
How to Read
Floating Point Numbers

Accurately

William D. Clinger

CIS-TR-90-01
June 5, 1990

How to Read
Floating Point Numbers Accurately

William D. Clinger

CIS-TR-90-01
June 5, 1990

Abstract

Consider the problem of converting decimal scientific notation for a
number into the best binary floating point approximation to that number,
for some fixed precision. This problem cannot be solved using arithmetic
of any fixed precision. Hence the IEEE Standard for Binary Floating
Point Arithmetic does not require the result of such a conversion to be
the best approximation.

This paper presents an efficient algorithm that always finds the best
approximation. The algorithm uses a few extra bits of precision to com
pute an IEEE-conforming approximation while testing an intermediate
result to determine whether the approximation could be other than the
best. If the approximation might not be the best, then the best approx
imation is determined by a few simple operations on multiple-precision
integers, where the precision is determined by the input. When using 64
bits of precision to compute IEEE double precision results, the algorithm
avoids higher-precision arithmetic over 99% of the time.

The input problem c~nsidered by this paper is the inverse of an output
problem considered by Steele and White: Given a binary floating point
number, print a correctly rounded decimal representation of it using the
smallest number of digits that will allow the number to be read without
loss of accuracy. The Steele and White algorithm assumes that the input
problem is solved; an imperfect solution to the input problem, as allowed
by the IEEE standard and ubiquitous in current practice, defeats the
purpose of their algorithm.
NOTE

This is a corrected version of a paper to appear in the proceedings of
the ACM SIGPLAN '90 Conference on Programming Language Design
and Implementation. The three corrections are listed on the last page of
this report.

Department of Computer and Information Science
University of Oregon

How to Read Floating Point Numbers Accurately

William D Clinger
University of Oregon

ABSTRACT

Consider the problem of converting decimal scientific no
tation for a number into the best binary floating point ap
proximation to that number, for some fixed precision. This
problem cannot be solved using arithmetic of any fixed pre
cision. Hence the IEEE Standard/or Binary Floating-Point
Arithmetic does not require the result of such a conversion
to be the best approximation.

This paper presents an efficient algorithm that always ·finds
the best approximation. The algorithm uses a few extra
bits of precision to compute an IEEE-conforming approx
imation while testing an intermediate result to determine
whether the approximation could be other than the best.
If the approximation might not be the best, then the best
approximation is determined by a few simple operations
on multiple-precision integers, where the precision is de
termined by the input When using 64 bits of precision
to compute IEEE double precision results, the algorithm
avoids higher-precision arithmetic over 99% of the time.

The input problem considered by this papet is the inverse of
an output problem considered by Steele and White: Given
a binary floating point number, print a correctly rounded
decimal representation of it using the smallest number of
digits that will allow the number to be read without loss of
accuracy. The Steele and White algorithm assumes that the
input problem is solved; an imperfect solution to the input
problem, as allowed by the IEEE standard and ubiquitous
in current practice, defeats the purpose of their algorithm.

1. INTRODUCTION

It seems reasonable to assume that a floating . point constant
appearing in code or ~ when read by a compiler or a
standard input routine, will be converted into the floating

point number that best approximates the constant Most
programming languages do not require this, however, nor
does the IEEE Standard for Binary Floating-Point Arith
metic [IEEE85].

Standard practice is to settle for an easily computed ap
proximation that is close but not necessarily closest [Coo
nen80]. For example, the IEEE standard specifies that the
error introduced when converting from a decimal external
representation to either the single or double precision inter
nal representation, using round to nearest, shall be no more
than .97 units in the least significant bit of the result For
the best approximation, the error is at most .5 units.

Steele and White have considered the problem of printing
a floating point number using the fewest digits that will
allow the number to be read back without loss of accuracy
[Steele90]. Their algorithm assumes the input routine will
always find the best approximation, and does not work with
out this assumption. In particular, their algorithm does not
work under the weaker assumption of an IEEE-conforming
input routine.

The problem considered here is the input problem: Given
decimal scientific notation for a number, compute the best
binary floating point approximation to the given number.
This differs from the output problem considered by Steele
and White because the internal representation of floating
point numbers has fixed precision and is quantized, but the
external representation has variable precision and is dense
in the space of real numbers. This asymmetry makes the
input and output problems very different.

As shown in Section 4, the input problem cannot be solved
using fixed precision arithmetic. Subsequent sections de
velop a practical algorithm for this problem. The algo
rithm must occasionally work with very large precisions,
but usually finds the best approximation through a float
ing point computation whose precision is a few bits greater

than the precision required of the result.

The key idea is this. Consider the problem of computing
the value of some function g, rounded to the nearest 10000,

given an oracle that delivers the value of g rounded to the
nearest 10. Given an input x, the obvious approach is to
ask the oracle for the value of g (x) to the nearest 10, and
then to round that result to the nearest 10000. Unfortu
nately, this does not always work. If g (x) is 11074996 and
g (y) is 11075004, for example, then the answers should be
11070000 and 11080000, respectively, but the oracle will
deliver 11075000 for both x and y. This approach usually
works, though. It fails only when the value delivered by
the oracle ends in 5000.

