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Abstract 

Consider the problem of converting decimal scientific notation for a 
number into the best binary floating point approximation to that number, 
for some fixed precision. This problem cannot be solved using arithmetic 
of any fixed precision. Hence the IEEE Standard for Binary Floating
Point Arithmetic does not require the result of such a conversion to be 
the best approximation. 

This paper presents an efficient algorithm that always finds the best 
approximation. The algorithm uses a few extra bits of precision to com
pute an IEEE-conforming approximation while testing an intermediate 
result to determine whether the approximation could be other than the 
best. If the approximation might not be the best, then the best approx
imation is determined by a few simple operations on multiple-precision 
integers, where the precision is determined by the input. When using 64 
bits of precision to compute IEEE double precision results, the algorithm 
avoids higher-precision arithmetic over 99% of the time. 

The input problem c~nsidered by this paper is the inverse of an output 
problem considered by Steele and White: Given a binary floating point 
number, print a correctly rounded decimal representation of it using the 
smallest number of digits that will allow the number to be read without 
loss of accuracy. The Steele and White algorithm assumes that the input 
problem is solved; an imperfect solution to the input problem, as allowed 
by the IEEE standard and ubiquitous in current practice, defeats the 
purpose of their algorithm. 
NOTE 

This is a corrected version of a paper to appear in the proceedings of 
the ACM SIGPLAN '90 Conference on Programming Language Design 
and Implementation. The three corrections are listed on the last page of 
this report. 
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ABSTRACT 

Consider the problem of converting decimal scientific no
tation for a number into the best binary floating point ap
proximation to that number, for some fixed precision. This 
problem cannot be solved using arithmetic of any fixed pre
cision. Hence the IEEE Standard/or Binary Floating-Point 
Arithmetic does not require the result of such a conversion 
to be the best approximation. 

This paper presents an efficient algorithm that always ·finds 
the best approximation. The algorithm uses a few extra 
bits of precision to compute an IEEE-conforming approx
imation while testing an intermediate result to determine 
whether the approximation could be other than the best. 
If the approximation might not be the best, then the best 
approximation is determined by a few simple operations 
on multiple-precision integers, where the precision is de
termined by the input When using 64 bits of precision 
to compute IEEE double precision results, the algorithm 
avoids higher-precision arithmetic over 99% of the time. 

The input problem considered by this papet is the inverse of 
an output problem considered by Steele and White: Given 
a binary floating point number, print a correctly rounded 
decimal representation of it using the smallest number of 
digits that will allow the number to be read without loss of 
accuracy. The Steele and White algorithm assumes that the 
input problem is solved; an imperfect solution to the input 
problem, as allowed by the IEEE standard and ubiquitous 
in current practice, defeats the purpose of their algorithm. 

1. INTRODUCTION 

It seems reasonable to assume that a floating . point constant 
appearing in code or ~ when read by a compiler or a 
standard input routine, will be converted into the floating 

point number that best approximates the constant Most 
programming languages do not require this, however, nor 
does the IEEE Standard for Binary Floating-Point Arith
metic [IEEE85]. 

Standard practice is to settle for an easily computed ap
proximation that is close but not necessarily closest [Coo
nen80]. For example, the IEEE standard specifies that the 
error introduced when converting from a decimal external 
representation to either the single or double precision inter
nal representation, using round to nearest, shall be no more 
than .97 units in the least significant bit of the result For 
the best approximation, the error is at most .5 units. 

Steele and White have considered the problem of printing 
a floating point number using the fewest digits that will 
allow the number to be read back without loss of accuracy 
[Steele90]. Their algorithm assumes the input routine will 
always find the best approximation, and does not work with
out this assumption. In particular, their algorithm does not 
work under the weaker assumption of an IEEE-conforming 
input routine. 

The problem considered here is the input problem: Given 
decimal scientific notation for a number, compute the best 
binary floating point approximation to the given number. 
This differs from the output problem considered by Steele 
and White because the internal representation of floating 
point numbers has fixed precision and is quantized, but the 
external representation has variable precision and is dense 
in the space of real numbers. This asymmetry makes the 
input and output problems very different. 

As shown in Section 4, the input problem cannot be solved 
using fixed precision arithmetic. Subsequent sections de
velop a practical algorithm for this problem. The algo
rithm must occasionally work with very large precisions, 
but usually finds the best approximation through a float
ing point computation whose precision is a few bits greater 

than the precision required of the result. 

The key idea is this. Consider the problem of computing 
the value of some function g, rounded to the nearest 10000, 



given an oracle that delivers the value of g rounded to the 
nearest 10. Given an input x, the obvious approach is to 
ask the oracle for the value of g (x) to the nearest 10, and 
then to round that result to the nearest 10000. Unfortu
nately, this does not always work. If g (x) is 11074996 and 
g (y) is 11075004, for example, then the answers should be 
11070000 and 11080000, respectively, but the oracle will 
deliver 11075000 for both x and y. This approach usually 
works, though. It fails only when the value delivered by 
the oracle ends in 5000. 

To find the best approximation, the algorithm of this paper 
uses an extended precision to compute an approximation 
whose accuracy is significantly better than the accuracy re
quired in the result. It then examines the low order bits of 
that intermediate . result to bound the additional error that 
will be introduced when this particular value is rounded to 
the precision required of the final result If the sum of the 
bounds for the intermediate approximation error and for the 
rounding error is less than the error allowed in the final re
sult, then the rounded value must be correct Otherwise the 
rounded value must be checked using arithmetic of greater 
precision. 

