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INTRODUCTION

The purpose of this paper is to extend some results
from the theory of valuations on a field to an arbitrary
commutative ring with identity. The results obtained are
well known wpen interpreted in the context of a field and
comprise only a bare introduction to the theory for fields,
however, the modified proofs give some added insight even
in this case. 2

In Section I of Chapter 1, the concept of valuation
on a field is extended to an arbitrary commutative ring
and a natural correspondence is obtained between valuations
and what we call valuation palrs. Section II shows that
these valuation pairs are the same as those in [1], where
they are the subject of an exercise.

Sections III and IV of Chapter 1 relate valuation
pairs to the generalized primes of D. K. Harrison. 'The
results presented here predate the rest of this paper,:
being developed to investigate primes [3]. Proposition 1.14
evolved during the course of a seminar given by Professor
Harrison during the fall of 1965y while 1.12 and 1.1%
appeared in the unrevised form of [3].

The outline followed for Chapters 2, 3 and 4 is
essentially that used in [6] in developing the theory for

fields. Many of the arguments used are almost verbatum



those used in this source.  Standard results for finite
rank valuations are not given since their proofs (and
statements) are not significantly altered in the more
general context.

Section I of‘Chapter 2 deals with the concept of
independence of valuations and Section II with the concept
of extension: Section III combines these to obtain sonie
results essential to Chapter 3. :

Sections I and II of Chapter 3 are used to develop
the machinery and setting for the "approximation theorems”
of Section III. The approximation theorem is applied in
Section IV to obtain the classical inequality "Zeifi P e

The paper ends with the proof of the classical equation
efgr- = |G| in the context of a commutative ring R which is
Galois over a ring K with group G. The generalized
Galois theory necessary for this result is outlined in
Section I of Chapter 4. The rest of the chapter is devoted
to the definitions and relations (which are interesting
in their own right) necessary for its statement and proof.

General ring theory comparable to that found in [5]
is assumed, but beyond that the treatment is largely self
contained. A notable exception is Section I of Chapter 4
where several results are quoted from [2] without proof.

In order to cut down on verbiage, much notation is
assumed as standard once it is introduced. Thus R is

always a commutative ring with identity, K is always a



subring of R, V is always a valuation on R, etc.

"Ring" will always mean "commutative ring with identity".
"K a subring of R" means the same thing as "R is an extension
of K"; in both cases meaning that K is a ring, K C R and
the identity of K is the identity of R. Ring Homomorphisms
will always take identity to identity. Prime ideals are
always propef.

The word "iff" is a contraction of "if and only if",
and is sometines denoted by < . "A > B" means -"A
implies B", "3 " means "there exists" and "v " means
Lforall”,

If A and B are sets, ANNB= {x | x € A, x ¢ B} and

should not be confused with A/B, which denotes a quotient

of rings, groups, etc.



1. VALUATIONS AND VALUATION PAIRS

Section I

By an ordered group, we mean an abelian group Px
(written multiplicatively) which is linearly ordered by
a relation f'< " gsatisfying a < B = oy < By for all
G,B: Y € rx. We will always denote the identity of an
ordered group by e, and we admit the group {e} as an

ordered group.

DEFINITION 1l.1l. A valuation semigroup I' is the

disjoint union of an ordered group I‘)'e and an element O,
_where the order and multiplication of r* is extended to T
by:\

1, }i0 o for all @ €T

11,70 a = gt 0= 0 for all a €T

DEFINITION 1.2. A valuation V on a commutative ring

R is amap V ffom R to a valuation semigroup I' satisfying
i.) Vxy) = v(x)v(y) for all x,y € R
ii.) V(x+y) < max{v(x),V(y)} for all %,y in B
iii.) V is onto I. "
We shall sometimes like to think of " as embedded in
a larger valuation semi-group, in which case we relax iii.)

to "W(R)\V(0) is a group".



One can check that V(1) = e and V(0) = 0 for all
valuations. If R is a field and i.) holds, then
V(R\{0}) is always a group so iii.) can be replaced by
V(1) # V(0) or one can work with ordered groups rather
than semi-groups. Condition ii.) is the non-Archimedian

condition in a field.

PROPOSITION 1l.3. Let V be a valuation on a ring R,

set
A, = {x eR | V(x) < e}
P, = {x e R | V(x) < e}
o, = {x e R | V(x) = 0}

Then Av is a subring of R, PV is a prime ideal of Av
and a0 is a prime ideal of R. Further, if ¢ is an ideal

OF R, 0'C AL, A + R, then o C Ty

PROOF. Note that V(-x) = V(-1)V(x) and
V(-1) = v(-1)"1, thus that V(-1) = e and V(x) = V(-x)
for all x € R. Thus we have Av = -Av, Pv = --Pv and
UL = =0 By condition ii.) of Definition 1.2 we have
B + A e A PURE @i iiand o, ' 6. C ¢ By -
we have AvPv cax PV and Rov C 0, thus Av is a subring of R,
Pv is an ideal of A.V and o, is an ideal of R. If
a*beP, then e > V(ab) = V(a)V(b) so either e > V(a)
or ¢ > V(b). Thus P is a prime ideal of A,

(V(1) = e so 1 ¢ B ). If sb e o,, then 0 = V(ap) = V(a)V(b),



go Via) = 0 or V(b)i= 0, so o, is a prime ideal of R.
Finally, suppose A_ # R and o is an ideal of R. If

0 ¢ o, then V(a) # O for some a € ¢g. But then

V(v) = V(a)"l for some b € R and V(c) > e for some c € R

(since A, + R by hypothesis). But then abc € o while

V(abe) = V(a)V(b)V(c) = ev(c) = V(c) » e so o ¢ A_.

PROPOSITION 1.4%. 1If V is a valuation on a ring R,

% € R\\Av, then there is a y € Pv with xy € A;\\Pv.

PROOF. If x € R\A_, then V(x) > e and for some
y € R, V(y) = V(x)-l. e = V(x)'lV(x) > V(x)-le = V(x)'l
soy € P Now V(xy) = V(x)V(y) = V(x)v(x)™" = e so

Xy € Av\ PV.

DEFINITION 1l.5. By a valuation pair of a ring R,

we mean a pair (A,P), where A is a subring of R and P is
a prime ideal of A, such that x € RNA —> xy € ANP for
gome w.i€ P,

Note that (A ,P ) is a valuation pair of R for any

valuation V or R. We have the converse;

PROPOSITION 1.6. If (A,P) is a valuation pair of R,
then there is a valuation V of R with A = Av and P = Pv‘

Furthermore if Vl is another valuation of R with either

P=P ,orwith A=A and Ag R, then there is an order
1 - 1

preserving isomorphism ¢:I" =TI _ with ¢ ¢ V. =V,
vy v i



PROOF. Let (A,P) be a valuation pair of R. For
%, v € R define x~y if {z e R | xz2 € P} = {z e R | yz 6},
n 1

~ 1s clearly an equivalence relation on R. Let

V(x) = {y | y~x} and r. = fvix) | x'e R},

CLAIM 1. V(xy) = V(x'y!) for all x! € V(x), y! € Viy).
Thus defining V(x)V(y) = V(xy) makes T into a semi group.

Furthermore, Fv\\{V(O)} is a group with e = V(1) = A\P.

SUBPROOF. Suppose x' € V(x), y' € V(y). Then
{xy)z € P iff x(yz) € P iff x'(yz) € P iff y(x'z) € P
iff vi(x'z) € P iff (x'y')z € P, so V(xXy) = V(x'y'). The
operation V(x)V(y) is thus well definéd; ib is associative
and commutativeksince multiplication in R is. V(1) is
clearly an identity and V(1) # v(0) since 1 * O € P but
L - 1§ P, ' |

If x ¢ A, then xy € ANP for some y € P. Since
1+ yeP, x2K1." Thus Vix) = V(1) and V(1) c A, If
z €P, thenz* 1€P, 1+ 1¢Pso V(1) ¢ V(z) and
V(1) ¢ A\P. (Note that we have also shown that
CV(x) A= ¢ if x ¢ A.)

Suppose x € ANP and xy € P. Ify ¢ P (i.e., if
x ¢ V(1)), then y ¢ A, since P is a pr?me ideal of A.
But then yz € AN\P for some z € P, while x(yz) = (xy)z € P,
contradicting P a prime ideal of A. Thus ANP c V(1),

which gives V(1) = A\ P.



Finally, if x ¢ v(0), then we have xy ¢ P for some
v € R. If xy € A\P, we have V(xy) = V(x)V(y) = V(1);
otherwise xy ¢ A and xyz € AP for somé Z € P and

V(xyz) = V{x)V(yz) = v(1).// Thus FQS\{V(O)} is a groﬁp.

CLAIM 2. Define V(x) < V(y) if 3z € R with xz € P,
yz € ANP. Then "<" is a linear order on FJ\QV(O)}

is an ordered group and Fv is a valuation semi-group.

SUBPROOF. Note that V(x) < V(y) iff V(xz) c P while
V(yz) = V(1) for some z € P iff v(y) $+ 0 and
V(x)V(y)™* € P. Thus "<" is well defined.

I V(%) + V(y), then for some z € R, either xz € P

and yz § P, or xz ¢ P and yz € P. Suppose xz € P and
vz ¢ P. If yz € ANP, we have V(x) < V(y). Otherwise
vz % A so yzw € AN\P for some w € P; then (xz)w € P and
again V(x) < V(y). Thus "<" is a linear order onT_.

Let V(x) < V(y) and V(z) 4 0. ILet V(w) = v(z) 1. Now
xt € P andﬂyt € AQ\P for some t € R, so wé have
o\ o) = xoltw) @ Prang ot (ow) = () (tw)iarascidi s
that V(x)V(z) < V(y)V(z). Thus r\(V(0)} is an ordered
group. : 2 :

Clearly V(0) < V(x) and V(0)V(x) = V(0) for all
X € R, 80 g ié a valﬁation semi-group. _

Thus V is a valuation on R. By construction, A = Av

and P = PV.

Now suppose V, is a valuation on R with A= A, + R
X



or P = Pvl. If P = Pvl, then Avl = {xeR | xp;, € P,]

{x eR| xPcP}=4A IfA=A £R, then
1

P={xeA | zy € A for some y ¢ A}

1l

{x € AVl | xy € Avl for some y ¢ Avl} = Pvl. Thus 1f

A= AVl $ Ror P = Pvl, then (A,P) = (Avl,Pvl).

Claim for for x € R that vl"l({vl(x)}) = Y{%)i

SUBPROOF. This is clear if V(x) = V(0).

Let 0 4 V(x), V(z) = V(x)"*. Then v € V(x) iff
yz € ANP iff V,(zy) = e iff V (z)V,(y) = e iff Vi(y) = v, (z)"t
iff Vy(y) = v, (x). Thus V(x) = v;~1({v;(x)}).

Now Vl'l({Vl(xy)}) = vl‘l({vl(x)vl(y)}) = V(xy)

= V(x)V(y), so

vl’lg{ e

r v

1

is an isomorphism. Also Vl(x) < Vl(y) iff \/’l(x)Vl(y)-l < e
i vl'l({vl(x)vl(y)'l}) = v(x)v(y)‘l c P irf V(x)V(y)~t < e
$£r V(x)_< V(y), so order is preéerved. \

Thus Vl;l({ }) is the order preserving isomorphism
claimed in thepproposition.

Henceforth, we will speak of the valuation determined
by (A,P) and will refer to the coset representation of e
derived above as the normal representation and wherever

desired assume this is the representation under consideration.
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COROLLARY 1.7. If (A,P) is a valuation pair of R,

then
i.) RN\A is closed under multiplication
ii.) R\P is closed under multiplication
31i.) Xy e A™HD X EA or y € P
n

v.) e A Dimien
I S s S NG

g S {x e R | xP cP)

Ror P={x €A | xy € A for some y § A}.

Il

viil)

PROOF. Let V be the valuation associated with (A,P)
in 1.8, Translating, we have |
i.) V(x)V(y) > e if V(x) > e and V(y) > e;
%4 Vix)viy) o o AT V(i) > e and V(y) > e;
3555) V(X)V(y) <e = V(x) < e or V(y) < e;
dv ) V(x)nki_e'::y V(x)ﬁf_e; 7
Vo) V{x)n =e — V(x) = e
vi.) V(x) <e & V(i)v(y) < e for all V(y) < e;
vii.) e v(z) > e for some z then '

V(x)-< e & V(x)V(t) < e for some v(t) > e.