To find the best approximation, the algorithm of this paper
uses an extended precision to compute an approximation
whose accuracy is significantly better than the accuracy re
quired in the result. It then examines the low order bits of
that intermediate . result to bound the additional error that
will be introduced when this particular value is rounded to
the precision required of the final result If the sum of the
bounds for the intermediate approximation error and for the
rounding error is less than the error allowed in the final re
sult, then the rounded value must be correct Otherwise the
rounded value must be checked using arithmetic of greater
precision.

By choosing a large enough extended precision, the proba
bility that an even greater precision will be needed can be
made as small as desired. For IEEE double precision num
bers, an experiment reported in Section 9 found that IEEE
extended precision is enough to find the best approximation
over 99% of the time.

2. EXTERNAL AND INTERNAL RADIXES

For concreteness it is often appropriate to assume that the
input is given in decimal scientific notation and that the
output is a binary floating point number, but most results
presented here hold for more general radixes. Let a 2: 2
be the radix used to express the input, and let f3 2: 2 be the
radix of the floating point output a is the external radix,
and f3 is the internal radix. In practice a is usually 10 and
f3 is usually 2 or 16.

Definition 1. [Matula70] Radixes a and f3 are commensur
able if and only if both are integral powers of a common
integral root Equivalently, a and f3 are commensurable iff
log,s a is rational.

For example, 2 and 16 are commensurable radixes, as are 8
and 16. On the other hand 10 and 2 are incommensurable,
as are 10 and 16. As shown in Section 4, the problem of
computing the best floating point approximation is trivial
if a and f3 are commensurable radixes. Most of this paper
therefore assumes that a and f3 are incommensurable, and
for simplicity the internal radix f3 is always assumed to be
even.

For convenience "bit" will be used to refer to digits in the
internal radix {3, and "digit" will be used for digits in the
external radix a.

3. FLOATING POINT NUMBERS

This paper deals exclusively with positive floating point
numbers. Overflow and underflow are considered only in
Section 8. Because the following definition refers to pre
cision and not to a data structure, this paper considers an
IEEE single precision number to be a 24-bit floating point
number and an IEEE double to be a 53-bit floating point
number.

Let n, the precision in bits of a floating point number, be
a positive integer. For the purposes of this paper, an n-bit
floating point number consists of an integer significand m
and an integer exponent q with O < m < pn, representing
the value m x f3q. A floating point number is normalized iff
pn-1 ~ m < pn. For a fixed precision n, the significand
m and exponent q of a normalized floating point number
are uniquely determined by its value m x {3q.

For any fixed precision n, a closest floating point approx
imation to a real number a is a normalized floating point
number m x {3q such that a= (mH) x {3q where ltl ~ 1/2,
and where m = pn-l only if -1/(2{3) ~ c. The closest
approximation is uniquely determined unless ltl = 1/2, or
m = pn-l and f = -1/(2{3), in which cases there are two
closest approximations. The best approximation is a closest
approximation where, in a case of two closest approxima
tions, the tie is broken by a fixed rounding rule such as
round to even.

For any real number a, the fractional part of a is defined
to be {a} = a - La J . The value of a rounded to the nearest
integer, assuming ties round to even, is defined to be , l La J if {a} < 1/2 r al if {a} > 1/2

[a] = La J if {a} = 1 /2 and La J is even

fa l if {a} = 1 /2 and La J is odd

This definition can easily be changed to accomodate other
tie-breaking rules, but the algorithms presented later will
assume that ties round to even. The significand of the best
n-bit approximation to a is

[pn-1 p{log~ a}]

unless this value is pn, in which case the significand is
pn-1 .

The floating point product of normalized floating point
numbers x x {3q and y x pr is a best approximation to
xy x {3q+r. That is, the floating point multiplication oper
ator is assumed to be reliably accurate, to round to near
est, and to resolve ties that result when the mathematical
product is exactly halfway between two adjacent floating
point numbers by the same rounding rule used to define
the best approximation. These assumptions hold for the
default rounding mode in IEEE arithmetic, but do not hold
for many other implementations of floating point numbers.

The loss of accuracy that results from approximating a real
number by a floating point number is likely to be amplified
by subsequent multiplications. The following lemma tightly
bounds this loss of accuracy.

Lemma 2. If

a= (x + c1) x {3q
b = (y+ €2) X (3'"

led ::; 61 f3P-l ::; x < f3P
lc2I ::; 62 f3P- l ::; Y < f3P

xy x {3q+r = (z + c3) x {3 8 lc3 I ::; ½ f3P- l ::; z < f3P

where x, y, z, q, r, s are integers, then

ab= (z + c) x {38

where

lcl ::; ½ + f3 (61 + 62) + (6162 - 61 - 62) x 13-p+l.