By choosing a large enough extended precision, the proba
bility that an even greater precision will be needed can be 
made as small as desired. For IEEE double precision num
bers, an experiment reported in Section 9 found that IEEE 
extended precision is enough to find the best approximation 
over 99% of the time. 

2. EXTERNAL AND INTERNAL RADIXES 

For concreteness it is often appropriate to assume that the 
input is given in decimal scientific notation and that the 
output is a binary floating point number, but most results 
presented here hold for more general radixes. Let a 2: 2 
be the radix used to express the input, and let f3 2: 2 be the 
radix of the floating point output a is the external radix, 
and f3 is the internal radix. In practice a is usually 10 and 
f3 is usually 2 or 16. 

Definition 1. [Matula70] Radixes a and f3 are commensur
able if and only if both are integral powers of a common 
integral root Equivalently, a and f3 are commensurable iff 
log,s a is rational. 

For example, 2 and 16 are commensurable radixes, as are 8 
and 16. On the other hand 10 and 2 are incommensurable, 
as are 10 and 16. As shown in Section 4, the problem of 
computing the best floating point approximation is trivial 
if a and f3 are commensurable radixes. Most of this paper 
therefore assumes that a and f3 are incommensurable, and 
for simplicity the internal radix f3 is always assumed to be 
even. 

For convenience "bit" will be used to refer to digits in the 
internal radix {3, and "digit" will be used for digits in the 
external radix a. 

3. FLOATING POINT NUMBERS 

This paper deals exclusively with positive floating point 
numbers. Overflow and underflow are considered only in 
Section 8. Because the following definition refers to pre
cision and not to a data structure, this paper considers an 
IEEE single precision number to be a 24-bit floating point 
number and an IEEE double to be a 53-bit floating point 
number. 

Let n, the precision in bits of a floating point number, be 
a positive integer. For the purposes of this paper, an n-bit 
floating point number consists of an integer significand m 
and an integer exponent q with O < m < pn, representing 
the value m x f3q. A floating point number is normalized iff 
pn-1 ~ m < pn. For a fixed precision n, the significand 
m and exponent q of a normalized floating point number 
are uniquely determined by its value m x {3q. 

For any fixed precision n, a closest floating point approx
imation to a real number a is a normalized floating point 
number m x {3q such that a= (mH) x {3q where ltl ~ 1/2, 
and where m = pn-l only if -1/(2{3) ~ c. The closest 
approximation is uniquely determined unless ltl = 1/2, or 
m = pn-l and f = -1/(2{3), in which cases there are two 
closest approximations. The best approximation is a closest 
approximation where, in a case of two closest approxima
tions, the tie is broken by a fixed rounding rule such as 
round to even. 

For any real number a, the fractional part of a is defined 
to be {a} = a - La J . The value of a rounded to the nearest 
integer, assuming ties round to even, is defined to be , l La J if {a} < 1/2 r al if {a} > 1/2 

[a] = La J if {a} = 1 /2 and La J is even 

fa l if {a} = 1 /2 and La J is odd 

This definition can easily be changed to accomodate other 
tie-breaking rules, but the algorithms presented later will 
assume that ties round to even. The significand of the best 
n-bit approximation to a is 

[pn-1 p{log~ a}] 

unless this value is pn, in which case the significand is 
pn-1 . 

The floating point product of normalized floating point 
numbers x x {3q and y x pr is a best approximation to 
xy x {3q+r. That is, the floating point multiplication oper
ator is assumed to be reliably accurate, to round to near
est, and to resolve ties that result when the mathematical 
product is exactly halfway between two adjacent floating 
point numbers by the same rounding rule used to define 
the best approximation. These assumptions hold for the 
default rounding mode in IEEE arithmetic, but do not hold 
for many other implementations of floating point numbers. 



The loss of accuracy that results from approximating a real 
number by a floating point number is likely to be amplified 
by subsequent multiplications. The following lemma tightly 
bounds this loss of accuracy. 

Lemma 2. If 

a= (x + c1) x {3q 
b = (y+ €2) X (3'" 

led ::; 61 f3P-l ::; x < f3P 
lc2I ::; 62 f3P- l ::; Y < f3P 

xy x {3q+r = (z + c3) x {3 8 lc3 I ::; ½ f3P- l ::; z < f3P 

where x, y, z, q, r, s are integers, then 

ab= (z + c) x {38 

where 

lcl ::; ½ + f3 (61 + 62) + (6162 - 61 - 62) x 13-p+l. 