Section II

DEFINITION 1.8. For R a commutative ring, let

T =T(R) = {(A,5) | A is a subring of R, b is a prime ideal

of A}. TFor (A,8), (B,o) € T write (4,8) < (B,0) if AC B



and 6 = A/ \o. "<" is clearly an inductive partial order
on T, so by Zorns lemma, T has maximal elements. We

temporarily) call maximal elements of T maximal pairs.
ﬁote that if (A,5) € T, then there is a maximal pair

(B,0) with (B,o) > (A,B5).

PROPOSITION 1.9. If (A,B8) is a maximal pair of R,

then A is integrally closed in R,

PROOF. Let A be the integral closure of A in R.
Then there is a prime ideal o of & with o)A = & (see

(5], p- 257)'. That is (&,0) > (A,8) so A = A,

PROPOSITION 1.10. (A,8) is a maximal pair of R, iff

(A,B) is a valuation pair of R.

PROOF. It is clear that valuation pairs are maximal
pairs, so it is the converse that is of interest.

Let (A,8) be a maximal pair of R, x § A, B = Alx]
and 0 = B8, o is an ideal of B with 8 c (A, If
8 = A\ o, then AN is a multiplicative subset of B
with (ANG) Vo = 6. Then by Krulls lemma, there is a
prime ideal o' of B with o C o' and (AB8)/ \g' = ¢.
That is 6 = ¢!/ \A and (B,o') z_(A,ﬁj. But since A # B,
this is a contradiction, hence of A + 6.

n
P

i
X'py = a
1=

Thus there are p, € 8, a € AN\ with (%)
: 0% 0
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We can assume n is minimgl for an expression of this form.
-1 : :
o0 D N n B in-1-1
We have ap ~~ = (xpn) + iiogxpn) Py p;, an

integral expression for XDy thus XPy € A by 1.9

n-1 B=2
If xp, € 0, then (xpn + pn_l)x it

i
X'p; = a
i=0

is an expression of form (%) with lower degree, contra-
dicting the choice of n. ‘Thus xpg € AN\D and (A,5) is a
valuation pair. :

We now drdb the terminology "maximal pair" in favor

of "valuation pair'.

Section III

DEFINITION 1.11. We call a valuation pair (A,P) of

R an H (Harrison) pair (P is what is called a finite prime
in [3]) if AP is a locally finite field. That is if
every finite subset of A /P is contained in a finite sub-

field of A /P.

PROPOSITION 1.12. (See [3]): (A,P) € T is an H
pair of R iff : 3
i.) Q is closed under * and -, and PC Q@ = P = Q
or d JEus

345 ) A= innlTer o Pl
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PROOF. Let (A,P) be an H pair. Then (A,P) is a
valuation pair so-ii.) is clear. Suppose Q.is closed
under multiplication and P¢ Q. Let x € Q\P. If x § A,
then for some y € P, xy € AN\P, since (4,P) is a valuation
pair and (xy)® = 1 + z for some integér n» 0, z.€6P,
since.A//P is a locally finite fleld. But then xy € Q,
(xy)" e Q, z€Q, so (xy)* -z=1¢€Q IfxcAthen

x* =1+ z for some n > Q, 2. ek and x* - z =1 € Q.

Conversely, suppose (A,P) satisfies i.) and ii.).
If (B,0) € T and (B,0) > (A,P), then ¢ = P by i.) and then
B =A by ii.), so iA,P) is a valuation pair.

Assume (A,P) satisfies i.) and ii.) and let p:A — A /P
be the naturél map. Then if ¢ is a non-zero subset of
A/P (e.g., an ideal of AP) closed under °* and -, then
1le p;l(G) and 1 € g. Hence A/P is a field. Also
1e2Z “p(l) * p for all prime integers p with p(l) * p # O,
so Z * p(l) = Zp = Z//?p) for some prime integerAp.

Also, if x € A/P, x4 0, then 1 ¢ xzp[x] 580 Xiis
algebraic over Zp’ hence is in the finite field Zp[x]
of A/P. This gives case n = 1 of the inductive hypothesis:
"If E is a finite subset of AP and |E|] = n, then E is
contained in a finite subfield of A/P."

Assume the hypothesis true for n and let _
|[E] = n + 1, a € E. Then |EN\(a}] = n so there is a
finite subfield F of AP with EN{(al Cc F. If a=-0 we

are done, otherwise 1 € aF[a] so a is algebraic over F,
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hence F[a] is a finite subfield of A/P containing E.

Thus A/P is locally finite.

COROLLARY 1,13, If 8 :ls a subset of R clesed under

- and *, and 1 § S, then there is a H pair (A,P) of R
with SCP. IfB={xeR | xSc S} and B”S is a locally

finite field, then (A,P) > (B,S).

-

PROOF. ‘foCR | SCw, 9-6C 0, 0d* oC o, 1 fug
is inductively partially ordered by C, thus by Zorns lemma
contains a maximal element P. Then if A = {x | xP c P},
(A,P) satisfies i.) and ii.) of 1.12. By the maximality
of P, P is a maximal ideal of A, hence a prime ideal so
(A,P) € T. Thus (A,P) is an H pair of R.

If B/S is a locally finite field, x € B\\S, then
'xn = 1 + S for some integer n> 0, some s € S, thus

n

% € ANP. But then by 1.7, x € ANP. Thus BNS C AP

so BC A and S = B(\P.

PROPOSITION 1.14. Let E be a finite subset of R,

@ a subset of R with o =0 €C. ¢, 00 C ¢. If ¢ and the
multiplicative subset generated by E have void intersection,
and Eo C o, then there is an H pair (A,P) of R with

grC Bhand Bra- ANNE,

PROOF. Consider the finitely generated subring
S =2+ 1E] of R.. B = gf\8 is an ideal of S which has

void intersection with the multiplicative subset generated
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by the finite subset E of S. Thus by the integer version
of the Nullstellensatz (see [1], pp. 67,68) there is a
maximal ideal © of S with E/\6 = ¢ and p € 6. Also by
the Nullstellens;tz, S/ is a locally finite field.

Now 6 + ¢ is closed under * and - (since So C o),
and 1 § 8+ o (forl=p+agivecsa=1-pep=ocll)S
and 1 =p + a € 8). Thus by 1.3, there is an H pair
(A,P) of R with 6 + ¢ C P. Then 8 C P so again by 1.3,
S0 c AN\P since S/0 is a locally finite field. But
then BE ¢ 8™0 C AN P.

COROLLARY 1.15. If N, = (ﬁ\(P | (A,P) is a valuation
pair of R}, B, = [ﬁ\{P | (A,P) is an H pair of R]},

N={x€eR | x* = 0 for some integer n}, then N = N, . N2.

PROOF. N C N1 by 1.7 and Nl C N2 since the set being
intersected to obtain Nl contains that being intersected
to obtain N2.

If x § N, then with E = {x} and ¢ = (0) in 1.1%,
we have x € AN\P for some H pair (A,P). That is, x § N,.

Thus since N C N2, we have N = N2.

COROLLARY 1.16. If (B,Q) is a valuation pair of R,

then @ = ) {P | (A,P) is an H pair of R, Q € P}. Further,
if E is a finite subset of R with E/)\Q = ¢, then there

is an H pair (A,P) of R with E (\B C ANP and (ENB)/ \A = 6.
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PROOF. It suffices to prove the second statement.
Let E be a finite subset of R with E/\Q = ¢. Let
E, = E[)B, E, = E\B. For x € E,, chose q, € Q with
xq, € B\Q, and let E', = {xq, | x e Ee].

Applying 1.1% to E,U E', and Q, there is an H pair
(A,P) of R with Q C P and E,\J E', C A\\P. But then if
x € E,, xq, € A\P, so x ¢ A. That is E; C A\P and
EQ(W A = ¢.

COROLLARY 1.17. If A= R for all H pairs (A,P)

of R, then A = R for all valuation pairs (A,P) of R.

PROOF. If (A,P) is a valuation pair of R, then by
1.16 and hypothesis, P is the intersection of (maximal)
ideals of R, hence is an ideal of R. That is,

A={x| xPc P} =R.

Section IV

DEFINITION 1.18. Let A be a subring of a ring R.

If p:A —S is a homomorphism we call p a partial homo-

morphism on R. If, whenever B is a subring of R, A C B,

T:B — T a homomorphism, W:(image p) = T a homomorphism

and 7|, =Wk o p one also has B = A, then we call p maximal.
One- can show using 1.10 that if A is a subring of R,

P an ideal of A, then (A,P) is a valuation pair of R if

and only if. the natural map A.?’A//P is a maximal partial



g

homomorphism of R into a domain.

A place on a field is a maximal partial homomorphism
into a field. However, if (A,P) is a valuation pair of a
field F, x € ANP, then xx * € ANP gives x T € ANP by
1.17, so AP is a field. That is, a pair (A,P) of-a field
F is a wvaluation pair if and’only if the natural map
A= AP is a place.

‘Thus at first glance one might expect "maximal
partial homomorphism into a domain" to generalize "place'.
~This generalization is unsatisfying since such maps do
not compose (see 1.20) as do places on a field. The
generalized places of [3] do compose and satisfy the

hypothesis of 1.20.

DEFINITION 1.19. A valuation pair (A,P) of R is

called a prime pair if AP is a field.

PROPOSITION 1.20. Let p be a partial homomorphism

from R to S with dom p + R. If the composite partial
homomorphism ros — A /P is maximal for all H pairs (A,P)

of S, then (dom p, +/kKer p ) is a prime pair of R. Conversely,
if (dom p, v/kKer p ) is a prime pair of R the composite is

maximal for all valuation pairs (A,P) of S.

o
PROOF. Suppose R—S — A /P is maximal whenever

(A,P) is an H pair of S. Let B = dom p, ¢ = ker p.

CLAIM 1. Every H pair (A',P!) of B with,/o c P!
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is a valuation pair of R.

SUBPROOF. Let (A',P') be an H pair of B, /o C P!.
By 1.13 there is an H pair (A,P) of S with
(A,P) > (p(A'), p(P*)). Then since R.B*S — AP is maximal,

(A',P') is a maximal pair of R.

CLAIM 2. If x ¢ B, then xy € B for some y € B. Also

of xy € B, then y €./0.

SUBPROOF. Let (A',P') by any H pair of B with
/6 C P'.. Then since (A',P') is a valuation pair of R,
there is a y € P! with xy € A'™\\P' € B. If y é~0, then
{xy, vy} /5 = ¢,50 by 1.14,there is an H pair (A",P")
of B with {xy,y} € A"\P" and/d ¢ P". But since x ¢ A",

this cannot happen by 1.7.
CLAIM 3. ,/0 is a maximal ideal of B.

SUBPROOF. Suppose O is a maximal ideal of B with
V0 C 6 and 6\/o # ¢, say y € 6\ /o. ‘Let x € R\B. Then
xy ¢ B by Claim 2. Let (A',P') be an H pair of B with
8 c P'. Then xy ¢ P! so z(xy) € A"\ P! for some z € P!,
But (zx)y € A' ¢ B implies zx € B by Claim 2, and then
(zx)y € 5 c P', a contradiction.

' Thus (B,/G) is a valuation pair of R and B//G is
a field.

Now suppose (B,/G) is a valuation pair of R and
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B//G is a field. Let (A,P) be a valuation pair of S.
Since p{/o) is nil, p(/c) € P. Let x € p(B)\A. Since
. BA/G is a field, there is an x' € p(B), y € pl/o) with
xx' = 1 + y € ANP. Thus x' € Pmp(B); 1.e,,
(o(B)) 4, p(B)(\ P) is a valuation pair of p(B).
Thus (p-l(A), p—l(P)) is a valuation pair of B, for
ir (A1,21) > (p"1(4), p"1(B)), then

(0(a1), o(P")) = (AMp(B), P \p(B)). Also 5 Cp 2(P).

CLAIM. Every valuation pair (A!',P'!') of B with

\/3 C P is a valuation pair of R.

SUBPROOF. Suppose x ¢ A'. If x € B, then
i x' € B\vo with xx' € 1 ++/0; since x § A', x' € P',
If x ¢ B, then Jy €+/0 with xy € B\W/o. xy(xy)' =
x(y(xy)!) € 1 +4/0, and since x ¢ B, y(xy)' e+/oc C P'.