Proof:

ab = (x+c1) X {3q X (y+c2) X {3r

= xy X {3q+r + (c1Y + €2X + f1c2) X {3q+r

= (z + €3) X /38 + (t1Y + €2X + ft c2) X {3q+r

Case 1: s = p + q + r. Then

ab = (z + c3) x {3p+q+r + (c1y + c2x + c1c2) x {3q+r

= (z +t3 +€1Y X 13-p +€2X X 13-p +c1f2 X 13-P) X {3 8

so

lcl = lc3 + c1Y x 13-p + c2x x 13-p + t1t2 x 13-pl

< ! + 61 X (/3P - 1) X /3-p
2

+62 X (/3P - 1) X /3-p + 6162 X f3-P

= ½ + 61 + 62 + (6162 - 61 - 62) X 13-p

Case 2: s = p + q + r - 1. Then

ab = (z + c3) x {3p+q+r-l + (c1Y + c2x + c1c2) x {3q+r

= (z + f3 + f1Y X /3-p+l

+c2X X /3-p+l + ft f2 X {3-p+l) X {3 8

so

ltl = 1£3 + f1Y x 13-p+l + c2x x 13-p+l + c1 c2 x 13-p+l I

< ! +61 X (/3P - 1) X /3-p+l
2

+ 62 X (/3P - 1) X /3-p+l + 6162 X 13-p+l

= ½ + {3 X (61 + 62) + (6162 - 61 - 62) X 13-p+l ■

Corollary 3. If, in addition, 0 < 61 + <Si < 4, or O < 61 + 62
and either 61 < 1 or 62 < 1, then

1
lcl < 2 + f3 (61 + 62).

Proof: If 61 < 1 then 6162 - <51 - <52 = (61 - 1) 62 - 61 < 0.

If 61 + 62 < 4 then consider f (x, y) = xy- x - y restricted
to A = { (x, y) I O ::; x & 0 ::; y & x + y ::; 4 }:

8/
-=y-1
8x

8/
-=x-1
8y

but / (1, 1) = -1 is a saddle point, not a maximum. The
maximum off on A therefore occurs on the boundary of
A, and f(x, y) is strictly less than the maximum if (x, y)
is in the interior of A. Let g (x) = f (x ,4 - x).

f(O,y) = -y < 0

f(x,0) = -x < 0

g (x) = f(x,4 - x) = -x2 +4x -4

dg / dx = -2x + 4 so the maximum of g occurs at x = _ 0,
x = 2, or x = 4. g (0) = g (4) = -4 and g (2) = 0 so / is
negative on the interior of A. ■

4. UNLIMITED PRECISION IS NEEDED

The problem of finding the best n-bit binary floating point
approximation to a number written in decimal scientific no
tation is equivalent to the problem of finding the best n-bit
approximation to / x 10e. where / and e are integers and
f is positive.

What would it mean to say that this problem can or cannot
be solved using arithmetic of finite precision? Algorithms
that use finite precision floating point arithmetic do not sim
ply correspond to finite automata, because the definition of
a floating point number limits the precision of the signifi
cand but does not limit the range of the exponent Limiting
the range of the floating point exponent would reduce the
problem to table lookup, as shown in Section 8, but the

· table is so large that this is of greater theoretical than prac
tical interest The approach taken here is to identify finite
precision with finite autom~ but to allow the automata
to compute only the significand of the best approximation.
The intuitive justification for this is that the significand of a
floating point product is entirely determined by the signifi
cands of the factors, so the exponents of the factors should
not matter.

Theorem 4. [Matula68] If .6. and f3 are commensurable,
then there exists a finite automaton that computes the sig
nificand of the best n-bit floating point approximation to
f x.6.e.

Proof: Let Q, u, and V be integers with .6. = Qu and f3 = Qv.

The automaton constructs the (normalized) leading nv+ 1 o
ary digits of f, together with a sticky bit that tells whether
any of the remaining o-ary digits of / are noll7.ero. The
automaton also counts the number of digits of / modulo
v, and adds ue to this count modulo v. It then shifts right
by as many digits as are called for by (the additive inverse
modulo v of) this count, rounds to n v digits using the guard
digit and sticky bit, and performs the trivial conversion from
nv o-ary digits to n {3-ary digits. ■

Theorem 5. For n ~ 5, no finite automaton computes the
significand of the best n-bit binary floating point approx
imation to f x 10e, where f and e are presented in base
10.

Proof: This is a special case of the lemmas below. ■

Lemma 6. If x and y are positive real numbers with

I I
2{3n- l log f3 < { log,B X - log,B y} < I - 2{3n- l log f3

then the best n-bit floating point approximations to x and
y have distinct significands.

Proof: By symmetry suppose { log.B x} < { log.B y}. Let
w ={log.Bx} and w + 6 = {log.By}. Then

so

f3w+6 _ f3w = {Jw(/36 _ 1)

> f3" - 1

> 6logf3
1

> 2pn-l

Lemma 7. (Kronecker's Theorem in one dimension) If 0
is irrational, then { { n0} I n E w} is dense in the interval
(0, 1).

Proof: See [HW60]. ■

Lemma 8. If A and f3 are incommensurable, f3 ~ 3 or
n ~ 2, and e is presented with its least significant digit
first, then no finite automaton computes the significand of
the best n-bit approximation to A e .

Proof: Suppose e is presented in radix , , and let D be a
DFA. Let i and j be integers such that D is in the same
state after reading i + j zeroes as after reading i zeroes. By
Kronecker's theorem there exists an integer k such that

1 { k (i+j i) l A } 1 1
2pn- 1 log f3 < 1 - 1 og.B u < - 2{3n- l log f3 ·

Take e1 = k,i+i and e2 = k,i. D computes the same result
for A ei as for A el, but their significands are distinct by
Lemma 6. ■

Lemma 9. If 0 is irrational and, > 1 is an integer, then
there exist infinitely many nonnegative integers k such that

'Y - 1 { to} ,2 - 'Y + 1 -2-< 1 < 2 .
'Y 'Y

Proof: If all digits to the right of the radix point in the
,-ary representation of 0 are zero or , - 1, then let k be
such that the kth digit to the right of the radix point is , - 1
and the following digit is zero. Otherwise let k be such that
the kth digit is neither zero nor, - 1.

