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I NTRODUCTION 

The purpose of this paper is to extend some results 

from the theory of valuations on a field to an arbitrary 

commutative ring with identity. The results obtained are 

well known when interpreted in the context of a field and 

comprise only a bare introduction -to the theory for fields, 

however, the modified proofs give some added insight even 

in this case. 

In Section I of Chapter 1, the concept of valuation 

on a field is extended to an arbitrary commutative ring 

and a natural correspondence is obtained between valuations 

and what we call valuation pairs . Section II shows that 

these valuation pairs are the same as those in [1], where 

they are the subject of an exercise. 

Sections III and IV of Chapter 1 relate valuation 

pairs to the generalized primes of D. K. Harrison. The 

results presented here predate the rest of this paper, · 

being developed t? investigate primes [3]. Proposition 1.14 

evolved during the course of a seminar given by Professor 

Harrison during the fall of 1965 f while 1. 12 and 1. 13 

appeared in the unrevised form of [3]. 

The outline followed for Chapters 2, 3 and 4 is 

essent ially that used in [6] in developing the theory for 

fields. Many of the arguments used are almost verbatum 
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those used in this source . Standard results for fini t e 

rank valuations are not given since their proofs (and 

statement s) are not significantly altered in the more 

general context . 

2 

Section I of Chapter 2 deals with the concept of 

independence of valuations and Section II with the concept 

of extension~ Section III combines these to obtain some 

results essential to Chapter 3. 

Sections I and II of Chapter 3 are used to develop 

the machinery and setting for the "approximation theorems" 

of Section III. The approximation theorem is applied in 

Section TV to obtain the classical inequality "~e. f. < n 11
• 

]. ]. -
The paper ends with the proof of the classical equation 

efg1rd = !GI in the context of a commutative ring R which is 

Galois over a ring K with group G. The generalized 

Galois theory necessary for this result is outlined in 

Section I of Chapter 4. The rest of the chapter is devoted 

to the definitions and relations (which are interesting 

in their ovm right) necessary for its statement and proof . 

General ring theory comparable to that found in [5] 

is assumed, but beyond that the treatment is largely self 

contained. A notable exception is Sec tion I of Chapter 4 

where several results are quoted from [2] without proof . 

In order to cut down on verbiage, much notation is 

assumed as standard once it is introduced . Thus R is 

always a commutative ring with identity, K is always a 
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subring of R, Vis always a valuation on R, et c. 

11 Ring 11 will always mean "commutative ring with identity". 

11K a subring of R11 means the same thing as 11R is an extension 

of 11
; in both c ases meaning that K is a ring, Kc Rand 

the identity of K is the identity of R. Ring Homomorphisms 

will always take identity to identity. Prime ideals are 

al •ays proper . 

The word 11 iff 11 is a contraction of "if and only if 11
, 

and is sometines denoted by ¢::;; . 11A ⇒ B" means • "A 

implies B", "3 11 means "there exists II and 11 'd II means 

11 f or all 11
• 

If A and Bare sets, A'B = (x I x EA, x t B} and 

should not be confused with A/B, which denotes a quotient 

of rings, groups , etc. 



1. VALUATIONS AND VALUATION PAIRS 

Section I 

By an ordered group, we mean an abelian group r* 

(written multiplicatively) which is linearly ordered by 

a relation 11 < 11 
· satisfying a < 13 ⇒ a:y < ~ for all 

a, /3 , -y Er*. We will always denote the identity of an 

ordered group bye, and we admit the group (e} as an 

ordered group. 

DEFINITION 1.1. A valuation semigroup r is the 

di sjoint union of an ordered group r* and an element 0, 

where the .order and multiplication of r* is extended to I" 

by: 

i. ) O < a 

ii.) O ·a= a· O = O 

for all a € f' 

for all a € I" 

DEFINITION 1.2. A valuation Von a commutative ring 

Risa map V from R to a valuation semigroup r satisfying 

i.) V(xy) = V(x)V(y) for all x,y € R 
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ii.) V(x+y) ~ max(V(x),V(y)} 

iii.) Vis onto r. 
for all x,y in R 

We shall sometimes like to think of r as embedded in 

a larger valuation semi - group, in which case we relax iii.) 

to "V(R)~V(O) is a g roup". 



One can check that V(l) = e and V(O) = O for all 

valuations. If Risa field and i.) holds, then 

V( R"-.(O)) is always a group so iii.) can be replaced by 

V(l) f V(O) or one can work with ordered groups rather 

than semi- groups . Condition ii.) is the non-Archimedian 

condition in a field. 

PROPOSITION 1.3. Let V be a valuation on a ring R, 

set 

Av = {x € R V(x) < e) 

pv = {x E R V(x) < e) 

(JV = (x € R V(x) = O} 

Then Av is a subring of R, Pv is a prime ideal of Av 

and crv is a prime ideal of R. Further, if a is an ideal 

of R, CJ C Av,~ f R, then CJ C crv. 

PROOF. Note that v(-x) = v(-l)V(x) and 

v(-1) = v(-1)- 1 , thus that v(-1) = ·e and v(x) = V(-x) 

for all x € R. Thus we have A = -A p = -P and 
V v' V V 

(JV = - (1 • 
V 

By condition ii.) of Definition 1.2 we have 

A + ~c ~, p + p C p and (JV + (JV C (JV. By i.) 
V V V V 
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we have AP c p and Rcrv c crv, thus A is a subring of R, 
V V V ,v 

Pv is an ideal of Av and crv is an ideal of R. If 

a· b E Pv, then e > V( ab ) = V(a)V(b) so either e > V(a) 

ore> V(b). Thus Pv is a prime ideal of Av 

(V(l) = e so 1 f Pv). If ab€ (JV' then O = v(ab) = V(a)V(b), 



so V(a) = O or V(b) = 0, so crv is a prime ideal of R. 

Finally, suppose Av f Rand cr is an ideal of R. If 

cr ¢ crv, then V(a) f O for s ome a E cr. But then 
1 -

V(b) = V(a)- for some b ER and V(c) > e for some c ER 

(since~ f R by hypothesis). But then abc E cr while 

V(abc) = V(a)V(b)V(c) = eV(c) = V(c~ > e so cr ¢A. 
V 

PROPOSITION 1.4. If Vis a valuation on a ring R, 

X E R"-..A , then there is a y E P with xy E A~ P . 
V V V V 

PROOF . If XE R"-..Av, then V(x) > e and for some 

y E R, V(y) = V(x)- 1 . e = V(x)- 1v(x) > V(x)- 1 e = v(x)-1 

~ - 1 
so y E p • Now V( xy ) = v(x)V(y) = V(x)V(x)- = e so 

V 

xy E A~P • 
V V 

DEFINITION 1.5 . By a valuation pair of a ring R, 

we mean a pair (A,P), where A is a subring of Rand Pis 

a prime ideal of A, such that x E R"-..A ⇒ xy E A......_____P for 

some y E P. 

Note that (A ,P) is a valuation pair of R for any 
V V 

valuation V or R. We have the converse; 

PROPOSITION 1.6. If (A,P) is a valuation pair of R, 

then there is a valuation V of R with A= Av and P = Pv. 

Furthermore if v1 is another valuation of R with either 

6 

P = P , or with A= A and A+ R, then there is an order 
vl -. vl 

preserving isomorphism ¢ :r -r with ¢ 0 v1 = V. v 1 V 
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PROOF. Let (A,P) be a valuation pair of R. For 
-

x, y E R define x "-- y if ( z E R I xz E P} = ( z E R I yz E P} . 

""""" is clearly an equivalence relation on R. Let 

V(x) = (y I Y""--'X} and r = (V(x) J x E R}. 
V 

CLAIM 1. V(xy) = V(x 1y 1 ) for all x 1 E V(x), y 1 E V(y) . 
. -

Thus defining V(x)V(y) = V(xy) malrns r v into a semi group. 
-

Furthermore, r ""-tV(O)} is a group withe= V(l) = A"- P. 
V 

SUBPROOF. Suppose x 1 E V(x), y 1 E V(y). Then 

(xy)z E P iff x(yz) E P iff x'(yz) E P 1ff y(x'z) E P 
-
iff y'(x'z) E P iff (x'y')z E P, so V(iy) = v(x'y'). The 

- -
operation V(x)V(y) is thus well defined; iu is associative 

and commutative since multiplication in R is. V(l) is 

clearly an identity and V(l) f v(o) since 1 • O e P but 

1 · 1 f P. 

If x f A, then xy E A '°'p for some y E P. Since 

1 · y E P, xQC-1 . Thus V(x) f V(l) and V(l) CA • . If 

z E P, then z • 1 E P, 1 · 1 f P so V(l) f V(z) and 

V(l) c A""---.P. (Note that we have also shown that 

V(x) n A = <l> if x f A.) 

Suppose x E A"-P and xy E P. If y f P (i.e., if 

x f V(l)); then y f A, since Pis a prime ideal of A. 

But then yz € A""---.P for some z e P, while x(yz) = (xy)z E P, 

contradicting Pa prime ideal of A. Thus A""---. P c V(l), 

which gives V(l) = A""'- P. 



Finally , if x f v(o), then we have xy f P for some 

y ER. If xy E A""-.P, we have V(xy ) = V(x)V(y) = V(l); 

otherwise xy f A and xyz E A~ P for some z E P and 

V( xyz ) = V(x)V(yz) = V( l) . Thus r ~(v(o)} is a group . 
V 

CLAIM 2 . Define v(x) < V(y) if 3 z ER with xz E P , 
- -

yz E A""-.P. Then 11< 11 is a linear order on f' v' r ~£v(o)} 

is an ordered group and r is a valuation semi-group. 
V -

SUBPROOF. Note that V(x) < V(y) iff V(xz ) C P while 
- - -

V( yz) = V(l) for some z E P iff V(y) f O and · 
- 1 

V( x)V(y )- C P . Thus 11< 11 is well defined . 
-
If V(x) f V(y), then for some z ER, either xz € P 

-
and yz f P, or xz f P and yz E P. Suppose xz € P and 

yz f P. If yz E A'-..__P, we have V(x) < V(y).' Otherwise 
-

yz f A so yzw E A"-.... P for some we P; · then (xz )w E P and 

again V(x) < V(y). Thus 11<" is a linear order on r v· 
- -
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Let V(x) < V(y) and V(z) f o. 
. 1 

Let V(w) = V(z)-. Now 

xt E P and yt e A'-..__P for some t ER, so we have 

(xt)(zw) = xz(tw) € P and (yt)(zw) = (yz)(tw) E A""-.P so 
- -- - - -
that V(x)V(z) < V(y)V(z). Thus f'v"-._(V(O)} is an ordered 

group. 

Clearly v(o ) ~ v(x) and v(o)v(x) = v(o) for all 

x ER, so f'v is a valuation semi-group . 

Thus Vis a valuation on R. By construction , A=~ 

and P = Pv . 

Now suppose v1 is a valuation on R with A= A f R 
vl 



or P = P . If P = P , then A = [x €RI xP1 c P1 } 
vl vl vl 

= [x €RI xP c P} = A. If A= A f R, then 
vl 

P = [x € A zy € A for some y f A} 

= [x EA xy EA for some y f A } = P . Thus ~f 
vl vl vl vl 

A= A f R or P = P , then (A,P) = (A ,P ) . 
vl vl - vl vl 

Claim for for x ER that v 1- 1 ([ v 1 (x)}) = V(x) . 

SUBPROOF. This is clear if V(x) = v(o). 
1 - -

Leto t V( x ), V(z) = V(x)-. Then y € V(x) iff 
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yz E A'--...P iff v1 (zy) -= e ,iff v1 (z)v1 (y) = e iff v1 (y) = v1 (z) - l 

iff vl(y) = vl(x). Thus V(x) = ·vl-1 ([Vl(x)}) . 
- - -

Now v1- 1 ([v1 (xy)}) = v 1- 1 ([v1 (x )v1 (y)}) = v(xy) 

= V(x)V(y), so 

:rv 
1 

- - - - .. 

rv 

is an isomorphism. Also v1 (x) < v1 (y) iff v1 (x)V1 (y)-l < e 

iff vl-1([vl(x)vl(y)-1}) = V(x)V(y)- 1 c P iff V(x)V(y)-1 
< e 

- -
iff V(x) < V(y), so order is preserved . 

- 1 
Thus v1- ([ }) is the order preserving isomorphism 

c laimed in the proposition. 

Henceforth, we will speak of the valuation determined 

by (A,P) and will refer to the coset representation of r 
V 

derived above as the normal representation and wherever 

desired assume this is the representation under consideration. 



then 

COROLLARY 1.7 . I f (A,P) is a valuation pair of R, 

i . ) R'--. A is closed under multiplication 

ii.) R""-P is closed under multiplication 

iii.) xy E A ⇒ X E A or y E p 

iv. ) xn E A ⇒ x E A 

v_. ) xn E A-.......__P ⇒ x € A"--P 

vi.) A= ( x ER I xP c-P} 
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vii.) A= R or P = (x EA I xy EA for some y f A). 

PROOF. Let V be the valuation associated with (A,P) 

in 1. 8. Translating, we have 

i.) V(x)V(y) > e if V(x) > e and V(y) > e; 
- - -

ii.) V(x)V(y) >: e if V(x) ::. e and V(y) > e; 
- - - -

iii.) V(x)V(y) < e ⇒ V(x) ~ e or V(y) < e; 

iv . ) V(x)n -~ e ⇒ V(x) < e; 

v. ) V(x)n = e ⇒ V(x) = e; 
- -

vi.) v(x) ~ e ¢=> V(x)V(y) < e for all V(y) < e; 
- - -

vii.) If V(z) > e for some z then 

V ( x) < e ¢:I V ( x) V ( t ) < e for some V ( t ) > e. 