Thus (p_l(A), p-l(P)) is a valuation pair of R so
the composite R Sg — & /Piis maximal.

Proposition 1.20 gives some insight into generalized
places as defined'in [3] and these provide motivation for
occasionglly including special results for valuations

corresponding to prime pairs.

EXAMPLE 1.21. Not all valuation pairs (A,P) are

prime pairs, even when one requires A # R.

PROOF. If A = R is allowed, one needs only produce



a ring R that has a non maximal prime ideal.

For the second case, let R = Q[x] where Q is the
rational numbers and x is an indeterminate. Let p be a
prime integer, A_ = {% | (m,n) = 1= (n,p),or m = 0},
A= Ap[x], P=A 2 p, 0 = P + AXx. One can easily check
that (A,P) is a valuation pair of R and that ¢ is a
proper ideal of A with P € o. Thus (A,P) is not a prime

pair of R.

20
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2. INDEPENDENCE AND EXTENSIONS

Section I

Throughout this section, V is a fixed valuation on
g, fixed ring R.

Let ¢ pe an order homomorphism of rv into a
valuation semi-group I with ¢(e) = e, ¢(0) = 0. Since
¢ is a homomorphism, ¢(P;\\{O}) is an ordered group
(inherited order), and since e $ O, ¢ o V is a valuation

on R. With this notation we have:

PROPOSITION 2.1. ¢—l(e) is an isolated subgroup

of Fv and P is a prime V-closed ideal of Av' where

¢ o V

DEFINITION 2.2. A subgroup H of a valuation semi-

group I is said to be isolated if O ¢ H and whenever

o,B,y €I with a < B <+v and a,y € H then p € H.

DEFINITION 2.3. An ideal o of AV is said to be V-

closed if z € 0, ¥ € R and V(y) < V(x) implies y € o.

PROOF. If a,B,y €T, o < B < v and ¢(a) = o(y) = e,

then e = ¢(a) < ¢(B) < ¢(y) = e since ¢ is order preserving.

Also e ¢(e)¢('y)~
1

so a vy € 6"1(e) and ¢~ (e) is a group, hence an isolated

i
Il

oaaHoly) = o(a)o(a™ly) = o(a™ly)

subgroup of rv.
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Let B ¢ T,. If o(B) < e, then B < e so P oo

If B < e, then ¢(B) < ¢(e) = e so AL C A o+ Thus

o o

P¢ b e B gﬁA¢ o y ond since P¢ o v IS a prime ideal of

A P is a prime ideal of Av' If x € P¢ %

$o V' "de v
¥y € R and V(y) < V(x) then ¢ o V(y) < ¢ e V(x) < e so

vi

y. e P That is P is a V-closed ideal of Av‘

¢ o V° ¢ o V
The fitrst step towards a converse is:

PROPOSITION 2.4. If H is an isolated subgroup of

r then there 1s an order homomorphism ¢ of Pv onto a

v’

valuation semigroup I

6. v With 07i(e) = H.

PROOF. Set ¢(a) = oH for all o € I,. Then

¢(F§5\(O}) = F§>\{O}//H is a group and H$ 0 = 0 « H.

Suppose o < B and oH # BH. Then if h h, € H,

ll
1 -1

h,a < h,B, for otherwise h,a :.h26 gives e > B ~a > h;"h,

1 3

and B 1a e H, since elhilh2 € H and H is isolated. Thus

the order "aH < BH < a < B" is well defined on ¢Grv).

One can easily check now that ¢(Fv) is a valuation semi-
group with the usual coset multiplication and that ¢ is

an order homomorphism onto.

Set V; = ¢ - V and note that PVH = {x eR | VH(x) < e}

= {x eR |V(x)H< H} = {x eR | V(x) < a,Ya € H}). If

per, andp fH, then BH < H or p™'H < H, so B € V(B )
H

-1

or p € V(Pv )e That is H= {a € I, | v(x) <

H
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-1
il (a0 . Yx e P 1,
VH

PROPOSITION 2.5. H'-"Pv and
H

o= {a € T, P'¥ix) < min{a,a_l}, Y x € o} is a one-one
correspondence between isolated subgroups H of s and
V-closed prime ideals o of Av. The correspondence is order

inverting, where order is C in both cases.

PROOF. With the preceeding remarks, all that remains
to be shown is that T = {a e | V(x) < min{a,a'l},tii € o)
i1s an isolated subgroup of Pv and tﬁat the correspondence
is order inverting.

O ¢ T since 0 = V(0) and 0 € 0. e € T since e < V(x),
X € o,glves 1 € ¢ sincé o i1s V-closed; a contradiction,.
since ¢ is a prime ideal (hence proper). By definition of

1 € T.

B e > a
et a,p €T, a=V(x), B =V(y). If op & T, then
aB = V(xy) < V(z) for some z € ¢ and Xy € o since o is
v-closed. But x § cand y § 0 so x § A_or y § A since
o is a prime ideal of A . Suppose X 3 A,. Then 3 xt e B
with V(x'xy) = V(x")V(x)V(y) = aa—lB = B, a contradiction
since x'xy € o. ‘Thus-aB € T so T 1s a group.
If a, €T,y €T, witha <y < B, then p™ < y™1 < o™,
and if x € ¢, then V(x) < min[a,ﬁ-l} f_min{y,y-l}. This

gives vy € T and T is an isolated subgroup of Fv,
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If 0, C 0,, then it is clear that {a € | v(x)
< minfa,a—l},tﬁx € o,} claer, | v(x) <
min{a,a'l}, Hx e cl},so the correspondence is order inverting.

The correspondence above is clarified further by

PROPOSITION 2.6. A prime ideal o of AV is V-closed
iff o, € 0C Pv. Further, the V-closed ideals of AV

are linearly ordered by inclusion.

PROOF. If o i1s a V-closed ideal of A, then O € ¢
gives o, C o and 1 § o gives o C ] (since V(AV\PV) = e).
Now suppose o, Cie.C PV and © 1s a prime ideal of Av'
Let x € 0, y € R with V(y) < V(x). If V(y) = 0, then
y € o, so assume V(y) # 0. Then V(x) > 0 so Jx' e€R ‘
with V(x!) = V(x)-l. Now V(y) < V(x) < e gives y € P_
and V(z;rx') < V(xx') = e gives yx! e A,. Thus xyx' € o,
but xx! ¢ o, 50 y € o since o is a prime ideal of A_.
Thus o is V-closed.
Now suppose ¢ and O are V-closed ideals of Av'.
Suppose x € o\b and y € 6\0o. Then V(x) < V(y) gives
x € b while V(y) < V(x) gives y ¢ cﬁ Thus & C o or o e
In partiéular tk;.e V-closed prime ideals are linearly

ordered by C.

PROPOSITION 2.7. The set of V-closed ideals of AV

and the set of V-closed prime ideals of Av are order

complete with respect to the order C.
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. DEFINITION 2.9. If V! is a valuation with .l‘\, < Av'

and 0, C P, C P, we say V' dominates V and write b
We say V and V" are dependent if V' > V and V' > V" for

some V' with V'(R) % {e,0}, and independent otherwise.

PROPOSITION 2.10. If V' > V then Pyt is a V-closed
prime ideal of 1\, If V! and V are dependent, then

v v!

PROOF. Let V'3> Vi Then P, C A C A, Shows that
P,v is a prime ideal of A,. Then since o, C P, C P,
P,; is V-closed by 2.6

Since o, is an ideal of R, 0 C P o, C 0,1 DY

ke

1--3° o,n C P, gives o, C 0 also by 1.3, so o = 0,
Now if V' and V are dependent, say V"> V, V" > VI,

then = =
By~ gy

PROPOSITION 2.1l. If V' > V, then there is an order

homomorphism L2 ke Y with V' = ¢ o V. Also, there is
a valuation §V',V) on A_,/P_, such that if n:A_, = A_, /P ,
1s the natural homomorphism,then the following diagram

commutes.

v
gAv‘\Pv')—————’\'rv

N (vt,v)

| Av '/Pv '
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Further (A(v,’v),P(v,,v)) = fAV//Pv,, P AR

G(V:;V) = ﬂ(PV,}S and (V';V)(Ava’PV,) - o T L) T0),

: (v',V) is called the induced valuation.

PROOF. Using 2.10 and preceeding results,V!'! = VP
v!

and ¢-l(e) = H, . V"-l(e) AL NEy - V-l(¢-l(e)), SO
: v? :

O R
V(AV\\PV) = ¢ (e).
The remainder of the proposition is clear once it is
shovn that x € A NP , implies V(x) = V(y) for all
y €x+ P ,. But if x € Av?\‘Pv" p € P ,, then
V(x) > V(p),so V(x) = V(x + p - p) = max{V(x + p), V(-p)}
< max{V(x), V(p)} = V(xj.

PROPOSITION 2.12. Let Vl and V2 be distinct dependent

valuations on R. Then there is a valuation V on'R with
V>V, and V> V, such that (v,v;) ana (V,V2) are independent

valuations on Av/’PV.

PROOF. Since Vl and V2 are dependent,

& = {PV, | V' a valuation on R, V! > Vi, ¥ 3_V2) is non-

empty. Thus P_ = inf B is a V., closed ideal of A and
v i vy
e ¥, 1=1, 2,
Now suppose V is a valuation on A,/ P, with V’:_(V,Vl)
and V'z_{V,VQ). Let P={xeA | x+P eBR]}. Since

_P- is a prime ideal of A_ /P_, i =1, 2, and
v Vi v



g
P cval/Pv)m gPVE/ P_),it follows that
cvl = 0V2 C PV g o o Pvlm Pv2 and P is a prime ideal of

A, jand thus V, closed by 20, 0= 1, 2, Thus P =P
% ,

v!

for some valuation V' on R with V' > V,, i =1, 2, by 2.6
and 2.5.. But then V! €A so V'> V and P_C P. ’

Thus P = P_ and Pz = BAP_= B /P is an ideal (zero)

v

of A /P 80 "VgAV/PV) = {e,0}. That 1is fv,vl) and gv,vg)

are independent.

Section 1T

Throughout this section, let VO be a fixed valuation
on & ring K and let R be an extension of K. We will

consider the problem of "extending" V, to R.

PROPOSITION 2.13. There is a valuation pair (A,P)

of R with A_ = A/K and B = P/ K. Further, if.
0 :

0
. ,F ) is a prime (H) pair of K, then (A,P) can be
Wivo g X /

chosen as a prime (H) pair of R.

PROOF. (A ,P. ) € T(R) so there is a valuation
A :

pair (A,P) € T(R) with (A,P) > (;\, 5 B ). Then since
; : . i

(AMZK, PNK) _>__(Av %8 ), the first statement follows.
. s ) 0
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It (AV P ) is an H pair of K, the existence of an
- 0

H pair (A,P) with (A,P) > (Av 4 ) is given by 1.13.
4 . ! 0

0

Now suppose (A ,P._ ) is a prime pair of K. Let
VeV,

s = {(a,P)|(a,P) > (AV % ) and (A,P) a valuation pair
A $ < 0 2

of R}. For (A,,P{), (A2,P2) € S, define a partial order

15

Z on S by gAl,Pl) % (A2,P2) if A, C A and P, C P,.

A is a chain in S, then A ={A] (A,P) epr for some P}

Jil
is.a ring, Py = \U{P | (A,P) € A for some A} is a prime

ideal of A, and gAA,PA) > (AVO,PVO). Now there is a

veluation pair (A,P) of R with (A,P) > (AA,PA). Then
{A,P) 18 in & and (A,P) is an ubper bound for A. That is,
é is an inductive ]E)artial order on S, hence S has maximal
elements by Zorns lemma.

Let (A,P) be maximal in S. Let ® be a maximal ideal

of A with P C 6. Then P, € 8/MA_, and since (A ,P_ )
4 O i

0 i

is a 'prime pair, P. = 6 VA . 'Thus if (A',P!) is &
b o b - ‘

valuation pair of R with (A!',P') > (A,8), then (A',P') € S
and (A',P') 3 (A,P). Since (A,P) is maximal in S, A = A',

P' = Pc 6c P'. That is, P is & maximal ideal of A.