Proof: 

ab = (x+c1) X {3q X (y+c2) X {3r 

= xy X {3q+r + (c1Y + €2X + f1c2) X {3q+r 

= (z + €3) X /38 + (t1Y + €2X + ft c2) X {3q+r 

Case 1: s = p + q + r. Then 

ab = (z + c3) x {3p+q+r + (c1y + c2x + c1c2) x {3q+r 

= (z +t3 +€1Y X 13-p +€2X X 13-p +c1f2 X 13-P) X {3 8 

so 

lcl = lc3 + c1Y x 13-p + c2x x 13-p + t1t2 x 13-pl 

< ! + 61 X (/3P - 1) X /3-p 
2 

+62 X (/3P - 1) X /3-p + 6162 X f3-P 

= ½ + 61 + 62 + (6162 - 61 - 62) X 13-p 

Case 2: s = p + q + r - 1. Then 

ab = (z + c3) x {3p+q+r-l + (c1Y + c2x + c1c2) x {3q+r 

= (z + f3 + f1Y X /3-p+l 

+c2X X /3-p+l + ft f2 X {3-p+l) X {3 8 

so 

ltl = 1£3 + f1Y x 13-p+l + c2x x 13-p+l + c1 c2 x 13-p+l I 

< ! +61 X (/3P - 1) X /3-p+l 
2 

+ 62 X (/3P - 1) X /3-p+l + 6162 X 13-p+l 

= ½ + {3 X (61 + 62) + (6162 - 61 - 62) X 13-p+l ■ 

Corollary 3. If, in addition, 0 < 61 + <Si < 4, or O < 61 + 62 
and either 61 < 1 or 62 < 1, then 

1 
lcl < 2 + f3 (61 + 62). 

Proof: If 61 < 1 then 6162 - <51 - <52 = (61 - 1) 62 - 61 < 0. 

If 61 + 62 < 4 then consider f (x, y) = xy- x - y restricted 
to A = { (x, y) I O ::; x & 0 ::; y & x + y ::; 4 }: 

8/ 
-=y-1 
8x 

8/ 
-=x-1 
8y 

but / ( 1, 1) = -1 is a saddle point, not a maximum. The 
maximum off on A therefore occurs on the boundary of 
A, and f(x, y) is strictly less than the maximum if (x, y) 
is in the interior of A. Let g (x) = f (x ,4 - x). 

f(O,y) = -y < 0 

f(x,0) = -x < 0 

g (x) = f(x,4 - x) = -x2 +4x -4 

dg / dx = -2x + 4 so the maximum of g occurs at x = _ 0, 
x = 2, or x = 4. g (0) = g (4) = -4 and g (2) = 0 so / is 
negative on the interior of A. ■ 

4. UNLIMITED PRECISION IS NEEDED 

The problem of finding the best n-bit binary floating point 
approximation to a number written in decimal scientific no
tation is equivalent to the problem of finding the best n-bit 
approximation to / x 10e. where / and e are integers and 
f is positive. 

What would it mean to say that this problem can or cannot 
be solved using arithmetic of finite precision? Algorithms 
that use finite precision floating point arithmetic do not sim
ply correspond to finite automata, because the definition of 
a floating point number limits the precision of the signifi
cand but does not limit the range of the exponent Limiting 
the range of the floating point exponent would reduce the 
problem to table lookup, as shown in Section 8, but the 

· table is so large that this is of greater theoretical than prac
tical interest The approach taken here is to identify finite 
precision with finite autom~ but to allow the automata 
to compute only the significand of the best approximation. 
The intuitive justification for this is that the significand of a 
floating point product is entirely determined by the signifi
cands of the factors, so the exponents of the factors should 
not matter. 

Theorem 4. [Matula68] If .6. and f3 are commensurable, 
then there exists a finite automaton that computes the sig
nificand of the best n-bit floating point approximation to 
f x.6.e. 

Proof: Let Q, u, and V be integers with .6. = Qu and f3 = Qv. 

The automaton constructs the (normalized) leading nv+ 1 o
ary digits of f, together with a sticky bit that tells whether 
any of the remaining o-ary digits of / are noll7.ero. The 
automaton also counts the number of digits of / modulo 
v, and adds ue to this count modulo v. It then shifts right 
by as many digits as are called for by (the additive inverse 
modulo v of) this count, rounds to n v digits using the guard 
digit and sticky bit, and performs the trivial conversion from 
nv o-ary digits to n {3-ary digits. ■ 



Theorem 5. For n ~ 5, no finite automaton computes the 
significand of the best n-bit binary floating point approx
imation to f x 10e, where f and e are presented in base 
10. 

Proof: This is a special case of the lemmas below. ■ 

Lemma 6. If x and y are positive real numbers with 

I I 
2{3n- l log f3 < { log,B X - log,B y} < I - 2{3n- l log f3 

then the best n-bit floating point approximations to x and 
y have distinct significands. 

Proof: By symmetry suppose { log.B x} < { log.B y}. Let 
w ={log.Bx} and w + 6 = {log.By}. Then 

so 

f3w+6 _ f3w = {Jw(/36 _ 1) 

> f3" - 1 

> 6logf3 
1 

> 2pn-l 

Lemma 7. (Kronecker's Theorem in one dimension) If 0 
is irrational, then { { n0} I n E w} is dense in the interval 
(0, 1). 

Proof: See [HW60]. ■ 

Lemma 8. If A and f3 are incommensurable, f3 ~ 3 or 
n ~ 2, and e is presented with its least significant digit 
first, then no finite automaton computes the significand of 
the best n-bit approximation to A e . 