Since ,k 0 is also irrational, a larger such k always exists.

•
Lemma 10. If A and f3 are incommensurable, e is pre
sented in base , with its most significant digit first, and
Ar2/(, - 1) < 2pn- 1 1og/3, then no finite automaton com
putes the significand of the best n-bit approximation to A e.

Proof: Let D be a DFA, and let i and j be integers such
that D is in the same state after reading ,i+i as after reading
·i. By Lemma 9 there exists an integer k such that

"Y-1 k .. . } ,2-,+l
-
1

- < {, c,•+i - ,') log A < ----,--,2 .B ,2
so take e1 = ,i+j+k and e2 = ,i+k. ■

The lemma above is unpleasantly technical, for there is
no apparent reason why the base in which the inputs are
presented should affect the difficulty of the problem. The
lemma probably holds without such assumptions, but a
more sophisticated proof will be required.

Figure 1 shows a straightforward algorithm, Algori thmM,
that uses integer arithmetic of unlimited precision to com
pute the best n-bit floating point approximation to f x A e.

As written, the algorithm assumes ties are broken by round
ing to even.

Like the other algorithms in this paper, Algori thmM is
expressed as a purely functional Scheme program, with
the assumption that all integer arithmetic is exact, i.e.
of unlimited precision [Rees86]. For integers m and k
with .en-l ::; m < f3n, (make-float m k) is assumed
to return the n-bit floating point number m x {3k. The
nextfloat procedure, shown in Figure 2, returns the least
normalized floating point number greater than its argument.

For most applications Algori thmM is impractical because it
uses too much high-precision arithmetic. The next section
obtains a better algorithm by starting from a close but not
necessarily closest approximation.

5. AN ITERATIVE ALGORITHM

It is quite easy, using a few extra bits of precision, to find
an approximation that differs from the best approximation
by only a few units in the last place of the significand. In
fact, it is fairly easy to find an n-bit approximation that
differs from the best approximation by no more than one
unit.

Algori thmR, in Figure 3, takes a good approximation
m x /31,; and checks it using integer arithmetic of unlim
ited precision. If the given approximation is too small or
too large, it then repeats the process with the next larger or
smaller floating point number.

The algorithm begins by finding positive integers x and y
such that

X f X Ae
y = m X f3lc.

GiTen exact integers f and e, vith f nonnegatiTe,
returns the floating point nWllber closest to
f • delta-•.

(define (ilgorithmK f e)

(define (loop u T k)
(let ((x (quotient u T)))

(cond ((and(<• beta-n-1 x) (< x beta-n))
(ratio->float u T k))

((< x beta-n-1)
(loop(• beta u) T (- k 1)))

((<• beta-n x)
(loop u (• beta T) (+ k 1))))))

(if (negatiTe? e)
(loop f (expt 10 (- e)) 0)
(loop(• f (expt 10 e)) 1 0)))

GiTen exact poaitiTe integers u and T vith
beta-(n-1) <• u/T < beta-n, and exact integer k,
returns the float closest to u/T • beta-k.

(define (ratio->float u T k)
(let• ((q (quotient u T))

(r (- U (• q T)))

(T-r (- T r))
(z (aalte-£loat q k)))

(cond ((< r T-r) z)
((> r T-r) (nextfloat z))
((nen? q) z)
(else (nextfloat z)))))

(define delta 10)
(define beta 2)
(define n 53)
(define beta-n (expt beta n))
(define beta-n-1 (expt beta (- n 1)))

Figure 1. Algori thmM.

The purpose of this is to eliminate any further dispatching
on the signs of e and k, but the choice of x and y may
also take advantage of any common factors possessed by
~ and /3 so as to reduce the size of the integers that will
be manipulated.

Lett: be the error such that/ x a e = (m + t:) x t3k. Then
x/y = (m + t:)/m so

m(x -y)
t:=----

y

The algorithm proceeds by comparing ltl to 1/2, taking
care to avoid division.

Algori thmR can be criticized for its unimaginably slow
convergence when given a poor starting approximation,
and for the fact that it performs several expensive but
loop-invariant computations on each iteration. When
Algori thmR is incorporated into an efficient algorithm,
however, the starting approximation will always be either

GiTen a nona.al.ized floating point number
z • m • beta-k, returns the noraa.lized floating
point nwaber vhoae Talue is (a+1) • beta-k .

(define (nextfloat z)
(let ((m (float-aignificand z))

(k (float-exponent z)))
(if (= m (- beta-n 1))

(make-float beta-n-1 (+ k 1))
(make-float(+ m 1) k))))

GiTen a normalized floating point number
z • m • beta-k, returns the greatest no:raalized
floating point nuaber leas than z. lote that the
Talue returned aay be greater than (m-1) • beta-k .

(define (preTfloat z)
(let ((m (float-aignificand z))

(k (float-exponent z)))
(if(•• beta-n-1)

(make-float (- beta-n 1) (- k 1))
(make-float (- • 1) •k))))

Figure 2. Hextfloat and prevfloat.

the best approximation or one of the two floating point
numbers adjacent to the best approximation.