=ANK/PNEK~ (%O + YR, .13

Since A P
w o

shows that a maximal partial homomorphism of K into a

domain (field, locally finite field) can always be

-
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“extended to a maximal partial homomorphism of R into a
domain (field, locally finite field). This is a classical
result én extension of places. Due to the trivial ideal
structure of a field,‘ this also is an extension theorem
for valuations on fields, as wlll be seen from the

following interesting, but misleading result.

PROPOSITION 2.14, If Vl is a valuation on R with

(A vy v ) > (A , o ), then there is an order isomorphism
0

 of (T.\_{0}) intor. such that ¢ o V.(x) = V.{(x) for
B Vi o} ¥

all x € X with Vo(x) + 0.

PROOF. Let z € K, Vo(x) $+ 0. Using the standard

representation of l"'v and l"v , it will suffice to show that
0] 3

Vo (x) l(x)ﬂK for then cb(VO(x)) = Vl(x) is as advertised.

Let x! € V (x) L vev (x) Then x'y € A_ \P
o

2 Vo(l) c Avl\Pvl s Vlgl), 50 Vlgx')"l = Vlﬁy). That is

V. (3) = v (vg(x)) = ¥, (x)iD ¥,(x).. If z e Vy(x) 1K,

then zx! € Vlfl)m K= (%l\Pvl)mK = AVO\PVO

-1
Vo(l), SO Vogz) = Vo(x!)™" = VO_(x). Thus Vl(x)ﬂ K = Vy(x).
The above result is misleading since in general there

are many x € o with V.(x) # O.
Vo 1°
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DEFINITION 2.15. Let R be an extension of K, VO
a valuation of K. A valuation Vl on R is called an
extension of VO to R if there is an order isomorphism

¢ of Tvo into Fvl such ‘that ¢ o Vo(x) = Vl(x) for all

X € K.
By the proof of 2.1%, an immediate result is

iii.) —> i.) of the following.

PROPOSITION 2.16. Let R be an extension of K, VO

a valuation on K, V. a valuation on R. Then the following

1
are equivalent,

- 98 ¥ is an extension of V, to R.

11, ) fAVl,Pvl) > fAVO,PVO) and vllK is &

valuation on K.

v 00 R P ) > (Av B ) and g, ‘e

R el W 0 b

PROOF. . If Vl is an extension of VO to R, then
Vl(K) = ¢ o VO(K) is a valuation semi-group contained in

r, , so VllK ls a valuation on K. If x € K, then
i

Vlgx) <'e iff ¢ o Vogx) < e iff Vogx) < e so Avlf\ K= Avo.

Also V,(x) < e iff ¢ o Vy(x) < e 1ff Vy(x) < e so

Pvlﬂ K =P,

P, ), which gives

. That is (A. ,P. ) > (A
o N TR el e Vi

0

R o e A



e ) and VlIK is a valuation

I (A ,2_ ) > (A
”vlv »VO 0

) 8
4

on K, then (Av )y = {AVO,PV ) and g,

g’ Tvilg 0 1 Ix

= GVO by 1.6. But g,

i3, ) :> b & 30

THEOREM 2.17. (Extension Theorem) V, has extensions

= lech O,.» SO

llK 1

to R iff X( )Ro. = o_ . Further, if V., has extensions
Vo Vo 0

to R and gAVo'PVo) is a prime (H) pair of K, then V,

has an extension V. such that (A_ ,P. ) is a prime (H)
1 e ¥y ;

palriof R.
PROOF. If VO has an extension Vl to R, then
g cg by 2.16 soxltBe ¢ klRe =EKflg =gl
o2 ¥4 Yo a3 ¥y e
Conversely, suppose K()Ro. = 0. . Then
Xgweo

8= P + Ro is an ideal of B = A + RO
v v v

with A, =B(K
VO o) 0 Y 4

0 0

and P. = 6{ \K. One can check that A AP e B/ﬁ,so ¢}
v, Yo Vgs

is a prime ideal of B and (B,5) > (AVO,PV ). DNow if
: . 0

(A

Vl,Pvl) is any valuation pair of R with fAvl,Pvl) > gB,6),

then .(Avl,Pvl) > Q\IO,PV_O) and o,

. Ra G y SO
g, VO'—AVl

Rcvo g cvl by 1.3. That is OVO c crvl,so V, 1is an extension
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of V. by 2.16.

¢

Finally, if (4, 2 ) is a prime (H) pair of K, then
- Vo Vo 5
(B,8) is a prime (H) pair of B, and since R is an extension

e B, (Av P ) (above) may be chosen as a prime (H)
i | , A

mapr of R by 2.1ls

»

PROPOSITION 2.18. Let R be an extension of K, and

suppose R is integral over K. Then every valuation on K
has extensions to R. In particular, if VO is a valuation

on X, V. a valuation on R with Q\fl,Pvl) > {AVO,PVO),

2

then Vl extends VO.

PROOF. It suffices to prove the last statement, and
for this proof we are indebted to D. K. Harrison.
By 2.16 and 2.17 we need only show

SAVl,Pvl) > gA,VO,PVO) implies Ro, C A, . Leta € g,

0 =" 0

X € R, Since R is integral over K, there are a. € K,

i
n-_1 .
n > 0 with xn =iy a.xl = 0. Then an e O =
; 4
i=0
W § n-i
gax) + iioaia Sax) = 0. But a;a € GVO i Avl

o Limud. oL, *v*, n~l, that ls, ax is integral over Av .
1

Since is integrally closed, ax € .
Av:L : Avl



Section IIIL

In this section, we assume R is an extension of K.

The results obtained will be needed in Chapter 3.

PROPOSITION 2.19. Let VO‘, VO be valuations on K

%Y ' i
with VO 1_VO. Then
i.) Vg has extensions to R iff V ' has

extensions to R,

25

ii.) If V, is an extension of V, to R, then the

set of extensions V' of VO' to R with V! Z.Vl is non-
empty, linearly ordered and has a smallest element. If

(e /’rv,)\\{o} is torsion, then there is a unique
e | 0
extension V! of VO’ to R with V! t_Vl.

PROOF. o, = 0_ by 2.9, so Ro,

(K= ¢ 1PP
ot Vo !

0 Vor
Boe (VK= v90. . Thus i.) follows by 2:.15.
v v
0 0
Let V

= ¢ ¢ V., ¢ an order homomorphism of L.

ot 0
@)
onto ' . Then ¢_l(e) is an isolated subgroup of T

o' o)

and H={y er_ | 9 «,B e¢'l(e) with o > v > B} is an
1 -

isolated subgroup of PV . If e is the natural map
1

B, SR / H, then vl' = ¢ o V; is a valuation on R with
1

31

1
.

; -1
T ine o= v
vy V- Since HI \r " o fe)y 1 extends VO



Iet V! = o' o V1 be an extension of VO’. Then

-e'"l(e)ﬂr‘v = 67 %(e) so HC o' %(e). That is
; ; 0 )

V! > V.'. The linear order property now follows from
2.6 and 2.9.

Now suppose G?v //Fv )\{0} is torsion and e'(a) = e.
e 0 -

Then there is an integer n > 0 with an € I‘v , SO
' 0

n —l(

a € ¢ (e). If a > e, then ol > a> e soa € H, while

if e > a, then (™)™t > as 3

> e so o~ € H., Thus 6171(e) = H

1 = g
and V Vl .

1]
1y

is a valuation on K, then so is

PROPOSITION 2.20., Let V be valuvations on R

with V;'> Vy.  If V, | &

Vl’]KandVl’]KZ_Vl]K.

PROOF. Let V.! = ¢ o V where ¢ 1s an order homo-

i3

morphism of T ontoIl’ 4+ Then V (K) a valuation semi-
vy vq it

group gives Vl'(K) = ¢ o Vl(K) a valuation semi-group.

Since V' | p = ¢ o V | w V' gz ¥ | e

PROPOSITION 2.21. Let VO, VO' be valuations on K

gz e 1 ?
with V' > Vi and V,, Vy

with V,' > V,. Then the induced valuation (V,',V

extension of the induced valuation (VO',VO).

be corresponding extensions to R

1) is an

PROOF. A\,O'/PVO' = ;\,,lﬂ K/Pv,lf\\ K~
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A + P P A P so the proposition is
F VO, v ,)/._vl' Al /vl" p p

meaningful. Using the fact that Vl' extends Vo' and 2:1%

one sees that the solid part of the diagram

(A \P )
% O! Ol\
LgAVor/PVo')\{PVovn - {gI'VO/HPVO)\{HPVO
Lavkges :
v

{(Avl,/Pvl')\{Pvl,})]'*[(I‘v /By o )S(HGEE

; e L Vit oty
V /

A NP
commutes. This induces the dotted part. The proposition
is that the zeros of the inside parts can be included and

the diagram will remain commutative. This is clear.

PROPOSITION 2.22. Let V., be a valuation on K, Vi,

0 R L
dependent extensions of VO to R. Then there is a valuation

V! of R with V! o V' and V' > Vé such that the induced

valuations (V,V ) and (V Vs ) are 1ndependent extensions of

G 1507,)-

PROOF. There is a V'> V,, i =1, 2 with (v',vl)

and (V',V,) independent by 2.12. V! | x 1s a valuation on

K and V! > V, by 2.20 and (v' V.) extends (v |

i el
e 1o oihy pL2],
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5. THE INVERSE PROPERTY, APPROXIMATION THEOREMS

Section I

A key fact about fields that is indispensible in
proving theorems about valuations is that the set of all

valuations on a field satisfy:

DEFINITION 3.1l. We say that a set A of valuations

on a ring R has the inverse property if for every x in R
there is an x' in R such that V(xx') = e whenever V is
in A and V(x) + O. A is said to have the strong inverse
property if for every x in R there is an x' in R with
V(xx'! - 1) < e whenever V is in A and V(x) # O.

Note that {V} has the strong inverse property iff

(AV'PV) is a prime pair of R.

PROPOSITION 5.2. Let A be a set of valuations on R

which has the inverse property, A' a set of valuations on
R such that for every V! in A' there is a V in A with
N ma Then A {J A' has the inverse property. In particular,

A' has the inverse property.

PROOF. Let x,x' € R with V(xx') = e whenever V € 4

with V(x) + 0. Let V! € A' and éuppose V>V, Vea
and V'(x) 4+ 0. Then V(x) ¢+ 0 by 2.10 so V(xx!) = e.

Then xx' € ANP_C Av:\‘Pv' SO V'Fxx') = e.
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PROPOSITION 3.3. Let A be a set of valuations on R

with the inverse property and V! a valuation on R such
that V' > V for all V in A. Then a* = {(V',V) | V € &}

has the inverse property.

PROOF. Let p be the natural map A_, = v,//Pv,.
For x € A_,, let V(xx') = e whenever V € a4, V(x) #F O.
Since (V',V)(p(x))>= V(x) if x € A, NP 43 '
(V1. V) (p(x)) = 0 1if x € P15 We have (v1,V)(p(xx')) = e
it (V',V)(p(x)) + 0. Thus it remains only to show that
x! € A, if x € A_ NP ,. Since xx! ¢ ANP C A TN EAE
this follows by 1l.7.

In general the set of all valuations on a ring does

not satisfy the inverse condition. In order to discover

some sets which do, some preliminary results are needed.

PROPOSITION 3.4. Let V be a valuation on a ring R,

a,b € R with V(a) # V(b). Then V(a + b) = max{V(a),V(v)].

PROOF. Without loss of generality, we may assume
V(a) > V(b). Then V(a) = V(a' + b - b) < max{V(a+b),V(b)}
< max{v(a),v(b)} = V(a), so max{V(a+b),V(b)} = V(a+b) = V(a).

COROLLARY 3.5. Let V be a valuation on a ring R,

n
g, €R, A=, 2, **v, m ItV Za,)<mx V(a,), then
. Faie- .

V(aj) = max V(ai) = V(ak) for some j # k.

n
PROOF. Let V(aj) = max V(a;). Then since V( = ai)
d i=1



( Z 8y + 2, ) s max{V( Z a ¥ V(a )},
i=1
i3 1+J
V(Za.)=V(a.) by 3.4. But V(Za)<maxV(a.),
Ao i - " dJ 1+J =
1td i+J
max V(a,) > V(a.), that is V(a,) = max V(a ) = V(a ) for
iﬁ'&j»l—g‘l S SR
some k # j..