Proof: Suppose e is presented in radix , , and let D be a 
DFA. Let i and j be integers such that D is in the same 
state after reading i + j zeroes as after reading i zeroes. By 
Kronecker's theorem there exists an integer k such that 

1 { k ( i+j i) l A } 1 1 
2pn- 1 log f3 < 1 - 1 og.B u < - 2{3n- l log f3 · 

Take e1 = k,i+i and e2 = k,i. D computes the same result 
for A ei as for A el, but their significands are distinct by 
Lemma 6. ■ 

Lemma 9. If 0 is irrational and, > 1 is an integer, then 
there exist infinitely many nonnegative integers k such that 

'Y - 1 { to} ,2 - 'Y + 1 -2-< 1 < 2 . 
'Y 'Y 

Proof: If all digits to the right of the radix point in the 
,-ary representation of 0 are zero or , - 1, then let k be 
such that the kth digit to the right of the radix point is , - 1 
and the following digit is zero. Otherwise let k be such that 
the kth digit is neither zero nor, - 1. 

Since ,k 0 is also irrational, a larger such k always exists. 

• 
Lemma 10. If A and f3 are incommensurable, e is pre
sented in base , with its most significant digit first, and 
Ar2/(, - 1) < 2pn- 1 1og/3, then no finite automaton com
putes the significand of the best n-bit approximation to A e. 

Proof: Let D be a DFA, and let i and j be integers such 
that D is in the same state after reading ,i+i as after reading 
·i. By Lemma 9 there exists an integer k such that 

"Y-1 k .. . } ,2-,+l 
-
1 

- < {, c,•+i - ,') log A < ----,--,2 .B ,2 
so take e1 = ,i+j+k and e2 = ,i+k. ■ 

The lemma above is unpleasantly technical, for there is 
no apparent reason why the base in which the inputs are 
presented should affect the difficulty of the problem. The 
lemma probably holds without such assumptions, but a 
more sophisticated proof will be required. 

Figure 1 shows a straightforward algorithm, Algori thmM, 
that uses integer arithmetic of unlimited precision to com
pute the best n-bit floating point approximation to f x A e. 

As written, the algorithm assumes ties are broken by round
ing to even. 

Like the other algorithms in this paper, Algori thmM is 
expressed as a purely functional Scheme program, with 
the assumption that all integer arithmetic is exact, i.e. 
of unlimited precision [Rees86]. For integers m and k 
with .en-l ::; m < f3n, (make-float m k) is assumed 
to return the n-bit floating point number m x {3k. The 
nextfloat procedure, shown in Figure 2, returns the least 
normalized floating point number greater than its argument. 

For most applications Algori thmM is impractical because it 
uses too much high-precision arithmetic. The next section 
obtains a better algorithm by starting from a close but not 
necessarily closest approximation. 

5. AN ITERATIVE ALGORITHM 

It is quite easy, using a few extra bits of precision, to find 
an approximation that differs from the best approximation 
by only a few units in the last place of the significand. In 
fact, it is fairly easy to find an n-bit approximation that 
differs from the best approximation by no more than one 
unit. 

Algori thmR, in Figure 3, takes a good approximation 
m x /31,; and checks it using integer arithmetic of unlim
ited precision. If the given approximation is too small or 
too large, it then repeats the process with the next larger or 
smaller floating point number. 

The algorithm begins by finding positive integers x and y 
such that 

X f X Ae 
y = m X f3lc. 



GiTen exact integers f and e, vith f nonnegatiTe, 
returns the floating point nWllber closest to 
f • delta-•. 

(define (ilgorithmK f e) 

(define (loop u T k) 
(let ((x (quotient u T))) 

(cond ((and(<• beta-n-1 x) (< x beta-n)) 
(ratio->float u T k)) 

(( < x beta-n-1) 
(loop(• beta u) T (- k 1))) 

((<• beta-n x) 
(loop u (• beta T) (+ k 1)))))) 

(if (negatiTe? e) 
(loop f (expt 10 (- e)) 0) 
(loop(• f (expt 10 e)) 1 0))) 

GiTen exact poaitiTe integers u and T vith 
beta-(n-1) <• u/T < beta-n, and exact integer k, 
returns the float closest to u/T • beta-k. 

(define (ratio->float u T k) 
(let• ((q (quotient u T)) 

(r (- U (• q T))) 

(T-r (- T r)) 
(z (aalte-£loat q k))) 

(cond ((< r T-r) z) 
((> r T-r) (nextfloat z)) 
((nen? q) z) 
(else (nextfloat z))))) 

(define delta 10) 
(define beta 2) 
(define n 53) 
(define beta-n (expt beta n)) 
(define beta-n-1 (expt beta (- n 1))) 

Figure 1. Algori thmM. 

The purpose of this is to eliminate any further dispatching 
on the signs of e and k, but the choice of x and y may 
also take advantage of any common factors possessed by 
~ and /3 so as to reduce the size of the integers that will 
be manipulated. 

Lett: be the error such that/ x a e = (m + t:) x t3k. Then 
x/y = (m + t:)/m so 

m(x -y) 
t:=----

y 

The algorithm proceeds by comparing ltl to 1/2, taking 
care to avoid division. 

Algori thmR can be criticized for its unimaginably slow 
convergence when given a poor starting approximation, 
and for the fact that it performs several expensive but 
loop-invariant computations on each iteration. When 
Algori thmR is incorporated into an efficient algorithm, 
however, the starting approximation will always be either 

GiTen a nona.al.ized floating point number 
z • m • beta-k, returns the noraa.lized floating 
point nwaber vhoae Talue is (a+1) • beta-k . 