Section II 

DEFINITION 1.8. For Ra commutative ring, let 

T = T(R) = ((A,5) I A is a subring of R, 5 is a prime ideal 
-

of A). For (A,5), (B,cr) ET write (A,5) < (B,a) if Ac B 
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and 5 = An (5. 
11< 11 is clearly an inductive partial order 

on T, so by Zorns l emma, T has maximal elements . We 

(temporarily) call maximal elements of T maximal pairs . 
-
Note that if (A,6) ET, then there is a maximal pair 

(B,cr) with (B,-cr) ~ (A,6). 

PROPOSITION 1 . 9 . If (A,6) is a maximal pair of R, 

then A is integrally closed in R. 

PROOF. Let A be the integral closure of A in R. 

Then there is a prime ideal cr of A with cr n A = 5 ( see 

[5],'p. 257). That is (A,cr) > (A,5) so A= A. 

PROPOSITION 1.10. (A,5) is a maximal pair of R, iff 
-

(A,5) is a valuation pair of R. 

PROOF. It is clear that valuation pairs are maximal 

pairs, so it is the converse that is of interest . 

Let (A,5) be a maximal pair of R, x + A, B = A[x] 

and cr = B5 . cr is an ideal of B with 5 C cr n A. If 

· 5 == A f\ cr, then A .......__,_ 5 is a multiplicative subset of B 

with (A"-...5)n cr = ~. Then by Krulls lemma, there is a 

prime ideal cr' of B with cr c cr' and (A -......_,_5) (\ cr' = ~. 
-

That is 5 = cr' n A and (B,cr') ~ (A,5). But since A f B, 

this is a contradiction, hence cr -('\ A f 5. 

n i 
Thus there are p. E 5, a E A"-. 5 with(* ) ~ x p. = a. 

l i=O l 
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We can assume n is minimal for an expression of this form. 

1 n-1 . 
1

. 
n- ( )n ( ) 1 n- -1 We have apn = xpn + .~ xpn Pn pi, an 

i=O -. 

integral expression for xpn , thus xpn EA by 1.9. 

is an expre~sion of form(*) with lower degree, contra­

dicting the choice of n. Thus xpn E A'--..5 and (A,5) is a 

valuation pair. 

-We now drop the terminology 11maximal pair" in favor 

of "valuation pair" . 

Section III 

DEFINITION 1.11. We call a valuation pair (A,P) of 
-

Ran· H (Harrison) pair (Pis what is called a finite prime 
-

in [ 3]) if A/Pis a locally finite field. That is if 

every finite s ubset of A/Pis cont ained in a finite sub­

field of A/P. 

PROPOSITION 1 . 12 . (See [3]): (A,P) ET is an H 

pair of Riff 

i. ) Q is closed under • and , and P c Q ⇒ P = Q 

or 1 E Q, 

ii.) A= ( x I xP c P}. 
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PROOF . Let (A,P) be an H pair . Then (A,P) is a 
-

valuation pair so ii .) is c lear . Suppose Q is c losed 

under multiplication and P ~ Q. Let x E Q'-...P. If x f A, 

t hen for some y E P, xy E A"-.P,since (A,P) is a valuation 

pair and (xy)n = 1 + z for some integer n > O, z € P, 
-

sinc e A / P is a locall y finite field . But then xy E Q, 

(xy)n E Q, z E Q, so (xy)n z = 1 E Q. If x EA then 
n - n x = 1 + z for s.ome n > 0, z E P and x - z = 1 E Q. 

Conversely, suppose (A,P) satisfies i.) and ii .). 

If (B,cr) ET and (B,cr) > (A,P), then a= P by i.) and then 

B = A by ii.),so (A,P) is a valuation pair. 

Assume (A,P) satisfies i .) and ii .) and let p:A ~A/P 

be the natural map. Then if cr is a non-zero subset of 

A/P (e.g., an ideal of A/ P) c losed under· and-, then 

1 E p~1 (cr) and 1 E cr. Hence A/Pis a field. Als o 

1 e Z · p(l) • p for all prime integers p with p(l) · pf 0, 

so Z · p(l) = Z = z/1p) for some prime integer p. p 

Also, if x e A/P, x f 0, then 1 E xzp[x] so ~ is 

algebraic over Z, hence is in the finite field Z [x] · p p 

of A/ P. This gives case n = 1 of the inductive hypothesis: 

11If Eis a finite subset of A/ P and IE!= n, then Eis 

contained in a finite subfield of A/P. 11 

Assume the hypothesis true for n and let 

IE!= n + 1 , a e E. Then jE "-,_ (a}I = n so there is a 

finite subfield F of A/P with E"-.(a} c F. If a= O we 

are done, otherwis e 1 E aF[a] so a is algeb raic over F, 



hence F[a] is a finite subfield of A/P containing E. 

Thus A/ Pis locally finite. 

COROLLARY 1 . 13. If Sis a subset of R closed under 

- and·, and 1 f S, then there is a H pair (A,P) of R 
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with Sc P. If B = (x ER I XS c S} and B/S is a locally 

finite field, then (A,P) ~ (B,S). 

PROOF . (cr c R I Sc cr, cr - a c cr, cr · cr c cr, 1 f cr} 

is inductively partially ordered by c, thus by Zorns lemma 

c ontains a maximal element P. Then if A= (x I xP c P}, 

(A, P) satisfies i.) and ii.) of 1 . 12 . By the maximality 

of P, Pis a maximal ideal of A, hence a prime ideal so 

(A,P) € T. Thus (A,P) is an H pair of R. 

If B/S is a locally finite field, x € B"'-S, then 

n x = 1 + S for some integer n > 0, some s e S, thus 

xn E A""-.P. But then by 1. 7, x € A""-.P. Thus B"'-S c A"-.P 

so B C A and S = B f\ P. 

PROPOSITION 1.14. Let Ebe a finite subset of R, 

_cr a subset of R with cr - cr c cr, cHJ c cr. If cr and the 

multiplicative subset generated by E have void intersection, 

and Ecr c cr, then there is an H pair (A,P) of R with 

cr C P and E C A -....____p. 

PROOF. Consider the finitely generated subring 

S = Z • l[ E] of R. µ = cr I\ S is an ideal of S which has 

void intersec tion with the multiplicative subset generated 
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by the finite subset E of S. Thus by the integer version 

of the Nullstellensatz (see [l], pp . 67,68) there is a 

maximal ideal 6 of S with E (\ 6 = <!> and µ c 6. Also by 

the Nullstellensatz , s/6 is a locally finite field. 

Now 6 + cr is closed under· and - (since Scr c cr), 

and 1 f 6 + cr (for 1 = p + a gives a = 1 - p € µ = cr n S 

and 1 = p + a E 6). Thus by 1 .3, there is an H pair 
-

(A,P) of R with 6 + cr C P. Then 5 c P so again by 1.3, 

S '---,_6 c A......__,__P since S/6 is a locally finite field. But 

then E C 3--....__5 C A......____P. 

COROLLARY 1. 15 . If N 1 = fl ( P I (A, P) is a valuation 

pair of R}, N2 = ncp I (A,P) is an H pair of R}, 

N = (x €RI xn = 0 for some integer n}, then N = N1 = N2 • 

PROOF. N c N1 by 1 .7 and N1 c N2 since the set being 

intersected to obtain N1 contains that being intersected 

to obtain N2 • 

If x f N, then with E = (x} and cr = (0) in 1.14, 

we have x E A......__,__P for some H pair (A,P). That is, x f N2 . 

Thus since N c N2 , we have N = N2 • 

COROLLARY 1.16. If (B,Q) is a valuation pair of R, 

then Q = n (P I (A, P) is an H pair of R, Q C p}. Further, 

if E is a finite sub set of R with En Q = ¢,, then there 

is an H pair (A,P) of R with E nB c A"-..P and (E"-....B)nA = <1>. 



PROOF . It s uffices to prove the second statement. 

Let Ebe a finite subset of R with EnQ = <!>. Let 

E1 = En B, E2 = E'-.__ B. For x € E2 , chose qx € Q with 

xqx € B""- Q, and let E 1
2 = (xqx I x € E2 }. 

Applying 1 . 14 to E1 U E' 2 and Q, there is an H pair 

(A,P) of R with Q c P and E1 U E 1
2 c A'-.....P. But then if 

X € E2 , xqx €. A'-..._ P, so x f A. That is El c A'-. P and 

E2 n A= <1>. 

COROLLARY 1.17. If A= R for all H pairs (A,P) 

of R~ then A= R for al l valuation pairs (A,P) of R. 

PROOF . If (A,P) is a valuation pair of R, then by 

1.16 and hypothesis, Pis the intersection of (maximal) 

ideals of R,. hence is an ideal of R. That is, 

A= (x I xP c P} = R. 

Section N 

---

DEFINITION 1.18. Let A be a subring of a ring R. 

If p:A -:-+Sis a homomorphism we call pa partial homo­

morphism on R.If, whenever Bis a subring of R, Ac B, 

T:B -Ta homomorphism, µ:(image p) -Ta homomorphism 
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and TIA=µ o pone also has B = A, then we call p maximal . 

One - can show using 1.10 that if A is a subring of R, 

Pan ideal of A, then (A,P) is a valuation pair of R if 

and only if, the natural map A -;+A/Pis a ~aximal partial 
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homomorphism of R into a domain . 

A place on a field is a maximal partial homomorphism 

into a field . However, if (A,P) is a valua t ion pair of a 

- 1 . -1 , field F, XE A"-....._P, then xx E A"-....._P gives X E A,P by 

1 . 17 , so A/ Pis a field . That is, a pair (A,P) of a field 

Fis a valuation pair if and only if the natural map 

A-A/P is a place . 

Thus at f'irst glance one might expect "maximal 

partial homomorphism into a domain" to generalize "place". 

This generalization is unsatisfying since such maps do 

not compose (see 1 . 20) as do places on a field . The 

generalized places of [3] do compose and satisfy the 

hypothesis of 1 .20. 

DEFINITION 1.19 . A valuation pair (A, P) of R is 

called a prime pair if A/ Pis a field . 

PROPOSITION 1 . 20. Let p be a partial homomorphism 

from R to S with dom p + R. If the composite part~al 

homomorphism rfl~ -A/Pis maximal for all H pairs (A,P) 

of S, then (d om p, ✓ker p) is a prime pair of R. Conversely , 

if (dom p, ✓ker p ) is a prime pair of R the composite is 

maximal for all valuation pairs (A,P) of S. 

p 
PROOF . Suppose R -s -A/P is maximal whenever 

(A, P) is an H pair of S. Let B = dom p, cr = ker p. 

CLAD'1 1. Every H pai r (A 1 ,P 1 ) of B with ..jcr c P 1 
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is a valuation pair of R. 

SUBPROOF. Let (A 1 ,P 1 ) be an H pair of B, v1""5 C P'. 

By 1.13 there is an H pair (A,P) of S with 

(A,P) ~ (p(A'), p(P 1 )). Then since R .f:.s -+A/Pis maximal, 

(A',P 1 ) is a maximal pair of R. 

CLAlli 2. If x f B, then xy EB for some y € B. Also 

of xy € B, then y E fa. 

SUBPROOF. Let (At,P 1 ) by any H pair of B with 

~ c P 1 • Then since (A 1 ,P 1 ) is a valuation pair of R, 

there is a y E pt with xy E At " P' c B. If y f✓cr, then 

( xy ,y}n ~ = <1>,so by 1. 14 ,the re is an H pair (A 11 ,P 11
) 

of B with (xy,y) c A11 "'-.P 11 and v1cr c P 11
• But since x f A11

, 

this cannot happep by 1 .7. 

CLAIM 3. ~ is a maximal ideal of B. 

SUBPROOF . Suppose 6 is a maximal ideal of B with 

fa c 6 and 6"-fa f ¢, say y E 6'-Jcr. Let x E R"-._B. Then 

xy f B by Claim 2. Let {A',Pt) be an H pair of B with 

6 c P 1 • Then xy f pt so z{xy) E At "'-._ pt for some z E pt. 

But {zx)y EA'~ B implies zx EB by Claim 2, and then 

{zx)y E 6 c pt, a contradiction . 

Thus (BJcr) is a valuation pair of Rand B/fa is 

a field. 

Now suppose (BJcr) is a valuation pair of Rand 



·B/Jcr is a field. Let (A ,P) be a valuation pair of S. 

Since p(.,/cr) is il, p(.,/cr) C P. Let x € p(B)'-A. Since 

. B/.,/cr is a field, there is an x' E p(B), y E p(Ja) with 

xx' ,... l +ye A', P. Thus x' e Pf\p(B); i.e ., 

(p(B)('\ A, p(B)n P) is a valua t ion pair of p(B). 

Thus (p-1 (A), p - 1 (P)) is a valuation pair of B, for 

if (A',P') ~ (p-1 (A), p - 1 (B)), then 
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(p(A'), p(P')) > (Anp(B), Pnp(B)) . Also Jcr Cp-1 (P) . 

CLAIM. Every valuation pair (A',P') of B with 

Jcr c Pis a valuation pair of R. 