COROLLARY 3.6. Let V be a valuation on a ring R,

g, €R, 1 =1, 2, ***, n, n+l, -°-, k, with V(a ) =
- k

forn< i< k. Then V( = a,) = V(Za)
. T ~i=1

k n k
PROOF. V( = ai) = V(.2 a, # 0% ai) <
-1=1 i=1 i=n+1

n k
max{v( = ai),V( s ai) = V( Z a. ) The last equality

Si=1 ~i=n+l i=1
k
holds since V( = ai) = 0. Equality now follows from 3.2.
~i=n+1 -
Section II

For the remainder of this chapter, R is assumed to be
an extension of a ring K and VO a valuation on K which has

extensions to R. If Va 1s any extension of VO to R, we
will consider PV as a sub-seml-group of rv .
0 a



PROPOSITION 3.7. Let A be a set of wvaluations on R

extending V,, ©® an ideal of R contained in /r\{dv | v eanl,

O’
such that 6(r3K = 0, If x € R has x + 0 algebraic over
' 0

K,/o_ , then there is an x' € R with V(xx') = e for all

V ea with v(x) £ o. I'f(Av P ) is a prime pair of K,
) L SN

then x' may be chosen so that V(xx! - 1) < e.

PROOF. Note that V(t) = O for all t € 6, V € 4.

If x + 0 is algebraic over K/dV , then there are ay € K,
0

n 5
t € & with a_ § 5 and izoaixl = t, (v(a,) 4 0). Let

0

= min{i | V(a;) ¥ 0}.

n :
v( = aixl) v( Z asX )

Then for V € o, 0 = V(t)
- -i=0 i=s

lS)

V(x YV ( Z alxl S). Thus if (x) + 0, then V( Z a;X
-i=s i=g

n i
= V( 2 aixl's & ) = max[V( 2 alxi 2 B V(a )}, so by
i=s+1 i=s+1
. i-s i-s-1
3.4, V(2 _a;x7) = V(ag) = V(x)V( z a. X i
~i=s+1 : . ~i=s+1 1
Choose a! € K with Vp(a'a,) = (Vo(a'a Y e

if (A ,P. ) is a prime pair of K). Then with
NG Yo

et sl v g -a.xl_s_l, V(xx') = e whenever V € g with

i=s+1

0
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v(x) + o.
" If (A ,P ) is a prime pair, V(x) + 0, V € A , then
e Yo | :

n
V(xx' + a'a ) = V(a')V( 2 a;

xT) = 0 so by 3.6, V(xx' - 1)
~ i=s .

E(xrt ~ 1= (xx! 4 a'a )) = V(ala, + 1) <.e.

COROLLARY 3.8. ILet A be a set of valuations on R

extending V,; b = /\(GV | v e A}, and suppose R/5 is
algebraic over K /KMNB8. Then A has the inverse property;

A has the strong inverse property if (A.V ,Pv ) is a prime
s - 0
pair of K.

PROOF. This is clear by 3.7. Note that K/ 18 = o, *
0]
If V extends VO' then there is a natural homomorphism

pil_ —»{{@-V\{o))/frvo\ {o})}}U {0}, namely

p(a) = a(r \{0}). Rather than carry the zeros, we denote

prv) by‘PV/fFvo and pgx) by vaO. We say drvo is torsion

)2 is €., or Oor, for some n> O,and that

if (o
gL 0 0

‘va/rv is torsion if every element is torsion. Note that
0
dFv is torsion iff o € Fv for some integer n » O.
0

With this notation, we have a companion proposition

to 3.8.

PROPOSITION 3.9. Let p be a set of valuations on R
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extending Vo,ﬁ = ﬂ{av | v ea}, and suppose R/ﬁ is

algebraic over K/K (\ 6. Then I‘V/I‘v is torsion for all
0

V €3.

PROOF. - This is immediate from 3.10.

PROPOSITION 3.10. Let V extend V, ® be an ideal of

R with o, C 5 c 0 Let x € R with x + ® algebraic
o 2

over K/K(\ 6. Then s 1is torsion.
0

PROOF. If V(x) = 0, there is nothing to show, so
suppose V(x) # 0. Then Hai €K, T ¢5,a, ¢ 6 with

i . ;
= aix:L = t. Since V(arxr) #+ 0, we have 0 = V(t)
i=0

= V( 5 a; % ) < max {V(a x )} so by 3.5, V(aixi)
im0 X

= max{V(aixi)} = V(aJ.XJ) + 0 for some i % j.

Assume 1> j and let V(x') = V(x)™%, v(a') = v(a,)"".
Then V(xi_‘j) V(a X )V(x')JV(a') = V(a xJ)V(x')'JV(a')
=V(a w(ar) €T, vy’

PROPOSITION 3.11. Let V be an extension of V

Viely

07
and VO' = V'IK‘ LE I‘v/l‘vo is torsion, then so is l"v,/I‘vo,

and P(v',v)ﬁ(vo',v
PROOF. Let ¢:' —>T , be the homomorphism such that
= e Ve Thenm Vi, = 0.5 .V, Dieigy™ (ker o)l (0}
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and r(vo,’v = {(ker ¢)ﬂrvo JU{o} = r(v,’v)ﬂrvo.

o)
If ¢(a) € Pv', then o € r, for some n > 0 so
0

Ny n :
¢§a ) = ¢(a)" e S0 PVO'//PVO' is torsion., If

Vot
n
@ €T (y1 ) then o ¢ Fvérwr(v',v) = r(vo"vo) for some

) is torsion.

200 SOF(V'yV)/F(VOHVO

A trivial but useful remark is

REMARK 3,12, If V is an extension of VO and

rv/rvo is torsion, then V(R) = {e,0} iff V,(K) = (e,0].

REMARK 3.13. If R is integral over K, © any ideal of

R, then R/® is integral (hence algebraic) over K KN 6.

Section III

In this section we assume R is an extension of K,

VA is a valuation on K and A is a set of extensions of VO

0

to K with the inverse property and such that rv//fv is
0

torsion for each V € A. In some of the results we also
reguire P ¢ P,y if V, V! € A and V # V'. The following

proposition indicates the effect of this last restriction.

PROPOSITION 3.14. ILet V, and V, be distinct elements

of A with P ] Sh R SR N 6Y o3 o 0 is an ideal of K and R is
b e, Vo

not integral over K.
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PROOF.. If P is an ideal of K then P and P
;R Yo 1 i~

are ideals of R by 35.12. Then AV = A.V = R, and if R were
i 5 2

integral over K we would also have Pv = P

; v, gsee (5],

page 259), contradicting Pv and P_ distinct.

1 2

It remains only to show that if Pv is not an ideal
0

of K then P. ¢ P_ .
Vl V2

If Pv is not an ideal of K, then Pv

and P are
0 1 A

2

not ideals of R, so by 1.6, A_ + A_ .
o (L6 S0

CASE 1. A NA. % ¢ Let v e A\ A, . Then
S 2 it o S
V.(y) < e < V,(y). Sincer_ /T. 1is torsion, there is
1 - 2% Vj Vo
an integer n> 0, and a € K with V,(y") = V,(a). Then
V2(y) = Vz(yn+la') > e while Vl(yn+la') = Vltyn+l)vi(a') < e,

1 1
8! € Pvl'\Pv .

since Vo(a') < e. Thus y°t
. 2

CASE 2. %Q\Avl + 6. By Case 1, there is y € R

with Vl(y) > e > Vg(y). Then Vl(l +y)= Vl(y) > e
while Vé(l +y) = Vé(l) = e S0 Vi((l +y)t) < e while

Vo((1+¥)') =e. Thus (1+y)' € B \\P,_ .
o5 ; hih RIS ¢
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PROPOSITION 3.15. Let Vy, V *, V, be distinct

2’
elements of A with Pvi Q;Pvl i i + 1. Then there is an

x € R with V,(x) » e and V,(x) < e for 1 § 1. Further, if

P, 1s not an ideal of K one can require Vl(x) > e.
0 .

PROOF., , (Case 1l: P an ideal of K. Then P is a
—— Vo vy

prime ideal of R, 1 = 1, 2, ***, n. Choose Xy € Pvg\‘Pvl,
n

Som 2500, ***, n and let x = iy X,
i=2

Case 2: Pv not an ideal of K. Proof by induction
0

on n.

n =2, Choose y € Pvé\\Pvl. Then Vlgy) > e > V2fy).

Since rvé,/rv, is torsion and Fvb + {0,e}, there is an

n> 0and a € K\ q with e> Vy(a) > V,(y"). Then with
0 : :

x = a'y" we have v, (x) :_Vl(a') > e while Vy(aa') = e > Ve(x).
Now assume 3.15 holds for p S IO B ; 2. -FOr ;

i=2, 3, choose y; € R with Vlgyi) > e and ijyi) < e

if I end jid 4, Ig Vi(yi) < e, let x; = y,, otherwise

let x; = (l + yi)'yi.

CLAIM. vlfxi) > e, vigxi) < e, ngxi) <8, J 1 L

SUBPROOF. This is automatic if Xy = Yy Otherwise
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2 1 e ey
vlfl +¥y) = Vlfyi) > e and qul + yi) yi) e;

A 1 . ’ -
Vifl o yi) = Vigyi) > e and Vi“l + yig yi) e 1f 1 diiga
ngl * yi) = VJ.(l) = e and VJ.((l 4 yi)'yi) = Vj(yi) < e.

il

Thus we have Vl§x2x3) > e and Vi$x2x3) <eif i 4 1.

Let z = XpXze Again since I‘Vi/l‘V is torsion and

0

r + {0,e}, there is an n> 0 and an a € K\0, with
v 0
0

e > Vi(a) > Vi(zn) for all i + 1 and x = a'z"” has

Vlgx) > e, Vigx) < e for all i # 1,

PROPOSITION %.16. Assume Pv is not an ideal of K
0

1r V2 bl P Vn € A are pairwise independent. Then

if oy el‘vi\{o}, i =2 3, °*** n, there is an X € R

and V

Vl'ith Vl(X) >_ e a.nd vi(x) < ai’ i = 2' 3' loo' n.

PROOF. Since I‘v_/I‘vo 18 toreion for i =@, veriuss
i
-
there are n, > O with a. T N 0k Tet
. : i Vo
e
a = min{{e} Uf{a; = | 1 =2, -+, n}}. It suffices to show
there is an x € R with Vl(x) > e and Vi(x) < a,
o e A

Let H= {a er | Jx € R with V,(x) > e, V,;(x)

0
< min{a,a™’) 1 ¢+ 1}). Then e € H by 3.15, and it is easily

checked that H is an isolated subgroup of I‘v « The
0

proposition will be established if H = I‘vo\{o}, or
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equivalently, that if VO' is the valuation determined by

H, then V.'(K) = {e,0} =T, /H.
0 A VO

Since V' > V, and T /T is torsion for each i,

¥ i Vo

by 2.19 there is a unique V;' > V, which extends V 4

e 1. 2, **r . N, Slnce the Vi are independent, either
'(R) = {e 0} for some i, in which case Vo '(K) = {e,0]}

by 3 12 and the proposition is established; or the Vi'

are distinct.