(define (nextfloat z) 
(let ((m (float-aignificand z)) 

(k (float-exponent z))) 
(if (= m (- beta-n 1)) 

(make-float beta-n-1 (+ k 1)) 
(make-float(+ m 1) k)))) 

GiTen a normalized floating point number 
z • m • beta-k, returns the greatest no:raalized 
floating point nuaber leas than z. lote that the 
Talue returned aay be greater than (m-1) • beta-k . 

(define (preTfloat z) 
(let ((m (float-aignificand z)) 

(k (float-exponent z))) 
(if(•• beta-n-1) 

(make-float (- beta-n 1 ) (- k 1)) 
(make-float (- • 1) •k)))) 

Figure 2. Hextfloat and prevfloat. 

the best approximation or one of the two floating point 
numbers adjacent to the best approximation. 

For such a starting approximation, the tail-recursive calls to 
loop from within the compare procedure can be replaced 
by their arguments, (prevfloat z) and (nexttloat z). 
So modified, the algorithm always executes the body of the 
loop exactly once. 

6. AXED PRECISION COMES CLOSE 

. To prevent the numerical analysis from becoming too ab
stract, this section and the next assume that /3 = 2. The 
results of these two sections can be applied to other even 
internal radixes by repeating the numerical analysis. 

Let p 2: n + 4 be a convenient extended precision. An 
excellent starting approximation for AlgorithmR can be 
obtained by finding reasonably close p-bit floating point ap
proximations to / and to a e and multiplying them. This is 
hardly an efficient solution, because Algori thmR involves 
integer arithmetic of unlimited precision, but the results of 
Section 4 say there will be times when such arithmetic can
not be avoided. 

A closest p-bit approximation to / can be computed quite 
easily. While / itself may be a large integer requiring 
multiple precision, f is likely to be representable in n + 7 
bits because the number of decimal digits needed to specify 
any n-bit binary floating point number is the least d such 
that 1 od- l > 2" [Goldberg67] whence 

r1og210dl ::; n + 7. 

A close approximation to A e is expensive to compute when 
the absolute value of e is large. The most practical solution 



; Given exact integers f and e, vith f positive, 
; and a floating point number z0 close to f • delta-e , 
; returns the best floating point approximation to 
; f • delta-•. 

(define (AlgorithmR f e z0) 

(define (loop z) 

(define m (float-significand z)) 
(define k (float-exponent z)) 

; Given exact positive integers x and J vith 
; x/y • (f•delta-e)/(m•beta-k), returns the best 
; approximation to f•delta-e . 

(define (compare x y) 
(let• ((D (- x y)) 

(D2 <• 2 m (abs D)))) 
(cond ((< D2 y) 

Ci£ (and(= m beta-n-1) 
(negative? D) 
(>(•beta D2) y)) 

(loop (prerlloat z)) 
z)) 

((= D2 y) 
(cond ((even? m) 

(if (and(= m beta-n-1) 
(negative? D)) 

(loop (prerlloat z)) 
z)) 

( (negative? D) 
(prerlloat z)) 

((positive? D) 
(nextfloat z)))) 

((negative? D) 
(loop (prerlloat z))) 

((positive? D) 
(loop (nextfloat z)))))) 

(cond ((and(>= e 0) (>= k 0)) 
(compare(• f (expt delta e)) 

<• m (expt beta k)))) 
((and(>= e 0) (< k 0)) 

(compare(• f (expt delta e) 
(expt beta (- k))) 

m)) 
((and(< e 0) (>= k 0)) 

(compare f (• m (expt beta k) 
(expt delta (- e))))) 

((and(< e 0) (< k 0)) 
(compare C• f (expt beta (- k))) 

(• m (expt delta (- e))))))) 

(loop z0)) 

(define beta-n+l (expt beta(+ n 1))) 

Figure 3. Algori thmR. 

seems to be a pre-computed table of powers of A, contain
ing µle range of powers that is apt to occur in practice. 
With practical floating point formats the range of floating 
point exponents is usually limited, so very large exponents 
will overflow and very small exponents will underflow un
less the number of digits in the input is unreasonably large. 
AlgorithmM can be used when the input exponent is out 
of the table's range. 

Even when limited to the range needed for reasonable in
puts, the table of powers may be fairly large. The size 
of the table can be reduced, at the expense of accuracy, 
by factoring it into two smaller tables. One table contains 
values for small powers of A e, with O :S e < h, while 
another table contains approximations to lQhi for integral 
j. It is convenient to assume that h is small enough that 
the small powers are represented exactly as p-bit floating 
point numbers. If this is so, and all other table entries are 
best approximations, and /3 = 2, then Corollary 3 says that 
the error in the value calculated for .6. e is strictly less than 
! units in the least significant bit 

If the floating point approximation to f is the best possible, 
and the approximation to A e is within ! units, and /3 = 2, 
then the error in the product is less than ! units. If this 
calculation is performed using p ~ n + 4 bits of precision, 
then rounding the product to the nearest n bits yields either 
the best n-bit binary floating point approximation to f x A e 

or a next-best approximation. 

7. AN EFFICIENT, NON-ITERATIVE ALGORITHM 

Algorithm Bellerophon, shown in Figure 4 for the special 
case of A = 10 and /3 = 2, is a practical algorithm based on 
the idea explained in the introduction. The terms used in 
Figure 4 differ from those used to describe previous algo
rithms, in that "float" refers to p-bit floating point numbers 
and "shortfloat" refers to n-bit numbers. 

