drone imagery. The analysis compared the performance of four 

different architectures, including the traditional U-Net and three U-Net variations with ImageNet 

pretrained encoders (VGG-16, ResNet50, and MobileNet). The models were trained using both 

Dice and Jaccard loss functions to investigate their influence on segmentation performance. The 

primary focus was on the ditch class to provide ecologists a more efficient method of delineating 

ditches. 

The results indicate that the models with encoders pretrained on ImageNet generally 

outperformed the traditional U-Net. This highlights the benefits of transfer learning, even when 

fine-tuning models with larger images than the original pretrained weights were trained on. 

Among the models, MobileNet-UNet achieved the highest performance in terms of mean IoU 

and mean Dice scores, regardless of the loss function used.  

The use of Jaccard loss led to improved results for all models. This suggests that Jaccard 

loss is better suited for achieving improved outcomes for the ditch class while maintaining 

reasonable performance for the other classes. Notably, MobileNet-UNet obtained the best overall 

performance for the ditch class when trained with Dice loss with an IoU of 0.45 and a Dice 

coefficient of 0.62. Some limitations were observed, such as the model's inability to identify 

ditches obscured by vegetation overhang and the misclassification of narrow non-ditch water 

features as ditches.  

Future research could explore ways to address these challenges. The additional use of 

multispectral bands, like near-infrared (NIR) and shortwave infrared (SWIR), could help water 

features stand out against the background and make segmentation easier for the model. Similarly, 
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using images at high tide when water features are fuller might make them easier to segment. The 

training dataset of 160 images was relatively small, so labeling more images would allow the 

model more opportunities to learn complex features like narrow creeks. Including images from 

other salt marsh sites may also enhance its generality and robustness.  

This study provides valuable insights into the potential of deep learning-based semantic 

segmentation for analyzing salt marsh drone imagery. To our knowledge, this is the first project 

to extract water features under more than one class from salt marshes using CNNs. The results 

emphasize the importance of considering various factors such as architecture, loss function, and 

transfer learning for optimal performance. The findings contribute to the growing field of AI in 

earth observation applications and encourage further collaboration between computer science 

and the earth sciences. 
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