For such a starting approximation, the tail-recursive calls to
loop from within the compare procedure can be replaced
by their arguments, (prevfloat z) and (nexttloat z).
So modified, the algorithm always executes the body of the
loop exactly once.

6. AXED PRECISION COMES CLOSE

. To prevent the numerical analysis from becoming too ab
stract, this section and the next assume that /3 = 2. The
results of these two sections can be applied to other even
internal radixes by repeating the numerical analysis.

Let p 2: n + 4 be a convenient extended precision. An
excellent starting approximation for AlgorithmR can be
obtained by finding reasonably close p-bit floating point ap
proximations to / and to a e and multiplying them. This is
hardly an efficient solution, because Algori thmR involves
integer arithmetic of unlimited precision, but the results of
Section 4 say there will be times when such arithmetic can
not be avoided.

A closest p-bit approximation to / can be computed quite
easily. While / itself may be a large integer requiring
multiple precision, f is likely to be representable in n + 7
bits because the number of decimal digits needed to specify
any n-bit binary floating point number is the least d such
that 1 od- l > 2" [Goldberg67] whence

r1og210dl ::; n + 7.

A close approximation to A e is expensive to compute when
the absolute value of e is large. The most practical solution

; Given exact integers f and e, vith f positive,
; and a floating point number z0 close to f • delta-e ,
; returns the best floating point approximation to
; f • delta-•.

(define (AlgorithmR f e z0)

(define (loop z)

(define m (float-significand z))
(define k (float-exponent z))

; Given exact positive integers x and J vith
; x/y • (f•delta-e)/(m•beta-k), returns the best
; approximation to f•delta-e .

(define (compare x y)
(let• ((D (- x y))

(D2 <• 2 m (abs D))))
(cond ((< D2 y)

Ci£ (and(= m beta-n-1)
(negative? D)
(>(•beta D2) y))

(loop (prerlloat z))
z))

((= D2 y)
(cond ((even? m)

(if (and(= m beta-n-1)
(negative? D))

(loop (prerlloat z))
z))

((negative? D)
(prerlloat z))

((positive? D)
(nextfloat z))))

((negative? D)
(loop (prerlloat z)))

((positive? D)
(loop (nextfloat z))))))

(cond ((and(>= e 0) (>= k 0))
(compare(• f (expt delta e))

<• m (expt beta k))))
((and(>= e 0) (< k 0))

(compare(• f (expt delta e)
(expt beta (- k)))

m))
((and(< e 0) (>= k 0))

(compare f (• m (expt beta k)
(expt delta (- e)))))

((and(< e 0) (< k 0))
(compare C• f (expt beta (- k)))

(• m (expt delta (- e)))))))

(loop z0))

(define beta-n+l (expt beta(+ n 1)))

Figure 3. Algori thmR.

seems to be a pre-computed table of powers of A, contain
ing µle range of powers that is apt to occur in practice.
With practical floating point formats the range of floating
point exponents is usually limited, so very large exponents
will overflow and very small exponents will underflow un
less the number of digits in the input is unreasonably large.
AlgorithmM can be used when the input exponent is out
of the table's range.

Even when limited to the range needed for reasonable in
puts, the table of powers may be fairly large. The size
of the table can be reduced, at the expense of accuracy,
by factoring it into two smaller tables. One table contains
values for small powers of A e, with O :S e < h, while
another table contains approximations to lQhi for integral
j. It is convenient to assume that h is small enough that
the small powers are represented exactly as p-bit floating
point numbers. If this is so, and all other table entries are
best approximations, and /3 = 2, then Corollary 3 says that
the error in the value calculated for .6. e is strictly less than
! units in the least significant bit

If the floating point approximation to f is the best possible,
and the approximation to A e is within ! units, and /3 = 2,
then the error in the product is less than ! units. If this
calculation is performed using p ~ n + 4 bits of precision,
then rounding the product to the nearest n bits yields either
the best n-bit binary floating point approximation to f x A e

or a next-best approximation.

7. AN EFFICIENT, NON-ITERATIVE ALGORITHM

Algorithm Bellerophon, shown in Figure 4 for the special
case of A = 10 and /3 = 2, is a practical algorithm based on
the idea explained in the introduction. The terms used in
Figure 4 differ from those used to describe previous algo
rithms, in that "float" refers to p-bit floating point numbers
and "shortfloat" refers to n-bit numbers.

Given integers f and e, Bellerophon dispatches on the
error introduced when f and A e are approximated by float
ing point numbers with p bits of precision, where p is large
enough to ensure that the product of the approximations,
rounded to n bits, is either the best or a next-best approxi
mation to f x A e.

If f and A e can both be represented exactly using n bits,
then an n-bit floating point multiplication yields the best
approximation to their product. If f and A - e can both
be represented exactly using n bits, then an n-bit division
yields the best approximation. (This assumes that floating
point division, like multiplication, is reliably accurate.)

Otherwise Bellerophon approximates f and A e by p-bit
floating point numbers x and y, and computes their floating
point product z = m x f3q, where f3P- l :S m < f3P. Hence

f X A e = (z + t) X {3q

GiTen exact integers f and e vith f > 0,
return the float vith n bits of precision that best approximates it .
Tries to do the calculation using floats vith p bits of precision.
The error bounda used here assuae perfect floating point arithmetic,
as in the IEEE standard. They are independent of p and n.