SUBPROOF . Suppose x f A' . If x EB, then 

:l x' E B"-..../cr with xx 1 E 1 + ./cr; since x f A', x' E P'. 

If x f B, then 3 y E ./cr with xy E B"-...,fi. xy(xy) 1 = 

x(y(xy) 1 ) E 1 +./cr, and since x f B, y(xy) 1 E.fac P'. 

Thus (p- 1 (A), p- 1 (P)) is a valuation pair of R so 

the composite R f:+ S --+ A/P is maximal. 

Proposition 1.20 gives some insight into generalized 

places as defined in [3] and these provide motivation for 

occas ionally including special results for valuations 

corresponding to prime pairs. 

EXAMPLE 1.21. Not all valuation pairs (A,P) are 

prime pairs, even when one requires A+ R. 

PROOF . If A= R is allowed, one needs only produce 



a ring R that has a non maximal prime ideal. 

For the second case, let R = Q[x] where Q is the 

rational numbers and xis an indeterminate. Let p be a 

prime integer, AP={~ (m,n) = 1 = (n,p) , or m = 0), 

A= ~[x] , P =A· p, a= P + .A.x . One can easily check 

that (A,f) is a valuation pair of Rand that a is a 

proper ideal of A with Pc a. Thus (A,P) is not a prime 

pair of R. 
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2. INDEPENDENCE AND EXTENSIONS 

Section I 

Throughout this section, Vis a fixed valuation on 

a fixed ring R. 

Let¢ be an order homomorphism of rv into a 

valuation semi-group r with ¢ ( e ) = e, $(0) = 0. Since 

~ is a homomorphism, ¢(r~(O}) i s an ordered group 

(inherited order ), and since e f o, ¢ o Vis a valuation 

on R. With this notation we have: 

PROPOSITION 2.1. ¢- 1 ( e ) is an isolated subgr oup 

of r and P~ is a prime V-closed ideal of A, where 
V -v o V V 

DEFINITION 2.2. A subgroup Hof a valuation semi­

group r is said to be isolated if Of Hand whenever 

a,f3,-y Er with a.::. f3.::. -y and a,-y E H then f3 € H. 

DEFINITION 2.3. An ideal a of Av is said to be V­
x 

c losed if z Ea, y €Rand V(y).::. V( x ) implies y € a. 

21 

PROOF. If a,f3,-y Er V' a < f3 < 'Y and $(a) = ¢(-y) = e, 

then e =¢(a).::. ~(f3).::. ¢(-y) = e since¢ is order preserving. 

Also e = ¢(e)~(-y) -= ¢(aa~ 1 )¢(-y) = ¢(a)¢(a-1-y) = ¢(a- 1-y) 

-1 - 1( - ) so a -y € ¢ e ~- l (e) and"' is a group, hence an isolated 

subgroup of r v· 
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Let ~ E f' . If <i> ( f3) < e, 
V 

then~ < e so P~ c Pv. 
'I' o V -

If~.::_ e , then <i>(~) .::_ ¢(e) = e so A c A~ v · 
V - 'I' o 

Thus 

p¢ CA CA and since p¢ is a prime ideal 
() V - V - ¢ o V 0 V 

A¢ v' p <l> 0 V is a prime ideal of A . If X € p <I> 0 v' 0 V 

y ER and V(y) .::_ V(x) then ¢ o V(y) .::_ <l> ~ V(x) < e so 

y E P<i> 
0 

v That is P<i> 
0 

vis a V-closed ideal of Av. 

The first step towards a converse is: 

PROPOSITION 2.4 . If His an isolated subgroup of 

rv, then there is an order homomorphism¢ of f'v onto a 

valuation semigroup r~ with <l>-
1 (e) = H. 

'I' o V 

PROOF. Set <i>(a) = aH for all a Er . Then 
V 

<i>(r v'--,,(0)) = r v'----(o)/H is a group and Hf o = o • H. 

Suppose a<~ and aH f ~H. Then if h1 ,h2 EH, 

of 

- 1 - 1 h 1a < h2~ , for otherwise h 1a::... h 2~ gives e ~ ~ a~ h 1 h 2 

and ~- la EH, since e
1

h1
1h

2 
EH and His isolated. Thus 

the order 11aH .::_ ~H ~ a .::_ ~ 11 is well defined on ¢ (r v). 

One can easily check now that <i>(r ) is a valuation semi-v 

group with the usual coset multiplication and that <l> is 

an order homomorphism onto. 

Set VH = <l> 0 V and note that P = (x ER I VH(x) < e) 
VH 

= ( x E R IV ( x) H < H) = ( x E R I V ( x) < a , 'ti a E H) . If 

~ E r V and ~ f H, then ~H < H or ~-lH < H, so ~ € V(P ) 
VH 

or ~-l E V(P ). That is H = (a Erv I V{x) < 
VH 



-1 
min ( a , a } 

1 
tf x E P } . 

VH 

PROPOSITION 2.5. H--+ P and 
VH 

<J --+ [a E f' I V(x) < min(a, a- 1 ), t1 x E o) is a one-one 
V 
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correspondence between isolated subgroups Hof rv and 

V-closed pr~me ideals o of Av. The correspondence is order 
-

inverting, where order is c in both cases. 

PROOF. With the preceeding remarks, all that remains 

to be shown is that T = {a E :r v I V(x) < min{a,a- 1}, t::lx € er} 

is an isolated subgroup of r and that the correspondence 
V 

is order inverting. 

Of T since O = V(O) and OE a. e € T since e ~ V(x), 

X € 0,gives 1 E er since O' is V-closed; a contradiction, 

since er is a prime ideal (hence proper). By definition of 

T, E T ⇒ 
-1 

€ T. Cl Cl 

Let Cl, f3 ET, Cl = v(x), f3 = V(y). If af3 f T, then 

af3 = V(xy) ~ V(z) for some z E er and xy E er since 0 is 
-

v-closed. But x fer and y f o so x f Av or y f ~ since 

er is a prime ideal of Av. Suppose x f 
- 1 

with V(x'xy) = V(x')V(x)V(y) = aa f3 = 

Then 3 x' € A 
V 

f3, a contradiction 

since x'xy E a. Thus af3 E T so Tis a group . 

If a, f3 T, with Cl~')'~/3, 
-1 -1 E ')' E f' then f3 ~ -y < Cl 

V -
and if XE a, then V(x) < min(a,(3- 1 ) ~ min(-y,-y- 1 }. This 

gives -y € T and Tis an isolated subgroup of r . 
V 

- 1 
t 



If cr1 c cr2 , then it is clear that (a Erv I V(x) 

< min ( a , a - l } , t) x E cr 
2 

} c ( a e f' v I V ( x ) < 
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min(a,a-1 }, b1 x E cr1 },so the correspondence is order inverting . 

The correapond~ne abov is clnri~iad furth r oy 

PROPOSITION 2.6. A prime ideal cr of A is V-closed 
V 

iff cr c cr c Pv. Further , the V-closed ideals of A 
V- V 

are linearly ordered by inc lusion . 

PROOF . If cr is a V-closed ideal of A , then OE cr 
V 

gives cr c cr and 1 f cr gives cr c P (since V(A,P ) = e ). 
V - V V V 

Now suppose crv. c cr c P and. cr is a prime ideal of A . 
- - V V 

Le t x E cr, y ER with V(y).:::. V(x). If V(y) = 0, then 

y E cr, so assume V ( y) f O. Then V ( x) > O so :J x ' E R 

with V(x') = V( x )-1• Now V(y).:::. V(x) < e gives y E Pv 
- -

and V ( yx 1 ) < V ( xx 1 ) = e gives yx' EA. 
V 

Thus xyx' E cr ,i 
-

but xx ' f cr, soy E cr since cr is a prime ideal of A. 
V 

Thus cr is V-closed. 

Now suppose cr and 5 are V-closed ideals of Av. 

Suppose x e cr '--.5 and y E 5"--.,cr. Then V( x ) < V(y) g ives 
' -

x E 5 while V(y) ~ V( x ) gives ·y E cr;~ Thus 6 c cr or cr c 6. 

In particular the V-closed prime ideals are linearly 

ordered by c. 

PROPOSITION 2.7. The set of V-closed ideals of A 
V 

and the set of V-c losed prime ideals of Av are order 

complete with respec t to the order c. 
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. DEFINITION 2.9. If V' is a valuation with Av C Av' 

and cr c P • c P , we say V' dominates V and write V' > V. 
V - V 1 - V 

We say V and V" are dependent if V' :::_ V and V' :::_ V" for 

ooma v' w·th v•(R) + (e,O), and independent. otherwise . 

PROPOSITION 2.10. If V' > V then P I is a V-closed 
- V . 

prime ideal of Av. If V' and V are dependent, then 

CJ ' • V 

PROOF. Let V' > v;.J Then P I c A c A I shows that 
V - V - V 

Pv' is a prime ideal of~­

Pv, is V-closed by 2.6. 

Then since CJ c P , c P, 
V - V - V 

Since (JV is an ideal of R, CJ C p ,, CJ C CJ I by 
V- V V- V 

1.3. crv" c Pv gives crv, c crv also by 1.3, so crv = crv,· 

Now if V' and V are dependent, say V 11 
:::_ V, V" :::_ V', 

then CJ = a 11 = a , . 
V V · V 

PROPOSITION 2. 11. If V 1 > V, then there is an order 

homomorphism <I> :r -r I with V' = <I> o V. Also, there is 
V V 

a valuation (V 1 ,V) on A ,/P I such that if ~:A 1 -A 1 / P , 
V V V V V 

is the natural homomorphism , then the following diagram 

commutes. 

V 

(Av~Pv,)--- r v 

l~ 
A I / p I 
V1/'V 

(v 1 ,v) 



Further ~A( V', V), p (VI, V)) = (Av/P V (, p V /P VI); 

cr ( v , , v ). = 11 ( P v., ) ; and ( V < V )( Av 1/P v 1 ) = <I> - l ( e ) U ( O} • 

(V',V) is called the induced valuation. 

PROOF .. Using 2.10 and preceeding results,V' = V 
Pv' 

V(A "-....P) =· <1>-l(e). 
V V 
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The remainder of the proposition is clear once i t is 

shovm that x E A ~ P , implies V(x) = V(y) for all 
V V 

y € x + P 1 • But if x € A i"- P 1 , p € P 1 , then 
V V V V 

V(x) > V(p),so V(x) = V( x + p - p) ~ max(V(x + p), V(- p )} 
... - -- -

< max(V(x ), V(p)} = V(x). 

PROPOSITION 2.12. Let V1 and V2 be distinct dependent 

valuations on R. Then there is a valuation Von R with 

V:::. v1 and V:::. v2 such that (v,v1 ) and (v,v2 ) are independent 

valuations on ~/Pv. 

PROOF. S~nce v1 and v2 are dependent, 

A = (Pv, I V' a valuation on R, V' :::_ v1 , V' :::. v2 ) is non-

empty. Thus P = inf A is a Vi. closed ideal of A and 
V . Vi 

V > V., i = 1, 2. 
- J. 

Now suppose Vis a valuation on ~/Pv with V > (v,v1 ) 

and V:::. (v,v2 ). Let P = (x €~Ix+ Pv € ~). Since 

_ ·F;j: is a prime ideal of A /P, i = 1, 2, and 
Vi V 
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P- c(P / P ) n (P / p ), it follows that 
v _ vl v _ v2 v 

a = ·a · C p C p C p . n p and pis a prime ideal of 
v 1 v 2 - v ~ - v 1 v 2 

A , and thus V. closed b y 2.6, i = 1, 2. Thus P = Pv' 
V. l 

l 

for s ome valuation V' on R with V 1 > V., i = 1, 2, by 2.6 
- J. 

and 2.5 . But then V' € .ti so V' > V and P C P. 
v-

Thus p = p 
V 

and P- = 
V P/Pv = Pv/Pv is an ideal (zero) 

--
of Av/Pv so v(A /P ) = (e,o}. That is (v,v1 ) and (v,v2 ) 

V V 

are independent . 

Section II 

Throughout this section, let v
0 

be a fixed valuation 

on a ring Kand let R be an extension of K. We will 

consider the problem of "extending" v
0 

to R. 

PROPOSITION 2.13. There is a valuation pair (A,P) 

of R with A = An K and P = P (l K. Further, if . --vo vo 

(¾ ,Pv) is a prime (H) pair of K, then (A,P) 1 can be 
- 0 0 

chosen as a prime (H) pair of R. 

PROOF. (A ,P ) e T(R) so there is a valuation 
- vo vo -

pair (A,P) € T(R) with (A,P) ::_ (¾ ,Pv ). Then since 
- - - - 0 0 

(A , P ) , the first statement follows. 
- vo vo 
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If (A ,P ) is an H pair of K, the existence of an 
- vo vo 

H pair (A,P) with (A,P) > (A ,P ) is given by 1.13. 
- - - vo vo 

Now suppose (A ,P ) is a prime pair of K. Let 
. - vo vo 

S = ((A,P)j(A,P) > (Av ,Pv) and (A,P) a valuation pair 
_ - - 0 0 

of R}. For . (A1,P1), (A2,P2) € s, define a partial order 
- -

~ on s by (A1 ,P1 ) ~ (A2,P2) if A2 C A1 and P2 C P1• If 

A. is a chain in s, then A = 
'J& u (A I (A,P) e A for some 

is . a ring, PA aa: U (P I (A,P) e ./& for some A} is a prime 

ideal of A~, and (A~ ,P&) ::_ (A , P ). Now there is a 
Jlli - J/."l:.. Jlli - vo vo 

valuation pair (A,P) of R with (A,P) ::_ (AA,P.A). Then 
- - -

P} 

(A,P) is in S and (A,P) is • an upper bound for A. .That is, 

~ is an inductive partial order on S, hence S has maximal 

elements by Zorns lemma. 