Assume the Vi‘ are distinet. By 3.2 and J.11, D.15
applies to Vl', VE', el Vh'. Thus there is an x € R
with Vy 1(x) > e and v, 1 o708 KT WoR A0 T TRMLR R, -

There is an 1nteger r> O and b in K with

'(x ) > LA '(b) =V, '(b) < ¢ fori'#®2, 3, *** n/o0nE
is V, (x ) < V (b) g Vo(b) "1 for all a € H,
1=2, 3, ***, n, while V (x ) > e. This is a contra-

diction since then Vo(b) € H, Vo' (b) = e. Thus
V,'(K) = {e,0}. 2 ;

COROLLARY 3.17. (Approximation Theorem) Suppose

Pvo is not an ideal of K and Vl' V2, iy Vh € A are

pairwise independent. Then if a; e‘rvf\\{o], 1 = 1500, 680 i
o i - -

then there is an x € R with Vi(x) i

Qy o S5 TN B = Mk B -

PROOF. For each i, choose z; € R with V,(z,) = Q.

| Choose x; € R with Vigxi) > e, and for j# i, with
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Vi (x,) < min[ajvj(zi)-l,e}, 1f V,(z;) 4 0, with
vJ(xi) < e if Vj(zi) = 0. Lett; = x(1+ x;)'. Then
vi(ti) = e and Vj(ti) = vj(xi) 1tLk g,
Now Vi(tizi) = vi(zi) = a,, and if 1 + J, Vj(tizi)
' 0 if Vy(z;) = 0,
= Vj(ti)vj(?i) =
vj(xi)vj(zi) < @3, if Vj(zi) { o.
That is Vj(tizi) = m;x Vj(tkzk) only if 1 = j, so

n
VJ(iiltizi) = Vj(tjzj) =as, J-= 1,. @, v** n by 3.8

COROLLARY 3.18. (Strong Approximation Theorem)

Suppose A has the strong inverse property and V Ay

10 V" n

are pairwise independent. If a, € R have Vi(ai) + o,

i
i =71, 2, ***, n, then there is en x € R with
v, (x) = Vi(ai) » V(x - ay), LT oa,n 0N

PROOF. Case 1: PVO an ideal of K. Then the Pvi
are maximal ideals of R so Pvi ¢ P, if i ¢ j,and 3.15

J
applies. For each i,choose x;, € R with Vi(xi) = e,

i ¥ . 2 ¢
Vj(xi) 0, 14 j. Choose x i € Av;\‘Pv. with

i

1 = 1 = i
xx', =1+ t,t, € Pvi. Then Vj(xix iai) O 1f Lk s

while V,(x;x';a; - a,) = vi(aiti) = 0 < vi(ai)

= Vi(xix'iai) = e,
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n
= 1 -
Let x izlxix 84+ then Vi(x ai)

V. (xx'.8, -8, + = xx%.a.) =0
« Bt Ll - | % j+i i

Case 2: Pv not an ideal of K. Choose a'i so that
0

Vj(aia'i) = e whenever Vj(ai) + 0. For each i, choose
x; € R with vi(xi) > e; vj(xi) <.min[Vj(aj)VJ(a'i),e]
if vj(ai) 4 0, Vj(xi) < e if Vj(ai) = 0. Choose y; € R
with V. (y;) = v (1 + I e V(1 + x;) # 0 and so that

.) -1) < e.

Vi(yi(l + X4

Then yi(l + xi) = 1 + t; where vi(ti) < e;

(xiyi -1)(1 + xi) = xiyi(l + xi) o TR

1

Vi(xiyi -l)Vi(l + xi) < max Vi(xiyi),vi(l) < Vi(xi)
= Vi(l + xi); SO Vi(xiyi -1) < e and Vi(xiyiai - ai)
< Vi(ai).
Also if 14 J, V,(y,) = V,(1 + xi)‘l - Vj(l)-l - e,
SO Vj(xiyiai) = Vj(xi)vj(ai) < Vj(aj)'
n

2 X.y.a., we have V.(x - a,
otk e i)

Now if x
- Vi((xiyiai - ai) 4 jiixjyjaj) :_max{[vi(xiyiai - ai)}

Uvy(x,y5a,) | 14 33} < vy(ay).
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Section IV

DEFINITION 3.19. Let D be a domain, D* its field of

guotients and S an extension of D. Then the ring of
quotients Sp (o) (see [5]) is a vector space over DX.
Set [S3;D] = dim SD\\{O}‘ [S:D] is called the rank of S

e
over D.

One can show using "common denominator" arguments,

that if r < [S;D], there are a|y @, ***, a, € 8 such that

n

iildiai = 0, di € D implies di w 0, 1 = 1, 28, **r, ¥iiaE

8 > [S3:D] and al'gfg’ ***, ag € 8, there are d; € D, not

all zero, with b diai = 0. In the first case we call
i=1

the a, "independent", and in the second, "dependent'.

DEFINITION 3.20. Let R be an extension of K, VO

a valuation on K with extensions to R. Let AO

= {V | V extends Vv, to R}, and for A C A, let A

=f’)(ov | v e a}. set B [R/qA - K//ovo], and note that

»

ACA' gives n, 20,

For V € Ay, set £ = [Ab//Pv; Avo//on]. this called
A

the relative degree of V (with respect to VO). Set
e, = (1‘v : rvo) (the index of the group rvo\ {0} in rv\{o)).

e, is called reduced ramification index of V (with respect
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to Vo) .
Note that if n, < « then for each x € R/qA the set
X, x2, 4 x™ is dependent over K//Ev +  Thus R,/ah

0

is algebraic over K//Bv 480 that A has the inverse property
0

by 3.8 and 1 /4r is torsion for each V € A by 3.9
i by,

PROPOSITION 3.21. Let R be an extension of K with

< o, where A = {Vl, V2, G Vn} C,AO. Suppose the

Vi are pairwise independent and if Pv is an ideal of K,
0

n
also assume P, ¢ P for i ¢4 j. Then I e f_ < n,.
i Zobiht T T
PROOF. First suppose Pv is not an ideal of K. For
0
Sach 3, 1wl 2 v chovse Y1101 *° nil in R
such that the cosets Vi(ykihrv are non zero and distinct.

0

Note that n, < e. . Sincer. /T is torsion for each i,
e d 7 Ty Vo

there is B er. with 0< B < V_(y,,) for all t, k, and an
Vo t*kt

a; © r‘vo with aingyri) < B for all j ¢ i and all r.' By

By 3.16 there is an a; € R with vi(ai) = e, vj(ai) < ay

g Ly
Set by = a,¥yy- Vi(bki) = Vigyki),so the cosets
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V (b are non zero and distinct,k = 1, 2, *°**, n, .

s
Vo
Also if k # 1, vjfbki) = vj(ai)vj(yki) < aiVj(yki) < B

< vt(yst) for all t, s. That is, since V (y ) = thbst)
we have:
(a) vj(bki) < Vt(bst) for all s,t if 1 4 J.

Let X140 Xoq0 "%y xmii be in_A.vi with the Xpeq + P vy

linearly independent over A_ P. . Note that m, < f_ .
Vo Vo i-— vy

As in the above argument, there is an ay; € Pv with
0

a; ¢ 0 and aivj(xr,) < e if i $ j. Choose b, € R with
Vi(bi) = e and ngbi) < g, if 1 # J.

Set a4 = byx, ;. Then V.(a .) = e and if t, € Av y
m m

Ty
then v( by t i) = V(b )V( z ty ) < ¢ only it V( 2 %%
kel K A k=1 T

so the apy + PVO are linearly independent over Avé//on.

Also ngaki) = ngbi)vj(xki) S0
(v) Vj(aki) % a APP LA 3. Lor 110K,

If P, is an ideal of K, using 3.15 (note n, =1
0 ;

For all i),one can chose o bki with the properties
described above, including (a) and (b). The arguments are

similar but simpler.

The proof of the proposition will be complete if we
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SE

can show that the 2 n.,m., elements a,.b.. + o, are linearly

j=1 1+ 1 ki~ ji A

independent over K//ov . To show this, it suffices to show

0

that if o € K has V. (.2 a

Bids:d

kij kji Syi Jl) =0, Bameligeh

then Vo(a )= 0 Tfor all.k, 1, 3J-

kji
Without loss of generality, we can assume Vo(“111)

= maxVO(a Jk) We have v1(§(zd

ijk k,J
i<l
so that
?c) vl‘?fiakjlakl)bjl) e ( ZJale kiPyq) BY 3eh.

i>1
Consider the second term of (c). For i # 1,
'} (ale) < vl(alll) by assumptlon, Vl(aki) < e by (b);
and Vl(b..) 1(b. ). for all 3, by (a). In particular

then, unless V, (a Vo(a ;

lll) lll)

one has Vl(“kji kibJ.i) <V, (a

when i $ 1, so that V ( 2 Gy 38y Ji) < V (alll)V (bll)
Lk )

1?1

111)v (o 1) for all k, i}

Thus if we show V (i(iakjlakl)bjl) :-vl(alll)vl(b

= 0, since V,(b,,) + 0,

E k181 P31 * 2 Oys58i4D 5

it will follow that V,(a;,;) = O and the proposition will

be established.

Note vlfiakjlakl)bjl) - vl(iakjlakl)vlgbjl).

CLAIM D. vlgiakjlakl) = mix Vlgakjl)'

11),

In'

BO'
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If Claim D is true, since mix vlgakjl) € on and

the vl(bjl) determine distinct cosets Vlfbjl)rvo, we

have Vl(iaka.lakl)bjl) + V:L(iakslakl)vl_(bsl) if s # j. Then
Vl%(i"‘k.jlakl)bjl) i Vl((iakjlakl)bjl) E vl(alll)vlgbll)
by 3.5 and Claim D.

Thus all that remains is to establish D. Let

vl(aljl) = mix Vlgakjl)' D is certainly true if Vl(aljl) = 0,
i . -1
so assume vlgaljl) + 0. Let t € K with Vl(t) = Vl(aljl) .

Then vl{taljl) = e and Vl(takjl) <eif k#$ 1, so

Vl(itakjlakl) < e, since Vl(akl) = ¢ for all k.
Let p be the natural map Avl s 100 SRR -
1 2 5
Vl(itakjlakl) < e then ip(takjl)pgakl) = 0, but

€ A for all k, j, p(taljl) + 0 and the p(a, )

tay 5 s

were chosen linearly independent over p(AV ) which gives a
sl (8

contradiction.

Thus Vlgitakjlakl) =e = Vl(t)giakjlakl)' so

& S x
Vlfiakjlakl) AE LM CIRT s vy (o 59)-

Let V be an extension of V, to R and V' > V. By 2.20

V!|g is a valuation on K with V'|, > V,. Let e , andf_,

V'
be the reduced ramification index and the relative degree
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for (V',V).

PROPOSITION 3.22. With the above notation, we have

PROOF.
= I‘v/va',v) Ty on/r(v’!K,vo) '-\'-rv'lK

. s : K

= ev/e(v,’v).
f(ﬁ',v) = [T3;5] where S = (Avo//?v,IKX//fpvo//ﬁv'IK)

gAVO/PvO and T = (o /P, ) AB 2 )= A, /R,,
80 f(v',v) = fv.

PROPOSITION 3.23. Suppose R is an extension of K,

A CRy 1, < o and Py ¢ P, whenever V and V' are independent

elements of A. Then if Vl' V2, LR Vn are distinct elements

n
of A, one has 2 e fv 2 0. In particular A is a finite
b X i T o

set.

PROOF. (Note that by 3.1% the restriction P ¢ P,

applies only when e Pv .) By induction on n. Proposition
; 0

.21 gives n = 1, so assume the proposition holds for n > 1.

We distinguish three cases, the first which is also covered

by 3.21.
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A

CASE 1. V b Vh+1 are independent.

i at

CASE 2. Vl and V2 are independent.
CASE 3. Vi and Vj are dependent for all i, j.

In case 2, assume Vl and Vh+l are dependent. By 2.12,
there is a valuation V,' on R with V., > V, and
1
Vl t-vh+l
for i =2, 3, ***, r, there are unique Vi'=>_.Vi which

and fVl',Vl), (vlt’vn+l) independent. ‘By 2.19,

extend V,'[.. LetV,,, V $pac ¥ be the distinct

A
valuations thus obtained, V,, = V,,.

is?

Now (is) < n, and by 3.2 and 3.1l the inductive

hypothesié applies to {V,

10 Vipr ooy Vil =AY, s0

e -f < Nyye
ety A

Let §; = {k:] T e v, } and let Byg = {(vij,vk) | k € sij).

Since Vl and V2 are independent each Aij has n or fewer
elements and by 3.3 and 3.11, the inductive hypothesis

applies to give 3 e o <n (x).

Now o = (0) son = [A P A //é ]
By o Rj; vij/ iy viglg/ Tvaglg
- 3G, ™0 20 son ,<n. Now
Vi) A vy, v, T =0 A' = A
s
using 3.12 and the above, n, > n ., > 3 e
A A g=1 Vij
S
> T e z

e :
= =1 Vij keS, fvig'"’k) _(vij'vk)
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S
= 2 % e

e f
n+1
= 2 e, f .
1=1 Vi Vi
This completes case 2.
For case 5, chose V! 1_Vl and V! 3.V2 such that

(vr, Vl) and (V',VE) are independent (2.12). Continue as
in case 2, noting that Ail may have nA+ 1 elements, but
that two distinct ones are independent, so case 2 allows

us to get the equation (%) and complete the argument.
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4, GALOIS EXTENSIONS

‘ Section I

DEFINITION 4.1. Let R be a ring, G a finite group

of automorphisms on R and R o {x e R | o(x) = x for all
o € G} = K. We say R is Galois over K with group G if

either of the following conditions hold:
n

(l) There are Xx,,y; € R such that iilxicgyi) -
6 ., where 6 . = 1 if ¢ = 1 (the identity of G) and
ol ol 7
68,=01if 0 €@, o 1.