(define (Bellerophon f e)
(cond ((and(< f tvo·n) (>• e 0) (<eh) (< e logS-of-tvo·n))

(shortfloat-.ul.tiply (int->shortfloat f)
(float->shortfloat (ten-to-e e))))

((and(< f tvo·n) (< e 0) (< (- e) h) (< (- e) logS-of-tvo·n))
(shortfloat-diTide (int->shortfloat f)

(float->shortfloat (ten-to-e (- e)))))
((and(< f tvo·p) (>= e 0) (<eh))
(multiply-and-test f e 0))

((and(< f tvo·p) (or(< e 0) (>=eh)))
(multiply-and-test f e 3))

((and(>= f tvo·p) (>= e 0) (<eh))
(multiply-and-test f e 1))

((and(>• f tvo·p) (or(< e 0) (>=eh)))
(multiply-and-test f e 4))))

Slop, expressed in units of the lea.st significant bit, is an
inclusiTe bound for the error acC1D1DU.ated during the floating
point calculation of an approximation to f • 1o·e. (Slop is
not a bound for the true error, but bounda the difference
betveen the approximation z and the best possible approximation
that uses p bits of aignificand.)

Fail is a slov but perfect backup algorithm.
Z is passed so fail can use it aa a starting approximation.

(define (multiply-and-teat f e slop)
(let ((x (int->float f))

(y (ten-to-• e)))
(let ((z (float-multiply x y)))

(let ((lovbita Creaainder (float-aignificand z) tvo·p-n)))

is the slop large enough to aake a difference vhen
rounding ton bits?

(if(<= (abs (- lovbita tvo·p-n-1)) slop)
(fail f e z)
(float->shortfloat z))))))

(define (fail fez)
(ilgorithm.R f e (float->ahortfloat z)))

(define n 53) IEEE double
(define p 64) an extended precision
(define tvo·p (expt 2 p))
(define tvo·p-1 (expt 2 (- p 1)))
(define . tvo·p-n (expt 2 (- p n)))
(define tvo·p-n-1 (expt 2 (- p n 1)))
(define tvo·n (expt 2 n))
(define tvo·n-1 (expt 2 (- n 1)))

(define log5-of-tvo·n
(inexact->exact (ceiling(/ (log tvo·n) (log 5)))))

Figme 4. Algorithm Bellerophon.

ltxl ltyl ltl

f < 2P /\ 0 ~ e -< h 0 0 < l
- 2

f < 2P /\ (e < 0 V e ~ h) 0 < 1. 2 <1
2

f ~ 2P /\ 0 ~ e < h < l
- 2

0 <1
2

f ~ 2P /\ (e < 0 V e ~ h) < l
- 2

< 1 2 < 2 2

Figure 5. Error bounds in units of the least significant bit

where for 13 = 2 the error t is bounded by the values shown
in Figure 5.

Unless z lies about halfway between two adjacent n-bit
floating point numbers, the error t will be absorbed when z
is rounded to n bits. The multiply-and-test procedure
therefore tests to see if z could be within f of the midpoint.
If not, then the correct answer is obtained by rounding z
to n bits. Otherwise the efficient part of the algorithm
fails, and the rounded value of z is passed to Algori thmR
as a starting approximation. Since the rounded value of
z is always either the best or a next-best approximation,
Algori thmR always converges in one loop.

Theorem 11. Algorithm Bellerophon computes the best
n-bit approximation to f x A e.

Proof: This proof deals with the generafuations of Figures
4 and 5 to any even internal radix 13. In general, Algorithm
Bellerophon computes a p-bit floating point number z =
m x 131: such that f x Ae = (z +t) x 131: and

1 ltl ~ slop+ 2
where the value of slop is determined by numerical anal
ysis.

Let z1 and zo be integers such that

z = z1 X 13v-n + zo

13n-l ~ z1 < /3"

0 ~ zo < 13v-n

There are three cases, depending on whether z0 is well
below, well above, or near ½f3P-n.

Case 1: zo + slop < ½l3p-n. Rounding z to n bits yields
z1 X f3k+p-n' and f X A e = (z1 + t') X 131:+p-n where the
error f.' is

lt'I = 11 X fl' I (3k+p-n - z1

= I (z + <) x pk - z I
1311:+p-n 1

= lzo+<j
J3P-n

< 13n-p (zo + !ti)

< 13n-p (zo + slop + ½)
< 13n-p X ! 13v-n

2
1
2

Case 2: ½/3p-n < zo - slop. Rounding z to n bits yields
(z1 + 1) X 1311:+p-n, and f X A e = (z1 + 1 +€') X /3k+p-n where

lt'I = I (z + t) x 131: - z - 11
[3k+p-n 1

= I zo + € - ii {3P-n
< 13n-p(/3p-n - Zo + ltl)

1 < 13n-p(f3p-n - zo +slop+
2
)

< pn-p X w-n - !fJP-n)
2

1
=

2

Case 3: ½f3p-n - slop ~ zo ~ ½f3p-n + slop. This is the
failure case in which another algorithm is used. ■

8. OVERFLOW AND UNDERFLOW

Overflow and underflow become possible when the range
of floating point exponents is restricted. Algorithm
Bellerophon can be modified to deal with overflow and
underflow by testing the n-bit result to see if it is an infinity,
the largest representable floating point number, the smallest
normalized floating point number, denormalized, or zero.
In such cases the computation may need to be repeated us
ing some other algorithm, depending on the policies that
have been established for handling overflow and underflow
within the particular floating point number system in ques
tion.