Let (A,P) be maximal ins. Let 6 be a maximal ideal 

of A with P c 6. Then P c 6 nA , and since (A ,P ) 
vo - . vo - vo vo 

is a prime pair, P = 5 (\ A • Thus if (A 1 , P') ·is ?1-
v O v0 

valuation pair of R with (A 1 ,P') ~ (A,5), then (A 1 ,P') e S 
- -

and (A' ,P') ~ (A,P). Since (A,P) is maximal in S, A= A', 

pt= Pc 5 c P'. That is, Pis a maximal ideal of A. 

shows that a maximal partial homomorphism of K into a 

domain (field, locally finite field) can always be 
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extended to a maximal partial homomorphism of R into a 

domain (field, locally finite field) . This is a classical 

result on extension of places. Due to the trivial ideal 

structure of a field, thi s also is an extension theorem 

for valuations on fields, as will be seen from the 

following interesting, but misleading result . 

PROPOSrrroN 2.14 . If v 1 is _a valuation on R with 

(A ,P ) > (A ,P ), then there is an order isomorphism 
- vl vl - - Vo Vo 

cl> of (f' ""'- ( O}) into F' such that <I> o v
0

(x) = v 1 (x) for 
- vo vl 

all XE K with Vo( x ) + o. 

PROOF. Let z EK, v
0

(x ) f O. Using the standard 

representation of l[" and r , it will suffice to show that 
vo vl 

V0 (x) = V1 (x)nK, for then c!>(V0 (x)) = V1 (x) is as advertised. 
- - 1 - -

Let x I E v
0

(x )- , y E v
0

(x). Then x 1y E A "'-._P 
vo vo 

= Vo(l) c Av "-.Pv = vl(l), so Vl(x')-1 
= vl(y) . . That is 

- 1 1 - - -

v 1 (y) = v 1 (v0 (x)) = v 1 (x) :3 v 0 (x). If z e v 1 (x)() K, 

then zx 1 € V l ( 1) n K = - ( A "-. P - ) n K = A -.......___ P 
- _--vl vl Vo Vo 

= v 0 (1),so v 0 (z) = v 0 (x 1 )-l = v 0 (x). Thus V1 (x)n K = v 0 (x). 

The above result is misleading since in general there 

are many x E cr with v1 (x) f O. 
VO 



DEFINITION 2. 15 . Let R be an extension of K, V0 
a valuation of K. A valuation v1 on R is called an 

extension of v
0 

to R if there is an order is omorphism 

¢ of y into r s u c h ·that¢ o v0 (x) = v
1

( x ) for all 
Vo vl 

X € K. 

By the proof of 2 . 14 , an immediate result is 
. 

iii. ) ⇒ i. ) of the following . 

PROPOSITION 2. 16 . Let R be an extension of K, V0 
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a valuation on K, v1 a valuation on R. Then the following 

are equivalent . 

i.) 

ii.) 

~ii.) 

v
1 

is an extension of v0 to R. 

(A , P ) > (A , P ) and V 1 I K is a 
- v l v l - - vo vo 

valuation on K. 

PROOF . If v1 is an extension of vO to R, then 

v1(K) = ¢ o v0;K) is a valuation semi- group contained in 

rv , so v1 IK is a valuation on K. If x € K, then 
1 

,.. 

v1 (x) ~ ·e iff ¢ a v0 (x) ~ e iff v0 (x) < e so A n K = A . 
--y 1 V 0 

Also V l ( x ) < e 

Pv n K = P • 
1 VO 

i.) ⇒ ii. ). 

iff ¢ o v0 (x) < e iff v0 (x) < e so 
- -

That is (A ,P ) > (A ,P ), which gives 
~ vl vl - - Vo Vo 



on K, then (A I , 
vl K 

= av by 1.6 . But cr 
0 vl 

ii.)~· iii.). 
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is a valuation 

= 
K 

THEOREM 2.17 . (Extension Theorem ) v0 has extensions 

to R iff K n Rcr = ; • Further, if v0 has extensions 
vo vo 

to Rand (~ ,Pv) is a prime (H) pair of K, then v0 - 0 0 

has an extension v1 such that (Av ,Pv) is a prime (H) 
1 1 

pair of R. 

PROOF . If v0 has an extension v1 to R, then 

cr C cr by 2.16 so Kn Rcr C Kn Rcr = K n C5 = a • 
vo - vl vo - vl vl vo 

Conversely, suppose Kn Rcr = cr • Then 
vo vo 

5 = P + Ra is an ideal of B = A + Rcr with A = B II K 
vo vo vo vo . vo 

One can check that A /P I"- B /5 , so 5 
vo vo -

is a prime ideal of Band (B,5) > (A ,P ). Now if 
- V V - - 0 0 

(A ,P ) is any valuation pair of R with (A ,P ) > (B,5), 
- vl vl - vl vl , -

Rcr c cr by 1. 3. That is a c cr , so v1 is an extension 
Vo - vl Vo - vl 
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of v0 by 2.16. 

Finally, if (A ,P ) is a prime (H) pair of K, then 
- vo vo 

(B,5) is a prime (H) pair of B, and since R is an extension 
-

bi' B, (above) may be chosen as a prime (H) 

pair of R by 2.11. 

PROPOSITION 2.18. Let R be an extension of K, and 

suppose R is integral over K. Then every valuation on K 

has extensions to R. 

on K, v1 a valuation 

In particular , if v0 is a valuation 

on R with (A ,P ) > (A ,P ), 
- --y 1 V 1 - - VO V 0 

t hen v1 extends v
0

• 

PROOF. It suffices to prove the last statement, and 

for this proof we are indebted to D. K. Harrison. 

X € 

n> 

By 2.16 and 2.17 we need only s~ow 

R. Since R 

0 with n 
X + 

implies Rcr c A • 
vo - vl 

is integral over K, there 

n-1 . n J.. 0. Then 0 Z a.x = a . 
i=O 1. 

Let a E 

are ai € ~, 

= 

for i = o, 1, , n-1, that is, ax is integral over 

Since A is integrally closed , ax E ~. 
vl 1 



Section III 

In this section, we assume R is an extension of K. 

The results obtained will be needed in Chapter 3. 

PROPOSITION 2. 19 . Let v0
1 , v0 be valuations on K 

wi:th VO 
1 ::::_ VO. Then 

1~) v
0 

has extensions to Riff v0 r has 

extensions to R, 
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ii .) If v1 is an extension of v0 to R, then the 

set of extensions V' of v0
1 to R with V' ::_ v1 is non­

empty, linearly ordered and has a smallest element. If 

·· (r / ll:" )"'- ( O} is torsion , then there is a unique 
- vl vo 

extension V' of v0
1 to R with V'::. v1 • 

PROOF. 

Rcr n K = crv . Thus i.) follows by 2.15. 
VO 0 

o v
0

, <!> an order homomorphism off' 
· V 

Let v0 , = <!> 

onto r . Then 
Vor 

0 
<1>-

1 (e) is an isolated subgroup of r 
VO 

and H = ( -y E r f 3. a, t3 E <!> - l ( e ) with a ::. -y ::. t3} is an 
vl 

isolated subgroup of ll:" • If e is the natural map 
vl 

f' -► ll:" / H, then V ' = e o v1 v1 1 v1 is a valuation on R with 



Let V' = 0
1 o v1 be an extension of v0 r . Then 

. e ' - l ( e) n r = <!> -l ( e ) so H C e '-l ( e) . That is 
, - VO 

V' ~ v1
1 • The linear order property now follows from 

2.6 and 2. 9. 

Now suppose (r /r )"-.( O} is torsion and e '(a ) = e . 
- vl Vo 

n Then there is an integer n > 0 with a € r , so 
VO 

n - l( ) If th n a E <!> e. a~ e , en a ~a~ e so a€ H, while 

i f e > a, then (an)- l ~ a-1 > . e so a-l € H. Thus e , - 1 (e) = H 

and. V 1 = V 1 '. 

PROPOSITION 2.20. Let v1 , v
1

1 be valuations on R 

with v1 r ~ v1 . If v1 I K is a valuation on K, then so is 

V 1 t I K and V 1 , I K ::. V 1 I K. 

PROOF. Let V 1 ' = <!> o V 1 , ,;,-,rhere <I> is an order homo-

morphism of r v onto F' , • Then V 1 (K) a valuation semi-
1 vl 

group gives v1 '(K) = <I> o v1 (K) a valuation semi-group. 

Since V 1 t I K = <!> o V 1 K' V 1 ' I K ::_ V 1 I K. 

PROPOSITION 2 . 21 . Let v0 , v0
1 be valuations on K 

with v0 ' ~ v0 and v1 , v1
1 be corresponding extensions to R 

with v1
1 ::_ v1 • Then the induced valuation (v1

1 ,v1 ) is an 
-

extension of t he induced valuat ion (v0 r,v0 ). 

PROOF. A.r / P = A.r, n K/ P 'n K l'v 
O' VO' 1 v 1 
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meaningful . Using the fact that v1 r extends v0 r and 2.11 

one sees that the solid part of the diagram 

-i- ( (r v /Hp )"-.(Hp }) 
_ o v

0 
v

0 
I 
I 
I 

-!t 
((Avl,/Pvl ,)''-,-JPvl,})} -i- ((r vl/Hp )"-.(Hp }} I . . . vl' vl, 

commutes. This induces the dotted part. The proposition 

is that the zeros of the inside parts can be included and 

t he diagram will remain commutative. This is clear. 

PROPOSITION 2.22. Let Vo be a valuation on K, vl, v2 

dependent extensions of v O to R. Then there is a valuation 

V' of R with V' ~ v 1 and V' ~ v2 such that the induced 

valuations (v,v1 ) and (V',V2 ) are independent extensions of 

(V' I K'VO). 

PROOF . There is a V' ~ Vi, i = 1, 2 with (V' ,V1 ) 

and (V 1 ,v2 ) independent by 2.12. V' I K is a val uation on 

K and V' I K~ v O by 2 . 20 and (V' ,Vi) extends (V' I K,vO), 

i = 1, 2 by 2.21. 



3. T"tlE INVERSE PROPERTY, APPROXIMATION THEOREMS 

Section I 

A key fact about fields that is indispensible in 

proving theorems about valuations is that the set of all 

valuations on a field satisfy: 

DEFINITION 3. 1. We say that a set A of valuations 

on a ring R has the inverse property if for every x in R 

there is an x ' in R such that V(xxt) = e whenever Vis 

in A and V(x) f O. A is said to have the strong inverse 

property if for every x in R there is an x ' in R with 

V(xx 1 - 1) < e whenever Vis in A and V(x) f O. 

Note that (V} has the strong inverse property iff 

(Ay,Pv) is a prime pair of R. 

PROPOSITION 3.2. Let A be a set of valuations on R 

which has the inverse property , A t a set of valuations on 

R such that for every vr in A' there is a Vin A with 

V' > V. Then ff;. U A' has the inverse property. In particular, 

A 1 has the inverse property. 

PROOF. Let x , xt ER with V(xx') = e whenever VE A 

with V(x) + O. Let V' E 1!i t and suppose V' > V V E A - , 
.. 

and V'(x) f O. Then V(x) +Oby 2.10 so V(xx') = e . 
-

Then xx t E A ~ P c A 0 P I so V 1 ( xx t) = e. 
V V V V 



PROPOSITION 3. 3. Let A be a set of valuations on R 

with the i nverse property and V' a va luation on R s uch 

that V' > V for all Vin A . Then JA* = ((V',V) IV e ~ } 

has the inverse property. 

PROOF. Let p be the natural map A , - A ,/P , . 
V V V 

For x E Av '' let V(xx') = e whenever V E .f!l , V( x ) + 0 • 
. 

Since (V',Vi(p(x) ) = v(x) if XE A ,"-.P ,; 
V V -

(V 1 ,V)(p(x)) = 0 if x 

if (V' ,V)(p(x)) f 0 . 

e P , ; we have (V 1 ,V)(p( xx ')) 
V 

= e 

Thus it remains OLlly to show that 
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x e Av , if x E Av 0 P v , . 

this follows by 1. 7. 

Since xx r e A ~ P c A ~ P , , 
V V V V 

In general the set of all valuations on a r ing does 

not satisfy the inverse condition . In orde r t o discover 

some sets which do , some preliminary result s are needed . 

PROPOSITION 3.4. Let V be a val uation on a ring R, 

a,b ER with V(a ) f V(b) . Then V( a + b) = max(V(a),V(b )}. 

PROOF. Without loss of generality , we may assume 

V(a) > V(b). Then V(a) = V(a' + b - b ):: max(V(a+b ), V(b)} 
- . 

:: max(V(a),V(b)} = V(a), so max(V (a+b ),V(b) } = V( a+b ) = V(a ). 