Given integers f and e, Bellerophon dispatches on the 
error introduced when f and A e are approximated by float
ing point numbers with p bits of precision, where p is large 
enough to ensure that the product of the approximations, 
rounded to n bits, is either the best or a next-best approxi
mation to f x A e. 

If f and A e can both be represented exactly using n bits, 
then an n-bit floating point multiplication yields the best 
approximation to their product. If f and A - e can both 
be represented exactly using n bits, then an n-bit division 
yields the best approximation. (This assumes that floating 
point division, like multiplication, is reliably accurate.) 

Otherwise Bellerophon approximates f and A e by p-bit 
floating point numbers x and y, and computes their floating 
point product z = m x f3q, where f3P- l :S m < f3P. Hence 

f X A e = (z + t) X {3q 



GiTen exact integers f and e vith f > 0, 
return the float vith n bits of precision that best approximates it . 
Tries to do the calculation using floats vith p bits of precision. 
The error bounda used here assuae perfect floating point arithmetic, 
as in the IEEE standard. They are independent of p and n. 

(define (Bellerophon f e) 
(cond ((and(< f tvo·n) (>• e 0) (<eh) (< e logS-of-tvo·n)) 

(shortfloat-.ul.tiply (int->shortfloat f) 
(float->shortfloat (ten-to-e e)))) 

((and(< f tvo·n) (< e 0) (< (- e) h) (< (- e) logS-of-tvo·n)) 
(shortfloat-diTide (int->shortfloat f) 

(float->shortfloat (ten-to-e (- e))))) 
((and(< f tvo·p) (>= e 0) (<eh)) 
(multiply-and-test f e 0)) 

((and(< f tvo·p) (or(< e 0) (>=eh))) 
(multiply-and-test f e 3)) 

((and(>= f tvo·p) (>= e 0) (<eh)) 
(multiply-and-test f e 1)) 

((and(>• f tvo·p) (or(< e 0) (>=eh))) 
(multiply-and-test f e 4)))) 

Slop, expressed in units of the lea.st significant bit, is an 
inclusiTe bound for the error acC1D1DU.ated during the floating 
point calculation of an approximation to f • 1o·e. (Slop is 
not a bound for the true error, but bounda the difference 
betveen the approximation z and the best possible approximation 
that uses p bits of aignificand.) 

Fail is a slov but perfect backup algorithm. 
Z is passed so fail can use it aa a starting approximation. 

(define (multiply-and-teat f e slop) 
(let ((x (int->float f)) 

(y (ten-to-• e))) 
(let ((z (float-multiply x y))) 

(let ((lovbita Creaainder (float-aignificand z) tvo·p-n))) 

is the slop large enough to aake a difference vhen 
rounding ton bits? 

(if(<= (abs (- lovbita tvo·p-n-1)) slop) 
(fail f e z) 
(float->shortfloat z)))))) 

(define (fail fez) 
(ilgorithm.R f e (float->ahortfloat z))) 

(define n 53) IEEE double 
(define p 64) an extended precision 
(define tvo·p (expt 2 p)) 
(define tvo·p-1 (expt 2 (- p 1))) 
(define . tvo·p-n (expt 2 (- p n))) 
(define tvo·p-n-1 (expt 2 (- p n 1))) 
(define tvo·n (expt 2 n)) 
(define tvo·n-1 (expt 2 (- n 1))) 

(define log5-of-tvo·n 
(inexact->exact (ceiling(/ (log tvo·n) (log 5))))) 

Figme 4. Algorithm Bellerophon. 
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f < 2P /\ 0 ~ e -< h 0 0 < l 
- 2 

f < 2P /\ ( e < 0 V e ~ h) 0 < 1. 2 <1 
2 

f ~ 2P /\ 0 ~ e < h < l 
- 2 

0 <1 
2 

f ~ 2P /\ ( e < 0 V e ~ h) < l 
- 2 

< 1 2 < 2 2 

Figure 5. Error bounds in units of the least significant bit 

where for 13 = 2 the error t is bounded by the values shown 
in Figure 5. 

Unless z lies about halfway between two adjacent n-bit 
floating point numbers, the error t will be absorbed when z 
is rounded to n bits. The multiply-and-test procedure 
therefore tests to see if z could be within f of the midpoint. 
If not, then the correct answer is obtained by rounding z 
to n bits. Otherwise the efficient part of the algorithm 
fails, and the rounded value of z is passed to Algori thmR 
as a starting approximation. Since the rounded value of 
z is always either the best or a next-best approximation, 
Algori thmR always converges in one loop. 

Theorem 11. Algorithm Bellerophon computes the best 
n-bit approximation to f x A e. 

Proof: This proof deals with the generafuations of Figures 
4 and 5 to any even internal radix 13. In general, Algorithm 
Bellerophon computes a p-bit floating point number z = 
m x 131: such that f x Ae = (z +t) x 131: and 

1 ltl ~ slop+ 2 
where the value of slop is determined by numerical anal
ysis. 

Let z1 and zo be integers such that 

z = z1 X 13v-n + zo 

13n-l ~ z1 < /3" 

0 ~ zo < 13v-n 

There are three cases, depending on whether z0 is well 
below, well above, or near ½f3P-n. 