With IEEE arithmetic, for example, a denormalized result
may be required. Denormalized results can be generated

by a modified fonn of Algori thmM that tenninates imme
diately when the minimum exponent is reached.

When exponents are bounded, the input problem can be
so_lved by table lookup:

Theorem 12. If floating point exponents are bounded, then
there exists a finite automaton that talces f and e as inputs
and computes the significand of f x A e- d <n, where d (f) =

LlogA /J.
Proof: There are only a finite number of floating point
numbers and only a finite number of inputs e such that, for
some f, f x A e-d U> does not overflow or underflow.

The automaton contains a table indexed by e. For each e,
the entry for e is an enonnous table containing an entry for
every floating point number that can result from that value
of e. The entries in this subtable are indexed by representa
tions of the numbers that lie exactly halfway between two
floating point numbers. These midpoints are expressed as
sequences of input digits, so they might not always be ex
pressible as finite sequences, but they are rational so they
can be encoded as sub-automata. (If /3 = 6 and f = 13- 1 is
expressed in base 10, for example, then / is a repeating but
not a terminating decimal fraction.) Associated with each
midpoint are the floating point numbers that it separates,
together with an indication of how ties should be broken
when f is equal to the midpoint

The automaton reads e first and uses it as an index into
the table. Then it reads /, finds the midpoints that / lies
between, and reads off the answer. ■

Corollary 13. If floating point exponents are bounded, then
the best binary floating point approximation to / x 10e can
be found by approximating / using flog2 10n+17 bits of
precision and performing an enonnous table lookup.

To convert decimal scientific notation to IEEE double pre
cision using the 180-bit precision implied by the corollary,
the table used in the proof would have nearly 1020 entries,
most of which would contain over 50 decimal digits. The
table can be compressed by several orders of magnitude,
but it is hard to believe that this approach can be made
practical.

On the other hand the existence of such an algorithm im
plies that. if Algorithm Bellerophon is in any sense opti
mal for practical floating point fonnats, then a proof of its
optimality must be at least as difficult as showing that this
table cannot be compressed by more than a few orders of
magnitude.

Instead of comparing Algorithm Bellerophon against all
possible algorithms, therefore, it makes sense to compare it
against all algorithms that work by multiplying /3-ary float
ing point approximations to / and 1 oe, where the precision
of these approximations is a function off and e. When

Algorithm Bellerophon fails and must resort to a less ef
ficient algorithm, any other algorithm of this class that uses
the same .error bounds available to Bellerophon must also
resort to a higher precision, because Bellerophon makes
optimal use of the error bounds available to it It is possible
to improve upon Bell erophon by using a more efficient
algorithm for the failure case, however.

Instead of using Algori thmR for the failure case, Algo
rithm Bellerophon may itself be used with a higher pre
cision, say twice the precision. This refinement guarantees
that the precision used is within a constant factor of the
smallest possible precision, at the cost of storing a table of
the powers of A for each precision that might be used.

9. EXPERIMENTAL RESULTS

For inputs generated by IEEE-conforming output routines
to the maximum output precisions specified in [IEEE85],
Algorithm Bellerophon never has to resort to the failure
algorithm provided p is at least as large as the extended
precisions specified by [Coonen80].

Higher precision arithmetic may be needed to compute the
best approximation to inputs generated by the algorithms
in [Steele90], because minimizing the number of output
digits inevitably increases the error in the printed values.
This has the effect of moving those values closer to the
midpoints between adjacent floating point numbers. Even
so, Bellerophon is much less likely to fail on inputs gen
erated by the algorithms in [Steele9()] than on uniformly
distributed inputs.

As a simple test of Bellerophon on more uniformly dis
tributed inputs, 64-bit IEEE extended precision arithmetic
was used to find the best IEEE double precision approxi
mation for over ten million sample inputs spanning a wide
range of f and e. On these inputs, the algorithm avoided
higher precision arithmetic over 99.6% of the time.

In a classic example of local optimization leading to global
pessimization, I attempted to save an instruction or two by
choosing h = 16 as the size of the table of small powers
of ten instead of using h = flogs 2s37 = 23. As a result,
the algorithm failed systematically for e = 18 and odd /
beginning with f = 2363, changing to every fourth f at
f = 4726. Such systematic failures will occur for all non
negative e < logs 2P as / becomes just large enough to
shift the rightmost nonzero bit of 1 oe into the bit field be
ing tested by Bellerophon. These systematic failures can
be eliminated by storing exact values of A e for all such e

in the table of small powers.

The fact that a machine supports IEEE arithmetic does not
guarantee that IEEE-conforming arithmetic will be provided
by compilers for that machine. For example, the Motorola
68881/68882 floating point coprocessors perform extended

precision IEEE arithmetic faster than double or single preci
sion IEEE arithmetic. By defaul~ therefore, some compil
ers that appear to support IEEE single or double precision
arithmetic may actually perform single or double precision
calculations using extended precision, rounding to single or
double only when a result is stored in a variable. Somewhat
counterintuitively, this makes individual floating point op
erations less accurate, and does not meet the error bounds
required by the IEEE specification for the default rounding
mode using single or double precision arithmetic.