COROLLARY 3.5 . Let V be a valuat i on on a r ing R, 
n 

a. ER, i = 1, 2, 
l 

PROOF. 

m. If V( Z a .)< max V( a .), then 
i=l l l 

n 
Then since V( Z a i ) 

i=l 



n n 
= v( z a. + a.) -.. 

i=l i J 
max[V( Z a.),V(a.)}, 

·-1 l J - J.-

ifj if j 

n n 
v( z a.)= V(a.) by 3.4. 

- i= l l - J 
But V( Z a.)< max V(a.), so 

i=l J. - ifj - J. 

if j ifj 

~!~ V(ai) ~ v(aj), 
l TJ - -

that is V(ak) = max V(a.) 
. .l . l. 
lTJ -

some k + j. 
COROLLARY 3.6. Let V be a valuation on a ring R, 

a. E R, i = 1, 
l 

for n < i < k. 

2, ···, n, n+l, ···, k, with V(ai) = O 
k n -

Then v( _z ai) = V( _z ai). 
- i=l - i=l 

k n k 
PROOF. V( Z a.) = V( Z a. + Z a.) < 

- i=l l i=l l i=n+l 1 

n k 
max [ V ( Z a . ) , V ( Z a. ) } = 

. 1 l. . 1 l - l= - J.=n+ 

k 

n 
V(Za.). 

i=l 1 
The last equality 

holds since V( Z a.)= O. Equality now follows from 3.2. 
- i=n+l l 

Section II 

For the remainder of this chapter, R is assumed to be 

an extension of a ring Kand v0 a valuation on K which has 

extensions to R. If Va is any extension of v0 to R, we 

will consider I" as a sub-semi- group of f' v • 
vo a 
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PROPOSITION 3.7 . Let A be a set of valuations on R 

extending Vo , 6 an ideal of R contained in n{crv I V € A} , 

such that 6 n K = a • If x € R has x + 6 algebraic over 
. VO 

K/a , then there is an x ' ER with V(xx') = e for a ll 
VO 

V E 11 with V ( x) f O. Tf (A ,P ) is a prime pair of K, 
- vo vo 

then x' may·be chosen so that V(x~ 1 - 1) < e. 

PROOF. Note that V(t) = 0 f or all t ~ 6, VE A. 

If x + 6 is algebraic over K/cr , then there are a. EK, Y,o I J.. 

n i 
t E 6 with ar f 6 and ~ a.x = t , (v(an) f o). Let 

. 0 J. J.= 

s = min(i I V(ai) f o}. 

Then for V EA, 0 = V(t) 

n . 
Thus if V(x) f O, then V( ~ a.x1 -s) = o 

• J. 
- 1.=S 

n . n . 
= V( ~ a .xi- s +as)< max(V( ~ a.xi-s),V(a )), so by 

- i=s+l J. i=s+l J... . s · 

n . 
3.4, V( ~ a.x1 -s) = V(as) = 

- i=s+l 1 

n • 
( ) ( 1-s-l) V x V ~ a.x • 

- i=s+l 1 

I 

Choose a' EK with Vo(a'as) = e, (v0(a'as + 1) < e 

if (A , P ) is a prime pair of K). Then with 
- vo vo 

. x' = a' · 
n i - s-1 
~ _a.x 

i=s+l J... 
V(.xx') = e whenever V e A with 
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V(x) f O. 

If (A ,P ) is a prime pair, V(x) f O, VE A, then 
- vo vo 

n . 
V(xx ' + a 1a) = V(a 1 )V( ~ a.x1

) = 0 so by 3.6, V(xx ' - 1) s • . i 
- i=s 

COROLLARY 3.8. Let A be a set of valuations on R 

extending Vo~ 5 = n (av I V €A}, and suppose R/6 is 

algebraic over K /Kn 5. Then A has the inverse property; 

A has the strong inverse property if (A ,P ) is a prime 
- vo vo 

pair of K. 

PROOF. This is clear by 3.7. Note that K n 5 = cr • 
VO 

If V extends v
0

, then there is a natural homomorphism 

P :I" V - ~ ~lr' v"- ( 0}) /~lr VO"-._ ( 0 })»LJ ( 0}, namely 

p(a) = a(lrv"-._(O}). Rather than carry the zeros, we denote 
. -

p(r ) by rv/r and p(x) by J<!"v . We say df'v is torsion 
_ V VO - 0 0 

if (or )n is EI" or arv for some n > o,ana that 
_ vo vo o 

. I" v/r v is torsion if every element is torsion. Note that 
0 

aF" is torsion iff an E r for some integer n > O. 
V VO 

With this notation, we have a companion proposition 

to 3.8. 

PROPOSITION 3.9. Let A be a set of valuations on R 
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extending vo,6 = n(crv I V € A}, and suppose R/6 is 

algebraic over K /K r'\ 6. Then r /r is torsion for all 
/ J V VO 

PROOF . This is immediate from 3.10.· 

PROPOSITION 3. 10. Let V extend v0 , 6 be an ideal of 

R with CJ c 6 c cr . Let x € R wi th x + 6 algebraic 
VO · V 

-.J\f) .(' -1,, 

over K/ K n 6. Then .xr is torsion . 
VO 

PROOF. If V(x) = 0, there is nothing to show, so 

s uppose V( x ) =J: O. Then ~ a i € K, t € 6, ar f 6 with 

r i 
~ a.x = t. Since V(arxr ) =J: o, we have O = v ·(t) 

. 0 l. 1.== 

= max(V(a.xi)} = V(a.xj) f O for some if j . 
l. J 

Assume i > j ~d let V( x ') = V(x)-1 , V(a') = V(ai)-1
• 

Then V(xi-j) = V(aixi)V(x' )jv(a') = ·v{ajxj)V(x' )jv{_a') 

= v( aJ. )v( a') € I." • 
VO 

I 

PROPOSITION 3 . 11 . Let V be an extension of v 0 , V 1 > V 

and v 0 ' = V' !K. If r / r is torsion, then so is I" ,/r , 
V Vo V Vo 

and f' ( V r, V )/r (VO t , VO)• 

PROOF. Let <I> :r v __,, r v I be the homomorphism such that 

V' = <1> 
0 v. Then v 0 , = <1> 0 v 0 , r(v',v) = {ker <1>)U(o) 



and f'(v f V ) = ~ker <t>)/)f' V } U(o} = r(v' v)nr·v • 
0 1 0 - 0 , 0 

If <!>(a) Er 1 , then an E r for some n > O so 
V VO 

<!>(an) = <t>(a)n € r so r /r is torsion. If 
- vo, VO' VO' 

a € f'(v' v) then an € ]["' V nr(v' v) = f'(v V ) for some 
, 0 ' 0'' 0 

n > o so r ( , )/r (v ) is torsion~ 
V ,v 0''V0 

A trivial but useful remark is 

REMARK 3.12. If Vis an extension of vO and 

rv/rv is torsion, t hen V(R) = (e,o} iff v0(K) = (e,o}. 
0 
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REMARK 3.13. If R is integral over K, 6 any ideal of 

R, then R/6 is integral (hence algebraic) over K/K (J 6 . 

Section III 

In this section we assume R is an extension of K, 

v0 is a valuation on Kand A is a set of extensions · of .V0 

to K with the inverse property and such that r ft is 
V VO 

tors.ion for each V € A. In some of the results we also 

require Pv g; Pv' if V, V' EA and V + V'. The following 

proposition indicates the effect of this last restriction. 

PROPOSITION 3.14. Let V1 and V2 be distinct elements 

of A with P c P • Then P is an ideal of Kand R is 
vl - v2 vo 

not integral over K. 
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PROOF • . lf P is an ideal of K then P and P 
VO Vl v2 

are ideals of R by 3.12. Then A = A = R, and if R were 
vl v2 

integral over K we would also have P = P (see [5], 
vl V2 -

page 259), contradict'ing P and P distinct. 
vl v2 

It remains only to show that if P is not an ideal 
VO 

If P is not an ideal of K, then P and Pv are Vo vl 2 

not ideals of R, so by 1.6, A f A • 
vl v2 

CASE 1. Av'-._ Av f ~. Let y E Av"' A • Then 
1 2 1 --v2 ' . 

v,1 (y) ~ e < v 2 (y). Since r /r is torsion, there is 
V. VO 

' J 

an integer n > o, and a e K with v 2 (yn) = v 0 (a). Then 

v
2

(y) = v
2

(yn+la 1 ) > e while v
1

(yn+la') = V (yn+l)v· (a')< e, 
1 1 . 

since v
0

{a~) < e. Thus yn+la' ~ P '-.P • 
vl v2 

CASE 2. A "'-._A + $. By Case 1, there is y E R 
--y2 VI 

with V l ( y) > e > V 2 ( y) • Then V l ( 1 + y) = V l ( y) > e 

while v;(l + y) = v;(1) = e so V~ ( (1 + y) ') ~ e while 

V 2 ( ( 1 + y) ') = e. Thus ( 1 + y) ' € p "--- p • 
vl v2 



... V be distinct n 
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PROPOSITION 3.15. Let vl, v2, 

elements of A. with P ~ P if if 1. Then there is an v. v1 ]. I 

x e R with v1 (x)?:. e and v1 (x) < e for if 1. Further, if 

P is not an ideal of Kone can require v1 (x) > e. 
VO 

PROOF. Case 1: P an ideal of K. Then P is a 
vo vi 

prime ideal of R, i = 1, 2, .... n. 

n 
i = 2, 3, • • • , n and let x = 1r x .• 

. 2 l. l.= 

Case 2: P not an ideal of K. 
VO 

Proof by induction 

on n. 

n = 2, Choose y € P , P • . Then v1 (y) ~ e > v2 (y). 
V2 Vl 

Since rv /rv is torsion and :r f ( 0, e}, there is an 
2 0 • VO 

n > O and a € K'\.. '¾- with e > v2 (a) > v2 (yn). Then with 
0 

x = a'yn we have v1 (x ) ~ v1{a') > e while v2(aa') = e > v2 (x). 

Now assume 3.15 holds for r = n - 1, n > 2. For 

i = 2, 3, choose yi € R with v1(yi) > e arid Vj(yi) < e 

if j f 1 and j f i. If Vi(yi) ~ e, let xi= yi, otherwise 

let xi= (1 + y1 ) 1yi. 

SUBPROOF. This is aut omatic i f xi= yi. Otherwise 
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- -
V. ( 1 + y. ) = V. ( y. ) > e and V. ( ( 1 + y. ( 'y . ) = e if j f 1, i 

1 l 1 1 l 1 l 
- - - - -

V . ( 1 + y. ) = V . ( 1) = e and V . (( 1 + y. ) 'y. ) = V . ( y. ) < e. 
J 1 J J 1 l J l - - -

Thus we have v1 (x2x3) ~ e and Vi{x2x3) < e if if 1. 
- -

Let z = x2x3• Again since r /r is torsion and 
Vi VO . 

r f (o,e), there is an n> o and an a e K,a with 
vo vo - . 

e > V. (a) > V. (zn) f'or all i =f= 1 and x = a 1 zn has 
l 1 

- -
v1 (x) > · e, Vi(x) < e for all if 1. 

PROPOSITION 3.16. Assume P is not an ideal of K 
VO 

and v1 , v2 , ···, Vn EA are pairwise independent. Then 

if a 1 E r "'- ( 0) , i = 2, 3, · · · n, there is an x E R 
vi 

3 •• • n , , . 
PROOF. Since r /r is torsion for i = 2, 

Vi VO 
• .. , n, 

n. 
there are n. > O with a. i Er "-.(O). Let 

l , l VO 

n. 
a= min({e) U (ai i I i = 2, ···, n)}. It suffices to show 

there is an x E .R with v1{x) > e and Vi{x) < a, 

i = 2, 3, ···, n. 

Let H ={a€ I" jx € R with V1{x) ~ e, Vi{x) 
VO 

< min{a,a- 1) if 1). Then e EH by 3.15, and it is easily 
( 

checked that His an isolated subgroup of rv. The 
0 

proposition will be established if H = r "--.(0), or 
VO 
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equivalently, that if v0
1 is the valuation determined by 

H, then v0
1 (K) = Te,o} = rv /H. 

0 

Since v
0

r > v0 and r /r is torsion for each i, 
- vi vo 

by 2.19 there is a unique V. ' > V which extends V 11 

1. - i O ' 
I 

i = 1, 2, ···, n. Since the Vi are independent, either 

Vi'(R) = {e!O} for some i, in which case v0
1 (K) = {e,o} 

by 3.12 and the proposition is es~ablished; or the v1 r 

are distinct. 

Assume the V.' are distinct. By 3.2 and 3.11, 3.15 l . 

applies to v1 •, v2 •, ···, Vn'· 

with v1
1 (x) > e and Vi'(x) < e, 

Thus there is an x e R 

i = 2, 3, , n. 

There is an integer r > 0 and b in K with 

Vi' (xr) > Vi' (b) = v O' (b) < e for i 

is Vi(xr) < v;(b) <a~ v0(b)-l for 

i = 2, 3, ···, n, while v1 (xr) > e. 

diction since then v0 (b) e H, v0
1 (b) 

Vo'(K) = {e,O}. 

;i; 2, 3, • • • , n. That 

all a e H, 

This is a contra­

= e. Thus 

COROLLARY 3.17. (Approximation Theorem) Suppose 

Pv
0 

is not an ideal of K and v1 , v2 , • • ·, Vn e A are 

pairwise independent • . Then if ai e r v ~ { o} , i = 1, 2, • • • , n, 
J. -

then there is an x e R with Vi(x) = ai, i = 1, 2, 

PROOF. For each i, choose zi e R with v1 (zi) 

Choose x1 e R with Vi(xi) > e, and for jf i, with 

• •• , n. 