Case 1: zo + slop < ½l3p-n. Rounding z to n bits yields 
z1 X f3k+p-n' and f X A e = (z1 + t') X 131:+p-n where the 
error f.' is 

lt'I = 11 X fl' I (3k+p-n - z1 

= I (z + <) x pk - z I 
1311:+p-n 1 

= lzo+<j 
J3P-n 

< 13n-p (zo + !ti) 

< 13n-p (zo + slop + ½) 
< 13n-p X ! 13v-n 

2 
1 
2 

Case 2: ½/3p-n < zo - slop. Rounding z to n bits yields 
(z1 + 1) X 1311:+p-n, and f X A e = (z1 + 1 +€') X /3k+p-n where 

lt'I = I (z + t) x 131: - z - 11 
[3k+p-n 1 

= I zo + € - ii {3P-n 
< 13n-p(/3p-n - Zo + ltl) 

1 < 13n-p(f3p-n - zo +slop+ 
2
) 

< pn-p X w-n - !fJP-n) 
2 

1 
= 

2 

Case 3: ½f3p-n - slop ~ zo ~ ½f3p-n + slop. This is the 
failure case in which another algorithm is used. ■ 

8. OVERFLOW AND UNDERFLOW 

Overflow and underflow become possible when the range 
of floating point exponents is restricted. Algorithm 
Bellerophon can be modified to deal with overflow and 
underflow by testing the n-bit result to see if it is an infinity, 
the largest representable floating point number, the smallest 
normalized floating point number, denormalized, or zero. 
In such cases the computation may need to be repeated us
ing some other algorithm, depending on the policies that 
have been established for handling overflow and underflow 
within the particular floating point number system in ques
tion. 

With IEEE arithmetic, for example, a denormalized result 
may be required. Denormalized results can be generated 



by a modified fonn of Algori thmM that tenninates imme
diately when the minimum exponent is reached. 

When exponents are bounded, the input problem can be 
so_lved by table lookup: 

Theorem 12. If floating point exponents are bounded, then 
there exists a finite automaton that talces f and e as inputs 
and computes the significand of f x A e- d <n, where d (f) = 

LlogA /J. 
Proof: There are only a finite number of floating point 
numbers and only a finite number of inputs e such that, for 
some f, f x A e-d U> does not overflow or underflow. 

The automaton contains a table indexed by e. For each e, 
the entry for e is an enonnous table containing an entry for 
every floating point number that can result from that value 
of e. The entries in this subtable are indexed by representa
tions of the numbers that lie exactly halfway between two 
floating point numbers. These midpoints are expressed as 
sequences of input digits, so they might not always be ex
pressible as finite sequences, but they are rational so they 
can be encoded as sub-automata. (If /3 = 6 and f = 13- 1 is 
expressed in base 10, for example, then / is a repeating but 
not a terminating decimal fraction.) Associated with each 
midpoint are the floating point numbers that it separates, 
together with an indication of how ties should be broken 
when f is equal to the midpoint 

The automaton reads e first and uses it as an index into 
the table. Then it reads /, finds the midpoints that / lies 
between, and reads off the answer. ■ 

Corollary 13. If floating point exponents are bounded, then 
the best binary floating point approximation to / x 10e can 
be found by approximating / using flog2 10n+17 bits of 
precision and performing an enonnous table lookup. 

To convert decimal scientific notation to IEEE double pre
cision using the 180-bit precision implied by the corollary, 
the table used in the proof would have nearly 1020 entries, 
most of which would contain over 50 decimal digits. The 
table can be compressed by several orders of magnitude, 
but it is hard to believe that this approach can be made 
practical. 

On the other hand the existence of such an algorithm im
plies that. if Algorithm Bellerophon is in any sense opti
mal for practical floating point fonnats, then a proof of its 
optimality must be at least as difficult as showing that this 
table cannot be compressed by more than a few orders of 
magnitude. 

Instead of comparing Algorithm Bellerophon against all 
possible algorithms, therefore, it makes sense to compare it 
against all algorithms that work by multiplying /3-ary float
ing point approximations to / and 1 oe, where the precision 
of these approximations is a function off and e. When 

Algorithm Bellerophon fails and must resort to a less ef
ficient algorithm, any other algorithm of this class that uses 
the same .error bounds available to Bellerophon must also 
resort to a higher precision, because Bellerophon makes 
optimal use of the error bounds available to it It is possible 
to improve upon Bell erophon by using a more efficient 
algorithm for the failure case, however. 

Instead of using Algori thmR for the failure case, Algo
rithm Bellerophon may itself be used with a higher pre
cision, say twice the precision. This refinement guarantees 
that the precision used is within a constant factor of the 
smallest possible precision, at the cost of storing a table of 
the powers of A for each precision that might be used. 

9. EXPERIMENTAL RESULTS 

For inputs generated by IEEE-conforming output routines 
to the maximum output precisions specified in [IEEE85], 
Algorithm Bellerophon never has to resort to the failure 
algorithm provided p is at least as large as the extended 
precisions specified by [Coonen80]. 

Higher precision arithmetic may be needed to compute the 
best approximation to inputs generated by the algorithms 
in [Steele90], because minimizing the number of output 
digits inevitably increases the error in the printed values. 
This has the effect of moving those values closer to the 
midpoints between adjacent floating point numbers. Even 
so, Bellerophon is much less likely to fail on inputs gen
erated by the algorithms in [Steele9()] than on uniformly 
distributed inputs. 