(2) For every ideal ® of R and o € G, with
64+ R, 04 1, there is an x € R with x - o(x) § 6.

For the equivalence of the above two éonditions, and
for the equivalence of either to the "usual" definition of
"R Galois over K with group G", the interested reader is
referred to [2], page 18.

For the main results of this chapter, we will need an
assortment of specialized results. [2] will be quoted
freely as a source of proofs.

LEMMA 4.2. If R is Galois over K with group G, then
there is an a € R with 2 g(a) = 1.

o€G

PROOF. See [2], page 21.
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PROPOSITION 4.3. If R is Galois over K with group G,

and 6 is a prime ideal of K, then R/ R6 is Galois over K /5
with group G~ G.

PROOF. R is integral over K (see [2] or 4.12) so RO
is an ideal of R with R6 MK = & (f5], page 257), thus we
can identify K,/ 6 with a subring of R,/ RS.

For o € G, o(R8) = o(R)o(6) = R6, so setting o(x + RD)
= o(x) + R®,for all x € R,gives an automorphism of R /RS,
The map G = {G | 0 € G} =G is clearly a group homomorphism,
and by (2) of 4.1, if 0 € G, 0 # 1, there is an x € R
with o(x) - x ¢ RS, so 0 # 1 and the map is one-one.

Let p;R = R/ R0 be the natural map. If X;.¥; €R

satisfy (1) of 4.1, then .f p(xi)E(p(yi)) = p(iglxio(yi))

i=1

% ;
= b7, 80 R/R6 is Galois over (R//hﬁ)G with group G.

Now suppose x € R and o(p(x)) = p(x) for all © ¢ G.
Then for each o € G there are t, € RO with x = o(x) + t .

Let a € R have 1 = I o(a) as in 4.2. Then o(a)k =
oeG -

o(ax) + o(a)tG; x= 3 gla)x = 32 o(ax) + = oa)t

05
- oEG - oEG - o€G -

p(x) = p( = o(ax)). Since 1( = o(ax)) = = o(ax) for all
£ -0€G - -G - o€eG -

T €G, I o(ax) € K and p(x) € p(K) = K/ 6. That is
oeG - 5 , ; :

(R/Rﬁ)a = K /6.
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PROPOSITION 4.4, TILet R be a ring, K a subring which

is a domain, RK be the ring of quotients of R with respect
to the multiplicative set K\\{0}. Then if o is an auto-
morphism of R with o(x) = x for all x € K, there is a
unique extension of 6 to an automorphism ¢ on RK' Further

g(x) = x for all x € Ky

PROOF. Clear. See [5] for definition and existence
of RK'

PROPOSITION 4.5. If R is a Galois over K with group

G and K is a domain, then RK is Galois over KK with
group G =(c | 0 € G} ~G.

PROOF. Clear using (1) of 4.1,and 4.4,

LEMMA 4.6, If R is Galois over K with group G and K
is a field, then dimR = [a]. (]|s]| = number of elements
in S.)

PROOF. See [2], page 27.

COROLLARY 4.7. If R is Galois over K with group G

and 6 is a prime ideal of K, then [R/RD j K/6] = |G].
PROOF. Clear by 4.3, 4.5 and 4.6.

LEMMA 4.8, If R is Galois over K with group G and R
is a domain, then G is the set of all automorphisms of R

such that o(x) = x for all x € K.
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PROOF. See [2].

PROPOSITION 4.9. If R is a domain, G a finite group

of automorphisms on R with K = RG, then

(1) Ry = Rp

(2) R is Galois over K, with group G 2~ G.
(3) [R;k] = |a]

(4) Every automorphism o of R with o(x) = x

sor all x € K)is an element of G.

A — —

PROOF. Let G ={0o | o € G}, where T is as in 4.4,
Then RKG = KK’ SO RK is an integral extension of a field,
and is a domain, thus Ry is a field and Ry = Rp. (2) of
4.,1. is then satisfied, so RK is Galois over KK with group
~ N
G. Since |G| = |G|, (3) follows from 4.6 and the definition
of [R:K]. :

If o is an automorphism of R satisfying (4), then the
extension ¢ (as in 4.4) has o(x) = x for all x € Ky S0

T €Gby 4.8. But then o = G, € G

'PROPOSITION 4.10. If R is Galois over K with group G

and H is a subgroup of G, then

(1) R is Galois over R with group H.

(2) If H is normal in G, then R is Galois over
K with group G~ H, where (oH)(x) = o(x) for all ¢ € G,

X € RH.

PROOF. See [2], page 22.
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PROPOSITION 4.11. Suppose R is Galois over K with

group G + 1, 6 is a prime ideal of R, b € R and
(bx - = o(x)) € & for all x € R. Then b € b,
- o€G -
PROOF. There is an x € R, 7€ G with x - 7(x) § ©

by (1) of 4.1. But bx - 2 o(x) € o
o€G

br(x) - = o{v(x)) = b1(x) - = o(x) € & gives
- oeG - - oeG -

b(x - 7(x)) € 5, so b € b.

This completes the preliminaries.

Section II

For the remainder of this chapter we will assume that
G is a finite group of automorphisms on a ring R,with,RG
={xeR| o(x) = x for all 0 € G} = K. We let |G| = n.

Let VO be a fixed valuation on K.

PROPOSITION 4.12. R is integral over K.

PROOF. For a € R let £ (x) = T (x - o(a))
o) 0€G - L

n-1
P a(i)xi. One computes that a(i) = = 7 o(a),
i=0 - - S€Ai0'€S -
where Ai is the set of all subsets of G containing n - i

elements, and that a(i) € K for 1 =0, 1, 2, ***, n-1.

Since fa(a) =0, a is integral over K.
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Thus V, has extensions to R by 2.18.

PROPOSITION 4.13. Let V be a fixed extension of Vo
to Rqand for ¢ € G, x € R define Vc(x) = V(o(x)). Then
V, is a valuation on R extending V, and {V_ | o eG} =

{v' | v' is a valuation on R, (Av,, 1) x )3

> (A
VOS V

Furthermore A = {x eR | V(o(x)) < e,Ho € G)
= /h\Av is the integral closure of A in i,

o€G o Yo
{(x e R | V(o(x)) < e,lo € G} = /N\P =\/APv 3
L oeG v 0
and {x € R | V(o(x)) = 0,0 € g} = f\o =‘/ﬁ°v y
i oG Vg 0

PROOF. V0 =V e ¢ is a multiplicative homomorphism
of R onto ' so it is a valuation. vo(x) = V(o(x)) = V(x)
= Vogx) for x € K, so V_ extends V.

Since A.v is integrally closed, the integral closure

o
of Av in R is contained in A. However from the form of
£ in 4,12, i1f a € A, a(i) e AVO, 1 =0, 1, ***, n=d 5o
that a is integral over A.v .

0
Tt is clear that P. C f\P so that«/—' C ﬂP :

0 o€ V0 o€G Vo
Conversely, by the form of f_ in 4,12, if a € rN\P :
' 0€G Vo

then a(i) € P, ni=0,1, ***, n-1, so that

- o
= n-1
8 = ¥ a(i)a € AP_ , and a e./———APV . The argument that

i=0 - 0 0 :
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mcv =1/§ov is similar.
O€EG o 0
Now let (Av,,Pv,) be a valuation pair of R with

; !
fAvang) > ‘AVO,PVO). By 2.18, V! extends Vo
Now by 3.15, if P, ¢ PVO ¢ P, for all o € G, there

is an x € R with V'(x) = e, Vd(x) < e for all o € G,

contradicting\/Pv = f.\Pv CNPV,. Thus
0 ceG "o ¥

P

e, C 8 (or S PV,) for some o € G. If P, is not

o o 0

an ideal, this gives V' = V_ by Sy | T P, is an ideal,
0

then so are Pv' and P and since R is integral over K,

’
Vo
B mp (see [5]1, page 259), so V' = V.
g -
COROLLARY 4.14. V, has a finite number g of extensions
and for any two extensions V and V' of Vor 8™ 8. and
£, = f 4

PROOF. Since G is finite, the number of extensions
is also finite by 4.13. If V a.nd<V' are two extensions
of V,, V' =V for some ¢ in G. The map T : r, =T, given
by d(a) = VG(V-l(a)) is an isomorphism with T(a) = a for
all oo €T c

vy’ so e, = frv : I‘vo) = fafrv) : egrvo))

s (P, ¢+, ) = e, e
‘ 0
The map G : A, /P -*P\,,/Pv, given by G(x + P_)

| N

!
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= o-l(x) + G-l(PV) - U_l(x) + P_;yis an isomorphism with

ofx +RY SR & P, for all ¥ Avo, s0 ofAvO/’on)

=A, /P . Tusf =[A/P ;A /P ]
OTE D o Vo

= [?SAV//PV) §'EfAvd//on)] = FAv,//PV, : Avé//on] =
Let e = grv 2 on) and f = [Av//'PV 3 Avd//fvo], where

V is any extension of VO' The.letter e is traditional when
used in this way and we rely on the context to distinguish
it from V(1).

We can "count" the number g of extensions of Vye
Let V be a fixed extension of VO and set

def
G, (o ec | Vv= VG} = {0 e@q | o(Pv) = Pv].

For the second equality, note that vc + V iff V(x) < e

and Vo(x) > e for some x € R. For o,7 € G, V = V_ iff
i e il iff ¢"1 -

on PVT iff © va) T (Pv) Tva) P iff

-1 W
g T 6 GZ iff GGZ = 171G

Z
That is g = (G : G

PROPOSITION 4.15. Let S be any subring of R with

KC SCR, Van extension of V, to R. Then V|g is a
valuation on S extending V, and {V' | V' a valuation on §

extending V,} = {V_[, | o € @a}.

PROOF. To show VIS is a valuation on S we need to
show that if x € S, V(x) # O then there is a y € S with

V(y) = V(x)™'. Sincer /T is torsiommg € 8, V(x) £ o,

0
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a
there is an r > O with V(x") er_. If z €K with
, 0

I‘-l) r-1

V(a) = V(xr)'l, then V(ax = V(x)'1 and ax € S.

Let-V' be an exteﬁsion of Vo‘to S. Then R is integral

over S, so V' has an extension V to R. V is an extension

gf V. to R, so V = V, for some o € G. But then

0
V! =T|g =V g

NOTATION. For the remainder of this chapter V will

be a fixed extension of V, to R and G, = lcea |v=V]

as above. We will denote subgroups of G by subscripts

sucg as Gg. We let Ky = {x e R ]| o(x) = x for all o € GB}
B

=R2 y =V =A /P ,k,.=A P |,
B lKB’ kB AVB vB’ 0 Avo Vo

k= AP, eg=(r, zrvB) and £y = [k j kgl.

PROPOSITION 4.16. V is the unique extension of v,

to Ryand if GA is a subgroup of G such that V is the unique

extension of V, to R, then G, < G, so that K, € Kp-

A Z Z

PROOF. By 4.13 and the definition of G,, {V' | V'
extends V, to R} = (v, | o ¢ Gy} = {v}l. 1In the same way,
if Gy 2 G, (V'|V' extends V, to R} = {V_ | o€ G,), and the
latter set is (V} iff V=V for all ¢ & G, iff G, < G,.

A
Section III

For the remainder of the chapter, the additional

%
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assumption that R is Galois over K with group G will be made.