= a .• 
l.. 



Vj(xi) < min(ajVj(zi)-1 ,e}, if Vj(zi) f O, with 

VJ.(x1 ) < e if v.(z.) = o. Lett.= x.(1 + x
1
.)'. Then 

J l. l. 1 

Vi(t1 ) = e and Vj(ti) = Vj(xi) if if j. 

Now Vi(tizi) = vi(zi) = ai, and if if j, Vj(t1 z1 ) 

o if vj(zi) = o, 

= v .(ti)v .(zi) = 
J J • 

vj(xi)Vj(zi) < aj, if vj(zi) f o. 
That is V.(t.z.) = max V.(tkzk) only if i = j, so 

J J.. J.. k J 

n 
vj(.~ t.z.) = v.(t .z.) = a., j = 1, 2, 

i=l J.. J.. J J J J 
. . . n by 3.2 • 

COROLLARY 3.18. (Strong Approximation Theorem) 
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Suppose Ii. has the strong inverse property and v1 ,v2 ,···,Vn e A . 

are pairwise independent. If ai e R have Vi(a1 ) f 0, 

i = 1, 2, ··•, n, then there is an x e R with 

Vi(x) = vi(ai) > vi(x - ai), i = 1, 2, ···, n. 

PROOF. Case 1: P an ideal of K. 
VO 

Then the Pv. 
' l. 

are maximal ideals of R so P 1 P if if j,and 3.15 
vi vj 

applies. For each i,choose x. e R with v.(x.) = e, 
J.. l. l. 

Choose x 1 • e A "-. P with 
i vi vi 

while Vi(x1x 1iai - a1 ) = Vi(a1t 1 ) = O < v1 (a1 ) 

= Vi(x1x• 1ai) = e. 
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n 
Let x = ~ x.x'.a., then V.(x - ai) 

i=l 1 1 1 1 

Case 2: P not an ideal of K. 
VO 

Choose a'i so that 

V.(a.a'.) = e whenever VJ.(a
1
.) f O. For each i, choose 

J J. J_ • 

x
1
. e R with V-i(x-i) > e; v.(x.) <- min(V.(a.)v.(a'.),e} 

~ ~ J J. J J J J. 

if V . (a. ) f O, V . ( x. ) < e if V . (a. ) = O. Chaos e y. e R 
J J. J J. J J_ J. 

with V .(y.) = V .(1 + x. )-l if V .(1 .t- x.) f O and so that 
J J. J J. J J. 

vi(yi(l + xi) -1) < e. 

Then y.(1 + x.) = 1 + t. where Vi(t.) < e; 
J. J. J. J. 

(xiyi -1)(1 +xi)= xiyi(l + xi) - 1 - x1 = •x1 t 1 - l; 

vi ( x. Yi -1 )v. ( 1 + x. ) < max V. ( x. y. ) , V. ( 1) < V. ( x. ) 
J. J. J. - J. J. J. J. J. J. - -

= V. ( l + x ~ ) ; so V. ( x. y. -1) < e and vi ( x. yiai - a,f ) 
J. J. J. J. J. J. . ~ 

< v.(a.). 
J. J. 

-Also if i f j , V . ( y. ) = V . ( 1 + x. ) - l = V . ( 1) - l = e , 
. J J. J J. J 

so v.(x.y.ai) = v.(x.)v.(a.) < v.(a.). 
J J. J. J J. J J. J J 

n 
Now if x = ~ x.y.a. we have v.(x - a.) 

j=l J J J i _ i 

= V
1
.((x

1
.y

1
.a

1
. - a

1
.) + ~ x.y.a.) < max{{v.(x1y.a. - ai)) 

jfi J J J - J. J. J. 

U{vt(xjyjaj) I i + j}} < v 1(ai). 
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Section r:v 

DEFINITION 3.19. Let D be a domain, Ir its field of 

quotients and San extension of D. Then the ring of 

quotients SD'-..(O) (see [5]) is a vector space over Ir. 
Set [S;D] = dimr?,SD""-.(o)• [S;D] is called the rank of S 

over D. 

One can show using "common denominator" arguments, 

that if r ~ [S;D], there are a1 , a2 , •·•, ar ~ S such that 

n 
~ d.a1 = O, die D implies di= . o, i = 1, 2, ···, r. If 

i=l 1 

s > [S;D] 

all zero, 

and a1 , a2 , ···, as e S, there are die D, not 
s 

with ~ d.a. = O. In the first case we call 
. 1 1. 1. 1.= 

the a. "independent", and in the second, "dependent". 
1. 

DEFINITION 3.20. Let R be an extension of K, v0 
a valuation on K with extensions to R. Let A

0 
=(VI V extends v0 to R), and for Ac J/10 let crA 

= n(cr I V e 11). Set nil\ = [R /crJI\ ; K/cr ] , and note 'that 
V ~ il VO 

.A c A I gives n.A ~ n11 ,. 

For V e 11 0 , set f r [ A_ /P ; A /P ] . v -0 v Vo Vo f is called 
vn 

A 

the relative degree of V (with respect to vO). Set 

ev = (rv : rv) (the index of the group rv '-. (O} in rv'--(O}). 
- 0 - 0 

ev is called reduced ramification index of V (with respect 
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to v0) • 

Note that if nA < co then for each x e R/aA the set 

x, x2
, • • • , x h.11. is dependent over K/av • Thus R /a.A 

0 

is algebraic over K/cr ,so that A has the inverse property 
VO 

by 3. 8 and r /r · is torsion for each V e A by 3. 9. , 
. V VO 

PROPOSITION 3.21 . Let R be an extension of K with 

nA < co, where A = (Vl, v2, . . . vn) c A0 • Suppose the , 

Vi are pairwise independent and if p is an ideal of K, 
VO 

n 
also assume p _fP for i + j. Then :Z e f < nA. v. v. i =l vi vi -l. . J 

PROOF. First s uppose P is not an ideal of K. For 
VO 

each i, i =l, 2, •··, n, choose y12 ,y21 , . . . y l in R 
ni 

such that the cosets V.(yk.)r are non zero and distinct. 
l. l. VO 

Note that n. < e • Since r /r is torsion for each i, 
l. - Vi Vi VO 

there is t3 er vo with o < f:3 < Vt(Ykt) for all t, k, and an 

ai er with a.V.(y . ) < (:3 for all j + i and all r. · By v0 i J _ ri 

By 3.16 there 

if i + j • . 

e R with v.(a.) = e, 
l. l. 

< a. 
l. 

V. (bk.) = V. (yk. ), so the cosets 
l. J. l. l. 
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Also if k f i, V . (bk. ) = V . (a. ) V . ( Yk . ) < a . V . ( Yk. ) - < f3 J _ 1 J _ 1 J _ 1 _ 1 J 1 

< Vt(Yst) for all t, s. That is, since Vt(y8 t) = Vt(b
6
t) 

we have: 

(a) Vj~bki) < Vt~bst) for all s,t if it j. 

Let x1i·, x2i, ···, ~.i be ill Av with the xki + Pv 
i i i 

linearly independent over A /P • Note that m. < f . v0 v0 1 - v1 

As in the above argument, there is an a 1 € r v with 
0 

ai + O and aiVj~xr, ) < e if if j. Choose bi€ R with 

V. ( b . ) = e and V . ( b . ) < a. if i f j. 
1 1 J _ 1 1 

Then Vi(aki) = e 

so the aki + P are linearly independent over A /P • 
vo vo vo 

Also vj~aki) = vj~b1 )vj(xki) so 

(b) Vj(aki) ~ e iff if j, for all k. 

If P is an ideal of K, using 3.15 (note n. = 1 
VO 1 

for all i),one can chose aki' bki with the properties 

described above, including (a) and (b). The arguments are 

similar but simpler. 

The proof of the proposition will be complete if we 
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n 
can show that the Z n.m. elements ak.b .. + o& are linearly 

. l i J. i J1 a i= 

independent over K/o . To show this, it suffices to show 
VO 

that if ak . . € K has Vt ( . Z ak .. ak. b .. ) = 
J.J k J. i Ji i J1 , , 

o, t = 1, 2, ••• , n, 

then v0 ~akji) = o for all k, i, j. 

Withou~ loss of generality, we can assume v0 (a111 ) 

= maxv0 (a .. k). We have v 1 (~(~kcrkjl¾:l )bjl + z.akjiakibji) = O, 
ijk J.J . J k, J 

i<l 

so that 

(c) vl~~~~akjlakl)bjl) = vl~ k~jakjiakibji) by 3.4. 
i>l 

Consider the second te rm of (c). For if 1, 
. 

v 1 ~akji) ~ v 1 ~a111) by assumption; v1 ~aki) < e by (b); 

and V1 (bji) < V1 (bjl) for all j, by {a). In particular 
. - -

then, unless v 1 (a111 ) = v 0 (a111 ) = o, since v 1 (b11 ) f o, 
. 

one has v 1 ~akjiakibji) < v1 ~a111 )v1 ~b11 ) for all k, j 1 

when i f 1, so that V l (kz .akji aki b ji) < V l (a111 )V 1_(b11 ) · 
, J . 

i>l 

Thus if we show v 1 (z(zak.lak1 )b. 1 ) ~ V1 (alll)V1 (b11 ) 
- j -k J J - , 

it will follow that v 1 (a111 ) = 0 and the proposition will 

be established.' 
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If Claim Dis true, since max v1 (ak.1 ) e rv and 
k - J 0 

the v 1(bJ.1 ) determine distinct cosets v1 (b. 1 )rv, we 
- J 0 

have vl(~ak'lakl)b ·1) f vl(~aksl~l)vl(bsl) ifs f j. Then 
- k J J k -

Vl~~~~akjlakl)bjl) = m~x Vl((~akjlakl)bjl) .::_ Vl(alll)Vl~bll) 

by 3.5 and Claim D. 

Thus all that remains is to establish D. Let 

' 

so assume v1 ~aljl) f o. Lett e K with v 1(t) = v1 ~aljl)-
1

• 

Then v 1 ~taljl) = e and v 1(takjl) < e if k f 1, so 

v1 (Ztakjlak1 ) ~ e, since v 1 (ak1 ) = e for all k. 
k -

.. 
Let p be the natural map A ~A /P • If 

vl vl vl 

V1 ~~takjlak1 ) < e then ~p~takjl)p~ak1 ) = O, but 

takjl € AvO for all k, j, ,p(taljl) f O and the p(ak1 ) 

were chosen linearly independent over p(~) which gives a 
- 1 -

contradiction. 

Thus V l (~takjl akl) = e = V l ( t )(~akjl ak1.), so 
- k - - k 

vl~~akjlakl) = vl~t)-1 = vl~aljl) = m~x vl~akjl). 

Let V be an extension of vO to Rand V' > V. By 2.20 

V'IK is a valuation on K with V'IK :::_ vO• Let ev' and fv' 

be the reduced ramification index and the relative degree 



for (V', V). 

PROPOSITION 3.22. With the above notation, we have 

ev,e{v',v) = ev and f(v•,v) = fv. 

PRO OF. r v /r ( v , , v) ~ r v , , r v 
0
/ r ( v , I K, v 

O
) ~ r v , I K 

by 2.11, so .(rv, : rv'IK) = ev' = -~rv/r(v',v) : rv/r(v'I ,v0 )) 
- K 

f • 
V 

PROPOSITION 3.23. Suppose R is an extension of K, 

A CA0 , nA <~and Pv f Pv' whenever V and V' are independent 

elements of A. 

of A, one has 

set. 

Then if v1 , v2 , ·•·, Vn are distinct elements 
n 
~ e f < n&. In particular A is a finite 

. l v. v. - .v. 
i= J. J. 

PROOF. (Note that b y 3.14 the restriction Pv f Pv' 

applies only when~ = Pv .) By induction on n. Proposition 
VO 0 

3.21 gives n = 1, so assume the proposition holds for n > 1. 

We distinguish three cases, the first which is also covered 

by 3. 21. 



55 

CASE 1. • • • Vn+l are independent. 

CASE 2. v1 and v2 are independent. 

CASE 3. Vi and Vj are dependent for all i, j. 

In case 2, assume v1 and Vn+l are dependent. By 2.12, 

there is a valuation v1 r on R with v 1 , ~ v1 and 

V1 '::.. Vn+l and (v1 •,v1 ), (v1 •,vn+l ) independent. 'By 2.19, 
. 

for i = 2, 3, • • • , r, there are unique V. ' > V. which 
l. - J. 

extend v1 •1K• Let Vi l ' vi2 , ···, Vis' be the distinct 

valuations thus obtained, v 1 , = Vi1• 

Now (is)::_ n, and by 3.2 and 3.11 the inductive 

hypothesis applies to (Vil' vi2 , •··,Vis}= A', so 

s 
. ~ e f < nA , • 
j=l vij vij -

\ 

Let sij = ( k I 
Since v1 and v2 are 

elements and by 3.3 

applies to give 

Now crA .. 
J.J 

vi j ::_ vk} and let Aij = ((vij'vk) I k € sij}. 

independent each Aij has nor fewer 

and 3.11, the inductive hypothesis 

~ fv _; crlt., = cr(V V • • • V } :> er/A so n/A, < n • Now 
iJ a l' 2' ' n A a - A 

S, 

using 3.12 and the above, n 4 ::_ n/A, > ~ e 
4 = j=l vij 



= 

s 
~ ~ e e( )f( ) ·-1 ke S v. . v .. , vk v. . vk J- . ij 1J _ 1J _ 1J, 

n+l 
~ e f • 

. l v. v. 
i= 1 1 

This completes case 2. 