As a simple test of Bellerophon on more uniformly dis
tributed inputs, 64-bit IEEE extended precision arithmetic 
was used to find the best IEEE double precision approxi
mation for over ten million sample inputs spanning a wide 
range of f and e. On these inputs, the algorithm avoided 
higher precision arithmetic over 99.6% of the time. 

In a classic example of local optimization leading to global 
pessimization, I attempted to save an instruction or two by 
choosing h = 16 as the size of the table of small powers 
of ten instead of using h = flogs 2s37 = 23. As a result, 
the algorithm failed systematically for e = 18 and odd / 
beginning with f = 2363, changing to every fourth f at 
f = 4726. Such systematic failures will occur for all non
negative e < logs 2P as / becomes just large enough to 
shift the rightmost nonzero bit of 1 oe into the bit field be
ing tested by Bellerophon. These systematic failures can 
be eliminated by storing exact values of A e for all such e 

in the table of small powers. 

The fact that a machine supports IEEE arithmetic does not 
guarantee that IEEE-conforming arithmetic will be provided 
by compilers for that machine. For example, the Motorola 
68881/68882 floating point coprocessors perform extended 



precision IEEE arithmetic faster than double or single preci
sion IEEE arithmetic. By defaul~ therefore, some compil
ers that appear to support IEEE single or double precision 
arithmetic may actually perform single or double precision 
calculations using extended precision, rounding to single or 
double only when a result is stored in a variable. Somewhat 
counterintuitively, this makes individual floating point op
erations less accurate, and does not meet the error bounds 
required by the IEEE specification for the default rounding 
mode using single or double precision arithmetic. 

Suppose, for example, that Algorithm Bellerophon is used 
to compute the best IEEE double precision approximation 
to 1.448997445238699. The correct result is 

6525704354437805 x r 52 = l .448997445238699 

obtained by dividing 1448997445238699 by 1015 using 
double precision arithmetic. If this division is performed 
using 64-bit extended precision arithmetic instead, and the 
extended precision result rounded to double precision, then 
the incorrect result 

6525704354437806 X r 52 
::: l.4489974452386991 

will be obtained. 

10. RELATED WORK 

Mathematical properties of the best approximation function 
have been investigated by Matula, who does not consider 
algorithms for computing it [Matula68, 70]. 

Theorem 4 strengthens an observation by Matula and others 
[Matula68]. Calculations similar to Lemma 2 and Corollary 
3 appear in [Knuth81] and in most books on numerical 
analysis, though the results are seldom stated as they appear 
here. Theorem 5 expresses well-known folklore, but to my 
knowledge this is the first proof of it. 

Algori thmM is essentially the same as Method (2a) in Sec
tion 4.4 of [Knuth81]. The solution to Exercise 3 of that 
section contains a forward reference to [Steele90]. 

A draft of [Clinger90] required the standard routine for nu
merical output to print floating point numbers using the 
fewest digits that allow the number to be read back in 
without loss of accuracy. Although this can be done by 
extending an IEEE-confonning but imperfect implementa
tion, reference was made to a draft of [Steele90], which 
assumes a perfect input routine. 

On 1 November 1989 Chris Hanson expressed concern over 
this requirement in electronic mail sent to Steele, White, 
and myself. Hanson described Algori thmM but noted its 
inefficiency and asked whether any other perfect algorithms, 
especially perfect and efficient algorithms, were published 
or known. The matter was urgent because Hanson was 
editing a draft IEEE standard for Scheme to be voted on in 
January. After checking with Steele to confirm that he did 

not know of an efficient solution to the input problem, I set 
to work, keeping the others infonned of my progress. 

Jon L White was out of town and unable to read his mail. 
On 10 November 1989, after I had announced the basic 
idea of Algorithm Bellerophon, White reported that Lu
cid Common Lisp has for several years used a similar al
gorithm of his invention. This algorithm has not been pub
lished, and was known only to a handful of people at Lu
cid. From subsequent telephone conversations, it appears 
that the algorithm in use at Lucid is essentially the same 
as Bellerophon but uses twice as many bits, primarily 
because the error bounds were not calculated very tightly. 

Bellerophon is so named because it inverts the Dragon3 
and Dragon4 algorithms of [Steele90]. Unlike its name
sake, the algorithm reads its fate and acts accordingly. 
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NOTES 

This is a corrected version of a paper to appear in the pro
ceedings of the ACM SIGPLAN '90 Conference on Pro
gramming Language Design and Implementation. The three 
corrections are listed here. 

The statement of Corollary 3 was corrected by adding O < 
61 + 62 to the second disjunct. 

The statement of Theorem 5 was corrected by changing 
n ~ 4 ton~ 5. 

The original topic sentence for the fifth paragraph in Section 
9 could be interpreted to say that the compilers described 
in that paragraph violate the IEEE floating point standard. 
This is not true. The IEEE standard explicitly states that, 
in high level languages, the destination of an arithmetic 
operation may be determined by the compiler, and hence 
may be beyond the control of programmers. In other words 
the compiler-not the programmer who uses the compiler
is regarded as the client of the standard. Thus the error 
bounds guaranteed by the IEEE standard may not be relied 
upon by programmers who work in high level languages. 