PROPOSITION 4.17. rvz = on and kz = ko. That is,
e =f =1,
- A

PROOF. Let Vi Vo, 00, Vg be the extensions of Vo
to K,. By 4,15, each V; is of the form (Vz)a for some
o €G, so e = e : 4 = f for each i. Thus

4 ManvYe’ Ny Vg

g g
2 e f weo f g=[K, /Yoo %K/, ]
fw1 Y4 vy Vg Vg Z/i=l vy ! Yo

:'[KZ//kZGV 2 K,/ov ]. The first inequality follows from
0 0
g
3.23 and the second holds since Kpo < (Mo, .
. 0 i=1"1
Let r = IGZI. Since R is Galois over K, with group

Gy, [R/Rcv : KZ/’UVZ] = r by 4.7. Thus there are

Z

Xy Xpp 00, X, € R with the x5 + Rovo linearly independent

over Kz,/bvz. Let evzfvzg = h. The inequality in the first
paragraph gives the existence of Yyr Tor ' %y ¥y S KZ’

such that the yy + K are linearly independent over

o
Z vO

. + Rov are linearly

K//B + Thus the hr elements Xx.y
Vo 1J 0

independent over K//bvo, and hr < [R//hcvo 3 K,/Gvo] =n

by 4.7, since R is Galois over K.
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That is e f_ gr = e f n « n, thus e = f = 1.
Vg Vg Vg Vg ; e

|

Since ogAv) = A and °<Pv) P, for every o € G,

we have a natural map ¢ = ¢ of GZ into the group of auto-

morphisms of k = Av//?v. We have © = 1 iff o(x) - x € P,
def = o P

for all x € A, 50 Gp _ {0 € G, | ©=T)=

loeG, | o(x) - xe P, for all x € A },is a normal sub-

group of Gz: Note that V(x - o(x)) < e whenever V(x) < e,

gives x - o(x) € P whenever X € A , and this glves

o(x) € P whenever x € P,, 50 G, = {0 €G | V(x - o(x»-< e

iy
for all x € A, | P |
Let1r= 1 if the characteristic of ko is zero, and let
m be the characteristic of ko otherwise.

For D a domain, let DX be its field of quotients.

PROPOSITION 4.18. With the notation above, set
(_IceG}'\vG/G Then

/\

(1) ¥* is purely inseparable over kﬁ,
(2) k¥ is Galois over KX,

y ~ nat

{3) e AutkOkT,

() G = Aut, K,

K
B)ire w1,
f a) VT
(B it I‘VT),

(7) £ = IGZ,/CTlvi for some integer r.
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PROOF. TILet p:A, -’A.v//fPV = k be the natural map.
Note that for a € Av, o € GT’ that a - of(a) € Pv’ so that
p(a) = p(o(a)). ILet t = |Gp|.  Recall now (replacing G
with Gp) the polynomial f_(x) of 4.12, and note that for
a € A, that p(a(i)) = (g)pia)t_i € ky, so that
p(fa(x)) = (xﬂ-ﬂp(a))t: That is every element p(a) of k
ié either iﬁ,kT o; has a purely inseparable miniﬁal
polynomial over kﬁ. But K* = kﬁk by 4.9, so k* is purely
inseparable over k?.

Since ¥* is purely inseparable over kﬁ, the restriction

map Authk¥ -*Authkﬁ is an isomorphism, thus the restriction
0 0

map Autk k —*Autk kT is also an disomorphism. Let

0 o)
2 (= - A e W
G={o], |©oeG). Lets=kp Then by 4.9, Ky is

i1

A

Galois over S* with group‘é, so by 4.7 [kT;S] = [kﬁ;s] = |G].
Now k, < 8, so k’ég Sx, S0 [k’é;]?é] = [kT;S*][Sx:kZ*]
= [kpsSI[S5k,] = [G][85%,] = [6,,/Gpl[85k,] = [kpsk,].

Now R is Galois over KZ with group GZ and GT<Q GZ,
50 KT is Galois over KZ with group GZ//GT by 4.10; so by L
16, /Gl = [KT//KTGVZ; Kz//cvz]. But [Kp/ Ko, 3 KZ/’ovZ]

Z
> (o s Ty Mkpiky] by 3.23, s0 &, /Gl >

GPVT;FVZ)IGZ//GTIISskZ], so (r, ;0 ) = [S5k,;] = 1.
. i A e
But . =TI. by 4.17, sor. =7 gives 5 and 6
Yo Y : Vo Vo g )

: I * 5
and [S3k,] = 1, gives s* = k§, but ky = k, by 4.17, so
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*

S™ = k% (giving 2). If o is an automorphism of kq with

o(x) = x for all x € k, = k,, 0 can be extended to an
automorphism o of Eﬁ with o(x) for all x € kg, so g € G
by 4.8 (which gives 3).

Since e has no automorphisms fixing every element of
k¥ other than the identity, we have (4). Also KX purely
inseparable over k¥ gives [k ;kT] = 7° for some integer r.

But then f = [k;ky] = [ksk,] = [K¥55] = (%531 (K5 K7]

= erGZ//bTI.

Section IV

Let p:A, = A_/P_De the natural map and let A* ve
the group of units of the field of quotients for Av//Pv.

Let T* = T N\ (0). For a eT¥, o ¢ Gy, let

(a,0) = p(o(a)a')p(aa')'l, where V(a) = a, V(a') - al,

PROPOSITION 4.19. (a,c) is independent of choice of

a,a', and for all «,B € r*, ¢,T € GT we have

(1) (oB,0) = (a,0)(B,0)
(2) (a,07) = (a,0)(a, 7).
Thus we ha&e homomorphisms

r* % Hom(G,, 8%), where ¥(a)(0) = (a,0),

|

Gp = Hom(r™®, A%), where ¢(o)(a) = (a,0).

PROOF. Recall that V(x) = V(o(x)) Ho € G Thus

: T
¢(a)af € A, and p(o(a)at) 4 0, so (a,0) € A*. Also
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p(x) = p(a(x)) Ox < .
Now'suppose V(a) = V(b) = a, V(a') = V(b?) = &,
p(a(a)a)p(bat)p(var)  p(aar)™

i

Then: p(c(a)a')P(aa')-l

o(a(a)at)p(o(bat))p(aat) tp(var)™?

= aata)aralb)o(a’) plsat)Aaluat )
= p(o(p)a')p(o(aap(aat) Tp(bat) ™

= p(o(b)at)p(bat)™t
o(a(d)at)p(ob")o(bbt) to(bar) ™t

o(o(b)atdb!)p(bat) Lo(bb?) L

o(a()p1)p(bb1)"t

so (a,0) is well defined.
Now let V(a) = a, V(b) = B. Then
(aB,0) = p(o(ab)a'd')p(aba'mt)™t

p(o(a)a)p(o(b)b'){p(aa)p(bbr)} ™t

Il

o(o(a)at)p(aat) Fp(a(b)o)p(bb )™t

(a,0)(B,0)

which gives (1).

(a,01) = p(ot(a)a)p(aar)™t

‘o((r('r(a))a.')p('r(a,))a')":Lp('r(a,)a')p(aa.')-l

-1 -1
p(o(b)p)p(bd') "p(7(a)at)p(aa’)
= (e,0)(a, 1),
where b = 1(a), b' = a' in the third step. This gives (2).
It is clear by (1) and (2) that ¢ and ¥ are homomor-

phisms.
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Now o € ker ¢ iff p(o(a)a') = p(aa') Ya € RN,
iff V(o(a)a' - aa') < e Ha € RN\0,
iff V(o(a) - a)v(a?) < e Ha € R\0,
iff v(o(a) - a) < V(a) Ha € RNO,

So G

def
Vot

Ker ¢ = {0 € G | V(o(a) - a) < v(a) Ha € R\o‘v]
r

PROPOSITION 4.20. If o ¢ r"‘v for some integer
0

r > 0, then a € Ker 7.
PROOF.  First suppose a € ]I‘v « Then in defining
0
(a,0), we can chose a,a' € K. Then
(a,0) = p(o(a)at)p(aa')™* = 1, since o(a) = a. Thus
r
r* CKery. Ifo” € Ker y for some r > 0, then y(a)
0
has order 1rt, for some t. But the only element of

Hom(Gyp, A*) of order a multiple of 7 is 1, o a € Ker ¥.

The finite abelian group va/l‘xv may be expressed
0

as the sum of the m group | gt and a group I‘W, with order o
prime to w. The above proposition shows that a € Ker,tb

<% 4 d‘xv € I‘W, so there are induced homomorphisms

0
) *

GT/GV 2, Hom(r_,,A")
v ¥

r_. Y Hom(Gy/ Gy, &)

since (a,0) = (B,T), whenever aKer ¥ = BKer ¥, or oGy = TGy

PROPOSITION 4.21. GT/GV is abelian with order prime

to 7 and GV is a 7 group.
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PROOF. ¢ above is one-one, and since Hom(rw,, A¥)
is abelian and has order prime to w, the same holds for
G /Gy

Now let o € GV and suppose o has prime order g. Let
H = [oi | 1=1, 2, ***, g}. Since R is Galois over i
with group H, by Proposition 4.11, either V(g) = 0

(and g = m) or there is an x € R with

g Gl e
V(gx - 2 o(x)) $4 0. Let y = gx - =2 o (x) and note that
i=1 i=1

But if V(yy') = e, in the second case we have
J i J % d |
2 y'o(y) =0, 0=p(2y'o(y)) = Z p(y'o(y))
i=1 i=1 i=1 .
= go(yy'). Since p(y'y) # 0 and Av//Pv is a domain,

p(q)r= 0. and q = .
PROPOSITION 4.22. ¥ is one-one.

PROOF. Suppose a € PXV and (a,0) = 1 for all o € G,y
i.e., that V(o(a) - a) < V(a) for all o € Gq swhenever

V(a) =a. Let V(a) =a, y= T o(a). Theny e R "’ = Kv'
0€G
\'2

u
and V(y) = TT V(o(a)) = a" , where 7~ is the order of Gy
cer
T Uae
Since a € Ker ¢, so is a + We wish to show that a 28 el
0

Since Gvud Gp, Ky is Ga%Pis over K. with group GT//G .

€o
1
_E Gi(y) € Ky, where e'y is the

and y € K gives ZGGV(y) = -
i




T2

order of GT,/aV and ciG B O S S e'o, are the

distinct elements of GT,/@V. Now e'O is prime to m, so
u
V(e'o) = 1. Since a € Ker ¥, so is a" , hence

V(o (y) - ¥) < V(y), 1 =1, 2, =+, ey,
That is o (y) = v + t4 with V(t,) '« v(y), i=1, o5 G e,
e'O s e'o
so Z o, \yJ=et.y+ 2 t, =1r € K,. This gives ety - r
j=q + 0 {=] T e 0
et :
= 3 t;3 V(e'oy - r) < max{v(t.,)} < V(e'oy) = V(y). Thus
i=1 7 K :
V(etoy - v) < max{v(e'oy), V(r)}, so V(y) = V(e'yy) = v(r).
AT .
m
el
his

But ' e K

o and V(KT) = FVO, so V(y) = a

Thus the map h:GT,/CZ —*PWJ-—>A* given by the pairing
(a,0) is faithful in the sense that h(cGZ,a') = 1 for all
a € r . iff oG, = G,. Also, h(oGz,E) = 1 for all

oG, € G‘T/GV iff @ = T. Also h takes its values in the

pA
cyclic group of e'oth roots of unity in A*, which is
cyclic of order prime to .

Regarding GT,/GV as a group of characters on PW, and
conversely, the theory of characters for finite abelian
groups ([4], page 189) shows that GT//GV is the entire
character group of I, and conversely. That is, ¥ and ¢
are ilsomorphisms,and Tv' and GT,/@V are isomorphic.

In particular, e, = lrv,l = |Gn/Gy| = e'y. Let
IPWI = vs (ané note that s < u by proof of Proposition 4,22

above).
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PROPOSITION 4.23%. Let R be a Galois extension of K

with group G. Then efg divides the order of G, in fact

efgvd = |G| for some integer d > O.

PROOF. |G| = {G:GZ)(GZ:GT)(GT:GV)(szl)
=g - f'n'-r L eTI'—S ® 'lTu
= efgr T8,

and since efg < |G|, we must have d = u - r - 8 » 0O,

COROLIARY 4.2k, If A P is of characteristic zero,
¢y

X /oK
then efg = |G|, G, = 1 and I‘V/II‘VO/:GT.
PROOF. efg = |G| by %.23, since 7 = 1. Gy is a7

group, SO GV = 1, Fv is a 7 group so rw,= 1lyand

Gp = Gp /Gy T, = I‘?;/I‘)éo.
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