For case 3, chose V' ::_ v1 and V'::. v2 such that 

(V', v1 ) and_ (v•,v2 ) are independent (2.12). Continue as 

in case 2, noting that Ail may haven+ 1 elements, but 

that two distinct ones are independent, so case 2 allows 

us to get the equation(*) and complete the argument. 



4. GALOIS EXTENSIONS 

Section I 

DEFINITION 4.1. Let R be a ring, Ga finite group 

of automorphisms on Rand RG = (x ER I cr(x) = x for all 

cr E G} = K. We say R is Galois over K with group G if 
I 

either of the following conditions hold: 
n 
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(1) There are x
1
.,yJ.. ER such that ~ x.cr(y.) = 

i=l 1 - J. 

6crl' where 6crl = 1 if cr ~ 1 (the identity of G) and 

6crl = O if cr E G, cr f 1. 

(2) For every ideal 6 of Rand cr e G, with 
-

6 f R, cr f 1, there is an x e R with x - cr(x) f 6. 

For the equivalence of the above two conditions, and 

for the equivalence of either to the "usual" definition of 

11R Galois over K with group G11
, the interested reader is 

referred to [2], page 18. 

For the main results of this chapter, we will . need an 

assortment of specialized results~ [2] will be quoted 

freely as a source of proofs. 

\ 

LEMMA 4.2. If R is Galois over K with group G, then 

there is an a E R· with = 1. 

PROOF. See [2], page 21. 
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PROPOSITION 4.3. If R is Galois over K with group G, 

and 6 is a prime ideal of K, then R/R6 is Galois over K /6 
,A.. 

with group G~ G. 

PROOF. R is integral over K (see [2] or 4.12) so R6 
-

is an ideal of R with R6 (\ K = 6 ([5], page 257), thus we 

can identify·K/6 with a subring of R/R6 . 

For cr e G, cr(R6) = cr(R)cr(6) = R6, so setting cr(x + Ro) 

= cr(x) + R6, for all x E R, gives an automorphism of R /R6. 

The map G-+ (a fa E G) = G is clearly a group homomorphism, 

and by (2) of 4.1, if cr e G, cr + 1, there is an x ER 
-

with cr(x) - x t R6, so cr + 1 and the map is one-one. 

Let p:R-+ R/R6 be the natural map. If x1 ,y1 e R 

n n 
satisfy (1) of 4.1, then ~ p(x.)cr(p(y.)) = p( ~ x.cr(y.)) 

- i=l - i - - i - i=l i - i 
/'-

= 601 , so· R/R6 is Galois over (R/R6)G with group 'G. 
Now suppose x ER and cr(p(~)) = p(x) for all cr e"G. 

-
Then for each cr E G there are t

0 
E R6 with x = cr(x) ·+ t

0
. 

Let a ER have 1 = ~ cr(a) as in 4.2. Then cr(a)x = 
creG . 

cr(ax) + cr(a)t
0

; x = ~ cr(a)x = ~ a(ax) + ~ cr(a)t
0

; 
aEG - creG - crEG -

p(x) = p( ~ a(ax)). Since T( ~ cr(ax)) = ~ cr(ax) for all 
- crEG - - crEG - crEG 

't" E G, ~ a(ax) E K and p(x) . e p(K) = K/6. That is 
crEG -
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PROPOSITION 4.4. Let R be a ring, Ka subring which 

is a domain,~ be the ring of quotients of R with respect 

to the multiplicative set K"-(O}. Then if cr is an auto­

morphism of R with cr(x) = x for all x € K, there is a 

unique extension. of a to an automorphism cr on¾· Further 

cr(x) = X for all X € ¾• 

PROOF. Clear. See [5] for definition and existence 

PROPOSITION 4 ·.5. If R is a Galois over K with group 

G and K is a domain, then¾ is Galois over¾ with 

group G = rcr I (J € G} '::::: G. 

PROOF. Clear using (1) of 4.1,and 4.4. 

LEMMA 4.6. If R is Galois over K with group G
1

and K 

is a field, then di~R = la·!. (Isl= number of elements 

in S.) 

PROOF. See [2], page 27. 

COROLLARY 4.7. If R is Galois over K with group G 

and 6 is a prime ideal of K, then [R/R6 ; K/6] = !GI. 

PROOF. Clear by 4.3, 4.5 and 4.6. 

LEMMA 4.8. If R is Galois over K with group G and R 
I 

is a domain, then G is the set of all automorphisms of R 

such that cr(x) = x for all x e K. 
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PROOF. See [2]. 

PROPOSITION 4. 9. If Risa domain, Ga finite group 

of automorphisms on R with K = RG, then 

(1) ~= RR 

(2) 
/'-

~ is Galois over¾ with group G ""- G. 
-
(3) [R;K] = !GI 

(4) Every automorphism_ cr of R with cr{x) = X 

for all x E K,is an element of G. 

PROOF. Let G = { a I a E G}, where cr is as in 4.4. 
A. 

Then ~G = Kx, so~ is an integral extension of a field, 

and is a domain, thus~ is a field and RK = RR. (2) of 

4.1. is then satisfied, so~ is Galois over KK with group 

G. Since ,a,= IGI, (3) follows from 4.6 and the definition 

of [ R;K]. 

If cr is an automorphism of R satisfying (4), then the 

extension a (as in 4.4) has cr(x) = X for all XE ¾ 1so 

a E G by 4.8. But then cr = crlK E G. 

'PROPOSITION 4.10. If R is Galois over K with group G 

and His a subgroup of G, then 
\ 

(1) R is Galois over RH with group H. 

(2) If His normal in G, then RH is Galois over 

K with group G/H, where (crH)(x) = a(x) for ,all cr E G, 

X € RH. 

PROOF. See (2], page 22. 



PROPOSITION 4.11. Suppose R is Galois over K with 

group G f 1, 6 is a prime ideal of R, be Rand 

{bx Z cr{x)) e 6 for all x e R. Then be 6. 
aeG -

PROOF. There is an x e R, TE G with x - T(x) t 6 

by (1) of 4.1. But bx - Z a( x ) ea; 
creG 

Z cr{-r{x)) ' = bT(x) 
O€G - -

b{x - -r(x)) e 6, so b e 6. 

Z a(~) € 6 gives 
<1€G -

This completes the preliminaries. 

Section II 
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For the remainder of this chapter we will assume that 

G is a finite group of automorphisms on a ring R,with RG 

= {x e RI cr{x) = x for all a e G} = K. We let !GI= n. 

Let v0 be a fixed valuation on K. 

PROPOSITION 4.12. R is integral over K. 

PROOF. 

n-1 . 
= ~ + Z a(i)x1

• 
i=O -

1r (x - cr(a)) 
aeG -

One computes that a(i) = Z 1r cr{a), 
S €A. creS -

J. 

where A1 is the set of al l subset s of G containing n - i 

elements, and tqat a{i) € K for i = O, 1, 2, ·•·, n-1. 

Since fa(a) = O, a is integral over K. 
I 



Thus v0 has extensions to R by 2.18. 

PROPOSITION 4.13. Let V be a fixed extension of v0 

to R1and for CJ e G, x e R define Vcr(x) = V(CJ(x)). Then 

V cr is 

(V' 

- - . 

a valuation on R extending v0 and (Vcr I cr E G} = 

V1 is a valuation on R, (Ay,,Pv,) ::.(Av ,Pv )}. 
0 0 

Furthermore A== (x ER I V(cr(x)) ~ e,b'CJ e G} 

= n ~ 'lis the integral closure of A in R~ 
creG CJ vo 

(x ER I V(CJ(x)) < e !:;Jcr E G) = (\p =~; 
' O'EG V CJ V 0 

and (x e RI v(a(x)) = o,t:Ja e G} = t\a = ✓Ra 
V V 

PROOF. 

- - creG a o 

V =V O a is a multiplicative homomorphism 
O' 
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of R onto rv so it is a valuation. V
0

(x) = V(cr(x)) = V(x) 

= v0 (x) for x e K, so v
0 

extends v0 • 

Since A is integrally closed, the integral closure 
V (J 

of~ in R is contained in A. However from the form of 
0 

fa in 4.12, if a e A, a(i) e A , i = o, 1, 
VO 

that a is integral over A • 
VO 

•••, n..:l, so 

It is clear that P C I\ P so that~ C (\ P • 
Vo CJEG Vo Vo aeG VCJ 

Conversely, b y the form of f in 4 .12, · if a € (l P , 
a · CJEG v CJ 

then a(i) E P , 
- V CJ 

n-1 
an = - ~ a(i)ai 

i=O -

i = O, 1, ···, n-1, so that 

E AP , and a€~. The argument that 
vo vo 

" 



na =~ is similar. 
creG vcr vo 

Now let (Av 1 ,Pv,) be a valuation pair of R with 

(A ,,P 1 ) > (A ,P ). By 2.18, V' extends v0 • 
- V V - - Vo Vo 
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Now by 3.15, if Pv' i Pv 1 Pv' for al l cr e G, there 
0 

is an x e R with V'(x) = e, Vcr(x) < e for all cr e G, 

contradicting v'l'-:·-::-7( = ("\ P C - P , • Thus 
vo creG vcr ~ 

P , c P (or P c P ,) for some cr e G. 
V - Vl'T V - V 

V . (J 

If P is not 
VO 

an ideal, this gives V' = Vcr by 3.14. If Pv is an ideal, 
0 

then so are Pv' and P , and since R is integral over K, 
vcr 

P, = P (see [5], page 259), so V' = V. 
V V(J _ (J 

COROLLARY 4 .11~. VO has a finite number g of extensions 

and for any two extensions V and V' of vO, ev = 

fv = fv,• 

e , 
V 

and 

.PROOF. Since G is finite, the number of extensions 

is also finite by 4.13. If V and V' are two extensions 

of vO, V' = Vcr for some cr in G. The map cr: F'v-+rv, given 

by o'(a) = vcr.(v-1 (a)) is an isomorphism with 'cr'(a) = a for 

all a e r v 
O

, so ev = (r v 

= (r ' : r ) = e f • 
_ V VO V 

-
: r v ) = ( -a (r v) : 'tt(r v ) ) 

0 - - - 0 
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= cr-1 (x) + a-1 (pv) = cr- 1 (x) + Pv,,is an isomorphism with 

cr(x + Pv) = X +P I for all x € A , so cr(A /P ) 
V Vo - Vo Vo 

= [cr(A /P ) 
V V 

= f ,. 
V 

Let e = (r : r ) and f = [ A /P · A /P ] , where 
- V Vo V V, Vo Vo 

Vis any extension o~ v
0

• The le~ter e is traditional when 

used in this way and we rely on the context to distinguish 

it from V(l). 

We can "count" the number g of extensioils of v0 • 

Let V be a fixed extension of v
0 

and set 

G2 d~f{a e GI V = V
0

) = {cr e GI cr(Pv) = Pv). 

For the second equality, note that V
0 

+ V iff V{x) < e 

and Va(x) ~ e for some x e R. For cr,T e G, v
0 

= VT iff 

p = p iff cr-1 (P) = T-1 (P) iff cr-1T(P) = p iff 
V 0 VT V V V V 

-1 
cr -r e Gz iff aGz = TG2 -

That i~ g = (G: Gz). 

PROPOSITION 4.15. Let S be any subring of R with 

Kc Sc R, Van extension of v0 t o R. Then Vis is a 

valuation on S extending v0 and {V' IV' a valuation on S 

extending v0) = {V
0

18 I cr e G). 

PROOF. To sh~~-vj 8 is a valuation on S we need to 

show that if x e S, V{ x ) + 0 then t here i s aye S with 

V{y) = v(x)-1• Since r /r i s t or sion;-x ES, V(x) + o, 
V VO l ' \ 



• 

there is an r > o with V( xr) er • 
- VO 

I}.., 

If z e K with 

V{a) = V(xr)-1 , then V(axr-l) = V(x)-l and axr-l e S. 

Let V' be an extension of v0 to S. Then R is integral 

overs, so V' has an extension V to R. Vis an extension 

of v
0 

to R, so V = V
0 

for some cr e G. But then 

V' =Vis= Vais• 

NOTATION. For the remainder -of this chapter V will 

be a fixed extension of v
0 

to Rand G
2 

= (cr e GI V = V c) 

as above. We will denote subgroups of .G by subscripts 

such as GB. We l~t ~ = (x €RI a(x) = x for all a€ GB} 
GB -

= R , v B = v I K_, ~ = ~ / P v , ko = ~ / P v , 
-~ B B O 0 

k = 1/P V, eB = ~r V : r VB) and f B :::: [ k ; ~] • 

PROPOSITION 4.16. Vis the unique extension of v2 
to R,and if GA is a subgroup of G such that Vis the unique 

extension of VA to R, then GA.::. G2 so that K2 a KA. 