Suppose, for example, that Algorithm Bellerophon is used
to compute the best IEEE double precision approximation
to 1.448997445238699. The correct result is

6525704354437805 x r 52 = l .448997445238699

obtained by dividing 1448997445238699 by 1015 using
double precision arithmetic. If this division is performed
using 64-bit extended precision arithmetic instead, and the
extended precision result rounded to double precision, then
the incorrect result

6525704354437806 X r 52
::: l.4489974452386991

will be obtained.

10. RELATED WORK

Mathematical properties of the best approximation function
have been investigated by Matula, who does not consider
algorithms for computing it [Matula68, 70].

Theorem 4 strengthens an observation by Matula and others
[Matula68]. Calculations similar to Lemma 2 and Corollary
3 appear in [Knuth81] and in most books on numerical
analysis, though the results are seldom stated as they appear
here. Theorem 5 expresses well-known folklore, but to my
knowledge this is the first proof of it.

Algori thmM is essentially the same as Method (2a) in Sec
tion 4.4 of [Knuth81]. The solution to Exercise 3 of that
section contains a forward reference to [Steele90].

A draft of [Clinger90] required the standard routine for nu
merical output to print floating point numbers using the
fewest digits that allow the number to be read back in
without loss of accuracy. Although this can be done by
extending an IEEE-confonning but imperfect implementa
tion, reference was made to a draft of [Steele90], which
assumes a perfect input routine.

On 1 November 1989 Chris Hanson expressed concern over
this requirement in electronic mail sent to Steele, White,
and myself. Hanson described Algori thmM but noted its
inefficiency and asked whether any other perfect algorithms,
especially perfect and efficient algorithms, were published
or known. The matter was urgent because Hanson was
editing a draft IEEE standard for Scheme to be voted on in
January. After checking with Steele to confirm that he did

not know of an efficient solution to the input problem, I set
to work, keeping the others infonned of my progress.

Jon L White was out of town and unable to read his mail.
On 10 November 1989, after I had announced the basic
idea of Algorithm Bellerophon, White reported that Lu
cid Common Lisp has for several years used a similar al
gorithm of his invention. This algorithm has not been pub
lished, and was known only to a handful of people at Lu
cid. From subsequent telephone conversations, it appears
that the algorithm in use at Lucid is essentially the same
as Bellerophon but uses twice as many bits, primarily
because the error bounds were not calculated very tightly.

Bellerophon is so named because it inverts the Dragon3
and Dragon4 algorithms of [Steele90]. Unlike its name
sake, the algorithm reads its fate and acts accordingly.

ACKNOWLEDGEMENTS
Chris Hanson helped in many ways, and I am indebted also
to David Wise, Jon L White, Guy L Steele Jr, and Anne
Hartheimer.

REFERENCES
[Clinger90] Clinger, William, and Jonathan Rees [edi
tors]. Revised4 report on the algorithmic language Scheme.
Technical Report CIS-TR-90-02, Department of Computer
and Information Science, University of Oregon, 1990.

[Coonen80] Coonen, Jerome T. An implementation guide
to a proposed standard for floating-point arithmetic. Com
puter 13, 1, January 1980, pages 68-79.

[Goldberg67] Goldberg, I. B. 27 bits is not enough for
8-digit accuracy. CACM 10, 2, February 1967, pages 105--
106.

[HW60] Hardy, G. H., and E. M. Wright An Introduc
tion to the Theory of Numbers, Fourth Edition. Oxford
University Press, 1960.

[IEEE85] IEEE Standard 754-1985. IEEE Standard for
Binary Floating-Point Arithmetic. IEEE, New York, 1985.

[Knuth81] Knuth, Donald E. The Art of Computer Pro
grammi.ng, Second Edition, Volume 2. Seminumerical Al
gorithms. Addison-Wesley, 1981.

[Matula68] Matula, David W. In-and-out conversions.
CACM 11, 1, January 1968, pages 47-50.

[Matula70] Matula, David W. A formalization of floating
point numeric base conversion. IEEE Transactions on
Computers, C-19, 8, August 1970, pages 681-692.

[Rees86] Rees, Jonathan, and William Oinger [editors].
Revised3 report on the algorithmic language Scheme. ACM
SIGPLAN Notices 21, 12, December 1986, pages 37-79.

[Steele90] Steele Jr, Guy Lewis, and Jon L White. How
to print floating point numbers accurately. Proceedings of
this conference.

NOTES

This is a corrected version of a paper to appear in the pro
ceedings of the ACM SIGPLAN '90 Conference on Pro
gramming Language Design and Implementation. The three
corrections are listed here.

The statement of Corollary 3 was corrected by adding O <
61 + 62 to the second disjunct.

The statement of Theorem 5 was corrected by changing
n ~ 4 ton~ 5.

The original topic sentence for the fifth paragraph in Section
9 could be interpreted to say that the compilers described
in that paragraph violate the IEEE floating point standard.
This is not true. The IEEE standard explicitly states that,
in high level languages, the destination of an arithmetic
operation may be determined by the compiler, and hence
may be beyond the control of programmers. In other words
the compiler-not the programmer who uses the compiler
is regarded as the client of the standard. Thus the error
bounds guaranteed by the IEEE standard may not be relied
upon by programmers who work in high level languages.