PROOF.· By 4.13 and the d·efinition of G2 , {v• I V' 

extends v2 to R) = {V
0 

I a e G2} = {V}. In the same way, 

if GA.::_ G, ,(v'IV' extends VA to R} = {V
0 

I cr \E GA}, and the 

latter .set ,is (V} iff V
0 

= V for all a EGA iff GA.::_ G2• 

Section III 

For the remainder of the chapter, the additional 
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assumption that R is Galois over K with group G will be made. 

e = f = 1. vz vz 

PROOF. Let v 1 , v2, 

to K2. By 4 .15, 

a€ G, so 

g 
~ e f 

i=l vi vi 

. 
ev = 

i 

each v1 

ev, 
z 

fv. 
J. 

. . . vg be the extensions of v0 

is of the form (Vz)cr for some 

= f 
Vz 

fo-r each i. Thus 

~ [Kz/Kzcrv 
0 

The first inequality follows from 

3.23 and the second holds since 

Let r = (G2 j. Since R is Galois over Kz with group 

Thus there are 

x1 , x ••• x ER with the x. + Rcr linearly independent 2' , r i v
0 

over K2 /cr • ' Let e f g = h. The inequality in the first 
vz vz vz 

paragraph gives the existence of y1 , y2 , ··•, yh E K2 , 

such that they.+ K
2

cr are linearly independent over 
J. VO 

K/crv. Thus the hr elements x.y. + Rcr are linearly 
0 J. J VO 

independent over K/cr , and hr < [ R/Rcrv ·, K /o-v ] = n 
. VO - 0 0 

by 4.7, since R is Galois over K. 
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That is e f gr= e f n ~ n, thus e = f = 1. 
vz vz vz vz vz vz 

Since cr(~) = Av and a(Pv) = Pv for every a€ Gz, 

we have a natural map a-+ a of G2 into the group of auto­

morphisms of k = .Ay/Pv. We hav_e a = T iff a(x) - x € Pv 

for all x € ~, so GT d!f(cr € G2 I a= f}= 
{cr € G2 cr(x) - x € Pv for all x € Av},is a normal sub­

group of Gz: Note that v(x - cr( x )) < e whenever V(x) ~ e, 
- - -

gives x - cr(x) € P whenever x €A, and this gives 
V V 

cr(x) E Pv whenever 'X E Pv, so GT = {cr € G I V(x - cr(x)) < e 

for al 1 X € A } • 
V 

Let -rr = 1 if the characteristic of k0 is zero, and let 

-rr be the characteristic of k0 other~ise. 

For D a domain, let~ be its field of quotients. 

PROPOSITION 4.18. With the notation above, set 
A 

{ci O' € Gz} ~ Gz /GT. G = Then 

(1) ~ is purely inseparable over ~, 
-
(2) ~ is Galois over ~, · 
- A nat (3) GA. Autk kT, 

o· 

' (4) 
/\. 

Autk k, G = 
0 

(5) e = 1, 
• VT 

(6) e = (r V; f' V ), 
T 

(7) f = I Gz /GT 1-rr~ for some integer r. 
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PROOF. Let p :~ ~ Av/P v = k be the natural map. 

Note that for a E ~, cr € GT, that a - cr(a) € Pv, so that 
-

p(a) = p(cr(a)). Lett= IGTj. Recall now (replacing G 

with GT) the -polynomial fa(x) of 4.12, and note that for 

a€~ that p(a(i)) = (1)p(a)t-i € krr, so that 
- - t -

p(fa(x)) = (x - p(a)) • That is every element p(a) of k 

is either in. krr or has a purely inseparable minimal 

polynomial over~- But 0 = l~kby 4.9, so 0 is purely 

inseparable over~-

Since ~ is purely inseparab l e over~, the restriction 

map Autk*tE ~Aut~ki is an isomorphism, thus the restriction 
0 0 . 

map Autk k ~Autk ~ is also an isomorphism. Let 
0 0 

~ 
~ 

Calk I cr € GJ. G Then by 4. 9, ~ is G = Let S = kT. 
. T 

* ~ .~ /\. Galois over S with group G, so by 4.7 [kT;S] = [KT;S] = IGj. 

Now kz ~ s, so ~c. s*, so[~;~]= [krr;S~][s~:k2*] 
A . . 

= [kT;s][s;k2] = 1Gj[s;'k2] ·= jG2/GT![s;k2] = [kT;k2]. 

Now R is Ga~ois over Kz with group Gz and GT <l Gz, 

so KT is Galois over Kz with group G2/GT by 4.10; so by 4.7 

IG2/GTI = [KT/KTcrv
2

; K2/crv
2
]. But [KT/KTcrv

2
; K2/ crv

2
] 

~ (r v ; r v )[ krr; kz] by 3. 23, so I Gz / GT I ~ 
- T Z 

(rv ;rv )!G2/GTl[S;k2], so (rv ;rv · ) = [S;k2] = 1. 
- T Z · . - T Z 

But r = r by 4.17, so r = r (gives 5 and 6), 
Vz Vo VT Vo -

and [S;kz] = 1, gives s* =~~but kO = kz by 4.17, so 



s* =~(giving 2). If cr is an automorphism of kT with 

cr(x) = x for all x E k0 = kz, cr can be extended to an 

- * -( ) * automorphism o of k
0 

with ax for all x E I<r, so a, E G 

by 4.8 (which gives 3). 
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Since~ has no automorphisms fixing every element of 

I{ other than tne identity, we have (4). Also k* purely 

inseparable .over k; gives [k ;~] = ~r for some integer r. 

But then f = [k;ko] = [k;kz] = [~;~] = [~;i{J[i{;~] 

= '17"r1Gz/GTI • 

Section IV 

Let p:A -A /P be the natural map and let A* be 
V V V 

the group of ·units of the field of quotients for A /P. 
V V 

Letr* =I"v"-(O). For a er*, cr E GT, let 
· 1 1 
(a,o) = p(o(a)a 1 )p(aa•)- , where v(a) = a, v(a 1 ) =a-. 

a, a 1 , 

' 
PROPOSITION 4.19. (a,cr) is independent of choice of 

* and for all a, f3 E r , CJ, -r E GT we have 

(1) (af3,o) = (a,cr)(f3,o) 

(2) (a,cr-r) = (a,cr)(a,-r). 

Thus we have homomorphisms 

r* J/4.Hom(GT,A*), where t(a)(CJ) = (a,cr), 

GT .i Hom(r*, A*), where <I> ( cr )(a) = (a, CJ). 

PROOF. Recall that V(x) = V{cr(x)) tJo E GT. Thus 

~(a)a' e ~ and p(cr(a)a') f o, so {a,CJ) EA*. Also 
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p(x) = p(cr(x)) tix € A • · 
V 

Now suppose V(a) = V(b) = a, V(a') = V(b') = a-1 . 

Then: p(cr(a)a')p(aa')-l = p(cr(a)a')p(ba')p(ba')- 1p(aa')-l 

../ 

= p ( cr (a) a ' ) p ( cr ( b a ' ) ) p ( aa ' ) - l p ( b a r ) - l 

= p(cr(a)a'cr(b)cr(a'))p(aa')-1p(ba')-l 

= p(cr(b)a' )p(cr(aa'))p(aa' )- 1p(ba' )- 1 

= p(cr(b)a')p(ba') - 1 

= p(cr(b)a')p(bb')p(bb')-1p(ba')-l 

= p(cr(b)a'bb')p(ba')-1p(bb')-l 

so (a,cr) is well defined. 

Now let V(a) = a, V(b) = '3. Then 

(at3,cr) = p(cr(ab)a'b')p(aba'b')-l 

which gives (1). 

= p(cr(a)a')p(cr(b)b')(p(aa')p(bb')}-l 

= p(cr(a)a')p(aa')-1p(cr(b)b')p(bb')-l 

= (a, cr)(t3, cr) 

(a,crT) = p(crT(a)a')p(aa')-1 

' = .o ( cr ( T ( a) ) a ' ) p ( T ( a ) ) a ' ) - l p ( T ( a ) a ' ) p ( aa r ) - l 

= p(cr(b)b')p(bb')-1p(T(a)a')p(aa')-1 

= (a,cr)(a,T), 

where b = -r(a), b' = a' in the third step. This gives (2). 

It is clear by (1) and (2) that~ and tare h0~omor­

phisms: 



Now cr e ker <I> iff p(er(a)a') = p(aa 1 ) !Jae R'-..erv 

iff V ( er (a) a' - aa' ) < e ti a e R'-.. er 
V 

iff V(er(a) - a)V(a ') < e t;Ja e R'-..cr 
V 

r 
PROPOSITION 4.20. If av er* for some integer 

VO 

r > O, then a e Ker 1/J. 

PROOF • . First suppose a er . Then in defining 
VO 

(a,cr), we can chose a,a' € K. Then 

(a,cr) = p(er(a)a 1 )p(aa•)-l = 1, since er(a) = a. Thus 

r* C Ker 1/J. 
VO -

vr 
If a e Ker 1/J for some r ::_ O, then 1/J(a) 

t has order v, for some t. But the only element of 

Hom(GT,A*) of order a multiple of vis 1, so a e Ker 1/J. 

The finite abelian group r* /r* may 
1

be expressed 
V VO 
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as the sum of the v group rv and a group rv, with order e0 

prime to v. The above proposition shows that a e Ker . cl> 

if or* er , so there are induced homomorphisms 
VO V 

GT /GV ! Hom(:![" v' ,A*) 

r v' !, Hom(GT/Gv,A*) 

since (a,er) = (~,T), whenever aKer 1/J = ~Ker 1/J, or erGv = ~Gv· 

PROPOSITION 4.21. GT/GV is abelian with order prime 

to v and Gv is av group. 



,. 
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PROOF. $ above is one-one, and since Hom(r~,, A*) 

is abelian and has order prime to~, the same holds for 

GT/GV. 

Now let cr € Gv- and suppose a has prime order q. Let 

H = (cri I i = 1, 2, ···, q}. Since R is Galois over RH 

with group H, by Proposition 4.11, either V(q) = O 

(and q =~)or there is an x e R with 

V(qx -
q 
Z a(x)) + o. 

i=l 
Let y = qx - i cri(x) and note that 

i=l 

But if V(yy') = e, in the second case we have 

q i 
Z y'cr (y) = O, 

i=l 

= qp(yy 1 ). Since p(y 1y) f ·O and A /p is a domain, 
V V 

p(q) = 0 and q = ~. 

PROPOSITION 4.22. tis one-one. 

PROOF. Suppose a € r* v and (a, a) = 1 for all cr .€ GT, 

i.e., that V(cr(a) - a)< V(a) for all a E GT,whenever 

V(a) = a. Let V(a) = a, y = TT cr(a). Then y E RGv = Kv 
crEG -

V 

and V(y) = TT V(cr(a)) 
crEG 

~u u 
= a , where~ is the order of Gv· 

V 

Since a E Ker t, so is a~u. 
u 

We wish to show that a~ € r . 
VO 

Since Gv <'.I GT, Kv is 

and y E Kv gives ZcrGV(y) = 

Galois over KT with group GT/Gv, 
e' 

_z0 

cri(y) E KT, where e 1
0 is the 

i=l -
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order of GT/Gv and criGV' i = 

distinct elements of GT/GV. 

1 , 2, ···, e 1
0 , are the 

Now e'o is prime to v, so 
vu 

V(e 1
0 ) = 1. Since a E Ker t, so is a , hence 

V(cri(y)-y)<V(y), i=l, 2, ···, e'o· 
-

That is cri(y) = y + ti with V(ti) < V(y), i = 1, 2, 

e'o e'o 
so ~ cr.(y)· = e 1

0y + ~ t. = r E _KT. This gives e 1
0y - r 

i=l 1 i=l 1 
-

... 

V(e 1
0y r) < max(V(e 1

0y), V(r)), so V(y) , = V(e' 0y) = V(r). 
- - u 

But r E KT and V~KT) = :ir vo' so V(y) = av Er vo· 

Thus the map h: GT/Gz -+ r v ,~ A* given by the pairing 

(a,cr) is faithful in the sense that h(crG2 ,a) = 1 for all 
-
a Erv' iff crG2 = Gz-. Also, h(crG2 ,a) = 1 for all 

crGZ € dT/Gv iff a= T. Also h takes its values in the 

cyclic group of e 1
0
th roots of unity in A*, which is 

cyclic of order prime to v. 

Regarding GT/Gv as a group of characters on ]["v' and 

conversely, the theory of characters for finite abelian 

groups ([4], page 189) shows that GT/Gv is the entire 

character group of r , and conversely. That is, t and$ 
V 

are isomorphisms,and ]["v' and GT/GV are isomorphic. 

In particular, e0 = lrv,I = IGT/Gvl = e 1
0 . Let 

s = V 

above). 

(and note thats~ u by proof of Proposition 4.22 

e'o, 
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PROPOSITION 4.23. Let R be a Galois extension of K 

with group G. Then efg divides the order of G, in fact 

efg1rd = I GI _for some integer d ::.. O. 

PROOF. !GI= (G:G2 )(G2 :GT)(GT:Gv)(Gv:1) 
- -r -s u 

= g • f1r • e1r • 1r 

u-r-s = efg1r , 

· and since efg.:: jGj, we must have d = u - r - s > O. 

COROLLARY 4.24. If A /p is of characteristic zero, 
vo vo 

then efg = I GI, Gv = 1 and :r~/:r! ~ GT. 
0 

PROOF. efg = jGj by 4.23, since 1r = 1. GV is a 1r 

group, so Gv = 1. 

GT = GT/Gv ~ r 1r' 

\ 

I" 1r is a 1r 

= r;/r~ . 
0 

group so r = 1,and 
. 11" 
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